
UCLA
UCLA Previously Published Works

Title
MSIQ: Joint modeling of multiple RNA-seq samples for accurate isoform quantification

Permalink
https://escholarship.org/uc/item/1661m660

Journal
The Annals of Applied Statistics, 12(1)

ISSN
1932-6157

Authors
Li, Wei Vivian
Zhao, Anqi
Zhang, Shihua
et al.

Publication Date
2018-03-01

DOI
10.1214/17-aoas1100

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1661m660
https://escholarship.org/uc/item/1661m660#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Submitted to the Annals of Applied Statistics
arXiv: arXiv:1603.05915

MSIQ: JOINT MODELING OF MULTIPLE RNA-SEQ
SAMPLES FOR ACCURATE ISOFORM QUANTIFICATION

By Wei Vivian Li‡,∗, Anqi Zhao§, Shihua Zhang¶,†

and Jingyi Jessica Li‡,∗,†

University of California, Los Angeles‡, Harvard University§ and Chinese
Academy of Sciences¶

Next-generation RNA sequencing (RNA-seq) technology has been
widely used to assess full-length RNA isoform abundance in a high-
throughput manner. RNA-seq data offer insight into gene expression
levels and transcriptome structures, enabling us to better understand
the regulation of gene expression and fundamental biological pro-
cesses. Accurate isoform quantification from RNA-seq data is chal-
lenging due to the information loss in sequencing experiments. A re-
cent accumulation of multiple RNA-seq data sets from the same tissue
or cell type provides new opportunities to improve the accuracy of
isoform quantification. However, existing statistical or computational
methods for multiple RNA-seq samples either pool the samples into
one sample or assign equal weights to the samples when estimating
isoform abundance. These methods ignore the possible heterogeneity
in the quality of different samples and could result in biased and
unrobust estimates. In this article, we develop a method, which we
call “joint modeling of multiple RNA-seq samples for accurate isoform
quantification” (MSIQ), for more accurate and robust isoform quan-
tification by integrating multiple RNA-seq samples under a Bayesian
framework. Our method aims to (1) identify a consistent group of
samples with homogeneous quality and (2) improve isoform quantifi-
cation accuracy by jointly modeling multiple RNA-seq samples by
allowing for higher weights on the consistent group. We show that
MSIQ provides a consistent estimator of isoform abundance, and we
demonstrate the accuracy and effectiveness of MSIQ compared with
alternative methods through simulation studies on D. melanogaster
genes. We justify MSIQ’s advantages over existing approaches via ap-
plication studies on real RNA-seq data from human embryonic stem
cells, brain tissues, and the HepG2 immortalized cell line. We also
perform a comprehensive analysis of how the isoform quantification
accuracy would be affected by RNA-seq sample heterogeneity and
different experimental protocols.

∗Equal contribution.
†Corresponding authors. Please send email correspondence to jli@stat.ucla.edu or

zsh@amss.ac.cn.
MSC 2010 subject classifications: Primary 97K80; secondary 47N30
Keywords and phrases: isoform abundance estimation, joint inference from multiple

samples, RNA sequencing, Bayesian hierarchical models, Gibbs sampling, data hetero-
geneity

1

ar
X

iv
:1

60
3.

05
91

5v
2 

 [
st

at
.A

P]
  2

1 
A

ug
 2

01
7

http://www.imstat.org/aoas/
http://arxiv.org/abs/arXiv:1603.05915


2 W. LI ET AL.

1. Introduction. Transcriptomes are complete sets of RNA molecules
in biological samples. Unlike the genome, which is largely invariant in dif-
ferent tissues and cells of the same individual, transcriptomes can vary
greatly and cause different tissue and cell phenotypes. Understanding tran-
scriptomes is essential for interpreting genome function and investigating
molecular bases for various disease phenomena. In transcriptomes, the most
important components are messenger RNA (mRNA) transcripts, as they
will be translated into proteins—the key functional units in most biological
processes. During the transcription process from genes to mRNA transcripts,
one gene may give rise to multiple mRNA transcripts with different nu-
cleotide sequences, thus contributing to the diversity of transcriptomes.
mRNA transcripts from the same gene are often referred to as isoforms,
which are different combinations of whole or partial exons (i.e., contiguous
genomic regions within genes that will be transcribed into RNA molecules).

Transcriptomics is an emerging field and one of its primary goals is to
quantify the dynamic expression levels of mRNA isoforms under different bi-
ological conditions. For common species (e.g., Homo sapiens (humans), Mus
musculus (mice), Drosophila melanogaster (fruit flies), etc.), extant gene
annotations record a large number of mRNA isoforms reported in previous
literature. For example, the UCSC genome browser (Kent et al., 2002), GEN-
CODE (Harrow et al., 2012) and RefSeq (Pruitt et al., 2014) contain known
mRNA isoform structures in transcriptomes of humans and several other
species. However, the annotations lack gold standard abundance information
of these isoforms. In many biological studies, it is important to identify and
catalog expression levels of novel or alternative transcripts (Hansen et al.,
2011) in order to perform downstream analyses such as identification of
differentially expressed genes and construction of transcript co-expression
networks. Hence, how to accurately estimate isoform abundance is a key
question.

Over the past decade, next-generation RNA sequencing (RNA-seq) tech-
nologies have generated numerous data sets with unprecedented nucleotide-
level information on transcriptomes, providing new opportunities to study
the dynamic expression of known and novel mRNAs in a high-throughput
manner (Wang et al., 2009; Conesa et al., 2016; Trapnell et al., 2009). The
ideal data would include the sequences of full-length mRNA transcripts;
however, most widely used next-generation Illumina sequencers generate
millions of short sequences called reads (typically shorter than 400 base
pairs) from the two ends of mRNA transcript fragments (Wang et al., 2009),
while other third-generation sequencing technologies (e.g., Ion Torrent and
Pacific Biosciences) produce longer but more erroneous reads (Quail et al.,
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2012). In this paper, our discussion focuses on paired-end RNA-seq data
generated by Illumina sequencers. For more details on Illumina RNA-seq
experiments, see Supplementary Fig S1.

Due to the presence of numerous isoforms in existing annotations, in-
ference on their abundance from RNA-seq reads has been an active field
of research since 2009 (Jiang and Wong, 2009; Trapnell et al., 2010; Li
et al., 2011; Zhang et al., 2014). A necessary step is to first map (or align)
reads to reference genomes so that researchers know the numbers of reads
generated from each exon. Then, a common approach to summarize RNA-
seq reads is to categorize the reads by the genomic regions to which they
map so that the number of reads in different genomic regions can be used
to distinguish the abundance of various isoforms. As different isoforms may
consist of overlapping but not identical exons, many methods divide exons
into subexons, which are defined as transcribed regions between every two
adjacent splicing sites in annotations (Li et al., 2011; Zhang et al., 2014; Ye
and Li, 2016). By this definition, every gene is composed of non-overlapping
subexons and introns (i.e., non-transcribed genomic regions). In Fig 1, we
illustrate a toy example of a gene with three annotated isoforms and four
subexons. Because combinations of subexons form a superset of all the
annotated isoforms, it is reasonable to categorize RNA-seq reads based on
the sets of subexons to which they map. For the ease of terminology, we will
refer to subexons as exons for the remainder of this paper. For more details
regarding categorizing RNA-seq reads, see Section 2.2.

How to infer isoform abundance from observed RNA-seq reads is a statis-
tical problem, as reads are generated by a mixture of isoforms. We illustrate
this using a toy example in Fig 2. A hypothetical gene is composed of four
non-overlapping exons. Suppose that the gene is transcribed into two mRNA
isoforms: 60% of the transcripts are isoform 1, which consists of exons 1,
2 and 4, and 40% of the transcripts are isoform 2, which consists of all
four exons. In reality, the isoform proportions, though of great interest to
biologists, remain unobservable under the current experimental settings. Our
aim is to estimate the relative abundance of annotated isoforms based on
reads generated in RNA-seq experiments. Suppose that n paired-end reads
are generated from mRNA transcripts of the gene, and they are mapped (or
aligned) to the reference genome. Some of the mapped reads have obvious
isoform origins. For example, read 3 is compatible only with isoform 2, and
thus must have isoform 2 as its origin. On the other hand, many mapped
reads can have ambiguous origins. For example, read 1 is compatible with
both isoforms 1 and 2, and thus we cannot determine its origin isoform.
The much more complex structures of real genes complicate the situation
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isoform 1

isoform 2

isoform 3

subexons 21 43

gene

annotation

genome

Fig 1: Definition of subexons. The example gene has two exons, represented by magenta
and green boxes, and three mRNA isoforms. The solid lines between exons represent
introns in the gene that have been spliced out in isoforms. Adjacent splicing sites in these
isoforms define four non-overlapping subexons: the first exon is divided into subexon 1
and 2, and the second exon is divided into subexon 3 and 4.

even further; human genes have nine exons on average (Sakharkar et al.,
2004), and a large proportion of human genes have more than ten annotated
isoforms (see Supplementary Fig S2B). Therefore, this problem requires
powerful statistical methods to provide good estimates of isoform propor-
tions.

