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ABSTRACT OF THE DISSERTATION
Towards Probative Foundations for Bayesian Statistics

By

David Mghanga Mwakima

Doctor of Philosophy in Philosophy

University of California, Irvine, 2024

Chancellor’s Professor James O. Weatherall, Chair

My dissertation addresses the question of how scientists evaluate the evidence they have for

their claims. In the first chapter, I demonstrate the viability of using Bayesian methods

in statistics to evaluate statistical evidence using an episode from the history of science

involving Jean Baptiste Perrin, who was a French chemical physicist working in the early 20th

century. This episode has fascinated philosophers of science because Perrin’s experimental

work that confirmed the atomic hypothesis (the view that matter is composed of atoms)

has been cited as an illustration of the impact that strong evidence can have. For this

reason, numerous accounts have been offered for why Perrin’s evidence was so distinctive.

Bayesian accounts of this episode have been quite influential. However, they have been

criticized by philosophers because they face: (1) the “Catch-all hypothesis” problem (which

is the problem of exhaustively specifying, in the space of hypotheses, the logical complement

of a given hypothesis in order to compute the marginal likelihood function of the data —

this is the denominator in Bayes’ theorem); and (2) the problem that any specification of

priors in the Perrin case is ad hoc. In view of these difficulties, I provide a novel and more

precise Bayesian account of this episode than those that have been offered and I argue that

my account avoids these problems. In doing so, I contribute to the philosophy of statistics

by showing the viability of using Bayes Factor (which is a Bayesian measure of the relative

strength of evidence for two competing models or hypotheses) to quantify statistical evidence;
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and to the philosophy of science, where prominent realists and anti-realists today are charting

a middle path forward in the realism-antirealism debate.

The other chapters of my dissertation address different aspects of the following question:

“How reliable are coherent Bayesian methods for evaluating statistical evidence in science?”

Coherent Bayesian methods are those Bayesian methods that satisfy the Likelihood Principle.

This principle states that parametric statistical inference should be based on the equivalence

class of functions of the parameter within a given statistical model in which the data are fixed

(this equivalence class is also known as the likelihood function). For example, using the Bayes

Factor to quantify statistical evidence is a coherent Bayesian method. Some statisticians

and philosophers of statistics who argue against using coherent Bayesian methods argue

that these methods conflict with other important desiderata that scientists have. These

desiderata include: (1) calibrating inferences and predictions (where this involves providing

an objective measure, or guarantee, of how often the inferences and predictions are verifiably

correct), and (2) model assessment (where this involves probing or testing statistical models

to determine their compatibility with the observed data). These desiderata are important

because, taken together, they reflect the healthy skepticism scientists typically have towards

their claims. This attitude involves probing those claims and quantifying the reliability

of the inferences that they make supporting or disproving those claims. The lack of tools

for satisfying these needs using coherent Bayesian methods is a serious indictment of those

methods and is the primary reason given for why they are not yet widely adopted in practice

— this is the probativist criticism (from the word ‘probative’ which means to test or to try).

Most philosophers who are sympathetic to the Bayesian approach either misconstrue the force

of the probativist criticism or dismiss that criticism by rejecting some underlying assumption

made by those who advance it. For example, one underlying assumption that is often rejected

is that statistical modeling should be aiming at the truth. So, in chapter two, I sharpen

the probativist criticism and I argue that it cannot be dismissed by rejecting one or more
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of its underlying assumptions. In chapter three, I turn to the Likelihood Principle and

the normative constraints it places on coherent inference. Here I argue that the scope of

the Likelihood Principle should be restricted to parametric inferences that involve point

estimation. If the scope of Likelihood Principle can be so restricted, then my work here will

contribute to laying the groundwork for introducing tools within the Bayesian framework

for model assessment and will advance the debate regarding the possibility of probative

foundations for Bayesian statistics.
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Chapter 1

On the Quality of Perrin’s Evidence

1.1 Introduction

Evidence occupies a central role in philosophy. Within philosophy of science specifically,

evidence, and its quality, constitutes the basis on which the debate between realists and anti-

realists as understood today is, or should be, adjudicated.1 Within this debate, an informal

notion of the “quality of evidence” from Jean Perrin’s experimental work on Brownian motion

has for decades been offered as an explanation of the shift in epistemic attitudes toward the

atomic hypothesis among prominent scientists at the turn of the 20th century.2 The shift in

attitude was from viewing the atomic hypothesis as a merely instrumentally useful hypothesis

(anti-realism) to viewing it as a well-established theory (realism). Assuming that the shift

in epistemic attitudes was caused by the distinctive quality of Perrin’s evidence, one goal

for philosophers of science has been to characterize what makes evidence, such as Perrin’s,

good.

1See especially Psillos (2018), Psillos (2021) and Stanford (2021).
2See Glymour (1980), Salmon (1984), Mayo (1996), Maddy (1997), Achinstein (2002), Maddy (2007),

Stanford (2009), Psillos (2011), Psillos (2014) and Smith and Seth (2020) for a sample of some of the recent
views that have been offered on this topic.
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It is helpful to think of the various accounts that have been offered for evaluating evidence as

falling along a spectrum. On one end of this spectrum, there are informal accounts provided

by Quine (1976) and Maddy (2007, 398f, 406). On the other end, there are highly formal

presentations in inductive logic, confirmation theory and formal epistemology.3 In between

these two extremes, there are semi-formal proposals due to Achinstein (2001) and Roush

(2005), which approach the evaluation of evidence probabilistically, but independently of

statistics. Finally, there are statistical approaches to the evaluation of evidence, which have

slowly began penetrating philosophical discussions with some authors calling on philosophers

to pay more attention to these statistical approaches to evaluating evidence.4

Here my goal is to characterize, from a statistical perspective, what made the evidence from

Perrin’s experiments on Brownian motion good. In order to accomplish this goal, I will focus

specifically on Perrin’s granule-displacement experiments that confirmed Einstein’s diffusion

model of the motion of suspended particles in a dilute solution. One reason for just focusing

on the granule-displacement experiments is that the confirmation of Einstein’s model by

these experiments has been lauded by many as some of the most convincing evidence that

came out of Perrin’s laboratory.5 Another reason for focusing on these experiments is that

the observations can be modeled using well-known statistical models (see the next section). I

will argue that the quality of Perrin’s statistical evidence that confirmed Einstein’s model was

good because it was highly specific and discriminating. The specificity and discriminating

3See Carnap (1962), Fitelson (2007) and Pettigrew (2016) for examples of some of the work that is done
here. See Earman (1992) and Sprenger and Hartmann (2019) for a comprehensive overview and detailed
bibliographies.

4See Edwards, Lindman, and Savage (1963), Edwards (1992), Royall (1997), Mayo (2000), Royall (2004),
Forster and Sober (2004), Fitelson (2007), Sober (2008), Mayo and Spanos (2011), Gelman and Shalizi (2013),
Mayo (2013), Morey, Romeijn, and Rouder (2013), Reid and Cox (2015), Morey, Romeijn, and Rouder
(2016), Gelman and Hennig (2017), Mayo (2018), Rouder and Morey (2019), and Fletcher and Mayo-Wilson
(forthcoming) for a representative sample.

5See Smith and Seth (2020, 154). It is worth mentioning that Perrin performed at least three types
of experiments on Brownian motion: vertical-gradient experiments, granule-displacement experiments and
granule-rotation experiments. See Nye (1972) and Smith and Seth (2020, Ch. 4) for a detailed discussion of
these experiments. In Psillos (2011) and Psillos (2014), Psillos focuses on the vertical-gradient experiments.
I do not wish to claim that my analysis of the experiment I focus on extends to these experiments. I believe
that these other experiments would require a different account to make sense of how or whether they provided
strong evidence and what this evidence was for.
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character of his evidence can be understood using Bayes Factors (see section 1.4 below for

a discussion of Bayes Factors).

Nevertheless, one may have the following worry about my strategy. The worry is that Perrin

himself makes no statistical arguments using Bayes Factors or the other common measures

of statistical evidence, which I discuss in the next section. In fact, Perrin did not even

calculate probable errors. So isn’t my account ahistorical in the sense that it leaves out the

actual context of Perrin’s experimental work? This context involved “eye-balling” the data

for conclusions as was done in almost all 19th century chemical and epidemiological research,

despite the widespread knowledge of Laplace’s work on probability and of least squares and

its connection with Gaussian distributions.

In response to this worry, let me say that my goal is to show what a Bayesian statistical

account, using Bayes Factors, of Perrin’s experimental work would look like and not to argue

that, in fact, this is what Perrin did. The advantage of the account which I intend to

provide is that it can illuminate some of the existing accounts of the quality of Perrin’s

evidence that have been offered in the literature while avoiding some of their shortcomings.

Consider, for example, Salmon’s argument for scientific realism about atoms and molecules.

According to Salmon (1984, 213 – 227), Perrin provided strong evidence for the atomic

hypothesis by compiling, in Les Atomes (1913), converging values for Avogadro’s Number

from a variety of independent experiments. He argues that it would be “an utterly astonishing

coincidence” to have values for Avogadro’s Number from different independent experiments

all converging to approximately the same value unless there was a common causal explanation

— atoms and molecules. As I will show in what follows (see section 1.6 below), one can use

Bayesian statistical analysis to illuminate the force of, and intuition underlying, Salmon’s

argument. The specific improvement to what Salmon did is that not only do I single out

all the experiments that Salmon cites, but I also provide explicit statistical models for them

and show how the experiments are linked using a Bayesian meta-analysis.
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Now consider more recent authors. On the one hand, Mayo (1996, Ch. 7) has a compelling

discussion, from a Frequentist perspective, of the severe testing and statistical reasoning

involved in Perrin’s confirmation of Einstein’s model. She eschews any Bayesian characteri-

zation of this episode because Perrin’s reasoning did not involve any explicit specification of

prior credences.6 On the other hand, Achinstein (2002), Psillos (2011) and Psillos (2014)’s

arguments for scientific realism about atoms and molecules involve assumptions about what

the value of the prior credences must be in order for their arguments to work. Smith and

Seth (2020, 81, n. 13) find these assumptions ad hoc.7 In what follows, unlike Mayo, I pro-

vide a Bayesian statistical perspective of Perrin’s confirmation of Einstein’s model. It is not

my intention to criticize Mayo’s illuminating error-statistical/severe testing perspective of

Perrin’s evidence; nor am I interested in the question of realism about atoms. My intention

is to provide a correct retrospective Bayesian statistical perspective of Perrin’s evidence for

the first time (to the best of my knowledge) as an alternative perspective to Mayo’s influ-

ential account of the same episode. At the same time, I will show how my approach avoids

the objection of ad hoc specification of priors that has been raised against Achinstein and

Psillos.

Here’s how I have organized the rest of my paper. In the following section, I set the stage

for what I mean by statistical evidence and why this matters for my account. This section

is followed by another section with a detailed scientific and philosophical analysis of the

reasoning or arguments involved in specifying the relevant theoretical models and statistical

models that are involved in evaluating Perrin’s evidence. In section 1.4, I give a quick

overview of the Bayesian approach to statistical inference and Bayes Factors, which I use

to characterize the quality of Perrin’s evidence. In section 1.5 and 1.6 I briefly discuss the

pros and cons of using Bayes Factors to quantify statistical evidence and draw some lessons

6See Mayo (1996, 232, 242).
7The problem of specifying prior credences is related to the problem of unconceived alternatives. It

has been discussed by Roush (2005) and Stanford (2009) in connection to the problem of the “Catch-all
Hypothesis”. See section 1.6 below for how my account can avoid this problem.
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for philosophy of science. Remaining questions for my account are addressed in section 1.7

before I conclude.

1.2 What is Statistical Evidence?

Before proceeding, let me say more about what I mean by “statistical evidence” and why

I want to characterize Perrin’s evidence from a Bayesian statistical perspective. Statistical

evidence is a form of evidence, somewhere between the semi-formal and formal accounts on

the spectrum just mentioned. First, it is evidence because it shares what is common to the

genus of evidence, namely, a capacity to impact our epistemic attitudes towards a claim or

our dispositions to act, which are influenced by claims that we accept. The disjunction in

the preceding sentence is important because on a widely-held, standard and non-technical

understanding of the meaning of “evidence”, evidence has to do with belief and must always

impact our epistemic attitudes or beliefs about a claim. I am not disputing this understand-

ing. Rather, I am claiming that it is too narrow because: (i) it leads us to preclude certain

items in the world as evidence; and (ii) it prevents us from making certain comparisons we

would like to make, for example, between statistical evidence in classical statistics and sta-

tistical evidence in Bayesian statistics. To broaden our discussion of evidence, I propose to

refer to the widely-held, standard account of evidence as the epistemic role of evidence and

distinguish this from the indicative role of evidence such as making decisions using statistical

evidence. Second, it is a form or kind because it can be distinguished as a species under the

broader genus of evidence. The species of evidence have differentiating features, which are

suggested by the modifier or adjective. Some of the species (non-exhaustive) of this genus

are: direct evidence, historical evidence, indirect evidence, legal evidence, observational ev-

idence, and propositional evidence. One view in epistemology, in fact, is that evidence is
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propositional.8 Propositional evidence is, roughly, a fact p — where p is a proposition —

that confirms or justifies a given belief token.9

Of course there is some overlap between these species. Legal evidence is often propositional

evidence since legal evidence is a fact that is admissible in a legal context such as a court of

law. At the same time, legal evidence can include some pieces of historical evidence such as

eye-witness reports or testimonies. Direct evidence often includes observational evidence such

as seeing a smoking gun. Statistical evidence itself can offer indirect evidence for facts, i.e.,

propositional evidence.10 One can try to make distinctions between all these kinds of evidence

precise. But making these distinctions lies beyond the scope of this paper. I mention these

various ways of talking about evidence to justify speaking of evidence more broadly and also

insofar as it allows me to focus entirely on statistical evidence within statistics, as opposed

to: (i) informal ordinary-life discussions of these other kinds of evidence in epistemology,

and (ii) the formal discussions of evidence E, hypothesis H and theory T (where E, H and

T are unqualified) that is the bread and butter of inductive logic or formal epistemology.

What distinguishes statistical evidence from evidence E in formal epistemology are two

things: (i) the random character of statistical evidence, and (ii) the requirement of a sta-

tistical model of the observed data. In fact, these two distinguishing features of statistical

evidence are linked. The random character of statistical evidence depends on the statistical

model for data. Here’s what I mean. A measure of statistical evidence is a real-valued func-

tion whose inputs are statistics. A statistic, by definition, is any function t(x) of actual data

x = (x1, x2, . . . , xn). In the context of parametric statistical inference, the data is modeled

as a realization of a finite vector X = (X1, X2, . . . , Xn) of observations, measurements etc.

For i in 1, 2, . . . , n, each Xi is a random variable that has a probability distribution function

8See Williamson (2000, Ch. 9, 10) and Brown (2015) for the notion of propositional evidence. See Joyce
(2004) for a helpful summary and appraisal of Williamson’s account of evidence.

9Williamson (2000, 194) writes, “Propositions are the objects of propositional attitudes, such as knowl-
edge and belief; they can be true or false; they can be expressed relative to contexts by ‘that’ clauses.”

10Compare with Mayo (2018, 435)’s discussion of direct and indirect uses of probabilities.
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f(Xi;θ) that belongs to a parametric family, members of which are identified by the specific

value of the parameter vector θ they take. The model of the data is known as the sampling

model. In the Frequentist approach to statistics, a statistical model just consists of the sam-

pling model for the data. As we shall see in section 1.5 below, a Bayesian statistical model

requires not just a sampling model for the data, but also a prior model on anything the data

conditionally depend on that we would like to incorporate into our analysis. For example,

suppose the experiment is to determine the coefficient of thermal expansion of a steel rod.

Here the results of independent repeated measurements of the length of the rod (at a given

temperature) can be modeled as the components of a vector X from the Normal or Gaussian

parametric family of distributions. In the case of the normal or Gaussian parametric family,

θ = (µ, σ2) is a vector consisting of the mean (µ) and variance (σ2) of the distribution. If

x = (x1, x2, . . . , xn) are the actual outcomes of those measurements, a statistic such as the

mean t(x) = x̄ =
∑n

i xi/n is clearly a function of the data, which can be used in statistical

inference: (i) to estimate µ; or (ii) to test hypotheses regarding µ.

Since a function of a random variable is a random variable, a statistic is a random variable.

This means that a measure of statistical evidence is a random variable insofar as it takes

random variables as inputs. This also means that regardless of what one’s attitude towards

the evidential value of p-values, confidence intervals, likelihood ratios, odds-ratios, Bayes

Factors, and Mayo’s Severity Function is; it remains the case that these are all measures of

statistical evidence in the various schools of statistics on this picture.11 To be sure, some of

these measures do not have an epistemic evidential role.12 The p-value, for example, is not

a conditional probability assuming the null hypothesis is true. This is because on the Fre-

quentist interpretation of probability, which is the interpretation that p-values are based on,

statistical hypotheses are not repeatable events (so, statistical hypotheses cannot be modeled

as random variables). Moreover, confidence intervals do not indicate our degree of belief or

11Mayo’s Severity Function is discussed in Mayo (2018, 143ff.).
12Compare with Fletcher and Mayo-Wilson (forthcoming).
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epistemic confidence about the boundaries within which a parameter might lie. The reason

is that confidence intervals (which are based on the Frequentist interpretation of probabil-

ity) are random variables while parameters (on the Frequentist approach to statistics) are

unknown but not random.

The foregoing discussion is intended to restrict the scope of my paper and to provide some

background to what I mean by “statistical evidence”. By focusing on the evaluation of

the quality of Perrin’s evidence from a Bayesian statistical perspective, I am signaling two

things. Firstly, I am signaling that I will be interested in Bayesian statistics not Bayesian

formal epistemology. On the one hand, Bayesian statistics is one approach to statistical

inference. Among the things that distinguishes Bayesian statistics, from say, classical Fre-

quentist statistics, is that on the Bayesian approach one can consider prior distribution

functions on parameters.13 On the other hand, Bayesian formal epistemology or Bayesian-

ism is a philosophy or school of thought that addresses questions in the theory of knowledge

and confirmation theory. This philosophy has two distinguishing features: (i) an epistemic

interpretation of probability as coherent graded beliefs or credences and (ii) the use of Bayes’

theorem as an inductive rule through one form or another of conditionalization.14 One reason

for restricting my interest here is pragmatic, i.e., I don’t have much to say about Bayesian

formal epistemology. Another reason for focusing on Bayesian statistics is that Bayesian

methods in epistemology sometimes mask the subtleties that underly actual Bayesian and

non-Bayesian statistical modeling and inference. Given these reasons, I am signaling, sec-

ondly, my agreement with Mayo (2018, 73) who writes:

[T]he Bayesian epistemologist invites trouble by not clearly spelling out corre-

sponding statistical models. They seek a formal logic, holding for statements

about radiation, deflection, fish, or whatnot. I think this is a mistake. That
13Barnett (1999) gives a good overview of the various paradigms of statistical inference. Compare with

Bernardo and Smith (2000) and Part III of Bandyopadhya and Forster (2011). For the information-theoretic
approach to model selection and statistical inference see Burnham and Anderson (2002).

14See Sprenger and Hartmann (2019).
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doesn’t preclude a general account for statistical inference; it just won’t be purely

formal.15

In actual Bayesian statistical modeling, judicious choices of suitable prior probability distri-

butions (to represent prior ignorance, for example) and Markov chain Monte Carlo methods

to compute posterior distributions, make Bayesian methods in statistics very subtle busi-

ness.16 Elaborate tools for model checking and diagnostics are also being advocated for.17

This means that care must be taken in going from the famous example, which serves to mo-

tivate Bayes’ theorem by exposing base-rate fallacies in diagnostic medical testing, and the

use of “Bayesian methods” in philosophy of science, where the distinction between Bayesian

statistics and Bayesian epistemology isn’t always made.18

Finally, by focusing on evaluating evidence from a statistical perspective I can distinguish

between the following levels:

(1) Substantive or fundamental theories

(2) Theoretical models of these substantive theories

(3) Statistical models of the theoretical models

I will return to this three-level distinction in section 1.4 and 1.7 below. For now, I summarize

the description and relationships between these levels. Sentences in a theory (substantive or

not) specify constraints. For example, in the theoretical model of a substantive theory such

15A point related to the one Mayo makes here can be made using Woodward’s distinction between data
and phenomena. Woodward argues that one needs to use statistical methods, at least in science, to analyze
data before one can infer that they have evidence for the existence or nonexistence of a phenomenon. See
Woodward (2011), Bogen and Woodward (1988), and especially Woodward (1989, 409). More recently,
Norton in Norton (2003) and Norton (2021) has also expressed his opposition to an entirely formal account
of inductive inference.

16See Efron and Hastie (2016, Ch. 13) for a good discussion.
17See Morey, Romeijn, and Rouder (2013).
18See Magnus and Callender (2004) for discussion of the base-rate fallacy in the context of the realism-

antirealism debate in philosophy of science.
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as kinematics, a constraint can be that there is linear relationship between velocity and time

for a body in uniform motion. A statistical modeler will use data to evaluate the validity of

the constraints using a statistical model that captures those theoretical constraints. Because

data collected from measurement processes typically involve errors or uncertainties, we need

to use statistical methods to handle these uncertainties using the statistical models before

drawing inferences about the theoretical models or substantive theories. Typically, at least

in science, it is statistical evidence at the level of statistical models that (indirectly) impacts

our beliefs about theoretical claims or hypotheses at level (1) and level (2).

In what follows, I make use of this three-level distinction in characterizing what made the

quality of Perrin’s evidence for the discontinuity of matter good (see section 1.4 and section

1.7 below). There is a hydrodynamical theoretical model given by the Langevin equation at

the level of theoretical models, and a statistical model for the granule displacements based

on Einstein’s diffusion model for Brownian motion at the level of statistical models. It is the

statistical evidence supporting the Gaussian distribution of granule displacements that I use

to argue that Perrin had obtained strong statistical evidence for the discontinuous structure

of matter, which is assumed in the derivation, and solution, of the hydrodynamical model of

Brownian motion. The discontinuous structure of matter in this hierarchy will be at the level

of substantive or fundamental theories. I discuss all these interrelated parts of my account

more fully in what follows, especially in section 1.7.

1.3 Perrin’s Evidence

1.3.1 Einstein’s Diffusion Model

In the previous section, I have said what I mean by statistical evidence and why that matters

for my account. Here I want to say what Perrin’s statistical evidence was. For this I need to
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say what the statistical model is and how it was supported by the data or observations that

Perrin made. In this subsection I discuss what the statistical model is, in the next subsection

I discuss what theoretical model it is a model of. In the next section I say why the evidence

for this statistical model provided strong evidence for the theoretical model it is a model of.

The statistical model in Perrin’s granule experiments on Brownian motion was suggested by

Einstein’s 1905 diffusion model for Brownian motion.19 Assuming the equipartition of energy

among the three degrees of freedom and Van’t Hoff’s Law that extends the ideal gas law to

dilute solutions; Einstein’s diffusion model made a prediction for how many granules would

be displaced from mean position (the origin) after a given time due to osmotic pressure. The

prediction was that the number ni of suspended granules between two fixed points a and b

on the the x-axis that would be displaced from the mean (the origin) after a given time t

would be given by the following formula.20

ni = n×
∫ b

a

1√
2Dt

√
2π

e−
1
2

(
x2

2Dt

)
dx

The integrand is the familiar Gaussian or normal probability distribution function. This

formula says that the predicted ni is given by multiplying the area under this function (the

definite integral between a and b), which is a probability, with the total number of suspended

granules n. In other words, Einstein’s diffusion model for Brownian motion predicted that

the statistical model of the displacements of the n suspended granules is Gaussian or normal

with a mean of 0 and a variance or mean squared displacement ξ2 = 2Dt.21 D is the diffusion

coefficient and t is the time interval. Using Einstein’s model, Perrin and his graduate student

M. Chaudesaigues made the calculation for t = 30 seconds of the predicted number ni of

19See Einstein (1905)’s “On the Movement of Small Particles Suspended in a Stationary Liquid Demanded
by the Molecular-Kinetic Theory of Heat” translated by A. D. Cowper and reprinted in Einstein (1956, 1 –
17).

20Although the displacements happen on the surface of the liquid, the equipartition of energy allows us
to take projections of this displacement on the x-axis and analyze the displacement there.

21The notation of ξ2 instead of σ2 for mean squared displacement follows Smith and Seth (2020).
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Projections (in µm) comprised between First Series Second Series
ni (found) ni(calculated) ni(found) ni(calculated)

0 and 1.7 38 48 48 44
1.7 and 3.4 44 43 38 40
3.4 and 5.1 33 40 36 35
5.1 and 6.8 33 30 29 28
6.8 and 8.5 35 23 16 21
8.5 and 10.2 11 16 15 15
10.2 and 11.9 14 11 8 10
11.9 and 13.6 6 6 7 5
13.6 and 15.3 5 4 4 4
15.3 and 17.0 2 2 4 2

Table 1.1: Calculated and observed ni in two series of experiments

gamboge particles that would be displaced within intervals that were multiples of 1.7µm.

They then recorded the number ni of particles observed within these intervals alongside their

predicted values in Table 1.1.22

The data above show a close match between predicted values by Einstein’s model and ob-

served values from Perrin’s experiments. They confirm a statistical model. Specifically, the

data confirmed that the statistical model for the displacements of n suspended granules on

the x-axis after time t is Gaussian with a mean of 0 and variance (or mean squared dis-

placement) of ξ2 = 2Dt. It is standard practice among statisticians (both Bayesian and

Frequentist) to write this statistical model using the following shorthand:

x(t) ∼ N(0, 2Dt)

22This table is taken from Perrin (1910, 64 – 65).
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Here x(t) denotes the displacement on the x-axis after time t. This shorthand is read as

“The displacements on the x-axis are normally distributed with a mean of 0 and variance of

2Dt.” I shall make use of this shorthand freely in what follows.

