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Asymmetric transmission of surface plasmon polaritons on planar gratings

V. Kuzmiak! and A. A. Maradudin?®
LInstitute of Photonics and Electronics, Czech Academy of Sciences,
v.v.i, Chaberska 57, 182 51 Praha 8, Czech Republic
2 Department of Physics and Astronomy, University of California, Irvine, California 92697, U.S.A.
(Dated: April 18, 2018)

We describe a surface structure consisting of a metal-air interface where the metallic part consists
of two metallic segments with a periodic modulation of the interface between them. Such a structure
possesses a different transmissivity for a surface plasmon polariton incident on it from one side of it
than it has for a surface plasmon polariton incident on it from the opposite side. This asymmetric
transmission of a surface plasmon polariton is based on the suppression of the zero-order Bragg
beam which, for a certain value of the modulation depth, is not transmitted through the structure,
while the diffraction efficiencies of the +1 and -1 Bragg beams can be modified by varying the
period of grating and/or the angle of incidence. For a certain range of the incidence angle one can
observe asymmetry in transmittance for the -1 mode while the +1 mode is completely suppressed.
By varying the material and geometrical parameters of the diffractive structure one can control the
contrast transmission that characterizes the degree of the asymmetry. This property of the structure
is demonstrated by the results of computer simulation calculations.

PACS numbers: 42.70.Qs,42.25.Fx,73.20.Mf
I. INTRODUCTION

In recent years there has been growing interest in in-
vestigations of two-dimensional nanostructured metal-
lic structures. The metallic nanostrutures derive their
unique optical properties from their ability to support
collective electron excitations, known as surface plasmon-
polaritons(SPPs). Surface plasmon polaritons are quasi-
two-dimensional electromagnetic waves that propagate
along a dielectric-metal interface with amplitudes that
decay exponentially with increasing distance into both
of the neighboring media @] The possibility to confine
the light into sub-wavelength volumes, which stems from
the latter feature, has a profound effect on the efficiency
of many optical processes and makes surface plasmon-
polaritons very sensitive to surface properties. In this
paper we are interested in exploring nanostructured two-
dimensional metallic surfaces which may provide a plat-
form for a realistic optical analog of one-way electronic
devices such as diodes and transistors. The majority of
the devices supporting unidirectional propagation of sur-
face plasmon polaritons are based on nonlinear optics
and magneto-optical(MO) effects [2]- [6]. For example,
a waveguide has been designed in the form of a gap be-
tween a semi-infinite dielectric photonic crystal and a
semi-infinite metal to which a static magnetic field is ap-
plied, in which electromagnetic waves can propagate in
only one direction [5]. It was subsequently shown %] that
if the photonic crystal in this waveguide structure is fabri-
cated from a transparent dielectric magneto-optic mate-
rial, to which the magnetic field is applied, the window of
the frequencies within which the waveguide displays one-
way propagation can be achieved at much lower magnetic
field strengths than are required for this purpose in the
structure proposed in Ref. 5.

The application of a magnetic field to a structure to

produce one-way propagation of the surface or guided
waves it supports may not always be an option for some
applications of those waves. This consideration stimu-
lates searches for surface structures that produce one-
way propagation of a surface or guided wave without the
need of a magnetic field. For example, we have shown
recently ﬂﬂ] that a 2D system consisting of a square ar-
ray of scatterers deposited on a metal surface in a trian-
gular mesh exhibits asymmetric transmission of a SPP
when a diffractive structure is added to one side of the
structure. This structure does not require either elec-
trical nonlinearity or the presence of the magnetic field
to accomplish this. The asymmetric transmission is a
consequence solely of the geometry of the structure.

In this paper we describe yet another surface struc-
ture that has different transmissivities for surface plas-
mon polaritons incident on it from opposite directions.
The surface structure consists of a metal-air interface
where the metallic region is formed by two metallic seg-
ments whose interface between them is periodically mod-
ulated. We first employ a theoretical approach based on
the thin phase screen model ﬂé] which allows determining
the transmitted electric field in the form of a Fourier ex-
pansion. We show that when the interface has the form of
a rectangular grating with a critical value of the modula-
tion depth, the zero-order term in the Fourier expansion
of the transmitted electric field can be suppressed in a
certain frequency range. The 41 and -1 modes which un-
like the zero-order beam do not satisfy reciprocity, remain
propagating in this frequency range, and their diffraction
efficiencies can be independently modified by varying the
period of the grating and/or the angle of incidence and, as
a result, the transmittance of SPP propagating through
this structure may become asymmetric.

