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Integrating Population Structure into Metagenome-Wide 
Association Studies 

Miriam Goldman 

Abstract 
 Diseases related to the human gut microbiome, such as inflammatory bowel disease 

(IBD), irritable bowel syndrome (IBS), and colorectal cancer, have increased within developed 

nations. At the same time, increased access to metagenomics has allowed us to try to 

understand the microbiome. While many microbiome-disease association studies have been 

carried out, they primarily focus on genera or species that vary in abundance with disease 

status; this relatively coarse level of analysis limits our understanding of why microbes may act 

as disease markers and overlooks cases where disease risk is related to the presence or 

absence of specific strains with unique biological functions. My thesis shows that there are 

strong within-species phenotypic signatures across the gut microbiomes of different people and 

then introduces microSLAM, a statistical method that incorporates random effects to represent 

the population structure of the bacteria modeled in an association study. I applied microSLAM to 

a large set of gut metagenomes from IBD samples, where I discovered 49 species whose 

population structure correlates with IBD, meaning that people with the disease harbor distinct 

strains compared to healthy people. In addition, after controlling for population structure, I found 

57 microbial genes that are significantly more common in healthy individuals and 26 that are 

more common in IBD patients, including a seven-gene operon in Faecalibacterium prausnitzii 

that is involved in the utilization of fructoselysine from the gut environment. In addition, I 

performed extensive simulations to understand the limitations and capabilities of microSLAM 

and found it was much more conservative and specific than the standard statistical approach, a 
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generalized linear model (GLM). These findings have highlighted the importance of considering 

within-species population genetic variation in microbiome studies. 
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Chapter 1 Introduction 
The human body is home to a diverse community of microorganisms, collectively known 

as the microbiota, comprising bacteria, fungi, and viruses. This microbial population varies 

greatly among individuals, influenced by factors such as diet 1–3, exercise 4,5, health 6–8, and host 

genetics9,10. Understanding the intricacies of the microbiome presents a unique opportunity for 

improving human health by addressing dysbiosis—an imbalance between the microbiome and 

its host—at its root. Harnessing this knowledge could potentially enhance drug efficacy 11–14, 

illuminate the impact of diet on our well-being 3,15,16, and offer significant health benefits 17,18. In 

my thesis research, I aim to advance our comprehension of the human gut microbiome by 

investigating the genetic structure of the microbiome’s bacterial population through 

metagenome-wide association studies. The following chapter will provide a concise overview of 

relevant background information. 

1.1 The human gut microbiome 

Microorganisms colonize the world around us and various sites on and in the human 

body. Those colonizing the human body are referred to as the human microbiota. The human 

gastrointestinal (GI) tract is one of the niches in which microbiota, including bacteria, archaea, 

viruses, and eukaryotes, make their homes. The GI tract is also one of the most significant 

interfaces between the host, environmental factors, and microbes in the human body. Every 

food humans eat and most medications humans take pass through the GI tract. The collection 

of microbiota colonizing the GI tract is termed the “gut microbiome” and has co-evolved with 

humans over thousands of years to form a complex, interdependent, and ultimately beneficial 

system 19,20. From before childbirth, the species within the gut microbiome actively adjust to their 

specific habitats and hosts 21. The bacteria within the human microbiome are constantly 
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evolving in response to host factors such as age, diet, lifestyle, hormonal changes, and host 

genetics. The microbiota has been shown to offer many benefits to the human body through a 

range of physiological functions, such as shaping the intestinal barrier 22, supplying energy 15, 

providing a protective effect against pathogens 23, and regulating host immunity 24 and drug 

metabolism 12. However, the bacteria within the gut microbiome evolve quickly, which can lead 

to changes in these functions.  

One of the ways gut bacteria evolve is through the capture and exchange of mobile 

genetic elements (MGEs). MGEs include plasmids, phages, integrative and mobilizable 

elements, transposons, and insertion sequence elements 25. They rely on host cells and cellular 

machinery to multiply. MGEs alter the genome composition of bacterial species, changing 

functions and creating new lineages 26–29. MGEs affect the health of the ecosystems that house 

bacteria by exchanging traits such as metabolism, virulence, symbiosis, and host specificity 30,31 

via a process known as horizontal gene transfer (HGT). HGT is responsible for transferring 

Important functions such as antimicrobial resistance (AMR) 32 and is one of the forces 

contributing to gene losses and gains among microbiome species 26,33,34.  

1.2 The Pangenome 

 Because of recent advances in genomic and metagenomic sequencing, we have started 

to understand the genetic structure of the human gut microbiome and its complex dynamics. 

Shotgun metagenomics, the non-targeted sequencing of fragments from multiple microbial 

genomes in a sample, allows for the profiling of taxonomic composition and functional potential 

of microbial communities 35, to recover whole genome sequences via metagenomic assembly 36, 

and to quantitatively profile the pangenome35. The pangenome is the full set of genes present 

across different versions (strains) of a given species. It includes both the genes present in all 

strains of a species (core genome) and the genes present only in some strains of a species 
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(accessory genome) 37. Bioinformatic advancements such as MIDAS 38–40, StrainPhlAn 41, 

MetaSNV 42,43, panX 44, and Roary 45,  also contribute to the ability to understand the 

pangenome. MIDAS first maps sequences from shotgun metagenomic data to universal single-

copy gene families, allowing accurate identification of species with sufficient sequencing 

coverage for analysis of genetic variation. Then, to quantify the gene content of each species in 

each metagenome, MIDAS maps the reads to a pangenome database, the set of nonredundant 

genes across all sequenced genomes from each species. Last, to identify single nucleotide 

variants (SNVs) of individual species, MIDAS maps those to a genome database containing one 

representative genome sequence per species.  

Mapping the pangenome has significantly enhanced our understanding of host-

microbiome interactions and revealed a vast genetic diversity of bacterial species within and 

between human hosts 46. Even when two individuals share the same microbial species, the cells 

within those populations are genetically and functionally very different 47,48. Illustrations of this 

diversity include the identification of variable virulence and antibiotic resistance 49,50, of a set of 

pro-inflammatory genes from specific strains of Ruminococcus gnavus 51, of a Faecalibacterium 

prausnitzii GalNAc utilization pathway linked to cardiometabolic health 52, and of a strain of 

Escherichia coli with enhanced ability to live on the intestinal mucus that is associated with IBD 

53. These findings underscore the limitations of using species abundance alone to gain insight 

into host-microbiome interactions and the need for a more comprehensive approach. My thesis 

work aims to describe the microbiome at the strain level. 

 Strains within the microbiome can be defined as groups of genomes of a species that 

contain similar sets of genes. These sets of genes can provide diverse functions and be related 

to traits of the microbe or its host. Identifying and isolating these trait-associated strains can 

facilitate experimental investigations into host-microbiome interactions. Strains enriched in 

healthy hosts have been suggested as potential components of probiotics and therapies 17,54–56. 

The structure of bacterial genomes is such that many genes are present or absent together 
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across strains, especially closely related strains. This means that genes from a strain could be 

promising biomarkers (e.g., for diagnosis or patient stratification). However, most are not good 

candidates for studies of causal mechanisms. On the other hand, we can also identify, from the 

pangenome, one or a small number of individual genes that predict a trait. Such predictions are 

most straightforward if genes are rapidly gained and lost (e.g., via mobile elements), so that 

their association with the trait is independent of evolutionary relationships amongst strains. 

These types of genes are promising candidates for discovering causal mechanisms through 

which microbes modify the health of their hosts and the host’s response to treatments. 

1.3 Population structure 

From the first understanding of biological evolution, it has been noted that individuals of 

a species are not all the same. This is especially true of bacteria. Now that we have sequenced 

whole bacterial genomes in a sufficiently large number, we can see that some of these 

differences are related to genetic variations. This variation complicates our analysis of bacterial 

species, which had been simplified to assuming similarity within a species. To quantify 

similarities, we use population structure, which is the degree to which individuals within a 

species share a common evolutionary history 57. Population structure is a biological reality in 

understanding how genetic variation relates to host phenotypic variation, and it is especially 

confounding in case-control designs. False positive associations are increased in cases where 

populations are subdivided, such as in a case-control design, because there is a nonrandom 

grouping of the cases and the controls and a non-random grouping of the population from each 

of the many the genetic alleles.  Because we cannot assume that the populations we are testing 

are randomly sampled from a single distribution58, we have an increase in false positives as the 

alleles are related to one another non-randomly, and the phenotype is related to those alleles in 

a cryptic fashion. Luckily, we can infer information about how microbiome samples are related to 
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their genetic variation. One approach, first proposed in 1978 in the context of human genetics, 

uses principal component analysis (PCA) of SNVs within a population to understand population 

structure 59,60,61. The idea is to use PCA to quantify ancestry differences between cases and 

controls and integrate them into phenotypic modeling to adjust for confounding of genotype-

phenotype associations. Since 2006, this idea of trying to decompose the genetic relatedness 

across many samples into a continuous variable and including the decomposition in models that 

test individual variants for their trait associations has been refined 62–65. 

One of the methods that has seen success in tackling the problem of false positives in 

case-control studies is the generalized linear mixed model (GLMM). The GLMM is an extension 

of the generalized linear model (GLM) 66 that incorporates random effects. Random effects can 

be encoded as an unobserved vector that allows observations to be assumed to be conditionally 

independent. The means of the random effect depend on the linear predictor through a specified 

link function, and conditional variances are specified by a variance function, known prior 

weights, and a scale factor 67. The use of random effects to model population structure based 

on the variance of the random effect calculated from a genetic relatedness matrix (GRM) was 

made computationally tractable for studies with a large number of samples by the EMMA and 

EMMAX software 63,68. Later the GEMMA and SAIGE methods implemented more efficient 

algorithms and tactics for controlling the false positive rate in human studies 62,64.  

Given the abundance of population structure within bacterial strains, the problems of 

false positive control in metagenomic association studies, and the robustness of GLMMs, the 

bulk of my dissertation focuses on developing a statistical model that can be used to perform 

microbial population structural aware metagenome-wide association studies (MWAS). This 

dissertation will describe the approach in detail and the methods used to assess the 

effectiveness of incorporating population structure into MWAS.  
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Chapter 2 Integration of population structure into 
metagenome-wide association studies through 

generalized linear mixed modeling 

2.1 Why investigate population structure within the microbiome 

Many previous studies have aimed to establish a connection between various 

microbiome features, primarily the relative abundance of genera or species, and differences in 

human health outcomes. However, most of these studies have not been able to translate their 

analytical findings into effective treatments or improvements in health for humans or model 

organisms 69. One possible reason for this limitation is that large studies focusing on relative 

abundance assume that each individual harbors specific bacteria, and that these bacteria 

perform the same functions across different individuals. In reality,this assumption does not hold 

true. A particular bacterium might be beneficial in one environment, but harmful in another 70,71. 

In addition, large relative abundance studies suffer from many false positives precisely because 

bacteria differ based on their environment. Suppose the gut environment of a healthy person is 

very different from that of a person with a disease. In that case, we expect the bacteria to be 

distinct, but this may not be directly related to the disease. Because of this confounding, it is 

hard to know when something new has been discovered or if it was simply a spurious 

difference. These spurious associations are time-consuming and difficult to investigate and 

validate, and when there are many false positives that limits the ability of scientists to focus our 

energy on the more likely functional associations.  

But the limitations of relative abundance do not end there. There is evidence that people 

do not simply have one strain of a species; they can have a mix of strains at the same time. We 

can detect such mixtures based on the genes or SNVs present within their microbiome. One of 

the analyses I performed to investigate the amount of strain diversity within a large number of 

microbiome samples used the quasi-phasable (QP) species definition from Garud, Good et al. 72 
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to quantify evidence for strain mixtures within metagenomes from the PREDICT study (NCBI 

accession: PRJEB39223) 73. My goal was to determine whether each species in each 

metagenomic sample was QP, meaning that there is evidence of one strain as opposed to a 

strain mixture. The PREDICT study is a deeply sequenced gut metagenomics cohort of 1097 

stool samples from people with a variety of diets and metabolic outcomes. From the PREDICT 

data, I determined that 44 species were present and deeply sequenced enough to be 

metagenotyped by MIDAS2. The SNV pipeline from MIDAS2 was used to generate the inputs 

for the QP model, namely synonymous sites (SNVs) in genes of the core genome of each given 

species. If the fraction of these sites with intermediate allele frequencies is high, this is taken as 

evidence for a strain mixture. I found that 65.9% (29/44) of the species analyzed had evidence 

that 30% or more of the samples contained more than one strain (Figure 2.1). This means that 

only having a single strain of a bacteria across many people is uncommon within most species 

seen in this metagenomic dataset.  
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Figure 2.1 Strain mixtures within PREDICT cohort. Distribution of samples with evidence of a 
strain mixture versus one dominant strain for 44 species metagenotyped by MIDAS2 in 1097 
samples from the PREDICT cohort (NCBI accession: PRJEB39223) using the quasi-phasable 
species model 2.3.1. 

