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Abstract

Bayesian Methods for Mortality Estimation

by

Monica Alexander

Doctor of Philosophy in Demography

University of California, Berkeley

Professor Joshua R. Goldstein, Chair

The development of mortality models is important in order to reconstruct histor-
ical processes, understand current patterns and predict future trends. Mortality
models are particularly useful when the available data are sparse, unreliable or in-
complete. Traditionally, mortality patterns in data-rich populations were used to ob-
serve mathematical or empirical regularities, which could be applied to data-sparse
populations. However, as a wider variety of data have become available, the focus
of model building has shifted to developing flexible models that perform well in a
variety of contexts.

This dissertation introduces Bayesian methods of mortality estimation in three con-
texts where the available data are imperfect. The first paper develops a method
to estimate subnational mortality in situations with small populations and highly-
variable data. The second paper develops a unified modeling framework to estimate
and project neonatal mortality in all countries worldwide, including those with lim-
ited and poor-quality data. The third paper introduces a new dataset to study
mortality inequalities in the United States, and develops methods to deal with the
truncated and censored mortality information that is available. In all three contexts,
the modeling approaches combine strengths from traditional demographic models,
which capture mortality regularities across age, with the flexibility of Bayesian frame-
works, which allow for multiple data sources to be incorporated, information to be
shared across time and space, and uncertainty to be assessed.
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Chapter 1

Introduction

A core focus of demography as a discipline is building models to describe aggregate
population processes using a reduced set of parameters. Models can be used to
describe historical processes, decompose current patterns, and to forecast. Mortality
research is particularly suited to the development of models to explain underlying
processes, as mortality patterns tend to exhibit relatively regular shapes across age
and change gradually over time.

Mortality models are particularly useful when the available data are sparse, unreli-
able or incomplete. Traditionally, mortality patterns in data-rich populations were
used to observe mathematical or empirical regularities, which could be applied to
data-sparse populations. However, as a wider variety of data have become available,
the focus of model building has shifted to developing flexible models that perform
well in a variety of contexts. As the demand for accurate and timely estimates
increases, there is a need to develop models which incorporate both traditional de-
mographic methods and more flexible statistical frameworks, to overcome known
data issues.

The papers in this dissertation introduce methods of mortality estimation in three
contexts where the available data are imperfect. The first paper develops a method to
estimate subnational mortality in situations with small populations and highly vari-
able data. The second paper develops a unified modeling framework to estimate and
project neonatal mortality in all countries worldwide, including those with limited
and poor-quality data. The third paper introduces a new dataset to study mortality
inequalities in the United States, and develops methods to deal with the truncated
and censored mortality information that is available. In all three contexts, the mod-
eling approaches combine strengths from traditional demographic models, which
capture mortality regularities across age, with the flexibility of Bayesian frameworks
that allow for multiple data sources to be incorporated, information to be shared
across time and space, and uncertainty to be assessed.

The following sections motivate the development of new methods of mortality es-
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Figure 1.1: Log mortality rates, United States 1975. Data are from the Human
Mortality Database.

timation. Traditional approaches to mortality estimation using both mathematical
and empirical models are briefly discussed. The need for incorporating uncertainty in
mortality estimation, and the increased use of Bayesian methods, is then highlighted.
Finally, the three areas of research included in this dissertation are summarized.

1.1 Estimating the mortality curve

Mortality data are usually available in the form of the number of deaths in a par-
ticular age group and the corresponding population at risk (usually approximated
by the mid-year population). As such, the focus of estimation is often the mortality
rate (i.e. deaths per population at risk per time). In human populations, mortality
rate curves by age have a characteristic ‘J’ shape when plotted on the log scale: rela-
tively high in the first year of life, decreasing, then increasing across age from about
age 10. At the oldest ages, there is often an observed deceleration of mortality. For
example, Fig. 1.1 shows the mortality rates by age and sex for the United States in
1975.

Some important goals of mortality modeling include describing the shape of these
mortality curves, estimating and projecting mortality patterns over time, and in-
vestigating differences in mortality patterns across different populations. Often we
are interested in estimating mortality patterns in all three of these dimensions: age,
time and space. As shown in Fig. 1.1, the shape of the mortality curve by age is
inherently non-linear and so not necessarily straightforward to fit with a reduced set
of parameters. Models to estimate mortality can broadly be categorized as either

2
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Figure 1.2: Gompertz parameters for Sweden, 1750-1950 cohorts. Data are from the
Human Mortality Database. The model is fit to mortality above age 30.

mathematical or empirical.

1.1.1 Mathematical models

One approach is to estimate mortality curves based on a functional or mathematical
model that is governed by a set of parameters. It is generally the case that each
parameter has a demographic interpretation and so looking at differences in these
parameters across time, space or subpopulations gives a summary measure of mor-
tality differences. The most well-known and simplest of all mathematical models
is the Gompertz model (Gompertz (1825)). Gompertz observed that the pattern of
mortality by age, x, follows a near geometric series, and as such age-specific mortality
rates m(x) can be neatly approximated by two parameters

m(x) = αeβx

where α represents a baseline mortality level and β represents the rate of mortality
increase over age. Trends in estimates of α and β can be explored and projected to
infer future mortality levels. For example, Fig. 1.2 shows estimated Gompertz pa-
rameters α and β over cohorts for 1750-1950 in Sweden. There is a clear relationship
between the parameter estimates through time, with a decrease in α and increase in
β over cohorts, up until around 1900. Since then, α has increased slightly but β has
started to decrease. These trends are consistent with a decrease and compression in
mortality over time, followed by a slow down of compression in more recent cohorts.
Given the regularity in trends over time, these parameters could easily be projected
to infer future trends.

3



CHAPTER 1. INTRODUCTION

On the log scale, the Gompertz model corresponds to linearly increasing mortality
over age. Referring to Fig. 1.1, this assumption is reasonable for adult ages (say
from around age 30 to 95). However, the fit is poor at relatively young and old
ages. There are many other mathematical models that are more complex than the
Gompertz model and aim to better capture mortality trends at younger and older
ages. For example, the Gompertz-Makeham model includes an additional parameter
that is age-independent and aims to capture background/extrinsic mortality (Make-
ham (1860)). The Siler model (Siler (1983)) is a five parameter model that includes
components for infant, adult and senescent mortality. The Heligman-Pollard model
(Heligman and Pollard (1980)) includes eight parameters, which includes additional
flexibility to account for the younger-adult accidental mortality hump.

There are many other models along these lines (see Preston et al. (2000); Wachter
(2014); Feehan (2017) for reviews). While mathematical models of mortality are
useful in summarizing and comparing broad mortality trends across populations
and time periods, it is generally difficult to capture all the variation in the highly
non-linear mortality curve with a tractable functional form. While the flexibility
of fit increases as more parameters are included, this also makes estimation more
difficult, and parameter estimates can be unstable due to high correlation between
parameters (Missov et al. (2015)).

1.1.2 Empirical models

Another approach to estimating mortality is to model age patterns based on empiri-
cal regularities in observed data, rather than a theoretical functional form. The idea
behind these sorts of approaches is that age patterns in mortality, while inherently
non-linear, exhibit strong similarities across different populations.

The most common empirical method of mortality estimation is using model lifeta-
bles. For this approach, patterns observed in high-quality data are used as a basis
for producing estimates of mortality in populations where data are sparse or poor
quality. Model lifetables are produced as a standard mortality table by age which
can then be applied to other populations based on partial mortality patterns that
are observed.

Ansley Coale and Paul Demeny published a set of model life tables in 1966 (Coale
et al. (1966)). They identified different patterns of mortality based on four distinct
regions: North, South, East, and West. Each had a characteristic pattern of child
mortality and a different relationship between child mortality and adult mortality.

The original Coale-Demeny lifetables were based almost exclusively on European
data. They were derived from a set of 192 life tables, including several time periods
(39 from before 1900 and 69 from after the Second World War) and mostly from
Western countries. Europe, North America, Australia and New Zealand contributed

4



1.1. ESTIMATING THE MORTALITY CURVE

a total of 176 tables. The United Nations (United Nations (1982)) published a model
lifetable system using data across a broader range of countries, including developing
countries. More recently, authors such as Wilmoth et al. (2012) and Clark (2016)
have used data available through the Human Mortality Database (HMD (2018)) to
build more flexible systems of life tables.

Another empirical approach to mortality estimation is relational models. In partic-
ular, Brass (1971) introduces a relational logit model whereby survivorship by age
lx is modeled as a function of a mortality standard, Yx, and two parameters, α and
β:

logit lx = α + βYx.

Brass proposed a standard, Yx, however in practice any standard can be used. The
parameters α and β have demographic interpretations, affecting the overall level of
survival and the relative importance of infant and old-age mortality, respectively. In
a similar way to the Gompertz model, Brass parameters can be estimated over time,
used to summarize differences across populations and potentially forecast mortality
trends. The idea of relational mortality models has been extended in ways such as
including four parameters (Ewbank et al. (1983)) and modeling old-age mortality
(Himes et al. (1994)).

In general, empirical mortality models are useful because they allow non-linear trends
across age to be expressed with relatively few parameters. The empirical approach
exploits the fact that age patterns of mortality exhibit characteristic shapes across
different subpopulations and these shapes can be applied to situations where only
limited data are available. However, empirical models are relatively rigid in terms
of being able to follow the data that do exist for hard-to-measure populations. The
classical model lifetable set-up does not allow for ‘new’ patterns of mortality by age,
and assumes countries with poor-quality data follow the experience of countries that
have good data. Estimates are highly sensitive to the choice of standard, and recent
mortality trends (such as the HIV/AIDS epidemic) cannot be taken into account
unless that information is contained in the standard.

There are other methods of mortality estimation which provide more flexibility in
fit. In particular, there has been an increased use of penalized splines, or P-splines
models to fit mortality across age, time and space (Currie et al. (2004)). P-splines
regression methods produce non-linear smooth fits in mortality patterns using basis-
splines as covariates in a regression, with the smoothness of the resulting fit penalized
(Eilers and Marx (1996); Currie and Durban (2002)). Recent research utilizes the
flexibility of P-splines to fit and smooth mortality patterns in a wide range of contexts
(Eilers et al. (2008); Ugarte et al. (2010); Ouellette and Bourbeau (2011); Camarda
(2012)). The main drawback of using splines models is that there is no restriction
on the age pattern of mortality, and so there is the potential for demographically
implausible age schedules, especially in contexts where death is a rare outcome, the
populations are small or the available data are sparse.

5



CHAPTER 1. INTRODUCTION

1.2 Incorporating uncertainty

An important consideration that is largely omitted from traditional methods of mor-
tality estimation is the level of uncertainty, or error, around the estimates and pro-
jections produced.

There are different types of uncertainty that need to be taken into account. Firstly,
there is the potential for error in the observed data. For survey data, observations
may have both sampling error, based on the smaller sample size compared to the
population, and non-sampling error, if the survey is not representative. For deaths
that are recorded in vital registration systems, even if there is complete registration
of deaths, there is still stochastic error, i.e. the observed number of deaths may
be higher or lower than expected, purely by chance. This is particularly the case
when deaths are a rare outcome or populations are small. There is also model-
based uncertainty, that is, uncertainty in the model parameters fit to the data.
For example, in Fig. 1.2, if the Gompertz model was a better fit for some cohorts
than others, the standard errors around the α and β estimates would be lower. In
addition, projecting mortality trends into the future, methods should allow for a
certain degree of uncertainty to be propagated through time.

In general, traditional methods of mortality estimation do not lend themselves partic-
ularly well to account for different types of uncertainty. Often demographic modeling
is performed in a purely deterministic sense, with no incorporation or allowance for
any uncertainty. In addition, if the available data are of poor quality and errors are
high, such as the case in many developing countries, observations are often dismissed
and estimates from model lifetables are believed instead. However, producing and
reporting estimates of uncertainty is important in demographic research because it
communicates a measure of the level of confidence we have about trends in the past
and what may happen in the future.

There has been an increasing move towards including stochastic methods to fully
capture uncertainty in estimates and projections. In terms of modeling mortality,
many estimation methods are now performed in a Poisson framework to account
for the stochasticity in deaths (e.g. Congdon et al. (1997); Foreman et al. (2012);
Camarda (2012)). The work of Lee and Carter (1992) in forecasting US mortality
rates using time series methods provided a new standard in stochastic demographic
forecasting, with many authors extending this method in more recent work (see for
example Booth et al. (2006); Girosi and King (2007); Delwarde et al. (2007); Lee
(2015); Wísniowski et al. (2015)).

1.2.1 Bayesian modeling

The increase in probabilistic modeling in mortality and demographic estimation has
been coupled with an increase in the use of Bayesian methods. In classical frequentist

6



1.2. INCORPORATING UNCERTAINTY

methods, the focus is on the likelihood function of data y given parameters θ: the goal
of estimation is then to estimate the parameters θ which best explain the observed
data y. These parameters are treated as fixed, but unknown. In contrast, Bayesian
approaches allow the underlying parameters of interest θ to be expressed as random
variables. This means that we can have prior belief about the probability distribution
of the possible values of θ.

In Bayesian statistics, we still observe data y and want to estimate parameters θ that
best explain the observed data, i.e. θ|y. Bayes rule states the posterior distribution
of the parameters, P (θ|y) is

P (θ|y) =
P (y|θ) · P (θ)

P (y)

where P (y|θ) is the likelihood function, P (θ) is the prior distribution on the param-
eters of interest and P (y) is the marginal probability of the data.

Although Bayesian probability is more than 250 years old, the use of Bayesian meth-
ods for estimation did not increase rapidly until the 1990s, largely as a consequence
of increased computing power. In the context of demographic estimation, Bayesian
methods were first used as a method for producing population projections with un-
certainty (Daponte et al. (1997); Alho and Spencer (2006)). More recently, there
has been a rapid increase in Bayesian demography, due in part to this method be-
ing used to produce probabilistic projections of populations for countries worldwide
by the United Nations Population Division. This method of population projec-
tion, developed by Adrian Raftery and colleagues (Alkema et al. (2011); Raftery
et al. (2012); Raftery et al. (2013); Azose et al. (2016)) models fertility rates, life
expectancy and migration in one probabilistic framework. Other researchers have
increasingly used Bayesian techniques for the estimation and projection of all demo-
graphic components, including mortality (Girosi and King (2008); Alkema and New
(2014); Wísniowski et al. (2015)), fertility (Schmertmann et al. (2013); Schmertmann
et al. (2014)) and migration (Bijak (2010)). See Bijak and Bryant (2016) for a good
review.

There are several advantages of using Bayesian methods for demographic modeling.
Firstly, many different sources of uncertainty can be incorporated into the modeling
framework and projected through time. Parameter uncertainty is reflected through
prior distributions. The stochasticity of the process, as well as additional sampling
and non-sampling errors can be captured as part of the likelihood function (or ‘data
model’). In this way, data from multiple sources can be incorporated into one frame-
work, and the different quality of each source can be taken into account.

Another important aspect of the Bayesian approach is that it allows prior informa-
tion to be incorporated into the model. The central idea of Bayesian analysis is that
the resulting posterior estimates of the parameters θ are some combination of the
information in the prior and what is observed in the data. The more data avail-
able, the more parameter estimates will be influenced by the observed patterns. In
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CHAPTER 1. INTRODUCTION

situations where there are limited data available, the estimates are more influenced
by prior specifications. Thus, the Bayesian approach is particularly useful in sparse
data situations, providing a robust way of combining the little information that is
available with plausible outcomes based on prior specifications. This is useful for
‘pooling’ information across different dimensions: age, space and time. For example,
countries or areas with fairly limited data available can be partially informed by
trends in similar countries or areas. In practice, priors are usually specified in a
hierarchical way; that is, the parameters governing the priors are themselves given
hyper-priors governed by hyper-parameters. This hierarchical structure is useful in
capturing regularities across age, space and time. For example, if mortality was be-
ing estimated using a Gompertz model within a Bayesian set-up, the autocorrelation
of mortality trends through time could be captured by placing a time series model
on the Gompertz parameters α and β.

More broadly, Bayesian analysis in demographic estimation provides a useful frame-
work to extend traditional mortality estimation methods in a more flexible way,
combining different sources of information and incorporating different sorts of un-
certainty into the one modeling framework. In this way, the strengths of traditional
mortality estimation in capturing regularities in mortality are retained, while esti-
mates are better informed by data that are available, while taking uncertainty into
account.

1.3 Bayesian methods for mortality estimation

In this dissertation, methods of mortality estimation are developed that utilize a
combination of traditional demographic approaches and Bayesian methods in order
to produce robust estimates and levels of uncertainty in key indicators over time.
The three papers focus on estimation methods for situations where the data available
are limited or poor quality for different reasons: small populations; sparse data
availability in developing countries; and a large but censored dataset. Each of these
three issues is becoming increasingly important in the goal of producing timely and
accurate mortality estimates in many contexts.

The first paper develops a model for subnational mortality estimation. National-
level mortality indicators often mask the variation in outcomes that can exist within
a country. As such, there has been an increasing focus on understanding spatial
disparities in mortality outcomes and how these vary across time. Reliable estimates
of mortality indicators at the subnational level are essential for monitoring these
trends and inequalities. However, one of the difficulties in producing such estimates
is the presence of small populations, particularly when death rates are relatively
low. In these contexts, the stochastic variation in death counts is relatively high,
and thus the underlying mortality levels are unclear. By just considering raw death
rates, areas with smaller populations are more likely to look higher or lower than
average, purely by chance.
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In the first paper, a flexible modeling framework to estimate subnational age-specific
mortality rates is presented. The model builds on demographic information about
characteristic age patterns in mortality curves, which are constructed using principal
components from a set of reference mortality curves. Information on mortality rates
are pooled across geographic space and are smoothed over time.

The second paper develops a model for estimating neonatal mortality rates in all
countries. With the emergence of the Millennium Development Goals (MDGs) and,
more recently, the Sustainable Development Goals (SDGs), there has been increased
need for timely estimates and projections of key demographic and health indicators
in countries worldwide. However, in practice it is often the countries with the poorest
countries that have the least data available on key indicators, and the data that are
available are often of poor quality. Traditional demographic approaches, for example
using model lifetables to produce a single estimate of mortality outcomes, are not
sufficient in tracking progress towards achieving global health goals.

A particularly important set of development goal indicators are related to child
mortality. The MDG 4 called for a two-thirds reduction in under-five mortality
(U5MR) between 1990 and 2015. As the U5MR decreases, the share of neonatal
deaths, i.e. deaths occurring in the first month, tend to increase. As such Goal 3 of
the SDGs explicitly includes a neonatal target, with the aim to reduce the neonatal
mortality rate to at least as low as 12 deaths per 1000 live births in all countries by
2030.

The second paper presents a Bayesian splines regression model for estimating neona-
tal mortality rates (NMR) for all countries. In the model, the relationship between
NMR and U5MR is assessed and used to inform estimates, and spline regression
models are used to capture country-specific trends. As such, the resulting NMR es-
timates incorporate trends in overall child mortality while also capturing data-driven
trends.

The final paper introduces new data and methods in order to study mortality inequal-
ities in the United States. It is important to study differences in mortality outcomes
by demographic and socioeconomic characteristics in order to fully understand na-
tional trends in mortality over time. An issue with studying mortality inequalities,
particularly by socioeconomic status (SES), is that there are few micro-level data
sources available that link an individual’s SES with their eventual date of death.
There has been an increasing amount of mortality inequality research that makes
use of large-scale administrative datasets, or linking multiple individual datasets to
match SES with mortality. The final chapter introduces a new matched dataset,
‘CenSoc’, which uses the full-count 1940 Census to obtain demographic, socioeco-
nomic and geographic information, linked to the Social Security Deaths Masterfile,
to obtain mortality information.

While large in size, and rich in socioeconomic information, observations of deaths in
CenSoc are truncated and censored, and so mortality estimation is not necessarily
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straightforward. As such, the final paper also develops mortality estimation methods
to better use the ‘deaths without denominators’ information contained in CenSoc.
Bayesian hierarchical methods are presented to estimate truncated death distribu-
tions over age and cohort. The model frameworks are based on traditional mortality
models, such as the Gompertz model and a principal components relational model.
The Bayesian set-up allows for additional prior information in mortality trends to
be incorporated and estimates of life expectancy and associated uncertainty to be
produced.

