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 

Abstract— Unsupervised learning is demonstrated using a 

device ubiquitously found in today’s technology: a transistor with 

high-k-metal gate. Specifically, the charge-trapping phenomenon 

in the high-k gate dielectric is leveraged so that the device can be 

used as a non-volatile analog memory. Experimental data from 

22-nm SOI devices reveal that a charge-trap transistor possesses 

promising characteristics for implementing synapses in neural 

networks, such as very fine tunability, weight-dependent plasticity, 

and low power consumption. A proof-of-concept winner-takes-all 

neural network is simulated based on experimental data and 

perfect clustering is achieved within tens of training cycles. This 

means that the network can be trained for multiple times, and a 

larger system can be built. The robustness of the procedure to the 

device variation is also discussed. 

Index Terms—High-k-metal gate, charge-trapping, 

unsupervised learning, neuromorphic computing 

 

I. INTRODUCTION 

compact and continuously tunable non-volatile synapse 

device is essential for biologically inspired intelligent 

systems, which promise to be much more power- and 

time-efficient than conventional von-Neumann architectures 

[1−6]. Over the years there has been an expanding group of 

candidates proposed for analog synapses, among which are 

resistive memory (ReRAM) and phase-change memory (PCM) 

[7−11]. These emerging memory devices have been used in 

neural networks for both supervised and unsupervised learning 

[6, 9−11]. Besides the complexities of introducing new 

materials and processes, their statistical operating mechanisms 

lead to challenging variation issues. Device endurance is an 

additional concern. For example, a typical ReRAM shows a 

conductance spanning more than two orders of magnitude 

within first 100 programming cycles at identical programming 

conditions [7]. Devices based on charge-trapping include 

floating-gate transistors [12], transistors with an organic gate 

dielectric [13], and carbon nanotube transistors [14]. However, 

none of these proposals are both fully CMOS-compatible (in 

terms of process and operating voltage) and 

manufacturing-ready. 

The charge-trapping phenomenon in a transistor (hence 

charge-trap transistors, CTT) with high-k-metal gate has 

traditionally been considered a reliability concern, causing bias 
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temperature instability, etc. However, it was recently 

discovered that, with a drain bias during the charge-trapping 

process, many more carriers can be trapped in the gate 

dielectric very stably, and more than 90% of the trapped charge 

can be retained after 10 years even when the device is baked at 

85 °C [15]. This enhanced and stabilized charge-trapping 

behavior has been discussed in detail in [15] and successfully 

exploited for embedded non-volatile digital memory 

applications [16, 17]. 

The CTT may also be used to realize a non-volatile analog 

memory. In this Letter, we demonstrate how a transistor with 

high-k gate dielectric, specifically HfSiOx, can be configured as 

an analog synapse. These synapses can be used in neural 

networks to implement both supervised and unsupervised 

learning. Here, as an example, we demonstrate the 

implementation of unsupervised learning in a neural network 

using CTT as the plastic synapses. We first investigate the 

characteristics of the CTT that are essential to the 

implementation of unsupervised learning in neural networks. 

Very fine tunability and weight-dependent plasticity are 

experimentally demonstrated using commercial 22-nm SOI 

devices. A low power consumption of ~ nJ per synaptic 

operation is also estimated. An unsupervised-learning 

winner-takes-all (WTA) neural network featuring CTTs as the 

plastic synapses is then simulated based on experimental data. 

Results show that the system learns rapidly in a few tens of 

training cycles, which allows for multiple learning cycles well 

within the endurance limits of the CTT. Furthermore, we show 

that the WTA algorithm taking advantage of the inherent 

properties of CTTs is robust to device variation. 

II. EXPERIMENTAL DETAILS AND CTT CHARACTERISTICS 

N-type CTTs with an interfacial layer (IFL) SiO2 followed by 

an HfSiOx layer as the gate dielectric are used in this study. It 

should be noted that, although this demonstration features 

planar SOI devices, the mechanisms apply to bulk 
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Fig. 1. Configurations of the CTT in the (a) LTD and (b) LTP regimes. (c) 

Reversible and reproducible device conductance change through four cycles.  
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substrates/FinFETs as well. The subthreshold 

