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Abstract  19 

Solar-induced chlorophyll fluorescence (SIF) is widely accepted as a proxy for gross 20 

primary productivity (GPP). Among the various SIF measurements, tower-based SIF 21 

measurements allow for continuous monitoring of SIF variation at a canopy scale with high 22 

temporal resolution, making it suitable for monitoring highly variable plant physiological 23 
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responses to environmental changes. However, because of the strong and close relationship 24 

between SIF and absorbed photosynthetically active radiation (aPAR), it may be difficult to 25 

detect the influence of environmental drivers other than light conditions. Among the drivers, 26 

atmospheric dryness (vapor pressure deficit, VPD) is projected to increase as drought becomes 27 

more frequent and severe in the future, negatively impacting plants. In this study, we evaluated 28 

the tower-based high-frequency SIF measurement as a tool for detecting plant response to highly 29 

variable VPD. The study was performed in a mixed temperate forest in Virginia, USA, where a 30 

40-meter-tall flux tower has been measuring gas and energy exchanges and ancillary 31 

environmental drivers, and the Fluospec 2 system has been measuring SIF. We show that a 32 

proper definition of light availability to vegetation can reproduce SIF response to changing VPD 33 

that is comparable to GPP response as estimated from eddy covariance measurement: GPP 34 

decreased with rising VPD regardless of how aPAR was defined, whereas SIF decreased only 35 

when aPAR was defined as the PAR absorbed by chlorophyll (aPARchl) or simulated by a model 36 

(Soil Canopy Observation, Photochemistry and Energy fluxes, SCOPE). We simulated the effect 37 

of VPD on SIF with two different simulation modes of fluorescence emission representing 38 

contrasting moisture conditions, ‘Moderate’ and ‘Soil Moisture (SM) Stress’ modes. The 39 

decreasing SIF to rising VPD was only found in the SM Stress mode, implying that the SIF-VPD 40 

relationship depends on soil moisture conditions. Furthermore, we observed a similar response of 41 

SIF to VPD at hourly and daily scales, indicating that satellite measurements can be used to 42 

study the effects of environmental drivers other than light conditions. Finally, the definition of 43 

aPAR emphasizes the importance of canopy structure research to interpret remote sensing 44 

observations properly. 45 

 46 



 3 

Keywords 47 

Solar-induced chlorophyll fluorescence, gross primary production, vapor pressure deficit, 48 

photosynthetically active radiation, eddy covariance, radiative transfer model 49 

 50 

 51 

Highlights 52 

• The impact of aPAR and VPD on SIF was statistically decoupled and evaluated. 53 

• GPP response to VPD was reproduced using proximal sensing of SIF and SCOPE model. 54 

• aPAR and soil moisture are critical for evaluating SIF response to VPD. 55 

 56 

1. Introduction 57 

Solar-induced chlorophyll fluorescence (SIF) has been highlighted as a proxy for 58 

understanding plant physiology due to its strong relationship with gross primary production 59 

(GPP) across observational scales and direct ecophysiological connection with the light reactions 60 

in photosynthesis (Frankenberg et al., 2011; Guanter et al., 2014; Johnson & Berry, 2021; Kim et 61 

al., 2021; Porcar-Castell et al., 2014; Sun et al., 2017; Yang et al., 2015; Zhang et al., 2016a, 62 

2018). SIF is often retrieved from satellite measurements (space-based), which have a coarse 63 

spatiotemporal scale. While space-based SIF retrieval is beneficial for understanding plant 64 

carbon dynamics at large scales (regional to global), its low temporal frequency in measurements 65 

(once per multiple days) may not be well-suited to studying physiological responses to fast-66 

changing environmental drivers, limiting its utility to improve our understanding of 67 

ecophysiological response to climate change. For example, vapor pressure deficit (VPD, the 68 

difference between saturation and actual vapor pressure) is a function of air temperature and 69 
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relative humidity and is thus highly variable diurnally. Moreover, VPD has received growing 70 

attention as an important environmental driver for its potential to affect plant biology (e.g., by 71 

inducing stomatal closure and limiting carbon uptake) and intensify hydrological cycles (e.g., 72 

more severe and frequent drought) due to the projected global warming in the future (Grossiord 73 

et al., 2020; López et al., 2021; McDowell et al., 2020, 2022; Novick et al., 2016a). For example, 74 

Wang et al. (2019) addressed the significant impact of increased VPD on the reduction of 75 

apparent SIF yield (defined as SIF divided by absorbed photosynthetically active radiation, 76 

aPAR) at a regional scale by leveraging the extreme drought and heatwave events in China. 77 

However, it is also essential to examine the SIF response over a range of VPD under moderate 78 

moisture conditions at a finer scale to elucidate the mechanisms of SIF response to changing 79 

VPD and its relationship with plant carbon uptake (e.g., GPP). Recent advances in automated 80 

tower-based SIF measurement techniques (Cogliati et al., 2015; Du et al., 2019; Grossmann et 81 

al., 2018; Gu et al., 2019; Guanter et al., 2013; Magney et al., 2019; Yang et al., 2015, 2018) 82 

have enabled high-frequency SIF measurement (< hourly interval) at a canopy scale.  83 

