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Abstract 

Background:  Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic 
mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, 
metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem teg‑
mentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate 
with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, 
resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the 
accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of 
patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. 
As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the 
need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and 
international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure.

Methods:  To address this need, the Neurocritical Care Society’s Curing Coma Campaign convened an international panel 
of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field.

Results:  We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuro‑
imaging studies of patients with DoC.

Conclusions:  These CDEs will support progress in the field of DoC neuroimaging and facilitate international 
collaboration.

Keywords:  Coma, Consciousness, Common data elements, Neuroimaging

Introduction
Neuroimaging is essential to the diagnostic and prog-
nostic evaluation of patients with disorders of con-
sciousness (DoC). Acutely in the emergency department 
and intensive care unit, patients with DoC undergo neu-
roimaging tests to determine the mechanism of altered 
consciousness and the chances of long-term recovery 
[1]. In subacute rehabilitation hospitals and chronic 
nursing facilities, patients with prolonged DoC undergo 
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neuroimaging tests to evaluate for secondary complica-
tions, such as hydrocephalus and intracranial infections 
[2, 3]. Across the temporal continuum of DoC, neuroim-
aging tests are used to guide clinical management, inform 
prognosis, and support discussions with family members 
and surrogates about critical decisions, such as the con-
tinuation of life-sustaining therapy [4, 5].

In the investigational domain, neuroimaging has 
advanced our understanding of the structural and func-
tional basis of DoC [6, 7]. Volumetry and lesion map-
ping studies have identified neuroanatomic regions, 
such as the brainstem tegmentum [8–13], thalamus 
[14–17], posterior cingulate cortex [17, 18], medial 
prefrontal cortex [17], and occipital cortex [19], where 
lesions are associated with reduced levels of conscious-
ness. Structural and functional connectivity studies 
have delineated brain networks implicated in the patho-
genesis of DoC and have demonstrated that reemer-
gence of acutely disrupted networks is associated with 
recovery of consciousness [20–34]. Furthermore, grow-
ing evidence indicates that diffusion magnetic reso-
nance imaging (MRI) [35–37], resting-state functional 
MRI (rs-fMRI) [38–47], stimulus-based and task-based 
fMRI [48], and position emission tomography (PET) 
[49] studies may predict functional outcomes in patients 
with DoC.

Advanced neuroimaging tools are also changing the 
diagnostic landscape for patients with DoC. Functional 
connectivity mapping with rs-fMRI may identify con-
sciousness-suppressing seizure onset zones in deep brain 
regions that evade detection by scalp electroencephalog-
raphy [50–55], raising the possibility that rs-fMRI could 
be used to identify treatable causes of DoC. PET studies 
have shown regions of preserved neuronal metabolism 
in patients who lack behavioral signs of consciousness 
[49, 56, 57]. Consistent with these PET findings, stim-
ulus-based and task-based fMRI studies have revealed 
cognitive function that evades detection on behavio-
ral assessments [48, 58–62], leading to the creation of a 
new diagnostic category: covert consciousness (i.e., cog-
nitive motor dissociation [63]). Meta-analyses indicate 
that 15–20% of patients with severe brain injury who 
are thought to be unconscious by clinical examination 
are actually covertly conscious [64, 65], prompting new 
ethical questions about resource allocation and access to 
state-of-the-art diagnostic tests [66–68].

To address ethical concerns relating to the infrastruc-
ture, personnel, and resources needed to acquire stimulus-
based and task-based fMRI data, there is growing interest 
in phenotypic differentiation of DoC by rs-fMRI and dif-
fusion MRI [69]. Stimulus-independent resting-state brain 
activity may ultimately prove to be more feasible for DoC 
evaluation in clinical settings because there is no need for 

