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Abstract

Background: PCR amplification is an important step in the preparation of DNA sequencing libraries prior to
high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the
PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not
distinguish PCR duplicates from “natural” read duplicates that represent independent DNA fragments and therefore,
over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments.

Results: In this paper, we present a computational method to estimate the average PCR duplication rate of
high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in
an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project
demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end
read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared
using the Nextera library preparation method indicated that 45–50% of read duplicates correspond to natural read
duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes
project demonstrated that 70–95% of read duplicates observed in such datasets correspond to natural duplicates
sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate
than other samples.

Conclusions: The method described here is a useful tool for estimating the PCR duplication rate of high-throughput
sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An
implementation of the method is available at https://github.com/vibansal/PCRduplicates.

Keywords: PCR duplicates, High-throughput sequencing, Mathematical modeling, Heterozygosity, RNA-seq, Natural
duplicates

Background
High-throughput sequencing (HTS) technologies have
found widespread use in genomics, transcriptomics and
epigenomics. PCR amplification is an important step
in virtually all library preparation protocols for high-
throughput sequencing technologies [1, 2]. In the stan-
dard Illumina library preparation protocol, after universal
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adapters are ligated to the pool of DNA fragments, PCR
amplification is done in order to enrich for fragments that
have adapters ligated on both ends and can be sequenced
successfully [3, 4]. Hybridization-based target enrichment
protocols used for whole exome sequencing as well as
experiments that start from low quantities of input mate-
rial also require PCR amplification.
If the number of unique DNA template molecules in the

initial library is small or if there are steps in the library
preparation that reduce the number of distinct DNA
fragments, some fragments can end up being sequenced
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multiple times. These so called “PCR duplicates” corre-
spond to redundant information, i.e. copies of the same
DNA fragment. A high frequency of PCR duplicates is
undesirable since it reduces the effective sequencing cov-
erage of the experiment. A high PCR duplication rate
cannot be overcome simply by sequencing to higher cov-
erage. Rather, it indicates the need to modify the library
preparation to improve the complexity of the sequencing
library. For large-scale sequencing projects involving mul-
tiple samples, it is important to identify outlier samples
with a high PCR duplication rate that can bias the joint
analysis of the sequence data. Therefore, for many rea-
sons, it is of great interest to estimate the PCR duplication
rate of high-throughput sequence datasets.
Read duplicates can be identified after sequencing using

alignment of reads to a reference genome. Groups of
reads that map to the same genomic coordinates (both
forward and reverse reads for a paired-end sequencing
protocol) on the reference sequence and are also iden-
tical in sequence (allowing for a few sequencing errors)
represent clusters of read duplicates [5]. Read duplicates
can correspond to technical duplicates such as those
due to PCR amplification (and optical duplicates [6]) or
natural read duplicates. ‘Natural’ read duplicates (also
referred to as sampling duplicates) arise due to the satu-
ration of the space of possible start and end positions for
DNA fragments. For whole genome and exome sequenc-
ing experiments using paired-end reads, almost all read
duplicates correspond to technical duplicates. However,
in many applications, natural read duplicates can repre-
sent a significant fraction of the read duplicates [7]. For
example, in RNA-seq experiments, some regions of the
genome (highly expressed genes) have much higher cover-
age than others and as a result a large fraction of the dupli-
cate reads represent independent fragments sampled from
such regions. Sequencing experiments that utilize single
end sequencing also show a high frequency of natural read
duplicates since reads with identical 5’ mapping coordi-
nates cannot be distinguished from PCR duplicates [8]. In
such scenarios, it is important to determine the fraction
of read duplicates that are due to PCR amplification since
removing all read duplicates can bias downstream analysis
such as estimation of gene expression values.
Natural read duplicates can be distinguished from PCR

duplicates using molecular methods [9–13]. These meth-
ods add a unique molecular identifier (UMI) or a random
barcode to each DNA fragment prior to PCR ampli-
fication and sequencing. Post sequencing, natural read
duplicates are unlikely to share the UMI while PCR dupli-
cates will have identical alignment coordinates and UMI.
Although, these methods have been shown to improve the
accuracy of variant calling in DNA-seq experiments [9]
and expression quantification in mRNA-seq experiments
[10], they require specialized modifications to the library

preparation protocols and are not routinely used. Recog-
nizing the high frequency of natural read duplicates in
some sequencing experiments, computational methods to
model the probability of natural read duplicates in DNA
and RNA sequencing experiments have also been devel-
oped [7, 14]. However, these methods do not provide an
explicit estimate of the PCR duplication rate.
In this paper, we describe a novel computational method

to estimate the PCR duplication rate of a high-throughput
sequence dataset that accounts for natural read dupli-
cates. Our method utilizes reads that overlap heterozy-
gous variants sites to estimate the relative proportion of
PCR duplicates and natural read duplicates. We present
a mathematical model for modeling read duplicates that
is used to estimate the relative proportion of PCR and
natureal read duplicates in sequence data. Using simulated
data as well as exome datasets from the 1000 Genomes
Project [15], we demonstrate the accuracy of our method
in estimating the PCR duplication rate from datasets
even with a high frequency of natural duplicates. Fur-
ther, we analyze RNA-seq data on samples from the 1000
Genomes project [16] to demonstrate that only a small
fraction (5–30%) of read duplicates observed in RNA-seq
data are due to PCR amplification.