1 42gene

mRNA

DNA3

...

read 1
read 2
read 3...

isoform 2 mRNA1 42 3

1 42isoform 1

5’ 5’3’ 3’

1 300 350 400 450 480 500 700

Fig 2: Illustration of RNA-seq read generation from a hypothetical gene. The four exons of
this gene are represented as boxes of different lengths and colors. The starting and ending
positions of the four exons are marked on top of the gene. In an RNA-seq experiment,
multiple reads are generated and the number of reads coming from each isoform is
proportional to the isoform’s abundance. Each read has a 5’-end and a 3’-end, as shown
in read 1. These reads are mapped to the reference genome and their overlapping exons
are key information for estimating isoform abundance.
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A number of isoform quantification methods have been developed to
estimate the abundance of specific isoforms. These methods perform isoform
quantification using either direct computation or model-based approaches
(Wang et al., 2009; Steijger et al., 2013; Kanitz et al., 2015). Direct com-
putation approaches use a variety of methods to count the number of reads
compatible with each isoform and then normalize the counts by isoform
lengths and the total number of reads to generate estimates of isoform
abundance. The most commonly used unit is reads per kilobase of transcript
per million mapped reads (RPKM) (Mortazavi et al., 2008). However, for
complex gene structures, counts of RNA-seq reads compatible with isoforms
may not be proportional to isoform abundance, as multiple isoforms can
share exons and some reads cannot be assigned unequivocally to only one
isoform. To address this issue, model-based approaches are needed to assess
the likelihood of a read coming from different isoforms. In the first model-
based isoform quantification method (Jiang and Wong, 2009), read counts in
genomic regions are modeled as Poisson variables (with isoform abundance
as the mean parameter), under the assumption that reads are uniformly
sampled within each isoform. Isoform abundance is estimated by maximum
likelihood estimates. Cufflinks (Trapnell et al., 2010), the most widely used
method for discovering novel isoforms from RNA-seq data, also has the
functionality to estimate isoform abundance. Its approach is similar to the
likelihood-based approach in Jiang and Wong (2009), and it proposed a new
unit for isoform abundance based on paired-end RNA-seq data: fragments
per kilobase of transcript per million mapped reads (FPKM), which accounts
for the dependency between paired-end reads. MISO (Katz et al., 2010)
is another model-based method constructed under a Bayesian framework,
and it provides maximum-a-posteriori estimates and confidence intervals
of isoform abundance. There are other isoform quantification methods with
different features (Pachter, 2011). For example, SLIDE (Li et al., 2011) uses a
linear model and can be used with various data types; iReckon (Mezlini et al.,
2013) utilizes a regularized Expectation-Maximization algorithm; WemIQ
(Zhang et al., 2014) replaces the Poisson distribution with a more general
and realistic generalized Poisson distribution; eXpress (Roberts and Pachter,
2013) is an efficient streaming method based on an online-EM algorithm and
is considered to be a faster version of Cuinks with comparable performance;
and Sailfish (Patro et al., 2014) is a fast alignment-free method that saves
the read mapping step.

However, there remains much space to improve the accuracy of isoform
quantification due to noise and biases in RNA-seq data. Because of the ac-
cumulation of RNA-seq samples in public databases, multiple RNA-seq data
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Fig 3: Reads in six hESC RNA-seq samples mapped to the human gene TPR. Detailed
information on these samples is listed in Supplementary Table S2. The counts of RNA-
seq reads are summarized in the histograms. The annotation of the gene and isoform
structures is shown in the bottom row. We mark four example sites where the six samples
are obviously inconsistent with red rectangles.

sets are now often available for the same biological condition (e.g., the same
cell or tissue type), and they provide more information than a single RNA-
seq data set. For example, the GTEx (Genotype-Tissue Expression) study
comprises 9, 662 samples from 54 tissues, and the Cancer Genome Atlas
(TCGA) study comprises 11, 350 samples from 33 cancer types (Collado-
Torres et al., 2017). Here, the concept of multiple samples includes both
technical replicates-different aliquots of the same sample measured multiple
times (Hansen et al., 2011)- and biological replicates-replicates obtained
from multiple samples of the same material, type of cells, or tissue. The
availability of multiple RNA-seq samples from the same biological condition
(e.g., human embryonic stem cells) in public databases (e.g., NIH Gene
Expression Omnibus (Barrett et al., 2013)) motivated us to develop a new
statistical method for better isoform quantification by taking advantage
of the common and thus more reliable information provided by multiple
samples. The necessity of such a method is two-fold. First, the number of
RNA-seq samples produced by a single lab is limited since experimental costs
increase each time an additional replicate is added. A statistical method that
allows for multiple samples enables researchers to combine their own data
with public data to obtain more accurate and robust isoform abundance
estimates. Second, such a method supports better reuse of public data for
both new biological findings and method development.
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Several methods have been developed to use multiple RNA-seq samples
from the same biological condition for isoform quantification. For exam-
ple, CLIIQ (Lin et al., 2012) uses integer linear programming to jointly
model RNA-seq data from multiple samples. MITIE (Behr et al., 2013)
assumes that the same isoforms are expressed in all samples but may have
different abundances, and it then reduces the problem to solving systems of
linear equations. FlipFlop (Bernard et al., 2014) uses a convex formulation
and introduces the group-lasso penalty to ensure sparsity in estimation.
However, none of these methods considers the quality variation of different
RNA-seq samples or how such variation might affect the inference of isoform
abundance. It is commonly recognized that RNA-seq samples generated by
different protocols or different labs can vary greatly with respect to the
signal-to-noise ratios, biases, etc. For example, Fig 3 shows the RNA-seq
read coverage profiles of the human gene TPR in six human embryonic
stem cell (hESC) samples. There is obvious variation in the read coverage
profiles of these six samples. For example, sample 2 has little signal in
the last exon while the other samples have obviously stronger signals in
the last exon. Thus, it is inappropriate to treat all the samples equally
during isoform quantification by assuming that they come from the same
population (i.e., the same tissue or cell of interest). Hence, results from
these methods may be sensitive to the heterogeneity of samples or even, in
some cases, be dominated by biased samples, which do not accurately reflect
the transcriptome information of the given tissue type.

In this paper, we propose a robust quantification method for isoform ex-
pression: joint modeling of Multiple RNA-seq Samples for accurate Isoform
Quantification (MSIQ). MSIQ is a model-based approach for estimating
isoform abundance by discerning and using multiple RNA-seq samples that
share similar transcriptome information, which we define as the consistent
group in this paper. Our modeling consists of two components: (1) esti-
mating the probability of each sample being in the consistent group via
evaluating the sample similarities, and (2) estimating isoform abundance
from reweighted samples, with greater weights given to the samples that are
more likely to be consistent. These two components enable the method to dis-
tinguish between the large variation stemming from experimental factors and
the reasonable biological variation. In Section 2, we describe the Bayesian
hierarchical model used in MSIQ to bridge unknown isoform proportions and
observed read counts mapped to a gene in multiple RNA-seq samples. Our
model allows for different isoform proportions of RNA-seq samples inside
and outside the consistent group; a main parameter of interest relates to the
isoform proportions in the consistent group. This approach reduces the prob-
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ability that the estimated isoform abundance is biased by samples of poor
quality. We conduct parameter inference by Gibbs sampling and prove the
consistency of the MSIQ estimator. We show that the isoform proportions
estimated by MSIQ are consistent with the unknown isoform proportions
in the consistent group, while the estimates based on the assumption that
all samples have equal weights are not. In Section 3, we apply MSIQ to
both simulated and real data sets to illustrate the efficiency and robustness
of MSIQ under various parameter settings and with different parameter
estimation procedures. We also compare MSIQ with the oracle estimators
and other widely used estimation methods. In Section 4, we discuss the
advantages and limitations of MSIQ and its possible extensions.

2. Methods. For a given gene, our proposed MSIQ method aims to
achieve two goals with respect to isoform expression quantification. First,
we want to identify the samples that represent the tissue or cell type of
interest. We refer to these samples as the consistent group and assume that
the group contains at least one sample. We identify samples in the consistent
group under the assumption that these samples share the most similar read
distributions among all the samples. Second, we would also like to estimate
the proportion of reads coming from each mRNA isoform in the given tissue
or cell type, with larger weights given to the samples in the consistent group.
We focus our efforts on RNA-seq data with paired-end reads, but the model
can easily be extended for single-end reads.