There was also great between-host diversity for the species determined to only have one 

strain present in most samples. I performed PCoA based on the pairwise Manhattan distance 

between samples computed from the population SNV minor allele frequency matrix of each 

single species. For one species, Alistipes putredinis, a species whose abundance has been 

linked to depression 7, there appear to be two or three distinct clusters of samples, each 

composed primarily of samples with a single strain. Another example of diversity within and 

across strains is Barnesiella intestinihominis, which has four distinct clusters of samples. This 

species has been associated with anti-cancer effects 74. Given these known associations and 

my observations regarding the variety of the strains that exist for both of these species (Figure 
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2.2), I saw an opportunity to better understand if strain differences could contribute to the 

disease associations of these and other species.  

 

Figure 2.2 PCoA plot of two species with genetically distinct lineages across samples, 
yet a single dominant strain within most samples. PCoA was performed based on the 
pairwise Manhattan distance between samples computed from the population SNV minor allele 
frequency matrix of one single species. Each dot in the PCoA plot represents one sample, and 
the distance between a pair of dots represents the genetic similarity of that species in the two 
metagenomes. A: Alistipes putredinis - there appear to be two or three distinct clusters of 
samples, each composed primarily of samples with a single strain. B: Barnesiella 
intestinihominis - there are four distinct clusters of samples. 

In addition to multiple distinct clusters of single strains, I also found evidence for a 

mixture of two single strains within samples. For example, in Bacteroides B dorei (B. dorei) 62% 

of the 932 PREDICT samples with B. dorei had evidence of more than one strain present. When 

I looked further into this I found that from the PcoA plot there were two genetically distinct 

clusters each consisting of one dominant strain. The samples that were not found to be QP, on 

the other hand, appeared to be between these two clusters, consistent with colonization by 

strains from both clusters (Figure 2.3). F. prausnitzii_G, present in 49% of the 401 PREDICT 

samples, also shows a similar pattern (Figure 2.4). These results suggest that there is, in fact, a 

variety of strains within the human gut microbiome and that the Manhattan distance is able to 

capture those strain distributions across people, and therefore could provide a useful estimator 

for the population structure of bacterial species. In addition, because the population structure is 
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continuous and related to a defined distance matrix, it made sense to build on approaches that 

have proven useful in human GWAS studies. One of the approaches from GWAS that has 

historically been very successful, a mixed modeling approach of incorporating a random 

variable based on the population structure, was a clear choice due to its speed, precision, and 

ability to adjust for false positives 75. 

 To conclude this section, there are significant challenges with understanding 

associations between the human gut microbiome and host traits, including disease phenotypes. 

We must go beyond using the relative audience of species alone. By incorporating population 

structure within the microbiome into metagenome-wide association studies, we have the 

potential to unlock new treatments and health improvements that could significantly impact 

future health outcomes. Building on the methods used in GWAS, I will next describe how I 

developed “microSLAM” (microbiome structure leveraged association models), an R package 

and a statistical model. This tool performs association tests that connect the presence/absence 

of genes within species to host traits, while accounting for population structure (i.e., strain 

genetic relatedness across hosts). MicroSLAM is implemented in three steps for each species. 

The first step estimates population structure across hosts. Step two calculates the association 

between population structure and the trait, enabling the detection of species for which a subset 

of related strains confer risk. To identify specific genes whose presence/absence across diverse 

strains is associated with the trait, step three models the trait as a function of gene occurrence 

plus random effects estimated from step two. The rest of this chapter will delve deeper into the 

details of how each of these steps are performed.  
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Figure 2.3 Many samples contain more than one strain of Bacteroides_B dorei. 62% of the 
932 PREDICT samples with B. dorei have allele frequency spectra consistent with two or more 
distinct lineages colonizing the host. Samples with one dominant strain of B. dorei form two 
genetically distinct clusters, and the rest of the samples are intermediate between these, 
consistent with colonization by strains from both clusters. A: Heatmap of pairwise Manhattan 
distances between PREDICT samples. B: PCoA plot based on the Manhattan distances. 

 

Figure 2.4 Many samples contain more than one strain of Faecalibacterium prausnitzii_G. 
49% of the 401 PREDICT samples with F. prausnitzii_G have allele frequency spectra 
consistent with two or more distinct lineages colonizing the host. Samples with one dominant 
strain of F. prauznitzii_G form two genetically distinct clusters, and the rest of the samples are 
intermediate between these, consistent with colonization by strains from both clusters. A: 
Heatmap of pairwise Manhattan distances between PREDICT samples. B: PCoA plot based on 
the Manhattan distances. 
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2.2 Statistical model for strain-trait and gene-trait associations 
while accounting for population structure in metagenomes  

In this section I present microSLAM, a 3-step modeling procedure for detecting within-

species genetic variation associated with host biology. The inputs to microSLAM, for a given 

species, are a p x n binary matrix of gene family presence/absence values for n host samples 

and p gene families, a 1 x n vector of trait values for each sample (binary or quantitative), and 

optionally a q x n matrix X of data for q covariates. The outputs are a measure of population 

structure (𝜏) with a permutation p-value and, for each gene family, a coefficient (β) measuring 

the gene’s association with the trait (e.g., log odds ratio for binary traits and logistic regression) 

with its local false discovery rate (localFDR) adjusted p-value 76. Results from different species 

can be interpreted jointly to identify shared trends in trait-associations, such as enriched 

pathways.  

MicroSLAM fits generalized linear mixed effects models that account for the genetic 

relatedness of strains of a given species across hosts. In Step 1, an n x n sample genetic 

relatedness matrix (GRM) is computed from the gene presence/absence matrix. To do so, we 

create an n x n Hamming distance matrix and then transform this into relatedness using 1-

distance. The GRM is used in Step 2 to test if the species’ population structure is associated 

with the trait, which would indicate that hosts with similar trait values tend to have similar strains. 

For example, for a case/control study, this step aims to detect species where a subset of related 

strains confers risk. We call Step 2 the 𝜏 test, because population structure is modeled using a 

parameter 𝜏. In Step 3, random effects estimated from the GRM are used to adjust for 

population structure in a model that is used to test gene families for associations with the trait 

beyond simply being present in trait-associated strains. We call Step 3 the β test, because a 

parameter denoted β is used to quantify gene-trait associations. 
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In Step 2 (𝜏 test), microSLAM fits a generalized linear mixed model. The trait 𝑦!: 𝑖 =

1, . . . , 𝑛 is modeled as a function of any covariates X (with coefficients 𝛂) and random effects 

𝑏!: 𝑖 = 1, . . . , 𝑛 that are estimated from the GRM. The link function f() is the identity function for 

normalized quantitative traits (linear regression) or the logit function for binary traits (logistic 

regression):  

𝐸[𝑓(𝑦)] = 𝛼𝑋 + 𝑏 (1) 

One key component of fitting Model 1 is estimating 𝜏, the variance on the random 

effects, which depends on the association of the trait to the GRM. This is done iteratively using 

the average information restricted maximum likelihood (AI-REML) algorithm from the GMMAT 77 

method. From this, we obtain a point estimate of 𝜏, a point estimate of the random effects 𝑏!, 

and a statistic, 𝑇 = 𝑏"/𝑁 , that measures how associated the species’ population structure is 

with the trait. This T statistic is derived from 78 and computed using the linear setup from 79. To 

assess the statistical significance of T, we randomly permute the trait values B times (e.g., 

B=1000), repeat model fitting, compute a T statistic for each permutation, and use these as an 

empirical null distribution to estimate a p-value based on how many of the permuted T statistics 

exceed the observed T statistic. Species with a significant T statistic have population structure 

that associates with the trait.  

In Step 3 (β test), microSLAM fits a second model using the random effects (b) 

estimated in Step 2 and the presence/absence vector for each gene family, denoted g (with 

coefficients 𝛽):  

𝐸[𝑓(𝑦)] = 𝛼𝑋 + 𝛽𝑔 + 𝑏 (2) 

Model 2 is fit separately for each gene family within each species. 𝛽 measures the 

gene’s association with the trait given the species’ population structure and the covariates. 

Similar to the strategy used in SAIGE 64, we directly calculate the score statistic for each gene 

by fitting the covariate and population structure adjusted genotype vector to the phenotype. 
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Doing a direct computation given the random effect is an efficient strategy to reduce compute 

time; we only have to fit Model 1 once per species. Microbiome case/control studies are often 

unbalanced, for example, when a bacterial species is detected in many more controls than 

cases. To obtain accurate p-values in this scenario, we approximate the score statistics for 

testing the null hypothesis that 𝛽 is zero using the Saddle Point Approximation (SPA) of the true 

distribution, as implemented in SAIGE.  

To adjust the resulting p-values for multiple testing, we use localFDR 76, which accounts 

for the high correlation between gene families (i.e., when genes co-occur across strains) that 

invalidates methods such as Benjamini-Hochberg FDR 80 or Storey’s q-value 81. We transform 

SPA p-values into Z-values by dividing by two, multiplying times the sign of the estimated 𝛽 

coefficient, and converting the resulting numbers to quantiles. Then, localFDR uses maximum 

likelihood estimation to approximate the null Z-value distribution and identify Z statistics that 

deviate from this distribution. We implement this using the locfdr v1.1-8 package in R, fitting the 

null distribution to the Z-values between the 10th and 90th percentiles across all species.  

MicroSLAM was developed for use with the outputs of the MIDAS software 38. 

Throughout this project, I used different versions of the MIDAS software to enhance its 

functionality and performance. Metagenomic Intra-Species Diversity Analysis (MIDAS) is an 

integrated pipeline for profiling strain-level genomic variations in shotgun metagenomic data, 

originally developed by Stephan Nayfach in the Pollard lab. MIDAS2 39 was developed by 

Chunyu Zhao and Boris Dimitrov, to work with more comprehensive MIDAS Reference 

Databases (MIDASDBs), and to run on large collections of samples in a fast and scalable 

manner. I worked on testing MIDAS2 installation, publishing MIDAS2 protocols, and the 

developing application user case to quantify evidence of a single dominant strain versus 

mixtures of multiple strains in each sample of MIDAS2. Most recently, the Pollard lab has 

released MIDAS v3 40, which includes updates to its pangenome database and profiling pipeline 

which affect quantification and facilitate the interpretation of strain-specific gene content. 
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2.3 Methods 

2.3.1 Quasiphasable species model 

The QP model 72 was applied to the PREDICT study to determine whether each species 

in each metagenomic sample was quasi-phasable (QP) or not (i.e., one dominant strain versus 

colonization by multiple bacterial lineages). The model uses synonymous sites in genes of the 

core genome of a given species. If the fraction of these sites with intermediate allele frequencies 

was higher than .8, this was taken as evidence for a strain mixture. 

I used similar sample and site filters for population single-nucleotide variants (SNV)s as 

in (Garud et al. 2019). Specifically, I filtered the per species snps_info.tsv and snps_freqs.tsv 

files from MIDAS2 as follows: 

● Minimal per-sample median site depth of bi-allelic SNVs from protein-coding sequences 

(𝐷) is 20. 

● Only include 4-fold degenerate synonymous sites 

● Sample site depths must be between .3 *𝐷 and 3 *	𝐷  

● Minimal site depth is 10 

● Minimal site prevalence is 5 

This produces a filtered SNVs allele frequency file. 
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QP calculation. For each species, I estimated whether each sample is QP as follows: 

1. For each non-intermediate site, I defined population major allele direction (𝑓#$!%) as 1 if 

the majority of the allele frequencies are higher than 0.8 and 0 if not. 

𝑓#̅!"# = 	1 if (∑ 𝑓&'
& ≥	 .8	 ≥ 	∑ 𝑓&'

& ≤	 .2)	 else 𝑓#̅!"# = 	0 

where 𝑛	is the sample index, 𝑁⬚is the number of relevant samples for the given site. 

2. For each sample 𝑛	, I computed the dominant haplotype of each non-intermediate site 

(𝑓&,#!"#) as 1 if the corresponding allele frequency is higher than 0.8 and 0 if not  

𝑓&,#!"# = 	1 if 𝑓&,#!"# ≥	 .8 else 𝑓&,#!"# = 	0 

where 𝑙	is the site index. 

3. For each non-intermediate site, the population major allele frequency (𝑓#) is computed 

as: 

𝑓#I =
∑ 𝑓&,#!"#
'
& 	== 	𝑓#I$!%

𝑁
 

4. For each sample, I estimated 𝑁* as the average genetic distance between sample n and 

the alleles present in the remainder of the samples (𝑓#I$!%) as:  

𝑁* = ∑ 𝑓#I+# 		if 𝑓&,#!"# == 𝑓#I$!% 	else 1 − 𝑓#I 

where, 𝑙 is site index, 𝐿 is total number of non-intermediate sites; 𝑛 is the sample index. 