task-based staffing, equipment, or reliance on patient men-
tal status. Although task-based fMRI is currently the only 
neuroimaging tool that can definitively detect covert con-
sciousness, rs-fMRI may provide diagnostic information 
about the likelihood of covert consciousness [51, 70], as 
patients with complex patterns of functional brain connec-
tivity are more likely to be covertly conscious [29]. rs-fMRI 
connectivity also may be more robust than stimulus-based 
and task-based fMRI in patients receiving pharmacologic 
sedation given that the effects of low-level pharmaco-
logic sedation on functional connectivity are relatively 
small compared to the effect size of severe brain injury 
[71]. Structural connectivity mapping with diffusion MRI 
is also robust in the setting of sedation and may provide 
a complementary screening tool to identify patients with 
the potential for covert consciousness. Emerging evidence 
suggests that patients with covert consciousness have a 
structural connectivity phenotype characterized by dis-
rupted connectivity in the primary motor cortex but pre-
served connectivity in the supplementary motor area and 
premotor cortex [72, 73]. Thus, together, structural and 
functional connectivity mapping techniques have potential 
to inform DoC patient triage for confirmatory assessments 
with task-based fMRI.

The translational impact of these neuroimaging dis-
coveries is perhaps best evidenced by the endorsement 
of task-based fMRI to detect covert consciousness in 
the 2018 US [74] and 2020 European [75] guidelines for 
the clinical management of patients with DoC. Based on 
their diagnostic relevance and potential prognostic util-
ity, neuroimaging tests that were once solely in the inves-
tigational domain are now being applied for clinical use 
in neonatal, pediatric, and adult patients [50, 51, 76–78]. 
Though global implementation has been limited to date 
[76], support for the clinical utility of advanced neuroim-
aging tests is increasing, even in countries where national 
insurance plans do not reliably reimburse for these tests 
[79]. Although current UK guidelines [80] do not recom-
mend advanced neuroimaging as part of standard clinical 
assessments, they acknowledge this may become a reality 
in the future.

Informed by this historical backdrop, the Neurocritical 
Care Society’s Curing Coma Campaign [81] launched a 
common data elements (CDE) initiative for DoC in 2020. 
This CDE initiative is motivated by the recognition that 
ongoing progress depends on the development of har-
monized and uniform data elements. Experience with 
other neurological diseases has demonstrated the ben-
efit of collecting data in a systematic and consistent way, 
an approach championed by the National Institutes of 
Health, which provides CDEs for a range of neurological 
diseases (https://​www.​commo​ndata​eleme​nts.​ninds.​nih.​
gov/). To facilitate a similar CDE development process 
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for patients with DoC, the Curing Coma Campaign con-
vened ten working groups to create CDEs for the broad 
spectrum of DoC research domains. Here, we report the 
results of the DoC CDE Neuroimaging Working Group. 
We aim for these neuroimaging CDEs to support pro-
gress in DoC neuroimaging and facilitate international 
collaboration.

Methods
Overview
Our goal was to create neuroimaging CDEs with the fol-
lowing characteristics:

1.	 Capable of capturing the broad spectrum of findings 
reported to date in patients with DoC

2.	 Adaptable based on emerging evidence that might be 
reported in the future

3.	 Feasible to implement in hospitals around the world

Given the rapidly evolving landscape of DoC neuroim-
aging [6], the CDEs that we report here (version 1.0) are 
intended to be a starting point for future efforts by the 
international medical and scientific community to stand-
ardize neuroimaging studies. We expect that the CDEs 
will be adapted and refined as additional neuroimaging 
discoveries emerge. These neuroimaging CDEs should 
be collected in conjunction with other relevant CDEs 
characterizing clinical characteristics and outcomes. 
Ultimately, we expect that these DoC neuroimaging 
CDEs will evolve with ongoing efforts to standardize data 
acquisition, analysis, and interpretation, with the long-
term goal of improving care and outcomes for patients 
with DoC.

CDE development meetings
A 12-member Neuroimaging Working Group was con-
vened as part of the Curing Coma Campaign to develop 
neuroimaging CDEs for patients with DoC. The work-
ing group met monthly online from 2021 to 2023, with 
the goal of creating neuroimaging CDEs for patients with 
DoC. Given that we aim to support innovative single-
center and multicenter studies, we developed the CDEs 
to capture data from commonly available techniques 
(e.g., head computed tomography [CT] and conventional 
MRI), as well as from advanced imaging techniques, such 
as fMRI and diffusion tensor imaging. Working group 
members with subspecialized knowledge were self-
assigned to modality-specific case report forms (CRFs). 
Each CRF team, consisting of at least two working group 
members, developed the final product through internal 
consensus. The full Neuroimaging Working Group evalu-
ated all CRFs for final approval and harmonization across 
modalities.