Results and discussion
Overview of method
The first step in the analysis is to identify all groups or
clusters of read duplicates such that all reads in each clus-
ter have identical outer mapping coordinates. Each cluster
of read duplicates is a combination of natural read dupli-
cates (independent DNA fragments) and PCR duplicates.
A cluster of two read duplicates can correspond to either
(i) one independent DNA fragment (and a PCR duplicate)
or (ii) two independent DNA fragments. We observe that
PCR duplicates represent copies of a single DNAmolecule
and are expected to have identical alleles at a heterozygous
variant site (unless an error occurs during sequencing or
PCR amplification). In contrast, a pair of natural read
duplicates will have the same allele if they are sampled
from the same chromosome and show opposite alleles at
a heterozygous site if they are sampled from the opposite
homologous chromosomes (see Fig. 1 for an illustration).
Therefore, analysis of the counts of clusters with match-
ing or opposite alleles at heterozygous sites can be used
to estimate the proportion of natural duplicates among
duplicate clusters of size 2.
Assuming equal likelihood of sampling a read from

one of the two chromosomes, half of the natural read
duplicates are expected to have opposite alleles at a het-
erozygous site. Therefore, if C2 is the total number of
clusters of size 2 that overlap heterozygous variant sites
and C21 be the subset of clusters with opposite alleles, the
expected number of clusters of size 2 that correspond to
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Fig. 1 Illustration of paired-end reads covering a heterozygous SNV
(reference allele is denoted by 0 and the variant allele as 1) in a
diploid genome. The reads can be grouped into clusters of different
sizes based on their alignment coordinates. Two reads that start and
end at the same position but carry different alleles (0 and 1) at the
heterozygous site (a) are highly likely to correspond to natural
duplicates, i.e. independent DNA fragments. In contrast, a pair of read
duplicates that have identical alleles at the heterozygous site (b)
could correspond to PCR duplicates or natural duplicates

natural read duplicates and PCR duplicates are 2 ·C21 and
C2 − 2 · C21 respectively. These estimates can be used to
estimate the average number of unique DNA fragments
for clusters of size 2 as:

U2 = 1 · (C2 − 2C21) + 2 · 2C21
C2

(1)

While U2 gives a good indication of the relative fre-
quency of PCR duplicates and natural duplicates in a
sequence dataset, in order to estimate of the PCR dupli-
cation rate, we need to calculate Ui for larger cluster sizes
(see Fig. 2 for an overview of the method). To analyse clus-
ters of size greater than two, we utilize a mathematical
model that uses basic probability and counting arguments
to estimate the fraction of duplicate clusters with differ-
ent number of unique DNA fragments (see Methods for
details).

Accuracy of the method on simulated data
To assess the accuracy of the method for estimating PCR
duplication rate, we used simulated data that was gener-
ated using paired-end exome data from a single sample
(HG00110) sequenced in the 1000 Genomes Project. Our
goal was to assess the accuracy of our method for esti-
mating the PCR duplication rate in the presence of natural
read duplicates. Therefore, we simulated datasets with
both PCR duplicates and natural read duplicates (see
Methods for details of simulation procedure).

The estimated PCR duplication rate using our method
was highly accurate (r2 = 0.9996 between the simu-
lated and estimated PCR duplication rate). The error in
the estimation of the PCR duplication rate increased as
the PCR duplication rate increased from 0 to 0.4 (Fig. 3)
and was greater for higher values of the sampling dupli-
cation rate (0.4 vs 0.2, Fig. 3). We also observed that our
method tended to slightly underestimate the PCR dupli-
cation rate as the PCR duplication rate increased (−0.64%
for PCR duplication rate = 0.4 and sampling duplication
rate = 0.4, Fig. 3). Overall, our method was able to esti-
mate the PCR duplication rate even in the presence of
a high frequency of natural read duplicates with a low
mean absolute percentage error (less than 1.1% across all
simulations).
PCR amplification is non-uniform and DNA fragments

with a high or low GC content are less likely to be
amplified [17]. To assess the impact of non-uniform PCR
duplication rate on the accuracy of our method, we sim-
ulated data with a PCR amplification rate that varied as a
function of the GC content of each DNA fragment (esti-
mates were obtained from empirical sequence data [17]).
We simulated 50 datasets with a natural read duplicate
rate of 0.2 and a randomly selected PCR duplication rate
(range 0 to 0.5). Comparison of the simulated and esti-
mated PCR duplication rates showed that our method
was able to accurately estimate the PCR duplication rate
(correlation coefficient = 0.999 and mean absolute diffe-
rence = 0.0023).