In summary, this dissertation presents three Bayesian methods of mortality estima-
tion to overcome issues of high stochastic variability, sparse data, and truncated
observations. While the methods presented solve estimation issues in specific con-
texts, the overarching theme is using modeling approaches that utilize the strength
of demographic methods in combination with the flexibility of Bayesian methods.
Incorporating demographic knowledge into modeling frameworks ensures estimates
and projections have plausible patterns across time and particularly across age. The
use of Bayesian frameworks allows different sources of information to be combined,
data of varying quality to be weighted accordingly, and uncertainty to be better
accounted for and propagated through time. The philosophy of integrating demo-
graphic and Bayesian modeling approaches, and thinking about how to balance
model-driven versus data-driven results, is useful in developing model frameworks in
a wide range of contexts.
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Chapter 2

A flexible Bayesian model for
estimating subnational mortality

2.1 Introduction1

In order to effectively study health disparities within a country, it is important to
obtain reliable subnational mortality estimates to quantify geographic differences
accurately. There is a large demand for estimates of small-area mortality as indica-
tors of overall health and well-being, as well as for natural experiments that exploit
policy changes at local levels. Reliable mortality estimates for regional populations
could help to better understand how place-of-residence and communities can affect
health status, through both compositional and contextual mechanisms (Macintyre
et al. (2002)).

One of the difficulties in producing mortality estimates for subnational areas is the
presence of small populations where the stochastic variation in death counts is rel-
atively high. For example, 10%, or around 300, of US counties have populations of
less than 5,000, and 1% of counties have less than 1,000 people (US Census Bureau
(2014)). The resulting mortality rates in small areas are often highly erratic and
may have zero death counts, meaning the underlying true mortality schedules are
unclear.

The aim of this paper is to formulate a model for estimating mortality rates at the
subnational level, across geographic areas with a wide variety of population sizes
and death counts. Resulting estimates would be useful for guiding future policy
efforts to improve the health of populations and to investigate the historical impact
of public health interventions and changes in the structure of local health programs.
In this article, we focus on developing the methodology to produce age- and sex-
specific mortality rates and the approach is tested on simulated data that mimic US

1This chapter has been previously published as Alexander et al. (2017).
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counties, and on real data for French départements. However, the model is flexible
enough to be used in a wide range of situations.

There has been a growing literature in the field of small-area mortality estimation.
However, the demand for accurate, reliable and consistent estimates has not yet been
met. The traditional life table approach assumes that deaths yax in a population in
area a at age x are poisson distributed ya,x ∼ Poisson(Pa,x ·ma,x) where Pa,x is the
population at risk and ma,x is the mortality rate. The maximum likelihood estimate
of the mortality rate for area a at age x is

m̂ax =
ya,x
Pa,x

. (2.1)

This approach essentially involves estimating as many fixed-effect parameters max as
there are data points. In addition, this estimation process makes no reference to or
use of the information about mortality rates at other ages, in other areas or at other
time points. Confidence intervals can be derived based on the distribution of deaths,
but for small populations, stochastic variation is high and so confidence intervals and
standard errors are large. Estimating mortality rates in small populations therefore
requires different types of approaches.

To avoid issues that arise in small-area mortality estimation, a common approach
is to aggregate mortality data across multiple years or across space to form larger
geographic areas. For example, recent work by Chetty et al. (2016) and Currie and
Schwandt (2016) look at mortality inequalities in the US using deaths and income
measures at the county level, but data are either aggregated across space and time
(Currie and Schwandt (2016)) or results are not published for smaller populations
(in the case of Chetty et al. (2016), where the minimum population size is 20,000).
However, given the information lost in aggregating data from smaller areas, there is
value in employing other techniques to infer mortality levels and trends.

One option that has been employed is to treat each small population as a stand-alone
population and model accordingly using traditional model life table approaches. For
example, Bravo and Malta (2010) outline an approach for estimating life tables in
small populations, applied to regional areas of Portugal. They estimate Gompertz-
Makeham functions via generalized linear models, with an adjustment at older ages.
Another approach by Jarner and Kryger (2011) involves estimating old-age mortal-
ity in small populations by first estimating parameters of a frailty model using a
larger reference population. However, approaches that treat small populations sep-
arately do not account for the likely relationships between the regional population
estimates or patterns over time. Other approaches in the US have used county-level
covariates such as socio-economic status and education to predict county-level life
expectancy (Ezzati et al. (2008); Dwyer-Lindgren et al. (2016); Kindig and Cheng
(2013); Kulkarni et al. (2011); Srebotnjak et al. (2010)). However, there are issues
with using the resulting estimates to infer relationships between health, poverty rates
and education without concerns of endogeneity.

In this paper, we propose a new model that relies on a Bayesian hierarchical frame-
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work, allowing information on mortality to be shared across time and through space.
This helps to inform the mortality patterns in smaller geographic areas, where uncer-
tainty around the data is high. The modeling process produces uncertainty intervals
around the mortality estimates, which can then be translated into uncertainty around
other life-table quantities (for example, life expectancy). As well as producing un-
certainty intervals around the final estimates, the modeling process also involves the
estimation of other meaningful variance parameters that may relate to variation in
mortality within, or across, states. A Bayesian hierarchical approach has been used
in estimating mortality in small populations previously (e.g. see Congdon (2014)).
However, our modeling approach is novel in that it combines demographic knowl-
edge about regularities in age-specific mortality with the flexibility of a Bayesian
hierarchical structure.

The remainder of the paper is structured as follows. In the next section, the method-
ology for estimating age-specific mortality rates is described. The model is then
applied to two different data situations – simulated and real – and results are dis-
cussed. Performance of the model is evaluated through coverage and mean-squared-
error measures. The paper concludes with a discussion of model performance and
contributions.

2.2 Method

We propose a model that has an underlying functional form that captures regularities
in age patterns in mortality. We then build on this functional form within a Bayesian
hierarchical framework, penalizing departures from the characteristic shapes across
age, as well as sharing information across geographic areas and ensuring a relatively
smooth trend in mortality over time.

Bayesian hierarchical models have previously been used in a wide range of demo-
graphic applications. For example, Bayesian hierarchical models are used by the
United Nations Population Division to produce probabilistic projections of popula-
tion and life expectancy (Raftery et al. (2012); Raftery et al. (2013)). Alkema and
New (2014) developed a Bayesian hierarchical model for estimating the under-five
mortality rate for all countries worldwide. There are many other examples in the
fields of mortality, fertility and migration (e.g. Alkema et al. (2012); Bijak (2008);
Congdon (2009); King and Soneji (2011); Sharrow et al. (2013)). Our approach has
similarities to applications by authors in cause of death mortality estimation (Girosi
and King (2008)) and cohort fertility projection (Schmertmann et al. (2014)), but
with a focus on addressing small-area estimation issues, rather than forecasting.
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CHAPTER 2. ESTIMATING SUBNATIONAL MORTALITY

2.2.1 Model set-up

Let yx,a,t be the deaths at age x in area a at time t. We assume that deaths are
Poisson distributed

yx,a,t ∼ Poisson(Px,a,t ·mx,a,t), (2.2)

where mx,a,t is the mortality rate at age x, area a and time t and Px,a,t is the
population at risk at age x, area a and time t. We estimate mortality rates at ages
0, 1, 5, and then in 5-year intervals up to 85+.

The mx,a,t are modeled on the log-scale as:

log(mx,a,t) = β1,a,t · Y1x + β2,a,t · Y2x + β3,a,t · Y3x + ux,a,t, (2.3)

where Ypx is the pth principal component of some set of standard mortality curves,
and ux,a,t is a random effect. The use of principal components has similarities with
the Lee-Carter approach (Lee and Carter (1992)). Principal components create an
underlying structure of the model in which regularities in age patterns of human
mortality can be expressed. Many different kinds of shapes of mortality curves can
be expressed as a combination of the components. Incorporating more than one
principal component allows for greater flexibility in the underlying shape of the
mortality age schedule.

Principal components are obtained via a singular value decomposition (SVD) on a
matrix which contains a set of standard mortality curves. The SVD is a factorization
of a matrix, which is useful in explaining the main aspects of variation of the data.
For example, for the application to simulated US counties below, we used US state
mortality rates from 1980–2010. Let X be a N × G matrix of log-mortality rates,
where N is the number of observations and G is the number of age-groups. In the
US states case, we had N = 50× 31 = 1550 observations of G = 19 age-groups. The
SVD of X is

X = UDV′, (2.4)

where U is a N × N matrix, D is a N × G matrix and V is a G × G matrix. The
first three columns of V (the first three right-singular values of X) are Y1x, Y2x and
Y3x.

2

The first three principal components for US state mortality curves from 1980–2010
are shown in Fig. 2.1 below.3 They were based on mortality curves on the log scale,
three of which are shown in the top lefthand graph: Florida in 1980, Hawaii in 1991
and California in 2010. In total, there are 50 × 31 = 1550 of these curves, from
which the principal components are derived. Broadly, the first principal compo-
nent describes the overall mortality curve. The second principal component allows

2Throughout the paper, we refer to the Ypx’s as principal components for simplicity, even
though technically Ypx is really the p−th vector of principal component loadings.

3Data on age-specific mortality rates are available through the Centers for Disease Control
and Prevention (CDC) Wide-ranging OnLine Data for Epidemiologic Research (WONDER) tool:
https://wonder.cdc.gov/.
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mortality at younger ages to be higher in relation to adult mortality. The third
principal component allows adult mortality to be higher in relation to mortality at
young and old ages. For example, in some regions of a country, child mortality might
be relatively higher than the baseline schedule. In other regions, where prevalence of
deaths due to accidents is higher, adult mortality would be higher than the baseline
pattern.

The components capture overall patterns of mortality well; a wide range of different
mortality curves can be expressed as a linear combination of these three components.
It is possible to include more or less than three principal components in the model for
log(mx,a,t). The more principal components used, the more flexible the fit. However,
after experimenting with a wide range of standard mortality curves, we found that
higher-order principal components generally did not display any regular patterns
across age but instead picked up on residual variance in the dataset, which has
limited use for modeling purposes. Including the first three principal components in
the model allows for a reasonably flexible fit while only including components that
have some demographic interpretation.

Figure 2.1: Example data and principal components of (logged) US state mortality
schedules, Males, 1980–2010.
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The addition of the random effect term ux,a,t in the expression for log(mx,a,t) accounts
for potential over-dispersion of deaths, i.e. the case where the variance in deaths is
greater than the mean, which otherwise would not be expected given the assumption
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of Poisson-distributed deaths (Congdon (2009)). It is assumed that these random
effects are centered at zero with an associated variance:

ux,a,t ∼ N(0, σ2
x). (2.5)

The variance parameter varies by age group, allowing heterogeneity in some age
groups to be greater than in others. In practice it is often the younger age groups,
with the lowest levels of mortality, that have the highest variation.

2.2.2 Pooling information across geographic area

To allow for information on the level and shape of mortality to be shared across
geographic space, we assume that the coefficients βp,a,t for a particular area are
drawn from a common distribution centered around a state (or country) mean:

βp,a,t ∼ N(µβp,t , σ
2
βp,t) (2.6)

where p indicates principal component (p = 1, 2, 3). Larger areas in terms of popula-
tion size (and death counts) have a bigger effect on the overall means. The less data
available on deaths in an area, the closer the parameter estimates are to the mean
parameter value. In this way, mortality patterns in smaller areas are partially in-
formed by mortality patterns in larger areas. At the same time, mortality patterns
in larger areas borrow little information from the pooling process and are largely
determined by their own observed death counts.

The influence of the geographic pooling is illustrated in Fig. 2.2. The charts illus-
trate observed, true and fitted log-mortality rates for a hypothetical county with
a population of 5,000 males. The dashed line is the true underlying log-mortality
rate. The circles represent the observed log-mortality rates; these were simulated
from the true rates using Eqn. 2.2. Where there are gaps, the observed death count
was zero. The solid line and associated shaded area is the fit and 95% credible in-
tervals. The graph on the left showed a fit without geographic pooling, while the
graph on the right shows a fit with geographic pooling. The right-hand graph has
an additional ‘mean’ line. This line was derived from the mean parameters, µβp,t ,
which are informed by all counties in the state. The effect of pooling is seen most in
log-mortality rates at younger ages, where rates are low. As many of the younger age
groups have observed zero death counts, the unpooled model estimates log-mortality
rates that are much lower than the true rates. The pooled model estimate is ‘pulled’
up closer to the mean estimate, benefiting from information on young-age mortality
from other counties.

In practice, the mean parameter values µβp,t could be determined from any plausible
group of areas which share similar characteristics. We have tested the model using
state level mean parameter values, but other options include grouping areas by
a smaller location scale, by rural/urban area within state, or by a common age
distribution.
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Figure 2.2: Illustrating the effect of geographic pooling. Model fitted without (left)
and with (right) geographic pooling. Data are simulated assuming a total population
of 5,000.
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2.2.3 Smoothing across time

We assume the parameters governing the shape of the mortality curve, βp,a,t, change
gradually and in a relatively regular pattern over time. We impose this smoothing
by penalizing the second-order differences across time in the mean parameters:

µβp,t ∼ N
(

2 · µβp,t−1 − µβp,t−2 , σ
2
µβp,t

)
(2.7)

for p = 1, 2, 3. This set up is penalizing differences from a linear trend in the mean
parameters. Smoothing the mean parameters, rather than the actual parameters
βp,a,t, still allows for mortality trends to depart from a smooth trajectory if suggested
by the data. For example, if a particular area suffered from a influenza outbreak
thus making mortality higher than in previous years, the βp,a,t terms would allow for
higher mortality.

The effect of smoothing parameters over time is shown in Fig. 2.3. The graph shows
the estimated median value of the parameter µβ1,t over 31 years in a simulated US
county model. The solid line shows the estimates without smoothing, while the
dashed line shows the effect of smoothing.

2.2.4 Adding constraints to the model for total areas

While mortality rates are estimated for subnational populations, it is important that
these mortality rates, when aggregated to the state or national level, are consistent
with the mortality rates observed at the aggregate level. To ensure this is the case, we
add a constraint to the model which specifies that the number of deaths in a state
(or country) is Poisson distributed with a rate equal to the sum of all estimated
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Figure 2.3: Illustrating the effect of smoothing over time. The solid line shows
median estimates for µβ1,t from a model without smoothing imposed. The dashed
line shows median estimates for µβ1,t from a model with smoothing imposed according
to Eqn. 2.7.
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deaths in all areas:

A∑
a=1

yx,a,t ∼ Poisson

(
A∑
a=1

(Px,a,t ·mx,a,t)

)
(2.8)

where A is the total number of areas.

We assume that the deaths yx,a,t are conditionally independent; that is, given values
of Px,a,t and mx,a,t, the yx,a,t’s are independent, and thus the sum is also Poisson
distributed. In practice, the added constraint makes little difference to the estimates
for any specific area. However, it ensures consistency between regional and national
estimates. We believe that this is an important feature of the model that is relevant
for most applications. Fig. 2.4 shows life expectancy at birth estimates for females
for each French département in 2008 (data are described below in section 2.3.2).
The resulting estimates show only negligible differences between the constrained
and unconstrained models.
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Figure 2.4: Female life expectancy at birth estimates for France, 2008 (years): con-
strained versus unconstrained model.
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2.2.5 Priors and Implementation

Non-informative priors were put on variance parameters. Operationally, we used a
uniform distribution between 0 and 40 for the standard deviations:

σβp,t ∼ U(0, 40) (2.9)

σµβp,t ∼ U(0, 40) (2.10)

σx ∼ U(0, 40). (2.11)

The non-informative nature of these prior distributions means posterior estimates
of the variance parameters were not constrained in any way. Choosing even more
spread-out uniform distributions as the priors (with a maximum larger than 40) had
no effect on the final estimates.

The model was fitted in a Bayesian framework using the statistical software R.
Samples were taken from the posterior distributions of the parameters via a Markov
Chain Monte Carlo (MCMC) algorithm. This was performed using JAGS software
Plummer (2003). Standard diagnostic checks using trace plots and the Gelman and
Rubin diagnostic (Gelman and Rubin (1992)) were used to check convergence.
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2.2.6 Model Summary

The set of equations below summarizes the entire model set-up. Deaths are assumed
to be Poisson distributed, and the mortality rates that govern the Poisson process
are specified by a model, which is hierarchical in structure. The first level (Eqn.
2.13) gives an expression for log(mx,a,t). The second level (Eqns. 2.14 and 2.15)
specifies distributions for the parameters in the first level (βp,a,t and ux,a,t). Finally,
the third level (Eqns. 2.15–2.19) specifies the distribution for the parameters in the
second level (µβp,t and the variance terms).

yx,a,t ∼ Poisson(Px,a,t ·mx,a,t) (2.12)

log(mx,a,t) = β1,a,t · Y1x + β2,a,t · Y2x + β3,a,t · Y3x + ux,a,t (2.13)

βp,a,t ∼ N(µβp,t , σ
2
βp,t) (2.14)

µβp,t ∼ N
(

2 · µβp,t−1 − µβp,t−2 , σ
2
µβp,t

)
(2.15)

ux,a,t ∼ N(0, σ2
x) (2.16)

σβp,t ∼ U(0, 40) (2.17)

σµβp,t ∼ U(0, 40) (2.18)

σx ∼ U(0, 40) (2.19)

2.3 Results

2.3.1 Simulated data

In order to test the model, we created a simulated data set of deaths and populations
that mimic counties within US states. The ‘true’ mortality rate in a county is based
on a specified population and age structure, and the mortality rate in the state. The
mortality curve for a county can be altered to change shape via a Brass relational
model setup, assuming that:

log

(
lx

1− lx

)
= α + β · Yx (2.20)

where lx is the survivorship at age x in the county and Yx is the survivorship at age x
in the state of interest. To alter the shape of the survivorship curve for a particular
county, the values of α and β were changed. The values of α and β were chosen
randomly from the ranges [−0.75, 0.75] and [0.7, 1.3], respectively. These ranges of α
and β values were chosen because they translate to a reasonable range of age-specific
mortality curves commonly observed. The survivorship rates were then converted
to mortality rates using standard life table relationships.

Once the ‘true’ mortality rate schedules were obtained, we simulated deaths accord-
ing to the relationship shown in Eq. 2.2. A range of population sizes were tested,
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2.3. RESULTS

with the minimum county size being 1,000 people of a particular sex. At this small
population size, many simulated death counts for particular age groups are equal to
zero.

Fig. 2.5 shows the true, simulated (‘observed’) data and estimated mortality rates on
the log scale in three hypothetical counties within the same state but with different
population sizes. The points show the observed data, which is simulated from the
true underlying mortality rate, shown by the dashed line. For the smallest county,
which has 1,000 people, many of the observed death counts are zero, so the data do
not show up on the log scale. The solid line shows the estimated log-mortality rates,
and the corresponding shaded area shows the 95% credible intervals. As the size
of the county increases, the mortality pattern in the observed data becomes more
regular. As such, the uncertainty around the estimates decreases with increased
population size.

Figure 2.5: True, simulated and estimated mortality rates for three hypothetical
counties.
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Evaluation of model performance

In order to evaluate model performance, we compared the model fit to the fit of a
simple Loess smoother and Brass model. The Loess approach does not incorporate
any pooling of information or demographic regularities across age. The Brass esti-
mation process uses Eqn. 2.20. The methods of estimation were compared using the
simulated data, where the true value of the mortality rates was known. For each
area and time, we estimated the root mean squared error (RMSE), defined as

RMSE =

√√√√ 1

G

G∑
x=1

(m̂x −m∗x)2, (2.21)

where m̂x is the estimated mortality rate at age x, m∗x is the true mortality rate and
G is the number of age groups.

Table 2.1 below shows the average RMSE for the three fits to a simulated dataset
containing 60 counties over 31 years (12 counties per size group). In all cases, the
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CHAPTER 2. ESTIMATING SUBNATIONAL MORTALITY

RMSE decreases as county size increases. This is intuitive because, as the county
population increases, there are fewer zero death counts and so more information
about the shape of the mortality curve. The average RMSE for the model is always
lower than Loess or Brass, irrespective of county size. Although the Brass RMSE
seems reasonable, it is most likely because the data were generated using a Brass
relational model.