The suppression of the zero-order transmitted beam
has been used effectively by Serebryannikov and his col-
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leauges in designing structures that produce asymmetric
transmission of volume electromagnetic waves through
them [J]- [11]. These are all slabs whose two surfaces are
both periodically corrugated, but with different periods,
and in some cases also pierced by a slit of subwavelength
width. Although the structures studied in these papers
are volume structures, not surface structures; the elec-
tromagnetic waves illuminating them are volume waves,
not surface waves; and the means for suppressing the
zero-order transmitted beam are different from ours, the
mechanisms by which they produce asymmetric trans-
mission are basically the same as those producing this
effect in our surface plasmon polaritonic structure.

The predictions obtained by our use of the thin phase
screen model have been verified by using numerical sim-
ulations based on the finite-element frequency-domain
method, which confirm that suppression of the zero-order
mode occurs when there exists a sufficiently large refrac-
tive index contrast between the two metals at a certain
frequency. Consequently, the transmittance of the struc-
ture relies on the diffraction efficiencies of the +1 and
-1 Bragg beams that can be modified by varying the
angle of incidence. Namely, we find that within a cer-
tain range of the incidence angle an asymmetry in trans-
mittance for the -1 mode exists, while the +1 mode is
completely suppressed. By varying the material and ge-
ometrical parameters of the diffractive structure one can
control the contrast transmission that characterizes the
degree of the asymmetry. This property of the structure
is demonstrated by the results of computer simulation
calculations.

II. THEORETICAL MODEL

The system we consider in this paper consists of vac-
uum in the region g > 0, while the region x3 < 0 consists
of two metalllic segments characterized by frequency-
dependent dielectric functions €;(w) and ez(w). The in-
terface between the two metals is characterized by the
profile function ((x2) which separates the neighboring
metals in the regions z1 < ((z2) and x1 > ((z2) - see
Figll

We denote the third component of the electric field of
a surface plasmon polariton in the vacuum region x3 >
0 evaluated on the surface x5 = 0, E3 (z1,z2,0|w), by
E3 (x1,x2,|w). The equation it satisfies in the region
xr < C(IQ) is
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FIG. 1: (Color online) Surface structure studied in this paper.

where

k= ke, w) = [k (w) - k3]
= i[k3 — kf(w)]2

k3 < kf(w) (3a)
k3 > kf(w).  (3b)

The equation E3 (z1, 2, |w) satisfies in the region z1 >
C(z2),23 =01is

< 9 + 8_ +pﬁ(w>> E;(xl,xﬂw) = O, (4)
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The transmitted field is the solution of this equation,
which we write as
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The thin phase screen model ﬂg] states that
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where
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By inserting the relation given by Eq.(@) into Eq.(®)
one obtains for the third component of the electric field
of the transmitted SPP in the thin phase screen model
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We assume the surface profile function ((x2) is a pe-
riodic function of z2, ((z2 + a) = ((x2) , where a is
the period. Then the second integral on the right-hand
side(RHS) of Eq.([[)) can be replaced by the following

sum
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Then by introducing ro = na + x, the RHS of this equa-
tion becomes
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In the case of a periodic rectangular profile,
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we obtain for the zero-order and the higher order terms
in the expansion given by Eqs.([[3]) and (4]
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where a = An(w)<. Therefore the amplitude of the zero-
order term given by Eq. (IG) vanishes when the depth of
the rectangular grating (o = m/(2«), which states that
the critical value of the modulation depth (p at given
wavelength is inversely proportional to the refractive in-
dex contrast An

(17)

The amplitudes of the higher-order Bragg beams ac-
cordingly follow the sine-like behavior of Eq. (16) and
thus, for example first-order waves have a non-zero am-
plitude at the same wavelength at which the zero-order
beam vanishes.