5. For each sample, I computed the number of intermediate alleles over all sites (𝑁,): 

𝑁, = ∑ 1+# 	if 	.2 < 𝑓&,# 	< 	 .8 else 0  

6. For each sample, if '$
'%
	< 	0.1 then we say the sample is QP, because there is evidence 

of one dominant strain with sufficiently high coverage and sufficiently low rates of 

intermediate alleles. 
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Figure 2.5 Comparison of different distance methods to whole genome ANI. Whole 
genome ANI was calculated from 100 relevant and abundant gut species from UHGG with 100 
diverse genomes used to simulate the diversity between different strains within the human gut 
microbiome. This was done with different numbers of sites sampled between 1000 to 5000 and 
the Pearson correlation between the distance method and whole genome ANI (WG ANI) was 
calculated. Manhattan distance was the most similar to WG ANI. 

2.3.2 PCoA and Manhattan distance using SNVs from microbiome 
Manhattan distance was calculated based on the filtered SNV site-by-sample allele 

frequency matrix to evaluate the dissimilarity between samples. Principal Coordinate Analysis 

(PcoA) was calculated based on the Manhattan distance matrix using the ape package 82. I 

decided to use Manhattan distance based on a small experiment of 100 relevant and abundant 

gut species. I downloaded 100 of their genomes from MGnify 83, filtering for those that were 

most different from each other, and I compared the whole genome ANI to different distance 

methods with drop outs and number of SNVs ranging from 1000 to 5000 in order to determine 

which distance method was most similar to whole genome ANI (Figure 2.5). 
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2.3.3 Genetic relatedness matrix 

I used the pairwise Hamming distance based on the gene presence/absence matrix to 

create the genetic relatedness matrix (GRM) for a set of samples. For N genes where Ai and Bi 

are a binary presence or absence of gene i in sample A and in sample B, respectively, I defined 

genetic similarity as 1 − ∑ |."/0"|
'

'
! . This is computed for all pairs of samples where a given 

species is present to create that species’ GRM 𝜓.  

If wanted, one could instead use a SNV presence/absence or frequency matrix instead 

of a gene presence/absence matrix to compute the GRM. For SNV distance, I recommend 

using the Manhattan distance. The resulting GRM based on the set of bi-allelic polymorphisms 

genotyped by MIDAS v3 or another tool would approximate the average nucleotide identity 

(ANI) between samples. I explored this approach and found that polymorphism based GRMs 

were generally very different from gene presence/absence based GRMs for the same species. 

In simulations, this led to higher false positive rates for the microSLAM β test (similar to GLM), 

presumably because there was trait-associated population structure in the gene 

presence/absence matrix for which this approach did not fully adjust. Further investigation into 

the selection of SNVs or distance metric could potentially make this strategy more effective.  

2.3.4 Microbiome generalized linear mixed model for binary traits: 

additional details about microSLAM’s modeling approach 

In a case-control study with sample size N, we denote the status of the ith individual with 

𝑦! = 1 or 0, depending on whether it is a case or a control. Let the 1 × (1 + 𝑝) vector 

𝑋!represent 𝑝 covariates, plus an intercept term, and let 𝐺! represent the presence or absence 

of a gene; this can also be replaced with the copy number of a gene, as estimated by MIDAS v3 

or other tools. The logistic mixed model can be written as:  
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𝑙𝑜𝑔𝑖𝑡(𝜇!) = 𝑋!𝛼 + 𝐺!𝛽 + 𝑏! + 𝜀!  

where 𝜇! = 𝑃(𝑦! = 1|𝑋! , 𝐺! , 𝑏!) is the probability that the 𝑖′th individual is a case given the 

covariates, gene presence/absence vector, and the random effect 𝑏! that is estimated by 

microSLAM. The random effect 𝑏! is modeled 𝑁(0, 𝜏	𝜓) where 𝜓 the N×N GRM described 

above, and 𝜏 is the estimated additive genetic variance. The 𝑉𝑎𝑟(𝑦!|	𝑏	) = 𝜙	𝑣𝑎𝑟(𝜇!), in the case 

of a binary trait the random parameter Φ=1. The parameter 𝛼 is a 1 × (1 + 𝑝) coefficient vector 

of fixed effects and 𝛽 is a coefficient representing the log odds ratio for the association between 

the gene’s presence and the trait. For a quantitative trait, 𝑦! is a real number and the model is a 

linear mixed model rather than logistic, so that 𝛽 represents the expected change in the trait for 

the gene being present versus absent. Everything else is the same. 

2.3.5 Estimating the coefficients and variance components 

I employ the same restricted log-likelihood and average information matrix for estimating 

the coefficients and variance components as were employed in GMMAT 77 and Saige 64. For 

more details on deriving these estimation procedures, refer to those studies and to Clayton and 

Breslow 67. I also followed Saige’s multi-step process to estimate the random effects and then 

use these in the logistic (or linear) model presented in the previous section. This helps us in two 

ways: 1) it reduces computational time significantly as random effects only have to be estimated 

one time for each species (not once for every gene in every species), and 2) avoiding refitting 

the random effect for every gene provides a more robust estimate. 

Unlike Saige, I do not use PCG, randomized trace estimator, or a low-rank GRM. These 

are designed to reduce computation and memory costs within the context of human genomes 

with millions of genetic variants, but these are not major problems for us given the size of the 

datasets in this study. Also, our GRMs are naturally full-rank. These computational shortcuts 

could be implemented if needed.  
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2.3.6 Score testing for the GRM: 𝛕 test modeling 

I detail microSLAM’s 𝜏 test, a new statistical procedure to inform the user whether the 

species' GRM is significantly related to the trait. This would indicate that a subset of related 

strains can predict the trait. I consider random effects 𝑏! ∼ 𝑁(0, 𝜏𝜓), as described above, then 

compare the models: 

𝐻1:	𝑌 = 𝑋𝛼 + 𝜖 

𝐻2:	𝑌 = 𝑋𝛼 + 𝑏 + 𝜖 

After the models have been fit (estimation converges), I have 𝛼a; 𝑏b; 𝜙b; and �̂�. I also 

compute a working vector 

	𝑌b = 𝑋	𝛼a 	+	𝑏b +	𝜖̂, 𝑏 ∼ 	𝑁(0, �̂�	𝜓);	𝜖̂ 	 ∼ 	𝑁(0,𝑊/3) 

The test statistic for the 𝜏 test can be written as: 

  𝑇 = ∑ 𝑏"4f/𝑁'
!53  

This is the sample variance of the estimated random effects 𝑏!. This statistic involves the 

sum of the squared random effect estimates. The null hypothesis is that T=0 (i.e., the random 

effects do not help to explain variation in the trait). To compute a p-value for T without making 

assumptions about its distribution, I used a permutation test.  

2.3.7 Score testing for gene presence/absence: 𝜷 test modeling  

After I have fit the model described above for the 𝜏 test, I have estimates of the fixed 

effect coefficients 𝛼a, the random effects 𝑏b, and the variance component parameters, 𝜙b; �̂�. Using 

these, I constructed a score test for each gene with the null hypothesis 𝐻1 ∶ 𝛽 = 0. Suppose 𝐺 is 

a 𝑁	 × 1	 genotype vector (where 𝑁 is the number of samples). �̂� are the probabilities of the 

samples having the trait (e.g., being cases) given the covariates 𝑋 and the random effects 𝑏b: 

𝑃(𝑌 = 1|𝑋, 𝑏b). Let 𝑊h 	be a diagonal vector with elements �̂�	(1 − �̂�	)	and 𝐺i = 𝐺 −
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𝑋(𝑋6𝑊h𝑋)/3𝑋6𝑊h𝐺 is the covariate-adjusted genotype vector. With 𝛴b = 𝑊/3k+�̂�𝜓	 and 𝑃 =

𝛴/3f − 𝛴/3f 𝑋(𝑋6𝛴/3f 𝑋)/3𝑋6𝛴/3f  and a working vector 𝑌b = 𝑋	𝛼a + 𝑏4h + 𝑔′(�̂�)(𝑦 − �̂�)	, the score test 

statistics, assuming 	𝑃b𝐺i = 𝑃b𝐺 is: 

𝑇 = 𝐺6(𝑌 − �̂�) = 𝐺6𝑃b𝑌b = 𝐺i6𝑃b𝑌 = 𝐺i6(𝑌 − �̂�)k  

The variance of T is: 

	𝑉𝑎𝑟(𝑇) = 𝐺i𝑊𝐺i 

I estimated this directly for each gene 𝐺. As shown in 64 this is approximately equivalent 

to 𝐺i	𝑃b𝐺i but much faster to compute, plus the approximation is conservative. 

The effect size 𝛽l	is the natural log of the odds ratio. We can estimate this using the 

variance component estimate under the null hypothesis.  

	𝛽l = (𝐺i𝑊𝐺i)/3(𝐺i𝑃b𝑌b) = 𝑇/𝑣𝑎𝑟(𝑇) 

The standard error of 𝛽l  is 𝑆𝐸(𝛽l) = n𝛽l/𝑧n where 𝑧 is the z-score corresponding to the p-

value divided by 2.  
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Chapter 3 Improved Detection of Microbiome-Disease 
Associations Via Population Structure-Leveraged 

Association Model (microSLAM) 

3.1 Abstract 

Most microbiome-disease association studies focus on genera or species that vary in 

abundance with disease status, limiting our understanding of why these microbes act as 

disease markers and overlooking cases where disease risk is related to specific strains with 

unique biological functions. To bridge this knowledge gap, we developed “microSLAM” 

(microbiome Structure-Leveraged Association Model), an R package and a statistical model. 

This tool performs association tests that connect the presence/absence of genes within species 

to host traits, while accounting for population structure (i.e., strain genetic relatedness across 

hosts). Traits can be binary (such as case/control) or quantitative. MicroSLAM is fit in three 

steps for each species. The first step estimates population structure across hosts. Step two 

calculates the association between population structure and the trait, enabling detection of 

species for which a subset of related strains confer risk. To identify specific genes whose 

presence/absence across diverse strains is associated with the trait, step three models the trait 

as a function of gene occurrence plus random effects estimated from step two. Applying 

microSLAM to 710 gut metagenomes from inflammatory bowel disease (IBD) samples, we 

discovered 49 species whose population structure correlates with IBD. In addition, after 

controlling for population structure, we found 57 microbial genes that are significantly more 

common in healthy individuals and 26 that are more common in IBD patients, including a seven-

gene operon in Faecalibacterium prausnitzii that is involved in utilization of fructoselysine from 

the gut environment. Overall, microSLAM detected IBD associations for 45 species that were 

not detected using relative abundance tests, and it identified specific strains and genes 
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underlying IBD associations for 13 other species. These findings highlight the importance of 

accounting for within-species genetic variation in microbiome studies.  

3.2 Introduction 

The human body is home to a complex community of microorganisms, known as the 

microbiome, which encodes millions of genes 84. The species composition of the microbiome 

differs significantly between individuals and is associated with host genetics, diet, immune 

system, and several human diseases 9,85–87. As microbiome species evolve, individual lineages 

lose and gain genes through horizontal gene transfer 26,33 and other processes that create 

structural variation 34,48,88. The resulting pangenome can be quantified from shotgun 

metagenomics data 40,44,45, which has revealed immense genetic diversity between and within 

human hosts 46. Even when two people harbor the same microbial species, the cells within 

those populations are likely to perform different functions 47,48. For example, prior studies 

identified many cases of variable virulence and antibiotic resistance 49,50, a set of pro-

inflammatory genes from specific strains of Ruminococcus gnavus 51, a Faecalibacterium 

prausnitzii GalNAc utilization pathway linked to with cardiometabolic health 52, and a strain of 

Escherichia coli with enhanced ability to live on the intestinal mucus that is associated with IBD 

53. These findings underscore the limitations of using species alone to gain insight into host-

microbiome interactions.  

We consider two ways to leverage within-species pangenomic diversity to discover 

associations between the microbiome and a trait of the host, such as disease. The first is 

designed for when a species has a strain or group of related strains that predicts the trait. 

Identifying and isolating trait-associated strains facilitates experimental investigations into host-

microbiome interactions, and strains enriched in healthy hosts have been proposed as 

components of probiotics and therapies 17,54–56. Due to the systematic structure of bacterial 
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genomes in which many genes have correlated presence/absence across strains–especially 

closely related strain–this approach will typically identify a large set of trait-associated genes. 

While any of these genes could be a good biomarker (e.g., for diagnosis or patient stratification), 

most of them are not good candidates for follow-up studies of causal mechanisms. Therefore, 

we also consider a second case in which one or a small number of individual genes predict the 

trait. Such associations are easiest to detect if the genes are rapidly gained and lost (e.g., 

mobile elements), so that they associate with the trait independently of evolutionary 

relationships amongst strains. Genes like these are promising candidates for discovering causal 

mechanisms through which microbes modify host health and treatment responses. 