But what is the significance of this confirmation? Since Perrin’s experimental work was

geared towards confirming the molecular-kinetic theory, the significance of this confirmation

lies in what can be inferred to exist on the basis of this evidence. The questions now are: (1)

what can be inferred to exist? And (2) how can we understand the quality of the evidence

that justifies us in making those inferences? The answer to the first question involves showing

that there must be some force sustaining the motion of the particles in Brownian motion.

The answer to the second question involves making assumptions about the nature of this

force and checking whether the nature of this force, as assumed, is supported by Perrin’s

evidence for Einstein’s diffusion model. It will emerge in what follows that assumptions

regarding the nature of this force can be used to specify two competing hydrodynamical

models (models based on forces due to the surrounding liquid on which the Brownian particles

are suspended). One of these hydrodynamical models is compatible with the liquid behaving

like a continuum fluid at a scale immediately below that of Brownian particles, while the

other is incompatible with the liquid behaving like a continuum fluid at that scale. It is

this specification of competing models that I will use to support my argument that Perrin’s

evidence was good because it was highly specific and discriminating.

For these reasons, confirmation of the predicted statistical model for granule displacements

from Einstein’s diffusion model is important for my argument because the statistical evidence

Perrin obtained supporting the statistical model, can be construed as specific and discrimi-

nating evidence for a hydrodynamical model, which is formulated assuming the existence of

the force sustaining Brownian motion. To this end, in subsections 1.3.2 – 1.3.3, I will be

concerned with answering the first question by analyzing the reasoning involved in making
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the inference about what exists. In section 1.4 I will give my answer to the second question,

which is: “why was the evidence that warranted this inference good?”

1.3.2 There are highly localized and irregular pressure fluctua-

tions

In order to show that there must be some force sustaining the motion of the particles in

Brownian motion, I will refer to Einstein’s 1907 paper written in response to Svedberg’s

1906 publication of the results he had obtained concerning Brownian motion.23 This paper

is important for my argument because one of the arguments in it is that there must exist

random impulsive forces acting on suspended granules if hydrodynamics is to be reconciled

with the kinetic theory of heat.24 From a hydrodynamical point of view — the appropriate

level of description of Brownian motion — the best candidate for these impulsive forces

are highly localized and irregular pressure fluctuations.25 Therefore, this paper contains the

answer to our first question, which is: what can be inferred to exist? In this subsection I

summarize the reasoning involved in Einstein’s argument.

23The Einstein paper is reprinted in Einstein (1956, 63 – 67) as “Theoretical Observations on the Brownian
Motion.”

24Compare with Munson, Young, Okiishi, and Huebsch (2009, 97) for the modern hydrodynamical mod-
eling of pressure.

25Einstein was indeed using background information in order to arrive at an informative prior specification
of the model space of Brownian motion. Some of this background information can be traced back to the work
of the French physicist Léon Gouy. In 1889 and 1895, Gouy had performed careful experiments and published
his results of these experiments thereby considerably narrowing down the space of theoretical explanations
for Brownian motion. Nye writes, “Gouy excluded all exterior causes except the internal agitation of a liquid,
and stated that [Brownian movement] is a direct and visible proof of the modern hypothesis of the nature of
heat.” See Nye (1972, 27 – 29). As will emerge below, the model space for Brownian motion can be narrowed
down even further into a mutually exclusive and exhaustive set of two models: a continuity of matter model
vs. a discontinuity of matter model.
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From the kinetic theory of heat, the mean velocity v̄ of a suspended particle of mass m can

be determined using

m
v2

2
=

3

2
kBT (1.1)

kB = R
NA

is Boltzmann’s constant, R is the ideal gas constant, NA is Avogadro’s Number,

and T is the absolute thermodynamic temperature. Equation (1.1) expresses the familiar

idea that temperature is proportional to average kinetic energy. For particles in colloidal

platinum solutions such as the ones Svedberg had prepared v̄ = 8.6cms−1.26

Now suppose that the only force acting on the suspended particle undergoing Brownian

motion is a viscous drag force, i.e., a force due to liquid friction that decelerates the particle.

Newton’s second law of motion for this particle of mass m is:

m
dv

dt
= −ζv (1.2)

ζ = 6πrη is a damping term (i.e., a term that determines the rate of deceleration) that

depends on η the viscosity of the liquid and r the radius of the spherical particle. This

equation ignores the inertia of the particle and says that the dynamics of the suspended

particle is only governed by Stokes’ Law.27

If (1.2) is the hydrodynamical law governing Brownian motion, one can show that for a

colloidal platinum particle suspended in water, it would take 3.3 × 10−7 seconds for it to

lose one-tenth of its velocity. This means that at the macroscopic time-scale of a laboratory

26The assumptions in Einstein’s calculations here are: m = 2.5×10−15g, kB = 1.38×10−23m2kgs−2K−1

and T = 292K.
27See Munson, Young, Okiishi, and Huebsch (2009, 493 – 500) for a derivation of Stokes’ Law and the

validity of the assumption that inertia can be ignored.
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measurement (about 30 seconds), the particle would have lost almost all of its velocity

through hydrodynamic friction or viscous drag.

But since Brownian motion was known to be incessant, equation (1.2) is not the true dy-

namical law governing the motion of a particle undergoing Brownian motion. This means

that in order to maintain the average v demanded by the kinetic theory of heat (8.6cms−1),

the suspended particle must experience rapid impulses from somewhere. Here’s how Einstein

(1956, 66) puts it:

We have to modify this conception [equation (1.2) above], we must assume that

the particle gets new impulses to movement during this time by some process

that is the inverse of viscosity, so that it retains a velocity which on an average

is equal to
√

v2.

This modification was implemented by Langevin in 1908 leading to the celebrated Langevin

equation.28

m
dv

dt
= −ζv + F (t) (1.3)

In arguing that F (t) exists, one cannot beg the question by assuming a priori that it is due

to molecular impacts.29 Notice as well that Einstein only says that we must assume “new

impulses by some process.” Compare this with how Smith and Seth (2020, 236) describe the

situation:

Pressure-gradients must be present in the liquid even though it is in thermody-

namic equilibrium. The local pressure-gradients must be associated with and
28See the translation of the Langevin paper in Langevin (1997).
29See Smith and Seth (2020, 237ff) for some of the arguments why one must not assume this. Compare

with Stanford (2009, 257) who discusses Roush (2005)’s modest atomic hypothesis.
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hence arising in conjunction with highly localized, extraordinarily rapid pressure

fluctuations occurring continually throughout the liquid.

Therefore, the most one can say, from a hydrodynamical point of view, is that the source of

F (t) are pressure impulses or fluctuations on the suspended granules from the ambient fluid.

These fluctuations happen locally, on extremely short time-scales, and haphazardly.

1.3.3 Evidence for discontinuity

In the previous subsection, I have answered the first question, namely: what can be inferred

to exist? I showed that F (t) must be included in an accurate hydrodynamical model for

Brownian motion. I now want to give an answer to the second question, namely: why was

the quality of Perrin’s evidence good? This involves showing that the confirmation of the

Gaussian distribution variance ξ2 = 2Dt of the statistical model provides strong statistical

evidence for a hydrodynamical model of Brownian motion that includes F (t). But such a

hydrodynamical model implies the discontinuity of matter at a level immediately below that

of the suspended granules. Therefore, the main goal of this subsection is to show how Perrin’s

statistical evidence confirming the statistical model is also evidence for the discontinuity of

matter.30 I will use the implied discontinuity of matter by a hydrodynamical model that

includes F (t) in my argument that Perrin’s evidence was specific and discriminating in

section 1.4.

30See Stein (2021) where my framing of the Perrin case is very close to Poincaré’s understanding of
the atomic debates. The issue, as Poincaré saw it, was to decide between continuous and discontinuous
approaches to chemical physics.

17



First, let me rewrite equation (1.3) above explicitly in terms of x(t), i.e., displacement in the

x-direction.

m
d2x

dt2
= −ζ

dx

dt
+ F (t) (1.4)

Langevin solved this equation for the mean squared displacement x(t)2 = ξ2 = 2Dt in

an “infinitely more simple” way than Einstein. The solution of this equation obtained by

Langevin himself (and more rigorously by others after him) was obtained by making two

kinds of assumptions. One kind was based on the kinetic theory of heat, namely, that

at thermal equilibrium the distribution of the velocities of suspended granules will be the

Maxwell-Boltzmann distribution. This was a simplifying assumption since it meant that

one could use mv2

2
= 1

2
kBT instead of individual velocities for each particle. The other

assumptions were statistical assumptions about F (t). In fact, in solving the eponymous

equation by making the following statistical assumptions about F (t), Langevin was the

first to employ methods which were later used for solving what are now called stochastic

differential equations.31

(a) F (t) = 0

Since F (t) is a fluctuating force on the surface of a fluid at rest in thermal equilibrium,

assumption (a) says that F (t) must have zero mean even though it can vary widely and

wildly across the surface of the fluid on very short timescales.

(b) ⟨F (t), F (t′)⟩ = 2ζkBTδ(t
′ − t)

31For a rigorous discussion of the mathematics and methods involved in solving the Langevin equation,
see Mazo (2002) and Coffey, Kalmykov, and Waldron (2004).
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⟨·, ·⟩ is the autocorrelation function in Mazo (2002)’s notation. By making it proportional

to the Dirac delta function (δ(t′ − t)), assumption (b) says that the fluctuating forces are

sharp, rapid and uncorrelated at different but very short timescales.32 Some authors take

condition (a) and (b) together as implying that F (t) is a Gaussian white noise process.33

(c) ⟨F (t), x(t)⟩ = 0

Finally, assumption (c) says that the fluctuating impulsive pressure forces are independent

of position.

The key point here is that by assuming the kinetic theory of heat and using these three

statistical assumptions about F (t), Langevin solved equation (1.4) for the mean squared dis-

placement x(t)2 obtaining x(t)2 = ξ2 = 2Dt. Now recall that Perrin and M. Chaudesaigues

used Einstein’s diffusion model to predict ni. The very close match between observed ni and

predicted ni that Perrin tabulated was evidence that the distribution of ni on the x-axis is

Gaussian with mean 0 and variance ξ2 = 2Dt. Since the variance of this distribution can be

obtained from the Langevin dynamical equation, evidence for Einstein’s model is evidence

for a hydrodynamical model of Brownian motion in which F (t) has the properties (a) – (c).34

But such a hydrodynamical model implies that the substructure of the ambient fluid at a

scale immediately below that of the granules is discontinuous.

In order to see this discontinuity, recall that according to continuum fluid mechanics, the

pressure F (t) depends on, or is related to, position x(t). This follows because the Navier-

Stokes Equations together with the Continuity Equation are a set of four equations in four

unknowns: three equations involving flow velocity components in the three spatial directions

32See Arfken and Weber (2001, 84 – 88) for discussion of the Dirac delta function.
33See Gardiner (1983, 69) and compare with Mazo (2002, 59 – 63) and Coffey, Kalmykov, and Waldron

(2004, 12).
34Actually only properties (b) and (c) are required to infer the discontinuous structure of matter at a

scale immediately below those of the granules.
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(Navier-Stokes) and one equation involving pressure gradients (the Continuity Equation).35

This means the system of equations is determined. In particular, given x(t) in a fluid and

the flow velocities at x(t) from Navier-Stokes, one can solve for F (t) although a solution

cannot always be obtained by analytical means. The existence of this solution assumes

that F (t) and x(t) are related in the way specified by the system of equations. Since this

system of equations characterizes the behavior of continuous fluids, the assumption that

F (t) is uncorrelated with x(t) (assumption (c) above) is incompatible with the substructure

of the ambient fluid surrounding a particle undergoing Brownian motion having a continuous

description. Therefore, this substructure, at a scale immediately below the granules, must

be discontinuous.36

Further, from the Continuity Equation, we know that pressure at one point in a fluid is

transmitted to adjacent points continuously according to the pressure gradients within that

fluid. This means that given some pressure gradient, the pressure F (t) at a point x(t) and

time t determines the pressure F (t′) at a different but adjacent point x′(t′) at time t′. But

the assumption that F (t) and F (t′) are uncorrelated (assumption (b) above) at short-time

scales is incompatible with the substructure of the ambient fluid being continuous at a scale

below that of the granules.37 Thus, obtaining data verifying ξ2 = 2Dt would be very unlikely

assuming continuity of the ambient fluid at that scale. The fluid must be discontinuous at

that scale.

Before moving on to the next section, let me be clear in order to avoid potential misun-

derstanding. It is known that hydrodynamics assuming continuum fluid mechanics depends

on the type of fluid and the scale of the physical processes being modeled. Hydrodynamics

may be formulated assuming a continuous fluid description (where Navier-Stokes and the

Continuity Equation apply), if the associated molecular mean free path λ is small compared

35See Munson, Young, Okiishi, and Huebsch (2009, 42, 271).
36Compare with Smith and Seth (2020, 237)
37Compare with Smith and Seth (2020, 238).
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to a typical length scale of the problem L. The mean free path is the mean distance traveled

by a molecule of the fluid between collisions with other molecules. A quantitative measure

for identifying the scales at which continuity applies is provided by the dimensionless ratio

Kn = λ
L

known as Knudsen number. So in saying that the assumption of continuity of the

ambient fluid at that scale is incompatible with the data verifying ξ2 = 2Dt, what I mean

is that scales or levels of description matter. At the scale at which Brownian Motion is

happening the assumption of continuity is no longer valid because Kn approaches 1, which

is considered the upper limit of the continuum hypothesis.38 The non-zero F (t) is intro-

duced at the microscale where Brownian motion is happening by the Langevin equation and

the statistical assumptions for F (t) only apply at this scale. But at this scale or level of

description, because the pressure fluctuations F (t) are uncorrelated with position x(t) and

at different times, a shift of perspective to incorporate discontinuity is required to explain

the data from the experiments.

A concern one could still have here is that continuous models could allow for forms of

autocorrelation and spatial distribution of F (t) (assumption (b) and (c) above) that are

very close to those assumed in solving the Langevin equation. If so, these models would

provide a similar fit for the data as Einstein’s diffusion model for Brownian motion did.

My response to this concern is that it will depend on what the continuous models actually

propose. Coming up with this proposal is not an easy task. For at the scale where Kn

approaches 1, the continuity assumption is no longer valid. At best, what we can do here is

speculate about the possibilities. For historical reasons, we have no account of an explicit

alternative statistical model that is formulated on the assumption of continuity at the scale

of Brownian motion. If we had one, then it is plausible that the evidence would bear them

out equally well — this was one reason for Poincaré’s conventionalism about the atomic

hypothesis, after all.39 But we do not know what the model of Brownian motion assuming

38See section 1.2.2 in Katopodes (2018) and compare with section 9.9.2 in Rapp (2022).
39See Stein (2021).
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continuity of the ambient fluid at that scale would actually look like. What we know for sure

is that it cannot have D, the diffusion coefficient, in it because D is a function of Avogadro’s

number.

1.4 Why was Perrin’s evidence good?

The previous section was helpful in specifying the hydrodynamical model space, which I will

use to characterize the quality of Perrin’s evidence using Bayes Factors. Before offering this

characterization, let me first give an overview of what Bayes Factors are.

On a Bayesian statistical approach, the first thing to note is that we are justified (by the

theorems of de Finnetti and later Diaconis and Freedman (1980) on exchangeability) to

speak of probability distributions on parameters — effectively treating parameters as random

variables. This turns out to have a huge payoff because it naturally leads to hierarchical

models, where we use higher level probability models of the parameters, which appear on

lower level sampling models of the data, to capture dependencies in our data, especially

where such dependencies seem reasonable enough to capture. Using a hierarchical model,

a Bayesian statistician will not only use the sampling model for the data f(Xi|θ) for i =

1, 2, . . . , n; but also a prior model π(θ) for all the parameters θ in the sampling model. Such

a statistician may even have a prior on the models p(Mj) for j = 1, 2, . . . , k themselves,

possibly continuing this hierarchy as high up as they please using hyperparameters. We shall

see in section 1.5 below how a Bayesian hierarchical model can be used to analyse Salmon

(1984)’s argument.

For now, in order to illustrate the fundamental ideas of a Bayesian statistical model and for

the sake of my subsequent argument, suppose that we have observed data X = (X1, X2, . . . , Xn).

Suppose also that we are just comparing two theoretical models M1 and M2. For each model
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M1 and M2 there is a corresponding Bayesian statistical model, which has two parts. The

first part, which is common to both Frequentist and Bayesian approachers, is a sampling

model for the data. We write the sampling models as:

Xi |θ1,M1 ∼ f(Xi |θ1,M1) for i = 1, 2, . . . , n

Xi |θ2,M2 ∼ f(Xi |θ2,M2) for i = 1, 2, . . . , n

Here θ1 and θ2 are a set of parameters in the statistical models associated with model M1 and

model M2. The second part of a Bayesian statistical model, which is its distinguishing feature

from a Frequentist statistical model, is a prior model on the parameters in the respective

sampling models. We write the prior models as:

θ1 |M1 ∼ π(θ1)

θ2 |M2 ∼ π(θ2)

Now suppose that p(M1) and p(M2) are the prior probabilities on the theoretical models,

then Bayesian statistical inference uses Bayes’ theorem to find the posterior probabilities on

the theoretical models as:

p(M1 |θ1,X) =
L(X |θ1,M1)π(θ1 |M1)p(M1)∑2
i=1 L(X |θi,Mi)π(θi |Mi)p(Mi)

p(M2 |θ2,X) =
L(X |θ2,M2)π(θ2 |M2)p(M2)∑2
i=1 L(X |θi,Mi)π(θi |Mi)p(Mi)
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The terms L(X |θ1,M1) and L(X |θ2,M2) that appear in the expression for finding the

posterior probabilities are the joint distributions of the data X under the respective models.

These terms are called likelihood functions by statisticians.40 Marginal likelihood functions

involve integrating out the parameters θ1 and θ2 in their respective parameter spaces Θ1

and Θ2. That is:

L(X |M1) =

∫
Θ1

L(X |θ1,M1)π(θ1 |M1)dθ1

L(X |M2) =

∫
Θ2

L(X |θ2,M2)π(θ2 |M2)dθ2

So we may write the posterior probabilities of M1 and M2 as:

p(M1 |X) =
L(X |M1)p(M1)∑2
i=1 L(X |Mi)p(Mi)

(1.5)

p(M2 |X) =
L(X |M2)p(M2)∑2
i=1 L(X |Mi)p(Mi)

(1.6)

when we are interested in the posterior probabilities just given the data X.

Dividing equation (1.5) by equation (1.6) we get:

p(M1 |X)

p(M2 |X)
=

L(X |M1)p(M1)

L(X |M2)p(M2)
(1.7)

40Note that for a Frequentist, the likelihood functions are not conditional distributions; rather the likeli-
hood functions are joint distributions of the data for a fixed value of the parameters θ. For this reason, a
Frequentist will write the likelihood function as L(X;θ,M) to distinguish her approach from the Bayesian
approach.
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Rearranging the terms in equation (1.7) suitably we get:

p(M1 |X)
p(M1)

p(M2 |X)
p(M2)

=
L(X|M1)

L(X|M2)
(1.8)

The right hand side of equation (1.8) can be used to quantify the relative predictive accuracy

of our models.41 This quotient is the Bayes Factor. The left hand side of equation (1.8)

quantifies the ratio with which our credences for each model updated given some data X.

The equality between the left and right hand side of equation (1.8) connects the relative

strength of evidence — how much we are led to update our credences for the competing

models given some data — with Bayes Factor, which is the relative predictive accuracy of

our models.

A more intuitive way of thinking about the Bayes Factor is this: Bayes Factor quantifies the

relative strength of our evidence for a given model in terms of the specificity and discrimi-

nating character of that evidence. This way of thinking is valid because there are two ways

that the Bayes Factor can be high: either the numerator is high relative to the denominator

or the denominator is low relative to the numerator. On the one hand, we can say that a

relatively high value for the numerator quantifies the specificity of our evidence given M1.

A relatively high value is in effect saying that this is the sort of evidence that is very likely

given M1 when comparing it to M2. The evidence is more specific to M1 than M2. On

the other hand, we can say that a relatively low value for the denominator quantifies how

discriminating our evidence is. A relatively low value indicates that this sort of evidence or

data is very unlikely given M2 when comparing it to M1. The evidence discriminates against,

or rules out, M2. In sum, we can say that since the strength of our evidence is reflected by

how much we are led to update our relative credences in light of it (the left hand side), the

41See Rouder and Morey (2019).
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evidence in favor of some model is strong or good if it is specific and discriminating (the

right hand side).

Here’s how I apply Bayes Factor to evaluate the quality of Perrin’s statistical evidence for the

Gaussian distribution of displacements. Let M1 be a hydrodynamical model for Brownian

motion which includes F (t) and in which the ambient fluid is discontinuous. The alternative

M2 is a hydrodynamical model for Brownian motion which does not include F (t) with its

assumed properties, i.e., the substructure of the ambient fluid even at a level immediately

below that of the granules is a continuum. M1 leads to the statistical model discussed in

section 1.3.1. With this model specification, let the marginal likelihoods under M1 and M2

be L(X |M1) and L(X |M2), respectively.

On the one hand, L(X |M1) is very high relative to L(X |M2) because Perrin’s evidence con-

firming that the statistical model of the Gaussian distribution of displacements has variance

ξ2 = 2Dt was very specific under the assumption that matter is discontinuous at the scale of

the particles undergoing Brownian motion, i.e., under M1. By “specific” here I am referring

to the close match between predicted values by the model and actually observed values in the

two series of experiments (see Table 1.1). The specificity also arises because the Langevin

dynamical equation leads to the variance 2Dt of the statistical model of displacements. Since

D is related to Avogadro’s number NA by

D =
RT

NA6πrη

the specificity of Perrin’s evidence for the discontinuity of matter comes from here as well

since we can use the estimated D from the distribution of displacements to estimate NA and

compare it to its theoretical value (see section 1.6 below).

On the other hand, because the Langevin dynamical equation in which F (t) has the proper-

ties (a) – (c) is incompatible with the ambient fluid being a continuum, L(X |M2) is very low
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relative to L(X |M1). It is also relatively low because one of the parameters in the associated

statistical model, D, is a function of NA — a key quantity in the molecular-kinetic theory

of gases and heat. But since we are assuming that M2 is formulated within an alternative

theoretical framework to the molecular-kinetic theory of gases and heat, M2 cannot include a

function of NA as a parameter. And any theoretical model that did not include a function of

NA as a parameter would be incompatible with the statistical data on displacements, mean-

ing the likelihood of that data given that model would be very low relative to an alternative

that includes NA.

Let me say a bit more here. My claim is that there is no other way to get the predicted mean

square displacements unless one uses a hydrodynamical model with an F (t) term satisfying

conditions (a) – (c). Whether this term is needed to make sense of the data is the entire

question at issue, and it is by showing that this is needed that Perrin establishes the relevant

facts, summarized by “atoms exist” or the determination of NA. In other words, I am

claiming that the close match between theoretical predictions of NA and actual estimates of

NA from statistical experiments would be very unlikely on theoretical models for Brownian

motion that either don’t include an F (t) term or explicitly make use of a function of NA in

their derivations. An example of a theoretical model in this category would be Ostwald’s

energetics.42

At the same time, I believe that a continuum theorist (working in, say, continuum fluid

dynamics) can still accept the statistical assumptions on F (t) because she recognizes that

Knudsen number is close to one at the scale of Brownian motion. So nothing I have said

impugns continuum fluid dynamics. The pressure gradients at appropriate levels of descrip-

tions required by continuum fluid dynamics are in fact smooth (or at least continuous) and

the hydrodynamical phenomena that can be modeled faithfully by the Navier-Stokes and the

Continuity Equation at macroscales can still be modeled as such. So it is true that one both

42Smith and Seth (2020, 333 – 341)
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has a continuum description of fluid dynamics at the macroscale, but also hydrodynamical

models at the scale of Perrin’s experiments on Brownian motion which, in fact, show that

matter is discontinuous.

Taking together these two points about the relatively high and relatively low values of

L(X |M1) and L(X |M2) respectively, it follows that L(X |M1)
L(X |M2)

≫ 1, i.e., the resulting Bayes

Factor comparing M1 to M2 is much greater than 1. But this large Bayes Factor means that

the quality of Perrin’s evidence for the discontinuity of matter at a scale immediately below

that of the suspended granules was good because it was highly specific and discriminating.

Before moving on to the next section, let me address an apparent tension that may occur

to a reader who has followed my account so far. In the beginning I claimed that what is

novel in my account is that I approach the evaluation of Perrin’s evidence from a statistical

perspective using Bayes Factors. But the details of the Bayes factor “calculation” I have given

here don’t involve any actual computation of statistics. It seems that all that matters to my

account is the qualitative, even logical, compatibility of the data with different hypotheses.

While I acknowledge that there are priors over the diffusion coefficient that get integrated

out in getting the marginal likelihood functions L(X |M1) and L(X |M2), I have not said

what these priors would be for a continuous model. Could the value of the Bayes Factor

change so dramatically, depending on what the priors are, that the continuous model is

equally supported by the data?