2.1. Ideal and practical parameters of interest. Suppose we are studying
a gene with N exons, J annotated mRNA isoforms, and D RNA-seq samples.
Ideally, we are interested in the true proportion of each isoform

pj = P (an mRNA transcript is of isoform j), j = 1, 2, ..., J.

However, these hidden parameters are not observable in RNA-seq experi-
ments, which do not directly measure mRNA transcripts. Instead of directly
estimating pj , we aim to estimate the practical parameters

αj = P (an RNA-seq read is from isoform j), j = 1, 2, ..., J,

which we refer to as isoform proportions in our discussion.

2.2. Observed data. We denote the observed data, D independent sam-
ples of reads mapped to the given gene, by

R(d) = {r(d)
1 , r

(d)
2 , . . . , r(d)

nd
} , d = 1 , 2 , . . . , D ,



ISOFORM QUANTIFICATION ON MULTIPLE RNA-SEQ SAMPLES 9

where nd and r
(d)
i , respectively, denote the total number of reads and the

ith read (i = 1, 2, . . . , nd) in sample d. To use the read information, an
efficient data summary is needed to preserve the most relevant information
for isoform quantification while limiting the computational complexity to a
manageable level (Rossell et al., 2014). We write each read as

r
(d)
i =

{
s

(d)
1i , s

(d)
2i ,
{
y

(d)
i1 , y

(d)

ic(d)
, y

(d)

i(c(d)+1)
, y

(d)

i(2c(d))

}}
,

where s
(d)
1i and s

(d)
2i , respectively, denote the index set of exons overlapping

with the read’s left end and right end; y
(d)
ik denotes the kth genomic position

of read i; and c(d) is the read length in sample d. Please refer to the
supplementary information for a more detailed discussion on the advantages
of this summarizing approach over other existing approaches.

2.3. Assumptions and prior. In addition to the observed data, we con-
sider the hidden data, which are the isoform origins of the reads:

Z(d) = (Z
(d)
1 , Z

(d)
2 , . . . , Z(d)

nd
)′ ,

where Z
(d)
i ∈ {1, 2, . . . , J} indicates the isoform origin of read i, and Z

(d)
i = j

if read r
(d)
i actually comes from isoform j.

The differences between RNA-seq samples are reflected in their isoform
proportion τ (d), d = 1, 2, . . . , D. In RNA-seq sample d, we denote the true

probability of reads from isoform j as τ
(d)
j = P (Z

(d)
i = j) and the isoform

proportion vector as

τ (d) = (τ
(d)
1 , τ

(d)
2 , . . . , τ

(d)
J )′ ,

with
∑J

j=1 τ
(d)
j = 1. We define a hidden state variable Ed for each sample

such that

Ed = 1I{sample d belongs to the consistent group}.

We assume samples in the consistent group all have the same proportion vec-
tor α = (α1, α2, . . . , αJ)′ with

∑J
j=1 αj = 1, while samples not in the consis-

tent group can each have different isoform proportions β(d) = (β
(d)
1 , β

(d)
2 , . . . , β

(d)
J )′∑J

j=1 β
(d)
j = 1. Thus the isoform proportions can be expressed as

τ (d) = Ed ·α+ (1− Ed) · β(d)

=

{
α, if Ed = 1 ,

β(d), if Ed = 0 .
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Fig 4: Joint modeling of multiple RNA-seq samples. In this framework, Ed (d = 1, 2, . . . , D)
is a binary hidden state variable indicating whether RNA-seq sample d is in the consistent
group, while a, b and γ are hyper-parameters (priors) in Ed’s distribution. Depending
on Ed, the isoform proportion vector τ (d) takes either the consistent group’s isoform
proportion vector α or its own β(d). Given the isoform proportions, RNA-seq reads are
generated in each sample, and our observed data are summarized as R(d) (see Section
2.2).

The isoform proportion vector of the consistent group α is our parameter of
interest.

We assume α and β(d) are a priori Dirichlet(λ), and Ed is a priori
Bernoulli(γ): Ed|γ ∼ Bernoulli(γ),where γ ∼ Beta(a, b). Intuitively, λ con-
trols the distance between the isoform proportions of samples inside and
outside the consistent group, while γ controls the tendency of assigning
a sample to the consistent group. We describe the relationship between
observed RNA-seq reads and hidden isoform proportions in multiple samples
under a Bayesian framework (Fig 4).

2.4. The MSIQ model. We introduce I
(d)
i,j as a short notation of binary

variable 1I{Z(d)
i = j}. Then given a sample with isoform proportion τ (d), the

probability of read r
(d)
i and origin Z

(d)
i can be written as follows:

P
(
r

(d)
i , Z

(d)
i |τ (d)

)
=

J∏

j=1

P
(
r

(d)
i , Z

(d)
i = j|τ (d)

)1I{Z(d)
i =j}
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=

J∏

j=1

[
P
(
r

(d)
i |Z

(d)
i = j

)
τ

(d)
j

]I(d)ij ,
J∏

j=1

(
h

(d)
i,j τ

(d)
j

)I(d)i,j
,(2.1)

where P
(
r

(d)
i , Z

(d)
i |τ (d)

)
refers to the joint density of read r

(d)
i and its

isoform origin Z
(d)
i given the model parameters, and h

(d)
i,j is the generating

probability of read r
(d)
i given isoform j. If read r

(d)
i and isoform j are

incompatible (e.g., read 2 in Fig 2 cannot come from isoform 1), h
(d)
i,j = 0.

Otherwise, h
(d)
i,j depends on the model for the read generation mechanism.

We adopt the following model from Zhang et al. (2014):

h
(d)
i,j =

1

`′j
× P

(
L

(d)
i,j

)
,

where `′j is the effective length (i.e., the number of possible starting positions

on the fragment) of isoform j and can be calculated as `′j = `j−L(d): `j is the

length of isoform j and L(d) is the mean fragment length in sample d. L
(d)
i,j

denotes the fragment length of r
(d)
i if it comes from isoform j. Note that the

same read may correspond to different fragment lengths if they come from
different isoforms. For example, read 1 in Fig 2 corresponds to fragments

of different lengths in isoforms 1 and 2. L
(d)
i,j is assumed to be a Gaussian

random variable and its mean L(d) = E(L
(d)
i,j ) and variance var(L

(d)
i,j ) can be

estimated from single-isoform genes, whose mapped reads directly determine
fragment lengths.

Let E = (E1, E2, . . . , ED)′ be the hidden state vector indicating whether
each sample is among the consistent group or not, and let R = {R(d)}Dd=1,
Z = {Z(d)}Dd=1, and τ = {τ (d)}Dd=1 represent the reads, origins of reads,
and isoform proportions in all the samples, respectively. To simplify the

notation, we also introduce n
(d)
j =

∑nd
i=1 I

(d)
ij to represent the total number

of reads coming from isoform j in sample d. Given equation (2.1), the joint
probability of all reads in the MSIQ model is as follows:

P (R,Z, τ ,E, γ|λ, a, b) = P (R,Z| τ ,E)P (τ |λ,E)P (E| γ)P (γ|a, b) ,

where

P (R,Z| τ ,E) =
D∏

d=1







nd∏

i=1

J∏

j=1

(
h

(d)
i,j αj

)I(d)i,j



Ed


nd∏

i=1

J∏

j=1

(
h

(d)
i,j β

(d)
j

)I(d)i,j




1−Ed




,
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P (τ |λ,E) ∝
J∏

j=1

α
λj−1
j

D∏

d=1




J∏

j=1

(
β

(d)
j

)λj−1




1−Ed

,

P (E| γ) ∝ γ
∑D

d=1 Ed(1− γ)D−
∑D

d=1 Ed ,

P (γ|a, b) ∝ γa−1(1− γ)b−1 .

As a result, the joint probability can be simplified as

P (R,Z, τ ,E, γ|λ, a, b)(2.2)

∝




J∏

j=1

α
λj−1+

∑D
d=1 Edn

(d)
j

j






D∏

d=1

J∏

j=1

(
β

(d)
j

)(1−Ed)
(
λj−1+n

(d)
j

)





D∏

d=1

J∏

j=1

nd∏

i=1

(
h

(d)
i,j

)I(d)i,j


 γ

∑D
d=1 Ed+a−1(1− γ)D−

∑D
d=1 Ed+b−1 .

