
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Inferring Structural Constraints in Musical Sequences via Multiple Self-Alignment

Permalink
https://escholarship.org/uc/item/1651j63b

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors
Bodily, Paul Mark
Ventura, Dan

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1651j63b
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Inferring Structural Constraints in Musical Sequences
via Multiple Self-Alignment

Paul Bodily (bodipaul@isu.edu)
Computer Science Department

Idaho State University
Pocatello, ID 83209 USA

Dan Ventura (ventura@cs.byu.edu)
Computer Science Department

Brigham Young University
Provo, UT 84602 USA

Abstract

A critical aspect of the way humans recognize and understand
meaning in sequential data is the ability to identify abstract
structural repetitions. We present a novel approach to discover-
ing structural repetitions within sequences that uses a multiple
Smith-Waterman self-alignment. We illustrate our approach
in the context of finding different forms of structural repeti-
tion in music composition. Feature-specific alignment scoring
functions enable structure finding in primitive features such as
rhythm, melody, and lyrics. These can be compounded to cre-
ate scoring functions that find higher-level structure including
verse-chorus structure. We demonstrate our approach by find-
ing harmonic, pitch, rhythmic, and lyrical structure in sym-
bolic music and compounding these viewpoints to identify the
abstract structure of verse-chorus segmentation.

Keywords: Structural Inferrence; Musical Sequence; Self-
alignment

Introduction
Human-level concept learning relies on the ability to model
artifacts at increasing levels of abstraction (Lake, Salakhut-
dinov, & Tenenbaum, 2015). In visual imagery, pixels form
strokes which form shapes which form objects. In natural lan-
guage, letters make words which make phrases which make
sentences. The ability to learn high-level features is critical
to an effective model of the domain, either for discrimination
or generation.

Often features of interest are abstract, that is they are not
explicitly represented in an artifact description. In poetry
or lyrics, features such as rhyme scheme are not usually la-
beled; however, even beginning readers are capable of iden-
tifying intentionally rhymed phrasing (Englemann & Bruner,
1974). In music, features such as verse-chorus segmentation
and repeated motifs are infrequently labeled but are nonethe-
less readily inferred by even non-musicians from what is rep-
resented (e.g., chords, melody). This structure significantly
relates to meaning (Nunes, Ordanini, & Valsesia, 2015), and
although audiences will find structure even where it was not
intended, they readily express criticism of artifacts in which
they perceive little or no structure. Human-level reasoning
about artifacts and domains hinges on the ability to infer ab-
stract structural features from looking only at primitive fea-
tures (i.e., features that are labeled). Abstract features are
helpful for evaluating, classifying, comparing, and/or gener-
ating structured artifacts (Bodily, Bay, & Ventura, 2017). In
addition, style-transfer and cross-domain translation of ideas

is better facilitated by the ability to elucidate abstract struc-
tural representation (LeCun, Bengio, & Hinton, 2015).

Much work in the area of probabilistic constrained model-
ing has focused on the design of generative models that im-
pose unary and binary structural constraints in sampling se-
quence solutions (Papadopoulos, Pachet, Roy, & Sakellariou,
2015; Roy et al., 2016; Perez & Régin, 2017). Although the
sequential transition probabilities of these models are trained
from data, the constraints they impose are generally assumed
to be predefined as part of the problem definition, begging the
question of how the constraints themselves—and the binary
constraints in particular—might be learned from data. Differ-
ent forms of poetry, for example, may have different rhyme
schemes. Rather than rely on manually encoding each struc-
tural pattern, how might a system be taught to autonomously
recognize these higher-level patterns of repetition? These
types of patterns span lengthy regions of text and music and
are therefore not readily captured by Markovian processes.
For this reason the problem has been referred to as the long-
term dependency challenge (Collins & Laney, 2017).

