
UC Riverside
UC Riverside Previously Published Works

Title
Algorithms for testing fault-tolerance of sequenced jobs

Permalink
https://escholarship.org/uc/item/16f8z66b

Journal
Journal of Scheduling, 12(5)

ISSN
1099-1425

Authors
Chrobak, Marek
Hurand, Mathilde
Sgall, Jiří

Publication Date
2009-10-01

DOI
10.1007/s10951-009-0126-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/16f8z66b
https://escholarship.org
http://www.cdlib.org/


J Sched (2009) 12: 501–515
DOI 10.1007/s10951-009-0126-8

Algorithms for testing fault-tolerance of sequenced jobs

Marek Chrobak · Mathilde Hurand · Jiří Sgall
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Abstract We study the problem of testing whether a given
set of sequenced jobs can tolerate transient faults. We
present efficient algorithms for this problem in several fault
models. A fault model describes what types of faults are
allowed and specifies assumptions on their frequency. Two
types of faults are considered: hidden faults, that can only
be detected after a job completes, and exposed faults, that
can be detected immediately.

First, we give an O(n)-time fault-tolerance testing algo-
rithm, for both exposed and hidden faults, if the number of
faults does not exceed a given parameter k.

Then we consider the model in which any two faults are
separated in time by a gap of length at least Δ, where Δ is at
least twice the maximum job length. For exposed faults, we
give an O(n)-time algorithm. For hidden faults, we give an
algorithm with running time O(n2), and we prove that if job
lengths are distributed uniformly over an interval [0,pmax],
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then this algorithm’s expected running time is O(n). Our
experimental study shows that this linear-time performance
extends to other distributions. Finally, we provide evidence
that improving the worst-case performance may not be pos-
sible, by proving an Ω(n2) lower bound, in the algebraic
computation tree model, on a slight generalization of this
problem.

Keywords Scheduling · Fault-tolerance · Real-time
systems · Algorithms

1 Introduction

Ghosh et al. (1995), Mosse et al. (2003) (see also Egan et
al. 1999) studied the problem of testing fault-tolerance of
a collection of sequenced jobs. More specifically, we are
given a sequence J of jobs, with release times, deadlines,
and processing times (or lengths). The jobs in J have al-
ready been sequenced, that is, their order of execution is
known. Transient faults may occur when jobs are executed.
If a fault occurs, the currently executed job is re-executed.
In (Ghosh et al. 1995; Mosse et al. 2003), the authors as-
sume that a fault can be detected only after the process-
ing of a job is complete. We refer to such faults as hid-
den faults. The question investigated in (Ghosh et al. 1995;
Mosse et al. 2003) is whether all jobs in J will meet their
deadlines in the presence of faults. The answer is, obvi-
ously, negative when arbitrary fault patterns are allowed.
However, with reasonable assumptions on the frequency of
faults, the question becomes meaningful and, in some cases,
non-trivial. In (Ghosh et al. 1995; Mosse et al. 2003), the
authors assume the fault frequency model in which a gap
between any two faults is at least Δ, where Δ is at least
twice the maximum job length. For this model, they present
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an O(n2)-time fault-tolerance testing algorithm, under the
restriction that all jobs are released at the same time. In
addition, they also propose a linear-time heuristic for this
problem. The authors also extend this linear-time heuristic
to jobs with arbitrary release times, and discuss its applica-
tions and experimental results.

A different fault frequency model, in which the number
of faults is bounded by some constant k, has been suggested
by Liberato et al. (2000). For this model, the authors give
an O(n2k)-time dynamic programming algorithm for test-
ing fault-tolerance, if jobs are ordered according to EDF and
preemption is allowed.

Testing for fault-tolerance and enhancing schedules to
improve their fault-tolerance are significant issues in real-
time systems with hard deadlines, where missing a deadline
by a job may result in a malfunction of the whole system.
Although scheduling approaches as those discussed above
can only guarantee limited fault-tolerance, they still pro-
vide useful tools. A system designer can choose a fault-
tolerance model most appropriate for its application, and
determine the expected level of its fault tolerance (say, the
value of Δ or k, in the models discussed above). Alterna-
tively, one can use the desired value of Δ or k to determine
either the maximum load conditions or the hardware require-
ments needed to meet these fault-tolerance goals. The ex-
periments reported in (Ghosh et al. 1995) show that, in fact,
even if the faults do not strictly match the model, the task
loss is minimal. We refer the reader to (Ghosh et al. 1995;
Mosse et al. 2003) for more background on this problem and
discussion of its practical aspects. See also Sect. 7 for a brief
discussion of more general models.

Our results In this paper, the jobs are already ordered (as
in the previous work), and preemption is not allowed. We
consider both fault frequency models from (Ghosh et al.
1995; Mosse et al. 2003; Liberato et al. 2000) in this paper.
In addition to the hidden faults, we also consider another
type of faults that we call exposed. Unlike hidden faults, ex-
posed faults can be detected immediately, and the running
job can be restarted from scratch at the time when a fault
occurs.

First, we discuss the issue of scheduling. A schedule as-
signs to each job its planned start time, that is the time when
the job would be started if the previous jobs are not delayed
due to faults. The greedy schedule starts each job either at
its release time or at the completion time of the previous job,
whichever comes later. In the exposed-fault model, it is not
difficult to see that it is sufficient to consider only greedy
schedules. For hidden faults, however, there are fault pat-
terns for which it is beneficial, in some situations, to delay
execution of a job and stay idle for some time. In Sect. 3, we
prove that this cannot happen if the set of all possible fault
sequences satisfies the following sparsifiability property: if

a certain fault sequence can occur, then any sparser sequence
can occur as well (see Sect. 2 for precise definitions). This
is a very natural restriction on potential fault sequences and
all the fault frequency models we consider are sparsifiable.
Thus throughout the paper we can restrict our attention to
greedy schedules only.

We then propose a number of fault-tolerance testing algo-
rithms. Our first algorithm is for the fault frequency model
NUMk , where the number of faults is bounded by k. This
algorithm runs in time O(n) (for both fault types), indepen-
dently of k. In (Aydin 2004), the fault model from (Liberato
et al. 2000) is extended so that a re-execution of a job could
take time different from its processing time. Our algorithm
can be adapted to handle a similar case as well.

Then we consider the fault frequency model GAPΔ, in-
troduced in (Ghosh et al. 1995; Mosse et al. 2003), in which
any two consecutive faults are separated by a gap at least
Δ. As in (Ghosh et al. 1995; Mosse et al. 2003), we assume
that Δ is at least twice the maximum processing time. (Thus
each job can fail at most once.) For exposed faults, we give
an algorithm that runs in time O(n).

The case of hidden faults in the GAPΔ model is more
difficult. Here, we present an algorithm with running time
O(n2). Our algorithm applies to jobs with arbitrary re-
lease times, generalizing the work from (Ghosh et al. 1995;
Mosse et al. 2003). We further show that if job lengths are
distributed uniformly then the running time of this algorithm
is O(n) with high probability. (And thus its expected run-
ning time is O(n) as well.) This result is, in fact, much more
general, as it holds for all probability distributions in which
certain sub-intervals of [0,Δ/2] have non-zero probability.
(See Sect. 6.2.) We also include the results of an experimen-
tal study that confirms our analysis.

Whether the worst-case running time can be improved re-
mains an open question. However, we provide evidence that
such an improvement is unlikely, by showing that a slight
generalization of this problem cannot be solved faster than
in time Ω(n2) in the algebraic computation tree model.

All our algorithms are very simple, efficient, and easy
to implement. The basic idea behind all these algorithms is
similar: For each fault model, we first show that one needs to
consider only some specific “cruel” fault patterns. With this
restriction, using dynamic programming, we design an algo-
rithm that for each job computes its latest completion time
on faults that are “cruel” for this model. Comparing these
completion times with the deadlines, we determine whether
the given set of jobs is fault-tolerant.

Other related work Substantial work has been done on
fault tolerant scheduling in multiprocessor systems. For ex-
ample, Liberato et al. (1999) studied scheduling of periodic
preemptive real-time jobs in the presence of transient faults.
A different model, with processor faults and non-periodic
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and non-preemptive tasks was investigated by (Manimaran
and Siva Ram Murthy 1998). Kalyanasundaram and Pruhs
(1997) studied fault-tolerant scheduling from the perspec-
tive of competitive analysis. (See Liberato et al. 1999; Man-
imaran and Siva Ram Murthy 1998; Qin et al., 2000, 2002;
Girault et al. 2004; Kalyanasundaram and Pruhs 1997 and
references therein for other work on this and related topics.)

2 Terminology and notation

Jobs and schedules By J we denote the sequence of n jobs
on input. Jobs are identified by integers 1,2, . . . , n. Each job
j is specified by a triple (rj , dj ,pj ), where rj is its release
time, dj is its deadline, and pj is its processing time. With-
out loss of generality, we assume that 0 ≤ rj < rj +pj ≤ dj

for all j . By pmax = maxj pj we denote the maximum
processing time.

A schedule of J is any sequence s = (s1, . . . , sn) such
that sj ≥ rj for all j , and sj+1 ≥ sj + pj for j < n. We
refer to sj as the scheduled start time of job j .