2.5. Markov chain Monte Carlo. In the MSIQ model (2.2), the reads
R are the observed data, the isoform origins Z and the consistent group
indicator E are the hidden data, while isoform proportions α, {β(d)}Dd=1,
and consistent group proportion γ are the parameters. To estimate the
parameters, a useful approach is to implement a Gibbs sampler to iteratively
draw posterior samples of hidden data and parameters from their conditional
distributions. Since our ultimate parameter of interest is α, whose inference
becomes obvious given Z and E, we integrate out τ (i.e., α and {β(d)}Dd=1)
in model (2.2) to achieve better computational efficiency. This step is based
on a property of the Dirichlet distribution:

∫
· · ·
∫

{(τ1,...,τJ ):0≤τj≤1,
∑

j τj=1}

J∏

j=1

τ
λj−1
j dτ1 · · · dτJ = B(λ), ∀λj > 0 ,

where B(λ) =
ΠJ

j=1Γ(λj)

Γ(
∑J

j=1 λj)
. Hence,

P (R,Z,E, γ|λ, a, b) ∝ B1(Z,E) ·
D∏

d=1

B
(d)
0 (Z(d), Ed) ·




D∏

d=1

nd∏

i=1

J∏

j=1

(
h

(d)
i,j

)I(d)i,j




·γ
∑D

d=1 Ed+a−1(1− γ)D−
∑D

d=1 Ed+b−1 ,
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where

B1(Z,E) =

∏J
j=1 Γ

(
λj +

∑D
d=1Ed · n

(d)
j

)

Γ
(∑J

j=1 λj +
∑D

d=1Ed · nd
) ,

B
(d)
0 (Z(d), Ed = 1) = 1,

B
(d)
0 (Z(d), Ed = 0) =

∏J
j=1 Γ

(
λj + n

(d)
j

)

Γ
(∑J

j=1 λj + nd

) .

We denote Θ = {Z,E, γ}. The distribution of each parameter or hidden
variable conditional on everything else can thus be estimated by Gibbs
sampling as follows.

(1) Ed follows a Bernoulli distribution:

Ed|Θ/{Ed} ∼ Bern

(
odds(Ed;λ, τ)

1 + odds(Ed;λ, τ)

)
,(2.3)

where

odds(Ed;λ, τ) =
P (Ed = 1|Θ/{Ed})
P (Ed = 0|Θ/{Ed})

=
P (R,Z,E−d, Ed = 1, γ|λ, a, b)
P (R,Z,E−d, Ed = 0, γ|λ, a, b)

=
B1(Z,E−d, Ed = 1)

B1(Z,E−d, Ed = 0)
· B

(d)
0 (Z(d), Ed = 1)

B
(d)
0 (Z(d), Ed = 0)

· γ

1− γ .

(2) Z
(d)
i follows a multinomial distribution:

Z
(d)
i |Θ/{Z

(d)
i } ∼ Multinomial

(
q

(d)
i1 , q

(d)
i2 , . . . , q

(d)
iJ

)
,(2.4)

where

q
(d)
ij =

P (Z
(d)
i = j|Θ/{Z(d)

i })∑J
j′=1 P (Z

(d)
i = j′|Θ/{Z(d)

i })
=

P
(
R,Z

(−d)
−i , Z

(d)
i = j,E, γ

∣∣∣λ, a, b
)

∑J
j′=1 P

(
R,Z

(−d)
−i , Z

(d)
i = j′,E, γ

∣∣∣λ, a, b
) .

(3) γ follows a Beta distribution:

γ|Θ/{γ} ∼ Beta

(
D∑

d=1

Ed + a,D −
D∑

d=1

Ed + b

)
.(2.5)
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2.6. Estimators of isoform proportions. With the above posterior distri-
bution of the hidden variables and parameters, we can draw samples itera-
tively to estimate the hidden state of each RNA-seq sample and the true iso-
form proportions in the consistent group. Suppose we have T iterations avail-
able after discarding the burn-in period of Gibbs sampling. In each iteration,

we denote the sampled hidden state vector as E(t) = (E
(1)
1 , E

(2)
2 , . . . , E

(T )
D )′

and the hidden origin vector in sample d as (Z
(d,t)
1 , . . . , Z

(d,t)
nd )′.

To estimate isoform proportions in each iteration, we pool the reads from

sample d whose state varibale E
(t)
d = 1 to calculate α(t), where

α
(t)
j =

λj +
∑D

d=1

(
E

(t)
d

∑nd
i=1 1I{Z(d,t)

i = j}
)

∑J
j=1 λj +

∑D
d=1E

(t)
d nd

.(2.6)

Overall, the MSIQ estimator of the isoform proportions becomes

α̂MSIQ =
1

T

T∑

t=1

α(t),

and the relative estimation error is calculated as

REE(α̂MSIQ) =
m∑

j=1

|αj − α̂MSIQ
j |/αj .

We prove the consistency property of the MSIQ estimator α̂MSIQ in the
following lemma. (Please refer to the supplementary information for the
complete proof.)

Lemma 2.1. α̂MSIQ converges to the posterior mean of isoform propor-
tion E(α|R,λ, a, b):

lim
T→∞

α̂MSIQ = E(α|R, λ, a, b).

We can also estimate the posterior probability of each sample belonging to
the consistent group: θ = (θ1, θ2, . . . , θD)′, where θd = P (Ed = 1|R,λ, a, b),
and the estimator is

θ̂MSIQ
d =

1

T

T∑

t=1

E
(t)
d .

Based on this posterior probability, we predict the state variable of each
sample: Êd = 1I{θ̂MSIQ

d > 1/2}.
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To further evaluate the biological variation within the consistent group,
we estimate the standard error of the MSIQ estimator given the posterior
samples drawn by the Gibbs sampling. For isoform j, the standard error of
the respective entry in α̂MSIQ is estimated as:

σ̂j =

√√√√ 1

T

T∑

t=1

(α
(t)
j − α̂

MSIQ
j )2 .(2.7)

Note that the consistent group is automatically selected by the MSIQ model
given the overall heterogeneity among samples. Even though the consistent
group is assumed to have a consensus isoform proportion, it is useful to
account for the biological variation, especially when the overall heterogeneity
is non-negligible.

We also consider six competing estimators to demonstrate the effective-
ness of MSIQ in accurate isoform quantification. From what has been derived
in Section 2.4, we know that the log likelihood of all reads in sample d is

log
(
P (R(d),Z(d)|τ (d))

)
=

nd∑

i=1

m∑

j=1

I
(d)
ij log

(
h

(d)
ij τ

(d)
j

)
.

Then the EM algorithm can be implemented to estimate τ (d). The six com-
peting estimators are calculated using the EM algorithm based on different
sets of samples:

AVG (averaging): We calculate the isoform proportion in each sample and
take the average of them as the estimator of isoform proportion,

α̂AVG =
1

D

D∑

d=1

τ̂ (d).

AVG* (oracle averaging): We calculate the isoform proportion in each
sample in the consistent group (truth) and take the average of them
as the estimator of isoform proportion,

α̂AVG* =

∑D
d=1 τ̂

(d)1I{Ed = 1}
∑D

d=1 1I{Ed = 1}
.

POOL (pooling): We pool the reads in all samples together, then we use
the EM algorithm to estimate the isoform proportion τ as α̂POOL.

POOL* (oracle pooling): We pool the reads in samples in the consistent
group (truth) together, then we use the EM algorithm to estimate τ
as α̂POOL*.
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MSIQa (MSIQ averaging): We calculate the isoform proportion in each
sample in the consistent group (identified by MSIQ) and take the
average of them as the estimator of isoform proportion,

α̂MSIQa =

∑D
d=1 τ̂

(d)1I{θ̂MSIQ
d > 1/2}

∑D
d=1 1I{θ̂MSIQ

d > 1/2}
.

MSIQp (MSIQ pooling): We pool the reads of the given gene in the
samples in the consistent group (identified by MSIQ) together, then
we use the EM algorithm to estimate τ as α̂MSIQp.

Among these estimators, α̂AVG* and α̂POOL* are oracle estimators that we
take as gold standards in simulations but are unknown in real data; α̂MSIQa

and α̂MSIQp are MSIQ-dependent and rely on θ̂ estimated by MSIQ.

3. Results.

3.1. Performance of MSIQ in simulations. To show that MSIQ provides
more accurate estimates of isoform expression than the current averaging or
pooling method, we compare the relative estimation errors (REE) of α̂MSIQ

with those of the six competing estimators: α̂AVG*, α̂MSIQa, α̂AVG, α̂POOL*,
α̂MSIQp, and α̂POOL. It is difficult to compare these methods on real data
because true isoform abundances in samples are unknown. Although the
quantitative polymerase chain reaction (qPCR) technology can accurately
measure the abundance of mRNA isoforms and produce “gold standard”
isoform abundance, qPCR data sets are scarce and unavailable for most bio-
logical conditions (Li and Dewey, 2011). We use simulated data to compare
the performances of these estimators under various scenarios and parameter
settings.