Much related work exists for finding long-term dependen-
cies in sequential data. A common approach known as “tem-
plagiarism” attempts to elucidate high-level structure from an
existing artefact for reuse in the creation of novel artefacts
(Pachet, Papadopoulos, & Roy, 2017). Meredith, et al. dis-
cover patterns of multidimensional repetition using maximal
translatable patterns (MTPs) (Meredith, Lemström, & Wig-
gins, 2002). Collins, et al. follow up on this work with a
pattern discovery algorithm called SIACT to discover trans-
lational patterns in baroque keyboard works (Collins, Thur-
low, Laney, Willis, & Garthwaite, 2010), which they later use
in extracting patterned repetitions in music (Collins & Laney,
2017). Lattner, et al. use bootstrapping in feed-forward neu-
ral networks to perform unsupervised melody segmentation
(Lattner, Chacón, & Grachten, 2015). Other work has ap-
proached the musical sequence segmentation problem using
restricted Boltzmann machines (Lattner, Grachten, Agres, &
Chacón, 2015).

In contrast to these methods, we turn to a class of algo-
rithms long used for learning sequence structure in bioin-
formatics. Sequence alignment algorithms—such as the
Needleman-Wunsch (NW) (Needleman & Wunsch, 1970)
or Smith-Waterman (SW) (Smith & Waterman, 1981)
algorithms—have traditionally been used to align genetic

1112

sequences, although their implementation usually focuses
on finding similarity between rather than within sequences.
Alignment algorithms have typically been used on se-
quences of discrete tokens belonging to finite-length alpha-
bets, making it easy to derive static scoring matrices (e.g.,
PAM (Dayhoff, Schwartz, & Orcutt, 1978) and BLOSUM
(Henikoff & Henikoff, 1992)) for defining a pairwise scoring
function.

We present an approach to inferring abstract structural fea-
tures in music that uses genetic algorithms (GAs) to deter-
mine viewpoint-specific scoring functions for structural se-
quence alignment. The approach is readily applicable across
domains where structure can be modeled in terms of self-
similarity (e.g., bioinformatics, natural language, and audio
signal processing). As a concrete example for the purposes of
demonstration, we examine the inference of abstract structure
in lyrical, sectional-form music lead sheets, with the goal of
identifying patterns of repetition within musical aspects and
at the more abstract levels of detecting chorus and verse struc-
tures.

Methods
The fundamental premise of the approach is that structure in
an artifact exists by virtue of self-similarity. In music, the
verse-chorus structure is a product of similarity across view-
points such as melody, chords, and (for choruses) lyrics.

A primary challenge in alignment is determining alignment
parameters. Sequence alignment algorithms generally require
defining a gap or insertion/deletion cost, G, as well as a scor-
ing function s(x1,x2) for two arbitrary sequence elements x1
and x2. These definitions are non-trivial because they can dra-
matically affect the resulting alignment.

In traditional alignment domains, the definition of a scor-
ing function is relatively straight-forward because sequence
elements are easily represented using a (relatively) small al-
phabet. In this case the scoring function usually consists of
a simple lookup table where values in the table represent the
likelihood that one element is aligned with any other element
(Henikoff & Henikoff, 1992).

However in considering the alignment of musical se-
quences, a sequence element or event is significantly more
complex for a few reasons. First, music—both acoustic and
symbolic—represents a continuous sequence of sound. It
may be discretized at various intervals (e.g., acoustic sam-
pling rates, metrical beats, etc.), but how the sequence is
discretized will directly impact the ability to detect patterns
across various viewpoints. Because the time and space re-
quired per alignment increase exponentially with the sam-
pling rate, we chose a sampling rate of 2 events per beat.

The second complexity involved in a musical sequence ele-
ment is that, even given a particular discretization of musical
events, a single event (e.g., Figure 1) is composed of many
different viewpoints. Even if we consider a relatively sim-
ple representation of music such as a lyrical lead sheet, com-
bining the number of features to consider per musical event

with their respective ranges is sufficient to define a intractable
number of unique musical events (Table 1).

Multiple Smith-Waterman Self-Alignment
The strength of the NW and SW algorithms is that they do not
require exact matches, but rather tolerate some noise while
still recognizing structurally similar subsequences. A tradi-
tional NW global sequence alignment is a dynamic program-
ming algorithm (Needleman & Wunsch, 1970). For a se-
quence a = (a1, · · · ,an), let a′ = (a1, · · · ,an−1). The optimal
score S(a,b) for the alignment of sequences a and b (with
lengths |a| and |b|) is defined as a function of the optimal
scores for subalignments of a and b:

S(a,b) =

|a| ∗G if |b|= 0
|b| ∗G if |a|= 0
max(S(a′,b)+G,

S(a,b′)+G, otherwise
S(a′,b′)+ s(a|a|,b|b|))

where G represents the cost of inserting a gap into the align-
ment and s(a|a|,b|b|) represents a pairwise scoring function
which evaluates to a score representative of the cost of align-
ing the element a|a| with b|b|. Some variations (including
our own) differentiate between a gap open cost, Go, and
a gap extend cost, Ge, where the former is used the first
time a gap is inserted and the latter is used for subsequent,
consecutive gaps. In this manner the presence and length
of a gap can be penalized independently. In practice, a
NW alignment sequentially fills in a (|a|+ 1)× (|b|+ 1)
matrix, M, where the value M(i, j) at the ith row and jth
column represents S((a1, · · · ,ai−1),(b1, · · · ,b j−1)) (where if
i = 0 or j = 0 the corresponding sequence evaluates to the
empty sequence). The global alignment score is the value
of M(|a|+ 1, |b|+ 1). The alignment is produced by start-
ing at position (|a|+ 1, |b|+ 1) and tracing back through the
matrix according to the cells which were used (in the max
function) in computing the current cell’s value: moving diag-
onally from (i, j) corresponds to aligning ai with b j; moving
up aligns ai with a gap; and moving left aligns b j with a gap.
Backtrack continues as long as i > 0 and j > 0.

The SW local alignment algorithm alters aspects of the
NW global alignment to find the highest scoring subsequence
alignment between two sequences (Smith & Waterman,
1981). Modifications are primarily three-fold. First, S(a,b)
is constrained to be non-negative, essentially allowing the al-
gorithm to discover the beginning of the optimal alignment
anywhere in the alignment matrix M. Second, the local align-
ment score (for the optimal local alignment) is the maximum
value in M. The row i and column j where this value appears
mark the termination of the local alignment. Backtracking
proceeds as in the NW algorithm as long as M(i, j)> 0.

We are interested in locally aligning musical phrases. We
are interested in more than simply the optimal local align-
ment; we would like to find all significant local alignments.

1113

Table 1: Features for a music sequence event
Event Feature Description Range Feature Value for

E in Figure 1
is rest(E) True if E occurs during a rest [True,False] False
pitch(E) the MIDI note value being voiced at E [0,127]

(∅ if is rest(E))
69

measure(E) the measure in which E occurs (0-based) Z>0 3

beat(E) the offset in beats within measure measure(E) (0-
based) R>0 0.5

duration(E) the duration in beats of the note or rest being
voiced at E R>0 2.5

is note onset(E)
True if the measure and beat of the onset of the
note or rest being voiced at E equals measure(E)
and beat(E)

[True,False] True

lyric(E) the lyric being sung at E Set of all valid syllables
∪ ∅ “try”

is lyric onset(E)
True if the measure and beat of the onset of the
lyric being voiced at E equals measure(E) and
beat(E)

[True,False] (∅ if
lyric(E) =∅) False

harmony(E) the harmony (represented using chord symbols)
being voiced at E

Set of all valid chord
symbols ∪ ∅ F

is harmony onset(E)
True if the measure and beat of onset of the har-
mony being voiced at E equals measure(E) and
beat(E)

[True,False] (∅ if
harmony(E) =∅) False

Figure 1: Example of a music sequence event. Musical sequences are non-discrete and thus events must be sampled. Table 1
describes the features and feature values for the event sampled at the dotted red line.

We thus adapt the SW algorithm to achieve what we call
a multiple Smith-Waterman (MSW) self -alignment. In this
variation we find multiple backtrack points in M. We define a
local maximum threshold, τ, and a minimum event match dis-
tance, ε, such that M(i, j) is a local maximum iff M(i, j)≥ τ

and M(i, j) ≥ M(k, l) for ∀k = i± ε and ∀l = j± ε. Back-
tracking proceeds as in the SW algorithm. Because we are
doing self-alignment, we need only compute the upper diag-
onal of M (i.e., j≥ i). We are not interested in alignments that
are too close to the diagonal (i.e., the alignment of an event
with itself). We therefore only compute M where j ≥ i+ ε

(see Figure 2). For our implementation, ε = 4 (i.e., minimum
distance between “motifs” is 2 beats).