However, it remains uncertain whether the effect of VPD on SIF can be confidently 84 

distinguished from SIF-aPAR at the canopy level. This is because SIF and aPAR are strongly 85 

correlated, and light intensity can indirectly influence VPD by increasing the temperature on 86 

sunny days since VPD is dependent on humidity and temperature (Chang et al., 2020; He et al., 87 

2020; Miao et al., 2018). Paul-Limoges et al. (2018), for example, investigated the impact of 88 

VPD on SIF at a canopy scale using tower-based SIF measurement in a mixed forest and 89 

cropland, but without clear decoupling of VPD from the effect of aPAR. Moreover, while the 90 

importance of the definition of light absorption has been widely emphasized for remote-sensing-91 

based photosynthesis observations (Ogutu & Dash, 2013; Yang et al., 2015; Zhang et al., 2020), 92 
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previous studies often use photosynthetic photon flux density (PPFD) that may not accurately 93 

represent the actual amount of light absorbed by foliage or chlorophyll and used for 94 

photosynthesis; This is because PPFD measures the amount of PAR that actually arrives at the 95 

plant but does not distinguish PAR absorbed by non-photosynthetic components (e.g., stem, 96 

branch, senescent foliage) from photosynthetic components. 97 

We evaluate the tower-based high-frequency SIF measurement (i.e., < hourly) as a tool to 98 

detect plant response to highly variable VPD by decoupling its impact from light availability. We 99 

used GPP estimated from eddy covariance measurement as a reference and compared it with the 100 

SIF measurement to test whether SIF and GPP have divergent or convergent responses to 101 

changing VPD. We also simulated SIF, aPAR, and quantum yields using the SCOPE model 102 

V1.73 (van der Tol et al., 2009) to compare with the SIF measurement. Our goal of the SCOPE 103 

simulation was to answer the following questions: 1) Does the pattern of the simulated SIF in 104 

response to VPD agree with the patterns of measurements? 2) If so, what is driving the observed 105 

response? If not, what are the major reasons for the discrepancy? 106 

We further tested whether lower-frequency measurement of SIF (i.e., daily) is frequent 107 

enough to decouple the impact of VPD from aPAR by using the data collected around midday 108 

only. This test provides useful insight into the validity of low-frequency satellite measurements 109 

for studying the impact of highly variable VPD on SIF. Specifically, we defined the half-hourly 110 

measurement of SIF as ‘hourly scale’ data and the SIF measured between noon and 2 pm as 111 

‘daily scale’ data and then compared these datasets.  112 

  113 

2. Materials and Methods 114 

2.1. Site Description 115 
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The study site (Virginia Forest Research Facility) is located in a temperate mixed forest, 116 

within the footprint of a flux tower in central Virginia, USA (37° 55’N 78° 16’W). Long-term 117 

mean annual temperature and precipitation (from 1981 to 2010) are 14.0℃ and 1,210 mm (over 118 

90% as rain), respectively. Canopy dominant tree species include white oak (Quercus alba L.), 119 

Virginia pine (Pinus virginiana Mill.), southern red oak (Q. falcata Michx.), red maple (Acer 120 

rubrum L.), and tulip poplar (Liriodendron tulipifera L.). The relative dominances (= basal area 121 

of a species / basal area of all trees × 100%) within a 500 m radius from the flux tower were 122 

23.6%, 20.0%, 11.9%, 11.5%, and 10.3%, respectively (Chan, 2011). The range of diameter at 123 

breast height (DBH) was 2.5 to 81.0 cm, with tree sizes of second and third quartiles ranging 124 

from 4.0 to 15.1 cm. The study period was limited to the late growing season, from early July to 125 

mid-September in 2019, to minimize the effect of seasonality and the potential effect of sun-126 

sensor-canopy geometrical variation. 127 

 128 

2.2. SIF measured by Fluospec 2 129 

SIF was measured using an automated system, Fluospec 2. A detailed description of the 130 

system is documented in Yang et al. (2018). The key component of the system is a high spectral 131 

resolution spectrometer (QEPro, OceanOptics Inc., Dunedin, FL, USA) with a spectral resolution 132 

of 0.14 nm and a spectral range of 729.7-784.1 nm. The main components of the system include 133 

a spectrometer, a computer for system operation (Raspberry Pi), and an optical shutter 134 

alternating the two optical cables that measure incoming solar radiation and upwelling radiation 135 

from canopies, respectively (Figure 1). For stability, the system is enclosed in a thermostatic box 136 

(25℃) inside an air-conditioned hut built to accommodate various research tools. The optical 137 

cables for radiance measurements are installed on the top platform of a flux tower. 138 
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 139 

 140 

Figure 1. The design of instrument setup (Fluospec 2) at the study site (Virginia Forest Research 141 