Accuracy of the method on real exome data
To assess the ability of our method to estimate the PCR
duplication rate on DNA sequence datasets, we utilized a
sample set of 40 Illumina exome datasets from the 1000
Genomes Project [15]. For each individual, a set of het-
erozygous SNVs identified using the GATK UnifiedGeno-
typer [5] tool was used for estimating the PCR duplication
rate. For each individual dataset, the PCR duplication rate
was estimated in paired-end mode and single-end mode,
ie. by ignoring the insert length information. Single end
sequence data shows a much higher frequency of natural
duplicate reads since reads that start at the same genomic
position after alignment cannot be distinguished further
in the absence of fragment length information. Indeed,
the read duplication rate of the SE reads for each sam-
ple (using read1 of each paired-end read) was on average
5.8 times greater than the read duplication rate for the PE
reads (Additional file 1: Table S1). However, PCR duplica-
tion rate of the dataset should be independent of whether
we utilize PE reads or only SE read information.
We found that the estimated PCR duplication rate from

the data treated as SE reads (SE-PCR duplication rate)
was highly concordant (r2 = 0.977, p-value = 5.3 ×
10−27 and mean absolute difference = 0.0073) with the
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Fig. 2 Overview of computational method for estimating the PCR duplication rate using clusters of duplicate reads that overlap heterozygous
variant sites. Ci corresponds to the clusters of read duplicates with i reads and Ui is the average number of unique DNA fragments for clusters of size i

Fig. 3 Box-plot showing the error in the estimation of the PCR
duplication rate using our method on simulated data with varying
levels of PCR duplicates (0 to 0.4). Data was simulated with a fixed
sampling read duplication rate (plots shown for values of 0.2 and 0.4).
For each combination of values, 50 simulated datasets were used to
assess the error of the estimated PCR duplication rate

PCR duplication rate estimated from the data analyzed
as PE reads (Fig. 4, top panel). In contrast, the correla-
tion between the SE read duplication rate and the PE read
duplication rate was much lower (r2 = 0.542). Further,
both the SE and PE PCR duplication rate estimates were
slightly lower (1–9%) than the PE read duplication rate
which is an upper bound for the PCR duplication rate.
These results demonstrated that our method can accu-
rately estimate the PCR duplication rate on real sequence
datasets even in the presence of a high proportion of
natural read duplicates.
To compare the performance of our method with exist-

ing computational methods for analyzing the complexity
of sequencing libraries, we analyzed the PE and SE read
data for one exome dataset (HG00110) using the PreSeq
method [18]. This method was developed to estimate the
complexity of sequencing libraries with the goal of pre-
dicting the benefit of increasing the sequencing depth for
a library. The fraction of duplicate reads estimated using
this method for the PE (0.057) and SE (0.321) datasets
was identical to that based on the analysis of read dupli-
cates and not informative about the PCR duplication rate.
This was not surprising since this method needs UMIs
to distinguish between PCR duplicates and natural read
duplicates.
We also analyzed an Illumina exome dataset for a

HapMap individual(NA12812) from Bainbridge and col-
leagues [19]. The authors had compared the read duplica-
tion rate for this exome capture dataset using PE and SE
reads. They found that the read duplication rate for the
PE dataset was 7.61%. In comparison, the read duplica-
tion rate for single reads was observed to be almost four
times greater (27.6%). Using our method, the estimated
PCR duplication rate on the SE reads (read1) was 7.23%,
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Fig. 4 Comparison of the estimated PCR duplication rate on 40
exome datasets from the 1000 Genomes Project analyzed as
paired-end (PE) reads and single-end (SE) reads. The two plots
correspond to the analysis using exome variant calls and Omni
genotype calls. For visual clarity, two outlier samples with a high PCR
duplication rate (> 0.12) are not shown

very similar to the PCR duplication rate estimated from
the PE reads (7.29%).