IIT. RESULTS: THIN PHASE SCREEN MODEL

We demonstrate asymmetric transmission characteris-
tics of a SPP by the use of the thin phase screen model
in the case of the periodically modulated interface char-
acterized by the rectangular periodic profile given by
Eq.(IE). A key idea underlying asymmetric transmis-
sion in such a planar grating structure is the suppres-
sion of the zero-order Bragg mode in a certain frequency
range, which occurs at a given wavelength for the criti-
cal value of the modulation depth (o given by Eq.(IT).
Then one can modify the diffraction efficiencies of the
first-order Bragg beams by varying the period a of the
grating and/or the angle of incidence 6.

A. Normal incidence

In the following we consider the case of normal inci-
dence and study transmission through a lamellar grating
at an Au/Al interface with a period a = 600 nm. By
using the refractive index contrast An = 0.140906 be-
tween Au and Al for the wavelength A\ = 500 nm, one



obtains the critical modulation depth §6€f = 887 nm at
which the amplitude of the transmitted zero-order Bragg
beam vanishes according to relation (7). The behavior
of the zero-order Bragg beam is shown in Fig[2(a) where
the transmittance |Tp|?(red dashed curve) reveals a pro-
found suppression in the vicinity of the reference wave-
length Aycy = 500 nm. This feature reflects the strong
dependence of |Ty|? on the modulation depth (o, which
is evident in comparison with results obtained for the in-
terface characterized by a 10x smaller modulation depth
(o = O.1C6€f for which the interface becomes transparent
in the wavelength range considered(full blue curve). The
frequency range in which the suppression of the 0-order
mode occurs can be modified by varying the modulation
depth (j as is demonstrated in Fig. [2(a) where the mini-
mum in the transmittance |Tp|? associated with the zero-
order SPP Bragg beam is red-shifted to the wavelength
A = 550 nm when the modulation depth is increased by
a factor of 2 - see the magenta dashed curve in Fig. 2l(a).
The dependence of the critical depth (p, on the wave-
length A is affected by the strongly dispersive behavior
of the dielectric functions of both metals in the wave-
length range considered, which give rise to a decreasing
refractive index contrast as the wavelength is increased.
In fact, the choice of the Au/Al interface stems from the
fact that these two metals yield a large refractive index
contrast An at the wavelength A = 500 nm. For example,
the transmittance of the zero-order Bragg beam through
a Au/Ag interface to a large extent resembles that for
a Au/Al interface - see Fig. Bla). However, it requires
at the same wavelength a significantly larger modulation
depth (o = 1350 nm, which renders this configuration
technologically more challenging from the point of view
of both its numerical and experimental verification.

We offer the following simple intuitive explanation of
this result. The difference in optical path lengths be-
tween the waves incident on the regions of the surface
where ((z2) = —(y and where ((z2) = +(y is equal to
2¢pAn. When (p has its critical value {;, = A\/(4An)
this difference in path lengths equals A/2 . The resulting
destructive interference of these two waves leads to the
suppression of the zero-order beam. An analogous inter-
pretation can be given for the higher-order beams. For
example, the first-order waves incident on the regions of
the surface where ((x2) = —(o and where ((x2) = (p are
in phase, and thus interfere constructively at the same
wavelength at which the zero-order beam vanishes.

Now we inspect the possibility of achieving asymmetry
in the transmittance of the first-order Bragg beam in the
case of normal incidence. We found that a lamellar grat-
ing at an Au/Al interface with the period a = 600 nm
and modulation depth (3 = 887 nm exhibits a sup-
pression of the zero-order Bragg beam in a certain fre-
quency range, while the transmittance of the l-order
Bragg beams becomes significantly enhanced in this fre-
quency range in comparison with that associated with
a shallow modulation ¢y = 0.1¢;/ — see the dashed-
lines in Fig. 2(b), which correspond to the transmit-
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FIG. 2: (Color online) (a) Transmittances of the zero- and
first-order Bragg beams vs. wavelength A obtained from the
thin phase screen model as functions of the modulation depth
Co when a = 600 nm; (b) the transmittances of both forward-
and backward propagating first-order Bragg beams vs. A as
functions of the period a; (c) transmittance contrast ratio R.
between the forward- and backward-propagating first-order
Bragg beams as functions of the period a when the latter
varies in the frequency range 460 nm < a < 500 nm. The red
dashed line in (b) and (c) indicates the transmittance of the
zero-order Bragg beam for (o = 887 nm and a = 600 nm.