OFF-conductance (GOFF) of the CTT at VDS = 50 mV and VGS = 

0 will be used as the synaptic weight throughout this Letter. In 

the operation of a CTT-based synapse, its GOFF is modified by 

changing the amount of charge trapped in the high-k layer and 

thus shifting the threshold voltage (VT) of the transistor. In the 

long-term depression (LTD) regime, a positive gate pulse is 

applied and electrons are trapped into HfSiOx through the IFL, 

increasing VT and decreasing GOFF (Fig. 1(a)); in the long-term 

potentiation (LTP) regime, a negative gate pulse is applied and 

trapped electrons tunnel back into the channel, decreasing VT 

and increasing GOFF (Fig. 1(b)). In our experiments, a CTT is 

first pre-programmed to an intermediate starting state by 

applying a gate pulse of 2.5 V for 60 µs with VD = 1.3 V. The 

device subsequently goes through four cycles: two LTD and 

two LTP cycles, with 256 trapping or detrapping pulses in each 

cycle. In the LTD cycle, GOFF is decreased by a 20-µs, 2.5 V 

gate pulse with VD = 1.3 V; in the LTP cycle, GOFF is increased 

by a 50-µs, −2.6 V gate pulse with zero drain bias. The resulting 

GOFF is shown in Fig. 1(c) where a reversible and reproducible 

modification of synaptic weights can be observed. Over 200 

levels are achieved for both LTP and LTD regimes with a fine 

resolution of less than 1 nS for LTP and 0.25 nS for LTD. As 

we will show later, although the LTD has a smaller dynamic 

range, it will not affect the convergence of the learning 

algorithm. 

An important characteristic of CTTs when used as analog 

synapses is the weight-dependent plasticity: at different GOFF, 

the effect of programming pulses on GOFF is different. The 

weight-dependent plasticity is also found in biological synapses, 

and might be interesting to emulate the brain. Shown in Fig. 2(a) 

is the relative GOFF change as a function of GOFF itself when five 

trapping and detrapping pulses as specified above are applied. 

It is observed that, in the LTP regime, the relative GOFF increase 

is smaller when the initial GOFF is larger; on the contrary, in the 

LTD regime, the relative GOFF reduction is larger when the 

initial GOFF is larger. The curves corresponding to the LTP and 

LTD regimes are fitted to exponential and sigmoid functions, 

respectively, for different programming times (Fig. 2(b)). As 

expected, a longer programming time consistently leads to a 

larger GOFF change because of the larger VT change caused by 

more trapped/detrapped charge [16].  

The energy consumption in the LTP regime is minimal since 

it is only due to electrons being detrapped from the high-k layer. 

In the LTD regime, the energy dissipation is mainly through the 

channel current because of the drain bias; it is given by 

  tIVE dDDS  where ID is the channel current. For a device 

with a W/L = 20 nm / 20 nm and programming conditions given 

above, E is estimated to be 0.5 nJ. This is a reasonable value 

compared to the range of pJ to hundreds of nJ reported for many 

other synapse candidates [10]. 

III. THEORY AND SIMULATION 

CTTs are next used as synapse devices in a one-layer WTA 

neural network aiming at classifying stylized letters z, v, n, and 

one-bit-flipped noisy versions of them (Fig. 3(a)) [18]. The 

input layer of the network has nine neurons corresponding to 

nine pixels of the pattern and the output layer has three neurons 

corresponding to the three categories: z, v, and n, respectively 

(Fig. 3(b)). For each output neuron j (1, 2, or 3), its output is 

determined by  


9

1
,OFF

i
jiij Gxy , where GOFFi,j is the GOFF of 

the CTT between the input neuron i and the output neuron j, and 

xi is the input which is 50 mV when the ith pixel is black (firing) 

or 0 when the ith pixel is white (not firing). For each 

presentation of a pattern, the neuron with the largest output fires 

and claims the pattern, and only the 9 synaptic weights 

associated with this neuron are updated with a WTA rule [19]. 

 
Fig. 2. (a) The weight-dependent plasticity when five trapping/detrapping 

pulses are applied in the LTD/LTP regimes, respectively. (b) Fitted curves 

when pulses of different widths are applied. 

 
Fig. 3. (a) Stylized letters z, v, n, and one-bit-flipped noisy versions of them 

(adapted from Ref. [18]). (b) The setup of the unsupervised neural network. 

 

 
Fig. 4. Fire counts from three output neurons (a) before and (b) after training. 

Blue, red, yellow: output neurons 1, 2, and 3. “δ” denotes a noisy version. (c) 

The evolution of the output neuron specializations as the network is trained. 

 
Fig. 5. An example of the evolution of synaptic weights GOFF1,1 (blue) and 

GOFF2,1 (red) for different programming times: (a) Two pulses are applied for 

LTD/LTP, and (b) Five pulses are applied for LTD/LTP. 
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Specifically, only when output neuron j has the largest output 

and fires (wins) are GOFFi,j (i = 1−9) updated: ΔGOFFi,j is 

increased by detrapping pulses if the input neuron i also fires or 

decreased by trapping pulses if the input neuron i does not fire. 

In the simulation, we start from CTTs with random GOFF 

ranging from 50−150 nS. Training of the neural network starts 

with randomly selecting a pattern from z, v, or n, and presenting 

it to the network. Then a random bit of the pattern is flipped and 

the noisy version is presented to the network again. Formulas 

fitted from experimental data is used to update the synaptic 

weights. The entire process is free of any intervention. 