Robustness of the PCR duplication rate estimate to variant
calls
Our method only requires a subset of the heterozygous
variants in an individual genome to estimate the PCR
duplication rate. In the previous section, the PCR duplica-
tion rate for the exome datasets was estimated using het-
erozygous variants identified from the exome data itself.
To assess the robustness of the estimate of the PCR dupli-
cation rate to the choice of the variants used, we estimated
the PCR duplication rate using Illumina Omni array geno-
type calls (see Methods for details) for these samples. For
each sample, we estimated the PCR duplication rate on the
exome reads treated as PE and SE reads respectively using

the set of heterozygous genotypes from the Omni geno-
type data. The mean number of heterozygous variant sites
(covered by at least 8 reads) from the Omni genotype data
was 18,640 across the 40 samples.
The estimates of the PE-PCR duplication rate using the

Omni genotypes were tightly correlated with the esti-
mates obtained from the exome variant calls (r2 = 1.0
and mean absolute difference = 0.0005). The estimates
of the SE-PCR duplication rate using the exome variant
calls and the Omni genotypes were also strongly corre-
lated (r2 = 0.982). These results indicate that the esti-
mate of the PCR duplication rate is consistent between
the two sets of heterozygous variants. Further, the con-
cordance between the estimates of the PE-PCR dupli-
cation rate and the SE-PCR duplication rate on the 40
exome datasets (r2 = 0.987 and mean absolute dif-
ference = 0.005, Fig. 4, bottom panel) was marginally
better than the concordance between the estimates using
exome variant calls (r2 = 0.977 and mean absolute diffe-
rence = 0.0074, Fig. 4, top panel).
Next, to assess the robustness of the PCR duplication

rate estimate to the size of the variant set, we ana-
lyzed exome data for one sample (HG00110, SE reads)
using subsets of the heterozygous variant calls generated
from exome data. The full set of heterozygous variants
included 14,741 SNVs and the estimated PCR duplica-
tion rate was 0.0582. The mean of the estimated PCR
duplication rate using 50% of the variants was 0.0581 ±
0.0009 (standard error estimated using 50 random sub-
sets). The mean estimate decreased slightly to 0.0576 ±
0.0018 when using 20% of the variants. Although, the
PCR duplication rate was underestimated for smaller sets
of variants due to lack of sufficient clusters counts for
large clusters (k > 8 for 20% of variants), the decrease
in the estimate was small (less than 1% of the esti-
mated value on the full set of variants). This demon-
strated that our method can estimate the PCR duplicate
rate on DNA sequence data using a small number of
variants.

Frequency of natural read duplicates across exome capture
protocols
A number of different methods have been developed
for performing human whole-exome capture experiments
[20]. These include the Agilent SureSelect, NimbleGen
SeqCap, Illumina TruSeq and Illumina Nextera. Among
these, the Nextera library preparation method fragments
DNA and adds the adapters to the DNA fragments in
a single step using a transposase [21, 22]. All other
exome capture protocols fragment DNA by sonication.
The 40 exome datasets in the 1000 Genomes project were
obtained using the Agilent SureSelect and the NimbleGen
SeqCap capture methods. The PCR duplication rate of
these datasets was 1–9% lower than the read duplication
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rate across the 40 exome datasets (Additional file 1: Table
S1). This indicated that only a small fraction of the read
duplicates correspond to natural read duplicates. The low
frequency of natural read duplicates was not surprising
since in paired-end (PE) sequencing libraries prepared
with random DNA fragmentation, the probability that
two independent DNA fragments have identical starting
position and fragment length is low.
The transposase-mediated fragmentation in the the

Nextera library preparation method can introduce
sequence dependent biases in the data compared to
standard methods of fragmentation [21]. Although the
impact of non-uniform fragmentation on the uniformity
of sequence coverage is negligible, it has the poten-
tial to increase the frequency of natural read duplicates.
To assess this, we analyzed 12 Nextera exome capture
datasets (4 replicates each for three individuals NA12878,
NA12891 and NA12892) from the the Illumina BaseSpace
repository. The read duplication rate for the 12 datasets
was low (4–6%) (Additional file 1: Figure S2). However, the
estimates of the PCR duplication rate using our method
were even lower (1.5–2%) and indicated that 55–70% of
the read duplicates correspond to natural read duplicates.
This was significantly higher than than the proportion of
natural read duplicates (< 10%) in exome datasets from
the 1000 Genomes project and likely reflects fragmen-
tation bias in the Nextera library preparation method.
Although the Nextera library preparation approach has
several advantages compared to standardmethods includ-
ing speed and low input requirements, our results demon-
strate that it results in a high proportion of natural
read duplicates compared to other exome enrichment
protocols.