Facility, a) and a sample thermal image taken at 13:00 EST on August 8, 2019 at the top 142 

platform of a flux tower near the SIF sensors (b). Fluospec 2 is composed of a SIF spectrometer, 143 

a computer for system operation (Raspberry Pi), and an optical shutter. The system is enclosed in 144 

a thermostatic box, with the temperature inside the enclosure set at 25℃, and resides inside a 145 

research hut. The ends of optical cables measuring irradiance and canopy radiance are installed 146 

on the top platform of a flux tower (40 m tall). Note that the field of view (FOV) of the optical 147 

fibers (25 degree) is smaller than the FOV of the thermal camera (45 degree). Thus, SIF is 148 

observed for a smaller area than appears in the thermal image in panel b. 149 

 150 

We applied an O2A-based spectral fitting method (SFM) that uses a reduced fitting 151 

window from 759.5 to 761.5 nm (Chang et al., 2020), which is known to improve O2A retrieval 152 

accuracy compared to a conventional SFM method using a wider fitting window (759-767.76 153 

nm). The SIF was recorded every 10 minutes and averaged every 30 minutes. 154 

 155 
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 156 

Figure 2. An example of data collected by Fluospec 2 at noon on June 14, 2019. Irradiance 157 

(orange in panel a) was collected by an upward-looking cosine corrector, and radiance (blue in 158 

panel a) was collected by an optical fiber pointing to the target tree canopy. Reflectance (b) was 159 

calculated by dividing radiance by irradiance and multiplying by 𝜋. The shaded area in green in 160 

panel b indicates the fitting window (759.5-761.5 nm) used for O2A retrieval (Chang et al., 161 

2020). 162 

 163 

2.3. SIF simulated by SCOPE 164 

We simulated SIF, aPAR, and quantum yields for the four pathways used by leaves 165 

during photosynthesis (i.e., quantum yields of photochemistry, 𝛷!, fluorescence, 𝛷", non-166 

photochemical quenching, 𝛷#, and non-radiative decay, 𝛷$) using the SCOPE model V1.73 167 

(van der Tol et al., 2009). It is necessary to stress that the SCOPE simulations do not have to 168 

perfectly match the observations, and in fact, the mismatch between the observations and the 169 

model results is to be expected as several key parameters related to SIF (e.g., Vcmax: maximum 170 

carboxylation rate, FQE: fluorescence quantum yield efficiency at photosystem level) are 171 

prescribed. SCOPE model simulations were driven by meteorological data collected by the 172 
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sensors installed at the study site, including PAR, longwave radiation, temperature, vapor and 173 

atmospheric pressure, and leaf area index from the Moderate Resolution Imaging 174 

spectroradiometer (MODIS, MCD15A2H Version 6; See Figure S1 in Supplementary 175 

Information for the variability of leaf area index). The model was modified to use the incident 176 

PAR measurements, instead of shortwave radiation, as input data for a more accurate aPAR 177 

simulation. The other inputs were set to default (See Table S1 in Supplementary Information for 178 

more details about the input data). We have compared two different fluorescence emission 179 

models (Moderate and Soil Moisture (SM) Stress models) incorporated in the SCOPE model, of 180 

which quantum yield fractions were set differently based on the experiments conducted under 181 

different soil moisture conditions (van der Tol et al., 2014). More specifically, van der Tol et al. 182 

(2014) demonstrated how fluorescence yield was influenced by non-photochemical quenching 183 

(𝛷#) using the results of previous studies that combined leaf gas exchange and pulse amplitude 184 

modulation (PAM) measurements. They compared multiple sets of experiments performed on 185 

different plants that were subject to different main environmental drivers, and developed two sets 186 

of parameters to model quantum yields for the SCOPE: one was based on the cotton dataset 187 

(Weis & Berry, 1987), concerned with light, CO2, and temperature variations (without water 188 

stress; hereafter, ‘Moderate mode’). Another set was based on C3 species treated with daily 189 

irrigation and then progressively decreasing soil moisture availability (Flexas et al., 1999; 2002); 190 

hereafter, ‘Soil Moisture (SM) Stress mode’ (See Discussions and Figure 10 for the comparison 191 

between two simulation modes). Therefore, the results from the two simulation modes would 192 

inform how the relationship between SIF and VPD depends on soil moisture conditions. 193 

 194 

2.4. Eddy covariance and environmental drivers 195 
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CO2, water, and energy fluxes and other environmental variables (e.g., air temperature, 196 

relative humidity, and VPD) were recorded by eddy flux tower using a sonic anemometer 197 

(CSAT3, Campbell Scientific, Logan, Utah), gas analyzer (LI-7500, Li-Cor, Lincoln, Nebraska), 198 

and temperature and humidity probe (HMP45, Vaisala, Helsinki, Finland) at a height of 25 m, 199 

several meters above the characteristic vegetation height. NEE partitioning into GPP and 200 

ecosystem respiration (Reco) was done by using an R-based online eddy covariance processing 201 

tool, ReddyProc (Wutzler et al., 2018) and choosing the daytime partitioning algorithm. 202 

