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RESEARCH ARTICLE

Goblet Cell Derived RELM-β Recruits CD4+ T
Cells during Infectious Colitis to Promote
Protective Intestinal Epithelial Cell
Proliferation
Kirk S. B. Bergstrom1‡¤, Vijay Morampudi1‡, Justin M. Chan1, Ganive Bhinder1,
Jennifer Lau1, Hyungjun Yang1, Caixia Ma1, Tina Huang1, Natasha Ryz1, Ho Pan Sham1,
Maryam Zarepour1, Colby Zaph2, David Artis3, Meera Nair4, Bruce A. Vallance1*

1 Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver,
Canada, 2 Biomedical Research Centre, University of British Columbia, Vancouver, Canada, 3 Jill Roberts
Institute for Research in Inflammatory Bowel Disease, Joan and SanfordWeill Department of Medicine, West
Cornell Medical College, Cornell University, New York, New York, United States of America, 4 Division of
Biomedical Sciences, University of California, Riverside, Riverside, California, United States of America

¤ Current address: Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United
States of America
‡ These authors share first authorship on this work.
* bvallance@cw.bc.ca

Abstract
Enterohemorrhagic Escherichia coli and related food and waterborne pathogens pose sig-

nificant threats to human health. These attaching/effacing microbes infect the apical surface

of intestinal epithelial cells (IEC), causing severe diarrheal disease. Colonizing the intestinal

luminal surface helps segregate these microbes from most host inflammatory responses.

Based on studies using Citrobacter rodentium, a related mouse pathogen, we speculate

that hosts rely on immune-mediated changes in IEC, including goblet cells to defend against

these pathogens. These changes include a CD4+ T cell-dependent increase in IEC prolifer-

ation to replace infected IEC, as well as altered production of the goblet cell-derived mucin

Muc2. Another goblet cell mediator, REsistin-Like Molecule (RELM)-β is strongly induced

within goblet cells during C. rodentium infection, and was detected in the stool as well as

serum. Despite its dramatic induction, RELM-β’s role in host defense is unclear. Thus, wild-

type and RELM-β gene deficient mice (Retnlb-/-) were orally infected with C. rodentium.

While their C. rodentium burdens were only modestly elevated, infected Retnlb-/- mice suf-

fered increased mortality and mucosal ulceration due to deep pathogen penetration of

colonic crypts. Immunostaining for Ki67 and BrDU revealed Retnlb-/- mice were significantly

impaired in infection-induced IEC hyper-proliferation. Interestingly, exposure to RELM-β did

not directly increase IEC proliferation, rather RELM-β acted as a CD4+ T cell chemoattrac-

tant. Correspondingly, Retnlb-/- mice showed impaired CD4+ T cell recruitment to their

infected colons, along with reduced production of interleukin (IL)-22, a multifunctional cyto-

kine that directly increased IEC proliferation. Enema delivery of RELM-β to Retnlb-/- mice

restored CD4+ T cell recruitment, concurrently increasing IL-22 levels and IEC proliferation,
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while reducing mucosal pathology. These findings demonstrate that RELM-β and goblet

cells play an unexpected, yet critical role in recruiting CD4+ T cells to the colon to protect

against an enteric pathogen, in part via the induction of increased IEC proliferation.

Author Summary

Food and water-borne bacterial pathogens such as enterohemorrhagic Escherichia coli
(EHEC) target the epithelial cells that line the inner surface of their host’s intestines, caus-
ing inflammation and diarrhea. While professional immune cells including T lympho-
cytes are well known for promoting host defense, we hypothesized that as the cells in
closest contact with these bacterial pathogens, intestinal epithelial cells also play an active
and essential role in protecting the host during infection. Infecting mice with Citrobacter
rodentium, a mouse specific relative of EHEC, we noted a dramatic upregulation in the
expression and secretion of the mediator RELM-β by a subset of epithelial cells called
goblet cells. Compared to wildtype mice, mice lacking RELM-β showed less epithelial cell
proliferation and suffered significantly more intestinal damage during infection. Rather
than directly causing epithelial cell proliferation, we found RELM-β instead recruited T
lymphocytes to the infected intestine. Upon reaching the intestine, the T lymphocytes
produced the cytokine interleukin-22, which directly increased epithelial cell prolifera-
tion. Taken together, these findings indicate that epithelial/goblet cells play a critical role
in orchestrating the host response to an intestinal pathogen, by recruiting T lymphocytes
and by promoting epithelial proliferation to limit the intestinal damage suffered during
infection.

Introduction
The enteric bacterial pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropatho-
genic E. coli (EPEC) are important causes of infectious diarrhea. These food and waterborne
pathogens infect intestinal epithelial cells (IEC) using a Type III secretion system (T3SS) [1].
Their infection leads to characteristic attaching and effacing (A/E) lesions on IEC, as well as
diarrhea and transient enteritis or colitis in humans [1]. Exactly how the host defends against
these A/E pathogens is poorly understood, largely because their luminal location segregates
and protects them from most inflammatory and immune effector mechanisms. Instead, we
and others have hypothesized that host defense against these microbes relies largely on
immune mediated changes in the intestinal epithelium. In fact, several in vitro studies have
shown that IEC actively promote “host resistance” to A/E pathogens by producing factors that
recruit inflammatory/immune cells to the infected intestine, and by upregulating their expres-
sion of antimicrobial peptides to directly kill A/E bacteria [2–5]. However the efficacy of IEC-
driven responses in clearing these pathogens is unclear, raising the question of whether infected
hosts also promote IEC responses that help the host “tolerate” these infections, by limiting
intestinal tissue damage to ensure the host’s survival.

Unfortunately the human specificity of EPEC and EHEC has limited our ability to study
host responses against these microbes. Citrobacter rodentium, a natural A/E pathogen of mice
has been widely used to model EPEC and EHEC infections, as well as study the host immune
responses that develop against these pathogens [6, 7]. We and others have shown that CD4+ T
cells are recruited to the infected intestine, where they drive a mixed Th1/Th17/Th22 immune
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response that promotes host defense, by limiting C. rodentium burdens [8–11]. Moreover C.
rodentium infection leads to significant increases in IEC-based expression of antimicrobial pro-
teins and chemokines, as well as dramatic elongation (hyperplasia) of colonic crypts due to
increased IEC proliferation. We recently showed these hyperplastic crypts appear less suscepti-
ble to infection by C. rodentium [12] whereas the highly susceptible Rag1 deficient (-/-) mice
(lacking T and B cells) are severely impaired in developing infection-induced IEC hyper-prolif-
eration. Notably, reconstitution of Rag1-/- mice with CD4+, but not CD8+ T cells largely
restored the IEC hyper-proliferative response during infection [13]. While IEC hyper-prolifer-
ation has been primarily seen as a characteristic pathology of C. rodentium infection, it may
also reflect one mechanism by which CD4+ T cells promote host defense against A/E patho-
gens, although exactly how this response benefits the infected host remains controversial.

Increased proliferation and shedding of infected IEC are unlikely to clear the intestine of
invading microbes, and also have detrimental effects on the host, such as limiting the matura-
tion and differentiation of IEC including goblet cells, thereby limiting mucin production as
well as ion transport in the colon [12–16]. Even so, increasing IEC turnover likely limits the
potential for lumen dwelling microbes to escape the intestine and go systemic, as well as ensur-
ing the replacement of IEC damaged by the pathogen, or by the host’s own inflammatory
response. Thus the immune-mediated increase in IEC proliferation may fall under the new des-
ignation of “tolerance responses” that limit the pathology suffered by the host during infection
[17]. Other potential tolerance responses described during C. rodentium infection include
TLR2-dependent signaling, which rather than impacting C. rodentium burdens, was shown to
limit mucosal damage as well as protect IEC barrier function during infection [18, 19]. In fact,
tolerance responses may be selected for when dealing with intestinal pathogens since resistance
responses aimed at killing pathogens may inadvertently deplete commensal microbes. We
recently demonstrated this effect in mice lacking the negative regulator of TLR/IL-1R signaling
termed SIGIRR [20]. Sigirr-/- mice proved highly susceptible to C. rodentium infection despite
developing an exaggerated antimicrobial response, because rather than killing the pathogen,
their host response caused a rapid depletion of commensal microbes, thus reducing coloniza-
tion resistance against C. rodentium [20].