Analysis of PCR duplication rates for RNA-seq data
Sequencing of complementary DNA (cDNA) by high-
throughput sequencing technologies provides quantita-
tive information about the abundance (and sequence) of
mRNA transcripts and is becoming the method of choice
for analyzing gene expression and RNA splicing [23].
Compared to DNA sequence datasets, a high rate of read
duplicates are typically observed in RNA-seq datasets.
However, unlike DNA sequence datasets, a significant
fraction of these read duplicates likely represent inde-
pendent fragments that originate from transcripts with
high expression levels rather than PCR duplicates. The
frequency of such natural duplicates is further increased
due to fragmentation bias in RNA-seq library prepara-
tion resulting in a non-uniform distribution of fragments
across each transcript [24, 25]. Unlike for DNA sequenc-
ing studies where read duplicates are removed prior
to variant calling, there is no clear consensus on how
to deal with duplicate reads in RNA-seq data. On one
hand, removal of all read duplicates prior to expression

quantification can result in underestimation of expres-
sion levels for highly expressed genes. On the other hand,
not accounting for PCR duplicates can inflate read counts
and potentially affect the accuracy of differential gene
expression analysis.
While it is generally accepted that a significant propor-

tion of read duplicates in RNA-seq datasets are not due
to PCR amplification, there is little quantitative analysis of
the PCR duplication rate in RNA-seq datasets. To assess
the ability of our method to estimate the PCR duplica-
tion rate on RNA-seq data, we utilized RNA-seq data from
lymphoblastoid cell lines of individuals from the 1000
Genomes Project that was generated by the Geuvadis
project [16]. We estimated the PCR duplicate rate on
RNA-seq data for the same set of 40 samples for which we
analyzed exome data previously. Variant calls for estimat-
ing the PCR duplication rate were derived from the exome
data. We found that the PCR duplication rate for these
RNA-seq datasets was quite low (1–6%) in comparison to
the observed read duplication rate which varied between
10 and 26% (Fig. 5). This indicated that the vast majority
(70–95%) of read duplicates in the RNA-seq datasets are
not due to PCR amplification. Next, to assess the robust-
ness of the PCR duplication rate estimates to variant calls,
we utilized heterozygous variant sets for each individual
obtained from the Omni genotype data.We found that the
two sets of PCR duplication rate estimates (exome calls vs
Omni genotype calls) were highly concordant with corre-
lation coefficient r2 = 0.96 and mean absolute difference
= 0.0027 (see Additional file 1: Figure S3).
For RNA-seq experiments, the frequency of natural

read duplicates is expected to increase with increasing

Fig. 5 Comparison of the read duplication rate and the estimated
PCR duplication rate for 40 RNA-seq samples from the Geuvadis
project. Three samples with much higher PCR duplication rates than
the remaining samples are highlighted
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sequence coverage. On the other hand, the PCR dupli-
cation rate depends on the complexity of the sequencing
library and should be more or less independent of the
number of reads. Indeed, while the read duplication rate
due to sampling (read duplication rate - estimated PCR
duplication rate) was strongly correlated with the total
number of reads per sample (r2 = 0.495, p-value =
0.001), there was no correlation between the estimated
PCR duplication rate and number of reads per sample
(r2 = −0.177, p-value = 0.274). In the Geuvadis project
[26], the authors analyzed 465 RNA-seq datasets and used
a number of metrics including the read duplication rate to
identify outlier samples. Of the 40 samples analyzed, the
PCR duplication rate for three samples (mean= 0.053, see
Fig. 5) was more than 2-fold higher than the average PCR
duplication rate for the remaining samples (0.023). It is
noteworthy that the read duplication rate for these outlier
samples was not higher than the remaining samples. Such
‘outlier’ samples with a high PCR duplication rate should
be excluded from the joint analysis of multiple RNA-seq
datasets to avoid biasing downstream results. In addition,
some pairs of samples had identical read duplication rates
(∼18%) but very different PCR duplication rates (Fig. 5).
These results illustrate the utility of the PCR duplication
rate estimate provided by our method as an independent
metric to assess the quality of RNA-seq datasets.

Conclusions
PCR amplification is a necessary step in the preparation
of DNA sequencing libraries for most high-throughput
sequencing instruments. However, PCR amplification
is inherently biased and introduces artifacts into the
sequence data including duplicate reads. Estimating the
PCR duplication rate after sequencing can provide impor-
tant information about the quality of the sequence dataset
and the complexity of the library. While estimating the
read duplication rate from aligned sequence reads is
straightforward, accurate estimation of the PCR duplica-
tion rate requires estimating the fraction of read dupli-
cates that represent natural read duplicates. Previous
computational methods have attempted to model the
probability of natural read duplicates [7, 14] in DNA
and RNA sequencing experiments. In this paper, we have
presented a novel approach for estimating the PCR dupli-
cation rate that utilizes heterozygous variants in a diploid
genome to estimate the fraction of natural read dupli-
cates. To the best of our knowledge, the method pre-
sented in this paper is the first computational method
that aims to estimate the average PCR duplication rate of
high-throughput DNA sequence datasets while account-
ing for natural read duplicates. We have demonstrated
its accuracy using both simulated data and exome data
from the 1000 Genomes Project. We have shown that
it can even estimate the PCR duplication rate with high