Compared to another partitioning option available in the ReddyProc (i.e., nighttime partitioning 203 

algorithm), the daytime partitioning algorithm accounts for the temperature sensitivity of Reco 204 

and the effect of VPD on plant light response curve to enhance the reliability of Reco estimates 205 

(Lasslop et al., 2010). Only GPP greater than 5 μmol m-2 s-1 was used for the analysis to avoid 206 

the poorly defined relationship between GPP and aPAR under the conditions of low GPP. The 207 

temporal resolution of GPP and ancillary data was 30 minutes. 208 

 209 

2.5. aPAR estimation 210 

Careful selection of aPAR definition is important because aPAR is often estimated in 211 

different ways based on the different assumptions of light absorption (Porcar-Castell et al., 212 

2021). For example, an assumption of a whole canopy as a light absorbent does not discern 213 

differences in light absorption between photosynthetic (i.e., functional leaves) and non-214 

photosynthetic (i.e., stem, branches, and senescent leaves) components, in contrast to the 215 

assumption of photosynthetically functional leaves as the only light absorbent. Furthermore, the 216 

close relationship between SIF and aPAR may have a significant influence when evaluating the 217 

impact of other environmental factors on SIF. We have compared four different approaches to 218 
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estimate aPAR: PAR absorbed by the entire canopy, which is estimated by stand-scale 219 

measurement (aPARm), PAR absorbed by chlorophyll (aPARchl), reflected radiance in the far-red 220 

spectrum at 755 nm measured by Fluospec 2 (Rad755), and aPAR estimated by SCOPE 221 

simulation (aPARsc). 222 

The aPARm was estimated by simultaneous in-situ measurements at different positions 223 

using quantum sensors (PQS-1, Kipp & Zonen B.V., Delft, Netherlands) as follows: 224 

 225 

aPARm = PARabove - PARunder - PARrefl  (1) 226 

 227 

where PARabove is PAR measured above canopies, PARunder is an average of PAR measured at 228 

three different positions under canopies, and PARrefl is canopy-reflected PAR. The PAR 229 

components were measured every minute and averaged every 30 minutes to match its temporal 230 

resolution with GPP and SIF. The aPARm represents a conventional method to estimate site-level 231 

aPAR. 232 

The approach to estimating aPARchl was suggested by Ogutu and Dash (2013). 233 

According to their definition, aPARchl is PAR absorbed by photosynthetic components of 234 

canopies only (i.e., excluding PAR absorbed by branches, stem, and senescent foliage) and 235 

utilized for photosynthesis. Therefore, unlike aPARm, aPARchl represents aPAR at the level of 236 

organelles. The aPARchl can be estimated by using eddy covariance data from the following 237 

equation: 238 

 239 

aPARchl = incident PAR × faPARchl = (NEE− Reco) / αa   (2) 240 

 241 
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where faPARchl is the fraction of aPAR absorbed by photosynthetic elements in the canopy, NEE  242 

is net ecosystem exchange (𝜇mol m-2 s-1), αa is actual quantum yield (the number of moles of 243 

CO2 fixed per mole of PAR absorbed by photosynthetic elements in the canopy: mol mol-1), 244 

which is a function of maximum intrinsic quantum yield (0.08 mol mol-1 for C3 plants) (Collatz 245 

et al., 1991; Hanan et al., 2002), air temperature, and VPD, and Reco is ecosystem respiration 246 

(𝜇mol m-2 s-1) (Refer to Ogutu & Dash (2013) for more details about the derivation). While 247 

actual quantum yield is a function of VPD, we applied a constant VPD representing VPD in clear 248 

midday during the study period from July to September (2 kPa) to avoid the potential perplexing 249 

influence of both VPD and aPARchl on GPP and SIF (see Figure S2 in Supplementary 250 

Information for the comparison between aPARchl estimated using constant VPD and variable 251 

VPD). 252 

The radiance in the far-red spectrum reflected by canopies (Rad755) is often used to 253 

derive relative SIF (=SIF/Rad755). Relative SIF is the normalized SIF to correct the effect of 254 

heterogeneous vegetation structure (Magney et al., 2019; Parazoo et al., 2020) and is comparable 255 

to SIF yield (=SIF/aPAR). In principle, relative SIF is comparable to the near-infrared radiance 256 

of vegetation (NIRvR) when Normalized Difference Vegetation Index (NDVI) is stable, as 257 

NIRvR is approximately NDVI multiplied by observed NIR radiance (NIRrad), where NIRrad is 258 

linearly related with aPAR (Zeng et al., 2019). Therefore, although Rad755 may not represent 259 

aPAR in principle, we tested the possibility of Rad755 as a proxy of aPAR to address the impact 260 

of VPD on SIF. In addition, one benefit of using relative SIF is that the radiance at 755 nm was 261 

observed from the same footprint as the SIF measurements. 262 
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Lastly, PAR absorbed by chlorophyll a and b simulated by SCOPE (aPARsc) was used 263 

against simulated SIF. The simulation of aPARsc is based on in-situ measurement of incident 264 