To identify trait-associated microbiome strains and genes, we developed a statistical 

model that can be used to perform a metagenome-wide association study (MWAS) for any 

continuous or binary host trait. Building on the work done on generalized linear mixed-effects 

models from human genetics 64,67,77,89, this modeling approach uses gene presence/absence 

data from cohorts with metagenomic sequencing to first estimate a between-sample genetic 

relatedness matrix for each microbiome species and associate this population structure with the 

host trait. Then, each gene in a species’ pangenome is tested for its trait association after 

accounting for the relatedness of strains across hosts using random effects derived from the 

relatedness matrix. Our methodology is implemented in an open-source R package, called 

microbiome generalized linear mixed-effects model (microSLAM), which can be used with 

quantitative and binary traits (including unbalanced case/control studies), scales to thousands of 

samples, and has a controlled type one error rate. The two tests in microSLAM enable 

researchers to detect new associations and to refine associations discovered using relative 

abundance. 

To investigate the utility of microSLAM, we analyzed a compendium of 710 publicly 

available metagenomes from IBD case/control studies. IBD is an inflammatory condition of the 

gastrointestinal tract characterized by its persistence 90. IBD afflicts roughly 3 million Americans 



 

 25 

91, and its incidence has continued to increase in older adults in recent years 92. The gut 

microbiome has long-standing links to IBD, including species abundance and gene associations 

47,53,90,93–102. Here, we combined MIDAS v3 pangenome profiling 40 with microSLAM to quantify 

associations between IBD and relative abundance, population structure, and gene 

presence/absence across 71 common members of the human gut microbiome. These analyses 

identified 49 species with IBD-associated population structure and 83 significant gene families, 

which we interpreted at the pathway level within and across microbiome species. Tests based 

on relative abundance would have missed these associations. 

3.3 Results 

3.3.1 MicroSLAM modeling approach 

We present a new method, called microbiome population Structure Leveraged 

Association Model (microSLAM) using generalized linear mixed effects, that enables two 

complementary statistical tests of association between a host trait and within-species genetic 

variation (Figure 3.1A; Methods). The trait can be quantitative or binary (e.g., case/control). 

Both tests use the presence/absence of genes from a given species’ pangenome across hosts, 

which can be quantified from metagenomic sequencing data using tools such as MIDAS v3, 

panX, and Roary 40,44,45. The microSLAM method is implemented as an open-source R package 

at https://github.com/miriam-goldman/microSLAM.  

The first test, the 𝜏 test, identifies species for which trait variation is associated with 

variation in overall gene content, as quantified by a random effect (bi) for each host that is 

estimated using a GRM (1-Hamming distance of gene presence/absence) and quantifies the 

association between the sample’s lineage and the trait. We refer to the output of the 𝜏 test as 

strain-level associations, because many gene families that are jointly present/absent across 

hosts are all equally likely to be associated with the trait. Identifying strain-trait associations is 
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important because this improves the precision of research and therapeutics development based 

on cultured strains beyond simply picking a random strain from a trait-associated species, which 

may in fact not be one of the strains driving the species-level association. The genes jointly 

defining trait-associated strains (i.e., those positively or negatively associated with 𝑏) also 

provide signatures that can be used for predictive modeling and potential diagnostics. 

However, the many jointly evolving genes that define trait-associated strains will make it 

difficult to pinpoint causal mechanisms; some of them may play direct roles in the etiology of the 

trait or in enabling the strain to survive in hosts with that trait, while others are simply present in 

the same lineage. To address this, microSLAM implements a second test, called the β test, that 

identifies individual gene families that are significantly associated with the trait above and 

beyond what is expected given the GRM. This is accomplished by modeling the trait as a 

function of each gene family’s presence/absence with a generalized linear mixed effects model 

that includes the random effect (bi) for each sample (Methods). The resulting significant gene 

families may be recently and/or recurrently lost and gained (e.g., via mobile elements). To be 

detected, they must evolve somewhat independently of the gene families that distinguish strains 

and in patterns that strongly associate with the host trait. These are high-confidence candidates 

for studying causal mechanisms. Going beyond standard species relative abundance tests, 

microSLAM’s two within-species tests are designed to enable (i) identification of specific strains 

and gene functions driving species-trait associations, and (ii) detection of novel trait 

associations not detectable at the species level. 
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Figure 3.1 MicroSLAM motivation and approach. A) Flow chart of microSLAM modeling 
approach (diagram created in BioRender). B – G) Two bacterial species with different 
population structures. First row: Phocaeicola dorei (260 IBD cases, 218 controls); Second row: 
Blautia massiliensis (73 IBD cases, 44 controls). B&E) Heatmap of gene by gene correlation 
matrix based on gene presence/absence across IBD samples. Red: high positive correlation, 
Blue: high negative correlation. C&F) Heatmap of sample by sample genetic relatedness matrix 
(1 minus Hamming distance of gene presence/absence profiles). Dark green: high similarity, 
White: low similarity. D&G) Q-Q plot for p-values from tests of association between case/control 
status and presence/absence of individual genes in the pangenome. Tests are based on 
micoSLAM and standard logistic regression that does not adjust for population structure (glm). 
The diagonal line shows expected p-values under the null hypothesis of no association. 
Pangenome profiling for the metagenomes was done using MIDAS v3.  
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3.3.2 Population structure in inflammatory bowel disease gut microbiomes 

We compiled 710 publicly available gut metagenomes from five inflammatory bowel 

disease (IBD) case/control studies and performed pangenome profiling of them using MIDAS 

v3. There were 71 species with sufficient sequencing coverage to analyze within-species 

genetic variation. After dropping gene families that are nearly always present or nearly always 

absent (Methods), we had an average of 2,254 gene families per species and a total of ~160 

thousand across species. All species showed some population structure. In some species, such 

as Phocaeicola dorei (P. dorei), many gene families are co-evolving and show a high correlation 

in their presence/absence across hosts (Figure 3.1B). In turn, we see two distinct subgroups of 

strains in the GRM (Figure 3.1C). This high level of structure might be the result of selection 

pressures, drift, or a recent population expansion. When we perform MWAS for all P. dorei gene 

families using logistic regression (glm), we observe that most genes are significantly associated 

with IBD case/control status (Figure 3.1D). This inflation is similar to the well-known problem in 

human genetics in which ancestry-associated variants are all highly significant when genetic 

ancestry differs between cases and controls 103. In contrast, the gene-level test in microSLAM 

does not show inflation, because our model adjusts for population structure when testing 

individual gene families for disease associations. We therefore hypothesize that inflation is a 

consequence of high population structure resulting from a high correlation between gene 

families. Supporting this, Blautia massilensis does not have many genes that are correlated 

(Figure 3.1E) and shows less structure in its GRM (Figure 3.1F). Accordingly, the glm p-values 

do not show inflation, and the microSLAM output is very similar to that of glm.  

These results suggest that if we wish to identify individual gene families with 

unexpectedly high associations with a host trait given the species’ GRM, the mixed modeling 

approach in microSLAM provides a way to adjust for population structure across hosts, just as 
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mixed models have enabled human geneticists to account for confounding from genetic 

ancestry. However, population structure is not necessarily a confounder in microbiome 

research, and it may also be of interest to identify trait-associated strains, defined by the 

presence and absence of many gene families relative to other strains. These genes would not 

be significant in the microSLAM β test, because they are highly correlated with population 

structure. For this reason, microSLAM also includes a strain-level test, the 𝜏 test.  

Consider, for example, Ruminococcus B gnavus (R. gnavus), a species that has long 

been associated with IBD 51,104,105. The R. gnavus GRM shows two distinct groups when hosts 

are sorted based on their 𝑏! values (Figure 3.2A). One of these groups only contains healthy 

control individuals, while the other is split between IBD and controls. The bi estimates better 

separate cases and controls than do the first two principal coordinates of the gene 

presence/absence matrix (Figure 3.2B). Not surprisingly, when we apply the microSLAM 𝜏	test 

to R. gnavus, we obtain a large and statistically significant measure of association (𝜏=4.67, 

permutation p-value=0.0001; Figure 3.2C), and the resulting model can classify IBD cases with 

high accuracy (ROC AUC = 0.987; Figure 3.2D). Now, if we look at the genes that are most 

highly correlated to the estimated 𝑏! values of the samples, we identify 238 out of the ~1200 

non-core, non-rare genes used in the analysis that are all nearly equally associated with IBD 

(Figure 3.2E). None of these genes are significantly associated with IBD after adjusting for 

population structure. Thus, we were able to identify several hundred highly correlated genes 

that form a predictive signature for the R. gnavus strains present in IBD patients versus controls. 

These observations illustrate the importance of including the 𝜏 test in microSLAM.  
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Figure 3.2 MicroSLAM detects both strain and gene associations. A) The GRM for 
Ruminococcus B gnavus with hosts sorted by their estimated b values and annotated by their 
disease status. B) PCoA from the R. gnavus gene presence/absence colored by host disease 
status (as in A). C) Histogram of permutation test statistics (t-values) from the 𝜏	test for R. 
gnavus. The line denotes the observed value of t. D) ROC plot for the microSLAM 𝜏	test model 
for R. gnavus. The statistic 𝜏 quantifies population structure. E) Gene presence/absence plot for 
a subset of genes associated with the random effect b for R. gnavus. Samples are ordered by b 
and annotated by their disease status. 
 

3.3.3 MicroSLAM controls false positive rates and increases specificity in 

simulations 

The examples in Figure 3.1 and Figure 3.2 suggest that microSLAM’s 𝜏 test can detect 

strain-trait associations when species have a high degree of population structure and its β test 

may control false positive gene-disease associations better than a standard glm, albeit 

somewhat conservatively. But the ground truth is unknown in real data. Hence, we designed a 

series of simulations to assess the performance of both of microSLAM’s tests. Our simulation 

strategy leveraged the IBD compendium in order to capture the range of patterns observed in 

real data while varying parameters such as effect size and sample size. For the β test, we 
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compared microSLAM to glm in order to evaluate the effects of adjusting for population structure 

via the random effects bi.  

First, we evaluated the 𝜏 test. To quantify type 1 error (i.e., false positive rate), we 

simulated gene presence/absence matrices with core and accessory genes, as well as a set of 

strain-specific genes, and for each host, a binary trait was simulated independently of the gene 

presence/absence matrix so that the GRM is not associated with the trait (𝜏 test simulation 1; 

Methods). We investigated a sample size of 100 hosts, which is on the low end of what we 

observed for species in the IBD compendium, and repeated the simulation 1000 times, keeping 

track of how many iterations had a permutation p-value < 0.05. We observed a false positive 

rate of 0.054, which is very close to the expected value of 0.05. This indicates that the false 

positive rate of microSLAM’s 𝜏 test is controlled (Figure 3.3A).  

To evaluate the power of the 𝜏 test, we modified the prior simulation so that the trait 

depends on the presence/absence of a particular strain (𝜏 test simulation 2; Methods). We 

varied the strength of the strain-trait association (odds ratio) and explored sample sizes ranging 

from 60 to 250. As expected, power increases with the odds ratio and sample size (Figure 

3.3B). MicroSLAM achieves ~80% power at an odds ratio of 1.5 with 250 samples, whereas an 

odds ratio greater than 2.0 is needed for similar power with only 60 samples. These results 

provide practical guidelines for the expected performance of the 𝜏 test. 

Next, we investigated the type 1 error and power of microSLAM’s β test compared to 

glm. We considered the case where gene presence/absence is not associated with a binary 

trait, but it is associated with population structure, and hence genes are correlated with each 

other. To do so, we simulated gene presence/absence using principal components of the 

observed GRM for each of the 71 species in the IBD compendium (β test simulation simulation 

1; Methods). MicroSLAM controlled the false positive rate below 0.05 for all but two species 

where it is exactly 0.05 (Dorea A longicatena, Roseburia sp900552665). In contrast, the glm 
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without a random effect adjusting for population structure failed to do so for all but 9 species 

(Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Bariatricus comes, Blautia A faecis, 

Faecalibacillus intestinalis, Gemmiger qucibialis, Akkermansia muciniphila, Roseburia 

sp900552665, Acetatifactor sp900066565), a failure rate of 87.3% (62/71). In addition, as the 

estimated 𝜏 increased, the false positive rate of the glm dramatically increased while the false 

positive rate for microSLAM decreased slightly (Figure 3.3C).  