Genetic Algorithm Parameters
Here we define the pairwise scoring function s(ai,b j) and the
general alignment parameters Go, Ge, and τ. We describe
several viewpoint-specific definitions for s(ai,b j) below, each
of which defines several scoring function parameters. These
viewpoint-specific parameters, along with the general align-
ment parameters, are learned via GA (see Figure 3).

Initially we generate a population of 20 unique parameter-
izations where each parameter is randomly initialized in the
range [-3,3] (τ is randomly initialized in the range [0,20)).

For each of 5000 generations of the GA, we generate 10 new
parameterizations via 1) crossover of two parameterizations
randomly selected from the population and 2) mutation where
each parameter has a 0.2 probability of adding a random num-
ber in the range [-10,10] to its value (with 0.2 probability τ is
multiplied by a factor in the range [0,2)).

Alignment Fitness Function We manually labeled a small
subset of the Wikifonia leadsheet dataset with structural rep-
etitions across viewpoints. These labels essentially represent
which events we expect to be aligned via our MSW align-
ment. An event can be aligned with 0, 1, or many other
events. We can evaluate a parameterization Γ according to the
number of event pair alignments that are true positive (T P),
false positive (FP), and true negative (T N) when Γ is used in
our scoring function:

F1(Γ) =
(1+β2)∗T P+1

(1+β2)∗T P+β2 ∗FN +FP+1

with β = 1.0 to equally weight recall and precision. We add
1 to the numerator and the denominator to ensure F1 is de-
fined when no T P are possible (e.g., Twinkle, Twinkle, Little
Star has no verse). Averaged over all songs in the training
data, the F-score represents the fitness of an individual pa-

1114

Figure 2: Finding pitch structure via sequence alignment.
Representing the song Twinkle, Twinkle, Little Star as a se-
quence of discrete events, we align the song against itself
using a multiple Smith-Waterman alignment and a pitch-
specific pairwise scoring function. The longer diagonal repre-
sents the repetition of pitch between two choruses in the song.
The shorter diagonal represents repetition of pitch within the
bridge section. Weights for the scoring function are learned
via GA (see Figure 3). After 27 generations weights were
found to maximize the fitness function.

rameterization in our GA. Using this fitness function, we find
the optimal parameterization Γ∗v for each viewpoint v via its
respective alignment scoring function as described below.

F-score should be viewed as a relative rather than abso-
lute measure of performance for several reasons. First, struc-
ture is inherently an abstract concept. This means that what
should be labeled in our training data as structure is some-
times ambiguous and can be represented along a spectrum
of granularity (e.g., hierarchical rhythmic structure). Second,
the scoring functions described below are meant primarily to
be illustrative. We found that structure learning is sensitive
to which features are included and how they are combined.
Third, GAs are stochastic by nature, and the (efficiency of)
structure learning is sensitive to this stochasticity. Fourth, we
intentionally chose songs with non-trivial structure to see how
well this approach would generalize. Thus, even suboptimal
F-scores are in many cases reflective of alignments that yield
significant structural representation.
Alignment Scoring Functions We define six different
scoring functions: one scoring function for each of the primi-
tive viewpoints of harmony, pitch, rhythm, and lyrics, and one
scoring function for each of the derived viewpoints represent-
ing chorus and verse structures. Each scoring function scores
the similarity of two musical events using a unique subset of
event features indicative of self-similarity in that viewpoint.

Since structural repetitions in music tend to preserve meter,
all viewpoint alignment functions are designed to consider
the offset within the measure of the two events being aligned.
For events e1 an e2 we define a beat matching subfunction

MB(e1,e2) for this offset alignment as

MB(e1,e2) =

{
ιB if b1 = b2

∆B +δB ∗ |b1−b2| if b1 6= b2

where bi = beat(ei) and ιB, ∆B, and δB are weights deter-
mined for each viewpoint by the GA.

Harmony A harmony harmony(ei) represents a set of
pitches which we denote notes(harmony(ei)) = {p1, · · · , pn}
where each pitch pi is a MIDI note value modulo 12 to nor-
malize values to a common octave. Using the shorthand Ni for
notes(harmony(ei)), we define a harmonic scoring function
SH(e1,e2) as follows:

SH(e1,e2) = IH(e1,e2)+OH(e1,e2)+MB(e1,e2)

with the identity subfunction IH(e1,e2) computed as

IH(e1,e2) =

{
ιH if N1 = N2

∆H +δH/Z(N1,N2) if N1 6= N2

where the set similarity function Z(N1,N2) is defined as

Z(N1,N2) = (2∗ |N1∩N2|/(|N1|+ |N2|))

Letting oi = is harmony onset(ei),

OH(e1,e2) =

ΩH if o1∧o2

ωH if o1∨o2

γH otherwise

In this manner, ιH , ∆H , δH , ΩH , ωH , and γH represent weights
to be learned by the GA.