Without loss of generality, throughout the paper we as-
sume that rj+1 ≥ rj + pj for all j < n. For any set of jobs
J , we can easily modify, in linear time, the release times in
J to satisfy this property, without affecting job completion
times for any schedule of this sequence of jobs. (Recall that
the order of jobs is already fixed in advance.) The greedy
schedule for J is then defined simply by sj = rj for all j .

Faults Each fault is specified by a real number, namely
the time of the fault. Fault sequences (or patterns) are de-
noted by letters f , g, h. We assume that the faults in these
sequences are listed in increasing order, that is, if f =
(f1, f2, . . . , fm) then f1 < f2 < · · · < fm. By |f | we de-
note the length of sequence f . (We allow infinite sequences
as well, in which case |f | = ∞.)

A fault frequency model is a set F of potential fault se-
quences. F is called sparsifiable if for all f ∈ F , any 1 ≤
a ≤ b ≤ |f |, and any fault sequence g with |g| = b − a + 1,
if fa+i−1 − fa+i−2 ≤ gi − gi−1 for i = 2, . . . , b − a + 1,
then g ∈ F as well. Intuitively, this means that any sequence
“sparser” than a segment of a sequence in F is also in F .

The two particular fault frequency models we consider
are:

GAPΔ: The set of all sequences f in which fi − fi−1 ≥ Δ

for each i, and
NUMk : The set of all sequences f with at most k faults.

Both models are easily seen to be sparsifiable. As we
show later in the paper, for sparsifiable models, we can re-
strict ourselves to studying only greedy schedules.

Completion times Next, we explain how execution of a job
is affected when a fault occurs. This depends on the type of
faults under consideration.

Fix a sequence of n jobs J and a fault model F . By
Sj (s, f ) and Cj (s, f ) we denote the start time and com-
pletion time of job j , if we execute the jobs according to
schedule s and the fault sequence is f . Informally, Sj (s, f )

is either sj or the completion time of job j − 1, whichever is
greater. If no fault occurs between Sj (s, f ) and Sj (s, f ) +
pj , then Cj (s, f ) equals Sj (s, f ) + pj . If a fault occurs in
this interval, j will need to be re-executed, starting either at
the fault time or at Sj (s, f ) + pj , depending on whether we
consider exposed or hidden faults. The completion time is
the time when j has been fully processed without faults.

We now give a rigorous definition. Initially, set
S1(s, f ) = s1. Then, for j = 1, . . . , n, assume that Sj (s, f )

has been defined, and proceed as follows:

(C) The completion time Cj(s, f ) depends on the fault
type:
(CE) For exposed-faults, Cj(s, f ) is the smallest τ ≥

Sj (s, f )+ pj such that f ∩ (τ − pj , τ ] = ∅, that
is, the interval (τ − pj , τ ] contains no faults.

(CH) For hidden-faults, Cj (s, f ) is the smallest τ ≥
Sj (s, f ) + pj such that f ∩ (τ − pj , τ ] = ∅ and
τ − Sj (s, f ) is an integer multiple of pj .

(S) If j < n, then the start time of job j +1 is Sj+1(s, f ) =
max{sj+1,Cj (s, f )}.

For the sake of brevity, as in the definition above, we
sometimes treat f as a set of real numbers (fault times), so
that we can apply to it set-theoretic operations.

In (CE) and (CH), if such a τ does not exist, job j (and
all subsequent jobs) never completes. Note that in the case
of a “tie”, when a fault occurs exactly at a time when some
job j completes its execution and job j + 1 is about to start,
we assume that the fault affects job j but not j + 1. (All
the results remain valid if we assumed that j + 1 is affected
instead of j , or even if the choice of the affected job was
arbitrary.)

By Cj(s,F ) we denote the maximum completion time
of a job j if the faults are from F , that is, Cj (s,F ) =
maxf ∈F Cj (s, f ). Throughout the paper, we will simplify
notation by omitting the arguments that are understood from
context, for example, Sj (s), Cj (F ), Cj , etc.

For either fault type, exposed or hidden, a schedule s of
J is called F -tolerant, if each job completes by its deadline,
that is, Cj(s,F ) ≤ dj for all j . All algorithms we present
will actually compute, for all j , the maximum comple-
tion times Cj (s,F ). Testing fault-tolerance, that is, whether
Cj (s,F ) ≤ dj for all j , can then be done trivially in linear
time.

3 Fault tolerance and greedy schedules

In this section, we show that we can restrict ourselves to
greedy schedules only. For two schedules s, t , we write s ≺ t

if si ≤ ti for all i.
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Recall that the job sequence is given, and we cannot re-
order the jobs. It is quite intuitive that attempting to execute
each job as soon as possible in the given order should yield
the most fault-tolerant schedule. We prove this in the two
lemmas below.

Lemma 1 For exposed faults, for any fault frequency model
F , if J has any F -tolerant schedule then the greedy schedule
for J is F -tolerant.

Proof Fix any fault sequence f and schedules s, t such that
s ≺ t . It is enough to show the following claim:

(∗) Cj (s, f ) ≤ Cj (t, f ) for all j .

Indeed, if (∗) holds, to get the lemma we take s to be the
greedy schedule. If J has any F -tolerant schedule t , then
s ≺ t , and thus (∗) implies that the greedy schedule is F -
tolerant as well.

We show inequality (∗) by induction on j . For j = 0, de-
fine artificially C0(s, f ) = C0(t, f ) = 0, and the claim holds
trivially.

Suppose that j ≥ 1 and Cj−1(s, f ) ≤ Cj−1(t, f ). Then
τ = Cj (t, f ) satisfies f ∩ (τ − pj , τ ] = ∅ and τ ≥
Sj (t, f ) + pj = max{tj ,Cj−1(t, f )} + pj ≥ max{sj ,
Cj−1(s, f )}+pj = Sj (s, f )+pj . Thus Cj (s, f ) ≤ Cj (t, f )

as well. �

Lemma 1 does not hold for hidden faults. For hidden
faults, it is possible that J has an F -tolerant schedule even
though the greedy schedule is not F -tolerant. For exam-
ple, take J = {(r1, d1,p1) = (0,5,3)} (just one job) and
F = {(1)}, one fault sequence with a single fault at time 1.
Schedule s = (2) is F -tolerant, but the greedy schedule
s = (0) is not. However, we show that a lemma analogous
to Lemma 1 holds for hidden faults if we assume that F is
sparsifiable.

Lemma 2 For hidden faults, for any sparsifiable fault fre-
quency model F , if J has any F -tolerant schedule then the
greedy schedule for J is F -tolerant.

Proof The proof is a little harder than that of Lemma 1, al-
though the general idea is similar. Fix any fault sequence f

and schedules s, t such that s ≺ t . It is enough to show the
following claim:

(∗) For any b ∈ J and f ∈ F there is g ∈ F such that
Cb(s, f ) ≤ Cb(t, g).

That (∗) is sufficient to prove the lemma should be quite
obvious: Take s to be the greedy schedule. If t is any F -
tolerant schedule, then s ≺ t , and thus (∗) implies that the
greedy schedule is F -tolerant as well.

It is sufficient to prove (∗) for the special case where s

and t differ in just one start time, say tm = sm + ε, for some

ε > 0, and tj = sj for j 
= m. For otherwise, if s ≺ t are
arbitrary, we can define schedules s = s0 ≺ s1 ≺ · · · ≺ sl =
t , where each two consecutive schedules sq , sq+1 differ in
only one start time. If (∗) holds for any pair of consecutive
schedules s′ = sq , t ′ = sq+1, then it holds for s, t as well.

Without loss of generality, Cb(s, f ) < ∞. Fix b, and pick
the largest a ≤ b such that Sa(s, f ) = sa . Thus jobs a, a +
1, . . . , b execute back-to-back, some possibly several times.
Without loss of generality, we can assume that all faults in
f occur in (sa,Cb(s, f )], since we can remove other faults
without changing the value of Cb(s, f ). (Note that removing
faults at the beginning or end of f creates a fault sequence
that is still in F .) We choose g depending on the value of m.
There are three cases to consider.

Case 1: m > b. This is the easiest case since here we can
simply take g = f . The execution of jobs 1,2, . . . , b is the
same in f and g, so Cb(s, f ) = Cb(t, g).

Case 2: a ≤ m ≤ b. Let ε′ = max{tm −Cm−1(s, f ),0} be the
amount of time by which m will be delayed if we change its
start time from sm to tm. Define gi = fi for all fi ≤ Sm(s, f )

and gi = fi + ε′ for all fi > Sm(s, f ). Since F is sparsifi-
able, g ∈ F , and in g each fault will hit the same job as in
f . Therefore, Cb(s, f ) ≤ Cb(t, g), and we are done.

Case 3: m < a. Recall that, according to our assump-
tion, no fault occurs before Sa(s, f ). Denote by θ =∑a

j=m+1 max{sj − Cj−1(s, f ),0} the total idle time be-
tween Cm(s,f ) and sa . We have two sub-cases.

If ε ≤ θ , then increasing sm to tm will not change the start
time of job a, and therefore we can simply take g = f .