tances of the first-order Bragg beams |T41]? when the
modulation depth ¢y = ¢4 (red dash-dotted line) and
Co = 2¢,° (magenta dash-dotted line). The transmit-
tances |T41|? for @ = 600 nm are nearly identical for
the first-order Bragg beams propagating in the opposite
directions. However, they become significantly different
when the period a is decreased. Specifically, the trans-
mittances |Ty1]? associated with the first-order Bragg



beams propagating in the Au — Al direction(LI) van-
ish when the period a = 460 nm(solid magenta line in
Fig.2lb), and gradually recover when the period a is in-
creased — see the transmittances |T41|? for a = 480 nm
and a = 500 nm indicated by the solid blue and green
lines in Fig.2(b), respectively. The transmittances |T%41|?
for the backward-propagating first-order Bragg beams
along the Al — Auw direction(RI) exhibit a similar de-
pendence on the magnitude of the period a, except that
the upper wavelength cutoff at which the transmittance
vanishes is red-shifted — see the transmittances |T'1|? for
a = 460 nm, a = 480 nm and a = 500 nm indicated by
dash-dotted magenta, blue and green lines in Fig. 2(b).
We describe the asymmetry in the transmittance of the
first-order Bragg beams in terms of the transmissivity
contrast ratio defined as

Ty -Tr

c= s 18
T, +Tr (18)

where Ty, and Tk denote the transmittances of the for-
ward and backward-propagating first-order Bragg beams.
The mismatch in the transmittances |[Tx1]?> demon-
strated in Fig. BI(b) implies a significant transmissivity
contrast R. between the counter-propagating beams in
the wavelength range 490 nm < A < 550 nm — see
Fig. (c). We note that the size of the asymmetry and
wavelength range in which this effect occurs depend on
the period a, namely when the latter is decreased (in-
creased) the size of the asymmetry decreases and the cor-
responding wavelength range is shifted towards smaller
(larger) wavelengths. This is demonstrated in Fig. 2lc),
where we depict the transmissivity contrast R, for the
periods a = 460 nm, a = 480 nm, and a = 500 nm indi-
cated by the magenta solid lines, and the dashed blue and
green lines, respectively. We also note that the degree of
asymmetry decreases as the wavelength increases.

B. Oblique incidence

In this section we explore regimes which support asym-
metry in the transmittance of the first-order Bragg beams
in the case of oblique incidence. We consider our refer-
ence system to be a lamellar grating at an Au/Al inter-
face with the period a = 600 nm and modulation depth
Co = 887 nm. It is well known that at normal incidence
the transmittances associated with the +1 and —1 Bragg
beams are identical, and the two waves propagate along
directions that are symmetric with respect to the nor-
mal to the interface. When the angle of incidence is
changed the transmittances exhibit different dependen-
cies on the wavelength, as is illustrated in Figs. B(a) and
(b) for the forward(LI) and backward(RI)-propagating
waves, respectively. Namely, for the angle of incidence
0 = 22.5°, the transmittance associated with the +1
Bragg beam(solid blue line in Fig. Bla)) reveals a cut-
off at the wavelength A = 500 nm, while that belonging
to the —1 Bragg beam remains unaffected in the fre-
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FIG. 3: (Color online) (a) Transmittances of the +1 and
—1 forward Bragg beams vs. wavelength A\ incident on the
Au/Al lamellar grating at angle 6 = 22.5° from the left(solid
blue line) and from the right side(dash-dotted blue line) ob-
tained from the thin phase screen model; (b) the same ex-
cept the transmittances correspond to the backward prop-
agating +1 and —1 Bragg beams at the angle 6§ = 35
(c)the transmittances of both the forward(solid blue line)
and backward(dash-dotted blue line) propagating —1 Bragg
beams vs. A when the lattice constant a = 430 nm. The red
dashed line in all panels indicates the transmittance of the
zero-order Bragg beam for (o = 887 nm and a = 430 nm.

quency range where the zero-order beam is suppressed
and shows a slowly decaying tail as the wavelength is
increased[dash-dotted blue line in Fig. Bla)]. We observe
similar behavior in the case of the backward propagat-
ing wave(RI) — see Fig. B(b) — except that the equivalent
wavelength cutoff for the transmittance associated with
the +1 Bragg beam is achieved for a larger angle of in-



cidence 0 = 35° [solid blue curve in Fig. Blb)] while the
transmittance associated with the —1 Bragg beam[dash-
dotted blue curve in Fig. [B(b)] resembles the behavior of
the corresponding counter-propagating wave.