My response to this apparent tension is to return to the three-level distinction I introduced

in section 1.2:

(1) Substantive or fundamental theories

(2) Theoretical models of these substantive theories

(3) Statistical models of the theoretical models
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The continuous structure of matter vs. discontinuous structure of matter is at the level of

substantive or fundamental theories (Level (1)). The hydrodynamical model given by the

Langevin equation is a theoretical model at Level (2) of the substantive theory that matter is

discontinuous. By checking the predictions made by the theoretical model using a statistical

model at Level (3), we can tell whether the substantive theory is supported by the data.

Now the reasoning using Bayes Factors is for M1 and M2 at Level (2). Without an explicit

theoretical model (at Level (2)) of the substantive theory that matter is continuous; no

statistical model, which would include prior specifications, can be formulated to check this

statistical model’s prediction using data. It is for this reason that there are no actual

statistics that can be computed using Bayes Factors from this historical case. Although no

computation can be done, I have reconstructed what the reasoning during this episode could

have been like from a Bayesian perspective. In my discussion above I have said what the

Bayes Factor would be for dichotomous alternatives M1 and M2 given the actual data X

in Table 1.1. What is important for my paper is that data in this table is statistical. It

shows a close match between predicted values and observed values for the statistical model

of M1. I have argued that the data from this table is primarily statistical evidence for M1

against an alternative M2. So the tension is apparent and it is not quite true that I have

abandoned the initial framing of my paper. Whether this statistical evidence translates into

evidence simpliciter for the discontinuity of matter at the scale of Brownian motion depends

on whether one believes that M1 is an adequate theoretical model of that substantive theory.

1.5 Pros and Cons of using Bayes Factors

Although the Bayes Factor looks like a likelihood ratio statistic commonly found in Frequen-

tist hypothesis testing, it is important to emphasize that Bayes Factor is not simply a likeli-

hood ratio statistic. I mention this partly to justify my choice of analyzing Perrin’s evidence
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from a Bayesian perspective as opposed to a non-Bayesian or Frequentist perspective. The

first distinguishing feature is that we got Bayes Factor from the ratio of marginal likelihoods

— not likelihoods — by integrating out the parameters. This technique of marginalization

is not possible within a Frequentist framework where prior models on parameters, which are

required in order for this to work, are not considered. This technique turns out to offer the

Bayes Factor more flexibility to compare all sorts of models with each other than is possi-

ble within the Frequentist framework. There are thus several advantages to using Bayesian

methods to quantify the relative evidence we have for any theoretical models. The first

advantage is that the probability distributions in the sampling models given the theoretical

models do not necessarily have to belong to the same parametric family as is typically the

case in the case of likelihood ratio based statistics in the Frequentist framework. Secondly,

the vector of parameters are not necessarily nested, again, as is typically the case in other

likelihood ratio based test statistics in the Frequentist framework.

These clear advantages have to be tempered with some of the well known disadvantages of

using Bayes Factors for model comparison or quantifying the strength of evidence. First,

Bayes Factors clearly depend on the prior model on parameters. We can see this by looking

at how we calculated the marginal likelihoods for each model Mi for i = 1, 2

L(X |Mi) =

∫
Θi

L(X |θi,Mi)π(θi|Mi)dθi

Now the problem for Bayes Factors has to do with using uninformative priors on the param-

eters. An uninformative prior is a prior that is chosen in such a way that its influence on

the posterior distribution is as small as possible. With an uninformative prior, statisticians

want to eliminate as much bias as they can from their analysis. A typical uninformative

prior on a parameter such as the mean µ of a continuous random variable X is a uniform

distribution π(µ) over the entire real line R, also known as a flat prior. The problem is that
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B12 =
L(X|M1)
L(X|M2)

2loge(B12) Evidence against M2

1 to 3 0 to 2 Not worth more than a bare mention

3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong

> 150 > 10 Very strong

Table 1.2: Guidelines for interpreting the magnitude of Bayes Factor

the uninformative prior in this case turns out to be an improper prior. The sense in which

it is improper is that it is not a probability distribution function since it is not normalized,

i.e.,
∫
R π(µ)dµ = ∞. So the marginal likelihood functions are undefined in this case and so

is the Bayes Factor. For this reason, Bayes Factors are highly sensitive to the prior model

on parameters.

Another problem with Bayes Factors is that Bayes Factors are not calibrated. What this

means, among other things, is that there is no way to tell what it means to say that a Bayes

Factor is “large” in the same principled way that one can say a given likelihood ratio based

statistic in Frequentist settings is large, where one considers the sampling distribution of the

statistic. To be sure, there are guidelines based a scale given by Jeffreys (1961) (see Table

1.2) for how to intepret the magnitude of a Bayes Factor but this not the same thing as

calibrating Bayes Factor.43 In order to calibrate Bayes Factors one would need, not only

to address the question of “largeness” but also to specify how often a given value of Bayes

Factor is expected to occur with a certain choice of a statistical model.44

43See Kass and Raftery (1995).
44The calibration of Bayes Factors is related to the problem raised by Mayo (2018) and others (see the

discussion following O’Hagan (1995)’s paper) that Bayes Factor can be used to find evidence for a “wrong”
model. See Mwakima (2024c).
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1.6 Some Lessons

In discussing the pros and cons of using Bayes Factors, I believe now is a good time to return

to something I mentioned in the introduction, namely, that Bayes Factors can be used to

draw out the force of Salmon (1984, 224)’s “coincidence argument” to a common cause —

atoms and molecules. The best way (I can think of) to understand Salmon’s argument from

a Bayesian statistical perspective is to use a hierarchical Bayesian model for meta-analysis.

Here is why think a Bayesian hierarchical model for meta-analysis is appropriate here. The

first reason involves what the goal of a meta-analysis is. As a method for summarizing and

integrating the findings of research studies in a particular area, meta-analysis aims to provide

a combined analysis of related studies in order to indicate the overall strength of the evidence

for, say, a beneficial effect of a treatment under study, or the value of important parameters

found in theoretical models. Essentially, meta-analysis involves pooling information across

multiple studies each designed to address the same scientific question with the goal often

being to estimate a single effect measure common to all studies.

This brings me to the second reason why the Bayesian hierarchical model is appropriate

here. What is crucial for Salmon’s argument is that the different experiments (5 in total)

all lead to converging values of Avogadro’s Number NA. Referring to the four papers that

Perrin published in 1908 in the Comptes rendus of the Académie des Sciences, Salmon (1984,

216) writes:

It is of the greatest importance to our story to note that these papers included

not only the precise value of Avogadro’s number ascertained on the basis of his

study of Brownian movement, but also a comparison of that value with the results

of several other determinations based upon entirely different methods, including

Rutherford’s study of radioactivity and Planck’s work on blackbody radiation.
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He writes, later, that:

If there were no such micro-entities as atoms, molecules, and ions, then these dif-

ferent experiments designed to ascertain Avogadro’s number would be genuinely

independent experiments, and the striking numerical agreement in their results

would constitute an utterly astonishing coincidence...We can say, very schemati-

cally, that the coincidence to be explained is the “remarkable agreement” among

the values of NA that result from independent determinations.

Given Salmon’s own emphasis on the relatedness (they all lead to approximately the same

value of NA) and independence of the experiments, it makes sense to use a Bayesian meta-

analysis using hierarchical models. The point I wish to make for understanding Salmon’s

argument (bracketing the issue of a common cause) is that a Bayesian hierarchical model for

meta-analysis has a distinct advantage when it comes to explaining this agreement between

the different experiments whose goal is to estimate NA; and when it comes to saying why the

body of evidence constitutes strong evidence for theoretical models which include specific

predictions for NA.

Let us consider the five theoretical models that Salmon considers (See Table 1.3).45 Let Xi

for i = 1, . . . , 5 denote the observed values of Avogadro’s number from each study. We can

then write the sampling model as:

Xi|θi
ind∼ f(Xi |θi) for i = 1, 2, . . . , 5

45The figures in the table are taken from Perrin (1910, 90). Compare with Smith and Seth (2020, 260),
and Smith and Seth (2020, 369, n.8) for the values of NA from the experiments on X-ray diffraction by the
Braggs.
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Source of Theoretical Model NA = g(θ) Estimate for NA(×1022)

Brownian Motion NA = RT
D6πrη

65 - 70.5

Alpha Decay NA = F
2e0

62 - 71

X-ray diffraction NA = 8M
ρa3

61.5

Blackbody Radiation NA = R
kB

61 - 62

Electrochemistry NA = QM
me0ν

60 - 90

Table 1.3: The Five Ways of Determining NA

This sampling model says that within each study i = 1, 2, . . . , 5 the observed values of

Avogadro’s number Xi are jointly but independently distributed according to a distribution

f(Xi |θi) that depends on θi. For example, in the Brownian motion displacement experi-

ments, θ = D, the diffusion coefficient, which for given t can be estimated from the variance

ξ2 = 2Dt of the normal distribution. In the blackbody radiation experiments the key pa-

rameter to be estimated is θ = kB.

Another way of thinking about what the sampling model is saying is this. For each theoretical

model, NAi
is the key theoretical parameter whose value is to be determined using the Xi.

NAi
in turn is some function g(θi) of the parameters θi for i = 1, . . . , 5, which appear in the

statistical models associated with each theoretical model. Therefore, for each experiment the

joint distribution of the observed Avogadro number Xi is f(Xi|NAi
) where NAi

is the “true

value” for Avogadro’s number in experiment i. This way of thinking is valid since g−1(NAi
)

gives θi. See Table 1.3.

I do a meta-analysis using a Bayesian hierarchical model by placing a prior on NAi
conditional

on a theory that unifies all the studies. One candidate theory is the theory that matter is

discontinuous. Call this theory M1. According to this theory, the NAi
are from a common

distribution with unknown parameter NA, which is the true value for Avogadro’s number that
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we want to estimate by pooling from all the five experiments.46 To complete the hierarchical

Bayesian model I write:

NAi

iid∼ h(NA) for i = 1, 2, . . . , 5

NA |M1 ∼ η(NA |M1)

Now suppose that p(M1) represents our epistemic probability that matter is discontinuous.

In meta-analysis of the experimental estimates for NA, we are interested in the posterior

distribution:

p(NA |θi, Xi,M1) for i = 1, 2, . . . , 5

By Bayes’ theorem the posterior distribution is proportional to the joint distribution of NA,

Xi, θi and M1 for i = 1, . . . , 5. By marginalizing out θi from this joint distrubution we can

write

p(NA |X,M1) ∝ L(X |NA,M1)η(NA |M1)p(M1)

where L(X |NA,M1) is now the marginal likelihood of the data.

46As of 2018 the Committee on Data for Science and Technology (CODATA) places the value of Avogadro’s
Number at 60.2214076× 1022 mol−1.
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I am now in a position to explain how my Bayesian meta-analysis explains why Salmon would

find this convergence of values of NA to be a very compelling argument for a common cause

and how that impacts our epistemic beliefs. For fixed η(NA |M1) and p(M1), the posterior

distribution p(NA |X,M1) depends on the data through L(X |NA,M1). If the true NA is

60× 1022, then the posterior distribution will have more mass around values of NA that are

around that number since all the Xi’s are in fact close to 60× 1022.

Now suppose that we are interested in comparing the estimate of NA conditional on M1 to

the estimate of NA conditional on an alternative theory M2. M2 here can be a different

unifying theory, which we want to use to carry out the same meta-analysis we have done

using M1. To achieve a jointly exhaustive set of theories, let M2 be the theory that says

matter is continuous at the microscale. Suppose we also assign the same prior probabilities

η(NA |M2) and p(M2) to M2 as we did for M1. In this case, it is precisely the Bayes Factor
L(X |NA,M1)
L(X |NA,M2)

that will be used to compare the two models. On the one hand, the theoretical

models that M1 unifies in the meta-analysis all have very close and specific values for Xi

conditional on NA being around 60× 1022. In my account, I have shown that this specificity

comes in because the parameters in the statistical models θi are different functions of NA.

So using these parameters in the statistical models unified by M1, we are more likely to

observe values of Xi in Table 1.3 than we would if we used a different theory like M2. A

quantitative and precise way of saying this is that Bayes Factor L(X |NA,M1)
L(X |NA,M2)

in favor of M1

would high. This is the explanation for why Salmon would find this convergence of values

of NA to be a very compelling argument for a common cause. It is important to emphasize,

however, that I have offered this explanation without appealing to any causal explanation.

Because my explanation has focused entirely on considering the relevant statistical models,

I believe that I can avoid the problem of unconceived alternatives which face accounts of

causal explanations such as Salmon’s. I believe that this constitutes a significant virtue of

my account. I return to this point below.
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I can now also say how I avoid the objection of ad hoc specification of priors. I do this by

distinguishing the question I am asking from that which Achinstein and Psillos are asking.

My question is: what made the quality of Perrin’s statistical evidence good? Achinstein

and Psillos’s question is: how were prominent scientists convinced of the truth of the atomic

hypothesis in light of Perrin’s evidence? Both Achinstein and Psillos answer their question

in terms of how prior credences were updated in light of the data. Let M1 be the atomic

hypothesis and M2 be an alternative to it. They need p(M1) to be 0.5 or “not too low”

in order that p(M1|X) > p(M2|X) after updating. These are the prior specifications that

Smith and Seth find ad hoc. Because I am asking a different question, the answer to my

question depends entirely on Bayes Factor L(X |M1)
L(X |M2)

. Thus, by asking a different question and

characterizing the strength of evidence in terms of relative predictive accuracy using Bayes

Factor, I can avoid making ad hoc specification of priors.

1.7 Some remaining questions

There are several questions one may ask at this point. First, one may ask: how faithful is my

specification of the model space to this historical episode? In performing his experiments,

Perrin was certainly focused on confirming the molecular-kinetic theory or the existence of

atoms and molecules. In fact, philosophers who discuss Perrin are also often concerned with

the implications of Perrin’s work for the existence question. So why am I not presenting the

models involved in this historical episode in terms of those that assert the existence of atoms

and molecules and those that don’t?

Here are my reasons. Perrin cannot possibly have provided strong evidence for atoms and

molecules because the actual details of atomic structure require quantum mechanics, which

was unavailable to Perrin in 1908 – 1913. This means that if Perrin was providing definitive

evidence for anything, it is for something that is compatible with both classical physics
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(including the kinetic theory) and quantum physics. My specification of the model space

has this compatibility.

Essentially, by emphasizing the need to focus on statistical evidence, I am capable of making

fine distinctions between the following levels, which I also described briefly in section 1.2:

(1) Substantive or fundamental theories

(2) Theoretical models of these substantive theories

(3) Statistical models of the theoretical models

The action in the atomic debates I have zoomed in on happens at level (3) — statistical

models of the theoretical models. My argument is that Perrin provided strong statistical

evidence for the statistical model of the Gaussian distribution of displacements. Using a

meta-analysis of the five ways for determining NA, I have also argued that Perrin could rightly

claim to have provided strong evidence that NA is around 60× 1022 mol−1. The strength of

evidence for the theoretical models is inherited upwards if one believes that the statistical

models are adequate for capturing the theoretical predictions and constraints demanded by

the theoretical models at level (2). For example, if one accepts that the variance of the

statistical model for the displacements is 2Dt, then one accepts the statistical model as an

adequate model for checking the theoretical constraints imposed by Einstein’s diffusion model

and the hydrodynamical model for Brownian motion that leads to the Langevin equation. In

this case, the strong statistical evidence accrues to the theoretical model higher up in level

(2). Moving up the hierarchy to substantive theories is more complicated for reasons that

Stanford (2009) has discussed having to to do with the problem of unconceived alternatives

and the “Catch-all Hypothesis”.

In considering how to move the strength of Perrin’s statistical evidence up to the level (1), I

chose to specify the model space at level (1) as M1 — discontinuity of the ambient fluid im-
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mediately below the granules, and M2 — continuity of the ambient fluid immediately below

the granules; because this is the only retrospective, and consistent, way of saying that Perrin

provided strong evidence for something without begging the question or failing to consider

all serious alternatives. This model specification at level (1) has the advantage of includ-

ing dichotomous and exhaustive models, which means it avoids the “Catch-all Hypothesis”

problem (i.e., the problem of exhaustively specifying, in model space, the logical complement

of a given hypothesis in order to compute L(X)) discussed in Stanford (2009) in relation to

the problem of unconceived alternatives.47

Second, and finally, one may ask: if in order to compute Bayes Factors one needs to specify

at least two competing models, what is (or are) the alternative statistical model(s) that I

am comparing pairwise with Einstein’s statistical model? Einstein’s statistical model says

ξ2 = 2Dt and I say that the evidence for this model gives a high Bayes Factor in favor of

M1. But what would the Bayes Factor be if we considered explicit alternatives to Einstein’s

statistical model? For example, why not have ξ2 = 2Dt2 or ξ2 = 2D
√
t or ξ2 = constant for

all t or ξ2 = 2Dt−1 and so on? The challenge raised by this last question is pressing when

one realizes that there are infinitely many explicit alternative statistical models that one can

specify and that this list of explicit alternative models cannot be exhaustively specified or

enumerated. If so, then I have still not shown that the “Catch-all Hypothesis” problem can

be avoided.

Here’s why I believe the problems raised by this question for my account are only appar-

ent. Recall that at level (2) both Einstein and Langevin were led to their derivations by

assumptions about the nature of F (t) that sustains Brownian motion. Both found that

assuming discontinuity, which is exhibited by the random pressure fluctuations F (t) at the

micro-scale; the mean squared displacement of colloidal particles ξ2 would have to increase

with time. This means that on alternative models, which did not include F (t), the mean

47Compare Smith and Seth (2020, 238 – 239).
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squared displacement of the colloidal particles would have to either (i) decrease over time;

or (ii) remain constant. Thus, the hydrodynamical model space can be used to partition the

statistical model space as follows:

1. Models with increasing ξ2 over time t

2. Models with decreasing ξ2 over time t

3. Models with ξ2 = 0 or some constant for all t

As a partition, it is exhaustive of the space and we can thus avoid the “Catch-all Hypothesis”

problem. Further, statistical models with decreasing ξ2 over time t would require ξ2 to be a

monotonically decreasing function of time. This would mean that rather than spread out over

time according to Einstein’s diffusion model (from regions of high concentration to regions of

low concentration), the particles in Brownian motion would be clustering or moving closer to

the mean position (origin). This is very improbable given the facts we know about diffusion.

So models with decreasing ξ2 over time t can be ruled out. This leaves models with increasing

ξ2 over time t and models with ξ2 = 0 or some constant for all t. Models with ξ2 = 0 or

some constant are impossible because it would mean no concentration gradient or osmotic

pressure for diffusion to take place. This means that the only possibilities for any model in

the statistical model space for Brownian motion are ones in which ξ2 increases over time t.

One does not need to specify explicitly what the form of ξ2 in these models has to be as the

alternative statistical model to the actual one in which ξ2 = 2Dt. The reason is that the only

free parameter to be estimated in these statistical models is D, the diffusion coefficient. Let

M∗
1 be another statistical model for the displacements in which ξ2 is a different increasing

function of time and D∗ be the estimated diffusion coefficient for this model that is within ε

distance of the estimated diffusion coefficient D in the statistical model M1 with ξ2 = 2Dt.

Then Perrin’s statistical evidence shows that M∗
1 will be practically indistinguishable from

M1. This means that they will both have high a Bayes Factor in their favor compared to
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any model in which ξ2 is constant or a decreasing function of time and we may choose either

M1 or M∗
1 .

1.8 Conclusion

In conclusion, let me recapitulate the main points of my paper. I have argued that the qual-

ity of Perrin’s statistical evidence can be characterized as specific and discriminating using

Bayes Factors. My argument involved focusing on the data involved in Perrin’s confirmation

of the statistical model of displacements of particles in Brownian motion according to Ein-

stein’s diffusion model. While focusing on this statistical model, I also analyzed the space of

hydrodynamical models for Brownian motion carved out by the Langevin dynamical equa-

tion, which leads to the variance, ξ2 = 2Dt, of the statistical model. This specification of the

theoretical model space was the crucial step in arguing that Perrin provided strong evidence

for the discontinuity of matter, while also avoiding the “Catch-all Hypothesis” problem and

the ad hoc specification of priors objection that has been directed at Bayesian perspectives

of this historical episode.
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Chapter 2

Coherence, Calibration and Severity

2.1 Introduction

Some statisticians and philosophers of statistics argue that coherent Bayesian methods con-

flict with other important desiderata that scientists have.1 These desiderata include: (1)

calibrating inferences and predictions (where this involves providing an objective measure,

or guarantee, of how often the inferences and predictions are verifiably correct), and (2)

model assessment (where this involves probing or testing statistical models to determine

1The various Bayesian methods currently in use within statistics can be distinguished on the basis of
coherency or admissibility arguments from decision theory (Wald, 1949), (Wald, 1950), (Ferguson, 1967),
(DeGroot, 1970, Ch. 7), (Berger, 1985) and (Robert, 2007). In decision theory, a decision rule is inadmissible,
or incoherent, if there is a rule with a better outcome (in some sense) than it. The relevant sense of
incoherence and inadmissibility for statistical inference is nicely discussed for a philosophical audience in
Sudderth (1995). Skyrms (1990, 125) summarizes the extensive literature on coherence from the 20th
century as “coherence is embeddability in a classical Bayesian model.” Skyrms’s work (and the references
cited therein) is important because it emphasizes a philosophical distinction that it is often made between
static coherence and dynamic coherence. See also Huttegger (2017, Ch. 5 and Ch. 6). Using some of
the results discussed in Sudderth (1995), Berger (1983) has shown that coherent Bayesian methods are
those Bayesian methods that satisfy the Likelihood Principle. Although the literature discussed in Sudderth
(1995) characterizes coherent inferences and predictions as conditional distributions based on finitely additive
priors, recent work by Kelley (2023) has some discussion on the possibilities of extending accuracy dominance
criteria and coherence to countable and uncountable settings.
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their compatibility with the observed data).2 These desiderata are important because, taken

together, they reflect the healthy skepticism scientists typically have towards their claims.

This scientific attitude involves probing their claims and quantifying the reliability of the

inferences that they make supporting or disproving those claims.3 This criticism of coherent

Bayesian methods is known as the probativist criticism.4

In advancing the probativist criticism, Mayo has claimed that coherent Bayesian methods

fail to meet the minimum requirement for severity:

One does not have evidence for a claim if nothing has been done to rule out

ways the claim may be false. If data x agree with claim C but the method used

is practically guaranteed to find such agreement, and had little or no capability

of finding flaws with C even if they exist, then we have [B]ad [E]vidence, [N]o

[T]est. (BENT) (Mayo, 2018, 5)

Without getting into the weeds of what the minimal requirement for severity amounts to,

let me make a few remarks.5 First, the minimal requirement for severity is a general meta-

statistical/meta-methodological principle that Mayo thinks all approaches to statistics should

aim to satisfy. The qualifier ‘meta’, is meant to indicate that this principle involves the actual

and counterfactual assessment of statistical methods and procedures, “one level removed” (as

Mayo likes to say), from the methods themselves.6 As a general meta-statistical principle,

the error probabilities it asserts about methods are quasi-formal. Mayo thinks we can say of

a method or procedure, in a less than fully formal way, that it is probably wrong because of

2See Box (1980), Box (1982), Diaconis and Freedman (1983), Diaconis and Freedman (1986), Rubin
(1984), Gelman, Meng, and Stern (1996), Cox (2006) and Reid and Cox (2015).

3Compare with Fletcher (2024) who has recently developed measures of (dis)confirmational (un)reliability
that acknowledge these scientific goals.

4See Mayo (2018, Ch. 6).
5See Mwakima (2024d) where I elaborate on the error and statistical testing rationale for the minimal

requirement for severity and defend it against recent criticisms by Maranda (2023) and van Dongen, Sprenger,
and Wagenmakers (2023).

6The helpful reading of Mayo’s account as a counterfactual account is given by Fletcher (2020).
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how it was actually carried out or how counterfactually it could have led us to error. At the

same time, the minimal requirement for severity can also be understood at the ground-level

(as opposed to meta-level) of statistical hypothesis testing and interval estimation formally

using the sampling distribution of a test statistic and classical confidence interval estimators.7

The reaction by some coherent Bayesians to Mayo’s minimal requirement for severity is to

ask, “Why should we take the minimal requirement for severity seriously? And why does

it matter whether or not Bayes Factors satisfy this requirement?”8 Those who push back

at this requirement also raise at least the following philosophical questions. First, what

does “false” or “flaws” mean? Second, what does “practically guaranteed” mean? Third,

what is a “capability of finding flaws”? By raising the first question (“What does “false”

or “flaws” mean?”), some people deny that the claims made by statistical models are the

sorts of things that can be true or false.9 Insofar as Mayo ties the requirement of severity

to assessments of truth made by claims in statistical models, the minimal requirement for

severity is not a requirement that should be taken seriously. The second and third questions

are related. According to Mayo, who follows the tradition of classical hypothesis testing

going back to Neyman and Pearson (1928) and Neyman and Pearson (1933), there is always

the possibility of erroneous inference. For this reason the principles of statistical inference

in this school are formulated to control the rate of incidents of these errors. So, Mayo’s

minimal requirement for severity is one way of expressing the view that methods of statistical

inference cannot ignore the possibility of error. It says that a method of statistical inference

must have tools: (1) to engage in model assessment (“capability of finding flaws”); and (2) to

calibrate its inferences and predictions (“no practical guarantee of agreement”). The phrase

“no practical guarantee of agreement” is tied to calibration because when one calibrates

7A helpful and excellent summary is Fletcher (2020).
8Compare Richard Morey’s slides Bayes Factors, p-values, and The Replication Crisis from Ses-

sion 1 of The Statistics Wars and Their Casualties Workshop held on 22nd September 2022. https:
//cardiffunipsychstats.co.uk/statswars2022/

9See Morey, Romeijn, and Rouder (2013, 71), Rouder, Morey, and Wagenmakers (2016) and compare
with Box and Jenkins (1976, 285) and Box (1979).
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an instrument or procedure, one is acknowledging that the instrument or procedure is not

perfectly accurate when compared to a standard and when used in actual measurements.