Table 2.1: Average Root Mean Squared Error for model, Loess and Brass fits

RMSE
County Size Model Loess Brass

1,000 0.034 0.187 0.039
5,000 0.027 0.078 0.037

10,000 0.027 0.065 0.042
20,000 0.022 0.052 0.030

100,000 0.013 0.049 0.027

In addition, we also evaluated the relationship between the nominal and actual
coverage for the uncertainty intervals produced by the Bayesian model. Coverage is
defined as:

1

G

G∑
x=1

1 [m∗x ≥ lx] 1 [m∗x < rx] (2.22)

where G is the number of age groups, m∗x is the true mortality rate for the xth
age group and lx and rx the lower and upper bounds of the credible intervals for
the xth age group. Coverage at the 80, 90 and 95% levels was considered. Table
2.2 shows the average coverage for the proposed model, fit to 60 counties over 31
years. In general, actual coverage levels are close to the nominal level, indicating
that the model is well calibrated. The coverage level tends to decrease as county
size increases.

Table 2.2: Nominal versus actual coverage of model uncertainty intervals

Coverage level (%)
County Size 80 90 95

1,000 0.871 0.952 0.982
5,000 0.799 0.896 0.940

10,000 0.749 0.853 0.890
20,000 0.744 0.833 0.891

100,000 0.763 0.865 0.901
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2.3.2 Application to French Départements

We also tested the model on real mortality data, applied to death and population
counts by sex in French départements from 1975–2008 (INSEE (2015)).4 The an-
nual life tables were constructed by the Division des statistiques régionales, locales
et urbaines [Regional, Local and Urban Statistics Division] of the French Institut
national de la statistique et des études économiques or INSEE [National Institute
for Statistics and Economic Studies]. The life tables were built from the vital statis-
tics and census data also collected and processed by INSEE. There are 96 mainland
French départements ranging in population size from around 35,000 to 1.5 million
(for one sex).

We used national France mortality curves from 1975–2008 to form the set of principal
components used in estimation. The model was applied to both sexes simultaneously.
For illustration, Figs. 2.6 and 2.7 show the observed and estimated log-mortality rates
for males in the departments Lozère and Somme in 1975 and 2008. Lozère has a
male population of around 38,000, while Somme has a male population of around
275,000. For both départements, there is a decrease in mortality rates from 1975 to
2008. As a consequence there are more zero death counts observed in 2008 compared
with 1975, corresponding to more uncertainty around estimates in the more recent
year. Additionally, there is less uncertainty around the Somme estimates, because
the population size is around seven times the population in Lozère.

Figure 2.6: Observed and estimated mortality rates, Lozère, Males, 1975 and 2008.
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Once age-specific mortality rates have been estimated, other mortality measures and
associated uncertainty can be calculated. Fig. 2.8 below shows life expectancy at
birth estimates for males in 2008 by départements. Life expectancy is estimated
to be highest in areas around Paris and for the Midi-Pyrenees area, and lowest in

4We chose to use French départements data because, at the time of writing, data for all US
counties were not readily available.
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Figure 2.7: Observed and estimated mortality rates, Somme, Males, 1975 and 2008.
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the northern part of the country, a well-documented pattern (Barbieri and Depledge
(2013)).

Uncertainty in life expectancy estimates is also easily obtained. Life expectancy is
calculated for each of the posterior samples of age-specific mortality rates. A 95%
uncertainty interval is then obtained by calculating the 2.5th and 97.5th percentiles.
For example, the estimate for life expectancy at birth for males in Paris in 2008 is
80.5 years (95% UI: [79.4, 81.7]). For a smaller départements such as Lozère, the
estimate is 79.1 years [77.2, 80.8]. Complete results for all French départements are
available in an online supplement to this paper.5 Life expectancy estimates produced
by our method are reasonably close to estimates produced by INED (Barbieri and
Depledge (2013)), with the average difference in life expectancy at birth across areas
and years being around 0.5 years.

Another aspect of the results that could be of interest are the estimated variance
parameters. It is assumed that the βt,p parameters are normally distributed with
mean µp,t and variance σ2

βp,t
. The variance terms may tell us something about how

the spread of mortality outcomes is changing over time. Fig. 2.9 shows the median
and 95% credible intervals of the standard deviation parameters associated with β1

and β2 over the period of estimation. While there is no discernible trend in σβ1,t , the
parameter for the β2 term, σβ2,t , appears to be increasing over time. The β2 related to
the principal component which alters the relationship of the magnitude of infant and
child mortality to mortality at older ages (see Fig. 2.1). An increase in the variance
parameter suggests that départements are becoming more different over time with
respect to child-versus-older mortality. Fig. 2.10 illustrates two départements which
have relatively high and low values of β2. For Tarn, β2 is high, which results from
infant mortality being relatively low compared to adult mortality. For Seine-Saint-
Denis, the opposite is true.

5See shiny.demog.berkeley.edu/monicah/French/.
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Figure 2.8: Life expectancy estimates for males, 2008 (e0, years)
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Figure 2.9: Standard deviation of β1 and β2 over time
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2.4 Conclusion

We presented a novel method to estimate mortality rates by age and sex at the sub-
national level. In our approach we build on characteristic age patterns in mortality
curves, pooling information across geographic space and smoothing over time within
the framework of a Bayesian hierarchical model. When tested against simulated
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Figure 2.10: Mortality rates in areas with low (left graph) and high (right graph)
values of β2
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data, the model outperformed estimates from a simple Loess smoother and Brass
model, especially for areas with smaller population sizes. The uncertainty in our
estimates, reflected in the confidence intervals, is well calibrated. An application to
real data for France illustrates how various parameter estimates from the model help
to assess trends in overall mortality levels and inequalities within a country. The
estimates produced by the model have direct applications to the study of subregional
health patterns and disparities and how these evolve over time.

The model outlined in the paper is proposed as a general framework for estimating
mortality rates in subpopulations. The framework can easily be altered by the user
to best suit the situation in which rates are being estimated. For example, the mean
parameter values µβp,t need not be defined on a state/county basis, but may be
defined by a smaller geographic area or based on some other characteristics, such as
age distribution or rurality of an area. Additionally, it is possible to alter the random
effects to be spatially structured, assuming some correlation in random effects by
distance or of adjacent areas.

The focus of this project has been on estimation of past and present mortality trends,
rather than future ones. However, forecasting of age- and sex-specific mortality
rates in a particular area can be obtained directly from model outputs. The mean
parameters µβp,t can be projected forward given the assumed linear time trend, which
forms a basis to infer other parameters for areas of interest. Given that the relevant
variance parameters are also estimated in the process, uncertainty around forecasts
can also be inferred.

One of the contributions of our work is methodological. Estimates of mortality mea-
sures for small areas, most notably life expectancy, have been proposed previously.
For example, Ezzati et al. (2008) used information about number of deaths, together
with covariates related to socio-economic status, in order to estimate mortality rates.
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Congdon (2014) developed a random effects model to estimate life expectancy for
subnational areas. Our method builds on some elements presented in the literature,
while incorporating demographic knowledge about regularities in the Lexis surface of
mortality rates by age and over time. More specifically, we complemented a state-of-
the-art Bayesian hierarchical modeling framework to pool information across space
and time, with a classic demographic approach to borrow information across age
groups. In particular, our use of principal components of schedules of log-mortality
rates is informed by a long tradition of demographic modeling of mortality and can
be considered an extension of the Lee-Carter approach (Lee and Carter (1992)).

In this article, we developed a general approach to complement classic demographic
modeling ideas within a solid statistical framework. The model that we proposed
and tested is quite minimalistic and relies on fairly simple rules for pooling across
space and smoothing over time. However, the geographic scale at which spatial pool-
ing will be implemented may depend on specific circumstances of different countries.
Likewise, the type of time smoothing may vary. A number of rules can be accom-
modated within the framework that we propose.
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Chapter 3

Global estimation of neonatal
mortality using a Bayesian
hierarchical splines regression
model

3.1 Introduction1

In order to evaluate a country’s progress in reducing child mortality, it is important
to obtain accurate estimates, be able to project mortality levels, and have some
indication of the uncertainty in the estimates and projections. In practice, obtaining
reliable mortality estimates is often most difficult in developing countries where
mortality is relatively high, well-functioning vital registration systems are lacking
and the data that are available are often subject to large sampling errors and/or of
poor quality. This situation calls for the use of statistical models to help estimate
underlying mortality trends.

In recent years, much of the focus on monitoring child mortality has been on assess-
ing changes in the under-five mortality rate (U5MR), which refers to the number
of deaths before the age of five per 1,000 live births. The focus was driven by Mil-
lennium Development Goal (MDG) 4, which called for a two-thirds reduction in
under-five mortality between 1990 and 2015. A report on MDG progress released
in 2015 by the United Nations showed that, although this target was not met in
most regions of the world, notable progress has been made (UN (2015)). The global
U5MR is less than half of its level in 1990, and despite population growth in devel-
oping regions, the number of deaths of children under five has declined. Reducing
the U5MR continues to be a priority as part of the Sustainable Development Goals
(SDG), which replaced the MDGs in 2015. Goal 3 of the SDG includes reducing the

1This chapter has been previously published as Alexander and Alkema (2018).
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U5MR to at least as low as 25 deaths per 1,000 live births in all countries by 2030
(UN (2017)).

As the U5MR decreases, the share of neonatal deaths, i.e. deaths occurring in the
first month, tend to increase. Globally, the estimated share of under-five deaths
that were neonatal in 2015 was 45%, a 13% increase from 1990 (IGME (2015)).
Indeed, in most regions of the world, the majority of under-five deaths are neonatal;
for example, the share is 56% in Developed regions; 51% in Latin America and the
Caribbean; and 54% in Western Asia. The share is still less than 50%, however,
where the U5MR is relatively high: in Sub-Saharan Africa, the share is only 34%.

The neonatal equivalent to the U5MR is the neonatal mortality rate (NMR), which
is defined as the number of neonatal deaths per 1,000 live births. The increasing
importance of neonatal deaths in child mortality has warranted increased efforts in
monitoring NMR in addition to the U5MR (e.g. Bhutta et al. (2010); Lawn et al.
(2004); Lozano et al. (2011)). Goal 3 of the SDGs explicitly includes a neonatal
target, with the aim to reduce the NMR to at least as low as 12 deaths per 1000 live
births in all countries by 2030 (UN (2017)).

The United Nations Inter-agency Group for Child Mortality Estimation (IGME)
publishes estimates of NMR for all 195 UN member countries (IGME (2015)), and
these estimates are used to monitor global levels and trends in NMR over time. Up
until 2014, IGME used a statistical model to obtain estimates for countries without
high-quality vital registration data, which uses U5MR as a predictor Oestergaard
et al. (2011). While the method has worked well to capture the main trends in the
NMR, it has some disadvantages. Most notably, trends in NMR within a country are
driven by the U5MR trends, rather than being specifically influenced by the NMR
data.

In this paper, we present a new model for estimating the NMR for countries world-
wide, which overcomes some of the concerns with the previous IGME NMR model.
We use a penalized splines regression model within a Bayesian hierarchical framework
to estimate and project the NMR, and obtain uncertainty around these estimates
and projections. In the model, the relationship between NMR and U5MR is used
to inform estimates, and the spline regression model is used to capture country-
specific trends. From the point of view of modeling mortality levels across countries,
a Bayesian approach offers an intuitive way to share information across different
countries and time periods, and a data model can incorporate different sources of
error into the estimates.

Increases in computational speed as well as the development of suitable numerical
methods has enabled a more widespread use of a Bayesian approach in many fields,
including population estimation and forecasting (e.g. Alkema and New (2014); Bijak
and Bryant (2016); Girosi and King (2008); Raftery et al. (2012); Schmertmann et al.
(2014)). The method presented in this paper has similarities to approaches used to
estimate other global health indicators, including U5MR (Alkema and New (2014);
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You et al. (2015)), maternal mortality Alkema et al. (2016), cause-specific mortality
Foreman et al. (2012) and contraceptive prevalence Alkema et al. (2013). In this
application, the proposed Bayesian model is flexible enough to be used to estimate
the NMR in any country, regardless of the amount and sources of data available.
Results were produced for 195 countries for at least the years 1990–2015, which
covers the MDG period of interest, using a dataset with almost 5000 observations
from various data sources.

The remainder of the paper is structured as follows. Firstly, the dataset and model
are summarized in the next two sections. Some key results are then highlighted,
including model validation results, followed by a discussion of the work and possible
future avenues. Additional details about the model are provided in the Appendix.

3.2 Data

There is large variability in the availability of data on neonatal mortality. Broadly
there are three main data sources for the neonatal mortality rate: vital registration
(VR) systems; sample vital registration (SVR) systems; and survey data. Data for
a particular country may come from one or several of these sources, and the source
type may vary over time. Table 3.1 summarizes the availability of data by source
type.

3.2.1 Source types

Data from VR systems are derived directly from the registered births and deaths
in a country. The observed NMR for a particular country and year is the number
of registered deaths within the first month divided by the number of live births.
Because VR data are based on the records from the whole population, they are
usually high quality compared to other sources. Most developed countries have VR
data available. SVR systems refer to vital registration statistics that are collected
on a representative sample of the broader population.

NMR observations can also be derived from data collected in surveys, if women
are asked to list a full history of all births (and possible deaths) of her children.
A retrospective series of NMR observations can then be derived using the birth
histories. A total of 72% of the survey data series contained in the database (Table 1)
have microdata available and it is possible to estimate the sampling error associated
with each of the observations. For the remaining 28%, data come from summary
reports and preliminary releases; as such there is not enough information to calculate
the sampling errors from the data. For these series, values for sampling errors
are imputed (see Section 3.3.4). All mortality rates, ratios of mortality rates, and
corresponding standard errors were calculated from the survey microdata using the
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software ‘CMRJack’ Pedersen and Liu (2012), a software package that produces
mortality estimates and standard errors for surveys with complete birth histories or
summary birth histories. Estimates are obtained based on the methodology outlined
in Pedersen and Liu (2012). The retrospective time period covered by mortality
estimates is optimized to capture short-term fluctuations while still ensuring that
the estimates have a coefficient of variation of less than 10%.

The majority of survey data come from Demographic and Health Surveys (DHS)
(Table 3.1). The category ‘Other DHS’ refers to non-standard DHS, that is, Spe-
cial Interim and National DHS, Malaria Indicator Surveys, AIDS Indicator Surveys
and World Fertility Surveys (WFS). National DHS are surveys in DHS format that
are run by a national agency, rather than the external DHS agency. The Multiple
Indicator Cluster Survey (MICS), developed by UNICEF in 1990, was originally de-
signed to address trends in goals from the World Summit for Children, and has since
focused on assessing progress towards the relevant MDG indicators. The ‘Other’
category includes surveys such as the Pan-Arab Project for Family Health and the
Reproductive Health Surveys.

3.2.2 Data availability

Data availability varies by country and by year. For most developed countries, a full
time series of VR data exists. For other countries with VR data, the time series is
often incomplete and is supported by other sources of data. Of the 105 countries
where VR data are available, 44 countries have incomplete VR times series. For
some smaller countries with VR data, observations were combined to avoid issues
with erratic trends due to large stochastic variance (see Appendix A.2.3 for more
details). SVR data are only available for Bangladesh, China and South Africa. Most
developing countries have no vital registration systems and so observations of the
NMR are derived entirely from surveys. A total of 12 countries had no available
data.

In terms of data inclusion, we follow the same inclusion exclusion rules as the UN
IGME-estimated U5MR (IGME (2015)). These exclusion rules are based on exter-
nal information which suggests some NMR observations are unreliable, due to, for
example, poor survey quality or under coverage of VR systems. A total of 16% of
the 4,678 observations were excluded.

Fig. 4.2.1 illustrates examples of the data available for four countries. The shaded
area around the observations has a width of two times the sampling error (for survey
data) or stochastic error (for VR data). The NMR for Australia (Fig. 3.1a), as
calculated from the full VR data time series, has a trend over time which is relatively
regular and the uncertainty is low. Data for Sri Lanka indicate NMR are roughly
five times as high as Australia. Data are available from 1950, but the VR data
series is incomplete. The rest of the data come from the WFS, DHS and National
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Table 3.1: Summary of the NMR data availability by source type. The totals include
observations that were excluded from the estimation.

Source Sampling Errors
No. of
Series

No. of
Countries

No. of
Obs

No. of
Country-

years
VR Calculated 105 105 2607 2607
SVR Calculated 3 3 79 78
DHS Reported 239 81 1212 934
DHS Unreported 16 15 50 48
Other DHS Reported 52 42 251 251
Other DHS Unreported 26 21 78 75
MICS Reported 16 14 81 73
MICS Unreported 12 12 49 46
Others Reported 24 16 119 111
Others Unreported 72 36 152 151

DHS. There are multiple estimates for some years, and the uncertainty around the
estimates varies by source and year. The uncertainty around the VR data is much
less than for the survey data. The National DHS series do not have estimates of
sampling error. Iraq (Fig. 3.1c) has no VR data, and the estimates are constructed
from MICS and two other surveys: the Infant and Child Mortality and Nutrition
Survey, and the Child and Maternal Mortality Survey. Again, there are multiple
estimates for some time points, and uncertainty level and availability varies. Finally,
Vanuatu (Fig. 3.1d) has only three observation points from one National DHS.

3.3 Method

The aim is to produce estimates of the NMR for all countries in the world, and report
the associated uncertainty around the estimates. The model needs to be flexible
enough to estimate NMR in a variety of situations, as illustrated in Fig. 4.2.1. The
estimates should follow the data closely for countries with reliable data and low
uncertainty. On the other hand, the model estimates need to be adequately smooth
in countries with relatively large uncertainty and erratic trajectories. The model
also needs to be able to estimate NMR over the period 1990-2015 for all countries,
including those countries where there are limited or no data available. To achieve
these goals, our proposed model utilizes the relationship between the U5MR and
NMR: as the level of U5MR decreases, the proportion of deaths under five that are
neonatal tends to increase. In addition, the model also allows for country-specific
effects and time trends to capture data-driven trends in data-rich countries. The
term ‘data-driven’ refers to a model set-up where the NMR estimates over time are
explicitly influenced by temporal changes in the NMR data. This is in contrast to
a model where temporal changes in NMR estimates are driven by trends in U5MR
only, as was the case with the previous IGME model Oestergaard et al. (2011).
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Figure 3.1: Neonatal Mortality Data (deaths per 1,000 births) for four selected
countries. The different colored circles represents different data sources, as described
in the plot legends. An open circle indicates that the observation was excluded from
the analysis. The shaded area around the data series represents the stochastic error
(in the case of VR data) and sampling error (in the case of survey data). Survey
data series that did not have reported sampling errors do not have a shaded region
on the plots, and are marked with an asterisk (*) in the legends.
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In the NMR model, we use country-year specific U5MRs as explanatory variables
and also to obtain final estimates of NMR. All estimates of U5MR used in the model
were obtained from the UN IGME (IGME (2015)).

3.3.1 Model overview

Write Nc,t and Uc,t as the NMR and U5MR for country c at time t, respectively,
with Uc,t given by the IGME U5MR estimate for that country-year. Note that Nc,t

and Uc,t are always expressed in units of deaths per 1,000 live births. We explain
the model set-up in terms of the ratio

Rc,t =
Nc,t

Uc,t −Nc,t

,

which refers to the true ratio of neonatal deaths compared to deaths in months 2 to
60. We constrain Rc,t > 0 such that 0 ≤ Nc,t

Uc,t
≤ 1 to guarantee that NMR estimates

are not greater than U5MR estimates. The true ratio Rc,t is modeled as follows:

Rc,t = f(Uc,t) · Pc,t, (3.1)

where f(Uc,t) is the overall expected ratio given the current level of U5MR and Pc,t
is a country-specific multiplier to capture deviations from the expected relationship.

The observed ratio rc,i, which refers to the i-th observation of the ratio in country
c, is expressed as a combination of the true ratio and some error, i.e.

rc,i = Rc,t[c,i] · εc,i (3.2)

=⇒ log(rc,i) = log(Rc,t[c,i]) + δc,i

= log f(Uc,t[c,i]) + logPc,t[c,i] + δc,i

for c = 1, 2, . . . , C and i = 1, . . . , nc, where C = 195 (the total number of countries)
and nc is the number of observations for country c. The index t[c, i] refers to the
observation year for the i-th observation in country c, εc,i is the error of observation
i and δc,i = log(εc,i). Note that throughout the paper, log refers to the natural
logarithm.

The following sections explain how we chose to model the expected ratio f(Uc,t),
the country-specific multiplier Pc,t, and the error term δc,i. Other aspects of the
method, including the projection method, estimation for countries with no data and
crisis and HIV/AIDS adjustments are detailed in the Appendix.