accuracy from datasets with a high frequency of natural
read duplicates.
We also analyzed RNA-seq data from a population study

of human transcriptomes to demonstrate that the vast
majority of read duplicates (70–95%) in RNA-seq data are
not due to PCR amplification. Our results are consistent
with the observation of [16] that “majority of duplicate
reads in a high-quality mRNA experiment are due to sat-
uration of the read mapping space driven by real biology
of high expression levels”. If the PCR duplication rate
is low, not removing read duplicates prior to estimating
transcript expression levels is unlikely to bias the results.
However, not all RNA-seq datasets may have a low level
of PCR duplicates. Therefore, a computational estimate
of the PCR duplication rate provided by our method can
be utilized to determine whether PCR duplicates should
be ignored or not. It can also be used to identify out-
lier samples with a high PCR duplication rate relative to
other samples in large-scale human transcriptome stud-
ies. We note that the estimation of the PCR duplication
rate from RNA-seq data is more challenging compared to
that from DNA-seq data due to the high frequency of read
duplicates, strong allele bias due to alignment of spliced
reads and the need for an independent set of heterozygous
variants.
The mathematical model underlying our method makes

very few assumptions about the PCR amplification pro-
cess or how natural duplicates are generated. It is agnostic
to the distribution of insert lengths and start sites for
DNA fragments in the sequencing library. However, it is
designed to estimate the average PCR duplication rate
and cannot be applied to datasets derived from haploid
genomes or datasets with a small number of heterozy-
gous variants. The model can potentially be extended
to incorporate sequencing error rates and allele bias to
further improve the accuracy of the estimates. The com-
putational method that utilizes this model to estimate the
PCR duplication rate can be applied to analyze both DNA
and RNA-seq datasets. It is computationally efficient (an
exome dataset with 50 million PE reads can be processed
in less than 5 min on a standard workstation) and accepts
input files in standard BAM and VCF formats. It requires
no additional sequencing or modifications to the library
preparation protocol and gives useful information about
the PCR duplication rate that is not provided by existing
methods.

Methods
Detection of clusters of duplicate reads
Using the sorted list of aligned reads, all groups or clus-
ters of read duplicates were identified such that all reads
in each cluster have identical outer mapping coordi-
nates (5’ and 3’ for paired-end reads). To account for the
incomplete alignment of some reads by some short read
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alignment tools (soft-clipping), the alignment coordinates
(start and end) of partially aligned reads were adjusted. For
single-read analysis, a pair of single-end reads were identi-
fied as duplicates if they had identical 5’ position and were
aligned to the same strand. From the read clusters, the
distribution of cluster counts: (Ĉ1, Ĉ2, . . .) was obtained
where Ĉi is the number of clusters with i read dupli-
cates. For the subset of clusters that overlap heterozygous
variant sites, the allele for each read in a cluster was deter-
mined using the read sequence. Base calls with low quality
values (default threshold of 20) were were not utilized for
estimation.

PCR duplication rate
The read duplication rate of a sequence dataset with a
total of R reads is defined as: 1 − ∑

i Ĉi/R. If Ui denotes
the average number of unique DNA fragments per cluster
of size i, the PCR duplication rate can be estimated as:

1.0 −
∑n

i=1UiĈi
R

(2)

Estimating the PCR duplication rate using heterozygous
sites
In order to estimate the PCR duplication rate, we need
to estimate the expected value of Ui for 1 < i ≤ n.
A cluster of read duplicates of cardinality i can have j
(1 ≤ j ≤ i) independent DNA fragments. A subset of the
duplicate read clusters overlap heterozygous variant sites
(Fig. 1). Such clusters can be further categorized based on
the alleles observed at the heterozygous sites in the reads
for each clusters. At each heterozygous site, we denote
the two alleles as 0 and 1 (bi-allelic site in diploid indi-
vidual). We denote by Ci the number of clusters of size i
that overlap a heterozygous site and by Cik , the number of
such clusters for which k reads in the cluster match one
allele and i − k reads match the second allele. Note that
the counts Cik represent the data that we obtain from the
aligned sequence reads. Further, we denote by Ci(j) the
(unknown) number of clusters of size i with j independent
DNA fragments. Therefore, we can write

Ci =
i/2∑

k=0
Cik and Cik =

i∑

j=1
Cik(j)

Ourmethod utilizes the observed countsCik to estimate
the relative proportions of natural duplicates and PCR
duplicates for each cluster size. The two key equations for
all clusters of size i (i ≥ 2) are as follows:

Ci0 = Ci0(1) + . . . + Ci0(i) (3)