Aside from undergoing increased proliferation, secretory IEC such as goblet cells can also
release mediators that promote host defense. For example, goblet cells produce and release the
polymeric gel-forming mucin Muc2 into the intestinal lumen, where it hydrates and forms the
protective mucus layer that overlies the IEC [21, 22]. Suspecting that Muc2 would play a pro-
tective role in this model, we previously infected wildtype mice as well as mice lacking intestinal
mucus (Muc2-/-). The mucus barrier not only delayed C. rodentium infection, but mucin pro-
duction increased during infection, acting to “flush” loosely adherent pathogens away from the
mucosal surface [23]. Intestinal goblet cells also produce other mediators, including Resistin-
like molecule (RELM)-β [24, 25]. RELM-β belongs to a family of cysteine-rich secretory mole-
cules initially described to control insulin resistance in rodents [26, 27]. Interestingly, RELM
proteins have been shown to modulate inflammation and wound healing processes [24, 28,
29]. RELM-β is produced solely by goblet cells, and is induced in the intestines of germfree
mice following their colonization by commensal bacteria [30]. RELM-β expression is also
strongly induced in mouse models of spontaneous ileitis [31] and during dextran-sodium sul-
fate driven colitis [24, 32], where it appears to worsen intestinal inflammation by stimulating
macrophage production of pro-inflammatory cytokines such as TNFα, IL-6, and RANTES.
Moreover, RELM-β has been shown to modulate host defense during helminth parasite infec-
tions (Trichuris muris, Nippostrongylus brasiliensis), by impacting on parasite viability and on
CD4+ T cell cytokine responses during infection [33, 34].
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Despite these findings, the actions of RELM-β within the GI tract remain controversial, and
are largely unexplored during enteric bacterial infections. To better define its function, we
tested whether RELM-β contributes to the host response to C. rodentium. Infection dramati-
cally increased RELM-β levels within colonic goblet cells as well as in the stool and sera of
mice. Although mice lacking the RELM-β gene (Retnlb-/-) carried roughly similar intestinal
and systemic pathogen burdens to wildtype mice, they proved highly susceptible to C. roden-
tium, suffering exaggerated mucosal injury, in concert with impaired proliferation and replace-
ment of infected IEC. Considering that CD4+ T cells are required for the increased IEC
proliferative response during infection [13], we tested if Rag1-/- mice were impaired in RELM-
β production, but instead found it was strongly expressed in their colons during infection.
Instead we determined that RELM-β functions as a chemoattractant for CD4+ T cells, and that
infected Retnlb-/- mice suffered a significant delay in CD4+ T cell recruitment to the intestine,
along with reduced levels of interleukin (IL)-22, a cytokine that can directly increase IEC prolif-
eration. Moreover, enema delivery of RELM-β to Retnlb-/- mice restored CD4+ T cell recruit-
ment, elevating IL-22 levels and IEC proliferation, while reducing mucosal pathology. These
results demonstrate that RELM-β and goblet cells play a novel host protective role during infec-
tious colitis, accelerating the recruitment of CD4+ T cells and the promotion of IEC prolifera-
tion within the infected intestine, thereby limiting infection-associated tissue pathology.

Results

RELM-β expression is strongly induced during C. rodentium infection
Recent studies have shown that infection of the murine intestine by C. rodentium induces the
resident goblet cells to strongly express RELM-β [30, 35], however the duration of this response
and whether RELM-β was secreted by the goblet cells was not examined. To test this, C57BL/6
mice were infected with C. rodentium and colonic tissues, stool and serum were analyzed.
Between 6 and 10 DPI when bacterial burdens were sustained at CFU levels up to 108/gram tis-
sue (Fig 1A), we noted a dramatic increase in Retnlb gene transcript levels in the distal colon
that remained elevated until the infection was cleared (21–28 DPI) (Fig 1A and 1B). When
other goblet cell-specific mediators were assessed over this time course, Muc2 gene transcript
levels remained fairly stable whereas trefoil factor (TFF) 3 transcripts decreased at 10 and 14
DPI as described previously [12], returning to near baseline levels by 28 DPI (Fig 1B). We also
assessed RELM-β protein levels, revealing a corresponding increase in RELM-β expression in
colon tissues at 6 DPI (Fig 1C). In addition, significant levels of RELM-β protein were also
detected in stool samples isolated at 6 and 10 DPI (Fig 1C) as well as in the sera (Fig 1D) indi-
cating that RELM-β is released from the goblet cells during infection. At later time points,
RELM-β protein levels decreased from their peak (Fig 1C), likely reflecting increasing inflam-
matory damage in the colon, as well as accelerated IEC/goblet cell turnover rates and immatu-
rity at these later stages of C. rodentium infection [13]. These data thus reveal a highly dynamic
goblet cell response to C. rodentium, with RELM-β showing a distinct induction during
infection.

To ensure the dramatic induction of RELM-β seen during infection was not simply due to
the large oral dose of C. rodentium, we also tested a natural infection model by co-housing pre-
viously unexposed C57BL/6 mice with C. rodentium-infected mice. At day 7 post-exposure
(DPE) when Citrobacter infection is well established in the previously naive mice (S1A Fig), we
noted a significant ((40-fold) P< 0.0001) induction in Retnlb gene expression (S1B Fig). West-
ern blotting of stool samples revealed a major increase in secreted RELM-β protein levels at 7
DPE (Fig 1E), while immunostaining confirmed both RELM-β induction and its specificity to
goblet cells (Fig 1F).
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RELM-β deficiency leads to increased mortality and mucosal damage
during infection
We next examined mice genetically deficient in RELM-β (Retnlb-/- mice), and consistent with
previous reports [24, 32] found no evidence of overt or spontaneous disease development
under uninfected conditions. Similarly, upon examining the intestinal tissues of uninfected

Fig 1. Dynamics of RELM-β expression duringC. rodentium infection. (A) Enumeration of tissue adherent or luminalC. rodentium following oral
gavage. Results showmean values of 3–4 mice/group. (B) qPCR analysis of RELM-β, Muc2, and TFF3 mRNA levels in the distal colons of C57BL/6 mice.
Results showmean values of 3–4 mice/group, **P = 0.0014 vs. uninfected; ***P < 0.0001 vs. uninfected. (C) Western blots of RELM-β protein in colonic
tissues and stool lysates of uninfected or infected mice. Lanes show data from single mice, representative of >4 mice/group. + indicates rRELM-β positive
control. (D) Presence of RELM-β in the serum as detected by ELISA in uninfected or infected (10 DPI) mice. Each data point represents 1 mouse. Error
bars = SEM. ** P < 0.001. (E) Western blot of RELM-β within stool of mice 7 days following their natural exposure toC. rodentium infected mice. Each lane
follows 1 animal over time. (F) Representative immunofluorescent staining of RELM-β in tissues of uninfected or 7 days post exposure (DPE) mice following
natural transmission. n = 4/group. Scale bars = 100 μm. Original magnification = 200X. All results are representative of at least 2 independent experiments.

doi:10.1371/journal.ppat.1005108.g001
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C57BL/6 and Retnlb-/- mice, we noted no overt pathology or other baseline differences between
strains. In contrast, when we infected Retnlb-/- mice, we found they suffered a significant drop
(15–20%) from their initial body weights that lasted until at least 16 DPI, whereas infected
wildtype mice maintained their weight throughout the infection (Fig 2A). Furthermore, during
each round of infections, on average 30–40% of Retnlb-/-mice exhibited such significant mor-
bidity (became moribund) that they required euthanization (Fig 2B). While infected C57BL/6
mice suffered widespread but modest intestinal macroscopic pathology (as typical for this
strain) at 8 and 10 DPI, infected Retnlb-/- mice displayed grossly swollen colons completely
devoid of stool contents, as well as overt mucosal bleeding and patchy ulceration in both the
cecum and colon (Fig 2C, arrows). Histologic analysis and pathology scoring of the colons of
Retnlb-/- mice revealed marked epithelial disruption as well as significant but patchy influx of
inflammatory cells in the infected mucosa, with some regions also showing significant submu-
cosal edema and altered mucosal architecture (Fig 2D and 2F). The most severe phenotype
seen in the Retnlb-/- mice involved pan-ulceration and massive dropout of crypts, leaving the
entire tissue cross-section severely necrotic (Fig 2D and 2E). The intestinal pathology seen in
Retnlb-/- mice at 8 DPI (S2A and S2B Fig) was similar to that seen at 10 DPI (Fig 2D), and exag-
gerated pathology was also observed in the ceca of infected Retnlb-/- mice (S2C and S2D Fig).
In contrast, infected C57BL/6 mice suffered significantly (P< 0.0001) less colonic pathology,
characterized by modest but widespread inflammatory cell infiltration and crypt hyperplasia
(Fig 2D and 2F). Notably, the exaggerated pathology scores suffered by infected Retnlb-/- mice
compared to C57BL/6 mice were also observed following their co-housing suggesting their sus-
ceptibility was due to their genotype rather than an aberrant microbiome. These results thus
show that loss of RELM-β renders mice significantly more susceptible to C. rodentium-induced
colitis.

RELM-β deficiency is associated with deeper penetration of crypts by C.
rodentium
To test whether the severe damage suffered by Retnlb-/- mice reflected heavier pathogen bur-
dens, we quantified C. rodentium within the colons and ceca of Retnlb-/- and C57BL/6 mice up
to 10 DPI. C. rodentium burdens adherent to the colonic and cecal tissues of Retnlb-/- mice
were not significantly different than those recovered from C57BL/6 mice from 2 to 8 DPI, but
were significantly (5 fold) higher at 10 DPI (Fig 3A and S2E Fig). Similarly, pathogen burdens
found in the colonic and cecal stool contents of Retnlb-/- mice were modestly (but significantly)
elevated over those burdens recovered from C57BL/6 mice at 6 and 10 DPI (Fig 3A and S2E
Fig). Considering the exaggerated morbidity and pathology suffered by infected Retnlb-/- mice,
the observed differences in overall pathogen burdens seemed relatively unimpressive, so we
next examined whether C. rodentium localization differed between the mouse strains by stain-
ing tissues for C. rodentium LPS. Strikingly, C. rodentium was found to deeply penetrate the
crypts of Retnlb-/- mice at 6 DPI, (Fig 3B). At 10 DPI, C. rodentium filled the lumens of many
Retnlb-/- colonic and cecal crypts, from the surface epithelia down to crypt bases (Fig 3B and
3C and S2F Fig) likely representing the source of the modestly increased burdens we recovered
from these mice. In contrast, C. rodentium predominantly localized to surface epithelia in
C57BL/6 mice, and only rarely penetrated their crypts (Fig 3B and 3C and S2F Fig). This differ-
ence in crypt penetration and evidence that C. rodentium directly infected epithelial cells near
the base of Retnlb-/- colonic crypts was confirmed by immunostaining for the bacterial T3SS
effector Tir (S2G Fig). FISH staining of ulcerated colonic regions revealed clusters of exclu-
sively C. rodentium (yellow) and not commensal bacteria (red) localized in patterns resembling
crypts, suggesting ulcers formed at sites where C. rodentium had been deeply penetrating crypt

