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Abstract

Decision-bound models of categorization like General Recog-
nition Theory (GRT: Ashby & Townsend, 1986) assume that
people divide a stimulus space into different response regions,
associated with different categorization decisions. These mod-
els have traditionally been applied to empirical data using stan-
dard model-fitting methods like maximum likelihood estima-
tion. We implement the GRT as a Bayesian latent mixture
model to infer both qualitative individual differences in the
types of decision bounds people use, and quantitative differ-
ences in where they place the bounds. We apply this approach
to a previous data set with two category structures tested under
different cognitive loads. Our results show that different partic-
ipants categorize by applying diagonal, vertical, or horizontal
decision bounds. Various types of contaminant behavior are
also found, depending on the category structures and presence
or absence of load. We argue that our Bayesian latent mixture
framework offers a powerful approach to studying individual
differences in categorization.
Keywords: category learning; decision bound models; Gen-
eral Recognition Theory; Bayesian inference; latent mixture
model

Introduction
Categorization is a fundamental cognitive capability, form-
ing a basis for structuring mental representations to capture
meaning and enable prediction. Understanding and modeling
how people make categorization decisions is a key challenge
for cognitive science. One prominent and successful class of
models, known as General Recognition Theory (GRT: Ashby
& Townsend, 1986), assumes that categorization decisions
are made based on decision bounds. For example, in a cat-
egorization task in which a person places a stimulus into one
of two categories on each trial, GRT assumes decisions are
based on a boundary that splits the stimulus space into two
response regions. The decision-bound modeling approach is
naturally contrasted with exemplar models of categorization,
which assume that people remember all instances of a cate-
gory and keep them in memory for comparison to novel stim-
uli to make categorization decisions (e.g., Nosofsky, 1986).

An important issue for any model of categorization relates
to the possibility of individual differences. Different people
may categorize differently, perhaps as a result of different
starting knowledge, different training or learning experiences,
different learning strategies, or different decision strategies.
Many applications of category learning models ignore indi-
vidual differences, and deal with behavioral data that are ag-

gregated or averaged over people. Other applications apply
models at the level of individual participants (e.g., Nosof-
sky, 1986). Most recently, there have been some attempts
to extend categorization models to include models of individ-
ual differences (e.g., Bartlema, Lee, Wetzels, & Vanpaemel,
2014), using Bayesian methods, but these are restricted to ex-
emplar and prototype models.

For decision-bound models, one important potential source
of individual differences relates to the use of unidimensional
versus multidimensional boundaries. A working hypothe-
sis in the decision bound literature is that simple category
structures that separate stimuli based on a single dimension
are amenable to simple explicit rules that can be verbal-
ized, whereas more complicated category structures that re-
quire integration across the dimensions need associatively
learned boundaries that are more implicit. As a result, one fo-
cus of modeling individual differences using GRT is to infer
whether people use a simple horizontal or vertical bound that
partitions stimuli along one stimulus dimension, or a more
general linear (diagonal) decision bound that is sensitive to
both dimensions (e.g., Ell & Ashby, 2012). This modeling
often also considers the possibility of some form of random
responding, to identify contaminant participants.

Methodologically, GRT models that incorporate the pos-
sibility of individual differences (e.g., Ell & Ashby, 2012;
Soto, Vucovich, Musgrave, & Ashby, in press) rely on maxi-
mum likelihood methods for parameter estimation, and model
selection criteria like the Bayesian Information Criterion.
While useful, these methods are limited. Maximum likeli-
hood estimation does not allow for the uncertainty in where a
person places a decision bound to be inferred, even though
there will always be uncertainty remaining after observing
their performance on a limited number of trials. Informa-
tion criteria attempt to correct for the complexity of differ-
ent possible decisions strategies, but do so in an approximate
way that equates model complexity with counts of parame-
ters. Using Bayesian methods automatically overcomes both
of these limitations.

Accordingly, our goal in this paper is to demonstrate a
Bayesian latent mixture approach to modeling individual dif-
ferences within the GRT framework. The structure of this
paper is as follows. We first describe the experimental data
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Unidimensional Information Integration

Figure 1: The unidimensional and information integration
category structures.

set that we re-analyze. We then describe our formulation of
a model, with six possible categorization strategies, in latent
mixture terms to allow for individual differences, and its im-
plementation as a graphical model to allow for fully Bayesian
inference. We examine the inferences this model makes about
individual differences in the decision strategies and decision
bounds for the four experimental conditions in the data set.
Finally, we discuss the benefits, as well as possible refine-
ments and extensions of our modeling approach.