Adaptation of established CDEs for neuroimaging of DoC
We began by reviewing existing neuroimaging CDEs 
commissioned by the National Institute of Neurologi-
cal Disorders and Stroke (NINDS) (https://​commo​ndata​
eleme​nts.​ninds.​nih.​gov). Our goal was to leverage these 
existing CDEs and, whenever possible, to use CDEs that 
were already defined according to established stand-
ards. These previously published CDEs provide the ben-
efit of user familiarity and prior vetting by neuroimaging 
experts [82–84].

Consistent with previously published CDEs, we organ-
ized the DoC neuroimaging CDEs into CRFs by imaging 
techniques. Techniques were eligible for inclusion based 
on prespecified criteria: (1) routine acquisition of the 
technique in clinical practice or (2) at least one publica-
tion describing the investigational use of the technique 
in patients with DoC. Importantly, most previously pub-
lished neuroimaging CDEs pertain to specific neurologi-
cal diseases (e.g., traumatic brain injury, ischemic stroke, 
subarachnoid hemorrhage, COVID-19) [82–85]. DoC, by 
contrast, represent a spectrum of neurological disorders 
and types of brain injury. As such, we selected previously 
published disease-specific CDEs when relevant, and we 
proposed new CDEs that capture the unique neuroim-
aging considerations associated with the DoC patient 
population across the age spectrum from the  neonatal 
period through adulthood.

Proposal for new DoC neuroimaging CDEs
For neuroimaging techniques described in DoC publica-
tions that were not accounted for by previously published 
CDEs, we created new CDEs based on consensus opin-
ion. We aimed to provide investigators with the flexibil-
ity to thoroughly characterize all neuroimaging findings, 
regardless of brain injury etiology.

Classifying the pathophysiologic association of imaging 
findings with DoC
We also provide investigators with an opportunity to 
enter data about presumed mechanisms of neurologi-
cal injury and their relatedness to DoC, consistent with 
recently proposed neuroimaging CDEs for patients with 
COVID-19 [85]. At the end of each CRF, we created a 
new CDE pertaining to the presumed pathophysiologi-
cal cause of the imaging findings. Such data will facilitate 
epidemiologic and mechanistic studies of DoC, while 
also providing hypothesis-generating data for future 
investigations.

CDE classification
All CDEs were classified as “disease core,” “basic,” “supple-
mental,” or “exploratory” based on the consensus opinion 
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of the working group. This classification nomenclature 
is consistent with that used in prior NINDS CDE initia-
tives [82–84]. We assigned the “disease core” designation 
to CDEs that are required for all DoC studies. Limiting 
the number of disease core CDEs was intended to reduce 
the burden of data entry, which can lead to incomplete 
CRFs and reduced participation in multicenter inter-
national trials. We assigned the “basic” designation to 
CDEs that are strongly recommended for all DoC stud-
ies. We assigned the “supplemental” designation to CDEs 
that are recommended for specific DoC studies (i.e., 
depending on the context and goals of the study), and the 
“exploratory” designation was applied to CDEs that can 
be considered for use in DoC neuroimaging studies but 
that require further validation. Finally, we assigned the 
designation “key design element” to any methodological 
parameter that is relevant to the acquisition, processing, 
or analysis of data.