Pitch Letting ri = is rest(ei) and pi = pitch(ei), we com-
pute the pitch score SP(e1,e2) of events e1 and e2 as

SP(e1,e2) =

R if r1∧ r2

ρ if r1∨ r2

γR +MP(e1,e2) otherwise

with MP(e1,e2) representing the pitch matching subfunction
for scoring two events:

MP(e1,e2) = IP(e1,e2)+OP(e1,e2)+MB(e1,e2)

with

IP(e1,e2) =

{
ιP if p1 = p2

∆P +δP ∗ |p1− p2| if p1 6= p2

letting oi = is pitch onset(ei),

OP(e1,e2) =

ΩP if o1∧o2

ωP if o1∨o2

γP otherwise

Again R, ρ, γR, ιP, ∆P, δP, ΩP, ωP, and γP represent weights
to be learned by the GA.

1115

Generation: 1 Generation: 2 Generation: 9 Generation: 15 Generation: 23 Generation: 27
F1 = 0.34 F1 = 0.65 F1 = 0.80 F1 = 0.80 F1 = 0.80 F1 = 1.0

Figure 3: Learning weights for pitch. As scoring function weights are adjusted via the GA, different alignments result. We use
a multiple Smith-Waterman alignment approach to find local alignments that result in a score above a threshold τ (determined
by the GA). As weights are found that more accurately align pitch repetitions, the F-score increases. Shown is the alignment of
Twinkle, Twinkle, Little Star.

Rhythm Letting ri = is rest(ei) and di = duration(ei), we
compute the melodic rhythm score SR(e1,e2) as

SR(e1,e2)=MR(e1,e2)∗(ID(e1,e2)+OP(e1,e2)+MB(e1,e2))

with MR(e1,e2) representing the rest matching subfunction
for scoring two events:

MR(e1,e2) =

R if r1∧ r2

ρ if r1∨ r2

γR otherwise

with

ID(e1,e2) =

{
ιD if d1 = d2

∆D +δD ∗ |d1−d2| if d1 6= d2

R, ρ, γR, ιD, ∆D, and δD are weights learned by the GA.

Lyrics Intuitively structural patterns in lyrics are a product
of word sequences that repeat. This happens, for example, in
choruses or taglines. Different iterations of the chorus may
contain added words or phrases for which some flexibility is
needed. Thus we design the lyric scoring function in order to
allow the GA to learn appropriate weights for pairs of notes
in which one or both notes are either rests or non-lyrical. We
design the lyric scoring function to learn weights that favor
the alignment of lyric onsets.

For two events e1 and e2, we compute the lyric score
SL(e1,e2). Letting ri = is rest(ei) and li = lyric(ei),

SL(e1,e2) =

R if r1∧ r2

ρ if r1∨ r2

N if l1 =∅∧ l2 =∅
ν if l1 =∅∨ l2 =∅
ML(e1,e2) otherwise

with ML(e1,e2) representing the lyric matching subfunction
for scoring two events with non-empty lyrics:

ML(e1,e2) = IL(e1,e2)+OL(e1,e2)+MB(e1,e2)

with

IL(e1,e2) =

{
ιL if l1 = l2
∆L if l1 6= l2

Letting oi = is lyric onset(Ei),

OL(e1,e2) =

ΩL if o1∧o2

ωL if o1∨o2

γL otherwise

R, ρ, N, ν, ιL, ∆L, ΩL, ωL and γL are learned by the GA.

Chorus and Verse Having defined scoring functions for
primitive viewpoint alignments, we can define compound
scoring functions for more abstract feature alignment. For
example, a chorus is generally defined as a musical subse-
quence in which harmony, pitch, rhythm, and lyrics repeat. A
verse is generally defined as a musical subsequence in which
harmony, pitch, and rhythm repeat, but lyrics do not. Given
both of these abstract features consider the same set of prim-
itive features, we define a single compound scoring function
that can be used (with different parameterizations) to learn
structure for both.