We simulate RNA-seq reads from 3, 421 D.melanogaster (fly) genes that
have multiple isoforms in the annotation (September 2010) available in the
UCSC Genome Browser. Among these genes, 221 have 3 exons, 330 have 4
exons, 365 have 5 exons, 370 have 6 exons, 320 have 7 exons, 311 have 8
exons, 256 have 9 exons, 292 have 10 exons, and 956 genes have more than
10 exons. The isoform numbers increase at a roughly exponential rate as
the exon numbers increase (see Supplementary Fig S2A). We simulate ten
samples and 500 paired-end reads from each gene in every sample. To fully
evaluate the performances of the seven estimators, we consider five different
scenarios with different numbers of samples in the consistent group.

For each gene, we first independently generate the isoform proportion
vector α for the samples in the consistent group and the isoform proportion
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Table 1: Four parameter settings and five scenarios in the simulation study.

setting average fragment length (bp) read length (bp)
1 150 50
2 250 50
3 150 100
4 250 100

scenario % samples in the consistent group isoform proportions
1 100 {α,α,α,α,α,α,α,α,α,α}
2 50 {α,α,α,α,α,β1,β2,β3,β4,β5}
3 70 {α,α,α,α,α,α,α,β1,β2,β3}
4 70 {α,α,α,α,α,α,α,β6,β6,β6}
5 70 {α,α,α,α,α,α,α,β7,β7,β7}

vectors β1,β2,β3,β4 and β5 for the other five samples. The five scenarios
are designed as follows (see Table 1).

• In scenario 1, all ten samples are in the consistent group.
• In scenario 2, five samples are in the consistent group, and the other

five samples have individual isoform proportions β1,β2,β3,β4 and β5.
• In scenario 3, seven samples are in the consistent group, and the other

three samples have individual isoform proportions β1,β2 and β3.
• In scenario 4, seven samples are in the consistent group, and the other

three samples have the same isoform proportion vector as

β6 = argmax
βi,i=1,...,5

||βi −α||22 ,

which is the isoform proportion vector most different from α.
• In scenario 5, seven samples are in the consistent group, and the other

three samples have the same isoform proportion vector as

β7 = argmin
βi,i=1,...,5

||βi −α||22 ,

which is the isoform proportion vector most similar to α.

We also consider four settings of fragment and read length (Table 1) to
examine how these parameters affect the performances of the seven esti-
mators on isoform quantification. Under each setting, we first determine
the origin of a fragment according to the designated isoform proportion,
and then the starting position and the fragment length can be simulated
from a uniform distribution and a normal distribution, respectively (with
a standard deviation of 10 bp). Once the starting and ending positions of
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the fragments are determined, the corresponding paired-end reads are also
obtained.

For each scenario and parameter setting, we calculate the seven estima-
tors, and then evaluate their estimation accuracy by calculating the REE
of these estimates against the true isoform proportions. When calculating
α̂MSIQ, we set the hyper-parameters in model (2.2) as a = 7 and b = 2. We
have also included a sensitivity analysis of the MSIQ method on these two
parameters in the supplementary information.
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Fig 5: Relative estimation error (REE) rates of the seven estimators in scenarios 1-5. REE
rates are calculated on 2,465 fly genes with 3-10 exons. In each boxplot, the REE rates
of MSIQ, AVG∗ (oracle averaging), MSIQa, AVG (averaging), POOL∗ (oracle pooling),
MSIQp and POOL (pooling) are plotted side by side under each scenario and the whiskers
extend to the most extreme REE rates. The top-right legend of each plot displays the
parameter setting: the mean fragment length (F) and the read length (R).

3.1.1. MSIQ achieves the lowest error rates in different scenarios. We
calculate the error rates of the seven estimators for the 2, 465 fly genes with
no more than ten exons in different scenarios and parameter settings, and
illustrate the results in Fig 5. The results suggest that given the samples
not in the consistent group (scenarios 2-5), especially when these samples
constitute a large proportion or are vastly different from the consistent
group, MSIQ (α̂MSIQ) and MSIQ-based methods (α̂MSIQa and α̂MSIQp)
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Table 2: Median REE rates of five estimators under the five scenarios. The values are
averaged over the four parameter settings and rounded to three decimal places. Differences
in REE rates between MSIQ and the four other estimators are listed in parentheses.

estimator scenario 1 scenario 2 scenario 3 scenario 4 scenario 5
MSIQ 0.157 0.236 0.194 0.208 0.211
AVG* 0.158 0.215 0.179 0.179 0.179

(-0.001) (0.021) (0.014) (0.029) (0.031)
MSIQa 0.164 0.244 0.202 0.222 0.217

(-0.007) (-0.009) (-0.009) (-0.014) (-0.006)
POOL* 0.152 0.212 0.175 0.175 0.175

(0.005) (0.023) (0.019) (0.033) (0.036)
MSIQp 0.157 0.242 0.200 0.217 0.215

(-0.000) (-0.006) (-0.007) (-0.009) (-0.005)

achieve much smaller error rates than the averaging or pooling methods
(α̂AVG and α̂POOL). Compared with α̂MSIQ, α̂AVG results in a 17.3-fold
increase in the REE rates on average, and α̂POOL results in a 17.6-fold
increase. We also summarize the REE of the seven estimators (see Fig A1
in the Appendix) when we include the 956 fly genes with more than ten
exons. The isoform quantification task is much more challenging for these
956 genes since they have many more annotated isoforms (see Supplementary
Fig S2A). As expected, both the largest and the average REE rates increase
with the addition of these 956 genes, because their complicated isoform
structures introduce more difficulty and complexity in model fitting and
computation. These results suggest that, compared with the direct averaging
or pooling method, the MSIQ methods, which take the quality of samples
into consideration, can lead to more accurate isoform quantification when
multiple RNA-seq samples are available. Fig 5 also shows that MSIQ can
constrain the estimation error to a much narrower range compared with
direct averaging and pooling. MSIQ is able to control the REE rate below
1.33 for 90% of the 2, 465 genes, while direct averaging and pooling give rise
to REE rates larger than 2.00 for more than 15% of these genes. We conclude
that MSIQ is a more robust method than direct averaging and pooling.

We also summarize the median REE of these estimators under different
scenarios in Fig 6 and Table 2. The results show that MSIQ not only
outperforms direct averaging and pooling, as we have seen, but also achieves
more accurate abundance estimation than MSIQa and MSIQp. Compared
with MSIQ’s median REE rate, MSIQa and MSIQp have average REE rates
that are greater by 0.009 and 0.007, respectively. From Fig 6 and Table 2
we also conclude that the estimation results of MSIQ are similar to those
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Fig 6: Median REE rates of the MSIQ-based and oracle estimators in scenarios 1-5.
MSIQ outperforms MSIQa and MSIQp and gives error rates close to those of the oracle
estimators. The parameter setting: the mean fragment length (F) and the read length (R)
are listed on the top of each panel. The standard errors of MSIQs REE rates are given
under each scenario. The smallest standard error in each scenario is marked in red.

of MSIQa and MSIQp, the two oracle estimators that are impossible to
calculate on real data. On average, the REE rate of MSIQ is only 0.019
larger than MSIQa and 0.058 larger than MSIQp.

3.1.2. Different scenarios influence estimators’ performance. Since AVG
and POOL are observed to have much poorer accuracy than the other five
estimation methods, we remove them from the comparison for a more de-
tailed evaluation of the other five methods. From Fig 6, it is obvious that the
proportion of samples in the consistent group and the difference between the
consistent group and other samples have large effects on the performances of
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Fig 7: REE rates of MSIQ for RNA-seq samples with different fragments and read lengths.
The median, the 1st quartile and the 3rd quartile of the REE rates in different scenarios
are illustrated in the boxplots, respectively. The top left legend of each plot displays the
parameter setting: the mean fragment length (F) and the read length (R).

all five estimating methods: MSIQ, AVG*, MISQa, POOL*, and MISQp. In
scenario 1 when all the samples are in the consistent group, the five methods
exhibit their lowest median REE rates for the 2, 465 genes. In scenario 2,
which has the smallest proportion of samples in the consistent group, all
five methods have the largest median REE rates among all scenarios. This
phenomenon can be explained by the fact that having fewer samples in the
consistent group leads to more error-prone identification of these samples
and less accurate estimates of the isoform proportions. In scenarios 3, 4, and
5, in which 70% of the samples are in the consistent group, the REE rates
of the five methods lie between those of scenarios 1 and 2. Among all three
non-oracle estimation methods (MSIQ, MSIQa and MSIQp), MSIQ has the
best performance in all five scenarios. Unlike MSIQa and MSIQp, which
discard the samples outside of the identified consistent group, MSIQ partially
borrows information from these samples through the Bayesian hierarchical
framework.