Zeithamova and Maddox (2006) Experiment

Zeithamova and Maddox (2006) conducted a category learn-
ing experiment with four conditions, involving a total of 170
participants in a between-participants design. Each condition
consisted of five 80-trial blocks, during which each stimu-
lus was presented once with corrective feedback. The stim-
uli consisted of Gabor patches, varying in the dimensions of
spatial frequency and spatial orientation. The two category
structures used are shown in Figure 1, with stimuli in Cat-
egory A shown in black, and stimuli in Category B shown
in white. The unidimensional structure on the left involves a
single dimension that separates the categories, while the in-
formation integration category structure on the right involves
both dimensions. Both of the category structures were pre-
sented with and without an additional memory load task, to
give the total of four conditions. These category structures
and load conditions provide important tests of theories con-
trasting verbal and implicit category learning systems, and
have been replicated and re-analyzed by Newell, Dunn, and
Kalish (2010).

Individual Differences GRT Model

Latent mixture models assume that observed data arise from
a number of different sources, which combine or mix to pro-
duce the overall data. In the case of individual differences
in categorization, the different sources correspond to the dif-
ferent categorization strategies used by different people. The
latent nature of the mixture means which strategy each indi-
vidual uses is not known, but rather there are latent parame-
ters assigning people to strategies that need to be inferred.

Table 1: Number and percentage of participants inferred to
use vertical, diagonal, or other strategies in each condition.

Condition Vertical Diagonal Other
Unidimensional no load 34 (68%) 6 (12%) 10 (20%)

Unidimensional load 23 (46%) 7 (14%) 20 (40%)
Information integration no load 15 (30%) 25 (50%) 11 (20%)

Information integration load 17 (34%) 17 (34%) 16 (32%)

Modeling Assumptions
The model we develop is tailored to the Zeithamova and Mad-
dox (2006) experiment. It includes six categorization strate-
gies that could be applied to the categorization structures in
the experiment. The latent mixture modeling methods we
use, however, are general, and could naturally be extended or
modified to incorporate different assumptions about individ-
ual differences in categorization strategies or types of stimuli.

The most obvious categorization strategies to include, in
the context of GRT, are vertical boundaries, which are appli-
cable to the unidimensional category structure, and general
linear (diagonal) decision boundaries, which are applicable
to the information integration structure. We also decided to
include a horizontal boundary strategy for completeness.

The other three categorization strategies we consider cor-
respond to contaminant models. In the latent mixture ap-
proach, with its focus on generative modeling of observed
behavior, contaminants are not “removed” by processing the
data on the basis of accuracy or other summary criteria, but
by modeling the contaminant behavior itself (Zeigenfuse &
Lee, 2010). We allow for three different types of contaminant
behavior. One corresponds to guessing, in which the partici-
pant is equally likely to categorize any stimulus as belonging
to Category A as Category B, and the other two assume that
all, or almost all, of the stimuli are repeatedly placed in either
Category A or Category B.

Graphical Model Implementation
We formalize the latent mixture of these six strategies as
a graphical model, which is a common way of formalizing
probabilistic cognitive models (Lee & Wagenmakers, 2013).
Graphical models have the conceptual advantage of providing
an intuitive visualization of the generative process assumed to
produce data, and its dependence on psychological variables
represented by parameters. They have a practical advantage
of making it straightforward to do fully Bayesian inference
using computational sampling methods.

In a graphical model, nodes represent the data, parameters,
and other variables of interest, and their dependencies are in-
dicated by the graph structure. Latent parameters are shown
as unshaded nodes while the observed parameters and the
data are shown as shaded nodes. Discrete variables are repre-
sented with square nodes while continuous variables are rep-
resented with circular nodes. Stochastic variables are shown
as single-bordered nodes while deterministic ones are shown
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Figure 2: Graphical model representation of our model for inferring individual differences in categorization using GRT.

as double-bordered nodes. The rectangular plates show inde-
pendent replications of the graph structure within the model.

Figure 2 shows the graphical model representation of our
latent mixture model. The discrete parameter zi acts as strat-
egy selection variables, indicating which of the six possible
decision strategies is used by the ith participant. This deter-
mines how θi j, the probability that the ith participant cate-
gorizes the jth stimulus into Category A, is calculated. If
zi = 1, indicating the guessing strategy, then θi j =

1
2 . For the

repeated-choice contaminant models, with zi = 2 and zi = 3,
θi j is assumed to be 0.01 and 0.99, respectively.