In the other case, when ε > θ , the jobs a, a + 1, . . . , b

will be started earlier by ε′ = ε − θ . We take gi = fi + ε′ for
all i. Then g ∈ F, and (similarly to Case 2) each fault will
hit the same job as in f . Therefore, (∗) holds in this case as
well. �

The following lemma follows almost directly from the
definitions:

Lemma 3 Both fault frequency models NUMk and GAPΔ

are sparsifiable.

Proof Consider first NUMk . The definition of sparsifiability
requires that for any f ∈ NUMk , any sequence g not longer
than f and sparser than a segment of f of length |g| is also
in NUMk . Since NUMk contains all sequences with at most
k faults, this condition is satisfied vacuously.

For GAPΔ, the proof is equally simple: Suppose that f ∈
GAPΔ and let g be any sequence with |g| = b−a+1, where
1 ≤ a ≤ b ≤ |f |, that satisfies fa+i−1 − fa+i−2 ≤ gi − gi−1

for i = 2, . . . , b − a + 1. Since fa+i−1 − fa+i−2 ≥ Δ for all
i = 2, . . . , b−a +1, we get gi −gi−1 ≥ Δ as well, implying
that g ∈ GAPΔ. �
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From the lemmas above, throughout the rest of the paper
we can assume that the jobs are scheduled greedily, and we
will use notation Sj (f ), Cj (f ), etc., for the start time and
completion time in the greedy schedule. Also, we will say
that a job sequence J is F -tolerant if the greedy schedule
for J is F -tolerant.

4 Sequences with at most k faults

In this section, we give a linear-time algorithm for testing
fault tolerance when F = NUMk , that is, F consists of all
sequences with at most k faults, where k is a given parame-
ter. By the results from the previous section, we can assume
that the jobs are scheduled according to the greedy schedule.
The general idea of the algorithm is that in the worst case all
faults will affect just one “critical” job.

Lemma 4 For both exposed and hidden faults, for each b ∈
J and f ∈ NUMk , there is a g ∈ NUMk that causes one job
in J to execute k + 1 times, and for which Cb(g) ≥ Cb(f ).
In addition, all the faults in g appear at the end of execution
of that job.

The fault sequences g from the above lemma constitute
the cruel sequences for NUMk .

Proof Pick the smallest a such that the jobs a, . . . , b are
executed back-to-back, that is, Sa(f ) = ra and Sj (f ) =
Cj−1(f ) for j = a + 1, . . . , b. We can assume, without
loss of generality, that all faults in f occur in the interval
(ra,Cb(f )]. Let e, a ≤ e ≤ b, be the job in this block that
has the largest processing time pe.

We first give the argument for hidden faults. If there is
any fault in the interval (Ce(f ),Cb(f )], we can do this:
(i) remove the last fault from f , (ii) increase the time
of all faults in f after Ce(f ) by pe, and (iii) add one
fault during the last execution of e, that is, in the interval
(Ce(f ) − pe,Ce(f )]. Let f ′ be the new fault sequence.
There are at most k faults in f ′, and, by the choice of e,
this change can only increase the completion time of b, that
is, Cb(f

′) ≥ Cb(f ). By repeating this process we eliminate
all faults after the completion of e.

So suppose now that e is executed l + 1 times, due to
l faults, and that there are no faults after Ce(f ). If there
are any faults in the interval (Sa(f ), Se(f )], remove the last
such fault. This will decrease the start time of e by some
amount δ ≤ pe. Modify f by decreasing times of all the
faults on e by δ, and then add one more fault on the last
execution on e. Let the resulting sequence be f ′. There are
at most k faults in f ′ and, by the choice of e, the above
modification can only increase the completion time of b, so
Cb(f

′) ≥ Cb(f ).

Overall, the process above transforms f into another se-
quence g in which all faults (at most k) occur during the
executions of e, and which satisfies Cb(g) ≥ Cb(f ). If the
number of faults is smaller than k, we can add another fault
on the last execution of e. By repeating this, we obtain a
sequence with k faults on e.

Finally, to satisfy the second requirement in the lemma,
each fault can be shifted to the end of the corresponding
execution of job e, without any change in the resulting com-
pletion times.

The proof for exposed faults is similar. The main ob-
servation is that for exposed faults, using a similar shift-
ing argument, we can assume that all faults occur at com-
pletions of executions of jobs, that is at times of the form
Sj (f ) + ipj , for i = 1,2, . . . , � − 1, for some j , where
Cj (f ) = Sj (f ) + �pj . The rest of the argument is the same
as for hidden faults. �

Algorithm 1 given below will compute the latest com-
pletion time C∗

j = Cj (NUMk) for each job j . To test fault-
tolerance, one then only needs to check if C∗

j ≤ dj for all j .
Note that Lemma 4 implies that the cruel sequences and the
completion times for them are the same for hidden and ex-
posed faults, so we can handle both cases at once.

Algorithm 1 — Computing the C∗
j = Cj(NUMk) for both

fault types
C∗

0 ← 0
for j = 1, . . . , n do

C∗
j ← max{C∗

j−1 + pj , rj + (k + 1)pj }.

Analysis Clearly, Algorithm 1 works in linear time. We
need to show that the completion times are computed cor-
rectly, that is, C∗

j = Cj (NUMk) for all j .
The proof is by induction. To make the base case easy to

handle, we artificially set C0(NUMk) = 0.
The (≤) inequality is quite easy: Suppose it holds for in-

dices 0,1, . . . , j − 1, and consider job j . Using a fault se-
quence f ∈ NUMk that forces j to execute k + 1 times, we
get Cj (f ) ≥ rj + (k +1)pj . If g ∈ NUMk is a fault sequence
that realizes Cj−1(NUMk), then Cj (g) ≥ Cj−1(g) + pj =
Cj−1(NUMk) + pj ≥ C∗

j−1 + pj , by induction. Therefore,
Cj (NUMk) ≥ max{Cj (f ),Cj (g)} ≥ C∗

j .
Now we show the (≥) inequality. In other words, we

claim that for any job j and fault sequence f ∈ NUMk , C∗
j ≥

Cj (f ). Again, assume that this holds for jobs 1,2, . . . , j −1.
By Lemma 4, we can assume that on f some job j ′ is re-
executed k times. If j < j ′ then j starts at rj (recall that
ri+1 ≥ ri + pi for all i) and executes once, so j is com-
pleted no later than C∗

j . For j = j ′, job j completes at time
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rj + (k + 1)pj ≤ C∗
j . For j > j ′, job j is completed at time

max{rj ,C∗
j−1} + pj ≤ C∗

j . Thus each job j completes no
later than at time C∗

j , as claimed.
In conclusion, we obtain the following theorem.

Theorem 5 For both fault types, Algorithm 1 computes in
time O(n) the latest completion times for all jobs j , in the
presence of up to k faults (that is, for the fault model NUMk).

5 Exposed Δ-faults

In this section, we consider the fault model F = GAPΔ, in
which all fault sequences f satisfy fi − fi−1 ≥ Δ for all
i, where Δ is some parameter of the problem. Recall that,
as in (Ghosh et al. 1997), we assume that Δ ≥ 2pmax. We
give a linear-time algorithm for testing fault-tolerance in this
model in the case of exposed faults.

As in the previous section, the idea is to show that only
some special fault sequences need to be considered.

Lemma 6 In the greedy schedule, for each b ∈ J and f ∈
GAPΔ, there is a g ∈ GAPΔ in which each fault occurs at
the completion time of the first execution of some job, and
for which Cb(g) ≥ Cb(f ).

Proof Pick the largest a ≤ b such that Sa(f ) = ra . Thus
jobs a, a + 1, . . . , b execute back-to-back, some possibly
twice. Without loss of generality we can assume that all
faults in f occur in the interval (ra,Cb(f )], since we can
remove all other faults without affecting the value of Cb(f ).

If f satisfies the condition in the lemma, we take g = f

and we are done. Otherwise, let fl be the last fault in f

that does not satisfy the condition in the lemma. Let also e,
a ≤ e ≤ b, be the job affected by fl , that is, Se(f ) < fl ≤
Se(f ) + pe. For δ = Se(f ) + pe − fl , define a new fault se-
quence f ′ where f ′

i = fi if i < l and f ′
i = fi + δ for i ≥ l.

Then f ′ ∈ GAPΔ, Cj (f
′) ≥ Cj (f ) for all j = a, . . . , b, and

f ′ has more faults satisfying the condition in the lemma
than f . So after repeating this process, we transform f into
a desired fault sequence g. �

The algorithm For each j , we define α(j) as the minimum
index a such that

∑j
i=a pi ≤ Δ. (In other words,

∑j
i=a pi ≤

Δ and either a = 1 or
∑j

i=a−1 pi > Δ.) Let also π(j) =
∑j

i=α(j) pi . Note that if a fault occurs during an execution
of j and jobs α(j), . . . , j are executed back-to-back then no
fault could have occurred on these jobs.

The algorithm is shown below in pseudocode. It first pre-
computes the numbers α(j) and π(j). Then it uses the num-
bers α(j) and π(j) to compute C∗

j = Cj (GAPΔ), for each j .
To determine whether J is GAPΔ-tolerant, one then only
needs to check if C∗

j ≤ dj for all j .