3.3.2 Global relationship with U5MR

The first step in modeling the ratio of neonatal to non-neonatal deaths is to find an
appropriate function f(Uc,t) in Eq. 3.1, which captures the expected value of the ratio
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given the current level of U5MR. We modeled f(Uc,t) on the log scale. Fig. 3.2 shows
a scatter plot of log-transformed observed ratios log(rc,i) versus log(Uc,t[c,i]). The
relationship between the two variables appears to be relatively constant up to around
log(Uc,t) = 3.5, after which point the log ratio decreases linearly with decreasing
log(Uc,t). Given this observed relationship, log f(Uc,t) is modeled as follows:

log f(Uc,t) =

{
β0 for Uc,t ≤ θ,

β0 + β1 · (log(Uc,t)− log(θ)) for Uc,t > θ.

This implies, below a cutpoint θ, log f(Uc,t) is modeled as a constant β0. Above the
cutpoint, log f(Uc,t) is represented linearly as a function of log(Uc,t) with slope β1.

The fitted relationship between the ratio and the level of U5MR from the NMR
model, log f(Uc,t), is illustrated in Fig. 3.2. The posterior median estimate for the
cutpoint θ is 34.2 deaths per 1,000 births (90% CI: [33.7, 34.5]). At U5MR levels
that are higher than θ, the β1 coefficient suggests that a 1% increase in the U5MR
leads to a 0.65% decrease (90% CI: [0.61, 0.71]) in the ratio Rc,t. The fitted line is
quite similar in shape to the loess curve fitted to the data, shown by the red line in
Fig. 3.2.
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Figure 3.2: Observed and estimated relation between the ratio of neonatal and non-
neonatal deaths and under-five mortality. Observations log rc,i are displayed with
grey dots and plotted against logUc,t[c,i]. The Loess fit to the observations is shown
in red, and the estimated relation (function f(Uc,t)) is added in blue (dashed line).
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3.3.3 Country-specific multiplier

This section details how the country-specific multiplier Pc,t is modeled. Although
there is a relationship between the neonatal ratio and U5MR at the aggregate level,
the relationship between Rc,t and Uc,t is likely to differ by country. For instance,
some countries may have higher or lower levels of NMR than what is expected given
the level of U5MR. In addition, within a particular country, the relationship between
NMR and U5MR may not be constant over time, so the model should be flexible
enough to also allow for temporal changes. This is the purpose of the country-specific
term Pc,t in Eq. 3.1: to capture data-driven differences across countries and also
within countries over time.

The country-year multiplier Pc,t was modeled on the log scale with a basis-splines
(B-splines) regression model:

log(Pc,t) =
Kc∑
k=1

Bc,k(t)αc,k,

where Bc,k(t) refers to the kth B-spline function for country c evaluated at time t
and αc,k is the k-th splines coefficient for country c. The B-splines Bc,k(t), which
are illustrated in Fig. 3.3a for Nigeria, were constructed using cubic splines. In
the figure, each Bc,k(t) is represented in a different color at the bottom. Spline
placement is determined by knot points, indicated by gray dotted vertical lines.
Knot points occur where the spline function is at its maximum. Country c has
a total of Kc knot points defined by t1 < t2 < · · · < tKc . Kc is the number of
B-splines needed to cover the period up to 2015 and back to 1990 or the start of
the observation period, whichever is earlier. In terms of knot spacing, the same
interval length of 2.5 years was used in each country regardless of the number or
spacing of observations. The consistent interval length was chosen to be able to
exchange information across countries about the variability in changes between spline
coefficients. Knot placement was determined by placing one knot half an interval
before the most recent observation year in each country. Because the most recent
observation year differs by country, the splines Bc,k(t) also differ by country.

The fitting of the country-specific multiplier logPc,t for Nigeria is also illustrated in
Fig. 3.3a. The splines regression for logPc,t captures any pattern in the data on the
log scale once the global relation between ratio and U5MR, as expressed by f(Uc,t),
have been taken into account. As such, the y-axis in Fig. 3.3a refers to, on the log
scale, the difference between the observed data points and their expected level given
the U5MR, i.e. log(rc,i) − log f(Uc,t[c,i]). The different colored dots connected with
lines represent residual data points from different sources available for Nigeria. The
estimated logPc,t at a particular time point t is given by a linear combination of the
Bc,k at point t and the estimated coefficients αc,k.

The splines regression model for log(Pc,t) is very flexible in order to be able to capture
patterns in the data. However, in situations where the data are sparse, limited
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information on a subset of the spline coefficients αc,k can result in an implausible
fit. We impose smoothness on the fits by penalizing differences in adjacent spline
coefficients αc,k. This is referred to Penalized splines, or P-splines regression (Eilers
and Marx (1996), Currie and Durban (2002)).

In the P-splines regression, spline coefficients are modeled as a combination of an
overall mean value λc and Kc − 1 first-order differences

εc = (αc,2 − αc,1, αc,3 − αc,2, . . . , αc,Kc − αc,Kc−1).

The λc can be interpreted as a country-specific intercept, representing deviations in
the level from the overall global relationship between Rc,t and Uc,t. We model the
λc’s centered at zero:

λc ∼ N(0, σ2
λ).

The εc term represents fluctuations around the country-specific intercept. These
fluctuation terms allow for the Pc,t term to be influenced by the changes in the level
of the underlying data. The fluctuations are modeled as:

εc,k ∼ N(0, σ2
εc). (3.3)

The variance σ2
εc essentially acts as a country-specific smoothing parameter. The

smoothness of a particular country’s trajectory depends on the regularity of the
trend in the data and also the measurement errors associated with the data points.
As σ2

εc decreases, the fluctuations go to zero, and the αc,k’s become a country-specific
intercept with no change over time. The σ2

εc ’s are modeled hierarchically:

log(σ2
εc) ∼ N(χ, ψ2

σ), (3.4)

where eχ can be interpreted as a ‘global smoothing parameter’ and ψ2
σ reflects the

across-country variability in smoothing parameters. The hierarchical structure of the
model allows information on the amount of smoothing to be shared across countries.
The countries with fewer data points and thus less information about the level of
smoothness borrow strength from countries with more observations.

The effect of including the country-specific term is shown in Fig. 3.3b for Nigeria.
The available data series are shown by the points, and the shaded area around those
points represents their associated sampling error. The blue solid line illustrates the
fit from the global relation, i.e. f(Uc,t). The green line illustrates from the global
relation and country-specific intercept, i.e. a combination of f(Uc,t) and λc. Note
that this line has the same shape as the blue line, but has been lowered. The red
solid line shows the final fit after inclusion of the fluctuations i.e. f(Uc,t), λc and εc.
This allows the fitted trajectory to be more influenced by the data.

The choice to model the country-specific terms Pc,t using P-splines regression was
motivated by previous work on mortality modeling and forecasting (e.g. Alkema and
New (2014), Currie et al. (2004); D’Amato et al. (2011)). In practice, there are many
different ways to model and smooth the country-specific term Pc,t. For example, Pc,t
could have been modeled using an autoregressive or autoregressive-moving average
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(a) Estimate of logPc,t for Nigeria using splines regression. The y-axis is (on log scale)
the difference between the observed data points and the expected level (given by f(Uc,t)).
The different colored dots/ lines represent data from different sources available. Each
basis spline is represented in a different color at the bottom of the figure. These have
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(b) The three components of fit: The blue dashed line illustrates the fit from the global
relation, i.e. f(Uc,t). The green dashed line illustrates from the global relation and country-
specific intercept, i.e. a combination of f(Uc,t) and λc. The red solid line shows the final
fit after inclusion of the fluctuations i.e. f(Uc,t), λc and εc.

Figure 3.3: Illustration of splines regression and three fit components for Nigera
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(ARMA) process, similar to the modeling approaches for global maternal mortality
(Alkema et al. (2016)) and contraceptive prevalence (Alkema et al. (2013)). How-
ever, the use of a splines basis, which results in a regression function that is twice
differentiable, gives estimates of Pc,t that are relatively smooth compared to an
ARMA-based approach. In addition, the P-splines regression approach was chosen
for consistency with the current model used by IGME to estimate U5MR.

3.3.4 Data model

Eq. 3.2 indicates that the observed ratio rc,i is modeled on the log-scale as the true
ratio Rc,t plus some error term δc,i. We model this error term δc,i differently based
on the source of the data of the i-th observation. The model imposed on δc,i is called
the ‘data model’.

VR data

For VR data series, the error term δc,i is modeled as

δc,i ∼ N(0, τ 2
c,i),

where τc,i is the stochastic standard error. These are obtained based on standard
assumptions about the distribution of deaths in the first month of life. Details are
given in Appendix B1. Note that SVR data are modeled the same as VR data, but
the τc,i term refers to the sampling error.

Non-VR data

For the non-VR data, the error term δi is modeled as

δc,i ∼ N(0, ν2
c,i + ω2

s[c,i]),

where νc,i is the sampling error and ωs[c,i] is non-sampling error of the series type s
of observation i in country c. Non-sampling error variances are estimated separately
for each of the series types listed in Table 3.1: DHS, Other DHS, MICS, and Others.
The distinction by series type was made to allow for the possibility that a particular
survey may be run in a similar fashion across different countries, and as such may
display similar characteristics in terms of non-sampling error.

Sampling error variances were reported for the majority of the non-VR observations
(see Table 3.1). For those observations (c, i) where sampling error was not reported,
it was imputed based on the median value of all observed sampling errors of series
type s[c, i] within the group-size category of country c. A country was categorized
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as ‘small’ if the annual number of births was in the lowest quartile of all countries
(corresponding to a maximum of around 25,000 births per year). The distinction
between small and other-sized countries was made due to the differences in observed
standard errors. The imputed values for missing standard errors for each size cate-
gory and series type are shown in Table 3.2.

Table 3.2: Values imputed for missing standard errors for survey data by series and
country size category.

Country size category
Series type Other Small
DHS 0.13 0.26
MICS 0.16 0.21
Other DHS 0.14 0.24
Others 0.16 0.22

3.3.5 Obtaining the final estimates

The model described above produces estimates of log (Rc,t). The corresponding
estimate of Nc,t is obtained by transforming the ratio and combining it with Uc,t:

Nc,t = logit−1 (log (Rc,t)) · Uc,t,

because

logit

(
Nc,t

Uc,t

)
= log

(
Nc,t

Uc,t −Nc,t

)
= log(Rc,t).

The ratio estimates are recombined with IGME estimates of Uc,t. However, using
only the median estimates of Uc,t does not take into account the level of uncertainty
in the Uc,t estimates and correspondingly under-represents the level of uncertainty
in the Nc,t. As such, the Nc,t estimates were generated by randomly combining
posterior draws of logit−1(log (Rc,t)) and of Uc,t. The result is a series of trajectories
of Nc,t over time. The best estimate is taken to be the median of these trajectories
and the 5th and 95th percentiles are used to construct 90% credible intervals.

3.3.6 Computation

The hierarchical model detailed in the previous sections is summarized in Appendix
A.1. The model was fitted in a Bayesian framework using the statistical software R.
Samples were taken from the posterior distributions of the parameters via a Markov
Chain Monte Carlo (MCMC) algorithm. This was performed through the use of
JAGS software Plummer (2003).

In terms of computation, three chains with different starting points were run with a
total of 20,000 iterations in each chain. Of these, the first 10,000 iterations in each
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chain were discarded as burn-in and every 10th iteration after was retained. Thus
1,000 samples were retained from each chain, meaning there were 3,000 samples
retained for each estimated parameter.

Trace plots were checked to ensure adequate mixing and that the chains were past the
burn-in phase. Gelman’s R̂ Gelman and Rubin (1992) and the effective sample size
were checked to ensure a large enough and representative sample from the posterior
distribution. The value of R̂ for all parameters estimated was less than 1.1.

3.4 Results

Estimates of NMR were produced for the 195 UN member countries for at least the
period 1990–2015, with periods starting earlier if data were available. In this section
some key results are highlighted. Results are also compared to those produced by
the method previously used by the IGME.

The estimated global relation (Table 3.3) suggests that the relationship between the
ratio and U5MR is constant up to a U5MR of 34.2 (90% CI: [33.7, 34.5]) deaths per
1,000 births, the ratio of neonatal to other child mortality is constant at around 1.20
(90% CI: [1.03, 1.25]). This is equivalent to saying the proportion of deaths under-
five that are neonatal is constant at around 54% (90% CI: [50, 55]). Above a U5MR
of 34, the estimated coefficient suggests that, at the global level, a 1% increase in
the U5MR is associated with a 0.65% (90% CI: [0.61, 0.70]) decrease in the ratio.

Table 3.3: Estimates for parameters in global relation

Median 90% CI
β0 0.18 (0.03, 0.22)
β1 -0.65 (-0.70, -0.61)
θ 34.2 (33.7, 34.5)

3.4.1 Results for selected countries

The fits for the four countries illustrated in Section 2 are shown in Fig. 3.4. In
the figures, the blue dashed line represents the expected level of NMR given the
country’s U5MR. The solid red line and associated shaded area represents model
estimates and 90% uncertainty intervals. For Australia (Fig. 3.4a), the estimates
follow the data closely, given the small uncertainty levels around the data. There
has been a steady decrease in NMR since 1970. In earlier time periods, the level of
NMR was higher than the expected level (that is, the solid red line is higher than
the blue dashed line). This switched in the 1980s and 1990s, and more recently, the
estimated and expected levels are close.
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For Sri Lanka (Fig. 3.4b), the estimates of NMR are informed by the combination
of VR and survey data. The VR has a greater influence on the trajectory because of
the smaller associated standard errors. In the earlier years, the uncertainty intervals
around the estimate are larger due to the higher uncertainty of the data. There
is a small spike in the estimate in the year 2004, which is a tsunami-related crisis
adjustment.

No VR data were available for Iraq (Fig. 3.4c), and the larger sampling errors around
the survey data have led to relatively wide uncertainty intervals over the entire
period. This is in contrast to Sri Lanka, where uncertainty intervals became more
narrow once VR data were available. The larger sampling errors in Iraq have also
led to a relatively smooth fit (high value of the smoothing parameter), and the shape
of the trajectory essentially follows the shape of the expected line.

For Vanuatu (Fig. 3.4d), the trajectory is driven by the expected trajectory given
Vanuatu’s trend in U5MR. The available data determine the country-specific inter-
cept for Vanuatu, which is lower than the expected level. However, the relative
absence of data for this country means that the uncertainty around the estimates is
high.

3.4.2 Outlying countries

The set-up of the model allows for the comparison of the estimated level of NMR
to the expected level of NMR given the U5MR. The expected level as predicted
by U5MR is an estimation with f(Uc,t) only (without the country-specific effect,
Pc,t). We define a country to be outlying if the the estimated NMR in 2015 was
significantly higher or lower than the expected level by at least 10%. That is, the
ratio of estimated-to-expected was at least 1.1 or less than 0.9 in 2015, and the 95%
credible interval does not contain 1. Fig. 3.5 illustrates these countries, and the
values of estimated-to-expected in 1990 and 2015.

Countries that have a lower-than-expected NMR include Japan, Singapore and South
Korea, and some African countries such as South Africa and Swaziland. Countries
that have a higher-than-expected NMR include several Southern Asia countries,
such as Bangladesh, Nepal, India and Pakistan. The former Yugoslavian countries
Croatia, Bosnia and Herzegovina, and Montenegro also have higher-than-expected
NMR.

Fig. 3.6 shows estimates through time for two contrasting countries, Japan, which
has lower-than-expected NMR and India, with higher-than-expected NMR. In each
of the figures, the red line represents the estimated fitted line (with 90% CIs). The
blue line represents the expected level, which can be interpreted as the expected level
of NMR in a particular year as predicted by the level of U5MR. The gap between
the expected and estimated NMR is being sustained through time for Japan, and
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Figure 3.4: Observed and estimated neonatal mortality (deaths per 1,000 births) for
selected countries. The blue dashed line represents the expected level of NMR given
the country’s U5MR. The solid red line and associated shaded area represents model
estimates and 90% uncertainty intervals.
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Figure 3.5: Ratio of estimated NMR to the expected NMR given U5MR for outlying
countries. A country is outlying if the the estimated NMR in 2015 was significantly
higher or lower than the expected level given U5MR by at least 10%. The dot shows
the median estimate, and the lines give the 95% uncertainty interval.

has widened since the 1970s. The change in NMR levels for India has been dramatic.
Not only is the current NMR around 30% of what it was in 1970, the discrepancy
between the expected and estimated levels has decreased through time.

3.4.3 Smoothing

The smoothness of the fluctuations σ2
εc is modeled hierarchically, assuming a log-

normal distribution with a mean parameter χ (see Eq. 3.4). Smoothing parameters
can also be expressed in terms of precision, 1/σ2

εc ; Fig. 3.7 shows the distribution
of estimated precisions for all countries. The larger the value of the smoothing
parameter (precision), the smoother the fit. The estimate of the mean smoothing
parameter was around 59 (90% CI: [43, 79]).

Larger values of smoothing parameters were estimated for countries that had no
available VR data but many observations from survey data. Senegal, which had
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Figure 3.6: Two example outlying countries. The level of NMR is lower than the
expected as predicted by U5MR in Japan, while the level of NMR in India is higher
than expected.

the highest smoothing parameter at a value of 582 (90% CI: [113, 4000]), had a
total of 55 observations over a 45-year period (Fig. 3.8a). The effect of having
many observations with relatively large standard errors is a relatively smooth fit. In
contrast, one of the smallest smoothing parameters occurred for Cuba, at around 4
(90% CI: [2, 7]). Cuba is a country with good quality VR-data, which has relatively
small standard errors. This means the fitted line follows the data more closely (Fig.
3.8b).

3.4.4 Comparison with existing IGME model

It is useful to compare the results of this new model to the NMR results from the
model previously used by the IGME. The previous model is described in Oestergaard
et al. (2011). In this method, NMR estimates for countries with complete VR series
are taken directly from the data. For countries without a complete VR series, a
multilevel model is fit using U5MR as a predictor, with a quadratic relationship
specified. In addition, the model allows for country-level and region-level random
effects:

log(NMRc,t) = α0 + β1 log(Uc,t) + β2(logUc,t)
2︸ ︷︷ ︸

log(f(Uc,t))

+αcountry[i] + αregion[i]︸ ︷︷ ︸
log(Pc,t)
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Figure 3.8: Example countries with relatively high smoothing (Senegal) and rela-
tively low smoothing (Cuba).
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For comparison, the new model is:

log(Rc,t) = β0 + β1 · (log(Uc,t)− log(θ))[log(Uc,t)>log(θ)]︸ ︷︷ ︸
log(f(Uc,t))

+
Kc∑
k

Bc,k(t)αc,k︸ ︷︷ ︸
log(Pc,t)

The existing model is similar in that it estimates NMR as a function of U5MR, plus
some additional country-specific effect, i.e. there is an f(Uc,t) and a Pc,t. However,
one of the main differences between the two models is that for countries with non-VR
data, estimates from the new model can be driven by the data, while the previous
model is restricted to follow the trajectory of the U5MR in a particular country,
plus or minus some country-specific intercept. The other differences between the
two models are highlighted in Table 3.4.

Table 3.4: Comparison of two models

IGME 2014 New model
Model used for non-VR countries Model used for all countries
Model relation between NMR and
U5MR

Model relation between ratio and
U5MR

f(Uc,t) is quadratic f(Uc,t) is linear with changing slope
Pc,t is a country and region-specific in-
tercept

Pc,t is a country-specific intercept +
fluctuations

Country-specific effect constant Country-specific effect can vary
Only considers sampling error Includes sampling and non-sampling

error

Fig. 3.9 compares the results of four countries to the estimates from the current
IGME model. The estimates from the previous IGME model generally follow the
same trajectory as the expected line, as determined by U5MR patterns, and is shifted
up or down depending on the estimate of the country-specific effect. In contrast, the
estimates from the new model follow the data more closely. The fluctuation part
of the country-specific multiplier Pc,t allows the estimated line to move above or
below the expected line, as is the case with the Dominican Republic (Fig. 3.9d). In
addition there is generally less uncertainty around the estimates in the new model,
especially in periods where there are data.

3.4.5 Model validation

Model performance was assessed through an out-of-sample model validation exercise.
In creating a training dataset, rather than removing observations at random, the
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Figure 3.9: Estimated neonatal mortality rate(deaths per 1,000 births) for four exam-
ple countries; new versus IGME 2014 model. The green dashed line and associated
shaded area shows the model estimates from the 2014 IGME model.
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process of removing data was chosen to emulate the way in which new data may be
received Alkema et al. (2012). Mortality databases are updated as least once a year
as more data become available. These updates may include not only data for the
most recent time period but may also include, for example, retrospective estimates
from a survey. Ideally the model should not be sensitive to updates of historical
data so estimates do not change from year to year.