Consequently, tolerances are always quoted with most manufactured measuring instruments

and a measurement using these instruments typically includes some margin of error.

Two ways have been proposed in the applied Bayesian statistics literature to address the

probativist criticism. The first way adopts an eclectic approach to statistical practice by

fusing what is good about Bayesian inference (it is fundamentally sound) with what is good

about non-Bayesian inference (its tools for model assessment and calibration) even at the

cost of coherency. The defenders of this proposal call themselves Calibrated Bayes, Frequen-

tist Bayes or Pragmatic Bayesians.10 What is puzzling, philosophically, is characterizing

precisely what background or foundational principles they are committed to, in what sense

their position is Bayesian or if these unifications are coherent.11 According to Mayo (2018,

395 – 436) the foundations of Bayesian statistics are “in flux” when it comes to pinning

down precisely what the foundations of contemporary Bayesian statistics are. In fact, in a

recent influential paper representing the Pragmatic Bayesians, Gelman and Shalizi (2013,

10) remark, “most of [the] received view of Bayesian inference is wrong.” In making this re-

mark, they seek to align the modern practice of Bayesian statistics with the error-statistical

approach of Mayo. To this alignment or unification, Mayo (2018, 28 – 29) says, “[T]he idea

of error statistical foundations for Bayesian tools is not as preposterous as it may seem.” But

adds that whether this can be done is open.12

The second way is to show (somehow) that coherent Bayesian methods can address the pro-

bativist criticism on their own. Morey, Romeijn, and Rouder (2013), who call themselves

“Humble Bayesians”, have argued against calibrating inferences and predictions by empha-

sizing, among other things, that statistical models are neither true nor false. One can avoid

10Representatives or advocates of these positions are Little (2006), Wasserman (2006), Kass (2006), Little
(2011), Gelman (2011) and Kass (2011).

11Compare Mayo (2011), Mayo (2013) and for a recent discussion see Gelman and Yao (2020).
12Compare Fletcher (2020).
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the demand for calibration by denying that our models and the evidence we have for them

should be tracking some objective truth about the real world in order to be reliable in prac-

tice. There is nothing to be “wrong” about when assessing the relative strength of evidence

using Bayes Factors among specified models so long as the model specifications are theoret-

ically motivated, judiciously chosen and sufficiently justified.13 According to some of these

authors, what is crucial is whether Bayes Factors are interpretable in comparing just the

specified models. It is a mistake to demand they be calibrated in the space of all statistical

models (which somehow includes the “true model”— which we never know).14 They further

emphasize the interplay between coherent Bayesian statistics and (psychological) science, by

thinking about “objectivity” in a different way in terms of transparency and the researcher’s

role in “adding value” to statistical analysis by bringing in fact-based domain knowledge and

expertise to specify and to fit informative priors that are predictively accurate.15 “Adding

value” means contributing positively to a given scientific research agenda by justifying one’s

modeling assumptions. The process of justification invites dialogue among researchers that

then advances fruitful discussion of issues within the field. It is this public and intersubjective

conversation that constitutes objectivity on their view.

While my sympathies are certainly with the Humble Bayesians, I don’t think they have fully

addressed Mayo’s probativist criticism.16 Here’s how Mayo puts it:

How do I criticize your prior degrees of belief? As Savage said, “[T]he Bayesian

outlook reinstates opinion in statistics — in the guise of the personal probabil-

ities of events...” (Savage 1961, p. 577). Or again, “The concept of personal
13Compare with the quotation from Lindley in Mayo (2018, 228).
14This is the position defended by Morey, Wagenmakers, and Rouder (2016) and Rouder and Haaf (2019).

See especially Haaf, Klaasen, and Rouder (2021, 13) and compare with section 5.1 and 5.2 of Gelman and
Hennig (2017).

15See Rouder, Morey, and Wagenmakers (2016) and Haaf, Klaasen, and Rouder (2021). The emphasis on
‘informative’ means they are distancing themselves from Bayesians who seek default, reference or uninfor-
mative priors. These priors are appealing to the Frequentist Bayes and Pragmatic Bayesians because they
have “good frequentist properties”. Kass and Wasserman (1996) is an excellent discussion of objective priors.
Compare this paper with the discussion in Gelman and Hennig (2017).

16See Mayo (2018, §§4.1 and 4.2).
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probability...seems to those of us who have worked with it an excellent model

for the concept of opinion” (ibid., pp. 581 – 2). That might be so, but what if

we are not trying to model opinions, but instead insist on meeting requirements

for objective scrutiny? For these goals, inner coherence or consistency among

your beliefs is not enough. One can be consistently wrong, as everyone knows

(or should know). (Mayo, 2018, 228)

Either your methodology picks up on influences on error probing capacities of

methods or it does not. If it does, then you are in sync with the minimal severity

requirement. We may compare our different ways of satisfying it. If it does not,

then we’ve hit a crucial nerve. If you care, but your method fails to reflect that

concern, then a supplement is in order. Opposition in methodology of statistics

is fighting over trifles if it papers over this crucial point. If there is to be a

meaningful “reconciliation,” it will have to be here. (Mayo, 2018, 270)

From these two passages, I take it that the real question raised by the probativist criticism

is this: how do coherent Bayesian methods account for the possibility of error? The set of

models singled out for comparison using Bayes Factors can be misspecified and the model

comparison process using interpretable Bayes Factors (even with accumulating evidence) can

still turn out to be miscalibrated (in the sense of being “consistently wrong”).17 Perhaps

this is our unavoidable epistemic situation and it is in this sense that we should be humble

or open-minded in light of our own fallibility.18 Still, I claim that coherent Bayesians would

want to find ways to say objectively how, and to what extent, they are miscalibrated (i.e.,

“meeting requirements for objective scrutiny”). This is what scientists and some Federal

17I take this to be the point that Hoijtink, van Kooten, and Hulsker (2016b) and Hoijtink, van Kooten,
and Hulsker (2016a) are making in insisting that Bayes Factors have “frequentist properties”. But I do not
think that granting this point commits one to a frequentist interpretation of probability. Compare Stern
(2016).

18Compare the discussion in Morey, Romeijn, and Rouder (2016, 9 – 10).
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Regulatory agencies want.19 But this will involve appreciating the real question raised by

the minimal requirement for severity, then using or developing tools within the coherent

Bayesian framework to meet that challenge.

There are two related ways that I wish to make this question salient in this paper. The first

way is to single out the relevant sense of “calibration” that a coherent Bayesian ought to

take seriously. Making these distinctions matters because when one looks at the literature

on calibration, there are on the one hand some authors who advocate for calibration; while

on the other hand there are authors who are reject it. Often it is not clear whether those

who disagree within this debate have the same sense of calibration. It is quite possible that

the authors would, in fact, agree with each other regarding the relevance of calibration in

one sense of calibration; but are simply talking past each other if they associate calibration

with different senses.

The second way is to bring de Finetti into the conversation regarding the possibility of pro-

bative foundations for Bayesian statistics. This is the main contribution that I intend to

make here. Gelman and Shalizi, as I have mentioned, reject “the received view” of Bayesian

statistics while Mayo (2018, 227) gives de Finetti’s apparent “logical positivist” view short

shrift. Little, Kass and other contemporary applied Bayesian statisticians seek pragmatic

unifications between Bayesians and non-Bayesians, who hold on to a limit of relative fre-

quencies interpretation of probability. These proposed “unifications” by Calibrated Bayes,

Frequentist Bayes and Pragmatic Bayesians are not genuine unifications because they still

maintain a dualism. The dualism is between the subjective interpretation of probability and

objective chances interpreted as limits of relative frequencies. Therefore, the advantage of

bringing de Finetti into this conversation, I will argue, is that from de Finetti we have:

19Compare the discussion in van Dantzig (1957, 11), Cox (2006) and US Food and Drug Administration
(2010).
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1. A subjective Bayesian account of how to genuinely unify without a dualism between

the different interpretations of probability.20

2. Principles that a coherent subjective Bayesian will accept that together imply the

salience of the probativist criticism. These principles are:

(a) Probabilities are special cases of previsions.

(b) The use of proper scoring rules to provide an alternative operational definition of

probabilities.21

(c) The posterior distribution is an estimator.

(d) de Finetti’s General Representation Theorem asserts the existence of a prior dis-

tribution on function spaces.

One upshot of the view that I defend in this paper will be to draw out the connection

between the minimal requirement for severity and the theorems that establish the statistical

consistency of Bayes estimators as one way to emphasize the importance, and the difficulty,

of addressing the probativist criticism. Not only do I think that this connection is a new and

plausible way to fruitfully engage with Mayo’s work by seeking common ground; but there

is also recent philosophical interest for drawing out this connection. This interest has arisen

from work by philosophers of science who have shown that the demand for calibration in

the sense of statistical consistency cannot be set aside so easily as some coherent Bayesians

think.22 The work by these philosophers takes aim at both the martingale convergence
20The unification here has sometimes been called pragmatic (see especially de Finetti (1974a)). The

pragmatic reading of de Finetti is also developed by Skyrms (1984) and Galavotti (2019). Compare with
Jeffrey (1984). de Finetti himself also acknowledged the influence of pragmatism on his own views (see
de Finetti (1974b, vii)).

21See the footnote in the translation of de Finetti’s earlier work (de Finetti, 1937) in Kyburg and Smokler
(1964, 62). In the footnote, de Finetti refers to an earlier paper (de Finetti, 1962) and joint work-in-
progress, de Finetti and Savage (1962), on how to elicit initial probabilities, the English summary of which
is in de Finetti (1972, Ch. 8). This later (post 1964) de Finetti would revisit the same idea in de Finetti
(1965), de Finetti (1969), de Finetti (1970) and de Finetti (1974b, Ch. 5) as well as de Finetti (1981).

22See Belot (2013a) and Belot (2013b). One can find a critique along similar lines to those of Belot in
Earman (1992, 41 and Ch. 6). van Fraassen also has a series of blog posts on this issue with a nod to Mayo.
See https://basvanfraassensblog.home.blog/2019/08/11/what-is-bayesian-orgulity-1/
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theorems, which are taken by some coherent Bayesians as providing the Bayesian agent

with “a guarantee” of statistical consistency or perfect calibration; and the objectivity of

Bayesianism in the sense of merging of opinions by dint of (dynamic) coherence.23

Here’s how I have organized the rest of the chapter. In the next section I distinguish different

senses of calibration and I identify statistical consistency as the relevant sense of calibration

for the rest of my paper. In section 2.3 I begin developing the first principle of de Finetti’s

view — 2(a) above — that probabilities are special cases of previsions. The discussion here

will be the first step in understanding de Finetti’s unification program. In section 2.4 I show

how by endorsing the use of Brier’s Score (a proper scoring rule) for the operational defini-

tion of subjective probabilities, de Finetti is, in fact, committing himself to calibration in the

sense of statistical consistency not forecast calibration. This section will be important for

by-passing objections by Kadane and Lichtenstein (1982), Seidenfeld (1985) and Lad (1996)

against forecast calibration by showing that while their objections are successful in down-

playing the relevance of forecast calibration for coherent Bayesians; it does not follow that

the same kinds of objections apply to statistical consistency. Section 2.5 then explains how

the operational definition of probability from Brier’s Score and the assumption of exchange-

ability implies the existence of priors — this is de Finetti’s representation theorem. I show

that it is really de Finetti’s general representation theorem that informs Belot’s critique and

I explain how that critique casts the probativist criticism in a new light. Before I conclude

in section 2.7, I use section 2.6 to reflect on how optimistic applied Bayesian statisticians

can expect to be in addressing that criticism.

23For the perfect calibration results often cited by Bayesians see Dawid (1982). For merging of opinions
and objectivity see Huttegger (2015a), Huttegger (2015b) and Huttegger (2017, Ch. 8).
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2.2 The varieties of calibration

To capture the relevant sense of calibration that applies to the considerations of severity

that I am interested in, let me distinguish the following kinds of calibration:

• forecast calibration

• instrumental calibration

• statistical coverage

• statistical consistency

Forecast calibration refers to the reliability of a subjective probabilistic forecast. In fact,

the term ‘calibration’, as it is discussed in some statistical and philosophical circles, traces

its origin to meteorological contexts (although the term is broad enough to capture stock

market forecasts, sporting events forecasts, medical prognoses and so on).24 To illustrate the

general idea, say a weather forecaster announces, “There is a 70% chance of rain tomorrow”.

If it turns out not to rain, she isn’t necessarily a “bad” forecaster. But if she repeatedly

announces a 70% chance of rain for each day (in a row) in a sequence of 10 days but it

only rains on 2 of these days, then we’d be led to question the reliability of her forecasting

abilities for 70% chances of rain. On what basis would we assess or appraise a forecaster

such as her? Brier (1950)’s idea was to measure, what from the contemporary point of view

we would call, the mean squared error of the forecast, leading to what has come to be known

as Brier’s Score.25 Forecast calibration found its way into the statistical literature with the

24The literature on this sense of calibration is vast and extremely rich. Good places to start are Lichten-
stein, Fischhoff, and Phillips (1977), Kadane and Lichtenstein (1982), Seidenfeld (1985) and Lad (1996).

25See Pettigrew (2016) for an up to date discussion of (proper) scoring rules. Pettigrew characterizes
them and shows that the Brier Score is a member of a class of (in)accuracy measures known in the statistical
literature as Bregman divergences. See especially Gneiting, Balabdaoui, and Raftery (2007), and Gneiting
and Raftery (2007).
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publication of Dawid (1982).26 Within philosophy of science, van Fraassen (1983) has largely

influenced how the subsequent issues have been framed within the philosophy of probability

and formal epistemology.27

Instrumental calibration is perhaps the most familiar kind of calibration with physicists

and engineers. Here one compares the measurements of a measuring instrument, say a

grocer’s weight of 1kg, to measurements taken by a standard platinum-iridium alloy cylinder

securely held in Paris. Discrepancies between the measurements taken by this weight and

this standard can be used to recalibrate the weight to attain the required accuracy. When

Cox (2006, 197) writes:

Frequentist analyses are based on a simple and powerful unifying principle. The

implications of data are examined using measuring techniques such as confidence

limits and significance tests calibrated, as are other measuring instruments, indi-

rectly by the hypothetical consequences of their repeated use [...] The objective

is to recognize explicitly the possibility of error and to use that recognition to

calibrate significance tests and confidence intervals as an aid to interpretation.

the talk of measuring instruments is metaphorical. But it suggests applying the qualifier

‘instrumental’ to this kind of calibration in order to distinguish it from other senses of

calibration.

There is another way to think about instrumental calibration. Here an illustration might

help. It is known that temperature can be measured by either a mercury thermometer

or a thermocouple. A thermocouple is a device that detects voltage whenever there is a

temperature gradient. Since most people don’t understand what a voltage change means for

26But, as we shall see, Dawid’s result is really a result regarding the statistical consistency of a Bayes
estimator under some assumptions. It has affinities with the martingale convergence results.

27See van Fraassen (1984), Joyce (1998), Lange (1999), Joyce (2009), Weirich (2011), Hájek (2012), Hoefer
(2012) and for a recent and comprehensive discussion of the state of the art see Pettigrew (2016).
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them with regard to temperature, a thermocouple has to be calibrated to a known scale (the

Celsius or Fahrenheit scale) on a thermometer for us to interpret the thermocouple readings.

There are thermocouple voltage-to-temperature equations for doing this conversion.

It is not obvious how this second way of thinking about instrumental calibration concerns the

same concept as that involving accuracy of weights. In the former case there is no issue of

setting the relevant correspondence, while in the latter case there is no issue of discrepancy.

I have chosen to call both of them instrumental calibration because in both cases one is

dealing with scales of instruments. In the first case, it is about the accuracy of the scale,

in the second case it is about the interpretation of the scale. Consider how this applies to

a recent discussion in the psychological science literature of whether or not Bayes Factors

should be calibrated in order to be useful in psychology.28 Bayes Factors are instruments

or tools within the Bayesian framework for quantifying evidence. So, when Hoijtink, van

Kooten, and Hulsker (2016b) are talking about calibrating Bayes Factors, they are thinking

of instrumental calibration, say as one would think of converting from a thermocouple scale

to a Celsius scale. But Morey, Wagenmakers, and Rouder (2016) disagree because they

believe Bayes Factors are interpretable as is. Bayes Factors are like the temperature scale in

Celsius or Fahrenheit in this analogy.

Within the statistical literature one often hears calibration talked about in terms of finding

estimators with “good frequentist properties” (Cox, 2006, 198). One of these properties is

the statistical coverage of confidence interval/set estimators. If in the infinite limit of hypo-

thetical repetitions of the same random experiment a nominal 95% confidence interval/set

actually covers the true parameter(s) 95% of the time, then we say the confidence interval/set

estimator is calibrated in the sense that nominal coverage coincides with actual coverage,

otherwise it is miscalibrated.29

28See the papers by Hoijtink, van Kooten, and Hulsker (2016b), Hoijtink, van Kooten, and Hulsker (2016a)
and Morey, Wagenmakers, and Rouder (2016).

29Wasserman (2006) has an amusing story about why this is a desirable property for estimators to have.
By insisting on “frequentist properties” of Bayes Factors, Hoijtink, van Kooten, and Hulsker (2016a) can
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Finally, this brings me to the sense of calibration in terms of statistical consistency. Jeffrey

(1984, note 36) and Gneiting and Raftery (2007, §9) think about calibration in terms of

statistical consistency of estimators.30 An estimator T (X) is a function of the data X =

(X1, X2, . . . , Xn) that is used to estimate a parameter θ of interest. An estimator T (X) is

unbiased if Eθ[T (X)] = θ.31 The mean squared error (MSEθ(T (X)) of an estimator T (X)

for θ is Eθ[(T (X)− θ)2]. Using the known identity regarding the variance32

Eθ[(T (X)− θ)2] = Varθ(T (X)) + (Eθ[T (X)]− θ)2

MSEθ(T (X)) = Varθ(T (X)) + Bias2θ(T (X))

In other words, the mean squared error is the sum of the variance and square of the bias of

an estimator.

Now, a sequence of estimators Tn(X) is said to be consistent for θ if it converges in probability

to θ. And a sequence of estimators Tn(X) is said to be consistent in quadratic mean if

MSEθ(Tn(X)) → 0 as n → ∞. Using Chebyshev’s Inequality, it can be shown that a

sequence of estimators is consistent if it is consistent in quadratic mean, i.e., if and only if

the variance and bias are both asymptotically zero.

Two important and well-known results within a non-Bayesian setting that concern the con-

sistency of estimators are the Weak Law of Large Numbers and the Strong Law of Large

Numbers.

sometimes be read as indicating that they are after statistical coverage. Because having good frequentist
properties might come at the cost of coherence, they rightly invite disagreement from Morey, Wagenmakers,
and Rouder (2016).

30This is the relevant sense in which I wish to discuss the issue of calibration for the rest of my paper.
I discussed the other senses of calibration above in some detail because it will allow me to by-pass some
objections from some prominent philosophers. So when we get to that part of my paper, it will be helpful
to have the distinctions I am making in mind.

31The subscript under the expectation operator is to emphasize that the expectation is a function of θ.
32Var(X) = E[X2]− [E[X]]2
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Weak Law of Large Numbers

Let X = (X1, X2, X3, . . . ) be independent, identically distributed random variables each

with mean µ and variance σ2. Let Tn(X) =
∑n

i=1 Xi

n
, then Tn(X) is consistent for µ.

The Weak Law of Large Numbers was proved by Jacob Bernoulli in 1713 for 0-1 random

variables (nowadays called Bernoulli random variables). Poisson proved a generalization of

this result and first called it the Law of Large Numbers.33 It is Aleksandr Khintchin who

proved the general form of the Weak Law of Large Numbers using Chebyshev’s Inequality

in 1929.

Strong Law of Large Numbers

Let X = (X1, X2, X3, . . . ) be independent, identically distributed random variables each

with mean µ and E[X2
i ] < ∞. Let Tn(X) =

∑n
i=1 Xi

n
. Then P

({
lim
n→∞

Tn(X) = µ

})
= 1.

Borel formulated and proved the first variant of the strong law of large numbers in 1909 for

0-1 variables. Cantelli in the early 1910s, Khintchin in the 1920s and Kolmogorov in 1930

stated sufficient conditions extending the applicability of the Strong Law of Large Numbers.34

2.3 Previsions and Frequencies

The starting point for de Finetti’s operational definition of probability is the notion of

a prevision. This is a term that is unique to de Finetti and is meant to contrast with

33See Lecture 4 in von Mises (1957).
34See von Mises (1964, 236).
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prediction.35 It is helpful to think of a prevision in contemporary terms as the expected value

or weighted average of any quantity.36 In his work de Finetti often illustrates a prevision by

drawing an analogy with the center of mass and the minimum of the moment of inertia.37 It

is no coincidence. It is known that the center of mass of a system of masses is the weighted

average of the masses with weights the distance from the origin in some coordinate system.

It is also known that by the Parallel Axis Theorem, the minimum of the moment of inertia

of a body is along an axis through the center of its mass.

Importantly, the relevant prevision in the case of probabilities is the expected payoff of a

gamble/lottery ticket. It is by assuming that the fair price of a gamble/ticket is its expected

payoff that de Finetti is able to define subjective probabilities from previsions. For example,

if $1 is the fair price for you for a lottery ticket that pays $2 if an event E occurs and $0 if

the event does not occur, then operationally it is as if P (E) = 1
2

for you. Further, since a

proposition or event X can be identified with its indicator function I(X), probabilities are

previsions of indicator functions. This means that probabilities are special cases of previsions

— principle 2(a) above.

Suppose that an agent is in a state of uncertain knowledge and wants to estimate the rel-

ative frequencies of a sequence of observables X1, X2, . . . , Xn. I use the term observables

as a generic term covering mundane events or outcomes of measurements in science. These

observables do not have to be related in any way. de Finetti thinks that this estimation

in a state of uncertain knowledge can be accomplished with a prevision of the frequencies.

According to de Finetti this is “the first and most elementary link in the long chain of con-

clusions which, as we proceed, will clarify and enrich our insight into the relationship that

35de Finetti’s position is that previsions are operational estimates of subjective probabilities relative to
an individual. As estimates, they don’t have truth values but are constrained by coherence and calibration
(i.e., how accurate they are). A prediction, on the other hand, can be falsified by facts. Hence de Finetti’s
insistence on distinguishing between previsions and predictions.

36See de Finetti (1974b, §§3.1.4 – 3.1.5)
37See de Finetti (1974b, §3.3.4) for example.
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holds between probability and frequency” (de Finetti, 1974b, §3.10.3). What de Finetti says

here is not an exaggeration; for he adds in de Finetti (1974b, §5.8.2):

It is in this very thing [the identity below] — and in nothing else — that the value

of any theorem in the calculus of probability lies, and it cannot be otherwise. It

is to tell us whether, in making the same evaluation in two different ways, we

arrive at different conclusions, and, in this case, to invite us to think again and

to rectify the situation by modifying one or the other.

Let I(Xi) be the indicator for Xi, then Y =
∑n

i I(Xi) is the number of Xi that occur and Y
n

is the frequency.

E
[
Y

n

]
= E

[∑n
i=1 I(Xi)

n

]
(2.1)

=
1

n
E
[ n∑

i=1

I(Xi)

]
(2.2)

=
1

n

n∑
i=1

E[I(Xi)] (2.3)

=
1

n

n∑
i=1

P (Xi) (2.4)

Despite its generality (in the sense that nothing has been assumed about the distribution of

the Xi or any relationship between them), this sequence of identities has been referred to

as “de Finetti’s Law of Small Numbers” by Jeffrey (1984, 81). It says that the prevision of

actual frequency is the average of the probabilities. According to de Finetti, this is the most

general thing one can say about the relation between subjective probabilities (understood as

previsions) and actual frequencies in the state of uncertain knowledge. In the special case

that the Xi are identically distributed with probability p we get:
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1

n

n∑
i=1

P (Xi) =
np

n
(2.5)

= p (2.6)

For example, suppose I want to estimate the bias of a coin θ, i.e., the frequency of heads and

tails that I should expect but I am in a state of uncertainty regarding whether the coin is

fair. In fact, let us suppose that I am in the epistemic state such that the observable X1 =

heads is more probable than the observable X2 = tails to me. So I assign probability 0.6 to

X1 = heads and 0.4 to X2 by coherency. According to de Finetti, my prevision of the bias θ

is the average of these probabilities 0.6+0.4
2

= 0.5, which is a good estimate if the coin is, in

fact, fair.

Why does going through all of these seemingly trivial and well known definitions and facts

matter? Well, for two reasons. First, it is by starting with previsions that de Finetti

first shows how to deal with actual relative frequencies within a subjective framework as

illustrated in the previous example. The Law of Small Numbers is de Finetti’s definitive

statement that he did not deny that there are actual frequencies; what he denied or rejected

is the definition of probabilities as limits of relative frequencies. Second (and this is something

that I go into more detail in the next section), while discussing the foundations of Bayesian

statistics, Mayo (2018, 406 – 407) writes:

Cashing out Bayesian uncertainty with betting seems the most promising way

to “operationalize it.” Other types of scoring functions may be used, but still,

there’s a nagging feeling they leave us in the dark about what’s really meant.