Algorithm 2 — Computing C∗
j = Cj (GAPΔ) for exposed

faults
// Compute the numbers αj , πj

α(1) ← 1; π(1) ← p1

for j = 2, . . . , n do
a ← α(j − 1); x ← π(j − 1) + pj

while x > Δ do
x ← x − pa ; a ← a + 1

α(j) ← a; π(j) ← x

// Compute the completion times
C∗

0 ← r1

for j = 1, . . . , n do
C∗

j ← max{C∗
j−1 + pj , rj + 2pj ,C

∗
α(j)−1 + π(j) +

pj }

Running time By a standard amortization argument, it
takes time O(n) to compute all numbers α(j) and π(j). The
linear-time complexity of computing the completion times is
obvious.

Correctness We now show that the numbers C∗
j are com-

puted correctly, that is, C∗
j = Cj(GAPΔ) for all j . The proof

is by induction. We artificially set C0(GAPΔ) = 0, so that
the equality holds in the base case j = 0.

We prove the (≤) inequality first. Assume that this in-
equality holds for indices 0,1, . . . , j − 1, and consider job
j . If f consists of just one fault at the end of the execution
of j , then Cj (f ) ≥ rj + 2pj . Next, choosing g ∈ GAPΔ

to be the fault that realizes Cj−1(GAPΔ), we get Cj (g) ≥
Cj−1(g)+pj = Cj−1(GAPΔ)+pj ≥ C∗

j−1 +pj , by induc-
tion. Finally, take h ∈ GAPΔ that realizes Cα(j)−1(GAPΔ).
Add to h a fault at the end of the execution of j . This
new fault sequence h′ is still in GAPΔ, by the definition of
α(j) and π(j). Therefore, Cj (h

′) ≥ Cα(j)−1(h) + π(j) +
pj = Cα(j)−1(GAPΔ) + π(j) + pj ≥ C∗

α(j)−1 + π(j) +
pj , by induction. Putting it together, we get Cj (GAPΔ) ≥
max{Cj(f ),Cj (g),Cj (h

′)} ≥ C∗
j .

Next, we prove the (≥) inequality. We need to show
that C∗

j ≥ Cj (f ) for each j and each f ∈ GAPΔ. Assume
that the claim holds for 0,1, . . . , j − 1. For the current
job j, we consider cases depending on whether the last
fault occurred. If j is executed without faults, then Cj =
max{rj ,Cj−1} + pj ≤ max{rj ,C∗

j−1} + pj ≤ C∗
j . Suppose

now that a fault occurs at job j , so j is executed twice.
Without loss of generality, this fault is at the end of its first
execution. If j starts at rj then Cj (f ) = rj + 2pj ≤ C∗

j .
Otherwise j must have been delayed because of a previous
fault on a job of index smaller or equal to α(j). So the jobs
α(j) − 1, . . . , j − 1 must have been executed back-to-back
with jobs α(j), . . . , j − 1 executing without faults. There-
fore, Cj = Cα(j)−1 + π(j) + pj ≤ C∗

α(j)−1 + π(j) + pj ≤
C∗

j . We conclude that the algorithm is correct.
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Theorem 7 For exposed faults, Algorithm 2 computes in
linear time the maximum completion times when all faults
are separated by gaps of length at least Δ (that is, for the
fault model GAPΔ).

6 Hidden Δ-faults

The algorithm from (Ghosh et al. 1997) verifies fault-
tolerance for hidden Δ-faults if all jobs are ready at the
same time. Their method is to divide the sequence of jobs
into blocks of length at most Δ, where each block includes
an additional unallocated recovery interval whose length is
at least the longest processing time of the jobs. Then they
compute the partition that minimizes the total execution
time. This approach does not work for jobs with different
release times because some job sequences can be executed
fault-tolerantly but do not have such partition into blocks.
Consider, for example, a sequence J of jobs in which job j

has start time 3j − 3, deadline 3j + 1, and all jobs have ex-
ecution time equal 2. Let Δ = 6. With the greedy schedules,
for all f ∈ GAPΔ, all jobs in J will meet their deadlines, but
it will not be possible if we use a schedule where some job
is postponed.

General idea The general approach we take is similar to
those in the previous section. We identify certain “cruel”
fault sequences on which completion times of jobs are max-
imized. By focusing on these sequences, we can derive a
dynamic programming algorithm for computing maximum
completion times for all jobs. This algorithm, for each j ,
will compute pairs (c, δ), where c is a possible completion
time of j and c−δ is the time of the latest fault before c. This
is all the information needed to determine the latest comple-
tion times of the jobs j + 1, . . . , n. To achieve polynomial-
time, we show that we need to keep track of only those pairs
(c, δ) that are not dominated by other—in the sense defined
formally below.

To simplify the argument, it is convenient to slightly
modify the interpretation of faults as follows: If a fault oc-
curs at a time τ and a job j starts at time τ , then we will
assume that this fault affects job j and j is re-executed (not
job j − 1, even if it ends at τ ). We claim that this mod-
ification does not change the worst-case completion times.
Indeed, for any fault sequence f that possibly contains some
faults on the beginning of jobs (with the new interpretation),
we can choose a sufficiently small ε > 0 and increase all
fault times by ε, so that afterwards all faults are on exactly
the same jobs, but not on their start times. The completion
times of all jobs on this new sequence f ′ will be the same as
on f . Similarly, for any fault sequence that possibly contains
some faults on the end of jobs (with the old interpretation),
we can choose a sufficiently small ε > 0 and decrease all
fault times by ε with no change of completion times.

Let J be a set of jobs. A fault sequence f ∈ GAPΔ is
called cruel for J if for all fi ∈ f , either fi − fi−1 = Δ

or fi occurs at a beginning of some job. The above condi-
tions imply that each cruel fault sequence can be divided into
chains, where in each chain the faults are at distance exactly
Δ. We define CRUEL0

J to be the set of fault sequences in
GAPΔ that are cruel for J .

Lemma 8 In the greedy schedule, for each b ∈ J and f ∈
GAPΔ, there is a g ∈ CRUEL0

J for which Cb(g) ≥ Cb(f ).

Proof For convenience, for all fault sequences f we will set
f0 = −∞. Fix b and f . Pick the largest a ≤ b such that
Sa(f ) = ra . Thus jobs a, a + 1, . . . , b execute back-to-back,
some possibly twice. Let f ′ be the fault sequence obtained
from f by removing all faults before Sa and after Cb . Then
f ′ ∈ GAPΔ and Cb(f

′) = Cb(f ).
Now take the first fault f ′

i that does not satisfy the defi-
nition of the cruel sequence. Suppose that f ′

i occurs when a
job j is executed, that is, f ′

i ∈ (Sj (f
′), Sj (f

′)+pj ). By the
choice of i, we have f ′

i − f ′
i−1 > Δ (and this holds even if

i = 1 because f ′
0 = −∞). We can modify f ′ by moving f ′

i

to max{f ′
i−1 + Δ,Sj (f

′)} without affecting the completion
time of jobs j, j + 1, . . . , b. After this change, f ′ will be
still in GAPΔ. By repeating this process for each fault, we
turn f ′ into a sequence g ∈ CRUEL0

J . �

For a job j and a fault sequence f , suppose that fi is
the time of the last fault in f before Cj (f ), that is, fi =
maxi′ {fi′ | fi′ < Cj(f )}. As explained earlier, the idea of
our algorithm is to keep track of such pairs (Cj (f ),Cj (f )−
fi), as these pairs determine the start time of the next job and
the earliest possible time when a fault can occur. Lemma 8
implies that we only need to be concerned with cruel fault
sequences. This still does not yield a polynomial-time algo-
rithm, as even for cruel sequences the number of such pairs
to keep track of could be exponential. We reduce the com-
plexity by discarding from consideration fault sequences
that are “redundant”, namely those that cannot maximize the
completion time of any job after j .

First, we note that, once Cj(f ) − fi ≥ Δ, the next fault
can occur immediately, and it is not necessary to remember
the exact value of the difference. Instead, in such a pair, we
always use Δ in the second component. We define δj (f ) =
min(Cj (f ) − fi,Δ).

We now formalize the idea of redundancy. A pair (c̃, δ̃)

is said to dominate a pair (c, δ) if c̃ ≥ c, δ̃ ≥ δ, and at least
one of these inequalities is strict. The dominance relation is
clearly a (strict) partial order.

We extend the definition of dominance to fault se-
quences. For two fault sequences f,g ∈ CRUEL0

J and a
job k, we say that f k-dominates g if (Ck(f ), δk(f ))

dominates (Ck(g), δk(g)). (In case when (Ck(f ), δk(f )) =
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Fig. 1 Building Hj+1 from
Hj .The pairs marked by squares
are eliminated

(Ck(g), δk(g)), to break the tie, we further require that
f is lexicographically smaller than g.) For each k, the
k-dominance relation is a partial order on CRUEL0

J . By
CRUELk

J ⊆ CRUEL0
J we denote the set of cruel sequences

that are not j -dominated by another sequence, for any
j = 1,2, . . . , k. In other words, for k > 0, CRUELk

J is the
set of all f ∈ CRUELk−1

J such that f is not k-dominated by
any g ∈ CRUELk−1

J . We now prove that, in order to compute
the worst-case completion times, it is sufficient to consider
only the sequences in the sets CRUELk

J .