To explore if this conservative control of the false positive rate affects the power of 

microSLAM’s β test, we performed simulations where 100 true positive genes are added to the 

previously stimulated genes, meaning that they have a presence/absence pattern that is 

associated with the simulated trait (β test simulation 2; Methods). We varied the strength of the 

association (odds ratio) and evaluated power at an empirical false positive rate of 0.05 

(calculated using the non-trait-associated genes). These analyses show that microSLAM 

consistently has either the same or higher power than the glm at the same false positive rate 

(Figure 3.3D), with the difference between methods being most pronounced with a higher 

number of samples and a high degree of population structure (𝜏) (Figure 3.6). In order to 

understand exactly what types of genes lead to the higher false positive rate we simulated a 

data set completely de novo without using the IBD compendium (β test simulation 3; 

Supplement). This showed that the strain-associated genes tended to lead to an increase in 

false positives for the glm, while microSLAM was able to differentiate the true positives from 

genes linked to the strain but not directly associated with the trait (Figure 3.7). Thus 

microSLAM’s β test has better specificity than does a standard glm. 
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Figure 3.3 Simulations show that microSLAM improves power and false positive rates.  
A) The false positive rates of the 𝜏 test of microSLAM were estimated using simulations with 
varying GRMs but no trait associations. We simulated gene presence/absence and GRMs for 
the 1000 iterations (𝜏 test simulation 1; Methods). A histogram of p-values for the 𝜏 tests shows 
that the percentage of tests with a p-value < 0.05 is 5.4%. B) Power of the 𝜏 test for simulations 
with a range of values for the odds ratio of the simulated y compared to the presence of the 
trait-associated strain (𝜏 test simulation 2; Methods), repeated for different numbers of samples 
(N). C) False positive rates of the β tests for glm and microSLAM were estimated using 
simulations with varying levels of population structure (𝜏) but no trait associations. We simulated 
gene presence/absence using the GRMs for the 71 species in the IBD compendium (β test 
simulation 1; Methods). The false positive rate increases with 𝜏 for the glm and is generally 
above the targeted level (0.05; horizontal line), while it decreases and is generally below 0.05 
for microSLAM. D) Power for 3 simulated species with different 𝜏 values and numbers of 
samples (N). For a subset of genes, presence/absence is simulated based on the trait using a 
range of odds ratios; other genes have presence probabilities that do not depend on the trait (β 
test simulation 2; Methods).  
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3.3.4 MicroSLAM reveals IBD associations across 71 gut microbiome 

species 

We next sought to examine associations in our IBD compendium using microSLAM’s 

population structure and gene tests. First, we performed the standard species-level analysis in 

which the relative abundance of each of the 71 gut species (quantified using kraken2 and 

bracken 106–108; Methods) is tested for association with IBD case/control status using logistic 

regression, adjusting for host age. We also explored adjusting for study, but found that no 

species had significant study effects. Medications and other clinical covariates are important 

confounders but unfortunately were not provided in the publicly available datasets. We found 

that 13/71 species (18%) had significant relative abundance associations (localFDR<10%; 

Figure 3.4A).  

To investigate strains potentially responsible for these relative abundance associations, 

and to explore the possibility that some species have strain associations without relative 

abundance associations, we next ran microSLAM using each species’ gene presence/absence 

matrix and corresponding GRM (quantified using MIDASv3 40; Methods). We used microSLAM’s 

𝜏 test to identify species whose population structure is associated with IBD case/control status. 

At localFDR<10%, 49/71 species (69%) were significant, meaning that cases and controls tend 

to harbor distinct strains consistently across studies. Thirty-four of these species were not 

detected in the relative abundance test (Figure 3.4A). Twenty-seven of the species were only 

detected from the population structure test, of those 18/27 (67%) are from class Clostridia. 

These are well-powered and case/control matched studies coming from different geographical 

regions with different diets and lifestyles, as well as different DNA library preparation methods, 

so detecting strain-disease associations across studies suggests that these associations are 

truly linked to microbial population structure, rather than an unmeasured confounder (Figure 

3.8), though we cannot rule out confounding due to the limited amount of publicly available data 
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about the study subjects. As opposed to simply including a PC from the GRM to represent the 

structure of the population, the population structure component of the model pulls out from the 

GRM the cryptic relatedness that can be attributed to the phenotype given the covariates that 

are included. If we were to have more information about diet or exercise then the population 

structure component would be the portion of the GRM that can be attributed to the phenotype 

given the exercise of the host.  

In addition to assessing the statistical significance of 𝜏 via a permutation test, we also 

report the area under the curve (AUC) for the receiver operating characteristic (ROC) from the 𝜏 

test model. This shows how well the population structure component is able to separate the 

cases from the controls. The AUC is calculated within the same training data because the 

random effects b, which are per-host parameters (i.e., on per subject) generated from the GRM, 

are unknown for new hosts and hence the fitted model does not generalize beyond the training 

set. Overall the AUC from the 𝜏 tests was quite high; 54 species had AUC over 0.9. Class 

Clostridia tended to have the highest AUC values and a smaller variance in AUC values 

compared to Bacteroidia (Figure 3.4B). In addition to R. gnavus (Figure 3.2), species with 

significant 𝜏 tests included Agathobacter rectalis (previously found to be related to IBD under 

certain conditions 109) and Phocaeicola coprocola (formally Bacteroides coprocola, which has 

been shown to have a relationship with ulcerative colitis 110). In both of these species, there 

were no significant genes with the β test, but with the information from the 𝜏 test genes 

differentiating IBD-associated strains can be identified.  

To investigate specific gene families associated with IBD case/control status, above and 

beyond the genes that define IBD-associated strains, we next applied microSLAM’s β test. 

Across the 71 species, 83 genes from 27 species showed significant associations after 

adjusting for population structure (localFDR<20%, which is the threshold with optimal lift and 

somewhat more lenient than the 10% threshold used for the other two tests). Seven of these 
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species did not have significant relative abundance or population structure associations, 

underscoring the unique information captured by each of microSLAM’s tests (Figure 3.4A).  

Having analyzed IBD associations at the species, strain, and gene level, we integrated 

these results across the 71 species to look for phylogenetic trends (Figure 3.4C). Out of the 71 

analyzed gut species, 13 (spread across the phyla Firmicutes A, Firmicutes C, Bacteriodota, 

and Actinobacteria) had no significant IBD associations, possibly due to a lower number of 

samples (N<100 for ten species). Of the 13 species with relative abundance associations, all 

were detected on one or both of microSLAM’s tests (Figure 3.4A), suggesting that relative 

abundance differences are often accompanied by differences in gene content. Looking across 

the phylogenetic tree, Lactobacillus species tend to have the least IBD-associated population 

structure (low values of 𝜏), although there is a subclade of two species with higher 𝜏 values. On 

the other hand, Oscillospirales tend to have high values of 𝜏, and most species in this order do 

not have any significant genes. Finally, Bacteroidales stands out as the order with the most 

significant genes (60/83), consistent with species in this order having many mobile and 

accessory genes 111.  

To further explore the functions of genes identified by microSLAM’s β test (Figure 3.4D), 

we ran multiple gene annotation pipelines. As expected, most of the 83 significant genes had no 

functional annotation. For example, 39/83 are in the EggNOG COG category “function 

unknown”. The remaining annotated genes were too few in number to perform well-powered 

enrichment analyses, but we did note several interesting trends (Figure 3.4E). The most 

common COG, encompassing 11 genes from 8 species, was “replication, recombination and 

repair”. Four genes were annotated as transposases, 22 genes were from a family associated 

with plasmids (>10% of its members annotated as plasmids), and five genes were from a family 

associated with phages. With all of these annotations combined, in addition to the 

understanding these genes are significant beyond the overall population structure of their 
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species, we conclude that many of the significant genes identified by the β test are likely to be 

components of mobile elements. 

 

Figure 3.4 MicroSLAM identifies novel IBD associations. We analyzed all 71 species in our 
IBD compendium for three types of associations with case/control status: relative abundance 
(kraken2+braken: amount of the species predicts disease), population structure (microSLAM 𝜏: 
strain predicts disease), and gene family (microSLAM β: gene presence/absence predicts 
disease). A) Venn diagram showing the number of species with significant IBD associations of 
each type. For genes, we counted the species if it had at least one significant gene family; 
species varied in the number of hits. All tests are localFDR adjusted for multiple testing. B) 
Boxplots showing the AUC ROC from 𝜏 test models for all 71 species, stratified by bacterial 
class. C) UHGG species tree for all 71 species, colored by order. The 𝜏 value, p-value for 𝜏 test, 
number of significant genes, and number of samples for each species are plotted in the outer 
rings. D) Volcano plot for β tests with significant genes (localFDR < 0.2) colored by bacterial 
order. E) Bar plot of COG categories for the 83 genes with significant β tests.  
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3.3.5 Seven-Gene GRF operon is a structural variant in Faecalibacterium 

prausnitzii 

One significant gene identified by microSLAM was annotated as “subunit D of the 

fructoselysine/glucoselysine phosphotransferase (PTS) system” by BlastKOALA 112. It was 

negatively associated with IBD case status in Faecalibacterium prausnitzii D (UHGG species id 

102272), a species whose relative abundance is positively associated with IBD in our 

compendium. This hit intrigued us because F. prausnitzii is a well-studied bacteria with roles in 

short-chain fatty acid metabolism and inflammation 113,114. Predicting a new molecular 

mechanism underlying this host-microbe interaction would enable future functional studies (e.g., 

in gnotobiotic mice) and potentially could be useful for developing diagnostics, dietary 

interventions, or other therapies.  

To explore this gene family, we first compiled 85 high-quality and diverse F. prausnitzii 

genome assemblies from NCBI and clustered them into eight clades (Figure 3.5A; Methods). 

We observed that seven genes (plus occasionally an eighth gene) were consistently found 

together, with a conserved order and orientation across 53% of the NCBI F. prausnitzii genomes 

(49/85) (Figure 3.9). Annotations suggest that these genes encode a 

fructoselysine/glucoselysine PTS system operon. Having established that this operon is variably 

present across distantly related F. prausnitzii strains, we expanded our search to include all 

high-quality F. prausnitzii genomes available in the United Human Gut Microbiome Database 

(UHGG v2) 84. This analysis indicated that the complete seven-gene operon is present in all 

nine F. prausnitzii clades, with between ~3% and ~24% of genomes per clade containing the 

operon (Table 3.1).  
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Table 3.1 A seven-gene operon present in all nine F. prausnitzii clades in UHGG v2. 

Species ID Species name 
Annotated as 
plasmid 

Not annotated 
as plasmid 

Total genome 
counts 

Proportion with 
operon present  

100022 F. prausnitzii C 30 91 1258 0.096 
100039 F. prausnitzii H 1 5 221 0.027 
100195 F. prausnitzii E 6 4 244 0.041 
101255 F. prausnitzii F 2 4 55 0.109 
101300 F. prausnitzii 119 223 1446 0.237 
102272 F. prausnitzii D 88 177 1280 0.207 
102274 F. prausnitzii I 5 0 179 0.028 
102545 F. prausnitzii G 124 127 2891 0.087 
102619 F. prausnitzii J 25 32 236 0.242 
 

Since genes can be syntenic without being functionally related, we conducted further 

analysis to determine the relationship between the seven-gene operon in F. prausnitzii and the 

well-characterized GFR operon in Salmonella Typhimurium 14028s 115. We successfully 

mapped five genes from the F. prausnitzii operon to the corresponding S. Typhimurium operon 

(gfrABCDF) (Figure 3.5B). Notably, the gfrE gene, encoding a deglycase that cleaves 

glucoselysine 6-phosphate, is absent in F. prausnitzii. In addition, the operon in F. prausnitzii 

includes a gene without homology to any gene in the GFR S. Typhimurium operon. The 

regulatory genes, which are located at the start of the operons, also differ between the two 

species. We hypothesize the seven-gene F. prausnitzii operon identified in our analysis 

functions solely as a fructoselysine PTS system (Figure 3.5C).  

Fructoselysine is a spontaneous product of Amadori rearrangements, a chemical 

reaction between amino acids, sugars, and heat that takes place in our food, and its presence in 

the human gut environment can promote the growth of bacteria capable of importing and using 

this carbohydrate as an energy source 116,117. In F. prausnitzii, this is performed by a seven-gene 

operon encoding proteins that phosphorylate the substrate while transporting it across the 

bacterial cell membrane, making it available as a source of carbon. While only subunit D of this 

operon was significant in microSLAM’s gene test after accounting for multiple comparisons, all 
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of the genes in the operon had unadjusted p-values less than 0.05 and flanking genes in the F. 

prausnitzii reference genome did not (Figure 3.5D). Variability in gene detection from shotgun 

metagenomics data is a likely source of the difference in significance for subunit D versus the 

other genes. MicroSLAM analysis for three other F. prausnitzii species in the IBD compendium 

did not yield any significant genes, primarily due to inadequate sample sizes, which restricts the 

statistical power of microSLAM’s β test. Nonetheless, the gene presence/absence matrices for 

these species are consistent with the operon being variably present and depleted in IBD cases.  

Altogether, these results suggest that the genes in this F. prausnitzii PTS operon are co-

evolving in terms of their presence/absence across hosts, potentially independently of 

neighboring genes, and that the presence of this operon is more common in healthy hosts. Our 

data also suggest that the fructoselysine PTS system operon could be a mobile genetic 

element. Supporting this possibility, many NCBI and UHGG contigs carrying this operon are 

predicted by geNomad 118 to be plasmids (Table 3.1). We also observe sequences associated 

with mobile elements and horizontal gene transfer (HGT) in the genomic context surrounding 

the operon. These are computational predictions only, and no plasmids have been previously 

reported in F. prausnitzii. We therefore checked for the operon in the other 70 species in our 

microSLAM analysis, detecting it in strains from two other phyla: Gemmiger qucibialis 

(species_id 103937) and Faecalibacterium sp90053945 (species_id 103899). It is also known to 

be present in Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens Ti plasmid 117. 