RELM-β recruits CD4+ T Cells to Protect against Infectious Colitis

PLOS Pathogens | DOI:10.1371/journal.ppat.1005108 August 18, 2015 6 / 27



Fig 2. Retnlb-/- mice are highly susceptible toC. rodentium-induced colitis. (A) Body weights following infection of C57BL/6 and Retnlb-/- mice. Error
bars = SEM. *P < 0.05; * P < 0.05 *** P < 0.0001 (vs. 0 DPI). Results are representative of at least 3 experiments, n = 3–6/group. (B) Infection survival curve
of C57BL/6 mice and Retnlb-/- mice. Starting numbers (i.e at 0 DPI) were WT, n = 9; and Retnlb-/-, n = 11. Results are representative of 3 experiments. (C)
Resected colons and ceca of uninfected and 10 DPI C57BL/6 and Retnlb-/-mice. Results are representative of� 4 infections, n = 3–6/group. (D)
Representative H&E-stained colon sections from C57BL/6 and Retnlb-/- mice at 10 DPI (n�10/group). (E) Ulcer frequency and size in C57BL/6 vs. Retnlb-/-

mice at 10 DPI. Bars show average mean values of� 3 independent experiments, each with n = 2–4 mice/group. (F) Histopathology scoring of C57BL/6 vs.
Retnlb-/- mice (n� 10 per group). *** P < 0.0001. All error bars = SEM.

doi:10.1371/journal.ppat.1005108.g002
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Fig 3. Disease severity of Retnlb-/- mice is associated with greaterC. rodentium invasion of colonic crypts. (A)C. rodentium enumeration in the
colon tissue and luminal compartments of Retnlb-/- and C57BL/6 following infection. Results showmeans of 3–4 (2 and 4 DPI) and 6–11 (6–10 DPI) animals,
and are representative of 2 independent experiments **P = 0.0047, *P = 0.0262; ##P = 0.0015 (Retnlb-/- vs. C57BL/6); Mann-Whitney U-test. (B) C.
rodentium staining in mouse colonic tissues (6 & 10 DPI). Original magnification = 200X. Results are representative of 4–6 mice/group. (C) Quantitation ofC.
rodentium LPS-filled crypts in Retnlb-/- and C57BL/6 mice (10 DPI). Results represent mean of total crypts counted in single mice, pooled from 3–6 mice/
group. *P < 0.05. (D) Left panel: H&E staining of heavily ulcerated colonic tissue from a Retnlb-/-mouse (10 DPI). M = Mucosa; SM = submucosa. Right
Panel: dual FISH staining using a universal EUB338 probe (red) and Gamma-proteobacteria specific probe (green), revealing clusters of C. rodentium
(yellow) deep within ulcerated tissue, presumably where crypt bases were located.Cr—C. rodentium. Results are representative of all ulcerated Retnlb-/-

mice analyzed (n = 5). (E) Enumeration of systemicC. rodentium burdens in C57BL/6 vs. Retnlb-/- mice (10 DPI). Each data point represents one animal.
**P = 0.0037, Mann-Whitney U-test.

doi:10.1371/journal.ppat.1005108.g003
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bases (Fig 3D). Consistent with this deep tissue invasion and ulceration, significantly higher
pathogen burdens (P< 0.005) were found in the livers of Retnlb-/- mice (Fig 3E). Interestingly,
when we infected Retnlb-/- mice with a C. rodentium strain lacking EspF (ΔespF), a T3SS effec-
tor linked to IEC damage and barrier disruption, most disease parameters including weight
loss and colonic ulceration were abrogated, showing that the exaggerated tissue damage that
developed in infected Retnlb-/- mice required the full pathogenic properties of C. rodentium
(S3A–S3D Fig).

Infection-induced antimicrobial and inflammatory responses are intact in
Retnlb-/- mice
The deep penetration of C. rodentium into Retnlb-/- mouse tissues led us to test whether
RELM-β deficiency caused any defects in antimicrobial responses. Several antimicrobial genes
(iNOS, mCRAMP, and RegIIIγ) primarily expressed by IEC were assessed. No defects in their
expression were noted, and there was in fact a trend for elevated levels of RegIIIγ in the
Retnlb-/- mice (S4A Fig). Moreover no defects were detected in the antimicrobial capacity of
the colonic crypts themselves (S4B Fig). We also tested whether recombinant RELM-β itself
possessed antimicrobial activity, and found that rRELM-β did not exhibit any C. rodentium
killing capacity (S4C Fig).

We next examined whether inflammatory responses were impaired in the Retnlb-/- mice.
Analysis of pro-inflammatory cytokine genes revealed heightened mRNA transcript levels for
TNF-α, IL-1β, and IL-6 in the colons (S4D Fig) and ceca (S2B Fig) of infected Retnlb-/- vs
C57BL/6 mice. We also found roughly similar numbers of macrophages and neutrophils infil-
trating the colons of the two mouse strains by F4/80 and myeloperoxidase (MPO) staining
respectively (S4E Fig), aside from areas of ulceration in the infected Retnlb-/- mice where neu-
trophils were found in much greater abundance, even by H&E staining (Fig 2D). Collectively,
these studies indicate that loss of RELM-β does not cause any overt defects in launching anti-
microbial or inflammatory responses to C. rodentium infection that could explain the deep
crypt penetration seen in Retnlb-/- mice.

Retnlb-/- mice exhibit reduced IEC proliferation during infection
While exploring whether other host defenses might be compromised in Retnlb-/- mice, we
observed through H&E staining that their colonic crypt structures did not change during infec-
tion in the same manner seen in C57BL/6 mice. This was most notable at 8 and 10 DPI, when
the Retnlb-/- crypts showed less cellularity, wider lumens, and more mature goblet cells than
those in C57BL/6 mice (Fig 4A). Since C. rodentium infection is known to dramatically
increase IEC proliferation, leading to mature goblet cell depletion [12, 13], we examined IEC
proliferation in the two mouse strains by staining for the proliferation marker Ki-67 [36].
While no baseline differences were noted between strains (S5A and S5B Fig) (9.3 ± 0.4 versus
10.2 ± 0.7 Ki67 +ve cells/crypt); at 8 DPI we saw significantly increased numbers of Ki67+ IEC
in the colons of C57BL/6 mice (30.8 ± 1.5) whereas this IEC hyper-proliferative response was
significantly impaired (16.8 ± 1.7, P< 0.005) in the Retnlb-/- mice (Fig 4B). Over the next six
days, IEC proliferation gradually increased such that by 14 DPI, the reduction in IEC prolifera-
tion in Retnlb-/- mice that survived to that point (versus C57BL/6 mice) was no longer observed
(both> 70 +ve cells/ crypt) suggesting that while RELM-β was not essential for IEC prolifera-
tion, the absence of RELM-β caused a major delay in IEC proliferative responses to C. roden-
tium infection.

Based on this data, we sought to determine whether the induction of IEC hyper-prolifera-
tion was related to the ability of C. rodentium to deeply penetrate colonic crypts. We analyzed
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IEC proliferation using 5-bromodeoxyuridine (BrdU) incorporation, and performed dual
labeling for BrdU and C. rodentium LPS. The immunostaining revealed C. rodentium coloniza-
tion in C57BL/6 mice was limited to the surface epithelium of crypts displaying abundant
BrdU+ IEC extending from the crypt base to the surface (Fig 4C). However, in Retnlb-/- mice,
C. rodentium deeply invaded many of the colonic crypts showing only sparse numbers of
BrdU+ IEC limited to the crypt bases (Fig 4C). Overall, consistent with Ki67 staining, BrdU
labeling was significantly reduced (P< 0.01) by approximately 4-fold in Retnlb-/- mice vs.
C57BL/6 mice at 8 DPI (Fig 4C). As shown in Fig 3B, the number of LPS-filled crypts was
increased 5-fold in Retnlb-/- mice, suggesting that their impaired IEC proliferative responses
coincided with their crypts being highly susceptible to deep C. rodentium penetration. Notably,
we previously identified deep C. rodentium colonization of colonic crypts exhibiting limited
IEC proliferation in Rag1-/- mice [13].

CD4+ T cells are sufficient to induce IEC proliferative responses during
infection
Crypt hyperplasia and increased IEC proliferation are common features of many infectious as
well as non-infectious GI diseases, including tropical enteropathy and celiac disease [37, 38].