Ci = Ci(1) + . . . + Ci(i) (4)
For a cluster of size i with j independent DNA frag-

ments, there are 2j−1 potential configurations of the two

alleles (we consider the symmetric configurations 0a1b
and 0b1a as identical). Since, we assume that the prob-
ability of sampling the two alleles at a heterozygous site
is equal, each of these configurations are equally likely
and we can approximate Ci(j) as 2j−1Ci0(j). Using this
approximation in Eq. (4), we get

Ci ≈ Ci0(1) + . . . + 2i−1Ci0(i) (5)

Estimating U2 and C21 for clusters of size 2 is straight-
ward using the two Eqs. (3 and 5). For clusters of size 3,
we have three unobserved variables (C30(1), C30(2) and
C30(3)) and only two expressions ((3) and (5)). We use
elementary probability to relate C30(2) with the counts
C20(2) and C20(1) estimated from clusters of size 2. Note
that a cluster of size 2 with one independent DNA frag-
ment is the result of a single PCR duplication event.
Similarly, a read cluster of size 3 with 2 independent DNA
fragments results from a single PCR duplication of one
of the two DNA fragments. Let p be the probability that
an independent DNA fragment undergoes a single PCR
duplication event. This probability does not depend on
whether the DNA fragment has a natural read duplicate
or not. Note that the probability of PCR amplification is
not uniform across DNA fragments and depends on the
GC content and length of the fragments. Here, p corre-
sponds to the average rate of PCR duplication across all
reads. Therefore, we can write:

C20(1)
C1

≈ p
1 − p

and
C30(2)
C20(2)

≈ 2p(1 − p)
(1 − p)(1 − p)

= 2
p

1 − p

It follows that

C30(2) ≈ 2
[
C20(1)
C1

]

C20(2)

From the analysis of clusters of size 2, we already have
estimates for C20(1) and and C20(2). Using the estimated
value for C30(2) in Eq. (3) (for i = 3) and (5), we can calcu-
late estimates forC30(1) andC30(3). From these estimates,
it is straightforward to estimate U3. The analysis for clus-
ters of size 3 can be generalized to clusters of arbitrary
size. For this, we define

λi = Ci0(1)
C1

(6)

where Ci(1) corresponds to read clusters of size i that
represent a single independent DNA fragment and i − 1
PCR duplicates. By definition, λ1 = 1. Consider a clus-
ter of size i with matching alleles at all reads in the
cluster. We note that there is a one-to-one correspon-
dence between the different possible ways in which a
cluster of size i can result from the PCR amplification of
j unique DNA fragments (1 ≤ j ≤ i) and the integer
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partitions of i. For example, the integer partitions of 4
are {[ 4] , [ 3, 1] , [ 2, 2] , [ 2, 1, 1] , [ 1, 1, 1, 1] }. The partition
[4] corresponds to a cluster with a single DNA frag-
ment and three PCR duplicates. Similarly, the partition
[ 1, 1, 1, 1] corresponds to a cluster with four indepen-
dent DNA fragments. The expected frequency of clusters
corresponding to each partition can be estimated using
λi’s and the counts for smaller size clusters. In general,
the expected frequency of clusters that correspond to a
partition [ p1, p2, . . . pl] with l unique DNA fragments is:

P([ p1, p2, . . . pl] )Cl0(l)
l∏

t=1
λpt (7)

where P([ p1, p2, . . . pl] ) is the number of distinct permu-
tations of the elements in the partition. For example, the
expected frequency of clusters corresponding to the par-
tition [ 2, 1, 1] is 3 × λ2C30(3). The expected frequency of
Ci0(j) for 1 < j < i can be estimated by enumerating the
integer partitions of i with j elements and summing their
expected frequencies using Eq. (7). Therefore, we have
have two unknown variables (Ci0(1) and Ci0(i)) and two
Eqs. (3 and 5) for the observed counts Ci0 and Ci. We can
solve these two linear equations to estimate the two vari-
ables and estimate λi. The estimates of λi and Ci0(i) can
then be used to solve the equations for clusters of size i+1.
The full procedure for estimating the PCR duplication rate
is as follows:

1. calculate the cluster counts (C1,C2,C3, . . .Cn) from
the sorted and aligned reads (n is the largest cluster
size)

2. calculate the cluster counts Cik (1 ≤ i ≤ n and
0 ≤ k ≤ i/2) using reads that overlap heterozygous
variants

3. calculate U2 using Eq. (1) and λ2 = 2×C21
C1

4. for i = 3 to n

• calculate estimates for Ci0(j) for 1 < j < i using
the integer partitions for i and Eq. (7)

• solve Eqs. (3) and (5) to estimate Ci0(1) and
Ci0(i)

• calculate Ui =
∑

j j×2j−1Ci0(j)
Ci

and λi = Ci0(1)
C1

5. estimate the PCR duplication rate using Eq. (2)

In the above procedure, clusters for which the cluster
count Ci is smaller than a threshold (default value of 20)
are ignored since it is not feasible to estimateUi with small
counts. This may lead to a slight underestimation of the
PCR duplication rate, however, results on real data suggest
that this has a minor effect. Also, solving the Eqs. (3) and
(5) can result in negative values of Ci0(i) or Ci0(1). In such
cases, we approximate the values as 0.