PAR, radiative transfer, and chlorophyll absorption spectrum. 265 

 266 

Table 1. Definitions of aPAR metrics used in this study. 267 

aPAR metrics Description 

aPARm 

aPAR estimated by simultaneous in-situ measurements of PAR at different 
positions using quantum sensors. 
 
aPARm = PARabove – PARunder – PARrefl 
 

• PARabove: PAR measured above canopies 
• PARunder: average of PAR measured at three different positions under canopies 
• PARrefl: canopy-reflected PAR 

aPARchl 

PAR absorbed by photosynthetic components of canopies only (i.e., 
excluding PAR absorbed by branches, stem, and senescent foliage) and 
utilized for photosynthesis (Ogutu & Dash, 2013). 
 
aPARchl = incident PAR × faPARchl = (NEE− Reco) / αa 
 

• faPARchl: the fraction of aPAR absorbed by photosynthetic elements in the canopy 
• NEE: net ecosystem exchange (𝜇mol m-2 s-1) 
• αa: actual quantum yield (the number of moles of CO2 fixed per mole of PAR 

absorbed by photosynthetic elements in the canopy: mol mol-1) 
• Reco: ecosystem respiration (𝜇mol m-2 s-1) 

Rad755 The radiance in the far-red spectrum reflected by canopies, which is often 
used to derive relative SIF (= SIF/Rad755). 

aPARsc PAR absorbed by chlorophyll a and b simulated by SCOPE. 
 268 

2.6. Data analyses 269 

Our primary interest in this study is to understand the impact of VPD on SIF. However, 270 

SIF is known to have a strong linear relationship with aPAR. Therefore, we must confidently 271 

decouple the impact of VPD from the relationship between SIF and aPAR. We used the Johnson-272 

Neyman technique (Bauer & Curran, 2005; Johnson & Fay, 1950) to evaluate the interaction 273 

between aPAR and VPD  and its influence on SIF or GPP. We then compared linear regressions 274 
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of SIF (or GPP) and aPAR at different levels of VPD by performing Simple slopes analysis 275 

(Aiken & West, 1991). While the one-way analysis of covariance (ANCOVA) is often 276 

performed for this type of situation, our cases violate the assumption of homogeneity of the 277 

regression slopes; in other words, we have non-parallel regression slopes of SIF-aPAR across 278 

different levels of VPD. The Johnson-Neyman technique addresses this issue by identifying the 279 

interval of aPAR in which the influence of VPD on SIF-aPAR regression (𝜕SIF/𝜕VPD) is 280 

significant or insignificant (at a level of 0.05 in our case).  281 

In the results, we illustrate 1) the range of aPAR values where VPD has a significant 282 

influence on SIF-aPAR regression and 2) how SIF-aPAR regressions differ at three separate 283 

VPD levels (at mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 284 

1.5 times standard deviation). We hypothesized that the response of SIF is mainly attributable to 285 

the variability of 𝛷", given negligible variations in the canopy structure and thus fesc during the 286 

growing season when the canopy is closed (He et al., 2020). Based on our SCOPE simulation, 287 

only up to 3% of the variability in fesc was found throughout the study period. 288 

In order to meet the assumption of linearity between the dependent variable (SIF) and the 289 

moderator (aPAR), both variables were log-transformed using natural log, such that the non-290 

linear power function for the SIF-aPAR relationship (i.e., SIF = a⋅aPARb) was transformed into 291 

the linear function between ln(SIF) and ln(aPAR) (i.e., ln(SIF) = ln a + b⋅ln(aPAR), where b is 292 

the slope and ln a is the intercept in the transformed relationships, Figure 3). We performed the 293 

same analysis for GPP by log-transforming both GPP and aPAR (i.e., GPP = a⋅aPARb) as a 294 

reference.  295 

Lastly, we further tested the response of SIF using the data collected during the midday 296 

only (12 - 2 pm), which represents low-frequency observations such as satellite or airborne 297 
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measurements, to find out whether we could find a similar response compared to full-day SIF 298 

response and/or GPP response. 299 

 300 

 301 

Figure 3. Example of data transformation of SIF, GPP, and aPAR for different levels of VPD 302 

(grouped based on the quartiles of the VPD distribution, Q1: 0.0 - 1.3 kPa, Q2: 1.3 - 1.9 kPa, Q3: 303 

1.9 - 2.5 kPa, and Q4: 2.5 - 3.7 kPa). The non-linear power functions for the SIF-aPAR (SIF = 304 

a⋅aPARb) and GPP-aPAR relationships (GPP = a⋅aPARb) were transformed by applying natural 305 

log to both sides of the equation (e.g., ln (SIF) = ln a + b⋅ln(aPAR), where b is the slope, and ln a 306 

is the intercept in the transformed relationships.) 307 

 308 

3. Results 309 

3.1. Diurnal and seasonal patterns of GPP and SIF 310 
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As has been widely observed in many studies, GPP, measured SIF (SIFFS2), and 311 

simulated SIF (SIFSC) all have unimodal diurnal patterns that increase in the morning, peak 312 

around noon, and gradually decrease in the afternoon (Figure 4). As expected, diurnal patterns of 313 