The results presented in Figs. B(a) and (b) show that
the +1 SPP Bragg beams incident in a certain range of
the angle of incidence become evanescent, and only the
—1 Bragg beams are propagating in this regime. Refer-
ring to the results shown in Figs. B(b),(c) it is obvious
that one can achieve an asymmetry in the transmittance
of the —1 Bragg beams by varying the size of the pe-
riod a as is illustrated in Fig. Bl(c), where the transmit-
tance associated with the forward propagating —1 Bragg
beam|[solid blue curve in Fig.Blc)] indicates that the wave
becomes evanescent for A > 500 nm when the period
a = 430 nm, while the —1 SPP Bragg beam incident
from the opposite side remains propagating[dash-dotted
blue curve in Fig. Blc)] in the wavelength range where
both the zero-order and +1 Bragg beams are suppressed.

FIG. 4: (Color online) Computational domain used for nu-
merical simulations of the surface grating structures. Portl
and Port2 denote the waveguide ports used in the frequency-
domain solver.

IV. RESULTS: FINITE-ELEMENT
FREQUENCY-DOMAIN METHOD

In order to verify the predictions of the thin phase
screen model we calculate numerically the transmittance
of the SPP propagating across the modulated Au/Al in-
terface shown in Figlll We employ the CST frequency
domain solver ﬂﬁ] The interface between a semi-infinite
vacuum and a semi-infinite metal depicted in Figl] is
replaced by the computational domain shown in Fig[]
where a finite thickness of the metal region w is assumed,
typically w = 400 nm, and periodic boundary conditions
are applied along the x5 axis . We assume in this config-
uration a surface plasmon polariton propagating in the
forward direction along the 1 axis, incident on the struc-
ture from the bottom, which corresponds to the left inci-
dence(LI) indicated in Fig[Il while a surface plasmon po-

lariton propagating in the backward direction along the
1 axis is incident on the structure from the top, which
corresponds to the right incidence(RI). We impose the

x10"

0 mode + 6

FIG. 5: (Color online) Spatial intensity distribution of the
electric fields associated with the (a) zero-order and (b) +1
SPP Bragg modes belonging to the shielded Au waveguide
port obtained from the frequency-domain solver. The SPP
modes with the wavelength A = 500 nm incident on the struc-
ture depicted in Fig[l from the bottom correspond to the left
incidence(LI) indicated in Figlll The electric fields are in
Vm ™! units.

electric wall boundary condition E; = 0 along the z7,
27 and zs-axes and open boundary conditions along the
x3 axis in the region z3 > w. As the excitation source
we choose waveguide ports attached to the bottom(Au)
and the top(Al) of the metallic region. The waveguide
ports represent a special kind of boundary condition of
the calculation domain, which requires enclosing the en-
tire domain filled with the electric field. This kind of port
simulates an infinitely long waveguide connected to the
structure. Then the eigenmode solver allows calculating
the exact port modes within these boundaries, including
the wave numbers(propagation constants) of these modes
k" = £ng%;, or more precisely their effective indices
ngsr- In calculating the transmittance of the structure
we take into account a sufficiently large number of modes
which form a finite subset of the eigenmodes supported
by the structure. We note that the majority of the modes
are radiative, which together with ohmic losses represent
two channels of decay that determine the lifetime of the
SPP. We focus on the surface modes with electric fields
strongly confined to the surface xjxo, which correspond
to the lowest order diffraction orders of the SPP propa-
gating along the metal-vacuum interface.