For two events e1 and e2, we compute a compound align-
ment score SC(e1,e2) as

SC(e1,e2) = wH ∗SH(e1,e2)+wP ∗SP(e1,e2)+

wR ∗SR(e1,e2)+wL ∗SL(e1,e2)

with wH , wP, wR, and wL representing the weights (to be
determined by the GA) of the viewpoints harmony, pitch,
rhythm, and lyric respectively, and each of the viewpoint-
specific scoring functions as defined above. In learning these
abstract features we use optimal parameterizations Γ∗H , Γ∗P,
Γ∗R, and Γ∗L for the subscoring functions as learned on the
respective viewpoint-specific alignment tasks1. For learning
verse structure, values of ιL and ∆L in Γ∗L are swapped because
Γ∗L is trained to find similar lyrics and verses contain different
lyrics (in similar positions). General alignment parameters
Go, Ge, and τ for subscoring functions are ignored.

1learned weights are available upon request

1116

Harmony Pitch Rhythm Lyric Chorus Verse
F1 = 0.90 F1 = 0.95 F1 = 0.78 F1 = 0.94 F1 = 0.78 F1 = 0.80

Twinkle,
Twinkle

Little Star
F1 = 0.99

Over the
Rainbow
F1 = 0.97

Hey Jude
F1 = 0.66

Take Me
Home,

Country
Roads

F1 = 0.87

Imagine
F1 = 0.81

Figure 4: Structure Detection. We extract structure for each musical aspect for each song. For each viewpoint (i.e., column), the
same scoring function weights were used, suggesting a common scoring function can find structure across songs. The Chorus
and Verse columns use scoring functions composed of primitive viewpoint scoring functions. Average F1 accuracy scores for
each row and column are shown.

Results and Discussion
For each primitive viewpoint v we trained for 5000 genera-
tions to find the Γ∗v which maximized F1(Γv) on the training
data. These parameterizations are used to identify structure
in several songs (see Figure 4). We manually curated and
labeled 5 songs composed of varying numbers of (8th-note)
musical sequence events: Twinkle, Twinkle Little Star (96
events); Over the Rainbow (256); Hey Jude (562); Take Me
Home, Country Roads (736); and Imagine (448). Together
these 5 songs comprise a dataset of 2,098 instances. We tested
for how well results generalize to unseen data (Table 2).

Each row in Figure 4 effectively represents a 6-faceted
song structure. In each column, patterns across primitive
viewpoints emerge, combining to yield structural informa-
tion about abstract features. For example, note how over-
lapping the first 4 columns effectively identifies choruses
whereas overlapping the first 3 and subtracting the 4th iden-
tifies verses. These patterns reinforce that each song has a

characteristic abstract structure that is learnable via MSW
self-alignment.

Significant patterns also emerge within columns. Harmony
and pitch, for example, tend to show up in longer isolated
bands with limited horizontal (or vertical) overlap. Rhythmic
structure often shows up as “pyramids” of lines with signif-
icant horizontal overlap. These patterns suggest that rhyth-
mic structure is more frequent and hierarchical as compared
to structure in other viewpoints. Lyric structure is similar to
harmony and pitch structure, but with fewer, shorter bands,
suggesting that patterns in harmony and pitch usually span
longer ranges within a song whereas lyric patterns are made
up of short, dispersed repetitions.

Song-specific and viewpoint-specific structural trends are
significant for different reasons. Song-specific trends make
it possible to effectively compare the similarity of two songs
at an abstract, musical level. This has implications for being
able to classify music, recognize different arrangements of

1117

Table 2: Generalizability. (Top) Average F-scores from a 5-
fold cross-validation on a song dataset of 2,098 data instances
(1000 generations). (Bottom) Results aggregated from 2 of
the 5 cross-folds in which the holdout song is of simpler com-
position (Twinkle, Twinkle and Over the Rainbow). Even with
limited training, generalization is possible, particularly when
generalizing to less complex compositions.