The training set was constructed by leaving out the most recent survey data series,
and for countries with only one series (including VR countries), the most recent 20%
of data observations were removed. The resulting training data set was made of
around 80% of the total data available.

For the left-out observations, the absolute relative error is defined by

ei =
|rc,i − r̃c,i|

r̃c,i
,

where r̃c,i denotes the posterior median of the predictive distribution for a left-out
observation rc,i based on the training set. Coverage is defined by

1

N

∑
1[rc,i ≥ lc[i](t[i])]1[rc,i < rc[i](t[i])]

where N is the the total number of left-out observations considered and lc[i](t[i])
and rc[i](t[i]) the lower and upper bounds of the predictions intervals for the ith
observation. Coverage at the 80, 90 and 95% levels was considered.

The validation measures were calculated for 100 sets of left-out observations, where
each set consisted of a random sample of one left-out observation per country. Table
3.5 shows the median and standard deviation of each validation measure. The median
absolute relative error between the observations and estimated value was less than
10%, and the coverage of the prediction intervals is approximately as expected.

Table 3.5: Validation measures, left-out data

Expected Median Std. Dev
Mean absolute relative error - 0.09 0.02
80% coverage 0.80 0.84 0.02
90% coverage 0.90 0.92 0.02
95% coverage 0.95 0.96 0.02

A similar set of validation measures was calculated comparing the model estimates
based on the training data set with the model estimates based on the full data set.
The absolute relative error is defined as

ei =
|r∗c,i − r̃c,i|

r∗c,i
,

where r∗c,i and r̃c,i denote the posterior median of the predictive distribution for
the observation rc,i based on estimates using the full and training dataset, respec-
tively. Coverage refers to what proportion of the posterior median estimates from
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the training dataset fall within the 80%, 90% and 95% bounds of estimates using
the full dataset.

Results in Table 3.6 are reported for estimates up to (and including) 2005, and post
2005. Model performance is better prior to 2005. This is due to the most recent data
being removed, so the data prior to 2005 would be very similar between training and
test sets. However the post-2005 measures show estimates are reasonably consistent
between the reduced and full datasets.

Table 3.6: Validation measures, model comparison

Expected ≤ 2005 > 2005
Mean absolute relative error - 0.05 0.09
80% coverage ≥ 0.80 0.90 0.77
90% coverage ≥ 0.90 0.94 0.84
95% coverage ≥ 0.95 0.96 0.90

3.5 Discussion

A new model was introduced for estimating neonatal mortality rates. The model can
be expressed as the product of an overall relationship with U5MR and a country-
specific effect. The overall relationship with U5MR is a simple linear function,
while the country-specific effect is modeled through P-spline regression as a country-
specific intercept plus fluctuations around that intercept.

Estimates of the NMR were produced for 195 countries, spanning at least the period
1990–2015. The model appears to perform well in a wide variety of situations where
extent and type of data available varies. In many developed countries, where VR
data series are complete and uncertainty around the data is low, NMR estimates
follow the data closely. On the other hand, where there is limited data available or
if uncertainty around the data is high, estimates are more influenced by the trends
in U5MR.

The model was fit within a Bayesian hierarchical framework, allowing information
about trends in NMR to be exchanged across countries. Through the hierarchical
structure, the smoothness in trends in NMR for countries with few data available,
or highly uncertain data, is partially informed by countries with more reliable data.
While this setup has the potential to introduce biases in country-specific estimates,
it allows estimates with reasonable amounts of uncertainty to be produced for all
countries, even in the absence of reliable data. Validation exercises did not highlight
any problems with bias, suggesting that estimates and uncertainty produced by the
model are reliable in a variety of data situations.

Model estimates were compared to estimates from the existing IGME model. The
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notable advantage of this model is that trends in NMR for countries without VR data
are driven by the data itself, rather than just reflecting trends in U5MR, as is the
case with the existing model. Another advantage of this model is that it is along the
same methodological lines as the current model used by IGME to estimate U5MR
Alkema and New (2014). Estimates produced by this model will help to monitor a
country’s progress in reducing neonatal mortality and reaching the targets set in the
Sustainable Development Goals.

There are several avenues worth investigating in further research. The choice of
a linear function with changing slope for f(Uc,t) was a data-driven decision, based
on the observed relationship in Fig. 3.2. It would be interesting to compare the
performance of models which have a functional form that draws upon existing de-
mographic models. For example, an extended version of the Brass relational logistic
model Brass (1971) and Siler models Siler (1983) can be used to predict survival in
the first months of life, as a function of the survivorship at older ages.

The potential for bias in estimates from survey data is always a concern. Bias may
occur from interviewing a sample that is not representative of the overall population,
from selective omission of answers, and can even be influenced by the length of the
survey administered Bradley (2015). The data model included an estimation of an
overall level of non-sampling error for each survey type, which may account for some
random reporting errors. However, there is scope to further extend the data model
to try to better estimate potential bias in survey data estimates.

The focus of this paper was on the methodology. Future work will also focus on
interpretation of results. More investigation is needed on what is potentially causing
NMR to be higher- or lower-than expected in outlying countries and whether these
are real effects or artifacts of data issues. This distinction is an important one and
will become even more so as the focus on child mortality continues to shift towards
the early months of life.
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Chapter 4

Deaths without denominators:
using a matched dataset to study
mortality patterns in the United
States

4.1 Introduction

To understand national trends in mortality over time, it is important to study differ-
ences by demographic, socioeconomic and geographic characteristics. For example,
the recent stagnation in life expectancy at birth in the United States is largely a
consequence of worsening outcomes for males in young-adult age groups (Kochanek
et al. (2017)). It is essential to understand differences across groups to better inform
and target effective health policies. As such, studying mortality disparities across
key subpopulations has become an important area of research. Recent studies in
the United States have looked at mortality inequalities across income (Chetty et al.
(2016); Currie and Schwandt (2016)), education (Hummer and Lariscy (2011); Mas-
ters et al. (2012); Hummer and Hernandez (2013)) and race (Murray et al. (2006);
Case and Deaton (2017)), finding evidence for increasing disparities across all groups.

One issue with studying mortality inequalities, particularly by socioeconomic status
(SES), is that there are few micro-level data sources available that link an individual’s
SES with their eventual age and date of death. The National Longitudinal Mortal-
ity Study (NLMS) (Sorlie et al. (1995)); National Health Interview Survey Linked
Mortality Files (NCHS (2005)); and the Health and Retirement Study (Juster and
Suzman (1995)) are important survey-based resources that contain SES, health and
mortality information. However, these data sources only contain 10,000-250,000
death records over the period of study, so once the data are disaggregated by year,
demographic and SES characteristics, the counts can be quite small and thus uncer-
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tainty around mortality estimates is high.

There has been an increasing amount of mortality inequalities research that makes
use of large-scale administrative datasets; for example, the use of Social Security
(SSA) earnings and mortality data (Waldron (2007)) and income, tax and mortality
data from the Internal Revenue Service (IRS) (Chetty et al. (2016)). However, while
large in size, these administrative datasets lack richness in terms of the type of infor-
mation available. The SSA and IRS datasets only include information about income,
and not other characteristics such as education or race. In addition, these datasets
are not publicly available, which makes validation, reproducibility and extension of
the research difficult.

In this paper, a new dataset for studying mortality disparities and changes over time
in the United States is presented. The dataset, termed ‘CenSoc’, uses two large-scale
datasets: the full-count 1940 Census to obtain demographic, socioeconomic and
geographic information; and that is linked to the Social Security Deaths Masterfile
(SSDM) to obtain mortality information. The full-count 1940 census has been used
in many areas of demographic, social and economic research since it has been made
digitally available (e.g. income inequality (Frydman and Molloy (2011)); education
outcomes (Saatcioglu and Rury (2012)); and migrant assimilation (Alexander and
Ward (2018))). The SSDM, which contains name, date of birth and date of death
information, has been used to study mortality patterns, particularly at older ages
(Hill and Rosenwaike (2001); Gavrilov and Gavrilova (2011)). The resulting CenSoc
dataset1 contains over 7.5 million records linking characteristics of males in 1940
with their eventual date of death.

As a consequence of the census and SSDM spanning two separate time points, the
mortality information available in CenSoc has left- and right-truncated deaths by
age, and no information about the relevant population at risk at any age or cohort.
For example, the cohort born in 1910 is observed at age 30 in the 1940 census and has
death records for ages 65-95 (observed in the period 1975-2005); however, there is not
information on the number of survivors in the same period. Thus, it is not straight-
forward to use mortality information in CenSoc to create comparable estimates over
time. As such, this paper also develops mortality estimation methods to better use
the ‘deaths without denominators’ information contained in CenSoc. Bayesian hi-
erarchical methods are presented to estimate truncated death distributions over age
and cohort, allowing for prior information in mortality trends to be incorporated
and estimates of life expectancy and associated uncertainty to be produced.

The remainder of the paper is structured as follows. Firstly, the data sources and
method used to create the CenSoc dataset are described. The issues with using
CenSoc to estimate mortality indicators are then discussed. Two potential methods
of mortality estimated are presented: a Gompertz model, and a principal components
approach. These models are evaluated based on fitting to United States mortality
data available through the Human Mortality Database. The principal components

1Version 1 available at: https://censoc.demog.berkeley.edu/.
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regression framework is then applied to the CenSoc data to estimate mortality trends
by education and income. Finally, the results and future work are discussed.

4.2 The CenSoc dataset

The CenSoc dataset was created by combining two separate data sources: the 1940
census, and the Social Security Deaths Master file (SSDM). The two data sources
were matched based on unique identifiers of first name, last name and age at the
time of the census. Due to issues with potential name changes with marriage, the
matching process is restricted to only include males.

As described below, the census observes individuals in 1940, and the SSDM observes
individuals in the period 1975-2005. Therefore, by construction, the CenSoc dataset
can only contain individuals who died between 1975 and 2005.

4.2.1 Data

The demographic and socioeconomic data come from the U.S. 1940 census, which
was completed on 1 April 1940. The census collected demographic information such
as age, sex, race, number of children, birthplace, and mother’s and father’s birth-
place. Geographic information, including county and street address, and economic
information such as wages, non-wage income, hours worked, labor force status and
ownership of house was also collected. The 1940 census had a total of 132,164,569
individuals, 66,093,146 of whom were males.

The 1940 census records were released by the U.S. National Archives on April 2,
2012 (National Archives (2018)). The original 1940 census records were digitized by
Ancestry.com and are available through the Minnesota Population Center (MPC).
The MPC provides a de-identified version of the complete count census as part of the
IPUMS-USA project (Ruggles et al. (2000)). However, names and other identifying
information are not available from the IPUMS website. Access to the restricted 1940
census data was granted by agreement between UC Berkeley and MPC. The data are
encrypted and can only be accessed through computers or servers on the Berkeley
demography network.

Information on the age and date of death was obtained through the SSDM. This
contains a record of all deaths that have been reported to the Social Security Ad-
ministration (SSA) since 1962. The SSDM is used by financial and government
agencies to match records and prevent identity fraud and is considered a public doc-
ument under the Freedom of Information Act. Monthly and weekly updates of the
file are sold by the National Technical Information Service of the U.S. Department of
Commerce. A copy of the 2011 version was obtained through the Berkeley Library
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Figure 4.1: Comparison of the number of deaths at ages 55+ in the SSDM (dotted
line) and HMD (solid line), 1940-2011. While deaths in the earlier and later periods
are underreported in the SSDM, the period 1975-2005 has close to full coverage.

Data Lab.

The SSDM contains an individual’s first name, last name, middle initial, social
security number, date of birth and date of death. The 2011 file has 85,822,194 death
records. The death dates span the years 1962-2011. There are 76,056,377 individuals
in the SSDM who were alive at the time of the 1940 census.

Completeness of death reporting in the SSDM is lower pre-1970s, when a substantial
proportion of the population did not pay into the social security system. Deaths are
more likely to be reported at older ages, when a person was more likely to be receiving
social security benefits (Huntington et al. (2013)). Previous studies suggest more
than 90% completeness of deaths over age 65 reported in the SSDM since 1975,
compared to vital statistics sources (Hill and Rosenwaike (2001)).

To check the coverage of SSDM at the population level, the total number of deaths
by year reported in the SSDM was compared to those in the Human Mortality
Database (HMD) (HMD (2018)). As Figs. 4.1 and 4.2 illustrate, the completeness
of the SSDM file is around 95% for ages 55+ in the period 1975-2005. As such, the
data used to create CenSoc is restricted to only include deaths from SSDM that
occurred between the period 1975-2005.

4.2.2 Data preparation

For the Census dataset, the following pre-processing steps were done:
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Figure 4.2: Ratio of deaths at ages 55+ in the SSDM to HMD, 1970-2011. The ratio
is around 95% over the period 1975-2005.

1. Convert all name strings to upper case.

2. Remove the middle name. The original first name variable contains both first
and middle name. The name string is split and only the first name is used for
matching.

3. Remove rows where either the first or last name are just question marks or
blank.

4. Create a match key by concatenating last name, first name and age.

5. Subset the data to only include males.

For the social security deaths files, there are three raw files in which rows contain
a continuous string of characters. For each of the three files, each row is split into
social security number, last name, first name, middle initial, date of death and date
of birth. The three files are then bound together to create one large file.

The following pre-processing steps are done:

1. Remove any trailing white space from first and last names

2. Split date of birth and date of death to get day, month and year of birth and
death.

3. Calculate age of person at census. The age is calculated based on knowing the
date of birth and that the 1940 census was run in April.

4. Remove any deaths where the date of birth is missing
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5. Remove any deaths of people who born after 1940

6. Remove any deaths before 1975

7. Create a match key by concatenating last name, first name and census age.

4.2.3 Match Method

The two datasets are matched based on exact matches of first name, last name and
age. For example, a match key could be EYREJANE18. Census records with a key that
is not found in the social security deaths database are not matched. The specific
steps are:

1. Load in the cleaned census and social security datasets.

2. Remove duplicate keys.

3. Merge the datasets based on key.

Due to file size, the matching step is done separately for each census file in each
U.S. state. The resulting national dataset is created by:

1. Loading and binding all state matched files.

2. Removing all rows that have duplicated keys.

4.2.4 Resulting Dataset

A total of 7,564,451 individual males were matched across the census and SSDM to
create the CenSoc dataset. As the 1940 full count census had 66,093,146 males, this
corresponds to a raw match rate of 11.4%. A total of 43,881,719 males in the census
had unique keys; as such the match rate on unique keys was 17.2%.

The raw match rates differ markedly by cohort/age at census. As Table 1 illustrates,
match rates are highest for 15-40 year olds. This corresponds to cohorts born in
1900-1925.
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Table 4.1: CenSoc match rates by age group. For a particular age group, the %
matched is the number of males in CenSoc divided by males in the 1940 census. The
% unique matched is the CenSoc number divided by males with a unique key in the
1940 census.

Census age % matched % unique matched

0-4 9.1 14.4
5-9 11.6 18.4
10-14 14.5 22.7
15-19 17.0 26.3
20-24 18.2 27.4
25-29 18.0 26.8
30-34 16.6 24.8
35-39 13.9 20.7
40-44 10.8 16.0
45-49 7.4 11.0
50-54 4.2 6.2
55-59 1.7 2.6
60-64 0.4 0.7
65-69 0.1 0.1
70-74 0.0 0.0
75+ 0.0 0.0

These raw match rates do not take into consideration mortality. Some individuals
died before 1975, and some are still alive after 2005; neither appears in the SSDM.
In particular, the low rates at older ages are mostly due to the fact that people of
that age in the census have already died by 1975. Thus we would never expect to
get match rates of 100% given we only observe a truncated window of deaths.

The matched CenSoc data and unmatched census records were also compared based
on a set of socioeconomic variables, to understand the relative representation of key
socioeconomic groups. The CenSoc dataset contains a slightly higher proportion
of people who completed high school; own their own home; is the household head;
living in urban areas; and are white (Fig. 4.3). These differences are relatively small,
but consistently show CenSoc contains more advantaged people. There are several
potential reasons for this. Firstly, it could be that more advantaged individuals are
less likely to die before 1975, and so more likely to be observed in the window of
SSDM. Secondly, it could be that more advantaged individuals are more likely to be
matched, given they survived to 1975. This could be because they are more likely
to have a social security number, and so be included in the dataset, or are less likely
to be matched due to data quality issues (nicknames, misspelled names, etc.).

While there are small differences across the matched and unmatched datasets, these
are expected given different mortality patterns across subgroups. The somewhat
selective nature of the matched CenSoc reocrds means that mortality estimates might
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Figure 4.3: Comparison of socioeconomic characteristics of matched and unmatched
datasets. The red line is the proportion of each age group with that characteristics in
the CenSoc dataset. The blue line is the same proportion for unmatched individuals
in the 1940 census.

be slightly lower than in the general population. For the study of subpopulations,
however, it matters less if the overall data set is representative by subgroup, as long
as the within-group CenSoc sample is broadly representative of that same group in
the overall population.

4.3 Issues with using CenSoc to study mortality

patterns

The CenSoc dataset contains individual records that link date of birth and death with
other demographic and socioeconomic information. it is a useful resource to study
patterns in mortality inequalities over time. However, as a consequence of the CenSoc
data being constructed from two different data sources available in different years,
it is not necessarily straightforward to calculate unbiased estimates of mortality
differences by subgroup and over time. This section describes the issue and motivates
the methods for mortality estimation described in later sections.

60



4.3. ISSUES WITH USING CENSOC TO STUDY MORTALITY PATTERNS

4.3.1 If complete death records were available

Instead of the CenSoc dataset, imagine if we could track every person in the 1940
census until they died, so the available dataset contained full records of death for all
persons. If this were the case, then we could use standard demographic and survival
analysis approaches to calculate key mortality indicators by subpopulation.

If perfect deaths data existed, we would have a complete record of the number people
by cohort (who were alive in the 1940 census) and the ages at which they died. For
extinct cohorts, these death counts could be used to construct cohort lifetables and
mortality indicators such as life expectancy or variance in age of death could be
compared. Lifetables could also be constructed by key socioeconomic groups such
as income, race or education, and change in mortality tracked over cohort.

For cohorts that are not yet extinct, these data would be right-censored, i.e. the
last date of observation (in this fictitious dataset, this would be 2018) is before the
observed time of death. However, standard techniques from survival analysis could
be used to measure mortality indicators. For example, non-parametric techniques
like the Kaplan-Meier estimator could be used to compare empirical survival curves,
and differences in survival across groups could be estimated in multivariate setting
using Cox proportional hazard models (Hougaard (2012); Wachter (2014)).

4.3.2 Characteristics of CenSoc data

However, we do not have complete records of dates of death for all persons in the
1940 Census. Instead, after observing the full population in 1940 (the blue line in
the Lexis diagram, Fig. 4.4), we observe deaths only over the period 1975-2005 (the
red shaded area in Fig. 4.4). This creates issues for the estimation of mortality
indicators, for two main reasons: firstly, the deaths data available is both left- and
right-truncated, and secondly, we do not observe the population at risk of dying at
certain ages.

As deaths are only observed over the period 1975-2005, the number of people who
died before 1975, and the number who are still yet to die after 2005, are unknown.
For the older cohorts, many have already died before 1975. The younger cohorts,
e.g. those born in 1940, will only have reached relatively young ages by 1975, so
many are still yet to die.

Fig. 4.5 illustrates the left- and right-truncation in the CenSoc dataset. Each colored
line is a different cohort. For each cohort a different set of ages is available; for
example, for the 1920 cohort we observe deaths from age 55. In contrast, for the 1890
cohort we only observe deaths from age 85. Thus, methods of mortality estimation
need to take the differing truncation into account, and adjust accordingly to make
measures comparable over time.
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Figure 4.4: Available information for CenSoc. Socioeconomic information is ob-
served in the 1940 census (blue line); deaths are observed over 1975-2005 in the
SSDM (red area). We only consider deaths above age 55, indicated by the dashed
box.
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Figure 4.5: Number of deaths observed by age and cohort in CenSoc. Each line is a
different cohort. Every cohort has a different set of observed ages available.