Lemma 9 For any f ∈ CRUELk−1
J − CRUELk

J and b ≥ k,
there exists a g ∈ CRUELk

J such that Cb(f ) ≤ Cb(g).

Proof Fix any f ∈ CRUELk−1
J − CRUELk

J , and choose a
fault sequence h ∈ CRUELk−1

J that k-dominates f . Without
loss of generality, we can assume that h is maximal with
respect to the k-dominance relation, that is, h ∈ CRUELk

J .
Let g be a sequence that contains the faults in h that affect
jobs 1,2, . . . , k, as well as the faults from f that affect jobs
k + 1, . . . , n, appropriately shifted so that they hit the same
jobs and at the same places as in f . Then g ∈ GAPΔ because
f,h ∈ GAPΔ and h k-dominates f . Also, Cb(g) ≥ Cb(f )

because Ck(h) ≥ Ck(f ). The gap in g from job k to job
k + 1 could violate the definition of a cruel sequence, but
using the method from Lemma 8 we can modify the part
of g after job k to satisfy this definition, getting a cruel se-
quence g for which Cb(g) ≥ Cb(f ). And finally, since all
faults of g up to job k are from h and h ∈ CRUELk

J , we have
g ∈ CRUELk

J . �

Corollary 10 If a job b ∈ J is CRUELb
J -tolerant, then it is

CRUEL0
J -tolerant.

Proof Let f ∈ CRUEL0
J . Let k be the first job for which f ∈

CRUELk−1
J − CRUELk

J . Then, according to Lemma 9, there

exists a g in CRUELk
J with Cb(g) ≥ Cb(f ). By repeating

this argument as many times as necessary, we will find an
h ∈ CRUELb

J with Cb(h) ≥ Cb(f ). �

The algorithm As before, we view the problem as the
optimization problem in which we wish to compute the
worst-case completion time, C∗

j = Cj(GAPΔ), for each j .
By Lemma 8 and Corollary 10, for each j we have C∗

j =
Cj (CRUEL0

J ) = Cj (CRUEL
j
J ).

The algorithm maintains the set Hj = {(Cj (f ), δj (f )) |
f ∈ CRUEL

j
J }, for j = 1,2, . . . , n. In other words, Hj is

the set of pairs (c, δ) such that for some fault sequence f ∈
CRUEL

j
J we have c = Cj (f ) and δ = δj (f ). Given Hj , the

maximum completion time of j can be determined easily, as
we have C∗

j = max{c | (c, δ) ∈ Hj }.
To compute the sets Hj , we initially start with H0 ←

{(−∞,Δ)}. Then for j = 1,2, . . . , n, since CRUEL
j
J ⊆

CRUEL
j−1
J , we can use the definition of cruel sequences to

construct Hj from Hj−1. (See the pseudo-code below.)
The complete algorithm is given below in pseudo-code.

An example illustrating the recursive construction of the sets
Hj (for the case without the release times) is shown in Fig. 1.

Algorithm 3 — Computing the C∗
j = Cj (GAPΔ) for hidden

faults
H0 ← {(−∞,Δ)}
for j = 1,2, . . . , n do

Hj ← ∅
for each (c, δ) ∈ Hj−1 such that c ≥ rj do

if δ + pj ≤ Δ then
add (c + pj , δ + pj ) to Hj

else
add (c + 2pj , δ + 2pj − Δ) and (c +
pj ,Δ) to Hj

if min{c | (c, δ) ∈ Hj−1} < rj then
add (rj + pj ,Δ) and (rj + 2pj ,2pj ) to Hj

Eliminate dominated pairs from Hj

C∗
j ← max{c | (c, δ) ∈ Hj }

Correctness Take f ∈ CRUEL
j
J . We claim that Hj is com-

puted correctly, that is,
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Hj = {
(Cj (f ), δj (f )) | f ∈ CRUEL

j
J

}
. (1)

The proof is by induction. Given our definition of H0, the
basis case j = 0 is trivial. Suppose that the claim is true up
to step j − 1, that is, Hj−1 = {(Cj−1(f ), δj−1(f )) | f ∈
CRUEL

j−1
J }. We prove that (1) holds.

(⊆) For any (c′, δ′) ∈ Hj , we need to find a correspond-

ing f ′ ∈ CRUEL
j
J . This is quite straightforward. Suppose

that (c, δ) ∈ Hj−1. By induction, there is an f ∈ CRUEL
j−1
J

such that (c, δ) = (Cj−1(f ), δj−1(f )). We extend f to f ′,
depending on which case in the algorithm holds.

Consider (c, δ) ∈ Hj−1 with c ≥ rj . If δ + pj ≤ Δ, then
the algorithm adds (c + pj , δ + pj ) that corresponds to
f ′ = f . Otherwise, we add (c + 2pj , δ + 2pj − Δ), that
corresponds to f ′ obtained from f by adding a fault at the
earliest possible time during the execution of job j , and
(c + pj ,Δ) that corresponds to f ′ = f .

If there exists (c, δ) ∈ Hj with c < rj , then the empty
fault sequences corresponds to (rj + pj ,Δ) and the fault
sequence (rj ), with just one fault at rj , corresponds to (rj +
2pj ,2pj ).

(⊇) Take f ∈ CRUEL
j
J . We argue that (Cj (f ), δj (f ))

will be added to Hj by the algorithm. That this pair will not
be eliminated at the end of the j th iteration follows from f

being in CRUEL
j
J .

Since CRUEL
j
J ⊆ CRUEL

j−1
J , f is in CRUEL

j−1
J as well

and (Cj−1(f ), δj−1(f )) ∈ Hj−1.
Let (c, δ) = (Cj−1(f ), δj−1(f )), and assume that c ≥ rj .

If δ + pj ≤ Δ then no fault can occur in f on job j . Thus
(Cj (f ), δj (f )) = (c + pj , δ + pj ), consistent with the al-
gorithm. Otherwise, we have δ + pj > Δ. If f faults on job
j , then, according to the definition of cruel sequences, this
fault will occur exactly Δ time units after the previous one,
so (Cj (f ), δj (f )) = (c + 2pj , δ + 2pj − Δ). If we do not
fault on j , then after j there will be no constraint on the
position of the last fault, so (Cj (f ), δj (f )) = (c + pj ,Δ).

Finally, suppose that c < rj . This means that in the
greedy schedule j starts at its release time rj . Note that then
we can assume, without loss of generality, that either f is
empty, or it only faults at rj . For if f faults on j but not at
its release time, we can remove from f all faults before rj
and move the fault to rj , and this new fault sequence will
j -dominate f . Therefore, if f faults at rj , then the corre-
sponding pair is (rj +2pj ,2pj ). Otherwise, the correspond-
ing pair is (rj + pj ,Δ).

Running time It may seem at first that the size of Hj could
double at each step. However, since we eliminated domi-
nated pairs, of all pairs of type (c,Δ) we added, only the
one with the biggest c remains. Therefore, the size of Hj

increases at most by 1 at each step. Consequently, |Hj | ≤ j

for all j .

To make the construction of Hj run in linear time, we
can keep two lists of the new pairs to be added, one for the
pairs of type (c + pj , δ + pj ) and one for the pairs of type
(c + 2pj , δ + 2pj − Δ), ordered by increasing c (and thus
by decreasing δ). The final list Hj can be obtained by merg-
ing two sorted sequences, and adding the dominating pair of
type (c̃,Δ) and the pair (rj + 2pj ,2pj ), if any. Each set Hj

can therefore be built from the previous one in time O(j).
Thus the overall running time of the algorithm is O(n2).

Theorem 11 For hidden faults, Algorithm 3 computes in
time O(n2) the maximum completion times when all faults
are separated by gaps of length at least Δ (that is, for the
fault model GAPΔ).

6.1 Experimental results

As we showed in the previous section, the algorithm for Δ-
faults runs in time O(n2) in the worst case. Note, however,
that the algorithm is not data-oblivious, namely, its running
time depends on how the size of the sets Hj evolves over
time. For the overall running time to be quadratic, the size of
Hj would have to increase by 1 in many steps, which means
that in many steps no elimination would occur—a scenario
that seems very unlikely in random or non-adversarial data
sequences. In this section, we confirm this intuition through
some experimental studies. We performed three types of ex-
periments, for various probability distributions. In the first
one, we show that the expected running time grows linearly
with n. Next, we confirm this further by showing that the
total size (sum) of the sets Hj is linear in expectation. Fi-
nally, we show that, for the uniform distribution, with high
probability the size of the sets Hj is bounded by a con-
stant throughout the algorithm. (Indeed, we will prove this
fact in the next section.) The experiments and the stochastic
analysis are both performed without release times. However,
we note that introducing release times can only increase the
number of eliminations and thus improve the performance
even further.