3.1.3. More accurate isoform quantification with longer fragments. We
also evaluate the REE rates of MSIQ with different fragment lengths and
read lengths in simulated RNA-seq experiments. The 1st quartile, median,
and 3rd quartile of the REE errors in each of the five scenarios are illustrated
in Fig 7. It is obvious that longer fragment lengths would improve the
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Table 3: Description of RNA-seq samples inside and outside the consistent group in five
sets.

set ID consistent group other samples sample IDs
1 hESC / 1-6
2 hESC brain 1-9
3 hESC Flux Simulator 1-6, 10-14
4 hESC Flux Simulator 1-6, 15-19
5 hESC Flux Simulator 1-6, 20-24

estimation accuracy, especially when read lengths are short. Specifically,
when read lengths are set to 50 bp, increasing fragment lengths from 150
to 250 bp leads to a 22.5% decrease in the median REE rate and a 31.8%
decrease in the inter-quartile range of REE; when read lengths are set to
100 bp, the increase of fragment lengths does not make as much difference.

3.2. Performance of MSIQ on real data.

3.2.1. MSIQ has the highest estimation accuracy in a pseudo real data
study. Although the true isoform proportions are mostly unknown in real
data, we are still able to evaluate multi-sample isoform abundance estimation
methods by creating a set of samples with the majority from one tissue of in-
terest (the consistent group) and other samples from a different tissue. Even
though this setup is not a realistic scenario in biological studies, it provides a
good opportunity to evaluate different estimation methods. In this setup, we
know the true states of the hidden state variables, i.e., which samples belong
to the consistent group. If our MSIQ method performs well, its estimated
isoform proportions on all the samples should be close to its estimates on
the samples in the consistent group only. We use six public RNA-seq data
sets of human embryonic stem cells (hESC) and consider these samples to
be the consistent group. We mix these samples with three samples of human
brain tissues or three samples simulated by Flux Simulator (Griebel et al.,
2012). Please see Supplementary Table S2 for detailed description.

We obtain five sets of RNA-seq samples by mixing the six hESC samples
in the consistent group with other samples in different combinations (Table
3). Because MSIQ has the best performance among all the three non-oracle
MSIQ-based estimation methods (i.e., MSIQ, MSIQa and MSIQp) in the
simulation studies in Section 3.1, we only consider MSIQ and not MSIQa or
MSIQp in the real data studies. We compare MSIQ with direct averaging
(AVG) and pooling (POOL) on these five sets of real RNA-seq samples to
estimate the isoform proportions in the consistent group (hESC). We also
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consider three previously developed methods for single RNA-seq samples
(i.e., Cufflinks, MISO and iReckon) in this comparison. For Cufflinks, we use
both the averaging (Cuffa) and the pooling (Cuffp) approach to calculate
the isoform proportions. For MISO and iReckon, pooling is not a feasible
approach due to the extremely large memory requirements when analyzing a
merged RNA-seq sample with a huge size, so we only consider the averaging
approach. When evaluating the above seven methods, we consider each
method’s estimates on set 1 as the standards, because set 1 only contains
the six hESC samples (i.e., the consistent group). The estimation results of
MSIQ, AVG, POOL, Cuffa, Cuffp, MISO and iReckon on sets 2 through 5
are compared with their own standard on set 1, and REE rates are calculated
accordingly.

In our study, the true mRNA isoform structures are extracted from the
Homo sapiens annotation (February 2009) of the UCSC Genome Browser
(Rosenbloom et al., 2015). According to the annotation, there are 15, 268
human genes with multiple isoforms. Supplementary Fig S2B summarizes
the distribution of the numbers of exons and isoforms of these genes. We
can see that the isoform structures of humans are much more complex than
those of simple model organisms like fruit flies. For each sample set, we only
perform estimation for genes that have reads in all the samples. As a result,
isoform proportions are calculated for 11, 091 genes in set 1, 9753 genes in
set 2, 460 genes in set 3, 404 genes in set 4, and 497 genes in set 5.

Comparing the REE rates of MSIQ and the other six methods in Fig 8,
we clearly see that MSIQ generally achieves the lowest median error rates
and the smallest inter-quantile ranges in all the four comparison cases. This
result is strong evidence supporting the effectiveness of MSIQ in identifying
the consistent group and estimating its isoform proportions. Note that even
though iReckon also leads to relatively accurate results, especially in set 2
vs. set 1, the number of genes about which iReckon can provide estimation
is much smaller compared with other methods. In the four cases, iReckon
obtains estimates only for 1065, 255, 377 and 374 genes. This comparison also
suggests that pooling is not an ideal approach when the depths of sequencing
coverage in multiple RNA-seq samples vary greatly.

We also use set 1 (i.e., the 6 hESC samples) in this study to illustrate why
the consistent group represents more reliable transcriptome landscapes and
how the standard deviation defined in formula (2.7) can be used to assess the
biological variation within the consistent group. Shown in Figure 9 are two
example genes THTPA (6 isoforms) and PIGH (12 isoforms). We use these
two examples to illustrate that (1) MSIQ is bale to identify consistent groups
that have comparably more consistent isoform abundances, and (2) the
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to perform isoform quantification on sets 2 to 5 and calculate REE by treating their
correpsonding estimates on set 1 as the standards.

biological variation within the consistent group is much smaller compared
to the overall variation among all the samples, and this variation is well
captured by the estimated standard errors.

3.2.2. MSIQ leads to the highest correlation with NanoString counts. We
present a second real data example to evaluate different methods by compar-
ing their reported isoform abundances (in FPKM values) with NanoString
counts on the same data sets. The NanoString nCounter technology is con-
sidered to be a highly reproducible and robust method for detecting gene
and isoform expression (Kulkarni, 2011). As a consequence, the NanoString
measurements are widely used as a benchmark for isoform expression (Ger-
main et al., 2016; Steijger et al., 2013). We compare our MSIQ method with
three other estimation methods, Cufflinks, iReckon, and MISO, based on
their performances on six samples of the human HepG2 (liver hepatocellular
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Fig 9: MSIQ’s estimated isoform proportions and standard errors for gene THTPA
(6 isoforms) and gene PIGH (12 isoforms). The left plots give the estimated isoform
proportions by isoform. The intervals are the respective MSIQ estimator ± one standard
error: α̂MSIQ

j ± σ̂j . The right plots give the estimated isoform proportions by sample.
The numbers denote the isoform indices and the horizontal axis denotes whether the
corresponding sample is identified as being within the consistent group or not.

carcinoma) immortalized cell line (see Supplementary Table S3 for detailed
description).

Even though genome-wide isoform abundances are not available for these
HepG2 data, the NanoString counts are available for a small set of genes
(Steijger et al., 2013). These NanoString measurements include 140 probes
that correspond to 470 isoforms in 107 genes. We apply MSIQ, Cufflinks,
iReckon and MISO on the six HepG2 samples and use each method to
estimate isoform abundances for this set of genes. Cufflinks and iReckon
directly report the FPKM values of the relevant isoforms. MSIQ and MISO
estimate isoform proportions, and the FPKM values can be calculated ac-
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Fig 10: Correlation between NanoString counts and the estimated isoform expression. A:
For each NanoString probe, the corresponding isoform with the largest estimated FPKM
value is used to calculate the correlation. The standard error of the calculated correlation
coefficients is between 0.069 and 0.099. B: For each NanoString probe, the sum of all the
corresponding isoforms’ estimated FPKM values is used to calculate the correlation. The
standard error of the calculated correlation coefficients is between 0.065 and 0.085.

cordingly. For each sample, we calculate the Pearson correlation coefficient
between each method’s estimated isoform expression and the benchmark
NanoString counts. Since the NanoString probe counts do not have a one-
to-one correspondence with isoform expression, for each NanoString probe
we either use the isoform with the largest expression (Fig 10A) or add up the
expression of all the isoforms (Fig 10B). Overall, the estimated expression of
MSIQ has the highest correlation with the NanoString counts and achieves
the best consistency with this benchmark measurement, compared with
Cufflinks, iReckon and MISO. Please note that samples 5 and 6 are found
not belonging to the consistent group by MSIQ, and that is why MSIQ does
not have the highest correlations on them. This observation is coherent with
the definition of a consistent group by MSIQ. This result again suggests
that MSIQ leads to more accurate isoform quantification by incorporating
the information in multiple RNA-seq samples.