Fig 4. Retnlb-/- mice display defective epithelial proliferative responses predisposing to deep infection of colonic crypts. (A) H&E staining of
infected colons at 8 DPI. Scale bar = 50 μm. Original magnification = 200X. (B) Ki67 staining (green) of infected colons (8 DPI) as well as DAPI staining of
host cell nuclei (blue) as shown. Scale bar = 50 μm. Graph on right: Bars represent mean average value of Ki67+ cells/100 IECs, from 3 mice/group. (C) Dual
labeling for BrdU (red) and LPS (green) in C57BL/6 and Retnlb-/- mice. Original magnification = 200X. Scale bar = 100 μm. Graph on right: Bars represent the
mean average number of BrdU+ cells per 100 cells in 3 mice/group. Error bars = SEM. **P = 0.0068, ***P = 0.0002. Results are representative of at least 3
independent experiments.

doi:10.1371/journal.ppat.1005108.g004
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While the underlying mechanisms are unclear, T cell activation has been repeatedly linked to
these pathologies. Moreover, we recently showed that adoptive transfer of CD4+ T cells into
Rag1-/- mice increases IEC proliferation during C. rodentium infection [13]. Based on our find-
ing of impaired IEC proliferation in Retnlb-/- mice, we examined whether CD4+ T cells might
control IEC proliferation by modulating intestinal RELM-β levels. We therefore tested how
reconstituting CD4+ T cells into Rag1-/- mice affected both IEC proliferation, as well as RELM-
β expression. At 10 DPI, colon tissues were immunostained for CD4+ cells, proliferative
responses (Ki67) and pathogen colonization (LPS), as well as RELM-β. As expected, CD4+ cells
were virtually absent in non-reconstituted Rag1-/- mice, but were abundant in the mucosa of
CD4+ T cell-reconstituted Rag1-/- mice (Fig 5A), confirming successful reconstitution. Analysis
of IEC proliferation at 10 DPI found that infected CD4+ reconstituted Rag1-/- mice showed a
dramatic increase in Ki67+ IEC compared to non-reconstituted Rag1-/- mice (Fig 5B and 5B1).
Importantly, LPS staining revealed C. rodentium deeply penetrating the crypts of non-reconsti-
tuted Rag1-/- mice, whereas it was limited to the surface epithelium of CD4+ reconstituted
Rag1-/- mice (Fig 5C). When tissues were stained for RELM-β, abundant positively staining
goblet cells were noted in both the non-reconstituted Rag1-/- mice as well as the CD4+-
-reconstituted Rag1-/- mice (S5C Fig). These results indicate not only that induction of RELM-β
expression does not require CD4+ T cells, but more importantly, that RELM-β is insufficient,
in the absence of CD4+ T cells, to drive IEC hyper-proliferation during C. rodentium infection.

Infected Retnlb-/- mice display reduced numbers of colonic CD4+ T cells
The above results suggested that the impaired IEC proliferation seen in Retnlb-/- mice might
reflect some defect in their CD4+ T cells, however baseline CD4+ T cell numbers within the
intestine and spleen are known to be similar in Retnlb-/- vs C57BL/6 mice [24, 33]. Alterna-
tively, we hypothesized that Retnlb-/- mice might suffer an impaired ability to recruit CD4+ T
cells to the colon upon infection, since an inability to recruit these cells could potentially
explain their impaired IEC proliferation during infection. We therefore immunostained
colonic tissues from uninfected and infected C57BL/6 and Retnlb-/- mice, for the marker CD4.
While CD4+ cells were sparse in both strains under uninfected conditions (Fig 5D), at 10 DPI,
numerous intensely stained CD4+ cells with distinct lymphocyte morphology were seen in the
submucosa and mucosa of C57BL/6 mice (Fig 5D). In contrast, CD4+ cell numbers were signif-
icantly reduced (P< 0.05) in Retnlb-/- mice, at roughly 15–25% the number found in C57BL/6
colons at both 8 and 10 DPI (Fig 5D and 5E). These results were confirmed by FACs analysis
of cells isolated from the colonic lamina propria from the two mouse strains (Fig 5F). Further-
more, FACs analysis of CD8+ve T cell populations showed no significant differences between
C57BL/6 and Retnlb-/-mice, indicating that loss of RELM-β did not affect all T cell populations.
These data suggest that the paucity of CD4+ T cells in the mucosa of Retnlb-/- mice is likely the
basis for their stunted IEC proliferative responses to C. rodentium infection.

Adaptive immune responses to C. rodentium are not compromised in
Retnlb-/- mice
While CD4+ T cells are sufficient to drive increased IEC proliferation, it was unclear whether
the reduced CD4+ T cell numbers found in infected Retnlb-/- mice reflected a defect in their
priming, or in their recruitment to the site of infection. However, stimulation with C. roden-
tium antigen revealed similar antigen-specific secretion of IL-17A and IFNγ from splenocytes
isolated from infected C57BL/6 and Retnlb-/- mice (S6A and S6B Fig). These results suggest
that priming of adaptive immune responses to C. rodentium is not compromised in the absence
of RELM-β.
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Fig 5. Reducedmucosal CD4+ T-cell numbers within infectedRag1-/- and Retnlb-/- mice, leading to defective epithelial cell proliferation. (A) CD4
staining in the colons of infected Rag1-/- mice reconstituted with either PBS or CD4+ T cells. (B) Ki67 staining in PBS or CD4+ T cell-reconstituted Rag1-/-mice
(10 DPI). Graph on right (B1): Enumeration of Ki67-labeled cells. Bars represent mean average number of Ki67+ cells/100 cells. Error bars = SD. *P < 0.01.
(C) LPS staining showing deeper penetration ofC. rodentium into the crypts of PBS-reconstituted Rag1-/- mice (arrows) as compared to CD4+ T cell-
reconstituted Rag1-/- mice (10 DPI). Scale bar = 100 μm. Original magnification = 200X. (D) CD4 staining in uninfected or 10 DPI C57BL/6 and Retnlb-/- mice.
(E) Enumeration of CD4+ cells within colonic sections. Results represent means of cells counted from 5–10 high power fields (400X)/mouse. *P < 0.05. Error
bars = SEM. (F) Flow cytometry of lamina propria lymphocytes purified from infected C57BL/6 and Retnlb-/-mice (8 DPI). All results are representative of 2–3
independent experiments, with 3–5 mice/group.

doi:10.1371/journal.ppat.1005108.g005
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RELM-β exhibits direct chemotactic activity for CD4+ T-cells in vitro
We next tested whether Retnlb-/- mice suffered defects in recruiting CD4+ T-cells to the colon,
by measuring colonic gene expression of the T cell chemokines CCL8, CXCL9, and CCL25
[39]. We found significantly enhanced gene expression of CCL8 at 6 DPI, while both CCL8
and CCL25 were increased (but not significantly) at 10 DPI in Retnlb-/- mice, compared to that
found in infected C57BL/6 mice (Fig 6A). While CXCL9 expression was mildly impaired at 6
DPI, it was not significant, and did not seem at a level that would have such a major effect on
CD4+ T-cell recruitment. With no overt defects identified in these key chemokine genes, we
noted previous studies showing that RELM-β could directly chemoattract stromal cells to sites
of lung injury [40]. We therefore examined whether RELM-β could itself recruit CD4+ T cells
using a Boyden Chamber assay. Interestingly, rRELM-β caused a dose-dependent increase in
CD4+ T cell migration, similar to that seen using the T-cell chemokine CCL4 (Fig 6B), but the
chemoattraction was abrogated when rRELM-β was heat inactivated. Therefore the impaired T
cell recruitment seen in Retnlb-/- mice likely reflects the loss of RELM-β and its ability to che-
moattract CD4+ T cells to the infected colon.

IL-22 increases IEC proliferation and is significantly reduced in Retnlb-/-

mice
To determine the mechanism through which CD4+ T cells drive IEC proliferation during
infection, we next examined levels of IL-22; a cytokine produced by CD4+ T cells during
enteric infection that interacts with its receptors expressed by IEC [41]. IL-22 is unique
amongst the interleukins in that its receptors are exclusively expressed on tissue resident non-
hematopoietic cells such as IEC, inducing proliferative and antimicrobial responses in these
cells [9, 41]. In fact, in separate studies, we found that neutralizing IL-22 in mice during C.
rodentium infection caused a major impairment in IEC proliferation. C57BL/6 mice treated
with an anti-IL-22 antibody showed less colonic IEC proliferation (19.1±1.7 Ki67+ve IEC/
crypt) than infected mice receiving PBS alone (30.4 ±1.7) (P = 0.009) or mice receiving control
antibodies (32.0 ±4.3) (P = 0.058). Interestingly, gene transcript and protein analysis revealed
significantly impaired (P< 0.05) induction of IL-22 in Retnlb-/- mice during infection as com-
pared to C57BL/6 mice (Fig 7A and 7B). Further, in vitro application of rIL-22 to the CMT93
colonic epithelial cell line significantly increased (P< 0.005) proliferation (Ki67+ cells) (Fig
7C), confirming the potential for its direct proliferative effects on IECs. In contrast, direct
application of rRELM-β to this IEC line did not significantly increase Ki67+ cell numbers (S7A
Fig). Since IL-22 can be produced by several cell types, including T lymphocytes and innate
lymphoid cells, we compared its expression during infection in mice lacking T cells (Tcr-β-/-)
and C57BL/6 mice. We found that Il-22 gene transcription, as well as IL-22 protein levels were
dramatically reduced in the colons of Tcr-β-/- mice indicating that CD4+ T cells are the primary
source of IL-22 at this time point in the infection (S7B and S7C Fig). These results thus suggest
that IL-22 production by CD4+ T cells recruited to the infected intestine in response to RELM-
β drives the protective IEC proliferative responses seen during infection.