A. Normal incidence

In the following we consider the case of normal inci-
dence. In Figs[l and [l we show the intensities of the
electric field associated with the zero and +1 SPP modes
belonging to the Au and Al waveguide ports, respec-
tively. One can see that the lowest order SPP modes
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FIG. 6: (Color online) Spatial intensity distributions of the
electric fields associated with the (a) zero-order and (b) +1
SPP Bragg modes belonging to the Al waveguide port ob-
tained from the frequency-domain solver. The SPP modes
with the wavelength A = 500 nm incident on the structure
depicted in FigHl from the top correspond to the right inci-
dence(RI) indicated in Figll The electric fields are in Vm ™
units.

associated with the Au port are more confined to the
surface than those belonging to the opposite Al port.
The field intensity patterns shown in FigBlb) and Blb)
correspond to the doubly degenerate +£1 modes obtained
from the frequency-domain solver in the case of normal
incidence with shielded ports. The latter feature rep-
resents a special kind of boundary condition, which re-
stricts the influence of the higher order radiative modes
but at the same time does not allow calculating the eigen-
modes for oblique incidence when periodic boundary con-
ditions along the x1 axis are imposed. In the unshielded
regime, the asymmetry of the structure leads to the split-
ting of the doubly degenerate +1 Bragg modes, and the
frequency-domain solver yields singlets corresponding to
the +1, —1 waveguide eigenmodes. The nearly degener-
ate modes belonging to the Au port possess the effective
indices nsz (£1)g—go = 0.39 — see Fig[ll— and the degen-
erate +1 and —1 modes belonging to the Al port possess
the effective indices ngff(:tl)gzoo = 0.38. Here the sub-
scripts f and b denote forward and backward propagating
modes belonging to the Au and Al ports, respectively.

To understand the propagation of the SPP through the
grating region represented by the modulated Au/Al in-
terface with a rectangular profile it is helpful to employ
the results of the modal method described in detail in
Ref. [13. In this method the incident, transmitted and
reflected fields are expressed in terms of the eigenmodes
of the structure and thus cannot be described solely by
the well-known grating equation, since for the calculation
of the amplitudes of the diffraction orders the EM field
inside the grating region has to be considered. According
to this approach, the propagation of the wave in the x;
direction through the grating region resembles that of a
simple slab waveguide that is able to guide a discrete set
of modes. The similarity between the field distributions

0

FIG. 7: (Color online) Spatial intensity distributions of the
electric fields associated with the (a) -1 and (b) +1 SPP Bragg
modes belonging to the Au waveguide port obtained from the
frequency-domain solver in the regime of unshielded waveg-
uide ports. Both nearly degenerate modes correspond to the
doubly degenerate +1 modes displayed in Fighll The SPP
modes with the wavelength A = 500 nm are incident on the
structure depicted in Figld] from the bottom, which corre-
sponds to the left incidence(LI) shown in Fig[llThe electric
fields are in Vm ™! units.

associated with the incident and excited modes is given
by an overlap integral, while matching of the effective in-
dices is characterized by the difference between the wave
number of the incident wave ki® = “ cos ¢ip, and the
wave number k7’, where ¢;,, is angle of incidence. Both
factors determine how much energy of the incident wave
is coupled to a specific mode.

The transmittance of the structure shown in Fig[] can
be described in terms of diffraction efficiencies calculated
as the intensities of the transmitted higher-order Bragg
beams divided by the intensity of the incident wave.
The frequency-domain solver calculates the scattering
matrix between the two sets of eigenmodes associated
with both waveguide ports. We first implemented our
reference structure with a lamellar grating at an Au/Al
interface with the period a = 600 nm and modulation
depth (o = 887 nm which, according to the results of
the thin phase screen model, does not support propaga-
tion of the zero-order Bragg beam in a certain frequency
range. We confirmed this by evaluating the transmit-
tance associated with the eigemnodes that correspond to
the zero-order SPP mode supported by both the Au and
Al ports, and showed that they possess vanishing values
Ty ~ 0.01.