Running time We have tested the running time of the algo-
rithm for uniform and normal random distributions of the
job lengths, without release times. In both cases, the job
lengths are drawn from the interval (0,Δ/2), where we ar-
bitrarily choose Δ/2 = 10. We tested several normal dis-
tributions, with different values of the mean and variance
(discarding the values that did not fall between 0 and Δ/2).
The number n of jobs ranges from 1 to 20,000. In all cases,
the simulations show that the running time increases linearly
with the size of the instance—see Fig. 2.

Note, however, that the slope of the linear curve depends
on the distribution. The intuition here is quite simple. For ex-
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Fig. 2 Running time of
Algorithm 3 in milliseconds.
The x-axis represents the
number n of jobs and the y-axis
represents the running time. The
results are shown for the
uniform distribution (marked
with “+”), and two normal
distributions, one with mean 9
and variance 0.5 (marked with
“×”) and one with mean 6 and
variance 2 (marked with “∗”).
The lines show the
corresponding linear
interpolations

Fig. 3 Maximum size of the
sets Hj . The x-axis represents
the number n of jobs, and the
y-axis represents the maximum
cardinality of a set Hj

ample, for the normal distribution with mean 9 and variance
0.5, most of the generated job lengths are between 8 and
10 = Δ/2, decreasing the probability of elimination, and
thus increasing the average number of pairs in the sets Hj .

The size of the sets Hj The running time of the algorithm
is proportional to

∑n
j=0 |Hj |, the total number of pairs (c, δ)

in the sets Hj . In the second batch of experiments we mea-
sured the expectation of the total size of sets Hj for instances
of different size n ranging from 1 to 20,000. In our exper-
iments, this value also grows linearly with n. (Results not
shown.)

We have also run experiments where we computed the

maximum size of the sets Hj , for various values of n,

ranging from 0 to 120,000, and for the uniform distribu-

tion of job lengths. For each n, we run the simulation, and

the value plotted for n is the maximum cardinality of sets

H1, . . . ,Hn for the whole run. The results (see Fig. 3) show

that this quantity grows very slowly, and appears to level off

at around 11. Even for very large values of n, we did not find

any sets Hj with more than 13 pairs. In the next section, we

will prove that for the uniform distribution the expected size

of the sets Hj is indeed O(1).
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6.2 Probabilistic analysis

In this section, we show that if the job lengths are drawn
uniformly at random from the interval (0,Δ/2) then the ex-
pected running time of Algorithm 3 is O(n). In fact, we
prove something stronger—namely that the running time of
the algorithm is O(n) with very high probability.

Without loss of generality we can assume that Δ = 1, and
thus the job lengths are uniformly distributed in the interval
(0,1/2).

Although, for the sake of simplicity, we carry out the cal-
culations for the uniform distribution, without the release
dates, our proof works for any distribution where each inter-
val [ 5

26 , 6
26 ] ( 13

52 , 15
52 ), [ 15

52 , 17
52 ], and ( 6

13 , 1
2 ] has strictly posi-

tive probability, and with release dates taken into account.
The idea of the proof is to show that, with high probabil-

ity, the size of the sets Hj remains constant throughout the
computation. To simplify the analysis, we only exploit cer-
tain types of elimination in the proof. As a result, the con-
stant bound we get is higher than what one would expect
based on the empirical study from the previous section.

Random sets Qj For a given j , let ωj = min{c | (c, δ) ∈
Hj }. It is easy to show (by induction on j ) that Hj ⊆
[ωj ,ωj + 1/2] × [0,1] and also (ωj ,1) ∈ Hj . The idea of
the proof is to define a sequence of random sets Qj which
are essentially supersets of the sets Hj , offset leftwards by
ωj so that they are contained in the rectangle [0,1/2] ×
[0,1]. This way, each step of the algorithm can be modeled
as a mapping from [0,1/2] × [0,1] to [0,1/2] × [0,1]. An-
other difference between the sets Qj and Hj is that when
computing Qj we only do one type of elimination, and thus
more points from Qj−1 may survive when mapped into Qj

than when Hj is computed from Hj−1 in the actual algo-
rithm. Nevertheless, we still show that with high probability
the size of the Qj remains constant.

We define first two auxiliary functions F(·) and α̂(·). For
all p ∈ (0, 1

2 ) and α,β ∈ [0, 1
2 ] × [0,1], define

F(p,α,β) =
{

(α + p,β + 2p − 1) if β ≥ 1 − p,
(α,β + p) if β < 1 − p,

and for Q ⊆ [0, 1
2 ] × [0,1] and p ∈ (0, 1

2 ), let

α̂(Q,p) = max
{
α | (α,β) ∈ Q & β ≥ 1 − p

}
.

Intuitively, F(p,α,β) represents the mapping from
Hj−1 to Hj (except that all points are additionally offset
leftwards by p), while α̂(Q,p) represents the maximum α-
coordinate of a point in Q to which the first option in the
definition of F(p,α,β) applies. (See Fig. 4.)

In the rest of the proof we consider a random sequence
p1,p2, . . . , pn of job lengths, where each pj is chosen uni-
formly from (0, 1

2 ), and we prove that for this sequence the
size of all sets Hj remains constant with high probability.

Fig. 4 Interpretation of F(p,α,β) and α̂(Q,p)

To avoid cumbersome notation, from now on we fix the
values of p1,p2, . . . , pn. The sets Qj are defined recur-
sively. For j = 0, let Q0 = {(0,1)}. For j ≥ 1, suppose
that Qj−1 has been defined. To simplify notation, denote
Fj (α,β) = F(pj ,α,β) and α̂j = α̂(Qj−1,pj ). As before,
for (α,β), (α′, β ′) ∈ [0, 1

2 ] × [0,1] we say that (α,β) domi-
nates (α′, β ′) if and only if α ≥ α′ and β ≥ β ′. Then

Q′
j = {

(α,β) ∈ Fj (Qj−1) | (α,β) is not dominated

by (α̂j ,1) or (pj ,2pj )
} ∪ {

(α̂j ,1)
}
,

Qj = {
(α − α̂j , β) | (α,β) ∈ Q′

j

}
.

The reader needs to keep in mind that Fj , Qj and α̂j , as
well as all other values dependent on the sequence {pj } are
actually random variables. Observe that, by definition, the
point (α̂(Q,p),1) dominates all points (α,β) ∈ Q with α ≤
α̂(Q,p). Also, by induction, for all j ≥ 1 we have (0,1) ∈
Qj−1, and therefore (pj ,2pj ) ∈ Fj (Qj−1).

Lemma 12 For all j = 1,2, . . . , n and for any (α,β) ∈
Fj (Qj−1) we have α ≤ α̂j + 1

2 .

Proof Choose (α′, β ′) ∈ Qj−1 such that (α,β) = Fj (α
′,

β ′). We have two cases. If β ′ < 1 − pj , then α = α′ ≤
α̂j + 1

2 , since both α̂j , α
′ ∈ [0, 1

2 ]. If β ′ ≥ 1 − pj , then
α = α′ + pj ≤ α̂j + pj ≤ α̂j + 1

2 , by the definition of α̂j . �

Observe that, according to Lemma 12 and from the defi-
nition of Fj , we have Qj ⊆ [0, 1

2 ] × [0,1] for all j .

Lemma 13 |Hj | ≤ |Qj | for all j = 1,2, . . . , n.

Proof For all j define ĉj = α̂(Hj ,pj ), that is, ĉj is the
analogue of the α̂j for sets Hj instead of Qj . Let ωj =
∑j−1

i=1 (α̂i + pi).
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Fig. 5 Partition of [0, 1
2 ] × [0,1] into five zones

We want to prove that (c, δ) ∈ Hj implies (c − ωj , δ) ∈
Qj . The proof is by induction on j . For j = 0, Q0 = H0 =
{(0,1)} and ω0 = 0. In the inductive step, suppose the prop-
erty is true for j − 1, and let (c, δ) ∈ Hj . We have two
cases. If δ = 1, (c, δ) originates from the point (ĉj−1, δ

′) ∈
Hj−1. By induction, we have (ĉj−1 − ωj−1, δ

′) ∈ Qj−1,
and there is no point (c′, β ′) ∈ Hj−1 with c′ ≥ ĉj−1 and
β ′ ≥ 1 − pj (because such a point would have been non-
dominated in Hj−1 and thus would not have been eliminated
in the process leading to creation of set Hj−1). Therefore,
(ĉj−1 − ωj−1, δ

′) = (α̂j−1, δ
′) and (c − ωj ,1) = (0,1) ∈

Qj .
If δ < 1 then (c, δ) originated from a point (c′, δ′) ∈

Hj−1, that is, either (c, δ) = (c′ + pj , δ
′ + pj ) for δ′ <

1 − pj or (c, δ) = (c′ + 2pj , δ
′ + 2pj − 1) for δ′ ≥ 1 − pj .