While truncation of observed deaths makes mortality estimation across cohorts more
difficult, it is still possible with existing techniques. For example, techniques such as
Kaplan-Meier and Cox proportional hazards regression are still possible with trun-
cated and censored observations (Hougaard (2012)). If parametric models are used,
truncation can be incorporated into the death density and survivorship functions
(Nelson (2005)). However, it is the combination of truncated observations with the
fact that no denominators are observed that makes estimation more difficult.

In the period 1975-2005, we only observe deaths, not the total population. Not all
persons in the 1940 Census are matched in CenSoc. There is no way of knowing
whether unmatched people were still alive in 1975 or not. Therefore, we do not
know the size of the population at risk of dying in 1975.

Knowing the exposure to risk is important for most mortality indicators. Lifetable
quantities such as survivorship, the probability of dying and the hazard rate all rely
on calculating some measure of risk relative to the baseline population.

For extinct cohorts, we can assume there are no survivors beyond the ages that
we observe and so it is possible to use the reverse survival method (Andreev et al.
(2003)) or multivariate techniques such as Cox proportional hazards regression to
study differences in survival across socioeconomic groups. However, for cohorts that
are not extinct, coefficient estimates from Cox regression will be biased towards zero.
Thus, other techniques of mortality estimation need to be developed.
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4.4 Mortality estimation for data with no denom-

inators

In this section, methods of mortality estimation for use with CenSoc are introduced.
Firstly, relevant survival quantities are defined. The focus is then on estimating the
distribution of deaths by age, which is the relevant quantity for CenSoc. Two models
for deaths distribution estimation are introduced, one parametric (Gompertz) and
one semi-parametric (principal components). The models are described and relative
performance is assessed based on fitting to U.S. mortality data available through the
Human Mortality Database.

4.4.1 Definition of survival quantities

Define the survivorship function as

l(x) = Pr(X > x) (4.1)

i.e. l(x) is the probability that the age of death, X, is greater than x, or in other
words, the proportion of the population that survive to exactly age x. The hazard
function is

µ(x) = lim
∆x→0

Pr(x ≤ X < x+ ∆x|x ≤ X)

∆X
. (4.2)

This is equivalent to

µ(x) =
−d log l(x)

dx
. (4.3)

The cumulative death distribution function is

D(x) = 1− l(x) (4.4)

and the density function is the derivative of this, i.e.

d(x) =
−dl(x)

dx
= µ(x)l(x) = µ(x) exp(−M(x)) (4.5)

where M(x) =
∫ x

0
µ(u)du. As all people in a population must die eventually, me-

mento mori, d(x) is a probability density function, with
∫
d(x) = 1. These quantities

are continuous across age. Throughout this paper, the discrete versions are denoted
with a subscript x, for example, the discrete death distribution is written as dx.

Given the lack of denominators in the CenSoc data set, the focus is on estimating
mortality across cohorts based on information available about the density of deaths,
dx. As shown in Fig. 4.5, we have partial information about the shape of dx across
cohorts. As such, the estimation of dx, i.e. the discrete death distribution by single
year of age, is a starting point for inference about other mortality quantities. Once
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we have information about dx, other lifetable values can be calculated (Wachter
(2014), see Section 7.3).

Consider the following to illustrate how the estimation of dx relates to the observed
death counts. Say we observe death counts by age, yx, which implies a total number
of deaths of D, i.e. ∑

x

yx = D.

If we multiply the total number of deaths D by dx, then that gives the number of
deaths at age x. In terms of fitting a model, we want to find estimates of the density,
dx, which best describes the data we observe, yx.

4.4.2 Accounting for truncation

Eq. 4.5 gives the density of deaths over the entire age range x. Suppose instead
we only observe ages between xL and xU . In order to remain a probability density
function, d(x) for the truncated period, defined as d∗(x), needs to be divided through
by the difference of the survivorship functions at each end point:

d∗(x) =
d(x)

l(xL)− l(xU)
. (4.6)

4.4.3 Estimating the death distribution

Define yx to be the observed number of deaths at age x. It is assumed that deaths
are only observed in the window of ages [xL, xU ]. Conditional on the number of the
total number of deaths, N , the observed sequence of deaths y = y1, y2, . . . , yn has a
multinomial distribution (Chiang (1960)):

y|N ∼Multinomial(N,d∗) (4.7)

where d∗ = d∗1, d
∗
2, . . . , d

∗
n and d∗x is the discrete version of the truncated deaths

density, and is equal to the proportion of total deaths that are observed between
ages x and x + 1. The total number of observed deaths, D =

∑
x yx is Poisson

distributed around the true number of deaths i.e.:

D ∼ Poisson(N). (4.8)

Thus, the marginal distribution of yx is also Poisson distributed (McCullagh and
Nelder (1989)), with

yx ∼ Poisson(λx) (4.9)

where λx = N · d∗x. The likelihood function of an observed sequence of deaths
y = y1, y2, . . . , yn can then be written as:

P (y|λ(θ)) = exp

(
−
∑
i

λi

) ∏
i λ

yi
i∏

i yi!
(4.10)
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with corresponding log-likelihood

l(y|λ(θ)) = −
∑
i

λi +
∑
i

yiλi − log
∏
i

yi!. (4.11)

Here, θ refers to the (potentially multiple) parameters that govern the rate of deaths,
λx. In practice it is the parameters θ we are trying to estimate.

One option to find values of θ is to use maximum likelihood (ML) estimation. In
this approach, the true parameter values are assumed to be fixed, but unknown. ML
estimation finds parameter values that maximize the log-likelihood function based
on data we observe about counts of death by age. Given the complexity of the
likelihood function, numerical techniques need to be used, such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Fletcher (2013)).2 Standard errors
around the estimates can be calculated based on the Hessian matrix, and inference
can be carried out based on the assumption that the sampling distribution of the
parameters are asymptotically normal.

An alternative strategy to find best estimates of θ is to use Bayesian analysis. In
contrast to ML estimation, Bayesian methods assume the parameters θ themselves
are random variables. The goal is to estimate the posterior distribution of the
parameters, P (λ(θ)|y). By Bayes Rule,

P (λ(θ)|y) =
P (y|λ(θ)) · P (λ(θ))

P (y)
(4.12)

where P (y|λ(θ)) is the likelihood function, P (λ(θ)) is the prior distribution on the
parameters of interest and P (y) is the marginal probability of the data.

For some posterior distributions, integrals for summarizing posterior distributions
have closed-form solutions, or they can be easily computed using numerical meth-
ods. However, in many cases, the posterior distribution is difficult to handle in
closed form. In such cases, Markov Chain Monte Carlo (MCMC) algorithms can
be implemented to sample from the posterior distribution. For example, the Gibbs
sampling algorithm (Gelfand and Smith (1990)) generates an instance from the dis-
tribution of each parameter in turn, conditional on the current values of the other
parameters. It can be shown that the sequence of samples constitutes a Markov
chain, and the stationary distribution of that Markov chain is the sought-after joint
distribution. Gibbs Sampling can be implemented in R using the JAGS software
(Plummer (2012)).

There are several benefits of the Bayesian approach. Firstly, Bayesian methods are
generally more computationally efficient than ML approaches, which can be sensi-
tive to initial conditions and can take a relatively long time to converge. Secondly,
if we can summarize the entire posterior distribution for a parameter, there is no

2The BFGS algorithm, which is a class of quasi-Newton optimization routines, can be imple-
mented using the ‘optim’ function in R.
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need to rely on asymptotic arguments about the normality of the distribution. Hav-
ing the entire posterior distribution for a parameter allows for additional tests and
summaries that cannot be performed under a classical likelihood-based approach.
Uncertainty intervals around parameter estimates can easily be calculated through
assessing the quantiles of the resulting posterior distribution. In addition, distribu-
tions for the parameters in the model can be easily transformed into distributions
of quantities that may be of interest are not directly estimated as part of the model.
This is especially important in this context, because we are estimating parameters
θ, but would like to also calculate implied quantities such as hazard rates or life
expectancy.

Another important aspect of the Bayesian approach is that it allows prior information
about the parameters to be incorporated into the model. For example, it is expected
that the mode age at death of the deaths distribution should be in the range of 70-85,
and generally increase over time. Informative priors can be included in the model to
incorporate this information. Thus, given these advantages, the methods proposed
in the following sections will be fit within a Bayesian hierarchical framework.

4.5 Truncated Gompertz approach

The first approach to estimate the truncated deaths distribution d∗x is the Gompertz
model (Gompertz (1825)). This model is one of the most well-known parametric
mortality models. It does remarkably well at explaining mortality rates at adult
ages across a wide range of populations, with just two parameters. The Gompertz
hazard at age x, µ(x), has the exponential form

µ(x) = αeβx. (4.13)

The α parameter captures the starting level of mortality and the β parameter gives
the rate of mortality increase over age. On the log scale, Gompertz hazards are
linearly increasing across age:

log µ(x) = α + βx (4.14)

Note here that x refers to the starting age of analysis and not necessarily age =
0. Indeed, in practice, the assumption of constant log-hazards is not realistic in
younger age groups. In this application we are interested in modeling adult mortal-
ity, so younger ages are not an issue. There is, however, some evidence of mortality
deceleration in the older ages (ages 90+), which would also lead to non-Gompertzian
hazards (Kannisto (1988); Horiuchi and Wilmoth (1998)). Other parametric mod-
els have been proposed to account for this deceleration, which commonly include
additional terms as well as the Gompertz α and β (Feehan (2017)). The most parsi-
monious parametric approach is illustrated; however it could be extended to models
with more parameters.
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Given the relationship between the hazard function and the survivorship function
given in Eq. 4.3, the expression for the Gompertzian survivorship function is

l(x) = exp

(
−α
β

(exp(βx)− 1)

)
(4.15)

and it follows from Eq. 4.5 that the density of deaths at age x, d(x) is

d(x) = µ(x)l(x) = α exp(βx) exp

(
−α
β

(exp(βx)− 1)

)
. (4.16)

4.5.1 Reparameterization

Estimates of the level and slope parameters α and β in the Gompertz model are
highly correlated. In general, the smaller the value of β, the larger the value of
α (Tai and Noymer (2017)). For example, Fig. 4.6 shows values of α and β that
lead to mode ages of death within a plausible range (see Eq. 4.17 below). The
figure illustrates two main points. Firstly, the plausible values of α and β for human
populations fall within a relatively small interval: α is not likely to be greater than
0.006, and β is not likely to be greater than 0.15. Secondly, the strong negative
correlation between the two parameters is apparent. A simulated study showed the
correlation between estimated values of α and β can be upwards of 0.95 (Missov
et al. (2015)), which is a statistical artifact rather than giving any insight into the
ageing process or heterogeneity in frailty (Burger and Missov (2016)).

The correlation between these parameters can cause estimation issues. As such,
following past research (Missov et al. (2015); Vaupel and Missov (2014)) a re-
parameterized version of the Gompertz model in terms of the mode age is considered.
Under a Gompertz model, the mode age at death, M is (Wachter (2014))

M =
1

β
log

(
β

α

)
. (4.17)

Gompertz hazards can thus be reparameterized in terms of M and β:

µ(x) = β exp (β(x−M)) . (4.18)

As Missov et al. (2015) note, M and β are less correlated than α and β. In addition,
the modal age has a more intuitive interpretation than α. The expression for the
truncated deaths density d∗x follows in the same way from Eqs. 4.5 and 4.6:

d∗(x) =
µ(x) · l(x)

l(xL)− l(xU)
(4.19)

=
β exp (β(x−M)) · exp (− exp (−βM) (exp(βx)− 1))

exp (− exp (−βM) (exp(βxL)− 1))− exp (− exp (−βM) (exp(βxU)− 1))
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Figure 4.6: Plausible values of Gompertz parameters α and β given a mode age of
between 60-90 years. In general, the larger the value of α, the smaller the value of
β. The values of α and β are limited to be below 0.006 and 0.15, respectively.

4.5.2 Bayesian hierarchical model

Eq. 4.20 gives a parametric expression for the distribution of deaths between ages
xL and xU in terms of two parameters, β and M . This section describes a strategy
to estimate these parameters and associated uncertainty.

Often when fitting a Gompertz process to observed mortality data, estimates of α
and β are obtained by regression techniques of mortality rates by age, based on
Eq. 4.14. For example, a recent paper by Tai and Noymer compared different the
performance of difference regression techniques in fitting Gompertz models to data
from the Human Mortality Database (HMD) (Tai and Noymer (2017)). However, in
this situation, as discussed in Section 4.4.3, parameters need to be estimated based
on the non-linear deaths density d∗x.

We propose a Bayesian hierarchical framework to estimate β and M over cohorts.
Firstly, assume that we observe counts by age and cohort yc,x between the ages
[xc,L, xc,U ]. Note the truncated age window can vary by cohort. The total number
of deaths observed by cohort is equal to Dc.

From Eqs. 4.9 and 4.8, the observed deaths by age and cohort are distributed

Dc ∼ Poisson(Nc) (4.20)

yc,x ∼ Poisson(λc,x) (4.21)
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where λc,x = Nc · d∗c,x. In words, the total number of observed deaths in a cohort are
a realization of a Poisson process with rate Nc. The observed death counts by age
are a realization of a Poisson process with a rate equal to the total deaths multiplied
by the proportion of total deaths occurring at that age. In the Gompertz set up,
from Eq. 4.20 we have

d∗c,x =
µ(c, x) · l(c, x)

l(c, xL)− l(c, xU)

where µ(c, x) = β exp (βc(x−Mc)) and l(c, x) = exp (− exp (−βcMc) (exp(βcx)− 1)).

Priors on Mc and βc

As part of the framework, prior distributions need to be specified on the Mc and βc
parameters. One option would be to put uninformative priors on both parameters,
which treat each cohort independently. For example, relatively uninformative priors
would be

Mc ∼ U(50, 90)

and

βc ∼ U(0.0001, 0.2).

That is, both parameters are draws from Uniform distributions with bounds deter-
mined by plausible values of mortality (Fig. 4.6). However, this is modeling each
cohort separately and does not allow for cohorts that may have fewer observed ages
of death available to be informed by estimates of past cohorts. The value for β could
increase or decrease over time, depending on the balance of mortality shifting and
mortality compression (Tuljapurkar and Edwards (2011); Bergeron-Boucher et al.
(2015); Tai and Noymer (2017)). However, we know from past trends that the mode
age at death has been increasing fairly steadily across cohorts in developed countries
(Paccaud et al. (1998); Wilmoth and Horiuchi (1999); Canudas-Romo (2008)). Thus
we could incorporate this knowledge into the model in the form of a prior on Mc

that has a temporal structure. For example, we chose to model Mc as a second-order
random walk:

Mc ∼ N(2Mc−1 −Mc−2, σ
2
M).

This set-up penalizes deviations away from a linear trend, and so the fit of Mc,
especially over shorter time periods, is relatively linear. Second-order random walk
priors have been used in past mortality modeling approaches (e.g Alkema and New
(2014); Currie et al. (2004)). Other prior options for Mc could include a linear model
over cohort, or a times series model with drift; however the second-order random
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walk is less restrictive. The full model set-up becomes:

Dc ∼ Poisson(Nc)

yc,x ∼ Poisson(λc,x)

λc,x = Nc · d∗c,x

d∗c,x =
βc exp (βc(x−Mc)) · exp (− exp (−βcMc) (exp(βcx)− 1))

exp (− exp (−βcMc) (exp(βcxc,L)− 1))− exp (− exp (−βcMc) (exp(βcxc,U)− 1))

βc ∼ U(0.0001, 0.2)

Mc ∼ N(Mc−1 −Mc−2, σ
2
M)

σM ∼ U(0, 40)

4.6 Principal components regression approach

The Gompertz model relies on two parameters, which, while providing model par-
simony, means the shape of the Gompertz death distribution is quite inflexible and
may not be able to pick up real patterns in the observed data. There are many
other parametric mortality models that could be considered, which include addi-
tional parameters for increased flexibility. For example, the Gompertz-Makeham
model includes an additional parameter that is age-independent and aims to cap-
ture background/extrinsic mortality (Makeham (1860)). The Log-Quadratic model
(Steinsaltz and Wachter (2006); Wilmoth et al. (2012)) includes an additional pa-
rameter again to account for deceleration of mortality at advanced ages.

While increasing the number of parameters in models increases the flexibility of the
fit, this increased complexity means models are also often more difficult to fit, and
there may be identifiable issues with some parameters (Willemse and Kaas (2007);
Girosi and King (2008)). In addition, increasing the number of parameters may lead
to model over-fitting.

As an alternative to more complex parametric models, this section proposes a model
framework based on data-derived principal components. The main idea is to use
information about underlying mortality trends from existing data sources (a ‘mor-
tality standard’) to form the basis of a mortality model. Main patterns in death
distributions from data are captured via Singular Value Decomposition (SVD) of
age-specific death distributions. The SVD extracts ‘principal components’, which
describe main features of death distributions.

Principal components create an underlying structure of the model in which the
regularities in age patterns of human mortality can be expressed. These can be used
as a basis for a regression framework to fit to the dataset of interest. Thus, instead
of modeling d∗x as a parametric distribution, as in Eq. 4.20, the model for d∗x will be
based on a principal components regression:

logit d∗x = P0,x + β1P1,x + β2P2,x (4.22)
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where

• P0,x is the mean death distribution (on the logit scale), derived from a mortality
standard;

• P1,x and P1,x are the first two principal components derived from the de-meaned
mortality standard; and

• The βd’s are the coefficients associated with the principal components.

Many different kinds of shapes of mortality curves can be expressed with different
plausible values of the β’s. The death distribution is modeled on the logit scale and
then transformed after estimation to ensure the estimated values are between zero
and one.

The use of SVD in demographic modeling and forecasting gained popularity after Lee
and Carter used the technique as a basis for forecasting U.S. mortality rates (Lee and
Carter (1992)). More recently, SVD has become increasingly used in demographic
modeling, in both fertility and mortality settings. Girosi and King (2008) used
this approach to forecast cause-specific mortality. Schmertmann et al. (2014) used
principal components based on data from the Human Fertility Database to construct
informative priors to forecast cohort fertility rates. Clark (2016) use SVD as a basis
for constructing model lifetables for use in data-sparse situations. Alexander et al.
(2017) used principal components to estimate and project subnational mortality
rates. The SVD/principal components approach seems particularly suited to many
demographic applications, due to the nature of demographic indicators being fairly
stable across age and changing relatively gradually over time.

4.6.1 Obtaining principal components

The SVD of matrix X is
X = UDV T .

The three matrices resulting from the decomposition have special properties:

• The columns of U and V are orthonormal, i.e. they are orthogonal to each
other and unit vectors. These are called the left and right singular vectors,
respectively.

• D is a diagonal matrix with positive real entries.

In practice, the components obtained from SVD help to summarize some character-
istics of the matrix that we are interested in, X. In particular, the first right singular
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vector (i.e. the first column of V ) gives the direction of the maximum variation of
the data contained in X. The second right singular vector, which is orthogonal to
the first, gives the direction of the second-most variation of the data, and so on. The
U and D elements represent additional rotation and scaling transformations to get
back the original data in X.

SVD is useful as a dimensionality reduction technique: it allows us to describe our
dataset using fewer dimensions than implied by the original data. For example,
often a large majority of variation in the data is captured by the direction of the
first singular vector, and so even just looking at this dimension can capture key
patterns in the data. SVD is closely related to Principal Components Analysis:
principal components are derived by projecting data X onto principal axes, which
are the right singular vectors V .

The mortality standard: non-U.S. HMD data

To build a principal components regression framework, we need to choose a suitable
mortality ‘standard’, which forms the basis of the age-specific matrix of death dis-
tributions on which the SVD is performed. The chosen standard is based on cohort
mortality information available through the HMD, excluding data for the U.S.. In
this way, we obtain information about mortality patterns using all available high-
quality data, without twice-using the U.S. data. This will enable the validation of
models without overfitting. The proportion of total deaths between ages 50-105 at
each age was calculated for each available cohort and country. This was done by
multiplying the death rates and exposure to get an implied number of deaths by age,
then calculating each age as a proportion of total deaths. The cohorts and countries
used in the standard were restricted to those that have full information available
across all ages.

Fig. 4.7 shows the HMD data on death distributions by cohort and country from
which the principal components are derived. Note that the distributions are plotted
on the logit scale. Data are available from 23 different countries, across 118 different
cohorts from 1850-1910. For some countries and cohorts, the death proportions are
quite noisy, for example for many of the cohorts in Israel (ISL). However, the idea
of SVD is that the first few principal components will pick up the main patterns in
these death distributions.