B. Oblique incidence

In this subsection we consider the case of oblique in-
cidence, namely we study how the diffraction efficiencies
depend on the angle of incidence . We focus on the
+1 and —1 modes, which reveal strong and profoundly
different dependencies on the incidence angle and simul-
taneously reveal a dependence on the direction of propa-
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FIG. 8: (Color online) Spatial intensity distributions of the
electric fields along the waveguide structure associated with
(a) the —1 and (b) the +1 forward propagating SPP Bragg
modes incident at an angle § = 75°. The electric fields are in
Vm ™! units.

gation. We first consider the modes belonging to the Au
port i.e. the forward propagating waves. The transmit-
tance of the +1 mode propagating in the forward direc-
tion Au — Al in the case of normal incidence is some-
what larger Ty (41)g=oo = 0.26 than that of the —1 mode
T¢(—1)g=0> = 0.19. When the angle of the incidence is
increased, the difference in the transmittances of the +1
and —1 modes increases, and for sufficiently large angles
of incidence 6 2 60° the transmittance of the +1 mode
vanishes. Specifically, the transmittance belonging to the
—1 mode is slightly increased T(—1)g=750 = 0.28 when
0@ = 75°, while the transmittance of the +1 mode be-
comes negligible T¢(41)p=75c = 0.0001. This behavior is
demonstrated in Figl8l where the spatial distributions of
the electric field intensities along the waveguide structure
for the —1 (a) and +1 (b) Bragg beams are shown for the
Au waveguide port. While the field pattern correspond-
ing the —1 mode displays a propagating character, the
—1 mode reveals an exponentially decaying amplitude
along the z; axis in accord with the vanishing diffraction
efficiency predicted for the +1 mode for large values of
the incidence angle.

The dependence of the effective indices associated with
the +1 and —1 SPP modes on the incidence angle 6 pro-
vides an additional insight into their nature. In the case
of normal incidence the effective indices corresponding
to the +1 and —1 modes belonging to the Au port are
nearly identical and have the values Tlgff(—l)():oo =0.39

and ngff(—i—l)gzoo = 0.38. When the angle of inci-
dence is increased in the range 0 < 6 < 75° the effec-
tive index of the —1 mode becomes significantly larger,
ngfj»(—1)9:75o = 0.64, while the effective index of the 41

mode becomes smaller nsz (+1)g=750 = 0.13.

We observe similar, although quantitatively somewhat
different, behavior of the transmittance for the SPP
eigenmodes belonging to the Al port i.e. propagating
in the opposite direction. The transmittance of the —1
mode propagating in the Al — Awu direction in the case of

normal incidence is somewhat larger, T,(—1)g—go = 0.16,
than that of the +1 mode, Tp(4+1)p=p> = 0.09. When
the angle of the incidence is increased, the difference in
the transmittancies of the +1 and —1 modes increases,
and for a certain angle of incidence 6 2 60° the trans-
mittance of the 4+1 mode vanishes. Specifically, the
transmittance belonging to the —1 mode is slightly in-
creased, Ty(—1)g=75c = 0.17, when 6 = 75° while
the transmittance of the +1 mode becomes negligible,
T¢(+1)g=750 = 0.0006.

FIG. 9: (Color online) Spatial intensity distributions of the
electric fields along the waveguide structure associated with
(a) the —1 and (b) the +1 backward propagating SPP Bragg
modes incident at an angle 0 = 75°. The electric fields are in
Vm ™! units.

This behavior is demonstrated in Fig[ where the spa-
tial distributions of the electric field intensities along the
waveguide structure for the —1 (a) and +1 (b) Bragg
beams are shown for the Al waveguide port. Likewise for
the forward propagating wave, the field pattern corre-
sponding to the +1 mode displays a propagating charac-
ter, while the —1 mode reveals an exponentially decaying
amplitude along the 1 axis in accord with the vanishing
diffraction efficiency predicted for the +1 mode for large
values of the incidence angle. The effective indices associ-
ated with the +1 and —1 SPP modes belonging to the Al
port in the case of normal incidence are identical and have
values nsz(—i—l)(,:oo = nle’ff(—l)gzoo = 0.32. When the
angle of incidence is increased in the range 0 < 6 < 75°
the effective index of the —1 mode becomes significantly
larger, nle’fj»(—l)g:mo = 0.58, while the effective index of
the +1 mode becomes negligible nle’ff(—i—l)(,:%o = 0.006.