RELM-β enemas restore CD4+ T cells, IL-22 levels and IEC proliferation
in infected Retnlb-/- mice
To clarify whether restoring RELM-β could protect Retnlb-/- mice during infection, the effects
of delivering rRELM-β into Retnlb-/- mice were tested. Repeated intraperitoneal (i.p) injection
of murine rRELM-β had no protective effect on infected Retnlb-/- mice (S8 Fig). We next tried
enema delivery, with infected Retnlb-/- mice given 400 ng doses of rRELM-β in 1% methyl
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propyl cellulose in PBS, or the vehicle alone (control), by enema each day between 5 to 7 DPI,
and the mice were euthanized at 8 DPI. Once euthanized, the protective effects of rRELM-β
were readily apparent as the macroscopic intestinal injury and bleeding seen in the Retnlb-/-

mice was dramatically attenuated following rRELM-β treatment (Fig 8A). Moreover the
colonic pathological scores as well as levels of crypt hyperplasia in the Retnlb-/- mice given
rRELM-β enemas were found to be similar to that seen in C57BL/6 mice, and significantly dif-
ferent from those seen in vehicle treated Retnlb-/- mice (Fig 8B and 8B1). As assessed by FACs
analysis, rRELM-β treatment led to a marked increase in CD4+ T cell numbers populating the
colonic mucosa (Fig 8C). Significantly increased numbers of Ki67+ proliferating IEC (P<

0.0001) were also observed in rRELM-β treated mice (Fig 8D and 8E). Moreover significantly
increased IL-22 production (P< 0.05) was observed at both gene transcript and protein levels
in rRELM-β treated mice (Fig 8F). These results thus indicate that luminal delivery of rRELM-
β to Retnlb-/- mice recruits CD4+ T cells to the infected colon; protecting the host by boosting
IL-22 levels as well as proliferative IEC responses to replace infected and damaged cells.

Discussion
Intestinal goblet cells are considered important contributors to intestinal barrier function,
through the release of the mucin Muc2 and their critical role in the generation of the intestinal
mucus layer. While production of intestinal mucus is generally considered a passive means of
host defense, herein we report that goblet cells can also play an active and critical role in driving
inflammation and intestinal remodeling, through the production of RELM-β. In contrast to
other goblet cell mediators (Muc2 and TFF3), RELM-β expression was strongly induced during

Fig 6. RELM-β acts as a CD4+ T cell chemoattractant. (A) qPCR analysis of chemokine genes involved in T-cell recruitment in colonic tissues of
uninfected or infected C57BL/6 and Retnlb-/- mice at 6 and 10 DPI. Results are means of n = 4–8 mice/group, pooled from 2 independent experiments.
*P < 0.05 Retnlb-/- 6 DPI vs. C57BL/6 UI, Bonferroni’s post-test following 1-way ANOVA. (B) Graph showing percent CD4+ T cells migrating toward RELM-β
in a chemotaxis assay. Results are representative of 3 independent experiments, 4 replicates/group. *P < 0.05; **P < 0.001. Error bars = SEM.

doi:10.1371/journal.ppat.1005108.g006
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C. rodentium infection. Moreover RELM-β production proved protective, since infected
Retnlb-/- mice suffered exaggerated mucosal damage compared to C57BL/6 mice. Loss of
RELM-β resulted in deeper pathogen penetration of colonic crypts, patchy ulceration, as well
as heightened morbidity and mortality. The protective actions of RELM-β did not appear to
involve modulation of antimicrobial defenses, but rather reflected its role in recruiting CD4+ T
cells to the infected colon, where they drove a protective increase in IEC proliferation through
the production of IL-22.

Our previous studies demonstrated that goblet cell-derived Muc2 protected mice during C.
rodentium infection, by limiting the pathogen’s ability to reach the underlying IEC [23]. How-
ever once pathogens successfully cross the intestinal mucus layer, the protective actions of
Muc2 are overshadowed by the host’s immune response. Thus a major impetus for the current
study was to examine whether goblet cells respond to a successful infection by changing the
mediators they release. We focused our attention on RELM-β since it is strongly induced in
several models of colitis, yet its function is poorly defined. In fact, whether RELM-β plays a
pro- or anti-inflammatory role during colitis remains controversial. Reports have shown that

Fig 7. IL-22 induces IEC proliferation in vitro and its production is impaired in Retnlb-/- mice. (A) qPCR analysis of IL-22 gene transcripts in colonic
tissues of infected C57BL/6 and Retnlb-/- mice at 8 DPI. (B) IL-22 protein levels measured via ELISA in colonic (left) and cecal (right) tissues of infected
C57BL/6 and Retnlb-/- mice at 8 DPI. Results are means of n = 6 mice/group, *P < 0.05, **P < 0.005, ***P < 0.0005. All error bars = SEM. (C) Ki67 staining
and enumeration of Ki-67+ CMT93 cells untreated (PBS) or treated with recombinant mouse IL-22 in culture. Bars represent average number of Ki67+ cells
per 60X field. Fig 7A and 7B show results representative of 3 independent experiments with n = 4–10 mice per group and Fig 7C was presented as an
average of 3 independent experiments performed with at least 3 replicates per condition. **P < 0.01.

doi:10.1371/journal.ppat.1005108.g007
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Fig 8. Reconstitution with recombinant RELM-β protects infectedRetnlb-/-mice. (A) Resected colons + ceca from C57BL/6 mice or Retnlb-/- mice
treated with either rRELM-β protein (400 ng) or vehicle (8 DPI). (B) H&E staining of colon tissues at 8 DPI (left panel) and their histopathological scoring (right
panel B1) in the above mentioned mice. Scale bar = 100 μm. (C) Flow cytometry of CD4+ cells isolated from infected colons (8 DPI). (D) Colonic Ki67 staining
(8DPI) in representative mice of each group, with enumeration (E) on right as in Fig 5E. (F) IL-22 gene transcript (left) and protein (right) levels measured via
qPCR and ELISA, respectively, in infected C57BL/6 and Retnlb-/-mice (treated with PBS or rRELM-β protein). *P < 0.05; ***P < 0.0001. Error bars = SEM.
Scale bar = 100 μm. Fig 8A, 8B, 8B1 and 8D are representative of 4 independent experiments with n = 3 mice/group. The pathology scoring represents an
average of these experiments.

doi:10.1371/journal.ppat.1005108.g008
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RELM-β aggravates pathology during DSS-induced colitis, by activating macrophages and by
increasing their production of TNF-α [32]. Another study suggested that RELM-β promotes
the chronicity of T.muris infections as well as the severity of colitis by increasing IFNγ produc-
tion by CD4+ T cells [33]. In contrast, in the TNBS colitis mouse model, RELM-β deficiency
was shown to worsen disease via unknown mechanisms and correspondingly, enema delivery
of rRELM-β was shown to ameliorate TNBS colitis [42]. Collectively, these results indicate the
biological function of RELM-βmay be context dependent, while our findings suggest its impact
may reflect whether recruitment of CD4+ T cells to the intestine provides protection within the
specific model tested, or alternatively, simply worsens colitis.

In our model, we noted a rapid increase in RELM-β expression by intestinal goblet cells in
response to C. rodentium infection. While RELM-β gene transcript levels remained elevated
throughout the course of infection, RELM-β protein levels peaked at 6 DPI and declined by 10
to 14 DPI, in keeping with the increasingly immature state of goblet cells at these later time
points [12]. Aside from goblet cells being strongly immunoreactive for RELM-β, the protein
was also detected in large quantities within the stool. This suggests RELM-β is released apically
into the intestinal lumen, however consistent with a role for RELM-β in recruiting T cells to
the infected intestine, it was also found elevated within the sera of infected mice. At present it is
unclear whether this reflects basolateral release of RELM-β by the goblet cells, or instead leak-
age of the luminally secreted molecule across a disrupted epithelial barrier. Recent studies have
shown that goblet cells can act as a passageway for luminal antigens to cross the epithelium
and reach underlying immune cells [43]. Presumably such a role would also facilitate the pas-
sage of luminal RELM-β into the underlying lamina propria and beyond.

Consistent with its strong induction in our model, RELM-β played an important protective
role, as mice lacking the protein suffered more severe colitis than WTmice. The exaggerated
tissue damage reflected the deep penetration of Retnlb-/- crypts by C. rodentium, resulting in
direct pathogen damage to the epithelium as well as host immune-mediated loss of crypts and
patchy ulceration. Considering that C. rodentium typically colonizes IEC at the surface of
crypts, its presence at the crypt bases suggested the Retnlb-/- mice were impaired in host
defense. While no overt defects in antimicrobial or inflammatory responses were detected, the
Retnlb-/- mice did suffer a striking delay in their ability to induce the IEC hyper-proliferation
typically seen during C. rodentium infection. We and others have shown this process increases
the turnover and replacement of infected IEC and is driven by the host’s immune system [12–
13, 44]. This process, previously described as an “epithelial escalator” has been highlighted as a
protective response during Trichuris muris infection [45], and our data suggests this process
also benefits the host during infection by a mucosal adherent bacterial pathogen.