I sympathize with Mayo on the last sentence although de Finetti and I would disagree with

the first sentence. I sympathize with Mayo because, like several other philosophers have also
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pointed out, de Finetti is notoriously difficult to read!38 Here’s how Lindley (1986) puts it

in his comments on Efron (1986)’s “Why isn’t everyone a Bayesian?”:

It may be that we Bayesians are poor writers, and certainly the seminal books

by Jeffreys (1961) and de Finetti (1974, 1975) are difficult reading, but it took

Savage (see the preface to Savage 1972) several years to understand what he had

done; naturally, it took me longer.

Add to this the fact that a lot of his original work was published in Italian, his tone is often

curt, impatient and only a bit provocative, then you can appreciate what one has to deal

with here to understand what de Finetti meant! So, my goal in this paper is to provide some

illumination in the best way I can. Fortunately for me, a lot of de Finetti’s work is now

available in translation including de Finetti (2008). This book is a collection of transcribed

audio recordings of philosophical lectures on probability by de Finetti from 1979 at the

National Institute for Advanced Mathematics in Rome. The lectures were recorded with

the aim of having them published. They were published in Italian ten years after the death

of de Finetti. The lectures are a treasure trove of insight into understanding the mature

thought of de Finetti and can be fruitfully read alongside de Finetti (1972) and de Finetti

(1974b). In particular, these lectures provide strong evidence to reject what Mayo claims

about “the most promising way to operationalize subjective probabilities”. According to

de Finetti (2008, 4 – 5):

There is a way, and I believe it is the only one, which allows us to say exactly

what we mean by “probability.” Such is the method of proper scoring rules,

which consists in asking a person (let us call her “A”) what is the probability she

assigns to an event E, A being warned that she will receive a score depending

38See Diaconis and Skyrms (2018, 125) for example.
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on the answer she will provide and on the value of the “objective probability” of

E (in the sense specified above: 0% if E is false, 100% if E is true).

The idea behind proper scoring rules, why and how they work for operationalizing subjective

probabilities only makes sense when used together with previsions of actual relative frequen-

cies. It is for these reasons that I have spent this section explaining these concepts. In the

next section I show how this works and draw the connection to statistical consistency. The

bearing of this connection on the interpretation of de Finetti’s representation theorem is

then discussed in section 2.5.

2.4 Proper Scoring Rules and Statistical Consistency

Following Lad (1996, 335ff) but adapting his characterization to my notation and approach

in this paper, let θ be any quantity whose value we wish to estimate in the state of uncertain

knowledge. Let δ(X) be your estimate of it. δ is a function of observables X, which could

include actual data, your background knowledge, information or expertise that inform your

opinion about θ. Any real valued function S(θ, δ) is a scoring rule for δ if it is convex and

attains its minimum at δ = θ. The squared error loss or the quadratic score function (of which

Brier’s score is an instance) is a common example of a scoring rule, although many functions

satisfy the criteria for a scoring rule.39 Scoring rules were initially proposed for assessing

weather forecasters (but they do not have to be used solely for forecast calibration).40 In

the case of meteorology, θ could be the chance of precipitation and δ the quoted probability

of it. If δ is a prevision, then a proper scoring rule is a scoring rule such that the expected

loss (i.e., risk) of quoting an estimate δ∗ ̸= δ is greater than or equal to the risk of δ. The

characterization of proper scoring rules is nicely illustrated if we think of the expected loss

39See Savage (1971).
40See Gneiting and Raftery (2007, §9).
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under a quadratic score function. In this case, it is known that the expected value minimizes

the expected loss. So if δ is a prevision of θ, i.e., δ = E[θ], then it minimizes the expected

loss.

It is this previous sentence that de Finetti uses to connect previsions to proper scoring rules

in providing an operational definition of probability based on Brier’s Score. Surprisingly, de

Finetti claims that the criterion of proper scoring rules does not have anything to do with

honesty, which is contrary to what many in the literature have claimed.41 In Lecture II of

the Philosophical Lectures we read:

BETA: I have to admit, I have grasped proper scoring rules very vaguely. I

have understood that there is a certain penalization, but I have not been able

to understand why is it appropriate to indicate the probability which one deems

more reasonable. Why is it inappropriate to “cheat”?42

DE FINETTI : It is not “inappropriate”; this has nothing to do with cheating.

One is allowed to indicate whatever number she likes.

de Finetti then adds, “Since she is subject to penalization, X [i.e., the agent] will suffer a

loss in any case; her best interest is to minimize the prevision of it.” The prevision of a

penalization is the expected loss. So de Finetti is telling us here that the choice of Brier’s

score as a scoring rule is that it leads back to a prevision as the best estimate of any quantity

in the state of uncertain knowledge because it minimizes the expected loss (or risk).43 Now

41See Lad (1996, 336) and many of the references cited earlier under forecast calibration.
42The five participants in de Finetti’s course, with their comments and questions have been named ‘Alpha’,

‘Beta’, ‘Gamma’, ‘Delta’, and ‘Epsilon’ according to the order in which they participated for the first time
in the series of lectures. Beta is Anna Martellotti, who is now a professor of Mathematical Analysis at the
University of Perugia. See de Finetti (2008, xiii).

43See also Lecture IV of de Finetti (2008, 28).
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it can be shown that under a quadratic score function, the Bayes Rule

δ(X) = E[θ |X] =

∫
θπ(θ |X)dθ

as an estimator for θ, minimizes the posterior expected loss. But δ is the posterior mean as

an estimator for θ, i.e, a prevision. This is exactly what principles 2(b) “The use of proper

scoring rules to provide an alternative operational definition of probabilities” and 2(c) “The

posterior distribution is an estimator” say.

What does all of these have to do with statistical consistency and why does it matter? There

are two reasons. First, the reading of de Finetti suggests that the appeal to proper scoring

rules is not intended to assess the reliability of forecasters. Rather proper scoring rules

are meant to operationally define probabilities as previsions. This means that many of the

objections against forecast calibration in the literature do not apply to the project that I

am undertaking in this paper.44 For what is common to all of these objections is that they

are addressed at forecast calibration especially if it is intended to compare the reliability of

different forecasters. Here I am not making any comparisons between probability forecasters,

since the focus has been on previsions as estimators. With respect to estimators, statistical

consistency is an important, and desirable, property.

The second reason is that the conclusion about the posterior mean as an estimator for

θ raises the question about its statistical consistency because the Bayes Estimator is, in

general, not unbiased.45 If the bias-squared of an estimator has to asymptotically go to

zero for consistency in quadratic mean, does this mean that sequences of Bayes Estimators

can never be consistent? No, consistency in quadratic mean is only a sufficient condition,

not a necessary one. Therefore, it is a remarkable fact that despite not being unbiased the

statistical consistency of a sequence of Bayes Estimators was demonstrated.
44See Kadane and Lichtenstein (1982), Seidenfeld (1985) and Lad (1996) for the sorts of objections I have

in mind.
45See Ross (1996, 34 – 35)
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The proofs here make use of what is known as a martingale (which is an abstract general-

ization of a fair gambling process). The proof depends on showing that a sequence of Bayes

Estimators can be thought of as an instance of Doob’s Martingale (which is a martingale

with special properties).46 Using these properties, Doob (1949) proved that Bayes Estima-

tors are almost surely consistent. Since almost sure consistency implies consistency, this has

a consequence that Bayes Estimators are calibrated in the sense of statistically consistent.

Now, a crucial assumption made by Doob (1949, 25) in the theorems is that the “true

parameter” is in the support of the prior π(θ). He writes:

Note that these are “probability one theorems”. The estimate of the value of θ

drawn may not be good for a θ set of probability 0.

Doob’s assumption raises the following question: can a Bayesian always know that the

true θ is within the support of her prior to guarantee calibration in the sense of statistical

consistency of Bayes Estimators? The answer, it turns out, is complicated. In order to show

the extent of this complication, I first need to say something about de Finetti’s celebrated

general representation theorem. This theorem will then allow me to make the final connection

to the importance, and difficulty, of addressing the probativist criticism in section 2.6.

46After Doob (1949). An excellent discussion of the scope and significance of the results is given by
Schwartz (1965). See Huttegger (2017, §5.5) for an introduction and discussion of the philosophical sig-
nificance. Compare with Earman (1992, Ch. 6). See Baldi (2017) for an advanced but still accessible
treatment.
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2.5 The General Representation Theorem and Belot’s

criticism

Exchangeability is a subjective judgment of symmetry about a probability measure on ob-

servables Xi, which could be finite or infinite.47 For i = 1, . . . , n,Xi are judged to be finitely

exchangeable to me if their joint probability distribution function is invariant under a per-

mutation of its arguments. An infinite sequence of Xi is exchangeable to me if every finite

subsequence is exchangeable. Exchangeability and partial exchangeability (which I have not

defined) operationalize, respectively, random sampling and stratified sampling techniques

conditional on parameters.48

de Finetti’s representation theorem for 0-1 random variables

If X1, X2, . . . is an infinitely exchangeable sequence of 0-1 random variables with probability

measure P , then there exists a distribution function Q such that the joint mass function

f(X1, . . . , Xn) for X1, . . . , Xn is given by

f(X1, . . . , Xn) =

∫ 1

0

{ n∏
i=1

θXi(1− θ)1−Xi

}
dQ(θ) (2.7)

where

Q(t) = lim
n→∞

P

(∑n
i Xi

n
≤ t

)

and θ is defined as the strong law limit of
∑n

i Xi

n
.

47All observables are random variables.
48See Bernardo and Smith (2000, 168 – 171).
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Here are three takeaways from de Finetti’s 0-1 representation theorem. First, it justifies the

existence and the use of priors on observables (specifically events) by Bayesians. Second, this

theorem can be interpreted as a generalization of the Law of Small Numbers. Recall that this

Law says that average probability is always the prevision of frequencies. The left hand side

of (2.7) is the average probability distribution of the Xi, or as we would say today the joint

marginal distribution of the Xi (i = 1, . . . , n) by marginalizing out θ with dQ(θ). The right

hand side of (2.7) is the prevision of the joint frequency
{∏n

i=1 θ
Xi(1− θ)1−Xi

}
conditional

on θ with weights dQ(θ). The fact that the left hand side is a marginal distribution highlights

that θ and the Xi (i = 1, . . . , n) are on par as observables and the representation theorem is de

Finetti’s way of providing an operational definition of θ in place of the oft-repeated “fixed but

non-random parameters” in non-Bayesian frameworks. There is no dualism in de Finetti’s

framework — everything modeled statistically is an observable. Third, since sometimes θ for

0-1 variables is described as the objective chance of “success”, de Finetti’s 0-1 representation

theorem shows that even this notion can be accommodated within a subjective framework.

Parameters are strong law limits of sufficient statistics on observables.49 These takeaways are

genuine unifications without dualism — which is why de Finetti is relevant for the possibility

of probative foundations for Bayesian statistics.

de Finetti’s General Representation Theorem

If X1, X2, . . . is an infinitely exchangeable sequence of variables with probability measure P ,

then there exists a distribution function Q over F , the set of all distribution functions on R,

such that the joint distribution of (X1, X2, . . . , Xn) has the form

f(X1, X2, . . . , Xn) =

∫
F

n∏
i=1

F (Xi)dQ(F )

49In Appendix 1 of de Finetti (1974b) compares parameters with densities of points in continuous solid
bodies. In the case of continuous bodies the density at a point is also a limiting quantity since bodies, in
fact, have atomic structure, i.e., have a discrete micro-structure.
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where

Q(FX(t)) = lim
n→∞

P (Fn(t))

and Fn(t) ≡ 1
n

∑n
i=1 I(Xi ≤ t) is the empirical distribution for X = (X1, X2, . . . Xn).

It is the extension of de Finetti’s theorem from the case of 0-1 random variables to the general

case that complicates the story about the statistical consistency of Bayesian Estimators.

Here’s how. Recall that in the 0-1 case, θ in dQ(θ) is defined as the strong law limit of X̄,

which is a sufficient statistic. The existence of θ is thus a consequence of the strong law of

large numbers (assuming Xi are exchangeable). So in the 0-1 case we have calibration in

the sense of statistical consistency. The case of 0-1 random variables and other cases where

a sufficient statistic exists are, loosely speaking, the “easy cases” for obtaining statistical

consistency.

To see this, ask: what is F in dQ(F )? It is tempting to think of F analogously as a “pa-

rameter” and the Xi as identically and independently distributed conditional on F assuming

they are exchangeable. But the general representation theorem does not operationalize the

definition of F as a strong law limit. Notice that in general Fn(t) is a function into a set

of probability measures F , which is a topological space — the set of Borel sigma algebras

on F with the topology of weak convergence.50 Even if we let F be a “parameter”, this

would imply that Q is a prior distribution from an infinite dimensional family of distribu-

tions on F . The family is infinite dimensional because for each distribution F (whose form

we don’t know) there is a set of parameters (in the strong limit law sense) that identifies

it. Infinite dimensional function spaces lead to Bayesian Non-parametric methods because

50Let Fn and F be distribution functions, then Fn converges weakly to F if lim
n→∞

Fn(x) = F (x) for each
x at which F is continuous. See Theorem 25.8 in Billingsley (2012, 358) for equivalent formulations of weak
convergence for measures.
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no assumption regarding the form of the F ’s, and consequently what parameters they can

have, is made. Venturing into Bayesian non-parametrics is beyond the scope of my paper.51

However, I wish to draw some connections between the interpretation and implications of

de Finetti’s general representation theorem to issues within philosophy of science that make

the probativist issue salient. Let me start with Dawid then move on to Belot. Both of them

charge Bayesians with being too confident, but their points are really entirely different.

What Dawid (1982) showed is that a Bayesian who engages in sequential forecasts with

feedback will asymptotically be empirically calibrated with the truth almost surely, i.e.,

with probability 1 in their own beliefs.52 The talk of forecasts is distracting because one can

understand Dawid’s point without necessarily tying it to forecast calibration. This means, in

particular, that objecting to Dawid’s results because they concern assessments of forecasters

is beside the point. My discussion so far can be used to see this; for it is a corollary to the

general representation theorem that predictive distributions are previsions.53

Predictive Distributions

If X1, X2, . . . is an infinitely exchangeable sequence of real valued observables admitting a

density f(· | θ) with respect to dQ(θ), then

f(Xm+1, . . . , Xn |X1, . . . , Xm) =

∫
Θ

{ n∏
i=m+1

f(xi | θ)
}
dQ(θ |x1, . . . , xm)

51Diaconis and Freedman (1986) is a good place to start for discussions on choices of prior measures
dQ(F ) in non-parametric settings. See Ghosh and Ramamoorthi (2003), Walker (2005) and Ghosal and
van der Vaart (2017) for additional references.

52See Kadane and Lichtenstein (1982) for an illuminating discussion.
53See Corollary 2 in Bernardo and Smith (2000, 180).
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where

dQ(θ|x1, . . . , xm) =

∏m
i=1 f(xi|θ)dQ(θ)∫

Θ

∏m
i=1 f(xi|θ)dQ(θ|x1, . . . , xm)

Here f(Xm+1, . . . , Xn |X1, . . . , Xm) is the joint predictive distribution for future observables

conditional on past observables (i.e., “feedback” or data). In other words, the predictive

distribution of future observables is the prevision of their joint distribution weighted by the

posterior distribution.

As a coherent Bayesian, Dawid accepts Cromwell’s rule according to which only tautologies

receive subjective probability 1 on pain of incoherence. But since contingent matters of fact

are not tautologies, Dawid thinks that he cannot assign them subjective probability 1 even

though his convergence theorem for sequential forecasts with feedback says that he should.

He writes:

We have a paradox: an event can be distinguished (easily, and indeed in many

ways) that is given subjective probability one and yet is not regarded as “morally

certain.” How can the theory of coherence, which is founded on assumptions of

rationality, allow such an irrational conclusion?

The complaint here is that Bayesians are always sure (probability one in their own beliefs)

that they will converge, although this need not translate to probability one in the real

chances.

Dawid’s puzzle, in my view, is only apparent. The reason why his convergence result puzzles

him is that he maintains a dualism between coherent subjective probabilities and objective
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chances. The unification we’ve seen from de Finetti shows predictive distributions on future

observables are previsions, i.e., estimators, not assertions about objective chances.54

However, there is another way to think about Dawid’s result in relation to the de Finetti

general representation theorem. It is this. By supposing in section 4.3 “that θ is consistently

estimable”, Dawid is not, in fact, begging the question. He is restricting the set of distribution

functions on F to finite dimensional parametric models in which the data structure is such

that consistency is possible in principle (i.e., parameters can be identified via data). It is

quite common, actually, for Bayesian statistics to proceed like this. The idea is to select

forms of F (or more technically subclasses of F called finite dimensional parametric models)

that allow consistent estimation of parameters. The specification of the prior measure dQ(θ)

implied by the general representation problem is then more tractable for these forms.55

This brings us to Belot. Belot has argued, using topology, that events which are measure-

theoretically negligible (i.e., the null events, which receive subjective probability zero) can

nevertheless be topologically huge (i.e., residual in the space). Therefore, the failure set,

even for a coherent Bayesian, is “typical.” Some have pointed out that Belot’s argument

leaves everyone, not just Bayesians, in a quandary. For his complaint can sometimes be read

as a complaint regarding using probability at all since the complaint is directed at the strong

law of large numbers. So if the argument is successful, then it is successful against both

Bayesians and non-Bayesians.

I read Belot differently. The challenge he raises for Bayesians is a genuine challenge. To

see this, let’s revisit de Finetti’s general representation theorem. As mentioned, F is a

54Compare van Fraassen (1984).
55Bernardo and Smith (2000, Ch. 4) is an excellent discussion of how this restriction or specification

can be accomplished based on principles like invariance, sufficient statistics, partial exchangeability and
hierarchical models. See also Fortini, Ladelli, and Regazzini (2000) and Diaconis and Skyrms (2018, Ch.
7) for other principles. Vanpaemel (2010) is an excellent discussion on principles that can guide model
specification in social sciences like psychology, although I believe the results here are applicable to Bayesian
parametric modeling more generally.
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topological space. So dQ(·) is a measure on a topological space.56 It is not obvious to me

that the right way to respond to Belot is to say that he is switching from measure theory to

topology, thereby undermining the whole field of statistics by calling into question the strong

law of large numbers. In fact, within Bayesian non-parametrics measures on topological

spaces are routinely used. My own tentative view is that Belot is drawing attention to a

limitation on the scope of Bayesian statistical consistency results. His point, I take it, is that

the a priori restriction of measures on F to subclasses of parametric models that guarantee

statistical consistency by assigning all other classes dQ(·)-measure 0 is a huge restriction.

The complement of the class of parametric models that results from the a priori restriction

is residual in F , although the a priori restriction declares it dQ(·)-negligible. Perhaps Belot

is correct.57

But it does not follow that Bayesians are not humble. The message I take away is different.

It is the message that it is difficult to show, as a coherent Bayesian, that one is statistically

consistent because the modeling assumptions in specifying Q for a given problem are, where

justified, pragmatic and context-dependent.58 This is humbling and it is what I take to

underscore the difficulty of addressing the probativist criticism within a coherent Bayesian

framework.

2.6 Is there hope?

The answer to the question in the title of this section depends on one’s takeaway from the

connection I have drawn between Belot results and the probativist criticism. One takeaway

could be to say that the challenge raised by the probativist criticism is to find prior measures

56For a rigorous discussion of measures on topological spaces see Bogachev (1998, Ch. 5).
57See Ghosal and van der Vaart (2017, 5 – 9, and §§6.1 and 6.3) and compare with the discussion in Cosma

Shalizi’s blog post from 2023 available here: http://bactra.org/notebooks/bayesian-consistency.
html.

58Compare with Morey, Romeijn, and Rouder (2016, 9 – 10).
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dQ on F that are consistent except on the dQ-negligible sets. In this non-parametric setting,

as discussed by Diaconis and Freedman (1986), the class of tail-free and Dirichlet priors can

be used. In parametric settings, some subjective Bayesians have argued intersubjective

merging of opinions based on weak-star convergence is equivalent to statistical consistency.

This is theorem 3 in Diaconis and Freedman (1986).59

Another takeaway could be to say that the challenge raised by the probativist criticism,

especially in parametric settings, is to exercise prudence with regard to the possibility of

error. I believe that this is how Mayo would want us to understand the minimal requirement

for severity. Recall the question from Mayo (2018, 228):

How do I criticize your prior degrees of belief? [I]f we are not trying to model

opinions, but instead insist on meeting requirements for objective scrutiny? For

these goals, inner coherence or consistency among your beliefs is not enough.

One can be consistently wrong, as everyone knows (or should know).

On this way of seeing things, Box (1980) recommended using marginal p-values to assess the

prior distribution. Rubin (1984) and Gelman, Meng, and Stern (1996) introduced posterior

predictive p-values that could be used for model assessment as well. The main drawback of

these checks on “error” is that prima facie these measures “violate” the Likelihood Principle.

For this reason, coherent Bayesians like Haaf, Klaasen, and Rouder (2021) advocate the

specification-first principle in their comparative study of Bayes Factors and posterior predic-

tive assessments.60 Whether the checks based on Bayesian p-values are genuine violations or

simply a failure to apply the Likelihood Principle to certain problems is part of the topic in

Mwakima (2024c). Adjudicating on these proposals would be a fruitful way to drive forward

the conversation.
59See also Huttegger (2015a), Huttegger (2015b) and Huttegger (2017, Ch. 8) for discussions on merging

of opinions in variational distance, which underly the Blackwell-Dubins merging results.
60Compare with Draper (1995), Draper’s discussion in the Gelman, Meng, and Stern (1996) paper, Draper

(2006) and Vanpaemel (2010).
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2.7 Conclusion

Many within the applied Bayesian statistical community have proposed eclectic unifications

between the best of two worlds — fundamentally sound Bayesian methods in statistics and

sampling theory methods in statistics (sometimes referred to as classical methods in statistics,

which include Mayo’s error-statistics based on severity) — in order to address the debate

around the possibility of probative foundations for Bayesian statistics. In this paper, my

main contribution has been to bring de Finetti into this debate in order to illuminate some

of the issues. After all, his work had a formative influence on “the received view” that is being

rejected by this community. I have argued that doing so is fruitful for two reasons. First,

from de Finetti we get unifications without the dualism between subjective probabilities and

objective probabilities (understood as limits of relative frequencies). Second, from de Finetti

we have principles (that a coherent Bayesian would accept), which show that the probativist

criticism is a genuinely humbling problem.
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Chapter 3

On the Scope of the Likelihood

Principle

3.1 Introduction

The protracted controversies in statistical practice depend, for the most part, on what one

accepts as fundamental principles of correct statistical inference.1 One such principle is the

Likelihood Principle, which was first isolated by Barnard and Feber (1947) and Barnard

(1949) from ideas that trace back to Fisher’s pioneering work from the 1920s and 30s on

parameter estimation.2 This principle states that parametric inference within a statistical

model should be based on the equivalence class of functions of the parameter in which the

data is fixed (this class of functions is also called the likelihood function). In the next section

I say more precisely what I mean by a statistical model and what the relevant equivalence

relation that determines the equivalence class is. Call two or more experiments with fixed

1See Cox and Hinkley (1974, 36 – 58), Box (1982), Robins and Wasserman (2000) and Mayo (2018, §1.5
and §4.4).

2See especially Fisher (1922), Fisher (1925) and Fisher (1934).
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data likelihood equivalent experiments just in case they have likelihood functions in the same

equivalence class. The rough content of the Likelihood Principle is that the same parametric

inference should be made from likelihood equivalent experiments.

To illustrate the idea, consider the following data from a coin tossing experiment:

x = ⟨T, H, T, T, H, H, T, H, H, H⟩

The general problem of parametric inference is to model the data-generating process suitably

and to use the data to make inferences about the parameters of this process, which we denote

as θ. Asked the question, “Will your parametric inference after seeing x depend on how the

10 coin tosses were obtained?”, some people will answer, “No, the data is what it is.”3 To

see why other people would answer, “Yes”; imagine that the data could have been observed

following any one of the following four experiments (we don’t know which):

• E1: Toss the coin exactly 10 times;

• E2: Continue tossing until 6 heads appear;

• E3: Continue tossing until 3 consecutive heads appear;

• E4: Continue tossing until the accumulated number of heads exceeds that of tails by

exactly 2.

Those who answer “Yes”, often think that even though all of these four experiments can

lead to the same data (6 heads and 4 tails); they have different sample spaces.4 The sample
3Let me disambiguate a few things. Here the “how” question refers to the description of the coin tossing

experiment, which determines a statistical model. The “how” question does not just refer to the stopping
rule, which is a protocol for determining when a sequential experiment should end. The “No” answer is
plausible because it can be shown, mathematically, that there are statistical models — those with equivalent
minimal sufficient statistics — such that the description of the experimental set up (specifically the sample
space) is irrelevant for parametric inference once the data has been obtained.

4It is sometimes claimed that these experiments are different because they are sequential experiments
with different stopping rules. I do not like this way of motivating the Likelihood Principle because it suggests
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space in E1 is bounded, while the sample spaces for E2, E3 and E4 are unbounded. For

this reason, the right statistical model for E1 is a Binomial model, while the right statistical

model for E2 is Negative Binomial. The sample spaces for E3 and E4 are more complex

than the sample spaces for the previous two experiments because they involve sequences of

coin flips until a specific pattern is achieved. If you still think that the sample space does

not matter for “correct” parametric inference about θ for fixed data x, then you accept the

Likelihood Principle.

What is controversial within statistical circles is that if one accepts the Likelihood Principle,

it is alleged that a lot of seemingly reasonable considerations become irrelevant for parametric

inference. For example, the following components of some approaches to parametric inference

are, according to (Basu, 1975, 16), inconsistent with the Likelihood Principle. The reason is

that each of these quantities (which are mathematical expectations) will vary depending on

the sample space even for any two or more experiments that are likelihood equivalent.