H P R L C V

Train 0.90 0.95 0.73 0.82 .79 .75
Test 0.83 0.88 0.66 0.75 .52 .50

Train (hard) 0.90 0.94 0.69 0.89 0.74 .67
Test (easy) 0.84 0.99 0.91 1.00 0.75 1.00

the same song, and recommend music with similar structural
elements. Viewpoint-specific trends are significant in being
able to generate novel structures for novel music, aiding song-
writers and musical metacreationists to discover novel, mean-
ingful structures. These trends have implications for proba-
bilistic parsing, referring to the ability to compute a proba-
bility representing how well a musical sequence fits within a
particular genre or appeals to a particular audience.

The approach, results, and implications we have demon-
strated are not constrained to the symbolic music domain—
similar functions, alignments, and patterns can be derived in
other domains. For example, MSW self-alignment applied
to musical audio signals can be used for chorus-detection, an
area that has garnered significant interest (e.g., (Gao & Li,
2015)). MSW self-alignment applied to linguistic features of
poetry or lyrics can be used for rhyme scheme detection.

The ability to infer abstract structural patterns imbues com-
putational systems with the ability to analyze artifacts such as
music in a way that more closely approaches their underlying
meanings and intentions.

References
Bodily, P., Bay, B., & Ventura, D. (2017). Computational cre-

ativity via human-level concept learning. In Proceedings of
the eighth international conference on computational cre-
ativity (pp. 57–64).

Collins, T., & Laney, R. (2017). Computer–generated stylistic
compositions with long–term repetitive and phrasal struc-
ture. Journal of Creative Music Systems, 1(2).

Collins, T., Thurlow, J., Laney, R., Willis, A., & Garthwaite,
P. (2010). A comparative evaluation of algorithms for dis-
covering translational patterns in baroque keyboard works.
In Proceedings of the 11th international society for music
information retrieval conference (pp. 3–8).

Dayhoff, M., Schwartz, R., & Orcutt, B. (1978). A model
of evolutionary change in proteins. In Atlas of protein
sequence and structure (Vol. 5, pp. 345–352). National
Biomedical Research Foundation Silver Spring, MD.

Englemann, S., & Bruner, E. (1974). Distar: Reading level i.
Chicago: Science Research Associates.

Gao, S., & Li, H. (2015). Octave-dependent probabilistic la-
tent semantic analysis to chorus detection of popular song.
In Proceedings of the 23rd acm international conference on
multimedia (pp. 979–982).

Henikoff, S., & Henikoff, J. G. (1992). Amino acid sub-
stitution matrices from protein blocks. Proceedings of the
National Academy of Sciences, 89(22), 10915–10919.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015).
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266), 1332–1338.

Lattner, S., Chacón, C. E. C., & Grachten, M. (2015).
Pseudo-supervised training improves unsupervised melody
segmentation. In Proceedings of the international joint
conference on artificial intelligence (pp. 2459–2465).

Lattner, S., Grachten, M., Agres, K., & Chacón, C. E. C.
(2015). Probabilistic segmentation of musical sequences
using restricted boltzmann machines. In Mathematics and
computation in music (pp. 323–334).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521(7553), 436–444.

Meredith, D., Lemström, K., & Wiggins, G. A. (2002). Al-
gorithms for discovering repeated patterns in multidimen-
sional representations of polyphonic music. Journal of New
Music Research, 31(4), 321–345.

Needleman, S. B., & Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular Biol-
ogy, 48(3), 443–453.

Nunes, J. C., Ordanini, A., & Valsesia, F. (2015). The power
of repetition: repetitive lyrics in a song increase processing
fluency and drive market success. Journal of Consumer
Psychology, 25(2), 187–199.

Pachet, F., Papadopoulos, A., & Roy, P. (2017). Sampling
variations of sequences for structured music generation. In
Ismir (pp. 167–173).

Papadopoulos, A., Pachet, F., Roy, P., & Sakellariou, J.
(2015). Exact sampling for regular and markov constraints
with belief propagation. In Proceedings of the interna-
tional conference on principles and practice of constraint
programming (pp. 341–350).

Perez, G., & Régin, J.-C. (2017). Mdds: sampling and proba-
bility constraints. In International conference on principles
and practice of constraint programming (pp. 226–242).

Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F.,
& Marchini, M. (2016). Enforcing structure on temporal
sequences: the Allen constraint. In International confer-
ence on principles and practice of constraint programming
(pp. 786–801).

Smith, T. F., & Waterman, M. S. (1981). Identification of
common molecular subsequences. Journal of Molecular
Biology, 147(1), 195–197.

1118