While increasing IEC proliferation and ultimately sloughing IEC into the intestinal lumen
may help keep mucosal adherent pathogens away from the base of intestinal crypts, an equally
important protective role may be the replacement of damaged epithelial cells, as a form of
regeneration and restitution of the epithelial layer. We propose this is a key aspect of host
defense against C. rodentium infection, promoting tissue tolerance (the ability of the host to
survive the infection), by limiting the extent of damage suffered during infection. While tissue
tolerance has been primarily highlighted as a strategy by plants to survive infection [46], recent
studies have begun to address its relevance in mammalian hosts [17]. We have also shown that
TLR2 mediated maintenance of IEC barrier function during C. rodentium infection plays a crit-
ical role in limiting tissue damage and mortality, without impacting on pathogen burdens [18].
This suggests that promoting tissue tolerance is an important goal of the host immune system
in this model. Notably, while increased IEC proliferation may be a requirement for host sur-
vival during C. rodentium infection, it is not on its own sufficient to overcome severe genetic
susceptibilities in other aspects of host defense. For example, mice deficient in TNF-α as well as
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Muc2-/- mice exhibit significant susceptibility to C. rodentium infection, despite undergoing
IEC hyper-proliferation. Thus IEC hyper-proliferation appears to work with other mechanisms
of host defense to provide optimal protection against C. rodentium infection.

RELM-β’s role in driving IEC proliferation appears to be indirect, as exposing IEC to
RELM-β in culture did not lead to increased proliferation. Moreover, although RELM-β is
strongly induced in infected Rag1-/-mice, these mice develop only modest increases in IEC pro-
liferation in response to C. rodentium. Instead RELM-β appears to require an intact immune
system, and specifically CD4+ T cells to drive crypt IEC proliferation and hyperplasia. Retnlb-/-

mice showed a selective reduction in CD4+ T cell numbers within the large bowel during infec-
tion, as compared to wildtype mice. We determined that RELM-β itself has direct chemoattrac-
tive activity for CD4+ T cells. While previous studies have shown that RELM-β can modulate
cytokine production by CD4+ T cells [33], this is the first study to show it recruits these cells to
sites of injury/infection. While there are several other chemokines known to recruit CD4+ T
cells, a previous study showed that reduced production of IEC-derived chemokines (such as
CCL25) during C. rodentium infection had little impact on CD4+ T cell recruitment at early
stages (7 DPI) but only impacted CD4+ T cell numbers at later stages of infection (14 DPI)
[47]. Why traditional chemokines have such a delayed effect in this model is unclear, however
this delay in their actions may explain why the very rapid upregulation and release of RELM-β
plays such an important role in protecting the host during the early stages of C. rodentium
infection.

While CD4+ T cells can produce a number of cytokines, depending on their functional phe-
notype, C. rodentium infection is noted for the localized recruitment of Th22 CD4+ T cells to
the colon, where they produce large quantities of the cytokine IL-22. A multifunctional cyto-
kine, IL-22 has been shown to induce antimicrobial responses as well as promote cellular pro-
liferation [9, 41], and we confirmed that IL-22 directly increases IEC proliferation in culture.
While several studies have implicated innate lymphoid cells (ILC) as important producers of
IL-22 during C. rodentium infection [48], the fact that Rag1-/- mice possess ILC in their intes-
tines, but develop little increase in IEC proliferation during infection suggests ILC are not pri-
marily involved in the IEC hyper-proliferative response. This may reflect the overall levels of
IL-22 produced by ILC versus Th22 cells, or alternatively the localization of these cells during
the course of infection. Similarly, while IL-22 has been shown to be required for the full induc-
tion of antimicrobial responses during C. rodentium infection [41], we noted no overt defect in
antimicrobial defenses in Retnlb-/-mice, suggesting that the levels of IL-22 found in their tissues
are sufficient to drive these responses, but insufficient to promote IEC proliferation.

RELM-β’s ability to drive CD4+ T cell recruitment to the gut may in part explain its compli-
cated effects during parasite infections [25, 33–34], as well as its worsening effect on several
models of colitis [31, 32]. Interestingly, RELM-β is not the only RELM family member to play a
role during C. rodentium infection. RELM-α is produced primarily by macrophages, and was
recently shown to promote a Th17 immune response by priming naive T-cells through
increased MHCII expression and by increasing IL-23 expression by macrophages [49]. In con-
trast, we did not observe overt defects in T cell priming in the absence of RELM-β, suggesting
distinct non-redundant functions of specific RELM family members in immunity to C. roden-
tium infection. Overall, our findings expand the role attributed to goblet cells in providing host
defense against enteric bacteria. While intestinal mucus provides an important barrier against
intestinal microbes, once that barrier is bypassed, the host’s immune system must be recruited
to deal with invading pathogens. The induction of RELM-β within goblet cells, and its subse-
quent release may reflect a generalized but effective host approach to rapidly recruit CD4+ T
cells to the intestine to deal with noxious stimuli threatening intestinal integrity. Considering
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the array of colitic stimuli shown to upregulate RELM-β expression, it will be interesting to
define whether RELM-β promotes T cell recruitment in other models of colitis.

Material and Methods

Mice
Six to twelve-week-old Retnlb-/- and Tcr-β-/- mice (both generated on a C57BL/6 genetic back-
ground) and wildtype (C57BL/6) mice were bred in the animal facilities at the Child and Fam-
ily Research Institute (CFRI), whereas Rag1-/- mice were purchased from The Jackson
Laboratory. Mice were kept in sterilized, filter-topped cages, handled in tissue culture hoods
and fed autoclaved food and water under specific pathogen free (SPF) conditions. Sentinel ani-
mals were routinely tested for common pathogens.

Ethics statement
All experiments were performed according to a protocol (A11-0290) approved by the Univer-
sity of British Columbia's Animal Care Committee and in direct accordance with The Cana-
dian Council on Animal Care (CCAC) guidelines. Mice were monitored for mortality and
morbidity throughout their infection and euthanized if they showed signs of extreme distress
or>15% body weight loss.

Bacterial strains, infection and rRELM-β injections and enemas
Mice were infected by oral gavage with 0.1 ml of an overnight culture of Luria-Bertani (LB)
broth grown at 37°C with shaking (200 rpm) containing 2.5 x 108 cfu of C. rodentium (strain
DBS100) [23, 50]. For natural infection studies, the protocol was modified fromWiles et al.
[51]; briefly, C57BL/6 mice were infected by oral gavage as described above. After colonization
was confirmed by plating of stool contents (described below), a single mouse harboring over
108 cfu/g of stool was placed in a cage of uninfected BL/6 mice (n = 3–4). Infected and non-
infected mice remained co-housed, and stool was taken at 4 and 7 PI to determine colonization.
For RELM-β injections, 10μg recombinant (r)Relmβ in sterile PBS (100μL of 100μg/mL), or
PBS alone as vehicle control, was administered intraperitoneally to Retnlb-/- mice 2 days prior
to infection and every second day following infection. Mice were euthanized at 10 DPI and ana-
lyzed as above. For RELM-β enemas, mice were injected with 200μl of 2μg/ml rRELM-β in 1%
methyl propyl cellulose in phospho-buffered saline (PBS), while control mice received just 1%
methyl propyl cellulose in PBS. At 5 days post-infection (DPI), two doses of RELM-β were
given, followed by single doses at 6 and 7 DPI. Mice were euthanized at 8 DPI to carry out tis-
sue analysis.

Tissue collection
Tissues for histology, mRNA and cryosectioning were prepared as previously described [23,
50]. In brief, mice were anesthetized with halothane, euthanized by cervical dislocation, and
their large bowel resected and regionally divided. Cecal and distal colonic tissues were immedi-
ately placed in 10% neutral buffered formalin (Fisher) (48 hrs, 4°C) or ice cold fresh Carnoy’s
Fixative (2 hrs, 4°C) or 4% paraformaldehyde (PFA) (1 hr, room temp) for histological studies,
or placed in RNAlater (Qiagen) and stored at -86°C for subsequent RNA and protein extrac-
tion. For histology, tissues collected in formalin or Carnoy’s were transferred into 70% or 100%
ethanol, respectively (after they underwent the appropriate fixation time), embedded in paraf-
fin and cut into 5-μm sections. PFA fixed tissues were embedded in Optimal Cutting Tempera-
ture (OCT) compound and sectioned with a microtome-cryostat.
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Bacterial counts
For enumeration of C. rodentium within intestinal tissues and luminal compartments, whole
mouse colons and ceca were opened longitudinally, and their luminal contents collected in
pre-weighed 2.0 ml microtubes containing 1.0 ml of PBS and a 5.0 mm steel bead (Qiagen).
Intestinal tissues were washed vigorously in PBS (pH 7.4), cut into several pieces, and also
placed in a tube as above. Tissue and lumen contents were weighed, and then homogenized in
a MixerMill 301 bead miller (Retche) for a total of 6 mins at 30 Hz at room temperature. Tissue
homogenates were serially diluted in PBS and plated onto luria broth (LB) agar plates contain-
ing 100 mg/ml streptomycin, incubated overnight at 37°C, and bacterial colonies were enumer-
ated the following day, normalizing them to the tissue or stool weight (per gram). A similar
method was used to enumerate C. rodentium within the spleens and livers of infected mice.

For fecal bacterial burden analysis, stool was collected from live mice at various times post-
infection (described in text) and processed as described for luminal contents. For some studies
with non-antibiotic resistant C. rodentium, plating was performed on MacConkey Agar
(Difco), C. rodentium colonies were clearly identified by their unique characteristic of being
round with red centre and a thin white rim. Colonies were confirmed to be C. rodentium by
PCR for the C. rodentium T3SS translocator gene escN.