GPP and SIF correspond well to the pattern of incident PAR (iPAR). Meanwhile, VPD and Ta 314 

show delayed peaks around 3 pm compared to GPP, SIF, and iPAR. Compared to the diurnal 315 

patterns of SIF, the decreasing rate of GPP in the afternoon is slower. For instance, SIF started 316 

with a low value at 6 am and returned to a similar level at or before 6 pm. On the other hand, 317 

GPP did not return to a similar level observed at 6 am by 6 pm. 318 

The seasonal trends of GPP and SIFFS2 were similar to each other (Figure 4). Specifically, 319 

both GPP and SIFFS2 were highest during the early growing season (May) and gradually 320 

decreased for the rest of the season. However, the seasonal pattern of SIFSC was different 321 

compared to the GPP or SIFFS2. The SIFSC gradually increased during the early growing season, 322 

remained high during the summer (June to August), and decreased afterward. This pattern 323 

coincided with the seasonal pattern of iPAR. 324 

 325 
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 326 

Figure 4. Monthly mean diurnal patterns of GPP estimated from the eddy covariance method, 327 

SIF measured by Fluospec 2 (SIFFS2), SIF simulated by SCOPE (SIFSC), and environmental 328 

variables including incident PAR (iPAR), vapor pressure deficit (VPD), and air temperature (Ta), 329 

and their monthly mean between 10 am to 2 pm. Error bars represent standard deviations. 330 

 331 

3.2. Comparison between aPAR metrics  332 

All aPAR metrics were linearly related to the iPAR but with different slopes and 333 

variances (Figure 5). Among the metrics, aPARm had the least deviation from iPAR (slope = 334 

0.94) with a very high R2 of the regression (= 0.995). The aPAR simulated by SCOPE (aPARsc) 335 

was also proportional to the iPAR and had a very high R2 of the regression (= 0.999) but with 336 

appreciable deviation (slope = 0.72) from iPAR. On the other hand, aPARchl deviated from iPAR 337 

appreciably (slope = 0.66) with lower R2 of the regression (= 0.755) than aPARm and aPARSC. 338 

This reflects a characteristic of aPARchl, which assumes variable aPAR utilization for 339 

photosynthesis depending on environmental conditions (Ogutu & Dash, 2013) and thus requires 340 
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additional environmental variables, other than iPAR, to better predict its variation. Similarly, 341 

Rad755 also had a lower R2 of the regression (= 0.849) than aPARm or aPARsc, implying its 342 

susceptibility to environmental variables other than light conditions. 343 

 344 

 345 

Figure 5. Relationships between incident PAR (iPAR) and different absorbed PAR (aPAR) 346 

metrics. Gray dashed lines indicate a 1:1 line. Red solid lines indicate linear regression fit. 347 

 348 

3.3.  Response of GPP and SIF to changing aPAR and VPD 349 

According to the Johnson-Neyman technique results, the influence of VPD on the GPP-350 

aPAR regression was significant regardless of the aPAR metrics during most of the daylight 351 

conditions (Figure 6a-6d). Specifically, VPD had a significant impact when log-transformed 352 

aPARm, aPARchl, Rad755, and aPARsc were greater than 5.42, 4.93, 2.88, and 5.29, respectively. 353 

These values correspond to 225.9, 138.4, 17.8, and 198.3 μmol m-2 s-1, respectively, before 354 

transformation (see Figure 4 for the daily variation of iPAR over the growing season and Figure 355 

5 for the relationships between iPAR and aPAR metrics). In all cases, GPP decreased with rising 356 

VPD (Figure 6i-6l). The impact of VPD on GPP was more evident under higher aPAR. 357 

 358 
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 359 

Figure 6. Effect of VPD on GPP-aPAR relationship at hourly scale. The top row (a-d) shows the 360 

results of Johnson-Neyman analysis, identifying the range of aPAR metrics where the influence 361 

of VPD on GPP-aPAR regression is significant (P < 0.05, shaded in green). The thicker 362 

horizontal lines at 0 in Johnson-Neyman plots indicate the observed range of aPAR metrics. The 363 

middle row (e-h) shows scatter plots of log-transformed and GPP and aPAR metrics. The bottom 364 

row (i-l) shows the results of Simple slopes analysis, illustrating GPP-aPAR regressions held at 365 

three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD 366 

minus 1.5 times standard deviation. Note that confidence intervals are illustrated in gray around 367 
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the fitted lines (i-l) but are barely visible because they are very narrow, especially under high 368 

aPAR. Slope and standard error (SE) values are presented (i-l), and the text colors match the 369 

colors of the fitted lines. 370 

 371 

Unlike GPP, we found inconsistent results depending on the aPAR metrics or SIF 372 

estimation method (Figure 7). The influence of VPD on the SIF was significant for the wide 373 

range of aPAR values when aPARchl was used (Figure 7b) or SIF and aPAR were simulated with 374 