The other three strategies involve decision bounds, and are
parameterized. If zi = 4, then a vertical decision bound is
used with x-axis value βV

i . The jth stimulus, with coordinate
location ppp j = (p j1, p j2) is more likely to be in Category A if
it lies to the right of this boundary. Following GRT, we as-
sume the difference between the boundary and the location
of the stimulus on the relevant dimension is corrupted by ad-
ditive Gaussian noise, and use a probit function to map noisy
distances to response probabilities. Formally, this gives

θi j = Φ
(
[p j1 −β

V
i + εi j]/λi

)

for the vertical boundary strategy, where εi j ∼
Gaussian

(
0, 1

σ2
i

)
is the noise term, parameterized by the

standard deviation of the noise σi for the ith participant, and
λi scales the probit transfer function, controlling how cate-
gorization probabilities for the ith participant vary with the
distance of a stimulus from the decision bound. By applying
the noise term directly to the distance, we conceive of it
combining both the variability in the perceptual information
provided by the stimulus, and variability in memory for the
decision bound (Maddox & Ashby, 1993). The horizontal
strategy when zi = 5 is formalized analogously, in terms of a
y-axis value βH

i as

θi j = Φ
(
[p j2 −β

H
i + εi j]/λi

)
.

The general linear (diagonal) decision bound when zi = 6 is
parameterized by the angle of the slope αD

i and intercept βD
i .

Using standard geometric results giving the distance from a
point to a line parameterized this way gives

θi j = φ
(
[
p j2 − tanαD

i p j1 −βD
i

tan2 αD
i +1

+ εi j]/λi
)
.

Since αD
i is an angle, it is natural to make its prior uniform

over all possibilities, so that αD
i ∼ Uniform

(
−π

2 ,
π

2

)
. To sim-

plify the setting of priors, we normalized the coordinate loca-
tions of the stimuli to lie in a square of unit length, centered
on the origin. This makes βV

i ,βH
i ,βH

i ∼ Uniform
(
− 1

2 ,
1
2

)

reasonable vague assumptions. We also use vague uniform
priors on the noise standard deviation of probit scaling pa-
rameters, with σi ∼ Uniform

(
0,1

)
, λi ∼ Uniform

(
0,10

)
, and

give each of the possible categorization strategies equal prior
probability zi ∼ Categorical

( 1
6 , . . . ,

1
6

)

Modeling Results
We implemented the graphical model in Figure 2 in JAGS
(Plummer, 2003), and applied to to the data from the final
block of trials for every participant in all four conditions of
Zeithamova and Maddox (2006). Our results are based on 6
independent chains with 10,000 samples each, collected after
discarding the first 50,000 burn-in samples from each chain,
and thinning by collecting only every 5th sample. The chains
were inspected visually for convergence, and using the stan-
dard R̂ statistic. In a few cases, individual chains that had
clearly failed to mix were discarded.

Table 1 summarizes the overall results, listing how many
participants are inferred as using the vertical, diagonal, or
other categorization strategy—grouping the contaminant and
horizontal strategies as “other” strategies, since they do not
allow for accurate categorization behavior—for all four ex-
perimental conditions. Individual-level results are shown in
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Figure 3: Inferences about catergorization strategies and decision bounds for 12 representative participants in the unidimen-
sional with no load (top two rows) and unidimensional with load (bottom two rows) conditions.

Figures 3 and 4 for the unidimensional and information in-
tegration category structures. Each panel corresponds to a
participant, and a total of 12 representative participants are
shown for each condition. Results for all participants in all
conditions are available at https://osf.io/dmjs7.

Each panel shows the categorization decisions made by
the participant, with stimuli placed in Category A shown
as black circles, and stimuli placed in Category B shown
as white squares. The label above the panel summarizes
the posterior of the zi indicator variable, using the abbre-
viations D=Diagonal, V=Vertical, H=Horizontal, G=Guess,
R=Repeat. Any strategy with more than 10% posterior mass
is included so that, for example, “38G 36V 19D” means the
posterior probabilities were 0.38 for the guessing strategy,
0.36 for the vertical bound strategy, and 0.19 for the general
linear (diagonal) strategy, with the small remaining posterior
mass distributed among the other strategies.

Each panel also shows the posterior distribution for the in-

ferred decision boundary for the participant. This is based on
the maximum a posteriori (MAP) strategy—that is, the one
with the greatest posterior probability—and shows the poste-
rior of each boundary by shading, with darker shades indicat-
ing more likely boundaries. For those participants inferred to
be contaminants, the label “Repeat” or “Guess” is shown.

The first 7 participants shown for unidimensional without
load condition in Figure 3 are inferred to be using a verti-
cal decision boundary, the next 3 are inferred to use diago-
nal boundaries, and the last two participants are inferred to be
contaminants. The inferred locations of these boundaries vary
across the participants with, for example, the vertical bound-
ary for the 3rd participant much further to the left than the
vertical boundary for the 5th participant. These inferences are
consistent with the different categorization decisions made by
the participants since, for example, the 3rd participant makes
Category A decisions for stimuli much further to the left.