While not conclusive, these data are consistent with HGT. Regardless of the mechanism of 

acquisition or loss, the variable presence/absence of the operon across F. prausnitzii strains 

indicates that certain lineages of this species can acquire and utilize fructoselysine, thereby 

enhancing their adaptability and competitiveness in the dynamic gut ecosystem relative to 

strains without the operon.  
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Figure 3.5 Investigation of F. prausnitzii fructoselysine PTS system operon. A) 52 
representative genomes selected from NCBI and colored by the dRep secondary cluster 
(Selection of Faecalibacterium prausnitzii genomes, Methods). B) Comparison of S. 
Typhimurium operon to operon in F. prausnitzii D. C) Graphic of the F. prausnitzii fructoselysine 
PTS system operon and its products (made in BioRender). D) P-values for F. prausnitzii 
fructoselysine PTS system operon genes in microSLAM β tests across the four F. prausnitzii 
species defined by UHGG. The flanking genes are much less significant than the genes within 
the operon. Subunit D (most significant gene in microSLAM analysis) is located at 0, and all 
other indices are relative to this gene.  
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3.4 Discussion 

In this paper we introduce microSLAM, a method that implements population structure-

aware metagenome-wide association studies. Using a generalized linear mixed modeling 

approach, we are able to include information about the genetic relatedness of the microbiomes 

within diverse samples and to model the association of this population structure with host traits, 

while adjusting for other covariates. We focused on case/control study designs here, but 

microSLAM can also be applied to quantitative traits. In addition to testing if population structure 

itself (i.e., specific strains) are associated with a trait, microSLAM also includes a test aimed at 

identifying trait-associated genes that are evolving somewhat independently of strain lineages. 

Through realistic simulation studies, we demonstrated that microSLAM controls Type 1 error 

and has reasonable power in cohorts with more than one hundred samples. Compared to 

standard glm, microSLAM’s gene-level β test controls false positives much more effectively, 

especially in species with notable population structure. When there is a significant population 

structure as well as a subset of genes that are more related to the phenotype than the strain 

signal, we showed that microSLAM increases specificity compared to glm. By providing 

microSLAM as an open-source R package, we provide a new tool for researchers to probe 

microbiome-host interactions with strain- and gene-level resolution.  

In this study, we also put together a metagenomic compendium of IBD samples. 

Analyzing this data with microSLAM, we discover a wide variety of population structures within 

human gut metagenomes. We identified 49 species with a population structure related to IBD. In 

addition, after adjusting for population structure, 57 microbial genes are significantly enriched in 

healthy subjects, and 26 are enriched in IBD patients. From the genes enriched in healthy 

subjects, we identified a F. prausnitzii fructoselysine PTS system operon that is present in all 

clades of this species, but in only a minority of genomes within each clade, suggestive of being 

a mobile genetic element or other rapidly lost/gained structural variant. The presence/absence 
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of this operon may confer distinct metabolic advantages to different strains, including the ability 

of carriers to utilize fructoselysine as an energy source 116. The potential impact on human 

health could be significant, given that F. prausnitzii is one of the most prominent butyrate 

producers in the human gut 16,93,119. This might also lead to a greater resilience of the gut 

microbiota, offering enhanced protection against pathogenic bacteria and reducing risk of 

chronic disease. Therefore, future work aimed at understanding the mechanisms through which 

F. prausnitzii acquires and disseminates this seven-gene operon is not only key to 

comprehending microbial ecology but also crucial for potential dietary or probiotic therapeutic 

interventions targeting the microbiome.  

There are several limitations to the microSLAM method and implementation. First, we 

estimate the GRM using the same gene presence/absence data that we then used to test genes 

for their trait-associations. This approach has been used with mixed modeling with human 

genetic data, and has been shown to reduce power compared to estimating the GRM with an 

independent set of markers (e.g., variants on other chromosomes) 120. We explored a similar 

approach by using single nucleotide polymorphisms (SNPs) in core genes for GRM and random 

effect estimation in the β test. But we found that for almost all species in our IBD compendium, 

the SNP data generated a GRM that was very different from the gene-based GRM, and hence 

SNPs were not good markers for estimating the population structure in gene presence/absence. 

Perhaps this approach could work with more investigation into how to pick SNPs for GRM 

estimation or with a different GRM distance metric.  

Second, as is the case with any meta-analysis, we used samples collected from many 

studies, located in a variety of geographic locations. Publicly available metagenomics data 

rarely includes detailed information about potentially confounding variables, such as diets and 

medical care. Hence, these important covariates are not accounted for in our models. This 

means that there is a chance some of the significant 𝜏 tests were related to an unmeasured 

variable that happened to be associated with strain genetic differences. Since each study 
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included both cases and controls, and we did not observe any strong correlations between 

study and microSLAM’s random effect estimates, we do not consider this a major problem. 

Nonetheless, with so little meta-data it is important to acknowledge that the strain-disease 

associations we detected across studies could be confounded by unmeasured variables (e.g., 

diet that selects for certain strains and alters IBD risk). In the future, when studies include more 

covariates, microSLAM can adjust for these just as we adjusted for age (the only consistently 

reported covariate) in this project. Beyond confounding, more complete metadata also would be 

helpful for understanding the capabilities of our method and for functionally interpreting our IBD 

findings.  

Third, we do not find many individual significant genes within this study. This could be 

partially due to lack of power, especially for 55/71 species with ≤ 160 samples. A much larger 

dataset would increase our ability to find IBD associations for strains and genes. It would also 

enable separate modeling of associations for subtypes of IBD, which may have different 

microbiome signatures 8. Our simulations suggested that most species did not have sufficient 

power for separate Crohn’s disease and ulcerative colitis models in our IBD compendium. We 

did investigate if any microSLAM discoveries were mostly driven by one subtype or the other, 

and we observed very few examples of this one significant gene cluster 

GUT_GENOME040547_00268 from species Phascolarctobacterium faecium was found to be 

positively associated with the disease but was only present in CD patients. In addition, there 

were three species with a significant 𝜏 where less than 1/3rd of the IBD patients are labeled as 

UC and there are less than 10 UC patients (CAG-180 sp000432435, Ruminiclostridium E 

siraeum, and UBA11524 sp000437595) meaning most of the signal is from CD alone in those 

species. While this finding could indicate that most associations are truly shared, it is more likely 

that we only had sufficient power to detect associations supported by both subtypes and that 

other subtype-specific associations remain to be discovered in the future with larger individual 

cohorts. As researchers move towards testing for strain and gene associations in studies with 



 

 45 

hundreds or thousands of samples, microSLAM’s improved specificity and controlled Type 1 

error rate, as compared to glm, will be even more important.  

Fourth, it is possible that some of our discoveries were driven by metagenomic reads 

from the wrong species or gene creating a false signal of gene presence (or absence). This 

cross-mapping is a frequent issue in read-mapping-based genomic analysis, especially for 

closely related species or highly conserved genes 121. Hence, we recommend validating 

microSLAM’s gene test results with complementary data. For example, in our investigation of 

the PTS operon, we confirmed the operon structure and variable presence across strains using 

high-quality genome assemblies. This, plus the fact that this operon is predominantly found 

within F. prausnitzii and not widely distributed in other species, substantially alleviates concerns 

about cross-mapping in this analysis.  

Finally, many of the genes we identified were not annotated, leading to difficulty 

completing in-depth analyses of significant genes across species. For example, we lacked 

power to perform functional enrichment analyses despite seeing several consistent trends, such 

as mobile elements being discovered in multiple species. More gene annotations would help 

with this problem, but annotation alone is not enough to confirm function. We view microSLAM 

as an important first step for proposing candidate causal strains and genes that should be 

performed upstream of in vitro and in vivo experiments to test the hypothesized functions of the 

discovered strains and pathways. The ability of microSLAM to detect associations for species 

whose relative abundance is not correlated with host traits and to accurately disentangle 

associations of individual genes versus groups of strain-defining genes make it a useful new 

hypothesis-generating tool for microbiome research.  
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3.5 Methods 

3.5.1 Compendium of IBD/healthy case/control metagenomic studies 

We compiled a total of 2625 publicly available paired-end shotgun metagenomic 

samples, sourced from five studies related to either inflammatory bowel disease (IBD) or the 

Human Microbiome Project (HMP2) and having an average read count greater than 20 million 

(accession numbers: PRJNA400072, PRJNA398089, PRJEB15371, PRJEB5224 and 

PRJEB1220). A stringent sample selection process was implemented to ensure (1) all samples 

included comprehensive metadata, such as disease status, age, and antibiotic usage; and (2) 

only one sample was selected per subject, considering that multiple time points could have 

been sequenced from the same subject. Specifically, for multiple time point samples from 

HMP2, we adopted the same selection criterion used by (Lloyd-Price et al., 2019) – selecting 

week 20 or greater for all subjects, the maximum read count for healthy subjects and the time 

point with the highest dysbiosis score for IBD patients. The first time point was chosen for the 

MetaHit project (Almeida et al. 2021; Nielsen et al. 2014; Li et al. 2014). Ultimately, a total of 

710 samples met these criteria and were included for downstream analysis.  

3.5.2 Bioinformatics analysis 

Preprocessing of the downloaded metagenomic sequencing libraries was performed 

using a QC pipeline that includes the following steps: (1) Adapter removal and quality trimming: 

adapter sequences were removed and low-quality reads were trimmed using Trimmomatic (v 

0.39) 122. (2) Human contamination removal: reads were aligned against the complete human 

reference genome (CHM13v2.0) 123 and a collection of 2250 genomes known to be 

contaminated by human sequences 124, using Bowtie2 (v 2.5.1) 125 to identify and remove 

human contamination. (3) Low-complexity read filtering: low-complexity reads were filtered out 

using BBduk (v 37.62) 126. This step involved removing reads with an average entropy less than 
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0.5, with entropy k-mer length of 5 and a sliding window of 50 (parameters: entropy=0.5, 

entropy window=0.5, entropyk=4). Additionally, reads shorter than 50 base pairs (bp) post-

filtering were removed (parameters: minlen=50). (4) Quality reporting: a quality report of the 

cleaned-up reads was generated with FastQC (v 0.12.1) 127. After preprocessing, samples with 

read counts lower than 1 million were removed, resulting in 710 high-quality samples retained 

for further analysis. 

3.5.3 Pangenome profiling using MIDAS v3 

To determine which species within the 710 samples are both prevalent and sufficiently 

abundant for pangenome profiling, we implemented a two-step analysis using MIDAS v3 40. In 

the first step, we quickly scanned each sample to detect the presence of species by assessing 

the vertical coverage of 15 universal single-copy marker genes across 3956 distinguishable 

species in the UHGG v2 database 84. In the second step, we adopted a whole-genome read 

alignment-based methodology to quantify the abundance of each species. This involved running 

MIDAS’s single-nucleotide variant (SNV) pipeline for species that meet specific criteria: a 

median marker coverage of at least 2X and at least 50% of the marker genes uniquely covered. 

These steps ensure that our whole-genome based species abundance estimation analysis is 

restricted to species with substantial coverage across their genomes (horizontal coverage > 0.4, 

vertical coverage > 5). We further excluded sample-species pairs where the ratio of genome-

wide vertical coverage to single-copy marker gene coverage exceeded 4, which helps us to 

eliminate potential false positives caused by cross-mapping of reads among closely related 

species and conserved gene families. This stringent criterion also improves computational 

efficiency 121. After implementing the aforementioned filtering, 71 species that were present in 

more than 60 samples and met the abundance criteria were selected for subsequent 

pangenome profiling analysis. There were 619 samples with at least one species present.  
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To perform pangenome profiling, we utilized the Genes module from MIDAS v3 40, which 

features careful curation of the pangenome database and comprehensive functional annotation. 

Specifically, a single Bowtie2 index was built for all 71 species, and QC-ed paired-end reads for 

each sample were aligned to this index. Our analysis included only genes covered by at least 4 

reads (--read_depth 4). Genes with an estimated copy number greater than 0.4 were classified 

as present (--min_copy 0.4). This threshold was selected based on exploratory data analysis 

and simulations previously performed by our lab. The resulting sample-by-gene 

presence/absence binary matrix was then used for subsequent association analysis with 

microSLAM, excluding core genes (absent in less than 10 samples) and rare genes (present in 

less than 30 samples).  

3.5.4 Generalized linear model 

A standard generalized linear model (glm) 128 was fit for all genes for all species that 

were analyzed with microSLAM. This is a logistic regression model using glm in R with 

case/control status as the outcome, gene presence/absence as a predictor, and age as a 

covariate.  