SCOPE (Figure 7d & 7e). On the other hand, the influence of VPD was insignificant over the 375 

entire range of observed aPARm (Figure 7a) and over more than half of the observed range of 376 

Rad755 (Figure 7c).  377 

SIF decreased with rising VPD – the pattern consistent with GPP – only when aPARchl 378 

was used (Figure 7l) or when SIF and aPAR were simulated using the SM Stress mode (Figure 379 

7o). In the case where SIF and aPAR were simulated using the Moderate mode (Figure 7n), VPD 380 

influenced SIF negatively when ln(aPARsc) was less than 6.50 (i.e., aPARsc = 665 μmol m-2 s-1) 381 

but positively when ln(aPARsc) was greater than 6.78 (i.e., aPARsc = 880 μmol m-2 s-1). When 382 

Rad755 was used, VPD had a positive effect on hourly SIF under high Rad755 conditions, which 383 

was the opposite of VPD’s effect on GPP (Figure 7m). 384 

 385 
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 386 

Figure 7. Effect of VPD on SIF-aPAR relationship at hourly scale. The top row (a-e) shows the 387 

results of Johnson-Neyman analysis, identifying the range of aPAR metrics where the influence 388 

of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal 389 

lines at 0 in Johnson-Neyman plots indicate the observed range of aPAR metrics. The middle 390 

row (f-j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k-391 

o) shows the results of Simple slopes analysis, illustrating SIF-aPAR regressions held at three 392 

VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 1.5 393 

times standard deviation. Note that confidence intervals are illustrated in gray around the fitted 394 

lines (k-o) but are barely visible because they are very narrow, especially under high aPAR. 395 

Slope and standard error (SE) values are presented (k-o), and the text colors match the colors of 396 

the fitted lines. 397 
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 398 

The daily scale relationships between log-transformed SIF and aPAR (Figure 8) were 399 

similar to the hourly scale relationship (Figure 7). VPD had a negative influence on daily SIF 400 

when aPARchl was used (Figure 8l) or when SIF and aPAR were simulated with SCOPE using 401 

the SM Stress mode (Figure 8o). Although the range of aPAR where VPD significantly 402 

influences daily-scale SIF was smaller (Figure 8b & 8e) compared to the hourly-scale results 403 

(Figure 7b & 7e), the aPAR conditions still represent a wide range of daylight conditions 404 

enabling active photosynthesis. For example, VPD had a negative effect on SIF when 405 

ln(aPARchl) was higher than 5.50 (i.e., aPARchl > 245 μmol m-2 s-1, Figure 8l) or when SIF and 406 

aPAR were simulated using the SM Stress mode and ln(aPARsc) was higher than 5.95 (i.e., 407 

aPARsc > 384 μmol m-2 s-1, Figure 8o). When using aPARm, however, the effect of VPD on SIF 408 

was significant when ln(aPARm) was between 5.94 and 6.64 (i.e., aPARm is between 380 and 409 

765 μmol m-2 s-1, Figure 8a), which represents relatively low daylight conditions. When Rad755 410 

was used, VPD influenced daily SIF positively under low Rad755 conditions, which was 411 

opposite to the impact of VPD on GPP (Figure 8m). 412 

 413 
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 414 

Figure 8. Effect of VPD on SIF-aPAR relationship at daily scale. The top row (a-e) shows the 415 

results of Johnson-Neyman analysis, identifying the range of aPAR metrics where the influence 416 

of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal 417 

lines at 0 in Johnson-Neyman plots indicate the observed range of aPAR metrics. The middle 418 

row (f-j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k-419 

o) shows the results of the Simple slopes analysis, illustrating SIF-aPAR regressions held at three 420 

VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 1.5 421 

times standard deviation. Note that confidence intervals are illustrated in gray around the fitted 422 

lines (k-o) but are barely visible because they are very narrow, especially under high aPAR. 423 

Slope and standard error (SE) values are presented (k-o), and the text colors match the colors of 424 

the fitted lines. 425 
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 426 

The relationship between GPP and SIF was non-linear at both hourly and daily scales due 427 

to the steeper slope at low GPP and SIF (Figure 9). However, the relationship was strongly linear 428 

for most SIF and GPP ranges once SIF or GPP exceeded a certain level. Although daily scale 429 

observations had a lower coefficient of determination than hourly scale observations, we found 430 

similar variability in the GPP-SIF relationship with changing VPD at both temporal scales. When 431 

the GPP-SIF relationship was fitted using a power function (i.e., GPP = k × SIFa) at either scale, 432 

the coefficient k decreased with rising VPD (Figures 9b & 9e). However, the exponent a did not 433 

vary significantly (Figures 9c & 9f). 434 

 435 

 436 

Figure 9. Non-linear relationships between GPP and SIF measured by Fluospec 2 at different 437 

levels of VPD (grouped based on the quartiles of the VPD distribution, Q1: 0.0 - 1.3 kPa, Q2: 1.3 438 

- 1.9 kPa, Q3: 1.9 - 2.5 kPa, and Q4: 2.5 - 3.7 kPa) at hourly (a, b, c) and daily scales (d, e, f). 439 