SVD is performed on a matrix of demeaned logit proportions of deaths at each age
between 50 and 105. The matrix has dimensions of 1129 × 56, as there are 1129
country-cohort observations and 56 ages. Fig. 4.8 shows the mean death distri-
bution and first two principal components obtained from this matrix.3 The mean
schedule gives a shape of baseline mortality across the ages, with mortality peaking

3Note we refer to the right singular vectors as ‘principal components’. They are technically
‘principal axes’.
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Figure 4.7: Death distributions in HMD by country and cohort, ages 55-105. The
plots show the proportion of deaths at each age, plotted on the logit scale. Each line
is a different cohort.
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Figure 4.8: Mean death schedule and first two principal components derived from
HMD data shown in Fig. 4.7. The components are derived from data transformed
to be on the logit scale.

at around age 75. The first principal component could be interpreted as the average
contribution of each age to mortality change over time. Note that there is a sign
switch of this component at around age 80: proportions at younger ages decrease
over time, whereas proportions at older ages increase. The second principal com-
ponent is related to the shift or compression of mortality around the mode age at
death over time.

To reiterate, the idea is to use these three components as the basis of a regression
framework. Different values of the regression coefficients lead to different death
distributions. Fig. 4.9 shows two example death distributions that can be derived
from the combination of the curves shown in in Fig. 4.8. For the red curve, the
coefficient on the first principal component is relatively low, and the coefficient on
the second component is relatively high, meaning that deaths are shifted to the left
and more spread out compared to the blue curve.

4.6.2 Bayesian hierarchical model

The three principal components described above are used as the basis of a regression
model within a hierarchical framework to model death distributions over cohorts.

As before we have observed counts by age and cohort yc,x between the ages [xc,L, xc,U ].
The sum of these observed deaths is equal to Dc. As before we have

Dc ∼ Poisson(Nc)

yc,x ∼ Poisson(λc,x)
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Figure 4.9: Two example death distributions based on different linear combinations
of curves in Fig. 4.8. For the red curve, the equation is logit −1(P0,x + 2.5P1,x +
1.25P2,x). For the blue curve the equation is logit −1(P0,x + 6P1,x + 0.8P2,x).

where λc,x = Nc · d∗c,x. Now d∗c,x is modeled on the logit scale as

logit d∗c,x = P0,x + β1,cP1,x + β2,cP2,x (4.23)

where

• P0,x is the mean death distribution on the logit scale.

• The P1,x and P2,x are the first two principal component of the standard logit
death distributions, shown in the second and third panels of Fig. 4.8.

• The βd,cs are the coefficients associated with the principal components.

Note that this is a two parameter model for each cohort, with each of the βd,c
needing to be estimated. In a similar way to the Gompertz model, each cohort could
be modeled independently, with non-informative priors put on the β coefficients.
However, estimates of β are likely to be autocorrelated, and so a time series model
is placed on the βd,c’s. Assuming a temporal model on the principal component
coefficients aids in the sharing of information about mortality distributions across
cohorts, allowing cohorts with relatively few available data points to be partially
informed by more data-rich cohorts.

Looking at the interpretation of the principal components used in the model (Fig. 4.8),
the first principal component most likely represents a shift in mortality away from
younger ages and towards older ages. As such, we expect the coefficient on this
principal component to broadly increase over time. As such, similarly to the model
age parameter in the Gompertz model, the second-order differences in the β1,c are
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penalized, which is equivalent to penalizing fluctuations away from a linear trend,
while still allowing for a certain degree of flexibility in the trend over time.

β1,c ∼ N(2β1,c−1 − β1,c−1, σ
2
1).

In terms of principal component 2, it is less clear intuitively what the trends should
be over time. As such coefficients are modeled as a random walk across cohorts,
which is slightly less restrictive than the model for β1,c:

β2,c ∼ N(β2,c−1, σ
2
2)

Constraint on d∗x

For the principal components regression model, there needs to be an additional
constraint placed of the principal components βd,c. The model as explained above
does not necessarily ensure that the sum of the resulting deaths distribution d∗x equals
1. However, this is a fundamental property of d∗x: over the population of interest, all
people must die eventually. As such, an additional constraint is added to the model
to ensure that

∑
d∗x = 1.

By imposing
∑
d∗x = 1, combinations βd,c that lead to the constraint not being met

are given a probability of 0. In practice, initial values of βd,c need to be specified in
order to ensure the Gibbs Sampler stays within the constraint. To obtain plausible
initial values, the model was first run with no constraint, and then initial values
were chosen based on the unconstrained estimates which were close to resulting in∑
d∗x = 1.

The full principal components model set-up is:

Dc ∼ Poisson(Nc)

yc,x ∼ Poisson(λc,x)

λc,x = Nc · d∗c,x
logit d∗c,x = P0,x + β1,cP1,x + β2,cP2,x

d∗c =
∑
x

d∗c,x = 1

βd,c ∼ N(2βd,c−1 − βd,c−2, σ
2
d) for d = 1

βd,c ∼ N(βd,c−1, σ
2
d) for d = 2

σd ∼ U(0, 40)

4.7 Illustration and comparison of models

The performance of the two models is illustrated by fitting to U.S. mortality data
obtained through the HMD (HMD (2018)). This section describes the data avail-
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Figure 4.10: Death counts by age, United States, males, cohorts 1900-1940, ages
50-105. Each line is a different cohort. Data come from the HMD.

able in the HMD and the resulting fits based on both the Gompertz and principal
component approaches. The performance of the two methods is compared based on
several in- and out-of-sample diagnostic measures.

4.7.1 Data

The two models are fit to HMD data for U.S. males for cohorts 1900-1940, for ages
50-105. In order to fit to comparable data available in CenSoc, the cohort-based
death rates and exposure to risk by age are converted into implied death counts by
age. Fig. 4.10 shows death counts by age and cohort. While data on the deaths
distribution is complete for older, already extinct cohorts, only part of the deaths
distribution is available for the younger cohorts.

4.7.2 Computation

The hierarchical model frameworks specified above were fit within Bayesian frame-
works using the statistical software R. Samples were taken from the posterior dis-
tributions of the parameters via a Markov Chain Monte Carlo (MCMC) algorithm.
This was performed using JAGS software (Plummer, 2003). Standard diagnostic
checks using trace plots and the Gelman and Rubin diagnostic (Gelman and Rubin,
1992) were used to check convergence.

For the principal components approach, initial values β∗d,c for the coefficients on the
principal components were chosen to ensure that

∑
x d
∗
c,x = 1. These were obtained
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by first running the model without constraints to get an idea of plausible coefficient
estimates. Initial values were chosen such that

logit−1

(∑
x

P0,x + β∗1,cP1,x + β∗2,cP2,x

)
= 1

Best estimates of all parameters of interest were taken to be the median of the
relevant posterior samples. The 95% Bayesian credible intervals were calculated by
finding the 2.5% and 97.5% quantiles of the posterior samples.

4.7.3 Converting estimates to other measures of mortality

In both the Gompertz and principal components approaches, we obtain samples from
the estimated posterior distribution of d∗x, i.e. the (truncated) deaths distribution
across age. These quantities can be converted into other mortality indicators, such
as life expectancy at age 50, by utilizing standard relationships between life table
quantities (Preston et al. (2000); Wachter (2014)). In particular, the proportion of
people surviving to each age, lx, is calculated using reverse survival,

lx = 1−
ω∑
x+1

d∗x

i.e. the proportion alive at age x is 1 minus the sum of those who died in age groups
above age x, where ω is the last age group (in this case, 105). The person-years lived
between ages x and x+ 1, i.e. Lx is estimated as

Lx =
lx + lx+1

2
.

The person-years lived above age x is then

Tx =
∑
x

Lx

and the life expectancy at age x is then

ex =
Tx
lx
.

The above life table relationships are calculated based on all samples from the pos-
terior distribution of d∗x, resulting in a set of samples for ex. The corresponding 95%
credible intervals around the estimates of ex can be calculated based on the 2.5th
and 97.5th percentiles of the samples.

4.7.4 Gompertz results

Results from fitting the truncated Gompertz hierarchical model are shown in Figs. 4.11-
4.13. The mode age of death is steadily increasing over time, from around age 76
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Figure 4.11: Estimates of Gompertz mode age of death, United States. Median
posterior estimates are shown by the dots. The shaded area represents the 95%
uncertainty interval.

in cohort 1900 to 84 in cohort 1940 (Fig. 4.11). In terms of the Gompertz slope
parameter, after remaining fairly constant in the earlier cohorts, the estimate for β
decreases across cohorts 1915-1925. Since 1925, however, the estimated values of β
have stagnated.

The uncertainty intervals around the estimates for both M and β increased for the
younger cohorts. This reflects the fact that less data are available in the cohorts.
For example, for the 1940 cohort, observed death counts in HMD are only available
up to age 74. As such, the model is fitting a deaths distribution across all ages based
on only partial information about the shape of the distribution from the data.

Fig. 4.13 illustrates the fitted death distributions in comparison with the available
data for nine cohorts between 1900-1940. In general, the truncated Gompertz model
captures the main characteristics of the shape of the distributions well, as well as
changes across cohorts. In the older cohorts in particular, the Gompertz curve is
not an exact fit to the HMD data, and seems to place too much mass around the
mode age of death, and not enough mass on younger ages of death (60-70). For
cohorts younger than the 1925 cohort, the model is fitting the full curve based on
only having data on the left side, with no real information about the modal age
of death. However, fits for these cohorts are partially informed by past cohorts,
through the temporally-correlated prior that was placed on M .
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Figure 4.12: Estimates of Gompertz β, United States. Median posterior estimates
are shown by the dots. The shaded area represents the 95% uncertainty interval.
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Figure 4.13: Truncated Gompertz model estimates and HMD data of deaths by age
for nine cohorts between 1900 and 1940. Data from HMD are shown by the red dots.
The estimates and associated 95% uncertainty intervals are shown by the black lines
and shaded areas.
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Figure 4.14: Estimates of principal component coefficients β1,c (left) and β2,c (right)
across cohorts. Median posterior estimates are shown by the black lines. The shaded
areas represent the 95% uncertainty intervals.

4.7.5 Principal component regression results

Results from fitting the principal components regression model are shown in Fig. s
4.14 and 4.15. The coefficient on the first principal component steadily increased
over cohorts (Fig. 4.14). This represents a shift in the mass of the deaths distribution
away from younger ages and towards the older ages. The coefficient on the second
principal component broadly decreased over cohorts, but remained positive. Note
that the uncertainty around the coefficient estimates increases across cohorts, as less
information about the shape of the deaths distribution is available.

Fig. 4.15 illustrates the fitted death distributions in comparison with the available
data for nine different cohorts between 1900-1940. In general, the principal compo-
nents model seems to produce fairly similar fits to the Gompertz model. However,
especially in younger cohorts, the uncertainty around estimates is larger.

4.7.6 Comparison of models

Figs. 4.16 illustrates the estimates of the hazard rate at each age x on the log scale
for the two models. A key assumption of the Gompertz model is that hazards are
assumed to be log-linear, which is illustrated by the estimates in the left-hand panel.
In contrast, the estimated hazards from the principal components model are not
quite log-linear, with evidence of an increasing slope at older ages. For both models,
hazards are decreasing across cohort.
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Figure 4.15: Principal component estimates and HMD data of deaths by age for nine
cohorts between 1900 and 1940. Data from HMD are shown by the red dots. The
estimates and associated 95% uncertainty intervals are shown by the black lines and
shaded areas.
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Figure 4.16: Estimated (log) hazard rates by cohort for the truncated Gompertz
(left) and principal components model (right). Each line represents a different co-
hort.

Fig. 4.17 shows the estimates of life expectancy at age 50 (e50) across cohorts for the
two models. The estimates are quite similar across the two models for earlier cohorts,
but start to diverge around the 1920 cohort, where there is lessening information
available about the shape of the mortality curve. However, the estimates start to
converge again in more recent cohorts, and there is no significant difference between
the estimates by 1940. The uncertainty around the principal components is slightly
larger in later cohorts.

Model Performance

Several measures are considered to compare the performance of the Gompertz and
principal components models based on estimates of U.S. mortality using HMD.

Firstly, the relative performance of the models was assessed using the Watanabe-
Akaike or widely available information criterion (WAIC), which measures a combi-
nation of model fit and a penalty based on the number of parameters (Vehtari et al.
(2017)). The lower the WAIC, the better the model. The Gompertz model resulted
in a WAIC of -3876 compared to -4309 for the principal components model. Thus,
based on this measure, the principal components model outperforms the Gompertz
model.
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Figure 4.17: Estimated life expectancy at age 50 by cohort for the Gompertz (red
line) and principal components (blue line) models. The median estimates are shown
as the lines, and 95% uncertainty intervals are shown by the shaded areas.

85



CHAPTER 4. DEATHS WITHOUT DENOMINATORS

30

60

90

120

1900 1910 1920 1930 1940

cohort

R
M

S
E model

gompertz
pc

Figure 4.18: RMSE by cohort for the Gompertz (red line) and principal components
(blue line) models.

Secondly, the root mean squared error (RMSE) of fitted values compared to HMD
values was estimated, across both age and cohort. RMSE across cohorts is defined
as:

RMSE =

√√√√ 1

A

A∑
x=1

(ŷc,x − y∗c,x)2, (4.24)

where ŷc,x is the estimated death count at age x for cohort c, y∗c,x is the true mortality
rate and A is the number of ages. In a similar way, the RMSE across age is

RMSE =

√√√√ 1

C

C∑
c=1

(ŷc,x − y∗c,x)2, (4.25)

where C is the number of cohorts. Figs. 4.18 and 4.19 plot the RMSE across cohort
and age for each model. In terms of both cohort and age, for the most part, the
principal components model has a lower RMSE.

One final measure that was considered to compare the two models was the coverage
of the prediction intervals. Given that observed death counts by age are distributed

yc,x ∼ Poisson(λc,x)

new observations of deaths by age and cohort, ynewc,x can be predicted based on this
distribution. Repeating this simulation many times gives a posterior predictive dis-
tribution of yc,x. Prediction intervals can be calculated based on this distribution
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Figure 4.19: RMSE by age for the Gompertz (red line) and principal components
(blue line) models.

and the coverage of such intervals assessed. For example, we would expect 95%
prediction intervals of ynewc,x to include the observed values yc,x 95% of the time.

Fig. 4.20 illustrates the coverage of 95% prediction intervals across cohorts for both
models. Coverage of the intervals for both models are lower than expected for the
earlier cohorts; however, from around the 1915 cohort, the coverage is at least 95%.
This suggests the uncertainty intervals are reasonably well calibrated.

4.7.7 Discussion

Both models fit reasonably well to HMD data, capture the main patterns in the death
distribution and how it changes across cohorts. These models illustrate how under-
lying demographic structures can be fit within a Bayesian framework to get plausible
estimates of death distributions when only truncated data are available. The princi-
pal components model appears to slightly out-perform the Gompertz model across
several different measures. In particular, the WAIC and RMSE measures were lower
for the principal components model, suggesting that it does a better job at fitting
to the HMD data.

The advantage of the principal components approach is that the underlying mortality
structure is determined from real mortality data across a wide range of populations
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Figure 4.20: Coverage of 95% prediction intervals for the Gompertz (red line) and
principal components (blue line) models. If the uncertainty intervals are well-
calibrated, the coverage of the prediction intervals would be expected to be 95%.

and time periods. The model is more flexible and better able to fit to death dis-
tributions that do not follow a simple parametric form. Thus, complex patterns in
mortality data can be captured with relatively few parameter inputs. However, from
a computational perspective, the principal components model requires initial condi-
tions to be chosen to satisfy the constraint on the death distribution. In addition,
fitting the principal components method requires extra data processing to obtain
usable principal components, and decisions need to be made about the appropriate
mortality standard. While non-U.S. HMD data was used as standard, potentially
any standard could be chosen, and more than two principal components could be
included into the model.

While the Gompertz model did not statistically perform quite as well as the principal
components model, it still has the advantage of being a well-known, simple para-
metric model. Gompertz parameters are easily interpreted and can be compared
across different populations and studies. There is no requirement for a particular
mortality standard to be chosen and justified. In summary, there are advantages
and disadvantages to both methods, and model performance is reasonable for both
options.
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4.8 Estimating mortality inequalities using CenSoc

In this section, the mortality modeling approaches discussed above are applied to
the CenSoc dataset to estimate mortality outcomes across cohorts and socioeconomic
status (SES). In particular, mortality differences are estimated across education and
income groups.

Given the relative performance of the two modeling approaches in fitting to the HMD
data, the principal components model is used to estimate the death distributions by
cohort and SES. This approach appears to offer slightly more flexibility in fitting to,
and capturing, the main characteristics of the partially observed death distributions.4

The method can be extended to allow for differing mortality trends by socioeconomic
group, as shown below.

4.8.1 Mortality trends by education group

Education can affect mortality outcomes through a variety of different pathways
(Hummer et al. (1998); Elo (2009)). Education may indirectly affect mortality and
health outcomes through being associated with higher income, thereby increasing an
individual’s available resources to spend on health. Greater access to education also
allows individuals to make more informed decisions about their health and lifestyle
choices. Education may also mean increased social support, less exposure to acute
and chronic stress, and a greater cognitive ability to cope with stressful situations.

As an SES measure, education has the advantage of having temporally stable defined
categories over time. In addition, unlike income or occupation, education changes
very little over the lifecourse. It reflects the stock of human capital established
relatively early in life that is available to individuals throughout their life course
(Elo (2009)).

We use CenSoc to estimate the relationship of years of schooling and mortality across
cohorts. The 1940 census contains information on the number of years of schooling,
from zero to 17+ years. The number of years of schooling was recoded into six levels:

• less than middle school (less than 8 years)

• middle school (8 years)

• some high school (8-11 years)

• high school (12 years)

4Note that the Gompertz approach was also fitted to the CenSoc data by SES group, with the
resulting estimates being very similar to those produced by the principal components method.
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• some college (13-15 years)

• college or more (16+)

The analysis includes the 25 birth cohorts 1890-1915, meaning the respondents were
at least 25 years old at the time of the census.

The principal components modeling framework described in Section 6 is extended
to allow the principal component coefficients β1 and β2 to vary not only by cohort
c but also by education level g. As before, the mean death distribution and the two
principal components were derived from cohort-based HMD data across all available
countries. The principal component coefficients β were modeled using random walks
across cohorts for each education group. The full model is:

Dc,g ∼ Poisson(Nc,g)

yc,g,x ∼ Poisson(λc,g,x)

λc,g,x = Nc,g · d∗c,g,x
logit d∗c,g,x = P0,x + β1,c,gP1,x + β2,c,gP2,x

d∗c,g =
∑
x

d∗c,g,x = 1

βd,c,g ∼ N(2βd,g,c−1 − βd,g,c−2, σ
2
d,g) for d = 1

βd,c,g ∼ N(βd,g,c−1, σ
2
d,g) for d = 2

σd,g ∼ U(0, 40)

Estimates and uncertainty for life expectancy at age 50 can be obtained using samples
from the estimated posterior distribution of d∗c,g,x. Life expectancy at age 50 is
calculated for each cohort and education group, i.e. e50,c,g.

Results

Fig. 4.21 shows the distribution of deaths by age and education level for different
cohorts. The available data is shown by the dots, and the resulting estimate and 95%
credible intervals are shown by the colored lines and associated shaded area. This
figure illustrates the changing distribution of education across cohorts. In the older
cohorts, the largest groups were those who had less than a high school education.
Over time the largest group becomes those with a high school certificate. Fig. 4.21
also illustrates the differing amounts about ages of death information available by
cohort. For the older cohorts, we observe the deaths at older ages, while the opposite
is true for younger cohorts. Thus, moving through cohorts we observe the shape of
the death distribution on the right, moving to the left.

Estimates and 95% uncertainty intervals for life expectancy at age 50 by education
group are shown in Fig. 4.22. In general, mortality disparities between the least and
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Figure 4.21: Estimated and observed death counts in CenSoc by education level,
cohorts 1890-1915. The available data are shown by the dots, the estimates and
associated 95% uncertainty intervals are shown by the lines and shaded areas.
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Figure 4.22: Life expectancy at age 50 by education level, cohorts 1890-1915. The
shaded areas represent 95% uncertainty intervals.

most-educated groups are increasing over time. For the older cohorts, life expectancy
appeared to be generally increasing for all education groups, with no significant
difference in the estimates; however, since around 1900 there has been a divergence
in outcomes.