Histology scoring and immunofluorescence staining
Preparation of paraffin embedded slides for histological analysis (H&E) and immunostaining
was carried out as previously described [9, 21]. H&E stained tissues were assessed for the fol-
lowing parameters by two blinded observers to determine extent of histological damage: (i)
submucosal edema (0, no change; 1, mild; 2, moderate; 3, severe); (ii) goblet cell depletion (0,
no change; 1, mild depletion; 2, severe depletion; 3, absence of goblet cells); (iii) hyperplasia (0,
no change; 1, 1 to 50%; 2, 51 to 100%; 3,>100%); (iv) epithelial integrity (0, no pathological
changes detectable; 1, epithelial desquamation [a few cells sloughed, surface rippled]; 2, erosion
of epithelial surface [epithelial surface rippled, damaged]; 3, epithelial surface severely dis-
rupted/damaged, large amounts of cell sloughing; 4, ulceration [with an additional score of 1
added for each 25% of tissue in the cross-section affected, e.g., a large ulcer affecting 70% of the
tissue section would be scored 4 + 3]); (v) inflammatory cell infiltration (per ×400 magnifica-
tion field) (0, no change; 1,<20; 2, 20 to 50; 3,>50 cells/field); the maximum possible pathol-
ogy score using this scheme was 20. When ulcers were specifically assayed (see Fig 2E), small
ulcers were defined as< 25% of tissue ulcerated in the cross-section; medium ulcers involved
>25 to<50% of the cross section and large extensive ulcers involved>50% of the cross
section.

For immunofluorescence staining 5-μm sections were deparaffinized by heating to 60°C for
15 min, cleared with xylene, rehydrated through an ethanol gradient to water, steamed for 30
min in citrate buffer for antigen retrieval, and blocked using blocking buffer (goat or donkey
serum in PBS containing 1% bovine serum albumin [BSA], 0.1% Triton X-100, 0.05% Tween
20, and 0.05% sodium azide). The rabbit derived primary antibodies- RELM-β (Peprotech),
MPO (Thermo Scientific), LPS (Biotec) and Ki67 (Thermo Scientific) were used at dilutions
1:400, 1:200, 1:500 and 1:200 respectively. Rat anti-murine antibodies F4/80 (AbD Serotec),
CD4 (e-Bioscience), BrdU (AbD Serotec) and Tir (gift of Dr. Wanyin Deng) were used at dilu-
tions 1:200, 1:100, 1:200 and 1:2000 respectively. Secondary goat anti-rabbit and anti-rat anti-
bodies conjugated to AlexaFluor 488 and 568 were used at 1:2000 dilution and ProLong gold
antifade reagent with 40,6-diamidino-2-phenylindole (DAPI; Invitrogen) to stain DNA was
used to mount tissues. Tissues were viewed on a Zeiss Axio Imager microscope, and images
were taken using AxioVision software and an AxioCam HRm camera.
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RNA extraction and quantitative RT-PCR
Total RNA was extracted using an RNeasy kit (Qiagen) according to manufacturer’s instruc-
tions and quantified using a NanoDrop spectrophotometer. cDNA was synthesized using 1 μg
of RNA reverse transcribed using an Omniscript RT kit (Qiagen). Quantitative PCR (qPCR)
was performed on reactions containing 5 μL of 1:5 diluted cDNA in 10 μL of BioRad SYBR
green mix with primers (300 nM final concentration) using an Opticon 2 (Bio-Rad) machine,
as described previously [9]. Quantitation of data was carried out using Gene Expression Macro
OM 3.0 software (Bio-Rad). Primer sequences and reaction conditions for all genes analyzed
are given in S1 Table.

Colonic crypt isolation and antimicrobial assays
Colon tissue was harvested and the distal 3 cm was washed 3x in sterile cold PBS, cut into 0.5
mm pieces and placed in a 2 ml microtube with1 ml crypt isolation buffer (30 mM EDTA, 2
mMDTT in PBS, pH 7.2), and gently rocked at 4°C for 20 minutes. The supernatant was col-
lected, stored on ice and fresh isolation buffer was added to the tissues. This was repeated until
4 separate fractions were collected. On collection of the 4th fraction, tissues were pulsed for 5s
in a vortexor. The fractions were then centrifuged at 2000 rpm for 10 mins, 4°C, washed in 1 x
PBS, pelleted again as above, the supernatant aspirated off, and samples were lysed in lysis
buffer (1 x PBS + 0.1% TritonX-100 with 1x complete protease inhibitors (Roche)) and quanti-
fied. For the antimicrobial assay, an overnight culture of nalidixic acid-resistant C. rodentium
grown in LB (+ nalidixic acid) was diluted 1:1000 in Tryptic Soy Broth (TSB) and grown to
mid log phase (OD620 0.6–1.0). The bacteria was washed by centrifugation (3000 rpm, 4°C, 10
mins), the supernatant removed, and the pellet resuspended in ice cold 10mM sodium phos-
phate buffer (SPB) (pH 7.4). This step was repeated once. The washed sample was diluted to a
final OD620 of 0.7, diluted 1000x, and 40 μL of this dilution (containing � 8 x104 bacteria) were
added to a microwell containing 100 μl 30% TSB, 25 μl 10mM SPB + 25 μl containing 100 μg
of crypt lysate (fraction 4) or lysis buffer as a negative control. The total reaction volume was
200 μl. Cultures were incubated in a Wallace Victor plate reader (Perkin-Elmer Life Sciences,
Boston, MA) at 37°C and O.D. 600 was measured and recorded every 15 minutes for 12 hours,
and graphed. To evaluate the potential antimicrobial effects of recombinant mouse RELM-β,
C. rodentium were serially diluted to 1000 bacteria and were then incubated with 10μl of either
varying concentrations of RELM- or PBS as a control. Bacteria were allowed to grow overnight
on LB-agar plates at 37°C after which the colony forming units were counted.

CD4+ T cell reconstitution of Rag1-/- mice
Positively selected CD4+ T cells were purified from spleens and mesenteric lymph nodes of
C57BL/6 mice using the Miltenyi MiniMACs purification apparatus (Miltenyi Biotec). In brief,
spleens and MLNs were homogenized with a 1.0-mL syringe plunger and filtered and washed
into a single-cells suspension. Cells were incubated with biotinylated anti-CD4 antibody
(1:200, UBC) followed by incubation with streptavidin coated magnetic beads (1:30, Miltenyi)
and run through magnetic columns. 2 x 105 CD4+ cells were then injected into Rag1-/- mice via
tail vein injection and left for 8 weeks, as previously described [13].

FACS analysis
Colons were resected, longitudinally opened and washed in PBS containing 50ug/ml gentamy-
cin. The colons were cut into 0.5-1cm pieces and incubated in HBSS solution containing 5%
FBS, 2mM EDTA (Sigma), 1mM DTT (Sigma) and 10 mMHepes (Sigma) for 30 min at 37°C.
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After vortexing briefly, the intestines were passed through a 100μm cell strainer to remove
intraepithelial lymphocytes. The sections were then incubated in 5ml of RPMI medium con-
taining 5% FBS, 1.5mg/ml of collagenase VIII (Sigma) and 0.1mg/ml DNAse (Sigma) for 1h at
37°C in a shaker. After vortexing for 1min, supernatants were filtered in a 70μm cell strainer
and then resuspended in a medium. Further enrichment of lamina propria lymphocytes was
done by the Percoll gradient method where the pelleted cells were resuspended in 8ml of 40%
Percoll (Sigma) made in PBS which was layered on top of 4ml of 80% Percoll prepared in
DMEMmedium. Purified lymphocytes were collected at the interphase ring visible after
centrifuging at 2000 rpm for 20min (with no braking). Subsequent FACS analysis was per-
formed on freshly isolated lamina propria lymphocytes to identify the CD4+ve T cell popula-
tions. Briefly, 5x105cells/well were fixed and permeabilized for 30min at room temperature
using fixation/permeabilization concentrate (Ebioscience). Cells were then labelled with FITC
and PE conjugated to anti-mouse CD4- (Ebioscience) and CD8 (Ablab) antibodies respec-
tively. Cells were analyzed by using BD FACSDiva machine and data were analyzed by using
FlowJo (Tree star) software. At least 30,000 events were counted for each sample.

Transwell migration assays
4x105 purified CD4+ T cells in 50μl of RPMI (Gibco) complete medium (10% FBS, 10nM non-
essential amino acids, 10nM sodium pyruvate, 50μM β-mercaptoethanol and 50U/ml Penicil-
lin-streptomycin) were placed in upper chamber of Transwells containing permeable polyester
membrane (0.4 μm pores). In the lower chamber, 150μl of RPMI complete medium containing
different concentrations of mouse recombinant RELM-β, 100 μg/ml BSA, 100ng/ml CCL4 or
100ng/ml denatured RELM-β was placed and incubated at 37°C for 4h. The number of cells
transmigrated into the bottom chamber were counted using hematocytometer for each treat-
ment condition.

In vitro IEC proliferation
Mouse intestinal carcinogenic epithelial cells (CMT93) obtained from ATCC were cultured in
high-glucose DMEMmedium (Gibco) containing 10% FBS, 1x MEM and 5mMHEPES and
50U/ml penicillin-streptomycin. 5x104 cells/well were grown on sterile glass coverslips in a
12-well plate (Corning) in a humid incubator at 37°C and 5% CO2. After reaching 50% con-
fluency, the cells were treated for 24hr with 100ng/ml recombinant mouse IL-22 (R&D Biosys-
tems) or RELM-β (Peprotech). Cells were subsequently fixed in ice-cold paraformaldehyde for
15 min followed by blocking with 1% BSA for 30min and incubation with rabbit derived anti-
Ki67 (Thermo Scientific) for 2hr. After washing 3X with PBS, cells were incubated in dark for
1hr with secondary antibody conjugated to Alexafluor 568. After removal of secondary anti-
bodies, cells were washed 3X with PBS followed by mounting in Vectashield (Vector Laborato-
ries, Burlington, ON, Canada) on glass slides and screened with a Zeiss microscope.