There are different levels of uncertainty in the inferences
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Figure 4: Inferences about categorization strategies and decision bounds for 12 representative participants in the information
integration with no load (top two rows) and information integration with load (bottom two rows) conditions.

about the boundaries participants use. The vertical boundary
for the seventh participant, for example, is much more uncer-
tain than the vertical boundaries inferred for the first 6 partic-
ipants. It is also relatively uncertain whether this participant
used a vertical or diagonal decision bound, with their poste-
rior probabilities of 0.55 and 0.35 respectively. The complete
representation of uncertainty about inferences, at both the
level of which categorization strategy a participant used, and
where they placed their decision boundaries for these strate-
gies, is an important advantage of the Bayesian approach.

The representative participants chosen for the unidimen-
sional with load condition in Figure 3 show the greater vari-
ability in the categorization strategies inferred to be used in
this condition. There are more contaminant participants, and
less consistent use of vertical boundaries. More participants
are inferred to use diagonal and even horizontal boundaries,
and the uncertainty in the location of these boundaries is
greater. These differences are naturally attributed to the ef-

fects of cognitive load.
A similar pattern of modeling results is found for the in-

formation integration conditions in Figure 4. The first 6 rep-
resentative participants in the no load condition are inferred
to use diagonal decision boundaries, but there are significant
individual differences in where these boundaries are placed,
and the certainty of the inferences about these locations. The
next 5 representative participants are inferred to use a sim-
pler vertical decision bound categorization strategy, while the
12th participant is inferred to be a repeat contaminant.

The 5th and 6th participants in this condition—with signif-
icant posterior uncertainty between the diagonal and vertical
categorization strategies—highlight a powerful property of
the latent mixture approach. One way to conceive of the latent
mixture in cases like this is not as an inference between two
incommensurable possibilities, but as a single general model
with a theoretically rich prior. Since a vertical boundary is
a special case of a diagonal boundary, the 5th participant’s
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posterior uncertainty of 0.86 for diagonal and 0.10 for verti-
cal boundaries could be interpreted as a diagonal boundary
with 86% of the overall posterior coming from the slope and
intercept, and an additional 10% coming from the posterior
for the vertical boundary. This corresponds to inferring only
a diagonal boundary, but with a prior that places significant
prior density on boundaries with infinite slope.

The 11th participant in the information integration without
load condition shows significant uncertainty about the cat-
egorization strategy. Their decisions are somewhat consis-
tent with a vertical boundary towards the middle-left of the
stimuli, but also appear somewhat consistent with guessing.
The posterior uncertainty in their zi model indicator parame-
ter shows that none of the categorization strategies assumed
in modeling provide a good account of their behavior, and
suggests the need for further model development. One possi-
bility in cases like this is that the participant changed strate-
gies during the trial block, and some sort of more complicated
multi-strategy model is required.

The representative participants shown for the information
integration with load condition are inferred to use both diago-
nal and vertical decision bounds, but there is more use of the
simpler vertical strategy, and more contaminant behavior. Ex-
amples like the 7th participant, who is confidently inferred to
use a vertical bound near the far right of the stimulus space,
highlight the possibility of improving the current model us-
ing more informative priors. The current inference is that the
participant places a near-degenerate decision bound to distin-
guish just one or two stimuli from the others. It is debatable
whether this use is consistent with the theoretical motivations
of decision bound models, which usually expect significant
number of stimuli to be separated. One way to include this
theoretical assumption, only possible in a Bayesian approach,
is to change the prior on βV

i to capture the expectation that the
vertical boundary will be close to the middle of the stimulus
space (Vanpaemel & Lee, 2012).

Conclusion
Latent mixture modeling is a general framework for model-
ing individual differences in human behavior. In this paper,
we applied the approach to the challenge of understanding
the different decision bounds people might use to categorize
stimuli, consistent with previous theorizing and modeling ap-
plying General Recognition Theory. We developed a latent
mixture with six possible categorization strategies, and ap-
plied it to previously modeled data reported by Zeithamova
and Maddox (2006).

Our results highlight a number of powerful features of the
Bayesian approach. It represents uncertainty about model use
and the parameterization of those models, in contrast to tradi-
tional inference methods like maximum likelihood estimation
or least-squares fitting. This means inferences are sensitive to
all aspects of the complexity of the various possible catego-
rization strategies. Importantly, it is possible to propose any
sort of categorization strategy, including explicit models of

contaminant behavior. We focused on linear decision bounds
from GRT, but other more general decision bounds like bi-
linear or quadratic bounds, or different categorization models
such as exemplar models, could be incorporated in the graph-
ical modeling framework. It is also straightforward to extend
our account of individual differences to include hierarchi-
cal structure, allowing both variability in classification strate-
gies and parameterizations of those strategies to be modeled
(Bartlema et al., 2014). These possibilities provide a natural
direction for future research in understanding the individual
differences in how people learn and use category structures.
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