IV. RESULTS AND DISCUSSION 

In the simulation, a total of 1000 patterns are presented to the 

neural network with 500 correct ones and 500 noisy ones. Two 

trapping and detrapping pulses as specified above are applied 

during the LTD and LTP regimes. Figs. 4(a) and (b) show the 

clustering results for the first and the last 100 presentations, 

respectively. It is observed that a substantial number of 

misclassifications occur in the first 100 cycles, while all 

patterns are correctly classified for the last 100 cycles. To better 

understand the convergence behavior of the algorithm, a 

specialization function, Si, is defined for each output neuron i, 

as the pattern x (z, v, or n) which yields the largest output yi for 

the neuron. Perfect clustering is achieved when the neuron 

specializations remain constant and correspond to three 

different patterns as the neural network is trained. Fig. 4(c) 

shows the specializations of the output neurons as the network 

is trained. In fact, perfect clustering is achieved after only 82 

training cycles, after which Neurons 1, 2, and 3 correspond to 

patterns n, v, z, respectively. Between points A and B, even 

though the specializations of Neurons 2 and 3 stay constant, the 

algorithm is not convergent since both neurons claim the letter 

v. It should be further noted that this example is only to 

illustrate the evolution of specializations and does not represent 

a typical case. It is verified through 10,000 simulation runs that, 

the average number of cycles after which perfect clustering is 

achieved is only 24, well within the demonstrated endurance of 

over 1,000 for CTT-based non-volatile memory [16]. 

Fig. 5 depicts an example of the evolution of the synaptic 

weights GOFF1,1 and GOFF2,1. It is observed that, the sharp 

decreases in GOFF2,1 are larger than the sharp increases in GOFF1,1, 

which is caused by the asymmetry between LTP and LTD 

found in Fig. 1(c). It is also observed that, the weights, starting 

from random values, eventually reach a steady state after which 

each weight only varies around a certain value. In this example, 

the steady-state is 23.8 nS for GOFF1,1 and 93.2 nS for GOFF2,1 for 

the last 100 cycles when two trapping/detrapping pulses are 

applied in the LTD/LTP regimes. These two values, 

representing respectively “low” and “high” weights after 

training, vary with the applied programming conditions. For 

instance, when five trapping/detrapping pulses are applied, a 

“low” of 15.2 nS and a “high” of 95.8 nS are obtained. When a 

longer programming pulse is applied, larger GOFF change is 

induced in each update step, leading to higher “high” and lower 

“low” eventual weights. Larger weight changes also result in 

faster convergence and a smaller noise margin. It is anticipated 

that the amplitudes of the trapping/detrapping pulses will have 

similar effects on the convergence behavior. 

In practice, when actual CTTs are used to construct the 

neural networks, the effect of device variation on the robustness 

of the algorithm needs to be evaluated. We illustrate here the 

example where two trapping and detrapping pulses are used to 

update the weights (Fig. 6(a)). An empirically determined 

variation of Gaussian distribution with 3σ of f10pulse – f2pulse is 

added to the conductance change calculated from fitted 

equations, where f10pulse denotes the fitted conductance change 

when ten pulses are used to update the weights and f2pulse 

denotes the fitted conductance change when two pulses are 

used to update the weights. More variation is introduced when 

GOFF > 60 nS in the LTP regime and when GOFF < 40 nS in the 

LTD regime to better approximate the experimental data. With 

this variation, the simulation was performed for 10,000 times 

and a 100% perfect clustering rate was achieved. Fig. 6 (b) 

depicts an example of ΔGOFF as a function of GOFF itself from 

one of these simulation runs. It is indeed observed that the 

conductance change with the empirically introduced variation 

is comparable to the experimental data. With this methodology, 

it is also found that a longer programming time leads to a less 

robust algorithm: perfect clustering cannot be achieved when 

five LTP/LTD pulses are applied. It means that the effects of 

the variation are smaller when the programming time is shorter. 

This is because a shorter programming time corresponds to a 

smaller ΔGOFF in each update step.  

V. CONCLUSION 

We have shown that, the CTT, as a nonvolatile analog 

memory device, exhibits intriguing properties for 

brain-inspired computing. A proof-of-concept WTA neural 

network featuring CTTs as its synapses is presented to cluster 

stylized letters. The number of training cycles required to 

achieve perfect clustering is well within demonstrated 

endurance of CTT. The convergence behavior of the algorithm 

varies with different programming conditions, and the 

algorithm is robust to device variation. These findings pave the 

way to an ultra-large scale, completely CMOS-based intelligent 

system without any material or process complexities. 
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Fig. 6. (a) Experimentally measured and (b) Empirically determined relative 

conductance change as a function of the conductance itself in the LTP and LTD 

regimes. The algorithm converges with the variation shown in Fig. (b). 
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