Sequence and genotype data
For estimating PCR duplication rates on DNA and RNA-
seq data, we utilized 40 samples from the GBR and FIN
populations in the 1000 Genomes project [15] for analysis
for which both whole-exome and RNA-seq data was avail-
able (see Additional File 1: Table S1 for the list of samples
analyzed and summary statistics). Exome sequencing for
these samples was done as part of the final phase of the
1000 Genomes Project at a mean depth of 65.7x using the
Illumina HiSeq instrument (75–101 base pair paired-end
reads) and Agilent SureSelect target enrichment [15]. The
sequence reads for each exome dataset have been aligned
to the reference genome (hg19) using the BWA aligner
[27]. The sorted BAM files corresponding to aligned
paired-end Illumina exome data were downloaded from
the ftp website of the 1000 Genomes project (ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/).
The Geuvadis project has performed mRNA sequenc-

ing on 462 cell lines from individuals in the 1000
Genomes Project using the Illumina HiSeq2000 platform
and paired-end 75 bp reads [16]. The sequence reads for
the RNA-seq data have previously been aligned to the ref-
erence genome (hg19) using the GEM mapping tool [16].
We downloaded the RNA-seq BAM files for the 40 GBR
and FIN samples from the EBI express ftp site. A VCF
file with Omni genotype data was also downloaded from
the 1000 Genomes ftp site (ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20130502/supporting/) and individ-
ual VCF files were created using heterozygous genotypes.
These VCF files were used for estimating the PCR dupli-
cation rate for the exome and RNA-seq data for each
individual. To assess the PCR duplication rate on datasets
prepared using the Nextera library preparation proto-
col, a set of 12 exome datasets (aligned BAM files and
variant calls in VCF format) was downloaded from the
Illumina BaseSpace repository. These datasets correspond
to 4 replicates of each of the three samples NA12878,
NA12891 and NA12892 (a trio from the CEU population).

Variant calling and filtering
For DNA sequencing datasets (e.g. exome data from the
1000 Genomes project), variants were called from sorted
BAM files using the GATK (v3.3) UnifiedGenotyper tool.
Heterozygous variants identified from the exome data
were filtered to retain a set of high-confidence heterozy-
gous single nucleotide variants (SNVs) that were used for
the estimation of the PCR duplication rate. Unlike vari-
ant detection from genome or exome sequencing, variant
calling from RNA-seq is challenging due to the com-
plexity of aligning spliced reads correctly to the genome.
Therefore, we utilized heterozygous SNVs identified from
exome sequencing data and Omni genotype data to esti-
mate the PCR duplication rate for RNA-seq data for each
individual.

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/
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To reduce the impact of false heterozygous variants and
variants with a strong allele bias on the estimation of the
PCR duplication rate, we filtered the set of input heterozy-
gous variants (exome or genotype based) using the read
counts from the sequence data being analyzed. Variants
with high coverage (read depth ≥ 30) for which the refer-
ence allele frequency was < 0.1 or > 0.9 were removed.
Reads with a low mapping quality (threshold of 30 for
BWA aligned reads) were not utilized for estimating the
PCR duplication rate. Such reads are randomly aligned to
one of the possible locations by alignment tools mkaing it
difficult to reliably identify clusters of read duplicates or
perform variant calling.

Simulation procedure
Read duplicates were removed from the sorted BAM file
using the picard MarkDuplicates tool to create a BAM
file with unique reads only. Next, reads that overlapped
heterozygous SNV sites were identified. To simulate nat-
ural read duplicates, a subset of the reads with size pro-
portional to (1 - read duplication rate) was randomly
selected and duplicate reads were randomly sampled with
replacement from the selected set of unique reads [12].
Each duplicate read was assigned the reference or vari-
ant allele at heterozygous sites with equal probability.
Subsequently, we simulated PCR duplicates at varying
rates (0–0.4) using the same approach. The only differ-
ence was that each duplicate read was assigned the same
allele at heterozygous variant sites as the original read.
For each value of the PCR duplication rate, 50 replicates
were simulated and the PCR duplication rate estimated
using our method. We simulated data using five values for
the read duplication rate due to sampling: 0, 0.1, 0.2, 0.3
and 0.4.

Additional file

Additional file 1: Supplementary data. This is a PDF document that
contains Table S1 and Figures S2 and S3. (PDF 374 kb)
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