IL-22 neutralization studies and ELISA
IL-22 neutralization studies were carried out in C. rodentium infected C57BL/6 mice by inject-
ing them with either neutralizing IL-22 antibodies (R&D systems), PBS or with an isotype
matched control antibody (R&D systems) given on 0 and 6 DPI (100μg/mouse). Mice were
euthanized at 8 DPI to collect colon tissues and then analyzed as above (including measuring
IEC proliferation by Ki67 staining). For IL-22 ELISAs, colon and cecal tissues obtained from C.
rodentium infected C57BL/6, Retnlb-/- and Tcrβ-/- mice either treated with rRELM-β or left
untreated were extracted and the luminal contents were removed by washing with PBS. The
pre-weighed tissues were cut into 0.5-1cm sections and incubated in DMEM containing 10%
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FBS supplemented with 50U/ml Penicillin-streptomycin and 50μg/ml gentamicin for 18 hours
at 37°C in 5% CO2. Supernatants were collected by centrifugation at 12,000g for 10 min and
the amount of IL-22 secreted into the supernatant was measured using the mouse IL-22 ELISA
MAX (BioLegend, San Diego, CA) according to the manufacturer’s protocol.

Statistical analysis
Statistics was carried out using GraphPad Prism Software Version 5 (GraphPad Software, San
Diego, California, USA). Significance was calculated using the unpaired two-tailed Student’s t-
test, Mann-Whitney test and One-way ANOVA followed by Bonferroni or Tukey-post hoc test
as appropriate. P< 0.05 was considered significant and results expressed as the
mean ± standard error (SEM).

Supporting Information
S1 Fig. RELM-β is strongly induced during natural infection. (A) Colonization of C. roden-
tium at 4 and 7 days post exposure (DPE) in uninfected C57BL/6 mice cohoused with mice
shedding 108 cfu/gram stool. Each data point represents 1 mouse in which the infection was
transmitted. n = 4/timepoint. (B) qPCR of RELM-β gene (retnlb) expression in the distal
colonic tissues of uninfected (n = 5) and infected (7 DPE; n = 4) mice. Results show mean of
4–5 mice/group. Error bars = SEM. ��� P< 0.0001, Students t-test.
(TIF)

S2 Fig. Further characterization of C. rodentium infection and large intestinal responses in
the absence of RELM-β. (A) Resected large intestines of indicated mice, representative of n = 4
mice/group. Arrows, focal bloody ulcer. (B) Representative H&E staining of distal colons
shown in “A”. Arrow, ulcer. (C) H&E stained cecal sections from uninfected vs. infected (10
DPI) WT and Retnlb-/- mice. Results are representative of n = 5 mice/group. Original
magnification = 100X. Scale bar = 100 μm. (D) Quantitative PCR for cytokine gene expression
in the cecal and rectal tissues of uninfected or 10 DPI BL/6 and Retnlb-/- mice. Results represent
mean of 4–11/group. Error bars = SEM. �P� 0.05 Retnlb-/- 10 DPI vs. uninfected BL/6 and
Retnlb-/-, 1-way-ANOVA with Dunn’s multiple comparison test. (E) Enumeration of C. roden-
tium in the cecal tissue and luminal compartments of the cecum of Retnlb-/- and C57BL/6 mice
following infection. Results show means of 3–4 (2 and 4 DPI) and 6–11 (6–10 DPI) animals.
��P = 0.0012 for 10 DPI; ���P = 0.0016 for 6 DPI, ##P = 0.0016 for 10 DPI, Retnlb-/- vs. C57BL/
6. (F) C. rodentium staining in mouse cecal tissues (10 DPI) showing penetration of crypts
(arrows). Original magnification = 200X. (G) Immunostaining for the C. rodentium T3SS effec-
tor Tir at 8 DPI demonstrates large numbers of C. rodentium directly infecting epithelial cells
near the base of crypts in Retnlb-/- mice whereas C. rodentium only infects superficial epithelial
cells at the top of crypts in C57BL/6 mice. All results are representative of 2–3 independent
experiments.
(TIF)

S3 Fig. Severity of C. rodentium-induced disease in Retnlb-/- mice is partially dependent on
the virulence factor EspF. (A) Measurement of bodyweight following infection wild-type (wt)
or ΔespF C. rodentium. Each data point shows means of 4 mice/group. �P<0.05, vs. Retnlb-/-

(wt C. rodentium) and C57BL/6 (ΔespF C. rodentium), Bonferroni post-test of 2-way ANOVA.
Results represent 2 independent experiments, 4 mice/group. (B) Macroscopic analysis of large
bowel of wt- and ΔespF C. rodentium-infected mice (10 DPI). (C) H&E staining of rectal tissues
of mice described in (A) and (B). Original magnification = 100X. Scale bar = 100 μm. (D) wt
and ΔespF C. rodentium enumeration within luminal compartments of infected colons (top)

RELM-β recruits CD4+ T Cells to Protect against Infectious Colitis

PLOS Pathogens | DOI:10.1371/journal.ppat.1005108 August 18, 2015 23 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005108.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005108.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005108.s003


and ceca at 10 DPI. Each data point = 1 mouse and means are data pooled from 2 independent
infections. Error bars = SEM. �P< 0.05; ��P< 0.01; ���P< 0.001; ns = non-significant, Mann-
Whitney U test.
(TIF)

S4 Fig. No observable defects in the antimicrobial capacity and pro-inflammatory cytokine
secretion in the colons of Retnlb-/- mice. (A) qPCR analysis of expression of genes known to
regulate C. rodentium burdens (inos, cnlp) or host survival (reg3g) in the rectal tissues of unin-
fected vs infected (10 DPI) mice. Bars show the means of 3–4 mice/group. Error bars = SEM.
�P� 0.05 reg3g expression Retnlb-/- 10 DPI vs. uninfected C57BL/6, 1-way-ANOVA with
Dunn’s multiple comparison test. (B) Growth curves of C. rodentium exposed to crypt lysates
from C57BL/6 or Retnlb-/- mice. Crypt lysis buffer = control. (C) Percent survival of C. roden-
tium exposed to varying concentrations of RELM-β or PBS as a control. The experiment was
performed twice. (D) qPCR analysis of cytokine gene expression within colonic tissues of unin-
fected or infected (10 DPI) mice. n = 4–11 mice/group, pooled from 2 separate infections.
Error bars = SEM �P� 0.05 Retnlb-/- 10 DPI vs. uninfected BL/6, 1-way-ANOVA with Dunn’s
multiple comparison test. (E) Immunostaining for macrophages (F4/80 staining) and neutro-
phils (MPO) at 8 DPI. Original magnification = 200X. Scale bar = 50 μm. Representative of
n = 4/ group.
(TIF)

S5 Fig. Baseline IEC proliferation is not altered in the absence of RELM-β; RELM-β expres-
sion is not affected by presence or absence of CD4+ T cells. (A) Representative immunostain-
ing for baseline proliferation in distal colons. (B) Quantitation of Ki67+ cells/crypt. Results
show the mean of 20–30 well-oriented crypts counted over 4 random images/mouse. (C)
RELM-β staining (red) of C. rodentium infected colons (10 DPI) of Rag1-/- mice reconstituted
with PBS (controls) or with CD4+ T cells. Images are representative of 4 mice/group.
(TIF)

S6 Fig. No overt differences in the responses of adaptive immune cells in infected C57BL/6
and Retnlb-/- mice. ELISA of (A) IFNγ and (B) IL17A secretion from splenocytes isolated from
infected C57BL/6 and Retnlb-/- mice (10 DPI) after stimulation with media or C. rodentium-
derived antigen. Results represent mean of at least 3 animals/group. Error bars = SEM.
(TIF)

S7 Fig. T-cells are an important source of IL-22 during C. rodentium infection. (A) Ki67
positive cells in CMT-93 cells treated with rRELM-β (100ng/ml). (B) qPCR analysis for Il-22
transcription in colon tissues obtained from C. rodentium infected Tcrβ-/- mice and C57BL/6
mice at 8 DPI (C) Supernatants obtained from the above mentioned colon tissues were assayed
for IL-22 protein levels by ELISA. Results represent the means of 5 animals/group. Error
bars = SEM, ���P< 0.0001 Students t-test.
(TIF)

S8 Fig. Intraperitoneal delivery of recombinant murine RELM-β does not ameliorate dis-
ease in Retnlb-/- mice. (A) Resected large intestines of indicated mice. Arrows, focal ulcers. (B)
Body weights of Retnlb-/- mice following rRELM-β or PBS injection. Error bars = SEM. (C) and
(D) Enumeration of C. rodentium burdens. Each data point represents one animal. (Note: only
two are for shown for colon lumen in control group due to lack of stool content in one of the
mice). Results were determined from n = 3/group.
(TIF)
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S1 Table. Primer sets and PCR conditions used in this study. All PCR reactions had an initial
denaturing step of 95°C for 3–5 minutes before commencement.
(DOCX)

S1 References. Supporting information references.
(DOCX)
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