4. Discussion and conclusion. In this paper, we propose a new method,
MSIQ, to more accurately estimate isoform expression levels associated with
biological conditions of interest using multiple RNA-seq data sets. Accurate
isoform quantification from RNA-seq data has long been a challenge because
the existence of multiple isoforms makes it impossible to uniquely assign
many reads and determine the reads’ isoform origins. MSIQ tackles this
challenge by utilizing data from multiple RNA-seq samples derived from
the same biological condition; we reason that aggregating more information
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can improve accuracy in isoform abundance estimation. Unlike previous
work that treats all the samples equally, MSIQ identifies a consistent group
of samples that are most representative of the biological condition and
estimates isoform proportions of the consistent group.

Applications of MSIQ to both simulated and real data demonstrate that
MSIQ yields more accurate isoform quantification than direct averaging or
pooling methods given the existence of poor quality or mislabeled samples.
These results suggest MSIQ’s potential as a powerful and robust tran-
scriptomic tool for isoform expression quantification. MSIQ’s estimation
results provide robust and accurate transcriptome profiles, which can be used
to construct co-expression networks, investigate cell-type-specific isoform
expression, and identify differentially expressed transcripts between two
biological conditions. The MSIQ method also provides standard error esti-
mates to measure the variability of isoform abundance within the consistent
group. This information can be especially useful when users need to compare
multiple tissue or cell types. We estimate the standard errors using the
posterior samples of isoform proportions, and we note that our method
can be extended to directly model the variability parameters at the cost of
increased complexity in the model and computations. In addition to isoform
abundance estimation, MSIQ can also be applied to evaluate the quality of
multiple RNA-seq samples of the same tissue or cell type. This application
can help researchers evaluate the reproducibility of RNA-seq samples and
determine which samples to include in downstream analyses.

An important step in our MSIQ method is the identification of the consis-
tent group, which depends on posterior draws of the hidden state variables.
We currently use a Beta-Bernoulli model to describe the probability of each
sample belonging to the consistent group. However, it is possible to improve
the model once gold standard data (i.e., qPCR) for the biological condition
of interest become available (Adamski et al., 2014; Li and Dewey, 2011).
We can extend our MSIQ model to account for the heterogeneous quality of
multiple RNA-seq samples based on the similarity of the isoform abundance
estimates between each sample and the gold standard. Such quality assess-
ment can be integrated with the inter-sample similarity to better identify
the consistent group. As a result, the samples that have higher agreement
with gold standards and high similarity with each other will be more likely
to be considered a part of the consistent group. This procedure is supposed
to identify more reliable samples and can potentially increase the re-use
of public RNA-seq data as it will provide an interpretable measure of the
quality of multiple RNA-seq data sets. We would also like to point out that
biological knowledge can be incorporated into MSIQ modeling to further
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improve isoform abundance estimation. For example, mRNA fragments are,
in fact, not uniformly distributed within the isoforms (Zhang et al., 2014),
and a high correlation was observed between read coverage and genome GC
content (Li et al., 2011). Our proposed hierarchical model can be considered
an umbrella framework that can be easily extended to incorporate more
detailed modeling procedures as long as these procedures use likelihoods to
describe read generating processes. Such extension might help MSIQ achieve
better performance on complex genes.

Another interesting extension of our MSIQ method is to model single-cell
RNA-seq (scRNA-seq) data, which contain information on the technical and
biological noise of isoform abundance at the single-cell level (Wu et al., 2014;
Macaulay and Voet, 2014). scRNA-seq data are needed for the analysis of (1)
subpopulations of cells from a larger heterogeneous population and (2) rare
cell types, for which sufficient material cannot be obtained for conventional
RNA-seq experiments (Mortazavi et al., 2008). Given scRNA-seq data on
multiple cells from the same population, MSIQ can be iteratively utilized to
evaluate the transcriptional heterogeneity and detect subpopulations (i.e.,
consistent groups) in the set of samples. Meanwhile, MSIQ can also reveal
the principal isoform expression pattern in a given cell population. An alter-
native approach is to allow for multiple consistent groups as subpopulations
of single cells in the modeling.

The RNA-seq data sets used in the paper are all publicly available. Their
accession numbers are provided in the supplementary information. The MSIQ
method is implemented in the R package MSIQ, which is freely available at
https://github.com/Vivianstats/MSIQ.
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APPENDIX A: FIGURE APPENDIX
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J. Harrow, P. Bertone, R. Consortium, et al. (2013). Assessment of transcript
reconstruction methods for rna-seq. Nature methods 10 (12), 1177–1184.

Trapnell, C., L. Pachter, and S. L. Salzberg (2009). Tophat: discovering splice junctions
with rna-seq. Bioinformatics 25 (9), 1105–1111.

Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. Van Baren, S. L.
Salzberg, B. J. Wold, and L. Pachter (2010). Transcript assembly and quantification
by rna-seq reveals unannotated transcripts and isoform switching during cell differen-
tiation. Nature biotechnology 28 (5), 511–515.

Wang, Z., M. Gerstein, and M. Snyder (2009). Rna-seq: a revolutionary tool for
transcriptomics. Nature Reviews Genetics 10 (1), 57–63.

Wu, A. R., N. F. Neff, T. Kalisky, P. Dalerba, B. Treutlein, M. E. Rothenberg, F. M.
Mburu, G. L. Mantalas, S. Sim, M. F. Clarke, et al. (2014). Quantitative assessment
of single-cell rna-sequencing methods. Nature methods 11 (1), 41–46.

Ye, Y. and J. J. Li (2016). Nmfp: a non-negative matrix factorization based preselection
method to increase accuracy of identifying mrna isoforms from rna-seq data. BMC
Genomics 17 (1), 127.

Zhang, J., C.-C. J. Kuo, and L. Chen (2014). Wemiq: an accurate and robust isoform
quantification method for rna-seq data. Bioinformatics, btu757.



Supplementary Information
MSIQ: Joint Modeling of Multiple RNA-seq Samples for

Accurate Isoform Quantification

Wei Vivian Li, Anqi Zhao, Shihua Zhang, Jingyi Jessica Li

Approaches for RNA-seq data summary

In this study, our raw data are RNA-seq reads mapped to the reference genome, represented by
genomic positions covered by each read. That is, if a read has a total length 2c (the left and right
end each have length c), it is represented by a set of genomic positions {y1, . . . , y2c}. However,
efficient data summary is needed to preserve most relevant information for isoform quantification
while controlling the computational complexity at manageable level (Rossell et al., 2014). To our
knowledge, there are three existing approaches designed for data summary:

• Approach 1 (Zhang et al., 2014): represent the read by (y1, y2c)
′;

• Approach 2 (Li et al., 2011): represent the read by (y1, yc, yc+1, y2c)
′;

• Approach 3 (Rossell et al., 2014): represent the read by s1 and s2, the indices of the exons
that completely or partially overlap with each end of the read:

s1 = {i : Gi ∩ {y1, . . . , yc} 6= ∅, i = 1, . . . , N} ,
s2 = {i : Gi ∩ {yc+1, . . . , y2c} 6= ∅, i = 1, . . . , N} ,

where Gi denotes the set of genomic positions in exon i .

We compare these three approaches on the hypothetical gene in Fig 2 and summarize their
results in Table S1. It is obvious that Approach 1 loses more information than Approach 2. In this
specific case, Approach 3 gives clearer indication of the possible isoform origins of the three
reads, because it captures the mapping information inside the left and right ends, which are
missed by Approaches 1 and 2. However, Approach 3 removes the actual genomic positions
of reads, which are necessary for estimating the fragment length corresponding to each paired-
end read. Recognizing the comparative advantages of Approaches 2 and 3, we use a combination
of Approaches 2 and 3 as our data summary method.

1
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Sensitivity analysis of the MSIQ model

When calculating the MSIQ estimator in Section 3, we set the hyper-parameters in equation 2.2
as a = 7, b = 2. In the Bayesian framework, these two parameters will influence the probability of
assigning an RNA-seq sample to the consistent group or not. In order to illustrate that MSIQ is
robust to these parameters, we present a sensitivity analysis here.