Results
Adaptation of previously proposed CDEs to DoC
The neuroimaging CDEs previously proposed by the 
National Institutes of Health that were most relevant to 
DoC included those developed for ischemic stroke [83], 
traumatic brain injury [82], and subarachnoid hemor-
rhage [84]. Based on these previously developed CDEs, 
we created eight CRFs, each representing a neuroimag-
ing technique: (1) head CT, (2) conventional MRI, (3) T1 
volumetrics, (4) diffusion MRI, (5) perfusion imaging 
(CT and MRI), (6) fMRI (resting-state, passive stimu-
lus-based, and active task-based), (7) PET (resting-state, 
passive stimulus-based, and active task-based), and (8) 
magnetic  resonance spectroscopy. These eight CRFs 
include basic and supplemental CDEs. Exploratory CDEs 
were not identified. A separate CRF was created for dis-
ease core CDEs and includes CDEs from all working 
groups.

The Neuroimaging Working Group identified addi-
tional priorities for the international DoC neuroimag-
ing community that are considered synergistic with the 
present CDE effort but beyond the scope of the CRFs. 
Specifically, the Neuroimaging Working Group aims to 
encourage investigators to (1) publicly disseminate all 
code and data processing scripts, (2) openly share data, 
and (3) label data files using the standard Brain Imag-
ing Data Structure (BIDS) format [86] to facilitate data 
pooling.

Dissemination of CDEs for DoC neuroimaging
We release version 1.0 of the proposed neuroimag-
ing CDEs for patients with DoC as a set of eight CRFs 
(https://​zenodo.​org/​record/​81723​59; also  see Supple-
mentary Materials). The CDEs underwent a 2-month 

public feedback period from October to November 2022, 
which was advertised at the 2022 Neurocritical Care 
Society annual meeting and via Twitter. Public feedback 
was received and incorporated into the final CRFs. For 
the neuroimaging CDEs, feedback pertained to the style 
and formatting of the CRFs, though no specific content-
related changes were recommended.

We encourage ongoing feedback regarding modifica-
tions to the CDEs, which can be submitted via email to 
cde.curingcoma@gmail.com. Suggestions to edit or add 
to the current list of CDEs will be evaluated by the Neu-
roimaging Working Group on an as-needed basis, and 
changes to the CRFs will be posted at  https://​zenodo.​
org/​record/​81723​59 with new version numbers. We are 
committed to an adaptive approach based on emerging 
evidence, with rapid distribution of modifications using 
online scientific portals.

Discussion
Global collaboration and data reporting standardization 
are essential to advance knowledge and improve care 
for patients with DoC. To support this effort, the Curing 
Coma Campaign convened working groups to develop 
CDEs for DoC research. Here, we disseminate the neu-
roimaging CDEs that emerged from this international 
initiative. We designed the DoC neuroimaging CDEs to 
be widely accessible and practical to implement at both 
academic medical centers and community hospitals. The 
DoC neuroimaging CDEs also leverage previous CDE 
efforts supported by the NINDS, ensuring consistency 
with prior reported efforts to standardize neuroimag-
ing data acquisition. Newly proposed CDEs specific to 
patients with DoC were added based on a review of DoC 
neuroimaging studies. All DoC neuroimaging CDEs, 
organized in eight modality-specific CRFs, are available 
at https://​zenodo.​org/​record/​81723​59 .

The CDEs proposed here will support ongoing efforts 
to identify signatures of atypical (pathological and dis-
rupted) and preserved brain networks [69]. We also 
expect that these neuroimaging CDEs will support stud-
ies that shed new light on fundamental questions about 
DoC pathophysiology, such as “what is the neuroana-
tomic basis of covert consciousness?” [72] and “are the 
neural correlates of consciousness localized to the ante-
rior or posterior regions of the cerebral cortex?” [18]. 
Furthermore, the CDEs are designed to support large 
multicenter studies that test the diagnostic and prognos-
tic utility of advanced imaging techniques, which will be 
essential for clinical translation. Finally, these CDEs will 
create new opportunities for personalized medicine by 
guiding the selection of targeted therapies aimed at pro-
moting recovery of consciousness [51, 87, 88].
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This CDE development effort is a dynamic process, and 
we anticipate revisions that reflect ongoing progress in 
the field of DoC neuroimaging. Only with a comprehen-
sive global commitment to data reporting standardiza-
tion and data sharing can the international community 
advance knowledge and optimize care for patients with 
DoC.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s12028-​023-​01794-2.
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