Then, by induction, (c′ − ωj−1, δ
′) ∈ Qj−1. We only need

to make sure that Fj (c
′ − ωj−1, δ

′) is not eliminated in Qj .
This cannot happen, for otherwise (c, δ) would have been
eliminated in Hj as well: Indeed, the two points (0,1) in re-
spectively Qj and Qj−1 correspond in Hj and Hj−1 to the
points (ωj−1,1) and (ωj ,1). �

We are now going to study how the cardinality of Qj

changes while j varies. We view these changes as a random
process where at each step a point (α,β) ∈ Qj−1 is mapped
into a point (α′, β ′) = Fj (α,β) − (α̂j ,0). If (α′, β ′) /∈ Qj

(because Fj (α,β) is dominated by (α̂j ,1) or (pj ,2pj )),
we say that (α,β) is eliminated in step j . Otherwise, we
say that (α,β) migrates to (α′, β ′). For each j = 1,2, . . . ,

n − 4, and each point in Qj , we show that in four steps with
constant probability it is eliminated (more precisely, one of
the subsequent points to which it migrates is eliminated).

We partition the rectangle [0, 1
2 ] × [0,1] into five zones

A,B1,B2,C,D defined as in Fig. 5.

Lemma 14 Fix some step j , 1 ≤ j ≤ m. Then: (a) with
probability at least 1

13 , all points in Qj−1 ∩ A will be

eliminated, (b1) with probability at least 1
13 , all points in

Qj−1 ∩ B1 that are not eliminated will migrate to Qj ∩ A,
(b2) with probability at least 1

13 , all points in Qj−1 ∩B2 that
are not eliminated will migrate to Qj ∩A, (c) with probabil-
ity at least 1

13 , all points in Qj−1 ∩C that are not eliminated

will migrate to Qj ∩ B , and (d) with probability at least 1
13 ,

all points in Qj−1 ∩ D that are not eliminated will migrate
to Qj ∩ (B ∪ C).

Proof We prove each claim separately. Let (α,β) ∈ Qj−1

and (α′, β ′) = Fj (α,β) − (α̂,0).
(a) Suppose that pj ∈ [ 12

26 , 1
2 ]. If (α,β) ∈ Qj−1 ∩ A then

Fj (α,β) is dominated by (pj ,2pj ), so (α,β) will be elim-
inated. The probability that pj ∈ [ 12

26 , 1
2 ] is 1

13 .
Now, for the following cases, we assume that the point

(α′, β ′) is not eliminated.
(b1) Suppose that pj ∈ [ 5

26 , 12
52 ]. If (α,β) ∈ Qj−1 ∩ B1

then β ≥ 1 − pj , so α′ = α + pj − α̂j ≤ pj ≤ 12
26 and β ′ =

β + 2pj − 1 ≤ 12
26 so (α′, β ′) ∈ Qj ∩A. The probability that

pj ∈ [ 5
26 , 12

52 ] is 1
13 .

(b2) Suppose that pj ∈ [ 15
52 , 17

52 ]. If (α,β) ∈ Qj−1 ∩ B2

then β ≥ 1 − pj , so α′ = α + pj − α̂j ≤ pj ≤ 12
26 and β ′ =

β + 2pj − 1 ≤ 21
26 + 2 · 17

52 − 1 = 12
26 , so (α′, β ′) ∈ Qj ∩ A.

The probability that pj ∈ [ 15
52 , 17

52 ] is 1
13 .

(c) Suppose that pj ∈ ( 13
52 , 15

52 ). If (α,β) ∈ Qj−1 ∩C then
β < 1 − pj so β ′ = β + pj > 12

26 + 13
52 = 37

52 . So (α′, β ′) ∈
Qj ∩ B . The probability that pj ∈ [ 13

52 , 15
52 ] is 1

13 .
(d) Suppose that pj ∈ ( 12

26 , 1
2 ]. If (α,β) ∈ Qj−1 ∩ D β <

1 −pj , so β ′ = β +pj > 12
26 . Thus (α′, β ′) ∈ Qj ∩ (B ∪C).

The probability that pj ∈ ( 12
26 , 1

2 ] is 1
13 . �

Let λ = 1
134 . Looking at an individual point in Qj ,

Lemma 14 implies that in fours steps j + 1, j + 2, j + 3,
j + 4 (starting from Qj and ending in Qj+4) it is elimi-
nated with probability at least λ. Consequently, each point
on average contributes to at most 4/λ sets Qj . Since one
new point is introduced in each step, the expected total size
of sets Q1, . . . ,Qn is at most 4n/λ = O(n). By Lemma 13,
this also bounds the running time of the algorithm, and we
obtain the following theorem.

Theorem 15 Suppose that the job lengths are drawn from a
uniform distribution in (0,Δ/2). Then the expected running
time of Algorithm 3 is O(n).

We now prove a stronger statement, namely that the size
of each Qj is small with high probability. Since the elimina-
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tions of different elements of Qj are not independent, this
needs some more work. In the following lemma, we show
that with constant probability a constant fraction of points is
eliminated. This is sufficient to calculate the desired bound.

Lemma 16 Let 0 ≤ j ≤ n − 4. In four steps j + 1, j + 2,
j + 3, j + 4 (starting from Qj and ending in Qj+4), with
probability at least λ = 1

134 , at least one ninth of the points
in Qj will be eliminated.

Proof If |Qj ∩A| ≥ 1
9 |Qj | then, according to Lemma 14(a),

with probability at least 1
13 , all points in Qj ∩ A will be

eliminated in step j + 1.
If |Qj ∩ B| ≥ 2

9 |Qj | then |Qj ∩ Ba | ≥ 1
9 |Qj | for a = 1

or a = 2. According to Lemma 14(b1) and (b2), with prob-
ability at least 1

13 each point in Ba either will be eliminated
in step j + 1 or will migrate to A and then be eliminated in
step j + 2 with probability 1

13 . So with probability at least
1

132 , at least one ninth of points in Qj will be eliminated in
steps j + 1 and j + 2.

If |Qj ∩ C| ≥ 2
9 |Qj | then, according to Lemma 14(c),

with probability at least 1
13 all points in C ∩ Qj either will

be eliminated or will migrate to B , and then, applying the
argument from the previous case, with probability at least

1
132 at least half of them will be eliminated in steps j + 2

and j + 3. Thus with probability at least 1
133 at least one

ninth of the points in Qj will be eliminated in steps j + 1,
j + 2 or j + 3.

If none of the cases above holds then |Qj ∩ D| ≥ 4
9 |Qj |.

Then, according to Lemma 14(d), with probability at least
1
13 , in step j + 1 each point in Qj ∩ D either will be elimi-
nated or will migrate to B or to C. By applying the previous
cases to either Qj+1 ∩ B or Qj+1 ∩ C, whichever is bigger,
we conclude that with probability at least 1

134 at least one
fourth of the points in Qj ∩ D (and thus at least one ninth
of the points in Qj ) will be eliminated in steps j + 1, j + 2,
j + 3, or j + 4. �

Lemma 17 Recall that λ = 1
134 . For t = 0,1, . . . , �n/4�, let

Pt(k) = Prob[|Q4t | ≥ k]. Then Pt (k) ≤ (1 − λ/2)(k−k0)/4

where k0 = − 32
log(1−λ/2)

+ 4.

Proof For k ≤ k0 we have (1−λ/2)(k−k0)/4 ≥ 1, so the con-
dition is trivially satisfied. Assume now that k > k0. In this
case, the proof is by induction on t . In the base case, for
t < k0/4, we have k > 4t and Pt(k) = 0 (because |Qj | ≤ j

for all j with probability 1), and the theorem holds.
In the inductive step, let t ≥ k0/4 and suppose the prop-

erty is true for t ′ = t − 1 and all values of k. By Lemma 16,
in steps 4t − 3, 4t − 2, 4t − 1, and 4t , with probability at
least λ at least one ninth of points from Q4(t−1) have been
eliminated. At the same time, at most four points have been

added. Thus if |Q4t | ≥ k then either we had |Q4(t−1)| ≥
9
8 (k − 4), or k − 4 ≤ Q4(t−1) < 9

8 (k − 4) and fewer than
one ninth of the points in Q4(t−1) were eliminated in steps
4t − 3, 4t − 2, 4t − 1, and 4t—an event whose probability
is at most 1 − λ. Therefore,

Pt (k) ≤ Pt−1

(
9

8
(k − 4)

)

+ (1 − λ)

[

Pt−1(k − 4) − Pt−1

(
9

8
(k − 4)

)]

= (1 − λ)Pt−1(k − 4) + λPt−1

(
9

8
(k − 4)

)

≤ (1 − λ)(1 − λ/2)(k−4−k0)/4

+ λ(1 − λ/2)(
9
8 (k−4)−k0)/4

= (1 − λ/2)(k−4−k0)/4(1 − λ + λ(1 − λ/2)(k−4)/32)

≤ (1 − λ/2)(k−4−k0)/4

× [
1 − λ + λ(1 − λ/2)−1/ log(1−λ/2)

]

≤ (1 − λ/2)(k−4−k0)/4[1 − λ + λ/2]
= (1 − λ/2)(k−k0)/4,

and the lemma follows. �

Theorem 18 Suppose that the job lengths are drawn from
a uniform distribution in (0,Δ/2). Then the size of each set
Hj is constant with high probability. Specifically, for j =
1,2, . . . , n, we have Prob[|Hj | ≥ k] ≤ C1(C2)

k where C1

and C2 are constants and C2 < 1.