• Bias and standard error of point estimates

• Probabilities of the two kinds of errors for a test

• The confidence coefficients associated with interval estimates

One controversial consequence of the Likelihood Principle’s disregard for the relevance of the

sample space is what has come to be known as “The Stopping Rule Principle” (Berger and

Wolpert, 1988, 76).

The Stopping Rule Principle

that the issues raised by this principle only have to do with sequential experiments. However, motivating
the Likelihood Principle in terms of the irrelevance of sample spaces generalizes the issues to descriptions
of experiments in general. This is why the Stopping Rule Principle is a consequence, or special case, of the
Likelihood Principle (see a statement of the Stopping Rule Principle below).
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In a sequential experiment with observed final data x = (x1, x2, . . . , xn), the information

from the experiment should not depend on the stopping rule.5

During a famous discussion, Leonard Savage, one of the pioneers of Bayesian statistics, once

remarked (see Barnard and Cox (1962, 76)):

I learned the stopping-rule principle from Professor Barnard, in conversation in

the summer of 1952. Frankly, I then thought it a scandal that anyone in the

profession could advance an idea so patently wrong, even as today I can scarcely

believe that some people resist an idea so patently right.

The resistance lives on.6 But so does a defense.7 Much ink has been spilled on the validity and

the scope of the Likelihood Principle both formally in peer-reviewed journals and published

books; as well as informally on internet blogs and discussion forums hosted by Deborah Mayo

and Andrew Gelman.8 Such opposition to the Likelihood Principle is fueled in large part by

the fact that this principle curtails a significant part of the practice of present day statistics

known as sampling theory.9

5This the exact statement of this principle by these authors. My own view is that the phrase “informa-
tion” should be replaced with “inference made” because “information” is puzzling. Further, the statement of
this principle assumes that the stopping rule is noninformative, which means that the stopping rule statis-
tic is ancillary for the main parameter(s) of interest from the experiment (see section 3 for discussion of
ancillarity).

6For a recent discussion see Fletcher (2019), de Heide and Grünwald (2021), and Fletcher (2024).
7See Rouder (2014), Rouder and Haaf (2019) and compare with and Hendriksen, de Heide, and Grünwald

(2021).
8See Birnbaum (1962) (with discussion), Barnard and Cox (1962), Barnard, Jenkins, and Winsten (1962),

Basu (1964) Durbin (1970) (with discussion), Birnbaum (1972), Kalbfleisch (1975) (with discussion), Basu
(1975), Berger (1984a), Hill (1987) and Berger and Wolpert (1988) (with discussion), Bjørnstad (1996), Mayo
and Kruse (2001), Mayo (2014) (with discussion) and Gandenberger (2015).

9This term should not be confused with the study of experimental designs or sampling techniques for
collecting data from a population. The term ‘sampling theory’ (also used by Box (1980), Box (1982) and
Cox and Hinkley (1974)) is simply a useful contrasting term to coherent Bayesian methods in statistics. One
reason for my preference is that it does not necessarily assume that every sampling theorist is committed to
the limit of relative frequencies interpretation of probability (even though many are).
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Sampling theory uses both exact and asymptotic sampling distributions of statistics to per-

form parametric inference. Sampling theorists rely on a different principle — the Repeated

Sampling Principle — to justify their procedures in opposition to the strictures imposed by

the Likelihood Principle.10

The Repeated Sampling Principle

Statistical procedures are to be assessed by their behavior in hypothetical repetitions under the

same conditions; measures of uncertainty are to be interpreted as hypothetical frequencies in

long run repetitions; and criteria of optimality are to be formulated in terms of behavior in

hypothetical repetitions.

Bracketing the extreme behaviorist/performance language and the commitment to the limit

of relative frequencies interpretation of probability, here’s how I charitably read this principle:

the Repeated Sampling Principle uses optimality criteria based on sampling distributions to

calibrate the risk of various methods and decision procedures for making statistical inference.

For example, Neyman-Pearson hypothesis testing involves probing statistical models to de-

termine fit or compatibility with the data based on optimal values, which are called the size

and power of a test, of suitably selected risk functions. Mayo and Spanos use the severity

function to extend the probing capacities of sampling theory. Bootstrapping methods in sta-

tistical inference also rely on sampling theory. Finally, Conditional Bayes, Frequentist Bayes

and Pragmatic Bayesians involve pragmatic unifications of sampling theory and Bayesian

methods in statistics. In fact, if one would want to calibrate Bayes Factors, one would need

to address the scope of the Likelihood Principle and to consider supplementing it in some

way using ideas from sampling theory.11

10See Cox and Hinkley (1974, 45) and Reid and Cox (2015).
11See section 3.3.1 below for my discussion of why one would want to do this. It is an open question

whether one can do this and whether it is appropriate.
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What is interesting philosophically is whether the scope of the Likelihood Principle extends to

these practices of sampling theorists. If one takes the position that the scope of the Likelihood

Principle is wide enough to include all the different kinds of parametric inference (point

estimation, interval estimation, model criticism and model comparison), then the practices

of sampling theorists constitute violations of the Likelihood Principle.12 Such a violation is

“a bad thing” in the sense that it is decision-theoretically incoherent (or inadmissible) to

contradict the Likelihood Principle.13 However, one can take a different position and say that

the scope of the Likelihood Principle is much narrower. In the narrower scope case, some

of these practices of sampling theorists are not in violation of the Likelihood Principle —

the Likelihood Principle simply doesn’t apply. Trying to restrict the scope of the Likelihood

Principle along these lines has been suggested by several prominent statisticians.14 However,

what we lack from these practitioners are arguments and a clear analysis for: (1) why

imposing some kind of restriction is desirable; and (2) how cases of “violations” can be

distinguished from cases of “failures to apply”. Here’s how Mayo (2018, 303) puts it (LP in

her text is an abbreviation of the Likelihood Principle):

Another little puzzle arises in telling what’s true about the LP: Is the LP violated

or simply inapplicable in secondary testing of model assumptions[?] For them

[Casella and Berger], it appears, the LP is full out violated in model checking.

I’m not sure how much turns on whether the LP is regarded as violated or merely

inapplicable in testing assumptions; a question arises in either case.

12I distinguish these kinds of parametric inference in the next section. My discussion of the Likelihood
Principle is in the context of just parametric inference (as opposed to non-parametric inference) because in
parametric inference, the concept of a likelihood function is well-understood — the parameter space is finite-
dimensional, for example. Moreover, the issues that animate the debate regarding the scope and applicability
of the Likelihood Principle arise mainly in parametric contexts.

13See Berger (1983). In the ensuing discussion of this paper, Berger agreed with Bernardo that there
are contexts in which the principle doesn’t apply. So even then, the scope of Berger’s result required some
qualification. See section 3.3.1 below for more on this.

14See Fisher (1956, 49), Barnard and McLaren in the comments of Kalbfleisch (1975), Box (1982),
Bernardo and Berger in the discussion of Berger (1983) and Casella and Berger (2002), who are also discussed
by Mayo (2018, 302ff.).
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My main contribution in this paper is to remove the sort of puzzle or uncertainty Mayo is

alluding to and to provide the missing arguments and clarifying philosophical analysis. I

will argue that the Likelihood Principle is essentially a dimension reduction principle that

only applies to problems of point estimation. If likelihood equivalent experiments lead to

different values of point estimates, this is a violation of the Likelihood Principle. The Like-

lihood Principle does not apply to parametric inferences that involve evaluating procedures

in accordance with the Repeated Sampling Principle.

Here’s how I have organized the rest of my paper. In the next section I give a preliminary

overview of the key mathematical concepts that underlie the formulation of “the” Likelihood

Principle.15 Originally introduced by Fisher, these are the concepts of likelihood, sufficiency,

ancillarity and efficiency. In section 3.3, I discuss what reasons there are for a coherent

Bayesian and a sampling theorist to want the kind of scope restriction I am arguing for. In

section 3.4, I present my two arguments for restricting the scope: one argument is against

formalism; the other argument is based on reinterpreting the Conditionality Principle in a

way that I believe is consistent with Fisher’s original goal for introducing the concept of

ancillarity.16 The goal can be put this way: knowledge of the experiment that was actually

performed is an ancillary statistic, which, conditioning upon, can improve the efficiency of

point estimators. In section 3.5 I discuss the advantages of the kind of restriction I advocate

for. I conclude in section 3.7 after considering a number of objections and replying to them

in section 3.6.

15The word ‘the’ is in scare-quotes because it is hard to find a consensus view on, or a univocal statement
of, the scope of the Likelihood Principle (see some of the statements I select below). Given this difficulty, the
overview I provide in the next section can be read as my way of getting at the precise mathematical content
of this principle (and what is entailed by it). The discussion here will allow me to contrast my account with
the Formal Likelihood Principle, which I blame for the conflicts within statistics and its philosophy.

16The Conditionality Principle states that parametric inference (in a mixed experiment, for example)
should be conditional on the actual experiment that was performed. This statement of this principle comes
from Cox and Hinkley (1974, 38)’s influential text, where it is a normative principle rather than an evidential
equivalence principle.
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3.2 Preliminaries

3.2.1 The Likelihood Function

Parametric inference starts with a statistical model M = {f(· ; θ) |θ ∈ Θ}, which is a class

of probability distributions (each of which is identified by the value of θ it takes) for random

variables X = (X1, X2, . . . , Xn). θ is called a parameter and takes values in Θ ⊂ Rd, the

parameter space. The Xi (i = 1, . . . , n) take values in a sample space X , which can be

discrete (e.g., non-negative integers (finite or infinite)) or continuous (e.g., real valued). For

a realization X = x (called the data), the goal of parametric inference is to use the data

to identify the value of θ such that f(x;θ) is a probabilistic description of the process that

led to the data x. With this goal in mind, let me distinguish the following problems of

parametric inference:

1. Given a model M, find an estimate θ̂ of θ using a point estimator T (x) according to

some optimality criteria. (This is the problem of point estimation.)

2. Given a model M and {θ0} ⊂ θ as the one-dimensional parameter of interest, find

an interval estimator (L(x), U(x)) that according to some optimality criteria probably

covers θ0.17(This is the problem of interval estimation.)

3. Given a model M, use a statistic T (x) to probe the adequacy of a distribution

f(T (x);θ) in M according to some optimality criteria. (This is the problem of model

criticism or model assessment.)

4. Given two or more specified models, use statistics to make comparisons among them

according to some comparative measure of evidence. (This is the problem of model

comparison.)
17Here L(x) and U(x) are, respectively, the lower bound and upper bound of the interval estimator for

θ0 and are functions of the data. The one-dimensional dimensional case, like the one I have described for
estimating θ0, generalizes to regional/set estimators in higher dimensions.
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For some model M and for a fixed value of x, progress on solving these problems can be

made by conceptualizing f(x;θ) as a function of θ alone and by analysing how f(x;θ)

varies within Θ. This conceptualization leads to the concept of what Fisher (1922) called

the likelihood or Likelihood Function, which I will denote by L(θ;x) to emphasize that it is

a function of θ for data x that is fixed. If X is a sequence of (conditionally) independent

and identically distributed (i.i.d.) random variables,

L(θ;x) =
n∏

i=1

f(xi;θ) (3.1)

Equation (3.1) says that the Likelihood Function for (conditionally) i.i.d. data returns the

value of the joint probability distribution of the fixed data x as a function of θ. The log

likelihood function ℓ(θ;x) is

ℓ(θ;x) =
n∑

i=1

log(f(xi;θ)) (3.2)

.

One optimality criterion for solving the problem of point estimation is to find an θ̂ such that

for fixed x, the value of ℓ(θ;x) is at least locally the highest. We know from optimization

problems in calculus that the first and second order derivatives of a function are important

for finding and for characterizing the local extrema (i.e., local maximum and local minimum

values) of many functions. So, in the case of problems of point estimation, one way of

finding optimal values (called maximum likelihood estimates by Fisher) is to consider the

gradient of ℓ(θ;x) (or first order derivatives of ℓ(θ;x)) and the Hessian of ℓ(θ;x) (or second

order derivatives of ℓ(θ;x)). This suggests that in problems of point estimation, any part of

ℓ(θ;x) that is free of θ can be treated as a constant function when taking partial derivatives,

which implies that its first and second order derivatives are zero. It is for this reason that
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we are interested in L(θ;x) up to a multiplicative constant function that is free of θ.18 Let

g(y;θ) from a model M′ with the same parameter space as the model M be the probabilistic

description of a process that led to data y. Define the equivalence relation ∼ by:

L(θ;x) ∼ L′(θ;y)⇐⇒f(x;θ) = c(x,y)g(y;θ) (3.3)

Equation (3.3) says that two likelihood functions (one with fixed data x and the other

with fixed data y), from possibly different models but with the same parameter space, are

equivalent if and only if their ratio is a constant function of x and y, i.e., free of θ. This is

what it means to say that in the context of parametric inference the likelihood function is

an equivalence class of functions of θ with fixed data.

3.2.2 Sufficiency, Efficiency and Ancillarity

The discussion I give in this section of some of the technical notions is aimed at a philosophical

audience. Specialists who consult Casella and Berger (2002) may find that my discussion

deviates a bit from this standard reference in mathematical statistics. Let me say something

about this. First, I have used an equally influential text — Cox and Hinkley (1974) —

and compared the definitions of these concepts there to those found in Casella and Berger

(2002) and Fisher (1925, §§2, 9). Second, what I am doing here constitutes a significant

improvement in philosophical analysis of these concepts (especially on the relation between

sufficiency, ancillarity and efficiency) compared to the analysis of Casella and Berger (2002,

§§6.2.3 – 6.2.4). They write, “paradoxically, an ancillary statistic, when used in conjunction

18Some readers will recognize that this is a consequence of the elementary fact that the extrema of a
function are exactly the extrema of its (positive) scalar multiples. I am going through the calculational
aspects for the following reasons. First, it is often not stated by many authors why the likelihood function
for θ is defined up to multiplication by a constant function that is free of θ. Second, the calculational aspects
show how or why this definition arises naturally within the context of optimization problems involving point
estimation.
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with other statistics, sometimes does contain valuable information for inferences about θ.”

Why they think this is “paradoxical” is unclear to me. My analysis brings out the intuition

behind Fisher’s choices of these specific labels for the concepts he introduced in his papers

from the 1920s and 30s — there is nothing paradoxical about them. In fact, the labels are

quite suggestive of the ideas they capture.

To begin with, these concepts emerged for Fisher in the context is finite sampling, rather

than asymptotics, where the sample size is allowed to go to infinity. This is small sample

parametric inference. Small sample parametric inference (even with big data) is what finitely

resourced individuals and machines are realistically capable of. It proceeds via dimension

reduction and optimization.19 The sense of “reduction” implied here is reducing the number

of dimensions of points in the sample space by partitioning the sample space into equivalence

classes of lower dimension than the original points using a statistic T (x).

For example, suppose the goal is to model the data-generating process of a sequence of three

coin tosses. Here the Binomial family of probability distributions f(· ;θ) = Bin(n = 3, θ) is

a suitable model. Parametric inference is about θ = θ with Θ = [0, 1]. The sample space is

the set of all possible 3-dimensional sequences of heads and tails. The statistic T (x), which

counts the number of heads, generates one-dimensional equivalence classes.

Here’s another example. Suppose that the goal is to model the data-generating process of

a sequence x = (x1, x2, . . . , xn) (say measurements) of a continuous random variable X.

Here the Normal family of probability distributions f(· ;θ) = N(µ, σ2) is a suitable model.

Parametric inference is about θ = (µ, σ2) with Θ = R × R+. The sample space is the set

of all possible n-dimensional sequences in Rn. But the statistic T (x) =
∑n

i=1 xi

n
= x, the

mean, generates equivalence classes in R, which are one-dimensional statistics or estimators

for µ. At the same time, T ′(x) =
∑n

i=1(xi−x)2

n−1
= s2, the estimated unbiased sample variance,

generates equivalence classes of one-dimensional estimators for σ2.

19Dimension reduction is sometimes called data reduction or summarization.
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Since there are infinitely many statistics that one can use as estimators for θ, are there opti-

mality criteria for selecting these estimators? Fisher in his seminal papers from the 1920s and

30s considered some criteria which included sufficiency, ancillarity, consistency, efficiency,

invariance and so on as optimal properties that an ideal estimator should possess. For the

proof of the Likelihood Principle that Birnbaum gave, the key properties are sufficiency and

ancillarity. Although, as we shall see in section 3.4.2. below, efficiency is important for

restricting the scope of the Likelihood Principle to problems of point estimation.

For ease of notation and for the sake of illustrating the main ideas I will switch from boldface

θ to θ to indicate that I am looking at estimating just one parameter in θ — the parameter

of interest. If θ is multi-dimensional, the rest of the parameters are nuisance parameters. A

statistic T (x) is sufficient for estimating θ if provided you know T (x) = t you don’t need

any other statistic T ′(x) to estimate θ accurately or with precision.

Prima facie, this qualitative rendering of sufficiency depends on the epistemic position of the

agent considering it, which is not a notion that plays a role in sampling theory. So, why am

I talking in terms of “accuracy” and “precision”? The answer has to do with the relationship

between the variance of T (x), its precision and Fisher Information, I(θ). Under suitable

regularity conditions (see Miscellanea 10.6.2 in Casella and Berger (2002, 516)), I(θ) from

one observation X = x is defined by:

I(θ) =def Var
(
∂ℓ(θ;x)

∂θ

)
= E

[(
∂ℓ(θ;x)

∂θ

)2]

and is computed using:

I(θ) = E
[
− ∂2ℓ(θ;x)

∂θ2

]
.
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For a random sample x = (x1, x2, . . . , xn) of size n, the observed Fisher Information is nI(θ).

Under suitable regularity conditions, the Cramér-Rao Inequality says that:

Var(T (x)) ≥
(

d
dθ
E[T (x)]

)2
nI(θ)

.

Let T (x) be an unbiased estimator for θ (in this case d
dθ
E[T (x)] = 1), then T (x) is an

efficient estimator of θ if and only if

Var(T (x)) = 1

nI(θ)
.

But 1
Var(T (x))

is called the precision, especially within Bayesian statistics. This means that

the accuracy of an estimate θ̂ improves with the precision of an unbiased estimator T (x) of θ.

This is why I am discussing the concept of sufficiency in terms of accurate point estimation.

In order to tie further the discussion in the previous paragraph to sufficient statistics I need

the following facts:

(1) The whole sample x = (x1, x2, . . . , xn) is a sufficient statistic.

(2) A one-to-one function of a sufficient statistic is a sufficient statistic.

(3) The set of order statistics of a sample is sufficient.20

These facts imply that many other sufficient statistics exist provided one exists. Within the

class of sufficient statistics, a minimal sufficient statistic is a sufficient statistic such that no

further dimensional reduction is possible from it without loss of precision. Some facts about

minimal sufficient statistics are:

20The set of ordered statistics is indeed the whole sample. But the whole sample need not be ordered.
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(1) T (x) is a minimal sufficient statistic if for any sufficient statistic S(x), T (x) is a

function of S(x).

(2) The likelihood function is minimal sufficient.

Fact (2) about minimal sufficient statistics underlies what is known as the Sufficiency Prin-

ciple in Birnbaum’s proof. Mayo (2014) identifies the Sufficiency Principle with what Cox

and Hinkley (1974) call the Weak Likelihood Principle. This principle is generally accepted

by many statisticians, hence the non-threatening moniker. Minimal sufficient statistics can

be found for the (linear) exponential models, which include most of the models that one

encounters in practice, e.g., Normal models (for continuous random variables), Binomial

models and Poisson models (for discrete random variables); and the models they are derived

from (as special cases) or which are derived from them. They are a small class of models

but which, in practice, we can get by with in most applications. For example, the number of

heads is a sufficient statistic for θ in the Binomial family of probability distributions in the

coin tossing example. The sample mean x in the Normal family of probability distributions

is a sufficient statistic for µ.

Let T (x) be a sufficient statistic based on a sample x, then the following statements are

equivalent:

(1) f(x |T (x), θ) and does not depend on θ.

(2) L(θ;x) = f(x | θ) can be expressed as c(x)g(T (x), θ).

(3) ℓ(θ;T (x)) = logL(θ;T (x)) is a minimal sufficient statistic.

(4) T (x) and x have the same value of the observed Fisher Information.

The utility of sufficient statistics is underscored by statement (4), which explains Fisher’s

development of sufficient statistics, and his argument for using them, before the factorization
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theorem method (statement (2) above) for finding sufficient statistics attributed to either

Neyman or Halmos and Savage (1949). What Fisher realized is that with a minimal sufficient

statistic you don’t need (in particular) the whole sample x = (x1, x2, . . . , xn) as an additional

statistic to make an accurate estimate of θ.21 The sufficient statistic is just as good as the

whole sample, in terms of accurate estimation. The sense of “import” or “inference” or

“computation” we shall see in subsequent parts of my paper have a precise mathematical

meaning — accurate point estimation; or as Fisher would say, with efficiency or “without loss

of information” (I will use this as a point to criticize the formal statements of the Likelihood

Principle). In summary, no information or accuracy is lost in our estimate of θ if we use a

sufficient statistic for θ in the process of dimensionally reducing the data.

Related to sufficiency and efficiency is the concept of ancillarity. Suppose that the unknown

parameter Ω is partitioned into two parts Ω = (θ, λ), where λ is a nuisance parameter. Let

T be the minimal sufficient statistic for Ω and suppose that T = (S,A) where:

(1) The marginal distribution of A depends on λ but is free of θ;

(2) The conditional distribution of S given A = a depends on θ but not on λ for every a;

then A is ancillary for θ and S is said to be conditionally sufficient in the presence of

nuisance parameter λ. For example, suppose Xi ∼ N(µ, σ2) for i = 1, . . . , n. T = (x, s2)

is minimal sufficient for Ω = (µ, σ2), the marginal distribution of s2 is free of µ; and for

every value of s2, the conditional distribution of x depends on µ alone. For another example,

suppose that X is equally likely to be distributed as N(µ, σ2
1) or N(µ, σ2

2) where σ2
1 and

σ2
2 are different but known. Let C be an indicator variable for the variance that takes the

value 1 or 2 depending on whether X follows the first or second distribution, respectively.

Then T = (x, c) is minimal sufficient for (µ, σ2
c ). The marginal distribution of C, i.e., P(C

= 1) = P(C = 2) = 0.5, is free of µ and for every c the conditional distribution of X given
21See especially Fisher (1925, 713).
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C = c depends on µ alone provided σ2
1 and σ2

2 are known. This last example illustrates that

the role of ancillary statistics is that they encourage a conditional approach to parametric

inference.22 I return to this in section 3.4.2.

3.3 Why Restrict the Scope?

With these preliminaries, I can now take up the question that marks the title of this section.

The reasons for restricting the scope will be different for coherent Bayesians and sampling

theorists. So I discuss them in turn, starting with coherent Bayesians.

3.3.1 For a coherent Bayesian

You would think that a coherent Bayesian would have no reason to restrict the scope of the

Likelihood Principle to problems of point estimation. After all, if L(θ;x) ∼ L′(θ;y), then

p(θ |x) = f(x | θ)π(θ)∫
f(x | θ)π(θ)

=
c(x,y)g(y | θ)π(θ)
c(x,y)

∫
g(y | θ)π(θ)

=
g(y | θ)π(θ)∫
g(y | θ)π(θ)

= p(θ |y).

The above identity shows that likelihood equivalence implies identical posterior distributions

(provided the priors on the parameters match). For example, f(x;θ) could be a sampling

model for E1 (“Toss the coin exactly 10 times.”) and g(y;θ) could be a sampling model

for E4 (“Continue tossing until the accumulated number of heads exceeds that of tails by
22For excellent discussions of conditional inferences in statistics and their relation to ancillary statistics

see Reid (1995), Sundberg (2003) and Ghosh, Reid, and Fraser (2010).
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exactly 2.”). Since the experiments are likelihood equivalent, it would make no difference for

a coherent Bayesian with the same priors on θ in both experiments. The identity shows that

the reason for this is that for a Bayesian every kind of parametric inference proceeds via the

posterior distribution. There is therefore nothing to be gained from restricting the scope of

the Likelihood Principle to problems of point estimation.23 It is a virtue of the Bayesian

framework that no such restriction is required. So, why am I arguing for a restriction?

The first reason has to do with instrumentally calibrating Bayes Factors.24 Granted that

Bayes Factors are interpretable as the relative predictive accuracy of our models; and that

there are guidelines based a scale given by Jeffreys (1961) for how to interpret the magnitude

of a Bayes Factor, many scientists and Federal Agencies do not find Bayes Factors useful for

science because Bayes Factors are not instrumentally calibrated.25 In order to instrumentally

calibrate Bayes Factors one would need: (1) to address the question of what it means to say

that a given Bayes Factor is “large” — this is a question of finding a shared objective scale;

and (2) to quantify how often a given value of Bayes Factor is expected to occur with a given

set of statistical models due to sampling variability — this is accounting for error.26

Instrumentally calibrating Bayes Factors by accounting for error is related to the problem

raised by Mayo (2018, 30 – 32) and in the discussion following O’Hagan (1995)’s paper

that Bayes Factors can be used to find evidence for a “wrong” model. According to Mayo,

comparative measures of evidence, such as Likelihood Ratios and Bayes Factors, face (at least

from a methodological perspective, if not in practice) the problem of Gellerized Hypotheses.27

One can show that a Gellerized alternative hypothesis H1 always exists for any H0 (that is

23Robert (2007, 7) articulates a position like this — pointing out the artificiality of the kinds of distinctions
I am making. See section 3.6 for my response to the artificiality objection.