3.5.5 𝛕 Test simulations 

 We performed simulations to assess the false positive rate and power of microSLAM’s 𝜏 

test. To assess the false positive rate (simulation 1), we set up a simulation where a binary trait 

was generated independently of GRMs. For each of 1000 iterations and n=100 samples, the 

trait y was simulated using a binomial distribution with a success probability of 0.5, and a 

covariate was simulated with a normal distribution centered at 45 with a standard deviation of 

15, similar to the age distribution in our IBD compendium. Next, for each iteration, a gene 

presence/absence matrix was simulated with p=1000 genes. This included 400 “core” genes 
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simulated from a binomial distribution with a success probability of 0.8, 400 “accessory” genes 

simulated from a binomial distribution with a success probability of 0.2, and 200 genes 

simulated based on presence of a strain unrelated to the trait y, as follows. The strain’s 

presence/absence across samples was simulated using a binomial distribution with a success 

probability of 0.5, and then presence/absence for each of the 200 genes was set to absent if the 

strain was absent and simulated from a binomial distribution if the strain was present, where the 

success probabilities were chosen such that the average odds ratio of a given gene being 

present if the strain is present is 1.8. After the genes are simulated, the GRM is calculated and 

the population structure test is run with 100 permutations. The p-value is calculated for each 

iteration as the number of permutations with a more extreme T statistic than the observed T 

statistic. The false positive rate is calculated as the number of iterations with a p-value <0.05.  

The power test (simulation 2) is carried out in a similar fashion, with two key changes. 

First, we explored a range of sample sizes (n=60, 100, 250) to assess the relationship between 

sample size and power. Second, we simulated the trait y based on presence/absence of the 

simulated strain. Specifically, we explored a range of effect sizes, quantified with an odds ratio 

𝜃/(1 − 𝜃) ranging from 1.0 to 2.5. For a given odds ratio, we set 𝑠𝑡𝑟𝑎𝑖𝑛7 =	 (1 − 𝑠𝑡𝑟𝑎𝑖𝑛) ∗ (1 −

𝜃) + 𝑠𝑡𝑎𝑖𝑛 ∗ 𝜃 and then generated the trait 𝑦86%2!& using a binomial distribution with success 

probability equal to 𝑠𝑡𝑟𝑎𝑖𝑛7:	𝑦86%2!& = 𝑟𝑏𝑖𝑛𝑜𝑚(𝑛, 1, 𝑠𝑡𝑟𝑎𝑖𝑛7). This creates a stronger relationship 

between the trait and presence of the strain as the odds ratio increases. For each odds ratio 

and sample size, 125 iterations were run and power was calculated as the proportion of 

iterations with a significant 𝜏 test divided by 125.  

3.5.6 𝛃 Test Simulations 

We performed simulations to assess the false positive rate and power of microSLAM’s β 

test versus a standard glm. To assess false positives (simulation 1), we generated data in which 



 

 50 

no genes were associated with the trait, so that all genes are false positives. We computed a p-

value for each gene using each modeling approach and tracked the proportion of genes with 

p<0.05. In order to simulate real population structure, while introducing some random variation, 

we used the observed GRM for each of the 71 species in our metagenomic compendium to help 

generate simulated gene presence/absence matrices. Specifically, we first decomposed the 

observed GRM for each species into its first 10 principal components (PCs). We then 

standardized each PC by dividing each value by the PC's standard deviation 𝑃𝐶86$ =

𝑃𝐶/𝑠𝑑(𝑃𝐶) and computed the standard normal probability for each sample’s loading on each 

standardized PC (one per sample i per PC dimension j): 𝑝!,9= 𝑝𝑛𝑜𝑟𝑚(𝑃𝐶86$). The probabilities 

𝑝!,9 retain relationships between samples across the 10 dimensions. For each of the 10 PCs, we 

simulated the presence/absence of 90 genes using a binomial distribution with a success 

probability equal to the sample’s 𝑝!,9 for that PC, for a total of 900 genes correlated with one 

dimension of the population structure. We also simulated 100 uncorrelated genes using a 

binomial distribution with a success probability chosen from a uniform distribution between 0.2 

and 0.8. From the resulting 1000 x n gene presence/absence matrix, we simulated a binary trait 

(y) using the first two PCs (PC1 and PC2), as follows. We set y equal to one in a given sample if 

its loadings on PC1 and PC2 had opposite signs (either PC1>0 and PC2<0 or PC1<0 and 

PC2>0). This created a nonlinear relationship between y and 180 of the simulated genes 

(Figure 3.11, Figure 3.6).  

For each simulated y and gene presence/absence matrix, we ran microSLAM to 

compute a GRM and estimate population structure (𝜏). These new 𝜏’s were different from the 

species’ observed 𝜏 values and greatly varied across species, as in the observed data (Figure 

3.12). After the GRM was calculated, and the 𝜏 test was run, both glm and microSLAM’s β test 

were run to test for gene-trait associations. The false positive rate was determined by summing 



 

 51 

the number of genes with p-values < 0.05 divided by the total number of genes, excluding 

genes simulated from PC1 or PC2 (p=820 genes).  

To assess power for the β test (simulation 2), we start with the data from simulation 1 

and set 𝑦7 =	 (1 − 𝑦) ∗ (1 − 𝜃) + 𝑦 ∗ 𝜃 for an odds ratio of 𝜃/(1 − 𝜃). Then, we generated 

presence/absence for 100 additional genes from a binomial distribution with success probability 

𝑦7:	𝐺_𝑦 = 𝑟𝑏𝑖𝑛𝑜𝑚(𝑛, 1, 𝑦7). These genes G_y are positives (associated with y) and all other 

genes are negatives (independent of y). At 𝜃 = 0.5	 (i.e., an odds ratio of one), the generated 

genes G_y will not be associated with the trait. At 𝜃 = 0.55, the average odds ratio will be 1.2. 

We investigated 𝜃	values between 0.52 and 0.78. We checked, and the odds ratios across 

simulations with the same 𝜃	value did not deviate more than 0.1 from the expected values.  

We ran glm and microSLAM on each simulated dataset. As expected, the population 

structure test yielded estimated 𝜏 values that increase notably with the simulated odds ratio (i.e., 

as the association between y and the genes G_y increases). In order to assess power, we used 

the negative genes to establish a significance threshold for each modeling approach such that 

the empirical false positive rate would be no more than 0.05. Applying these thresholds to the 

positive genes G_y, we computed power as the proportion of positive genes detected. Power 

was compared between glm and microSLAM across odds ratios and species (each with 

different sample sizes and GRMs).  

For the β test simulation 3, we sought to generate gene presence/absence matrices, trait 

values, and age values without using any real sample data. First, we simulated a trait from the 

binomial distribution with a success probability of 0.5. We assume that there are two strains, 

one that is correlated with the trait (𝑜𝑑𝑑𝑠	𝑟𝑎𝑡𝑖𝑜 = 2.22) and one uncorrelated with it. For the 

correlated strain, we simulated 300 genes at a presence level of 0.5 and an odds ratio of 4.0 for 

the gene being present given a person has the strain. We simulated one-third of the samples 

having the uncorrelated strain and modeled this with 250 genes with low binomial presence 
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rates (𝑝 = 0.3) and an odds ratio of 4.0 for the gene being present given a person has the 

strain. Then we modeled 300 genes that were “core” across all samples; these were drawn from 

a binomial with a success probability of 0.8. We additionally simulated 150 genes that were non-

strain associated “accessory” genes; these were drawn from a binomial success probability of 

0.2. Last, we simulated at least one gene (𝐺:) that is even more highly correlated with the trait 

than is the correlated strain (𝑜𝑑𝑑𝑠	𝑟𝑎𝑡𝑖𝑜 = 2.44). The more genes in 𝐺: (we investigated 1, 2, or 

3 genes) and the stronger the relationship between 𝐺: and the trait, the higher the parameter 𝜏 

will be. The resulting gene presence/absence matrices naturally have a range of different values 

of 𝜏. Age was randomly generated with parameters similar to the IBD data: 

𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟𝑛𝑜𝑟𝑚(𝑁,𝑚𝑒𝑎𝑛 = 45, 𝑠𝑑 = 15)). We repeated Simulation 3 with the number of samples 

varying from 60 to 250.  

3.5.7 Relative abundance test 

We calculated the relative abundance of each species by downloading the UHGG v2 

kraken database from MGnify 83 and running Kraken2 106,108 with options --paired --minimum-hit-

groups 3 and then bracken 106,107 with options -l S -t 1000. We computed relative abundance as 

a given species' bracken coverage divided by the total coverage, and we removed species with 

less than 0.05% relative abundance. We then performed logistic regression, using the 

case/control label as the dependent variable (y) and relative abundance as the independent 

variable, with age as a covariate. The estimated log odds ratios and p-values from these logistic 

regression analyses were compared with outputs from the microSLAM 𝜏 test, after using 

localFDR to adjust p-values at a 0.1 level.  
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3.5.8 Identification of seven-gene GFR operon in F. prausnitzii 

The gene grfD from F. prausnitzii (UHGG species id 102272) reported as significant by 

microSLAM’s β test corresponds to the EIID component and is part of a putative GFR operon 

that encodes the Fructoselysine PTS system. A similar gene in S. Typhimurium 14028s has 

been identified as responsible for the utilization of fructoselysine 115,129. To determine whether 

this EIID gene is part of a gene cluster that forms an operon - that is, genes that are sequentially 

arranged on the chromosome and co-regulated - we conducted the following analysis. First, we 

retrieved the neighboring genes upstream and downstream of this EIID gene in the UHGG 

reference genome for this F. prausnitzii species, considering up to five genes in each direction. 

We then used blastn 130 to identify homologous regions in three different sets of genomes: (1) 

85 NCBI F. prausnitzii genomes, (2) all metagenome-assembled-genomes (MAGs) in the nine 

UHGG F. prausnitzii species clusters, and (3) all MAGs in the 71 species that were investigated 

in this study. These five genes from F. prausnitzii were also aligned to the corresponding S. 

Typhimurium operon (gfrABCDF) using Blastp 130. All genomes were annotated using Prokka 

131. Genes were annotated with BlastKOALA 112 and eggNOG-mapper 132.  

3.5.9 Selection of Faecalibacterium prausnitzii genomes 

To avoid incorrectly assessing the seven-gene GFR operon as incomplete in an 

assembly simply due to fragmented contigs, we only selected high-quality F. prausnitzii 

genomes with assembly levels of scaffold, chromosome, or complete genome, and we 

specifically excluded atypical genomes. In total, we downloaded 105 genomes of F. prausnitzii 

from NCBI (using the taxon identifier 853). We assessed the genome quality using CheckM 133, 

and retained only genomes that met the following criteria: completeness >= 90, contamination 

<=5, and strain heterogeneity <= 10. After this filtering, 85 F. prausnitzii NCBI genomes were 

retained for the GFR operon screening analysis (Figure 3.9). Next, we used dRep 134 to perform 
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pairwise genome comparisons based on Average Nucleotide Identity (ANI). This dRep analysis 

involved first clustering all the genomes using the Mash heuristic for ANI 135 and subsequently 

using MUMMER 136 to compute ANI on sets of genomes that have at least 90% Mash ANI 

before performing a secondary clustering. As a result, 52 secondary clusters were formed at 

98% MUMMER ANI (-comp 90 -con 5 -pa 0.95 -sa 0.98 -nc 0.8). Hierarchical clustering of the 

52 genomes using average linkage was performed using the pairwise MASH similarity matrix 

(`scipy.cluster.hierarchy` package).  

In addition to NCBI Genomes, we also collected all nine F. prausnitzii species clusters 

from UHGG v2 84, using the same selection criteria to ensure assembly quality. We calculated 

the pairwise genome similarity between the resulting 52 F. prausnitzii genomes and the nine 

representative genomes from UHGG F. prausnitzii species using fastANI 137. We also compared 

each NCBI F. prausnitzii genome to the nine representative genomes from UHGG, and each 

NCBI genome was assigned to the UHGG species cluster with the highest ANI (ANI >= 95%). If 

this similarity level was not reached, the NCBI genome remained unassigned. Eight F. 

prausnitzii species in UHGG were represented by the 52 NCBI F. prausnitzii genomes.  
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 3.6 Supplement 

 

Figure 3.6 GLM and microSLAM β test power evaluations for 71 simulated species. These 
plots show estimated power of β tests using data from simulation 2 in which a gene 
presence/absence matrix and binary trait were simulated based on the observed GRMs from 
the 71 species in the IBD compendium using a range of different effect sizes (odds ratios, 
horizontal axes). There is one panel per GRM (labeled with species ID), (Figure caption 
continued on the next page.)  
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(Figure caption continued from the previous page.) and panels are ordered from lowest to 
highest sample size. Power was computed as the proportion of positive genes discovered at an 
empirical localFDR of 0.05 for both microSLAM (red) and glm (blue). As the number of samples 
increases there tends to be a larger difference between the glm and the microSLAM models.  