The results shown in Figs[8 and [q illustrate the two
key effects associated with the behavior of the first-order
Bragg modes at oblique incidence. First, one of the first-
order beams(+1) is completely suppressed when the SPP
impinges the interface at a sufficiently large angle, 6 2
60°. Second, as a result, the structure supports only the
+1 Bragg beams, with the backward propagating beam
having a significantly smaller transmittance than that
of the forward propagating one, and yields the contrast
transmissivity ratio R. = 0.25.

To compare the results obtained on the basis of the thin



phase screen model and those obtained from numerical
simulations one has to take into account the approxima-
tion associated with the former approach. Namely, the
theoretical model does not take into account radiative
modes, and the electric fields associated with the inci-
dent and transmitted waves are expressed in terms of a
Fourier expansion. On the other hand, the frequency-
domain solver deals with a finite set of the eigenmodes
supported by the structure, the majority of which are ra-
diative. The differences in both approaches are reflected
in the differences in the quantitative parameters describ-
ing an asymmetry in the transmittance. However,one
can see that the diffraction efficiencies obtained from the
numerical simulations confirm qualitatively the predic-
tions of the thin phase screen model. Namely, for a cer-
tain magnitude of the modulation depth of the interface
between the two metallic regions, which are character-
ized by a sufficiently large refractive index contrast at a
certain wavelength, the transmittance of the zero-order
Bragg beam is suppressed while the +1 and —1 modes
become dominant among the surface modes supported
by the grating planar structure. We have shown that
such a configuration, which supports at normal incidence
propagation of both the +1 and —1 Bragg beams, offers
the possibility of modifying the diffraction efficiency of
the +1 and —1 modes by varying the angle of incidence.
Specifically, we found that for a sufficiently large angle
of incidence the structure supports only the —1 propa-
gating beam, which leads to a substantional asymmetry
in the transmittance characterized by the contrast trans-
missivity ratio R. = 0.25. This value can be increased
by carefully choosing both the geometrical and material
parameters of the structure.

V. CONCLUSION

We have demonstrated that a system consisting of an
air-bimetal interface, whose boundary between the two
metallic segments is periodically modulated, possesses a
different transmissivity for a surface plasmon polariton
incident on it from one side of it than it has for a sur-
face plasmon polariton incident on it from the opposite
side. This asymmetric transmission of a surface plasmon
polariton is based on the suppression of the zero-order
Bragg beam, which is not transmitted through the struc-
ture for a certain value of the modulation depth of the
periodically corrugated boundary between the metals.
Consequently, the mechanism for the asymmetry in the
transmittance is related to the higher Bragg modes that
are excited on the composite metallic waveguide struc-
ture. We have shown that the diffraction efficiencies of
the +1 and —1 Bragg beams can be modified by varying
the period and/or the angle of incidence, and for a certain
range of the incidence angle one can observe asymmetry
in the transmittance of the —1 mode while the +1 mode
is completely suppressed. By varying the material and
geometrical parameters of the diffractive structure one
can control the contrast transmission that characterizes
the degree of the asymmetry.

Acknowledgements

The research of V. K. was supported by Grant No. LH
12009 of the Czech Ministry of Education within pro-
gramme KONTAKT II(LH).

[1] Surface Polaritons, edited by V.M. Agranovich and D. L.
Mills (North-Holland, Amsterdam, 1982).

[2] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100,
013904 (2008).

[3] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Sol-
jacic, Phys. Rev. Lett. 100, 013905 (2008).

[4] A.Figotin and I.Vitebsky, Phys. Rev. E 63, 066609
(2001).

[5] Z. Yu, G. Veronis, Z. Wang, and S. Fan, Phys. Rev. Lett.
100 023902 (2008).

[6] V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, Phys.
Rev. B 86 045403 (2012).

[7] V. Kuzmiak and A. A. Maradudin, Phys. Rev. A 86

043805(2012).

[8] W. T. Welford, Contemp. Phys. 21 401(1980).

[9] A. E. Serebryannikov, Phys. Rev. B 80 155117(2009).

[10] A. E. Serebryannikov and E. Ozbay, Opt. Express 17
13335(2009).

[11] S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan,
and E. Ozbay, Opt. Lett. 35 2597(2010).

[12] CST  Computer  Simulation  Technology  AG,
http://cst.com!

[13] P. Sheng, R. S. Stepleman, P. N. Sanda, Phys. Rev. B
26 2907(1982).


http://cst.com