In the sensitivity analysis, we randomly select 500 genes out of the 3421 D.melanogaster (fly)
genes used in Section 3.1 and carry out simulation based on these fly genes. For each gene, we
consider 5 scenarios and independently simulate 10 RNA-seq samples each with 500 paired-end
reads by following the procedure described in Section 3.1. We estimate the isoforms proportions
of these genes based on different values of a and b, and then compare the REE rates in different
settings. In the calculation, we either fix a = 7 and vary b between {2, 3, 4, 5, 6}, or fix b = 2 and
vary a between {4, 5, 6, 7, 8, 9, 10}. Meanwhile, the fragment length is set as 150 bp and the read
length is set as 50 bp. As shown in Fig S3, the REE rates in all five scenarios are largely invariant
when parameters a and b take different values. This result justifies the robustness of MSIQ to the
prior parameters.

Proof of Lemma 2.1

We introduce some results on the convergence of the Gibbs sampler to assist the proof of Lemma
2.1 in Section 2.6. Please see Roberts and Smith (1994) for the proof of these results.

Theorem S1. Suppose (X(0),X(1), . . . ,X(t), . . . ),X(t) ∈ O ⊆ Rn be a Markov chain with transi-
tion kernel K w.r.t a σ-finite measure ν, and π is an invariant distribution of this Markov chain. If
the transition kernel K is π-irreducible and aperiodic, then for all x ∈ Q = {x ∈ O : π(x) > 0}, as
t→∞,

(i) |K(t)(x, ·)− π| → 0, where K(t)(x, ·) is the density of x(t) given X(0) = x;

(ii) for real-valued, π-integrable function f ,

1

t

t∑

i=1

f
(
x(i)
)
→
∫

O
f(x)π(x)dν(x) a.s..

Lemma S1. If ν is discrete, then K is well-defined and π-irreducibility of K is a sufficient condition
for the results of Theorem S1.

Lemma S2. If ν is n-dimentional Lebesgue measure, and π is lower semicontinuous at 0, then K
is well-defined.

With the results introduced above, we can prove Lemma 2.1.

2
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Proof. For simplicity, let X = (E,Z, γ)′, a vector of n = D +
∑D

d=1 nd + 1 dimensions, where
E = (E1, . . . , ED)

′ and Z = (Z
(1)
1 , . . . , Z

(1)
n1 , . . . , Z

(D)
1 , . . . , Z

(D)
nD )′. We denote the joint density of

X as π(x|R,λ, a, b). In MSIQ, the transition kernel of the Markov chain is formed by the Gibbs
sampler:

K(x(t),x(t+1)) =
n∏

l=1

π
(
x
(t+1)
l |{x(t)j }j>l, {x

(t+1)
k }k<l

)
.

We know that π(x|R,λ, a, b) is discrete with respect to (w.r.t.) Xi (i = 1, 2, . . . , n − 1) and is
continuous w.r.t. Xn. According to Lemmas S1 and S2 (Roberts and Smith, 1994), K(x(t),x(t+1))

is a well-defined kernel and π is an invariant distribution of the Markov chain applied by K. We
also know from equation (2.3) and (2.5) that the conditional probabilities of Xd = Ed (d = 1, . . . , D)

or Xn = γ on everything else are always positive. For each XD+i+
∑d−1

k=1 nk
= Z

(d)
i , if we define its

conditional distribution (2.4) on the domain {j : q(d)ij 6= 0}, its conditional probability is also always
positive. The positive properties of these conditional distributions naturally lead to the positivity of
the transition kernel K(x(t),x(t+1)), and thus the π-irreducibility of K.

Now since K(x(t),x(t+1)) is π-irreducible, by Theorem S1 in Roberts and Smith (1994) for all
x ∈ Q = {x : π(x|R,λ, a, b) > 0}, K(t)(x, ·) converges to π(x):

|K(t)(x, ·)− π(x|R,λ, a, b)| → 0 as t→∞,

whereK(t)(x, ·) is the density of x(t) givenX(0) = x. Therefore, θ̂MSIQ
d converges to E(Ed|R,λ, a, b):

lim
T→∞

θ̂MSIQ
d = lim

T→∞
1

T

T∑

t=1

E
(t)
d = E(Ed|R,λ, a, b).

Now we can prove the convergece of α̂MSIQ. From model (2.2) it is easy to see that

α|Z,E,R, λ, a, b ∼ Dirichlet(λ′1, . . . , λ
′
J),

where λ′j = λj +
∑D

d=1

(
Ed
∑nd

i=1 I
(d)
i,j

)
. Thus the conditional posterior mean of αj :

E(αj |Z,E,R, λ, a, b) = E(αj |X,R, λ, a, b)

=
λj +

∑D
d=1

(
Ed
∑nd

i=1 I
(d)
i,j

)

∑J
j=1 λj +

∑D
d=1Ednd

, gj(X).

Then the isoform proportion α(t)
j defined in equation (2.6) can be written as: α(t)

j = gj(X
(t)). As a

result,

lim
T→∞

α̂MSIQ
j = lim

T→∞
1

T

T∑

t=1

α
(t)
j = Eπ[gj(X)] = E(αj |R, λ, a, b),
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and limT→∞ α̂MSIQ = E(α|R, λ, a, b).

Supplementary figures and tables

full-length mRNA  

RNA fragmentation 

 cDNA reverse transcription 

sequence adaptors ligation 

PCR amplification 

fragment size selection 

single-end sequencing paired-end sequencing 

single-end RNA-seq reads paired-end RNA-seq reads 

and/or

Figure S1: Workflow of an RNA-seq experiment. The first step is to break full-length mRNA transcripts into short
fragments, because the current state-of-the-art sequencing machines have various length limits on their input nucleotide
sequences. To stabilize the resulting short single-stranded RNA fragments, they are reversely transcribed into double-
stranded complementary DNAs (cDNAs). Then adapters are added to both ends to ease the later sequencing step.
Since some cDNA fragments are rare and might not be captured in sequencing, the polymerase chain reaction (PCR)
technique is used to amplify the copies of each cDNA fragment to achieve stronger sequencing signals. After this
amplification step, a fragment size selection step via gel electrophoresis is used to filter out cDNA fragments that are
too short or too long to be accurately sequenced, and only the fragments with lengths in a reasonable range (typically
400 ± 20 base pairs (bp) in Illumina sequencing (Illunima, Inc., 2011)) will be kept for the later sequencing. Finally,
in the sequencing step, short sequences, starting from the ligated adapters and extending into the actual fragment
sequences, will be captured by the sequencing machine from the two ends of double-stranded cDNA fragments.
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Figure S2: Relationship of isoform numbers and exon numbers in fly and human genes. A: log2(isoform numbers)
versus exon numbers in 3,421 fly genes, whose exon numbers range from 3 to 98. B: log2(isoform numbers) versus
exon numbers in 15,268 human genes that have at least two annotated isoforms. The exon numbers in human genes
range from 2 to 380.

Table S1: Comparison of the three RNA-seq data summary approaches. Examples of three summarized reads and
their encoded isoform origin information are listed (see also Fig 2).

Read Approach 1 Approach 2 Approach 3
data origin data origin data origin

1 (231,559) 1,2 (231,280,510,559) 1,2 {1}{4} 1,2
2 (100,578) 1,2 (100,199,460,578) 2 {1}{3,4} 2
3 (50,537) 1,2 (50,149,370,537) 1,2 {1}{2,3,4} 2
...

...
...

...
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Figure S3: REE rates of MSIQ on 500 fly genes in scenario 1-5. The first five boxplots correspondes to the case when
b = 2 and a varies between {4, 5, 6, 7, 8, 9, 10}; the last five boxplots corresponds to the case when a = 7 and b varies
between {2, 3, 4, 5, 6}.
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Table S2: Description of the RNA-seq data sets used in Section 3.2.

replicate ID cell/tissue data type read length GEO accession number
1 hESC real data 76×2 GSM758566
2 hESC real data 35×2 & 36×2 GSM517435
3 hESC real data 35×2 & 36×2 GSM517435
4 hESC real data 76×2 GSM958733
5 hESC real data 101×2 GSM958743
6 hESC real data 101×2 GSM1153528
7 Brain real data 50×2 GSE19166
8 Brain real data 50×2 GSE19166
9 Brain real data 50×2 GSE19166

10-14 / simulated data 36×2 /
15-19 / simulated data 76×2 /
20-24 / simulated data 101×2 /

Table S3: Description of the RNA-seq data sets used in Section 3.2.2.

replicate ID cell type data type read length ENCODE accession number
1 HepG2 real data 50×2 ENCFF084JYA
2 HepG2 real data 50×2 ENCFF790CFB
3 HepG2 real data 38×2 ENCFF916YZY, ENCFF800YJR
4 HepG2 real data 38×2 ENCFF179TFY, ENCFF782TAX
5 HepG2 real data 50×2 ENCFF168NGI
6 HepG2 real data 50×2 ENCFF711DJN

7
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