24The varieties of calibration are discussed in Mwakima (2024a).
25See Kass and Raftery (1995) for the view that Jeffrey’s scale is not a calibration of Bayes Factors.
26For the history behind the approaches to accounting for error due to sampling variability that motivates

the techniques for calibration in Neyman-Pearson hypothesis testing based on sampling theory, see Mwakima
(2024d).

27So named after Uri Geller the illusionist who claimed (among other things) that his explanation for
bending iPhones using the power of his mind had the highest likelihood!
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not itself a Gellerized hypothesis for the data x at hand).28 In practice, the way to get

around a Gellerized Hypothesis, which technically speaking is just a saturated model with no

dimensional reduction, is to consider alternative measures of evidence such as the Deviance

Information Criterion (DIC), the Wanatabe-Akaike Information Criterion (WAIC) or the

Bayesian Information Criterion (BIC), which score overfitted models (of the saturated kind)

poorly.29 Such measures, have the additional benefit of having, at least asymptotically, a

known sampling distribution (a χ2 distribution with certain degrees of freedom) that can be

used to provide a shared or objective scale — usually a deviance scale — and to account for

error due to sampling variability. However, a coherent Bayesian is not allowed, as a matter

of principle, to consider the sampling distribution of a statistic because of the wide scope

given to the Likelihood Principle! This is why a coherent Bayesian may want to reconsider

the scope of the Likelihood Principle.

Other reasons for a coherent Bayesian to restrict the scope of the Likelihood Principle are

based on what works in practice not what looks good philosophically. Prominent Bayesian

statisticians such as Andrew Gelman, recognizing the straightjacket the Likelihood Principle

places him and others in, argued, in a blog post titled “It is not necessary that Bayesian

methods conform to the Likelihood Principle” that there is more to Bayesian methods in

statistics than inference.30 According to Gelman, Bayesian methods include: (1) model

specification, (2) conditional inference based on the models specified and the data (where

the Likelihood Principle applies) and more importantly (3) model assessment. Gelman’s

target in his arguments are those people who confine Bayesian methods to (2), where the

Likelihood Principle applies. For Gelman, model assessment is an important part of the

practice of using Bayesian methods in statistics. But with the exception of robustness

28Witness a H1 that has been post-designated or concocted to fit the data perfectly in such a way that
likelihood ratio or Bayes Factor in its favor is maximal.

29The BIC is particularly attractive because it can be derived as an asymptotic approximation of a Bayes
Factor. It also has the advantage of not depending on the prior and in some cases (with nested models,
especially), it has “nice frequentist properties”, i.e., it is instrumentally calibrated.

30See https://rb.gy/44nvtt (Retrieved on January 2024).
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checks on priors, it is alleged that all the proposed model assessment techniques mentioned

in the previous paragraph including his preferred posterior predictive checks “violate” the

Likelihood Principle.31 It is for this reason that he chose the title of this blog post to be

what it is. Other Bayesian statisticians are sympathetic with Gelman. Here’s how James

Berger put it, in his influential book on statistical decision theory:

A good Bayesian analysis may sometimes require a slight violation of the Like-

lihood Principle, in attempting to protect against the uncertainties in the spec-

ification of the prior distribution [...] analysis compatible with the Likelihood

Principle is an ideal towards which we should strive, but an ideal which is not

always completely attainable. (Berger, 1985, 33)

Recognizing that the Likelihood Principle is an ideal on paper but not in practice is one

way of providing some flexibility to a Bayesian statistician. But it is safer and better to say

that the Likelihood Principle doesn’t apply in model assessment than it is to say that the

Likelihood Principle is violated, for the simple reason that a principle is not violated where

it doesn’t apply. Also calling something “a violation” sounds sanctimonious. This is why

I am arguing that even for a coherent Bayesian it makes sense to reconsider the scope of

the Likelihood Principle — limiting the application of this principle to parametric inference

involving point estimation. A coherent Bayesian has nothing to lose and something to gain,

namely, the peace of mind of knowing they are not allowing even “slight violations”.

31See Christensen, Johnson, Branscum, and Hanson (2011, 83) and compare with Kadane and Lazar
(2004) and Vanpaemel (2010). Box (1980)’s marginal p-values to assess the prior distribution, Rubin (1984)
and Gelman, Meng, and Stern (1996)’s posterior predictive p-values are mathematical expectations over a
sample space. They violate the wide scope of the Likelihood Principle for this reason.
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3.3.2 For a sampling theorist

There are at least three reasons why a sampling theorist would want to restrict the scope of

the Likelihood Principle to problems of point estimation. A restriction:

(1) Avoids attributing to them an incoherent notion of evidence.

(2) Resolves a conflict with the Repeated Sampling Principle.

(3) Explains why a sampling theorist can accept the Sufficiency Principle and the Condi-

tionality Principle, yet reject the wide scope reading of the Likelihood Principle (even

though the Likelihood Principle is supposed to follow from the two former principles

by Birnbaum (1962)’s proof).

First, it avoids attributing an incoherent notion of evidence to them. The p-value, which

quantifies the attained level of significance, is the classical measure of evidence within a

sampling theory framework. However, because its value depends on the sample space of the

experiment, scenarios such as those captured by the following set of experiments are possible.

Scenario 1

1. Negative Binomial Model: Conduct an experiment with Bernoulli random variables

with a protocol to stop after 16 favorable outcomes.

2. Suppose the 16th favorable outcome occurs on the 24th Bernoulli trial.

3. P (n = 24) =
(
24−1
16−1

)
(0.5)16(0.5)8

4. Attained significance level (p-value) is 0.077.

Scenario 2
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1. Binomial Model: Conduct an experiment with Bernoulli random variables with 24

trials fixed in advance.

2. Suppose you obtain 16 favorable outcomes.

3. P (s = 16) =
(
24
16

)
(0.5)16(0.5)8

4. Attained significance level (p-value) is 0.032.

In each scenario, what is observed is a sequence of 16 favorable outcomes and 8 unfavorable

outcomes. Although the experiments are likelihood equivalent, the inference that can be

made in scenario 1 is different from the inference in scenario 2 because the p-values are

different. In scenario 1, the p-value of 0.077 is evidence that is consistent with θ = 0.5 at

the α = 0.05 level of significance. While in scenario 2, the p-value of 0.032 is evidence that

is incompatible with θ = 0.5 at the α = 0.05 level of significance.

Faced with such outcomes, there are two things one might say. On the one hand, one

might say that the p-value is simply an incoherent measure of evidence. It is incoherent

in the sense that it supports two different beliefs about θ = 0.5 even with the same set

of observations: 16 favorable outcomes and 8 unfavorable outcomes. On the other hand,

one might say that there is nothing incoherent about the p-value; instead, the Likelihood

Principle is the culprit. For by declaring sample spaces irrelevant, the principle leaves out

salient information that would impact our evaluation of evidence even in cases where the

experiments are likelihood equivalent.32 In other words, rather than saying that sampling

theorists’ measures of evidence are incoherent, a sampling theorist would want to say that

the Likelihood Principle should not apply to quantifying evidence.

The second reason why a sampling theorist may wish to restrict the scope of the Likelihood

Principle to problems of point estimation is that the wide scope reading conflicts with the

Repeated Sampling Principle. Consider the following puzzles.
32Mayo, for example, would say something like this. Compare with Fletcher (2024).
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1 2 3
f1(x1; θ = 0) 0.9 0.05 0.05
f1(x1; θ = 1) 0.09 0.055 0.855

LR 10 0.909 17.1

Table 3.1: Probability mass distributions under Model 1

1 2 3
f2(x2; θ = 0) 0.26 0.73 0.01
f2(x2; θ = 1) 0.026 0.803 0.171

LR 10 0.909 17.1

Table 3.2: Probability mass distributions under Model 2

Puzzle 1

This is a variation of an example in Berger and Wolpert (1988), which I find illuminating.

Assume X = {1, 2, 3} and Θ = {0, 1} and consider Model 1 and Model 2 which lead to the

probability mass distributions in Table (3.1) and Table (3.2), respectively. Since for a fixed

value of x and for all values of θ, the distributions in both models are proportional (the

proportionality factor equal to the Likelihood Ratio (LR)), the Likelihood Principle implies

that both models should lead to the same parametric inference about θ.

Now for Model 1, the uniformly most powerful test of size 0.1 is the test that rejects f1(x1; θ =

0) when x1 ∈ {2, 3}. The power of this test is 0.91. This seems like a reasonably optimal

procedure based on the Repeated Sampling Principle. But if Model 1 and Model 2 are

evidentially equivalent (by the Likelihood Principle), then we should use critical values x2 ∈

{2, 3} to reject f2(x2; θ = 0) as well. However, this would imply using a test with an

unreasonable size of 0.74. Therefore, since the same fixed observations would imply different

optimal test criteria, Model 1 and Model 2 cannot be said to lead to the “same parametric

inference” within the Neyman-Pearson hypothesis testing framework.
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Puzzle 2

This is a variation of an example in Cox and Hinkley (1974, 38). Fix a Normal model

N(µ, σ2) where σ2 is known. Construct an ancillary statistic A using σ2 and the outcome of

the toss of a fair coin as follows:

A =


σ2

n
if heads

σ2

kn
for an integer k > 1 if tails

Here n is the sample size. Since S =
∑n

i xi is sufficient for µ and A is ancillary for µ,

the Likelihood Principle implies that the parametric inference regarding µ from the mixed

experiment should be the same as the parametric inference from the component of it that was

actually performed conditional on A. You might say, “Of course. Why should parametric

inference about µ depend on what could have possibly been observed but wasn’t? If I

condition on the ancillary statistic, my inference should depend entirely on that.” It can be

shown, however, that since the standard errors for the different components of the mixed

experiment differ, the conclusions arrived at using optimal sampling theory Neyman-Pearson

hypothesis testing procedures and confidence interval estimators (based on the Repeated

Sampling Principle) will be different for the unconditional mixed experiment compared to

any of its components conditional on the value of A.

I believe these puzzles are not serious indictments of sampling theory approaches to statistical

inference. For when one looks at these examples, the puzzles only arise when one tries to

apply the Likelihood Principle to every kind of parametric inference. Writers like Berger and

Wolpert (1988) argue that since there are cases where sampling theory gives inequivalent

evidential conclusions where the Likelihood Principle prescribes an equivalence, the problem

must be with sampling theory. But a sampling theorist can hold on to the Repeated Sampling
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Principle by restricting the scope of the Likelihood Principle to problems of point estimation

to avoid these sorts of puzzles.

The final reason for restricting the scope of the Likelihood Principle is that doing so can make

sense of why many sampling theorists accept the Sufficiency Principle and the Conditionality

Principle while rejecting the Likelihood Principle on the wide scope reading. In his comments

on Lindley (2000, 330), Brad Efron, a sampling theorist writes:

The Likelihood Principle seems to be one of those ideas that is rigorously verifi-

able and yet wrong.

The rigorous verification alluded to here is the original proof by Birnbaum (1962) (which

was later improved upon in Birnbaum (1972)) that shows that the Likelihood Principle is a

consequence of two principles (The Sufficiency Principle and the Conditionality Principle),

which statisticians (both coherent Bayesians and sampling theorists) would consider plau-

sible. There are those (like Mayo and Kruse (2001) and Mayo (2014)) who seek to resist

Birnbaum’s proof by exposing a fallacy somewhere within it. Although I do not like the for-

malism (see section 3.4.1 below) with which it is presented, I do not believe there is anything

wrong with the proof itself.33 Sampling theorists, on the account I am proposing, can say that

they accept the Sufficiency and Conditionality Principles because these are principles that

apply to dimension reduction in the context of point estimation. The Sufficiency Principle

prescribes using a minimal sufficient statistic if it exists for accurate point estimation. The

Conditionality Principle says conditioning on an ancillary statistic can improve the efficiency

of your estimator (I return to say more about this in section 3.4.2). So a sampling theorist

can give an account of why she accepts these principles, and consequently a restricted scope

of the Likelihood Principle to problems of point estimation.

33Compare Gandenberger (2015).
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3.4 Arguments for Restricting the Scope

Given that there are reasons why a coherent Bayesian and a sampling theorist may wish to

restrict the scope of the Likelihood Principle, there are two independent arguments that

I want to give for why a restriction should be adopted. The first argument is against

formalism (in section 3.4.1). Using a series of examples, I argue that formal statements

of the Likelihood Principle fail to disambiguate between same inference, same information,

same decisions and same evidence. While the abstract formalism with which the Likelihood

Principle is sometimes stated may have the advantage of generality, it: (1) suffers from a

lack of precision; and (2) entails more than is warranted by the mathematical equivalence in

Equation (3.3). In contrast, this equivalence and what is entailed by it is well-defined in the

context of point estimation.

The second argument is based on Fisher’s notion of efficiency (in section 3.4.2). Discussions of

the Likelihood Principle (except perhaps Barnard, Jenkins, and Winsten (1962)) emphasize

the concepts of sufficiency and ancillarity. But for Fisher, there is an inseparable connection

between all three in the context of point estimation. I will argue that this kind of connection,

which I conjecture doesn’t arise in other kinds of parametric inference, offers compelling

reasons for restricting the scope of the Likelihood Principle to problems of point estimation.

3.4.1 Part 1: Against Formalism

Here are some statements of the Likelihood Principle which one finds in both the statistical

and philosophy of statistics literature. Edwards, Lindman, and Savage (1963, 237), who

attribute the principle to Barnard and Feber (1947) and Fisher (1956), write:
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Two possible experimental outcomes D and D′ — not necessarily of the same

experiment — have the same import if D and D′ have the same likelihood [func-

tion].

Edwards, Lindman, and Savage (1963) do not define what “same import” means here. Al-

though what they say about “experimental outcomes” having the same likelihood strongly

suggests that they are thinking about same parametric inference, it is unclear whether they

take a wide or narrow view of what is included within parametric inference. What they

say elsewhere in this paper indicates that “same import” can be read as “same (evidential)

conclusions.”

Now consider Lindley (1972):

If x1 and x2 are two data sets with the same likelihood function apart from a

multiplicative constant (that is p(x1|θ) = kp(x2|θ) for all θ ∈ Θ, where k does

not depend on θ), then inferences and decisions should be identical for x1 and

x2.

Here what “an identical inference and decision” is has not been defined.

While stating that the Likelihood Principle “inevitably appears to be rather obvious, and

certainly not worth getting exited about,” de Finetti (1974b, Ch. 12, 210f.) says of this

principle:

It simply states that the information available from any set of observations is

entirely contained in the corresponding likelihood function.

Although de Finetti downplays the significance of the Likelihood Principle, it is far from

obvious (to me at least) what “the information available” and what “is entirely contained
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in” means on his view.34 Further, the Likelihood Principle has certainly raised a furor despite

de Finetti’s brusque admonition against undue excitement. Here’s what the Encyclopedia

for Statistical Sciences entry on the Likelihood Principle says:

The Likelihood Principle asserts that for a given experiment E, the evidential

meaning of any outcome x, for inference regarding θ is contained in the likelihood

function determined by x. Hence all other features of the experiment, as, e.g.,

the sample space, are irrelevant.

This entry adds that the principle is incomplete since it does not say how the likelihood

function “determines the evidential meaning.” I concur with this and believe this to be an

important sticking point within foundational debates in statistics. I would also go further

than Joshi (who wrote this entry) and add that prominent statisticians and philosophers

of statistics disagree on precisely how to decide what is relevant or irrelevant for statistical

inference.

Following Birnbaum’s notation, James Berger at one time (Berger, 1984b) stated the Like-

lihood Principle as:

Ev(E,X) should depend on E and X only through the likelihood function. Two

likelihood functions for (the same unknown) θ yield identical evidence about θ if

they are proportional (as functions of θ).35

34To be sure, de Finetti does issue some warnings about the principle and takes it, rightly in my view, to
lead to the discussion of sufficient statistics. He must be assuming that “the information available” is Fisher
information.

35Compare with the statement in the later book Berger and Wolpert (1988, 19) where in the statement of
the Likelihood Principle “all the information” replaces ‘Ev(E,X)’ and “same information” replaces “identical
evidence”. See also Berger and Wolpert (1988, 21.1) where “same conclusion about θ” is used instead. Berger
and Wolpert (1988, 19) see the connection to Fisher’s idea of a minimal sufficient statistic. But they insist,
without argument, that the principle goes further than this.
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Birnbaum introduced Ev(E,X) to talk at an abstract level and very generally about the

“evidence” or “information” about θ that is obtained (or should be reported) upon observing

a random variable X in an experiment E. Ev(E,X) is a formal symbol not a function.36

Ev(E,X) is not a function because a function requires a specified domain and a unique range.

Because different people will disagree about what the range of measures of evidence Ev(E,X)

maps to, Ev(E,X) is not a function. Consider a sampling theorist in hypothesis testing, for

example. The range of Ev(E,X) will be a set of p-values. For a coherent Bayesian the range

will be a set of Bayes Factors. For Mayo, the range will be a set of values of the severity

function.

Mayo (2014) also states the Likelihood Principle in a formal way. She connects Birnbaum’s

Ev(E,X) with her own Infr(·), which she gives a different interpretation as follows:

InfrE(z): the parametric statistical inference from a given or known (E, z)37

Using this interpretation, Mayo defines the formal symbol “⇒” to mean:

(E, z) ⇒ InfrE(z): an informative parametric inference about θ from given (E, z)

is to be computed by means of InfrE(z).

and states what she calls the Strong Likelihood Principle (SLP).38 Her statement of the SLP

is similar to the statements of the Likelihood Principle by Edwards, Lindman, and Savage

(1963) and Lindley (1972) except that what corresponds to “same import” and the undefined

“identical inference and decision” in these earlier writers, is InfrE1(x1) = InfrE2(x2) for her.

Mayo (2014, 229) does this with the intention of:
36Compare with Casella and Berger (2002, 292) who talk about “an evidence function” despite Birnbaum

(1972)’s resistance to thinking of Ev(E,X) as a function.
37z replaces the X in Birnbaum’s notation.
38The qualifier ‘strong’ allows Mayo to identify the Weak Likelihood Principle with what in Birnbaum’s

proof and Cox and Hinkley (1974) is called the Sufficiency Principle (the principle that states that the
likelihood function is a minimal sufficient statistic).
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[R]eflecting the principles of evidence that arise in Birnbaum’s argument, whether

mathematical or based on intuitive, philosophical considerations about evidence.

To begin with, while this formal definition enjoys generality and wide scope it leaves “in-

formative parametric inference” undefined (e.g., what does ‘informative’ mean?). Secondly,

what “computation” is being done by means of by means of InfrE(z)? These are unanswered

questions on Mayo’s formal presentation. Finally, by failing to distinguish the different kinds

of parametric inference, Mayo, we saw earlier, is puzzled by the following question: “Is the

LP violated or simply inapplicable in secondary testing of model assumptions?”

It is this preoccupation with an abstract formalism that I suspect led an influential textbook

in statistics, Casella and Berger (2002, 293 – 294), to distinguish what the authors call the

Formal Likelihood Principle from the Likelihood Principle simpliciter. The statement of the

Formal Likelihood Principle in this textbook is the same as Lindley’s statement, except that

(like James Berger’s) it uses Birnbaum’s formalism, which I have criticized for introducing

a formal symbol Ev(E,X), whose range is ambiguous.

What is common to all the examples I have mentioned is that generality is attained at the

cost of rigor. My argument, therefore, is that by restricting the scope of the Likelihood

Principle to problems of point estimation, “same import”, “same parametric inference”,

“identical decisions” can take on a precise mathematical meaning. It is the value of point

estimates that is similar or identical whenever two experiments are likelihood equivalent.

Sufficient statistics lead to the same value of Fisher information as the whole sample. Fisher

information is well-defined in the context of point estimation, where it motivates the concepts

of sufficient statistics and efficient estimators. This last point provides a nice segue into the

second argument I want to give for restricting the scope of the Likelihood Principle to

problems of point estimation — what Fisher had to say on efficiency.
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3.4.2 Part 2: Fisher on Efficiency

With his definitional introduction of the formal symbol Ev(·, ·) for the “evidential meaning”

of an experiment, Birnbaum wished to give the Likelihood Principle a wide scope to include

all kinds of parametric inference. In Birnbaum (1962, 286f), he makes a curiously ironical

statement:

The principal writers supporting the use of just the likelihood function for infor-

mative inference have not elaborated in very precise and systematic detail the

nature of evidential interpretations of the likelihood function.

Moreover, Birnbaum (1962, 284) claimed that Fisher accepted something like the Likelihood

Principle as self-evident (note the parentheses):

Fisher and Barnard have been the principal authors supporting the Likelihood

Principle on grounds independent of Bayes’ principle. (The principle of maximum

likelihood, which is directed to the problem of point-estimation, is not to be

identified with the Likelihood Principle. Some connections between the distinct

problems of point-estimation and informative inference are discussed below.)

Self-evidence seems to be essential ground on which these writers support [The

Likelihood Principle].

Here Birnbaum is exaggerating. Neither Fisher nor Barnard considered the Likelihood Prin-

ciple as “self-evident.” Here’s how Barnard, Jenkins, and Winsten (1962, 324) put it (my

emphasis):

The term likelihood, as used here, and the recognition of the importance of the

concept for statistical inference are due, of course, to Fisher. In his classical series
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of papers (1922, and especially 1925 and 1934) he showed how useful it was to

consider the behaviour of the likelihood function in connection with problems of

estimation. The arguments which we shall present for the Likelihood Principle

owe a great deal to Fisher, as will be seen.

The fact that Fisher and Barnard gave arguments shows that they did not think this principle

was self-evident.

In fact, a lot of what they did say recommends restricting scope of the Likelihood Principle

in some way:

[O]ur position is that two experiments giving the same likelihood function give

the same inference, unless one or other has a special feature which justifies the

application of a mode of reasoning not applicable to the other. A mere change

of sample space does not by itself justify a change of mode. (Barnard, Jenkins,

and Winsten, 1962, 334)

This passage is very important.39 For it shows that the key question is this: what are the

“special features” that would place a restriction on the scope of the Likelihood Principle?

I will argue that for Fisher, these special features had to do with the connection between

conditioning on ancillary statistics and efficiency. Although Fisher did not give a formal

definition of ancillary statistics (like the one from section 3.2.2 above), by combining what I

read in Fisher (1935):

Ancillary statistics, which themselves tell us nothing about the value of the

parameter, but, instead, tell us how good an estimate we have made of it.

39See the rest of the discussion in the same page where this passage is from, especially where these authors
declare that they are unconvinced of the general validity of Birnbaum’s Conditionality Principle.
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and what I read in Fisher (1934) that they are used “to recover the whole of the information

available”; the connection emerges but only within the context of problems of point estimation.

This connection, I will argue, is another reason for restricting the scope of the Likelihood

Principle to these problems. Here’s how Fisher describes his view on the issues in the

prefatory note to Fisher (1925):

When in 1921 the author put forward in the Phil. Trans, a paper [Fisher (1922)40]

on mathematical statistics he was principally concerned, in respect of problems of

estimation, with the practical importance of making estimates of high efficiency,

i.e., of using statistics which embody a large proportion of the relevant informa-

tion available in the data, and which ignore, or reject along with the irrelevant

information, only a small proportion of that which is relevant. [...] Further work

along the lines of the 1921 paper has, however, cleared up the main outstanding

difficulties, and seems to make possible a theory of statistical estimation with

some approach to logical completeness.

In section 3.2.2, using the Cramér-Rao lower bound on the variance of an estimator, an

unbiased estimator T (x) was said to be an efficient estimator of θ if and only if Var(T (x)) =
1

nI(θ)
, where nI(θ) is the observed Fisher Information. Under regularity conditions, the ratio

of 1
nI(θ)

to the actual Var(T (x)) where T (x) is unbiased is the efficiency of T (x).41

With these ideas, what Fisher is saying in this passage is that he was mainly concerned with

the practical problem of finite sampling without loss of precision (what I have been saying

proceeds by dimension reduction and optimization). The efficiency of an unbiased estimator

is a measure of how much we need to sample in order to attain a given level of accuracy or

40Let me say something about the dates. The paper, which I cite, was actually published in 1922. But
Fisher read it on November 17th 1921.

41Compare with Fisher (1925, 714). Efficiency can also be considered as an asymptotic optimality crite-
rion. For estimators T (x) that are asymptotically normally distributed, the Asymptotic Relative Efficiency
(ARE) can be used to compare them. See Casella and Berger (2002, 471 – 477).
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precision when estimating parameters. The intuitive idea is that if one unbiased estimator

T (x) needs n = 10 samples to get to within 0.01 of θ and another unbiased estimator T ′(x)

needs n = 1000 samples to get to within the same level of precision, then T (x) is more

efficient than T ′(x).42

What does all of this have to do with sufficiency, ancillarity, the Conditionality Principle and

the Likelihood Principle (and why I am arguing that it should restricted to point estimation)

based on a close reading of Fisher? The answer is given by Fisher (1956, 49 – 50):

When the general hypothesis is found to be acceptable, and accepting it as

true, we proceed to the next step of discussing the bearing of the observational

record upon the problem of discriminating among the various possible values of

the parameter, we are discussing the theory of estimation itself. In this theory

a case of peculiar simplicity arises when an estimate exists which, perhaps in

conjunction with ancillary statistics, subsumes the whole of the information,

relevant to the parameter, supplied by the observational record [...] In fact for

all purposes of inference an exhaustive [i.e., sufficient] statistic, in association

perhaps with certain ancillary values, which themselves are independent of the

parametric value, can replace the entire observational record from which it was

calculated.