Proof Fix j . By Lemma 13, we have |Hj | ≤ |Qj |. Thus
this claim follows from Lemma 17 with constants C1 =
(1−λ/2)−k0/4 and C2 = (1−λ/2)1/4. Since λ > 0, we have
C2 < 1. �

Other distributions Theorem 18 holds, in fact, for more
general distributions on job lengths. To obtain an O(n)

bound, all we need is that all intervals discussed in the five
parts of the proof of Lemma 14 are hit with non-zero proba-
bility. Changing these probabilities from 1

13 to other positive
values will only affect the constant in the big-O notation.
Thus we have:

Theorem 19 Suppose that the job lengths are drawn from
a distribution in (0,Δ/2) in which each interval [ 5

26 , 6
26 ],

( 13
52 , 15

52 ), [ 15
52 , 17

52 ], and ( 6
13 , 1

2 ] has strictly positive probabil-
ity. Then the expected running time of Algorithm 3 is O(n).

6.3 An Ω(n2) lower bound

Algorithm 3 gives rise to a data structure problem where we
need to maintain a dynamic set Hj of pairs (c, δ) under a
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sequence of conditional offset operations. At each step j , to
obtain Hj+1 from Hj , we are given a threshold τ and two
offset vectors (α,β), (α′, β ′), and we perform the following
operation: For each (c, δ) ∈ Hj let

(c, δ) ←
{

(c + α, δ + β) if δ ≤ τ ,
(c + α′, δ + β ′) if δ > τ .

(In Algorithm 3, we have τ = Δ − pj , (α,β) = (pj ,pj )

and (α′, β ′) = (2pj ,2pj −Δ). In fact, the algorithm creates
other points as well, but we ignore them here, for simplicity.)

Is there a data structure to implement a sequence of m

conditional offset operations so that the overall running time
will be less than O(mn)? In this section, we consider a sim-
ple abstraction of this problem and show that its complexity
in the model of algebraic computation trees is Ω(mn).

We stress that this lower bound does not imply a lower
bound for the original problem of fault tolerant scheduling,
but rather on a class of algorithms that use our dynamic
approach and attempt to maintain the sets Hj using some
data structures. It is conceivable (although, in our view, not
likely) that a completely different approach may lead to a
faster algorithm.

The 1-dimensional version We focus on a simplified prob-
lem, where we maintain a set of numbers (instead of pairs of
numbers), and one of the offset values is 0. The input con-
sists of three vectors of real numbers:

x̄ = (x1, x2, . . . , xn), τ̄ = (τ1, τ2, . . . , τm),

β̄ = (β1, β2, . . . , βm),

where x̄ represents the input values and τ̄ , β̄ represent m

operations on x̄. In the j th conditional offset operation, we
do the following: For each i = 1,2, . . . , n, if xi ≤ τj then
we set xi ← xi +βj (otherwise xi remains unchanged). The
task is to compute the vector ȳ resulting from applying these
m conditional offset operations successively to x̄.

Algebraic computation trees We now show that the above
problem requires time Ω(mn) in the algebraic computation
tree model. This computation model is an extension of the
standard comparison tree model, where algebraic operations
on the variables are allowed. The computation is represented
by a tree that has two types of nodes: computation nodes and
decision nodes. In a computation node (that has one child),
an operation o ∈ {+,−,×, /,

√} is applied to some vari-
ables. In a decision node, a comparison between two vari-
ables is made, and such a node has two children correspond-
ing to the outcome (true or false). Leaves are labeled as ei-
ther “accept” leaves or “reject” leaves. Each decision prob-
lem is modeled by a set V ⊆ R

d . An algebraic computation
tree solves the decision problem “given v̄ ∈ R

d , is v̄ ∈ V ?”
if, for any given v̄, the computation on v̄ leads to an “accept”

leaf if and only if v̄ ∈ V . The complexity is measured by the
maximum tree depth. (See (Ben-Or 1983).)

Let W ∈ R
2m+2n be the set of vectors

v̄ = (x1, . . . , xn, τ1, . . . , τm,β1, . . . , βm, y1, . . . , yn)

such that ȳ = (y1, y2, . . . , yn) is the result of applying the m

conditional offsets with parameters (τj , βj ), j = 1, . . . ,m,
to the input vector x̄ = (x1, x2, . . . , xn). We consider a deci-
sion problem where, given a vector v̄ ∈ R

2n+2m, we wish to
determine if v̄ ∈ W, and we will show that any algorithm for
this problem requires time Ω(mn) in the algebraic computa-
tion tree model. This implies that, given x̄, τ̄ , ᾱ, computing
the output vector ȳ requires time Ω(mn) as well.

For a set W ⊆ R
d , let #(W) denote the number of con-

nected components of W . By a well-known result of Ben-Or
(1983), the algebraic computation tree complexity of W is at
least log6 max{#(W),#(R2m+2n − W)} − Θ(m + n).

In fact, we will consider a fixed sequence of operations.
We take τ̄ , β̄ where τj = ∑j

i=1 2m−i and βj = 2m−j for
j = 1,2, . . . ,m. Let W ′ ⊆ R

2n be the set of vectors (x̄, ȳ)

where ȳ is obtained from x̄ by applying the sequence of
operations (τj , βj ), i = 1,2, . . . ,m, defined above. Since
#(W) ≥ #(W ′), to prove our lower bound it is sufficient to
show the following inequality:

#(W ′) ≥ 2mn. (2)

We prove (2) by presenting a set of 2mn points in W ′ that
all must be in different connected components of W ′. De-
fine K ⊆ W ′ to be the set of vectors (k̄, l̄) ∈ W ′ where
k̄ ∈ {0,1, . . . ,2m − 1}n. Clearly, |K| = 2mn.

Lemma 20 If (k̄, l̄), (k̄′, l̄′) ∈ K and k̄ 
= k̄′ then (k̄, l̄),

(k̄′, l̄′) are in different connected components of W ′.

Proof For integers 0 ≤ k ≤ 2m − 1 and 1 ≤ i ≤ m, let k[i]
denote the ith bit of k in its binary representation. Note that
if (k̄, l̄) ∈ K and k̄ = (k1, k2, . . . , kn), l̄ = (l1, l2, . . . , ln),
then for each i = 1,2, . . . , n we have li = ki +∑m

j=1(1 − ki[j ])βj .
Choose an i such that ki 
= k′

i and let j the small-
est integer such as ki[j ] 
= k′

i[j ]. Without loss of general-
ity, we can assume that ki[j ] = 0 and k′

i[j ] = 1. Denote

Aj = ∑j−1
r=1 (1 − ki[r])2m−r , Rj = 2m−j + ∑m

r=j+1(1 −
ki[r])2m−r , and R′

j = ∑m
r=j+1(1 − k′

i[r])2m−r . Then we
have:

li − ki − Aj = Rj ≥ 2m−j ,

l′i − k′
i − Aj = R′

j ≤ 2m−j − 1.

Define the function fi,j : W ′ → R so that fi,j (x̄, ȳ) = yi −
xi − Aj − 2m−j . This is a continuous function, and it sat-
isfies fi,j (k̄, l̄) ≥ 0 and fi,j (k̄

′, l̄′) ≤ −1. According to the
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intermediate value theorem of calculus, any connected path
from (k̄, l̄) to (k̄′, l̄′) must contain a point (x̄, ȳ) for which
fi,j (x̄, ȳ) = − 1

2 . But, by definition of W ′, if (x̄, ȳ) were in
W ′, then yi − xi would be integer. Therefore, (x̄, ȳ) /∈ W ′
and (k̄, l̄) and (k̄′, l̄′) must be in different connected compo-
nents of W ′, as claimed. �

Since |K| = 2mn, Lemma 20 implies that #(W ′) ≥ 2mn.
Therefore, #(W) ≥ 2mn as well. By the lower bound of Ben-
Or (Ben-Or 1983), the algebraic computation tree complex-
ity of W is then at least Ω(log #(W)) = Ω(mn). This, in
turn, implies the following lower bound.

Theorem 21 Any algorithm for maintaining a set of n num-
bers under a sequence of m conditional offset operation re-
quires time Ω(mn) in the algebraic computation tree model.

7 Final comments

We presented algorithms for testing fault tolerance of se-
quenced jobs in several fault models. For the model where
the number of faults is bounded by a constant k we gave an
O(n)-time fault-tolerance testing algorithm. For the model
where the time between the faults is lower bounded by a
constant Δ, our algorithms run in time O(n) for exposed
faults (detectable immediately) and in time O(n2) for hid-
den faults (detectable after the job completes.) We also show
that this last algorithm runs in expected time O(n) for a wide
class of probability distributions on job lengths, and that the
O(n2) worst-case running time cannot be improved in the
algebraic computation tree model.

Our method can be extended to a yet more general model
where two bounds k and Δ are given, and in any fault se-
quence there can be at most k gaps between faults of length
greater than Δ. The dynamic programming approach from
Algorithm 3 can be generalized to this model (and hidden
faults) to yield an algorithm with worst case running-time
O(kn2), although experiments show and actual running time
of O(kn), which can be explained by the same intuition.

For the future work, it would be of great interest to study
the model where the fault sequences are drawn from a given
probability distribution. Then the goal would be to compute
(or estimate) the probability of failure for a given sequence
of jobs.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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