 

Figure 3.7 P-values from microSLAM’s β test are somewhat conservative, while GLM’s 
are inflated. Q-Q Plots of β Test results for a simulation with positive genes (Gy; pink circles: 
microSLAM, light blue circles: glm) plus negative genes that are linked to a strain (strain; 
squares) or randomly generated (other; triangles) (β test simulation 3, Supplemental Text). A) 
Compared to glm (blue), microSLAM (red) better distinguishes the positive genes Gy from those 
simulated from the strain. The number of positive genes was one (left), two (middle), or three 
(right). The value of 𝜏 increases with each additional gene Gy. B) As the relationship between 
the strain and y is increased (left to right), the value of 𝜏 increases, and the rate of inflation 
increases for glm. Across different values of 𝜏, microSLAM remains slightly conservative and 
continues to rank the positive genes Gy highest, indicating high specificity.  
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Figure 3.8 Random effect (b) values across studies and species. This heatmap shows 
microSLAM estimates of the random effect parameters (b) for each of 71 species across all 
samples where it was detected in the IBD compendium. The red-to-blue color scale denotes the 
association between strains and IBD (binary case/control status). Red: strains positively 
associated with IBD; Blue: strains negatively associated with IBD. The study and IBD subtype of 
each sample are shown on the left. IBD subtypes: Blue=control, red=Crohn’s disease (CD), 
yellow=Ulcerative colitis (UC). CD and UC were combined as cases in the microSLAM 
modeling. Studies: Franzosa (NCBI BioProject PRJNA400072; orange), He (PRJNA398089; 
pink), Nielsen (PRJEB15371; blue), HMP2 (PRJEB5224; green), MetaHIT (PRJEB1220; 
yellow). Species are ordered by the standard deviation of b (left=highest standard deviation), 
where a higher standard deviation indicates greater strain diversity that is associated with 
case/control status. The samples in each column are ordered by lowest to highest average b 
value. A few studies (e.g., Nielsen) have more controls than others, but there is no systematic 
relationship between study and population structure. CD and UC tend to have similar 
distributions of b values (i.e., red and yellow are mixed on the left sidebar). While we cannot rule 
out confounders that were unmeasured in the publicly available data that we could access, 
these patterns suggest that our findings are not obviously biased by differences in study 
population (e.g., diet, medical care, geography, type of IBD) that could confound measured 
associations between case/control status and microbiome strains and genes.  
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Figure 3.9 F. prausnitzii PTS operon evolves as a unit across diverse genomes. This 
operon comprises seven genes (occasionally eight genes) that were consistently present or 
absent together across 53% (49/85) of F. prausnitzii genomes from NCBI. The order and 
orientation of genes in the operon are conserved. This heatmap shows the genes (rows; 
position 0 is gfrD, which was significant after localFDR adjustment of microSLAM β test p-
values). The other genes were significant before localFDR adjustment and are indexed relative 
to gfrD in the heatmap. Columns represent 423 contigs from 85 F. prausnitzii high-quality NCBI 
genomes. The color of the heatmap shows the blastn sequence similarity of the gene sequence 
in the contig compared to the sequence in the F. prausnitzii reference genome used in our 
microSLAM analysis (red=highest similarity, white=no significant match). The seven genes in 
the operon (middle rows of the heatmap) have high sequence similarity when they are present 
and are present together (red on left), whereas flanking genes are more variably present and 
have lower sequence identity (blue in top and bottom rows).  
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Figure 3.10 LocalFDR p-values and Z-values. A) Histogram of p-values for microSLAM’s β 
test (left) and glm (right). B) Output from localFDR showing the distribution of the null z-values 
(green) versus the distribution of the z-values that do not follow the null (pink). Yellow triangles 
denote the z-value thresholds corresponding to a localFDR of 0.2.  
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Figure 3.11 Example of data and results from microSLAM 𝛃 test Simulation 1.  
A) Simulated gene presence/absence matrix based on the GRM of Bacteroides 
thetaiotaomicron plotted as a heatmap (grey=gene present in a given sample, white=gene 
absent). Genes are in columns and are labeled according to how they were simulated 
(0=random, pc1-10=using one of the first 10 principal components of the observed GRM for B. 
thetaiotaomicron. This presence/absence matrix has some population structure (estimated 𝜏 = 
2.30), but no genes were simulated to be associated directly with the trait which is defined by 
the first two PCs. B) Q-Qplot of p-values from all genes not from PC1 or 2 from microSLAM’s 𝛃 
test (red) and glm (blue) applied to the simulated gene presence/absence matrix in (A). There is 
a much higher error rate for the glm model. On the other hand, microSLAM is overly 
conservative (i.e., underpowered). C) Q-Q plot for microSLAM’s 𝛃 test (red) and glm (blue) 
applied to the observed B. thetaiotaomicron gene presence/absence matrix from the IBD 
compendium. The trends are very similar to those in the simulation. 



 

 61 

 

Figure 3.12 𝛃 Test simulation 𝛕 values versus observed 𝛕 values in IBD compendium.  
In the β Test Simulation 1 and 2 set up, we generated gene presence/absence matrices using 
the observed GRMs for the 71 species in the IBD compendium. Our objective was to generate 
simulated data that was similar to but not identical to the observed data (Methods). This scatter 
plot shows the 𝜏 values estimated by microSLAM on the simulated data (y axis) compared to the 
corresponding 𝜏 values estimated from the real data in the IBD compendium (x axis). The n 𝜏 
from the simulation cover a similar range of values as those from the real data while not being 
highly correlated.  
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Chapter 4 Conclusions 

4.1 Summary of conclusions 

This dissertation introduces microSLAM, which implements population structure-aware 

metagenome-wide association studies. Using a generalized linear mixed modeling (GLMM) 

approach, I developed a method to include information about the genetic relatedness of the 

microbiomes within diverse samples and model the association of this population structure with 

host traits while adjusting for other covariates. I focused on case/control study designs here, but 

microSLAM can also be applied to quantitative traits. In addition to testing if population structure 

(i.e., specific strains) is associated with a trait, microSLAM also includes a test to identify trait-

associated genes evolving somewhat independently of strain lineages. Realistic simulation 

studies demonstrated that microSLAM controls Type 1 error and has reasonable power in 

cohorts with more than one hundred samples. Compared to standard generalized linear 

modeling (GLM), microSLAM’s gene-level β test reduces false positives much more effectively, 

especially in species with notable population structure. When there is a significant population 

structure and a subset of genes are more related to the phenotype than to the strain signal, I 

showed that microSLAM increases specificity compared to GLM. By making microSLAM an 

open-source R package, I am providing a new tool for researchers to probe microbiome-host 

interactions with strain- and gene-level resolution.  

In this thesis, I also assembled a metagenomic compendium of IBD samples. Analyzing 

this data with microSLAM, I discovered various population structures within human gut 

metagenomes. I identified 49 species with a population structure related to IBD. In addition, 

after adjusting for population structure, I found that 57 microbial genes were significantly 

enriched in healthy subjects, and 26 were enriched in IBD patients. From the genes enriched in 

healthy subjects, I identified a fructoselysine PTS system operon in F. prausnitzii that is present 
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in all clades of this species but in only a minority of genomes within each clade, suggesting that 

this operon is a mobile genetic element or another rapidly lost/gained structural variant. The 

presence of this operon may confer distinct metabolic advantages, including the ability of 

carriers to utilize fructoselysine as an energy source 116. The potential impact on human health 

could be significant, given that F. prausnitzii is one of the most prominent butyrate producers in 

the human gut 16,93,119. This also leads to a greater resilience of the F. prausnitzii, offering 

enhanced protection against pathogenic bacteria and reducing the risk of chronic disease.  

4.2 Limitations 

There are several limitations to implementing my work and microSLAM, some of which I 

have discussed in Chapter 3. First, in the application portion I performed an analysis across 

datasets, which means I used samples collected from many studies located in various 

geographic locations. These publicly available metagenomics data do not include detailed 

information about sample variables, such as diets, medical care, and medication history. Hence, 

there are many significant covariates that can not be accounted for in our model. This means 

that there is a chance some of the significant 𝜏 tests were related to an unmeasured variable 

that happened to be associated with strain genetic differences. Beyond avoiding confounding 

factors, more complete metadata would also help us understand our method's capabilities and 

functionally interpret our IBD findings. A future implementation of microSLAM could add a 

random effect for an important known confounding factor such as the amount of fiber eaten by 

the subjects. Data such as this do exist, and hopefully, microSLAM will be run on a larger, more 

cohesive, and well-annotated dataset very soon.  

 Second, I estimated the GRM using the same gene presence/absence data I used to 

test genes for their trait associations. This approach has been used with mixed modeling with 

human genetic data. It has been shown to reduce power compared to estimating the GRM with 
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an independent set of markers (e.g., variants on other chromosomes) 120, which, in my case, 

affected the model's power. I explored the use of SNVs in core genes for GRM and random 

effect estimation in the β test. However, I found that the SNV data generated a GRM that was 

very different from the gene-based GRM for almost all species in our IBD compendium. Hence, 

SNPs were not good markers for estimating the population structure in gene presence/absence. 

Perhaps this approach could work with more investigation into how to pick SNPs for GRM 

estimation, including picking SNVs that are most related to the substrains of a species, choosing 

SNPs based on their location within the bacterial chromosome, or the average distance to a 

particular gene.  

Another extension of microSLAM would be to test SNVs, rather than genes, for their 

associations with host traits. If SNVs are coded as presence/absence of the derived allele, then 

these tests could be done with the existing R code. It would also be relatively easy to extend the 

code to work with SNVs coded as 0, 1, or 2 copies of the derived allele. I chose to focus on 

gene presence/absence alleles, however, because their functional effects are easier to interpret 

and their smaller total number per species provides higher statistical power with currently 

available cohort sizes. Nonetheless, SNV-based MWAS with microSLAM is an exciting future 

direction to explore as cohort sizes increase and genome annotations improve. My analyses 

showing large differences in GRMs based on genes versus SNVs indicate that SNVs are likely 

to hold additional information beyond what we have studied with gene-based microSLAM 

analyses. 

This limitation also led to one of the most significant innovations in the microSLAM 

model, the 𝜏 test. When running the version of the model that was separated into SNPs and 

genes, it became evident that in some very extreme cases, including a similarity matrix from 

data that had no relationship to the data later being modeled was, in fact, a considerable 

hindrance in the model's ability to control false positives accurately. The penalty for including 

non-related random effects meant that the model was worse than the GLM in those cases, 
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something I had seen mentioned in the human genetics literature 78. This observation led to the 

innovative inclusion of the test on 𝜏 to see whether there was a good reason to include these 

variables in the model. This 𝜏 test has ended up being one of the significant findings from my 

project, as it demonstrated that there is a large variance in the amount of population structure 

related to the phenotype across different species and that this population structure can vary in 

different ways than the principal components alone. I hope this finding will play an important role 

in how people run MWAS in the future.  

Finally, many of the genes I identified were unannotated, leading to difficulty completing 

in-depth analyses of significant genes across species. For example, I needed more power to 

perform functional enrichment analyses despite seeing several consistent trends, such as 

mobile elements being discovered in multiple species. More gene annotations would help with 

this problem, but more than annotation is needed to confirm function. MicroSLAM is an essential 

first step for proposing candidate causal strains and genes that should be performed upstream 

of in vitro and in vivo experiments to test the hypothesized functions of the discovered strains 

and pathways.  

4.3 Future directions 

 Understanding how bacterial species acquire and disseminate functional genes is 

critical to comprehending microbial ecology and identifying dietary or probiotic therapeutic 

interventions targeting the microbiome. This work shows that microSLAM can detect 

associations for species whose relative abundance is not correlated with host traits and can 

accurately disentangle associations of individual genes versus groups of strain-defining genes. 

These capabilities make microSLAM a valuable new tool to generate hypotheses about the 

function of genes and operons that can be tested in in vitro and in vivo experiments. As 

previously stated, a much larger and better-annotated data set combined with microSLAM 
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would increase the power to detect associations and more specific associations. As researchers 

move towards testing for strain and gene associations in studies with hundreds or thousands of 

samples, microSLAM’s improved specificity and control of Type 1 error, compared to GLM, will 

be even more critical, as in larger sets of samples, there is a natural increase in Type 1 error.  

Incorporating the three-step mixed model for microSLAM leads to an efficient model, but 

microSLAM may need to be even more efficient with many more samples. In the future, a 

different backend for matrix computation, parallelization, or other techniques implemented in the 

much larger human GWAS studies could be added to the microSLAM algorithm. In addition, the 

population structure component could be used to not only separate strain effects but also to 

identify the genes that make up the strain-specific effects, which could be used as a diagnostic 

tool in many applications.  

Distinguishing signals from noise in data will be a problem scientists continue to face 

forever. In metagenomics, there are many sources of noise and confounding. The goal of 

microSLAM is ultimately to help scientists take one source of understood confounding, 

population structure, and use that to distinguish the most evident effects of genes within a 

microbial population. I showed that including the structure of the population in metagenomic 

association studies increases our understanding of the discovered host trait associations and 

our ability to discover fascinating microbial ecology.  
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