This passage is Fisher’s version of “the” Likelihood Principle that influenced further devel-

opments by Barnard and Birnbaum.43 But notice that from the quotation, Fisher restricts

the scope of the Likelihood Principle to problems of parameter/point estimation, and says

that sufficient statistics are to be used in conjunction with ancillary statistics for the sake of

efficient estimation of parameters. This is why I am arguing that the right scope, we might

say of the original Likelihood Principle, is to problems of point/parameter estimation.
42Compare Fisher (1925, 703ff).
43Compare Fisher (1956, 171).
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Here’s how I read Fisher on how this “conjunction” is supposed to work and how the Con-

ditionality Principle arises in connection with efficiency and ancillary statistics. The key

reference is Fisher (1934, 297 (bottom) – 303), where an illuminating example of the use of

ancillary statistics to “recover information” is used for the first time.44

To understand Fisher’s reasoning, we need the following ideas. Suppose that X is a contin-

uous random variable, the median is the value m that satisfies:

∫ m

−∞
f(x)dx =

∫ ∞

m

f(x)dx =
1

2
.

Let f(x) be any probability distribution function. Then the family of probability distribution

functions f(x− θ), indexed by the parameter θ with Θ = R is called a location family with

standard probability distribution f(x). θ is called the location parameter. For example, for

a known σ, N(µ, σ2) is a location family with µ, the location parameter. The Cauchy family

of distributions given by:

1

σπ

1(
1 + (x−θ

σ
)2
)

is a location family with location parameter θ with known σ. Similarly, the Laplace family

of distributions given by:

1

2σ
exp

(
−|x− θ|

σ

)

is a location family provided σ is known. Let f(x) be the probability distribution function

for a random variable X and let c be a number such that, for all ε > 0, f(c+ ε) = f(c− ε).

Then f(x) is symmetric about the point c. The median turns out to be a useful order

44However, see also §§14 – 15 in Fisher (1925).
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statistic for a symmetric location family of probability distributions. It can be shown that if

X ∼ f(x), where f(x) is symmetric, then the median of X is the number c. In fact, if f(x)

is any probability distribution function with X = R that is symmetric about 0, then θ is the

median of the location family f(x− θ).

In the 1934 paper, Fisher considers estimating the location parameter θ for a random variable

X, which follows a Laplace distribution with σ = 1. It was known that the median T is

the maximum likelihood estimate for θ and the Fisher information from one observation is

I(θ) = 1.45 What is interesting about T in this case is that it is not a (minimal) sufficient

statistic.46 For an odd-sized sample n = 2s+1 the observed Fisher information nI(θ) = 2s+1.

Using the exact distribution of the sample median X(s+1) of 2s + 1 observations from the

Laplace distribution, Fisher found that the “lost information” from using the median as an

estimator for θ is approximately

4

(√
s

π
− 1

)

which increases with s.47 Fisher writes:

Evidently, the simple and convenient method of relying on a single estimate will

have to be abandoned. The loss of information has been traced to the fact that

samples yielding the same estimate will have likelihood functions of different

forms, and will therefore supply different amounts of information. When these

functions are differentiable successive portions of the loss may be recovered by

using as ancillary statistics, in addition to the maximum likelihood estimate, the

second and higher differential coefficients at the maximum. (Fisher, 1934, 300)

45See Hogg, McKean, and Craig (2019, 365).
46In fact, for the Laplace distribution the set of order statistics is the only minimal sufficient statistic —

so there is no dimensional reduction without loss of accuracy/precision.
47See also Fisher (1925, 716 – 717) for the same result.
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The 1934 paper shows how this lost information can be recovered using ancillary statistics.48

Let X(i) be the i-th order statistic. For a sample median X(s+1) of 2s + 1 observations,

the configuration of the sample is given by the ancillary statistics a1, a2, . . . , as; a
′
1, a

′
2, . . . , a

′
s

where, for i = 1, . . . , s,


ai = X(s+1+i) − T for X(s+1+i) > T

a′i = T −X(s+1+i) for X(s+1+i) < T

Fisher was able to show that, conditional on the configuration of the sample, T is sufficient.

He concludes:

The process of taking account of the distribution of our estimate in samples of

the particular configuration observed has therefore recovered the whole of the

information available. (Fisher, 1934, 303)

The key words from this quotation are “the particular configuration observed”. For Fisher

is saying here that knowledge of the experiment that was actually performed can sometimes

be used as an ancillary statistic to improve the efficiency of our point estimators.

To illustrate the idea here, consider an experiment that leads to a sequence of measurements

X1, X2, . . . Xn for a continuous parameter θ such that for i = 1, . . . , n

Xi = θ + ei

where ei
iid∼ f(x) with support in R. f(x− θ) is a location family of probability distributions

for X. Suppose that f(x − θ) is in fact the Laplace distribution with σ = 1. If one uses
48An illuminating discussion of Fisher’s reasoning in modern notation is given by Gorroochurn (2016).

Compare with Fisher (1925, §10).
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the median T as an estimator for θ, we know that T is the maximum likelihood estimate.

T is asymptotically normally distributed with mean θ and variance 1/n. However, using

the mean X as an estimator for θ is less efficient than using the median. By the Central

Limit Theorem X is asymptotically normally distributed with mean θ and variance σ2

n
, where

σ2 = E(e2i ) = 2 is taken with respect to the Laplace distribution. The Asymptotic Relative

Efficiency of T and X is 2. The sample median T is twice as efficient as the sample mean X

if f(x− θ) is Laplace.

Suppose instead that in fact ei
iid∼ f(x) = N(0, 1) for i = 1, . . . , n. Then in this case

using the sample median T as an estimator for θ is inefficient. It can be shown that T is

asymptotically normally distributed with mean θ and variance π
2n

.49 X is asymptotically

normally distributed with mean θ and variance 1/n. Therefore, the Asymptotic Relative

Efficiency of T and X is 2
π
= 0.636. This means that the median is less efficient than the

sample mean for estimating θ assuming the ei (i = 1, . . . , n) are standard normal random

variables by about 36 percentage points.50

What these cases show is that knowledge of the experiment that was actually performed is

an ancillary statistic that could improve the efficiency of point estimators. If we condition on

the knowledge that the ei (i = 1, . . . , n) determine a Laplace location model, then the sample

median is an optimal point estimator for θ. However, conditioning on the knowledge that the

ei (i = 1, . . . , n) are random N(0, 1) variables, then the sample mean is an optimal estimator

for θ. Taken together these cases also show how the Conditionality Principle arises in the

context of point estimation where conditioning on ancillary statistics leads to conditionally

sufficient statistics that are efficient.

49See Theorem 10.2.3 in Hogg, McKean, and Craig (2019).
50Compare Fisher (1925, 706).
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3.5 Advantages of restricting

In the previous section, I gave two arguments for restricting the scope of the Likelihood

Principle to problems of point estimation. I argued against the formalism with which the

Likelihood Principle has been stated in favor of the precise mathematical content of what

is entailed whenever there are likelihood equivalent experiments. The mathematical content

is that likelihood equivalent experiments lead to the same value of point estimates. I also

argued against extending the scope of the Likelihood Principle to other kinds of parametric

inferences. Such an extension is not faithful to Fisher’s original goal of using the Likelihood

Principle as a dimension reduction principle in the context of finite sampling using estimators

that are sufficient (or conditionally sufficient given an ancillary statistic) and efficient. Since

the concepts of sufficiency, ancillarity and efficiency arise naturally in the context of point

estimation, this is another reason for not extending the scope of the Likelihood Principle.

In this section, I want to consider some of the advantages of the kind of restriction I am

arguing for. In section 3.6 I will consider some objections.

3.5.1 Violation vs. Failure to apply

Mayo, we saw earlier, thought it was puzzling to distinguish what constitutes a violation of

the Likelihood Principle from what is simply a case where the Likelihood Principle does not

apply. By restricting the scope of the Likelihood Principle to problems of point estimation

in parametric inference it is possible to say what constitutes a violation of the Likelihood

Principle and what is simply a case where the Likelihood Principle does not apply. The

Likelihood Principle does not apply outside the context of dimension reduction for efficient

point estimation. But it is a violation of the Likelihood Principle if two likelihood equiva-

lent experiments lead to different point estimates. The use of reference priors in Bayesian

inference, for example, is a violation of the Likelihood Principle. Usually, a reference prior
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π(θ) for parametric models is one such that:

π(θ) ∝ I(θ)1/2.

Consider the sequence of Bernoulli trials from the Introduction. If E1 is “Toss the coin

exactly 10 times”, then we’d use a Binomial model. However, with E2, which is “Continue

tossing until 6 heads appear”, a Negative Binomial model would be appropriate. These

experiments are likelihood equivalent. But with reference priors they lead to different values

of point estimates because the posterior distributions are different. On the one hand, for the

Binomial model where n is fixed in advance and Y =
∑n

i=1Xi is the number of favorable

outcomes, it can be shown that

π1(θ) ∝ θ−1/2(1− θ)−1/2

which leads to π1(θ |X) ∝ θy−1/2(1−θ)(n−y)−1/2. So for E1 with reference priors, the posterior

distribution would be proportional to θ11/2(1 − θ)7/2. On the other hand, for the Negative

Binomial model, where the random variable is n — the number of trials until Y ≥ 1 favorable

outcomes occur; it can be shown that

π2(θ) ∝ θ−1(1− θ)−1/2

which leads to π2(θ |X) ∝ θy−1(1 − θ)(n−y)−1/2. So modeling E2 with reference priors, the

posterior distribution would be proportional to θ5(1−θ)7/2. Since the posterior distributions

are different, the point estimates will be different. This is a violation of the Likelihood

Principle. Proponents of reference priors, like Bernardo, account for this violation as follows:
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It is important to stress that reference distributions are, by definition, function[s]

of the entire probability model [...] not only of the observed likelihood. Techni-

cally, this is a consequence of the fact that the amount of information which an

experiment may be expected to provide is the value of an integral over the entire

sample space X, which, therefore has to be specified. (Bernardo and Smith,

2000, 315)

Reference prior analysis, we might say, conditions on the knowledge of the experiment —

using it as an ancillary statistic for point estimation. Whether this kind of “slight violation”,

to use James Berger’s words, is tolerable is a separate issue from what I am concerned with

in this paper.

Related to this violation of the Likelihood Principle by reference prior analysis is an analogous

case within a sampling theory framework involving sampling from a Binomial model and

from a Negative Binomial model. An unbiased estimator T (x) is called a minimum variance

unbiased estimator (MVUE) of the parameter θ if for every other unbiased estimator S(x)

of θ, Var(T (x)) ≤ Var(S(x)). Suppose Xi for i = 1, . . . n are Bernoulli random variables.

Let Y denote the number of favorable outcomes in a sample of fixed size n, the estimator

T (x) = Y
n

for θ in the Binomial model is unbiased. θ̂ = Y
n

is also the maximum likelihood

estimate for θ. Moreover, since T (x) = Y
n

is sufficient, T (x) is the unique MVUE of θ

by the Lehmann-Scheffé theorem. If instead we choose to model a sequence of Bernoulli

random variables with the stopping rule to continue sampling until Y favorable outcomes

are observed with W unfavorable outcomes and n = Y +W , then the random variable W is

Negative Binomial. Since the experiments are likelihood equivalent, θ̂ = Y
n

is the maximum

likelihood estimate for θ. However, it can be shown that T (x) = Y
n

in the Negative Binomial

model is not unbiased.51 The unbiased estimator is, in fact, S(x) = Y−1
n−1

and it is the MVUE

by the Lehmann-Scheffé theorem. It is alleged that what this example shows is a case where

51See Kendall, Stuart, and Ord (1987, 316) Example 9.15
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the experiments are likelihood equivalent yet the point estimates are different. Is this a case

where the Likelihood Principle is violated even for a sampling theorist?

I claim that this is not a violation of the Likelihood Principle. There are two ways I wish to

defend this claim. First, there is a difference between an estimator, such as T (x) and S(x)

above, and an estimate, such as θ̂. The Likelihood Principle restricted to point estimation

is violated if two likelihood equivalent experiments lead to different point estimates. In the

Binomial and Negative Binomial the maximum likelihood estimates θ̂ are identical. But

unbiasedness and efficiency are properties of estimators. The Likelihood Principle does not

apply to evaluations of point estimators. The second point to make here is that what this

example shows is only that S(x) = Y−1
n−1

is more efficient than T (x) = Y
n

when sampling

from a Negative Binomial model. So conditioning on the knowledge of the stopping rule (or

equivalently the experiment that was performed), even in this case, can lead to more efficient

estimators.

3.5.2 No Salesmanship

Coherent Bayesians typically charge sampling theorists of being incoherent by violating

the Likelihood Principle, while Sampling theorists like Mayo raise the probativist criticism

against coherent Bayesians. The Likelihood Principle is a selling point for some Bayesians.52

But sampling theorists like Mayo are not buying it. Here I believe my analysis indicates

that one must be careful not to oversell or undersell. By using formal symbols that give

the Likelihood Principle a wide interpretation, some of the proponents of the Likelihood

Principle oversell what methods which satisfy the Likelihood Principle can accomplish. We

saw in section 3.3.1 that Bayesians like Gelman find the Likelihood Principle unduly lim-

iting — there is more to Bayesian methods in statistics than conditional inference through

52Berger has a paper with the literal title “Bayesian Salesmanship”. See Berger (1984a) and also the
discussion in Berger (1983).
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the posterior distribution, where the Likelihood Principle should apply. One way of reading

Gelman’s “It is not necessary that Bayesian methods conform to the Likelihood Principle”

is as a claim about what Bayesians can actually sell about their methods.

At the same time, a sampling theorist can know exactly what they are buying when the Like-

lihood Principle is recommended to them. Drawing on Fisher’s work on efficient parameter

estimation, I have shown that conditional inferences and ancillaries (such as the knowledge

of the actual experiment) can serve an important function for sampling theorists. This had

been obscured when the scope of the Likelihood Principle was taken through a formalism to

be so wide that it led some sampling theorists to demur. Fisher’s work indicates that the

only contentful sense of “same inference” from likelihood equivalent experiments is similar

values of point estimates. The puzzles and the problems I discussed in section 3.3.2 only

arise outside the context of point estimation. Therefore, there is no need for partisan sales-

manship and red herrings. We can adopt the chutzpah attitude advocated by Mayo (2018,

12) and begin finally telling the truth about statistical inference.

3.6 Objections and Replies

It may be objected that the distinction between problems of estimation and other kinds of

problems that I have made for the sake of my argument is artificial or ad hoc.53 My reply

to the artificiality objection is that the distinction is real. In section 3.2 the descriptions

of the kinds of problems in parametric inference indicate that the problems have different

goals, optimality criteria and choice of comparative measures of support. Moreover, far

from making an ad hoc distinction, I have given reasons in section 3.3.1 and 3.3.2 for why

a coherent Bayesian and a sampling theorist may find a restriction of the scope of the

Likelihood Principle desirable. In section 3.5, I have discussed the upshot for foundational

53See Robert (2007, 7), for example.
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debates in the philosophy of statistics. So the distinctions I am making that lead me to

restrict the scope of the Likelihood Principle are not just intended to avoid the puzzles or

problems (which would make them ad hoc). Rather the distinctions, and the use I make of

them, can address other controversial topics in the literature in a non-partisan way.

Still one may press the point that there are statistical tests derived from Likelihood Ratio

Test statistics. For example, within the Neyman-Pearson Hypothesis testing framework

some of the common tests are based on Likelihood Ratio statistics comparing the restricted

null model H0 (e.g., θ = θ0) to an unrestricted alternative model H1 (e.g., θ ∈ Θ − {θ0})

on the same parametric space Θ. The null model and the alternative model are, therefore,

likelihood equivalent. Why shouldn’t the Likelihood Principle apply to the inferences here?

Interestingly, Fisher (1934, 296) thought that the small sample parametric inference he had

developed based on sufficient statistics subsumed the Neyman-Pearson approach based on

Likelihood Ratio Test statistics.

[I]t is surprising that Neyman and Pearson should lay it down as a preliminary

consideration that “the testing of statistical hypotheses cannot be treated as a

problem in estimation.” When tests are considered only in relation to sets of

hypotheses specified by one or more variable parameters, the efficacy of the tests

can be treated directly as the problem of estimation of these parameters.

Neyman and Pearson (1936) responded to Fisher’s claim by strongly denying it. They

showed a case where a uniformly most powerful test exists but no minimal sufficient statistic

exists; and conversely a case where a minimal sufficient statistic exists but no uniformly

most powerful test exists. Therefore, since sufficient statistics and uniformly most powerful

tests can come apart, these cases were supposed to support the preliminary consideration,

which had been quoted by Fisher. It would be fruitful work for future research to evaluate

115



Neyman and Pearson’s reasons for rejecting the Fisherian connection. This work would also

look more closely at “the efficacy of tests” mentioned by Fisher in the above passage.54

Here I will only say that underlying their examples is a distinction between a test statistic

on the one hand and a statistical test on the other. Fisher’s pure significance testing is not a

statistical test in Neyman and Pearson’s sense. For one thing, a pure significance test for a

hypothesis does not consider alternatives. But for Neyman and Pearson, a statistical test is

an optimal critical region based on the power function, which goes beyond Likelihood Ratios

by computing mathematical expectations on the sample space of the alternative — this is the

power of the test.55 In short, while it is true that a test statistic within the Neyman-Pearson

school of hypothesis testing can be derived from a Likelihood Ratio; a statistical test, which

is a choice of a critical region, is based on other optimality criteria based on the value that

certain special risk functions take — these are the size and power of the test. The Likelihood

Principle does not apply when one goes beyond likelihood equivalence for point estimation

to evaluations of decision procedures.

However, there is the curious case of ANalysis Of VAriance (ANOVA). In one-way ANOVA,

there is one nominal variable X (e.g., an indicator variable that picks the species of a given

genus; or an indicator variable that identifies the treatment group in a controlled experiment)

and one response variable Y (e.g., length of wing-span, measured outcome depending on

treatment). The goal of one-way ANOVA is to determine whether the levels determined by

the nominal variable X are necessary in order to account for the total variation observed in

Y . If β0 is the grand mean of the individual measurements regardless of their group; Fisher’s

idea for doing ANOVA was to partition the total variation (Total Sum of Squares (SST ))

54In advanced mathematical statistics, there is a concept of an efficient test. I do not believe that
this undermines my argument for restricting the scope of the Likelihood Principle based on the idea that
efficiency is a concept that was originally intended for problems of point estimation. Whether a test is
efficient is something that is determined by measures (such as power) that go beyond the likelihood function.
See Hogg, McKean, and Craig (2019, §10.2.1).

55See Mwakima (2024d) for more discussion on this.
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into the variation within the groups (SSW ) and the variation between the groups (SSB).

SST = SSW + SSB

If the groups are not significantly different from each other, then SSB ≪ SSW . In this case,

the within group variation accounts for the total variation and there is no need to introduce

another β1 for the difference from the grand mean of the group picked out by X = 1 in order

to understand the variation in Y . The determination of what is a “significant difference” β1

is based on the F -statistic:

F =
MSB

MSW

where MSB is the mean variation between groups and MSW is the mean variation within

groups. Large values of the F -statistic based on the F -distribution with certain degrees

of freedom imply that there is a statistically significant difference between the groups, i.e.,

β1 ̸= 0. This is one way of thinking about the problem of ANOVA. It is a model criticism

problem where one is testing: H0 : β1 = 0 (no difference between the groups) against the

alternative: H1 : β1 ̸= 0 (there is a difference between the groups) using an F -statistic.

But there is another to think of one-way ANOVA. This is as a simple linear regression model

for Y based on X.

E[Y |X] = β0 + β1X

Here the goal is to estimate β1 by finding the ordinary least square estimates for β0 and β1. It

can be shown that the simple linear regression model and one-way ANOVA are equivalent. So

isn’t ANOVA a case where the problem of parameter estimation is equivalent to a problem
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of model criticism? If so, how tenable is the distinction I am making between problems

of parameter estimation and problems of model criticism? ANOVA seems like a genuine

counter-example.

Here I still appeal to the distinction between a test statistic and a test. While the F -test

statistic is a function of sufficient statistics, the test still has to be selected according to some

optimality criteria, which go beyond what is contained in the minimal sufficient statistics

for this kind of parametric inference. For instance, one would have to consider the sampling

distribution of the F -statistic and to pragmatically select a powerful test subject to the size

constraint α = 0.05 or 0.01, for example.

Another possible objection here is this. Doesn’t interval estimation degenerate into point

estimation in the limit as n → ∞. Let θ̂ be an estimate for θ and suppose that T (x) is an

efficient estimator for θ. Then:

θ̂ ± 1√
nI(θ̂)

is an interval estimator for θ, which would get closer and closer to a point estimate for θ

as n → ∞. My response here is to grant the point that asymptotically, point estimation

and interval estimation coincide in a case like this. However, in the context of small sample

parametric inference (with finite sampling), the point estimate and the interval estimate are

different. Moreover, when statisticians talk about interval estimation, they usually have in

mind (1 − α)% confidence intervals for θ. The α here is an optimality parameter based

on the Repeated Sampling Principle for calibrating the interval estimator in the sense of

guaranteeing coverage.

According to the Encyclopedia for Statistical Sciences entry on the Likelihood Principle by

Joshi, which I quote here for convenience:
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The Likelihood Principle asserts that for a given experiment E, the evidential

meaning of any outcome x, for inference regarding θ is contained in the likelihood

function determined by x. Hence all other features of the experiment, as, e.g.,

the sample space, are irrelevant.

This suggests that the Likelihood Principle is primarily about the evidence and what evi-

dential conclusions can be drawn from likelihood equivalent experiments. Let us call this the

Evidential Likelihood Principle. Birnbaum, in fact, was concerned with a Likelihood Principle

that was intended to state the necessary and sufficient conditions for evidential equivalence.

Prima facie, point estimation has nothing to do with evidence. So by restricting the scope

to problems of point estimation, what does my account say about the Evidential Likelihood

Principle? In what sense does point estimation allow us to make evidential conclusions?

Now for a Bayesian or a Likelihoodist with comparative measures of evidence, inferences

based on point estimation will determine the evidential conclusions. The Bayes Factor, which

is the ratio of the marginal likelihood functions comparing two models, can be thought of

as a point estimator which averages the point estimates under the competing models then

returns the quotient.56 This averaging is possible because of the priors on the parameters.

So, for a Bayesian, there is nothing lost by restricting the scope of the Likelihood Principle

to point estimation. The conclusions for a coherent Bayesian from likelihood equivalent

experiments will be the same conclusions from both the Evidential Likelihood Principle and

the Likelihood Principle simpliciter. For a Likelihoodist (e.g., Royall (1997) and Forster and

Sober (2004)), the Likelihood Ratio will compare simple hypotheses based on the maximum

likelihood estimates under each hypothesis, say. So any evidential conclusions will coincide

with the outcome of the point estimation process. If the likelihood of the maximum likelihood

estimate under one hypothesis is higher than the likelihood of the maximum likelihood

56See Mwakima (2024b, §4).
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estimate under the alternative, then this could constitute evidence for the hypothesis with

a higher relative likelihood.57

For the sampling theorist, the restriction of the Likelihood Principle to problems of point

estimation, as discussed in section 3.3.2, was meant to avoid attributing to them an in-

coherent notion of evidence. As mentioned following the entry by Joshi, the Evidential

Likelihood Principle is “incomplete” because the principle does not say what determines evi-

dential meaning. I would say that it is unilluminating, especially because the formal symbol

Ev(·, ·) has no unambiguous intended interpretation for every practicing statistician. In fact,

in a posthumous paper (Birnbaum (1977)), Birnbaum analyzes what constitutes an ade-

quate representation of statistical evidence in his criticism of the Lindley-Savage argument

for Bayesian methods of statistics. He introduced what he called the confidence concept of

statistical evidence. This means that even for the originator of the Evidential Likelihood

Principle, the adoption and application of this principle will depend on what one believes

statistical evidence is. Since there is no agreement, my goal in this paper was to seek com-

mon ground on the scope of the Likelihood Principle and to draw out the consequences of

the restriction I am advocating for. Seeking common ground may involve giving up on the

Evidential Likelihood Principle.

3.7 Conclusion

In conclusion, let me recap the main points of my paper. There has been a long-standing

debate within the foundation of statistics regarding the scope of the Likelihood Principle.

One issue within this debate is this: what constitutes a violation of the Likelihood Principle

as distinguished from a failure to apply it? I have argued that restricting the scope of

the Likelihood Principle to problems of point estimation is a way to resolve this issue. My

57Compare Berger (1985, 25).
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overall argument had two independent parts. In the first part I argued against the formalism

with which the Likelihood Principle has been stated in the literature, which leaves “same

inference”, “same import” and “same decision” up to anyone’s interpretation. In the second

part I argued that the naturalness with which the connection between sufficiency, ancillarity

and efficiency emerges in the context of problems of point estimation in Fisher’s work, is

a compelling reason to restrict the scope of the Likelihood Principle to problems of point

estimation. Such a restriction ought to be welcome to both coherent Bayesians and sampling

theorists. Coherent Bayesians have nothing to lose, but something to gain. It is clear from my

analysis what constitutes a violation. Further, my analysis rationalizes some of the existing

techniques or measures currently in use for model assessment within a Bayesian framework.

These techniques and measures are being used in a context where the Likelihood Principle

does not apply. Lastly, sampling theorists have a way of shielding their measures of evidence

from charges of incoherency. The way consists of saying that the Likelihood Principle does

not apply to contexts outside of dimension reduction for point estimation. The purported

conflicts with the Repeated Sampling Principle can, consequently, be defused.
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