For those in the education groups who had a high school certificate or higher, life
expectancy increased across cohorts. For example, e50 those who had a college degree
or higher increased from around 26.2 years to 28.5 years over the cohorts 1890-1915.
The e50 is consistently around 1 year lower for those who had at least some post
high school education but had not completed the college degree. The e50 for the high
school group also increased over cohorts, although there was a period of stagnation
between cohorts 1900-1915. There is no significant difference in the life expectancy
for those with high school only and those with some post high school education.

For those population groups with less than high school, life expectancy stagnated or
declined. Interestingly, there is very little difference in e50 for those who have 8 years
of schooling compared to those who have some high school education. For the 1915
cohort, the estimate of e50 for these groups was around 3.5 years less than the most
educated group. Life expectancy for those with less than middle school education
initially increased, but has declined over time since around cohort 1897.

These results are broadly consistent with previous research which observes increasing
disparities in mortality across education over time. Previous research has illustrated
the clear education gradient in mortality that exists in the United States, with most
studies finding the mortality differential between the lowest and highest education
groups has increased over time (Masters et al. (2012); Hummer and Hernandez
(2013); Hendi (2015); Krueger et al. (2015)). Fig. 4.22 suggests the widening dispar-
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ity is a consequence of both increases in the higher education groups, and decreases
in the lower-educated groups. As illustrated in Fig. 4.21, the least-educated groups
are decreasing in size over cohort, and those left in the lowest education group may
be becoming a more selective group with relatively worse outcomes.

4.8.2 Mortality trends by income

Mortality outcomes are strongly associated with income level, both at the individual
and aggregate levels (Preston (1975); Deaton and Paxson (2001)). Higher income can
improve mortality in the absolute sense, through the availability of greater resources.
Individual income may be important in the relative sense, through its relation to
determining social class. For example, Wilkinson and Pickett argue that income
mostly affects health and mortality through the psychosocial factors associated with
an individual’s relative position in the social hierarchy (Wilkinson (2006); Pickett
and Wilkinson (2015)).

The main measure of income in the 1940 census is the respondent’s total pre-tax
wage and salary income for the previous year. Thus, there is only one observation of
each person’s income in 1940, and so the mortality analysis by income group is based
on this historical measure of income, rather than income near the time of death. As
the observation window of deaths is 1975-2005, the income measure is at least 35
years prior to death. This has the disadvantage of being outdated information and
not reflective of an individual’s wealth at a time closer to death. However, historical
income is mostly likely strongly correlated with more recent income, and so this
measure is still a proxy for more recent SES. In addition, the historical measure of
income may be less subject to reverse causality issues, that is, the possibility that
someone who is suffering from a serious illness is unlikely to be working full time.

The analysis above is repeated by broad income group. Income groups are defined
based on the quartile of an individual’s income from wages in 1940 for the relevant
age group. Those with zero income are removed from the analysis, as they are
likely to be self-employed and include many high income individuals. The same
modeling framework defined in the previous section was fit to birth cohorts 1890-
1915, divided into the four income groups. Life expectancy at age 50 for each cohort
and income group, i.e. e50,c,g, was again calculated based on the posterior samples
of the truncated death distribution d∗c,g,x.

Results

Fig. 4.23 shows the estimates and 95% uncertainty intervals for life expectancy at age
50 by income group across the 25 birth cohorts. Up until around 1900, there was no
significant difference in the estimates across income groups. For cohorts younger than
1900, however, life expectancy has increased for the two highest groups, i.e. those
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Figure 4.23: Life expectancy at age 50 by income group, cohorts 1890-1915. The
shaded areas represent 95% uncertainty intervals.

who had higher than median income, and decreased for those groups below median
income, such that the life expectancy gap in the 1915 cohort was around 1.5 years.
While the higher income groups experienced improving mortality conditions, life
expectancy in the lower income showed some evidence of stagnation or decline. The
lowest income group had declining life expectancy until cohort 1905, although this
has stagnated in more recent cohorts. In general, mortality inequality has increased
over time. This observation is broadly consistent with other studies, which find
evidence for increasing mortality inequality across income at both the individual
and county levels, and a stagnation of progress in the lower income groups (Waldron
(2007); Bosworth and Burke (2014); Chetty et al. (2016); Currie and Schwandt
(2016)).

4.9 Discussion

This paper described ‘CenSoc’, a dataset which was created using the 1940 U.S. Cen-
sus and Social Security Deaths Masterfile, and contains over 7.5 million records that
link individual’s demographic, socioeconomic and geographic information with their
age and date of death. This dataset is available for researchers to study mortality
disparities and changes in the United States.

In contrast to many studies of socioeconomic inequalities in mortality, which use
data at the aggregate level, CenSoc provides information at the individual level,
so that mortality outcomes can be directly related to SES. The large number of
records available in CenSoc provides greater statistical power in analysis compared
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to other smaller linked datasets such as the NHIS Linked Mortality Files or the
National Longitudinal Mortality Study. In addition, the mortality estimates do not
rely on comparing deaths data from one source to population data from another
source, thereby avoiding common problems associated with numerator-denominator
bias when studying mortality by race, for example (Preston and Elo (1999); Black
et al. (2017)).

By construction, CenSoc only contains individuals that 1) died in the period 1975-
2005; and 2) were successfully matched across the two datasets. As a consequence,
the mortality information available in CenSoc is of the form of left- and right-
truncated deaths by age, with no information about the relevant population at risk
at any age or cohort. This means that, apart from extinct cohorts (those that have
reached an age in 2005 where there are very few or no survivors), standard techniques
of survival analysis and mortality estimation cannot be used. As such, a second part
of this paper was to develop mortality estimation methods in order to best to utilize
the ‘deaths without denominators’ information contained in CenSoc. Two methods
of estimating the truncated deaths distribution across age, cohort (and potentially
other population subgroups) were presented. Both methods were fit in a Bayesian
setting, which allowed for the incorporation of priors on parameters of interest, and
also allowed for uncertainty in the resulting estimates and other quantities of interest,
such as life expectancy, to be reported, with minimal additional calculations.

The first was a parametric approach, modeling death distributions under the as-
sumption of Gompertz hazards. A particular contribution of this approach was
to formulate the Gompertz model as a Bayesian hierarchical framework, which al-
lowed somewhat informative priors to be placed on the mode age at death and how it
changed over time. Placing structure on trends over cohort accounts for autocorrela-
tion in mortality trends and has the additional benefit of providing a clear framework
for the projection of mortality trends into the future. Results of fitting the trun-
cated Gompertz model to HMD data for the United States gave reasonable results.
However, discrepancies between the fitted and observed death distributions, as well
as the relatively narrow uncertainty intervals around the estimates, highlighted the
inherent lack of flexibility of the Gompertz approach.

The second modeling approach presented was the principal components model. In
contrast to a purely parametric model, this approach extracts key patterns from
high-quality mortality data and uses them as the basis of a regression for the death
distributions over age and cohort. The death distributions are thus modeled as a
combination of these key mortality patterns, and changes in the relative combina-
tions over time are estimated within a Bayesian hierarchical framework. The prin-
cipal components approach offered a greater flexibility compared to the Gompertz
model, and generally produced lower root mean squared errors and better coverage
of uncertainty intervals when fit to HMD data.

After testing on HMD data, the principal components model was then used to esti-
mate mortality outcomes by education and income using the CenSoc dataset. Dif-
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ferences by group were estimated across 25 birth cohorts from 1890 to 1975. Results
suggest that both the education and income gradient in adult mortality has increased
over time. This is a consequence not only of life expectancy in the highest educa-
tion/income groups increasing at a faster rate, but also of life expectancy in the
lowest SES groups stagnating, or even declining in the case of education.

There are several limitations of this work and areas for future research. Firstly, while
the resulting CenSoc dataset is quite large in terms of absolute numbers, the raw
match rate is only around 20%, (and at its highest, around 28% for 20-24 year olds).
While some individuals are unmatched for mortality reasons — i.e. dying outside of
the SSDM window — others are missed because of the matching method. Indeed,
the method used to match across the two datasets is very simple, using only exact
matches of name and age, and only taking unique combinations. Any duplicate
keys are discarded. In addition, the exact match process does not account for small
changes in name across the two datasets, such as spelling errors, the use of nicknames,
or the use of initials. Future work will focus on more detailed data cleaning to pick
up name errors, and also investigating probabilistic matching techniques to deal with
partial matches, based on Jaro-Winkler distances (Jaro (1989); Winkler (1990)) or
NYIIS phonetic codes (Abramitzky et al. (2018)). Another option would be to create
multiple datasets based on duplicate keys and calculate mortality indicators across all
datasets, with the related uncertainty in estimates constructed using bootstrapping
techniques.

The CenSoc dataset contains only males. Matching females across the two datasets
is more difficult because of the possibility of marriage between the time of the census
and SSDM window, which would lead to a name change. As the SSDM only contains
information on name, date of birth and date of death, there is no information about
marital status at time of death. It would be possible to create a dataset with married
females (married at the time of census), and to investigate partial matches based on
age, first and middle name, and probable marriage rates.

For the principal components approach, the age distribution was cut off at a maxi-
mum age of 105. This was chosen mostly because of observed discontinuities in the
principal components derived from HMD data, with large, sudden changes in the
principal components at older ages. Discontinuities may partly be an artifact of the
methods of estimate used by HMD, which switch over at around age 80-90, depend-
ing on the country and quality of raw data available (Wilmoth et al. (2007)). Future
work will investigate the sensitivity of principal components to choices of different
countries and cohorts being included in the matrix on which the SVD is performed.

Notwithstanding these areas for future research, the CenSoc project provides a use-
ful new data source for the study of mortality disparities and change over time.
This paper introduced the dataset and also developed methods to fully utilize the
mortality information available. The CenSoc data, code used to match the raw
data, code and functions to estimate mortality indicators, and the relevant doc-
umentation has been made publicly available (at the time of writing at: https:
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//censoc.demog.berkeley.edu/). By providing an open source, transparent re-
source, the goal is to encourage reproducibility of research and provide a resource
for other researchers to help answer their own research questions of interest.
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Appendix A

Appendices to Chapter 2

A.1 Model summary

The full model is summarized below.

rc,i ∼ N(Rc,t[c,i], δ
2
i )

δ2
i =

{
τ 2
c,i for VR and SVR data,

ν2
c,i + ω2

s[c,i] for non-VR data

Rc,t = f(Uc,t) · Pc,t
log(f(Uc,t)) = β0 + β1 · (log(Uc,t)− log(θ))[Uc,t>θ]

log(Pc,t) =
Kc∑
k=1

Bk(t)αc,k

αc,k = λc + [D′Kc(DKcD
′
Kc)
−1εc]k

λc ∼ N(0, σ2
λ)

εc,q ∼ N(0, σ2
εc)

log(σ2
εc) ∼ N(χ, ψ2)

where

• Rc,t is the true ratio in country c at time t, Rc,t = Nc,t
Uc,t−Nc,t , where Nct and Uc,t

are the NMR and U5MR for country c at time t, respectively.

• rc,i is observation i of the ratio in country c.

• τc,i is the stochastic standard error, νc,i is the sampling error and ω2
s[c,i] is

non-sampling error for series type s.
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• β0 is global intercept; β1 is global slope with respect to U5MR; θ is the level
of U5MR at which β1 begins to act.

• Pc,t is country-specific multiplier for country c at time t.

• Bk(t) is the kth basis spline evaluated at time t and αc,k is splines coefficient
k.

• λc is the splines intercept for country c.

• DKc is a Kc× (Kc− 1) first-order difference matrix: DKci,i = −1, DKci,i+1 = 1
and DKci,j = 0 otherwise.

• εc,q are fluctuations around the country-specific intercept.

• σ2
εc is country-specific smoothing parameter, modeled hierarchically on the log-

scale with mean χ and variance ψ2.

The model was fit in a Bayesian framework. Priors are given by

ω ∼ U(0, 40)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

θ ∼ U(0, 500)

σλc ∼ U(0, 40)

χ ∼ N(0, 100)

ψ ∼ U(0, 40)

A.2 Other aspects of the method

A.2.1 Stochastic errors for VR model

Recall that the observed ratio rc,i, which refers to the i-th observation of the ratio
in country c, is expressed as a combination of the true ratio and some error, i.e.

rc,i = Rc,t[c,i] · εc,i (A.1)

=⇒ log(rc,i) = log(Rc,t[c,i]) + δc,i

for c = 1, 2, . . . , C and i = 1, . . . , nc, where C = 195 (the total number of countries)
and nc is the number of observations for country c. The index t[c, i] refers to the
observation year for the i-th observation in country c, εc,i is the error of observation
i and δc,i = log(εc,i).
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For VR data series, the error term δc,i is modeled as

δc,i ∼ N(0, τ 2
c,i),

where τ 2
c,i is the stochastic standard error. These can be obtained once some standard

assumptions are made about the distribution of deaths in the first month of life. We
assume that deaths below age five d5 are distributed

d5 ∼ Pois(B × 5q0)

where B = live births and 5q0 = the probability of death between ages 0 and 5.
Additionally, we assume deaths in the first month of life dn are distributed

dn ∼ Bin(d5, p)

where p =nq0/5q0 and nq0 is the probability of death in the first month of life. Note
that the values of nq0 and 5q0 come from the raw data.

The stochastic error was obtained via simulation. For each year corresponding to
observation i in country c,

• A total of 3,000 simulations of under-five deaths d5 were drawn from a Poisson
distribution d

(s)
5 ∼ Pois(B × 5q0);

• A total of 3,000 simulations of neonatal deaths dn were drawn from a Binomial
distribution d

(s)
n ∼ Bin(d

(s)
5 , p);

• The ratio y(s) = logit

(
d
(s)
n

d
(s)
5

)
was calculated for each of the simulated samples

and the standard error τc,i was calculated as σ(Y ) where Y = (y(1), y(2), ...y(s)),
s = 3, 000.

It is possible that the stochastic variation as assessed in this simulation approach
underestimates the true stochastic uncertainty. We used the results from the val-
idation exercise described in Section 3.4.5 to determine the coverage at 80%, 90%
and 95% uncertainty levels for VR data only. At all levels the actual coverage level
was at least as big as the nominal coverage level. This suggests that either (i) the
simulation setup was sufficient to capture stochastic variation in the neonatal deaths
and deaths below age 5, or (ii) that any underestimation of stochastic uncertainty
is compensated by an overestimation of uncertainty associated with the true ratio.
Hence, the validation suggests that credible intervals for the ratio are either well-
calibrated or conservative, which is preferable to underestimating the uncertainty
associated with the true outcome.

SVR data

For SVR data, the value for the sampling error was imputed based on the sampling
error for Uc,t[c,i] SVR data, and the observed ratio between the stochastic error of
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rc,i and the stochastic error of Uc,t[c,i]. On average, the stochastic error of rc,i was
twice as large as the stochastic error of Uc,t[c,i]. In addition, the sampling error for
Uc,t[c,i] SVR data was assumed to be 10%. As such a value of 20% was imputed for
the sampling error for rc,i SVR data.

A.2.2 Projection

When producing NMR estimates, generally data are not available up to the most
recent year of interest for the majority of countries, and countries may have longer
series of missing data. As such, country trajectories needed to be projected forward
to the year 2015.

The parameters β0, β1 and θ, which make up the expected relation with Uc,t, are fixed
over time, as is the country-specific intercept, λc. The component that needs to be
projected is the random fluctuations part. These εc,k were assumed to be normally
distributed around zero, with some variance σ2

εc (Equation 3.3). This assumption is
used to project the εc,k’s (and thus the splines).

Start at the first αc,k that is past the last year of observed data. For each time period
to be projected:

• Draw εc,k ∼ N(0, σ2
εc) to obtain αc,k = εc,k + αc,k−1

• Repeat to generate αk for k up to Kc, where Kc is knot number needed to
cover the period up to 2015.

The simulated εc,k are generally close to zero, so the method essentially propagates
the level of the most recent αc,k that overlaps with the data period with the slope
of the expected trajectory, as determined by f(Uc,t). The projection exercise is
necessary in order to maintain a consistent level of uncertainty in the estimates.

A.2.3 Recalculation of VR data for small countries

There are several island nations and other small countries that have vital registration
data available to calculate NMR. However, observations from these small countries
are prone to large stochastic error, which can create erratic trends in NMR over
time.

To help avoid this issue, observations from adjacent time periods in a particular
country are recombined if the coefficient of variation of the observation is greater
than 10%. The result is a smaller set of observations with smaller standard errors
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which display a smoother trend. Figure A.1 shows the example of Saint Vincent and
the Grenadines on which this process was applied.

NMR is recalculated using the original NMR observations and annual number of live
births. For two adjacent years that are to be recalculated:

• The number neonatal deaths in each year is first calculated as NMR × live
births.

• The combined NMR for the two years is then total neonatal deaths divided by
total births over the two years.

• The standard error of the new NMR estimate is then recalculated based on
the process described in 3.3.4.

After recalculation, the coefficient of variation is calculated for the new estimate.
If it is still > 10%, the NMR is recalculated again, recombining with the previous
adjacent year.
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Figure A.1: Recalculation of VR data: Saint Vincent and the Grenadines

A.2.4 Crisis deaths

For some countries, there are known natural or political crises that have caused an
excess of deaths; for example the Rwandan genocide or, more recently, the Haiti
earthquake and conflict in Syria. For the crisis years, the survey data are unlikely
to be representative of the actual number of deaths.
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Adjustments were made to the relevant crisis country-years, using estimates complied
by the World Health Organization (WHO). The WHO uses external data sources
on the number of deaths, including the Centre for Research on the Epidemiology of
Disasters International Disaster Database (CRED (2012)) and estimates from UN
Office of the High Commissioner for Human Rights for the Syrian conflict (Price
et al., 2013). The WHO estimates the proportion of deaths that occur under the age
of five (WHO (2013)). From there, the best guess of the number of crisis deaths that
occur within the first month is simply 1/60th of the total deaths under five years.

Estimation of crisis countries was firstly done without any crisis adjustments. In
addition, the global relation with U5MR, f(Uc,t), is fit to crisis-free Uc,t estimates.
The relevant adjustments to country-years were then made post estimation. This
was to ensure that the crisis deaths, which are specific to particular years, do no
have an effect on the splines estimation.

A.2.5 HIV/AIDS countries

Although there have been vast improvements in recent years, many countries in Sub-
Saharan Africa still suffer from relatively high levels of HIV/AIDS-related deaths.
This has a substantial effect on the child mortality – if children living with HIV are
not on antiretroviral treatment, a third will not reach their 1st birthday, and half
will not reach their 2nd birthday (UNAIDS (2014)). However, it is unlikely that
children with HIV will die within the neonatal period, and so HIV/AIDS itself does
not have and explicit effect on the NMR (although there may be indirect effects on
mortality, for example through losing their mother to HIV) (Mahy, 2003).

Due to this disproportionate effect of HIV/AIDS on U5MR compared to NMR, there
are several adjustments made to the inputs used in the model, which leads to NMR
being modeled as a function of ‘HIV-free’ U5MR. Firstly, the U5MR data used in
the ratio observations are adjusted to incorporate reporting bias. This adjustment
accounts for the higher maternal mortality among HIV-positive mothers, which leads
to under-estimation of U5MR from surveys (Walker et al., 2012). Once adjusted,
the AIDS deaths are removed from U5MR, using estimates of deaths provided by
UNAIDS (UNAIDS (2014)). The result is a ratio of neonatal to other child mortality
which is free of AIDS deaths. In addition, the global relation with U5MR, f(Uc,t), is
fit to AIDS-free U5MR. Unlike the crisis adjustments, no AIDS deaths were added
in post-estimation, because it is assumed no neonatal deaths are due to HIV/AIDS.

A.2.6 Countries with no data

There were twelve UN-member countries for which the IGME produces NMR esti-
mates for, but where there are no available data. For these countries, the estimates
of NMR are based on the global relation with U5MR, f(Uc,t). Additionally, some
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steps are needed to obtain the appropriate uncertainty around these estimates. For
country c:

• Draw λc ∼ N(0, σ2
λ);

• Set α1 = λc;

• Draw ε1 ∼ N(0, σε); where σε = eχ is the global smoothing parameter, based
on equation 3.4;

• Set α2 = α1 + ε1;

• Repeat to generate αk for k = 3, . . . , Kc. Kc is the number of spline knots
needed to cover the period 1990–2015.
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