The GPP-SIF relationships were fitted using a power function (i.e., GPP = k × SIFa). Error bars 440 
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represent standard errors of means (95% confidence). Coefficient k (b & e) or exponent a (c & f) 441 

marked with different letters are significantly different (p < 0.05). 442 

 443 

4. Discussions 444 

We investigated SIF variations in response to changing VPD at a canopy scale using 445 

tower-based SIF measurements in a temperate forest. Specifically, we tested if using different 446 

definitions for aPAR and temporal scales (i.e., hourly vs. daily) would influence SIF response to 447 

changing VPD.  448 

SIF is considered a remotely sensed proxy for GPP because of its good relationship with 449 

GPP across various observational scales. However, while GPP represents the carbon assimilated 450 

as a result of photosynthesis, SIF is the energy re-emitted after light absorption by leaf 451 

chlorophyll molecules (a different pathway than the pathway routed for photosynthesis). Despite 452 

the close link of SIF to plant photochemistry, SIF is not equivalent to photosynthetic carbon 453 

uptake and GPP. Therefore, the interaction of SIF with environmental variables may not 454 

necessarily be the same as GPP. 455 

 We found a SIF response to VPD that corresponded to the GPP response to VPD when 456 

PAR absorbed by chlorophyll (aPARchl) was used or when SIF and aPAR were simulated by 457 

SCOPE model that was parameterized to account for the effects of soil moisture stress (i.e., SM 458 

Stress mode). Our findings suggest that tower-based SIF measurement has the potential to 459 

address the impact of water stress on ecosystem function. 460 

The definition of aPAR was critical for SIF to emulate GPP response to VPD. SIF was 461 

negatively related to VPD only when aPARchl was used or SIF and aPAR were simulated by 462 

SCOPE on the SM Stress mode. This emphasizes the importance of carefully defining and 463 
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evaluating light conditions, or more precisely, light availability to vegetation, especially when 464 

addressing the impact of environmental drivers other than light conditions on SIF. 465 

Among the aPAR metrics, aPARchl was defined as the PAR absorbed by the 466 

photosynthetic component of the canopy (i.e., green foliage). In other words, aPARchl represents 467 

aPAR at the foliage or organelle (chlorophyll) level, which agrees with the SIF emission level 468 

(Zhang et al., 2016b). Therefore, aPARchl is expected to account for the effects of environmental 469 

drivers on photosynthesis (e.g., air temperature, moisture condition, and nutrient availability), 470 

while the other aPAR metrics don’t. Indeed, in the algorithm of aPARchl estimation, the process 471 

of estimating actual quantum yield (i.e., the number of moles of CO2 fixed per mole of PAR 472 

absorbed by photosynthetic elements in the canopy) is an empirical function of air temperature. 473 

As a result, the relationship between aPARchl and iPAR has a low R2 when compared to the other 474 

aPAR metrics (Figure 5). Although the rigorous verification of aPARchl is difficult, the similarity 475 

between aPARchl and aPAR simulated by SCOPE supported the legitimacy of aPARchl (Figure 476 

5e). Furthermore, we found a negative effect of VPD on SIF when aPARchl was used (Figures 7 477 

& 8), which is consistent with the effect on GPP (Figure 6). It is important to note that we 478 

applied a constant VPD to estimate the actual quantum yield for aPARchl, which had a lower 479 

variance than the aPARchl estimated using a variable VPD (See Figure S2 in Supplementary 480 

Information). In our preliminary analysis, we found similar trends in SIF in response to changing 481 

VPD whether constant or variable VPD was used for aPARchl estimation: the only difference was 482 

that SIF variability in response to changing VPD was greater when aPARchl was estimated by 483 

using variable VPD rather than constant VPD (See Figure S3 for the hourly-scale result and 484 

Figure S4 for the daily-scale result in Supplementary Information). Overall, we confirm that 485 

aPARchl is likely to reflect the actual amount and variability of PAR absorbed by the foliage and 486 
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used for photosynthesis, and that the impact of aPARchl on SIF demonstrated in our study (i.e., 487 

aPARchl estimated by using a constant VPD) is likely to be conservative. 488 

Meanwhile, aPARm is the PAR absorbed by any components of the canopy, including 489 

non-photosynthetic components (e.g., branches, stems, and senescent foliage) that are irrelevant 490 

to SIF emission. Because it accounts for insensitive non-photosynthetic components, using 491 

aPARm my result in a less sensitive photosynthetic response than expected. For example, a very 492 

small variance was found in the relationship between aPARm and iPAR (Figure 5a), implying 493 

that environmental drivers other than iPAR had a negligible effect on the aPARm. Therefore, the 494 

disparity in scope of measurement between SIF and aPARm (i.e., photosynthetic component only 495 

vs. photosynthetic and non-photosynthetic components) should have contributed to the 496 

ambiguous effect of VPD on the SIF-aPARm relationship (Figure 7).  497 

In contrast to the GPP-VPD relationship, we found a positive effect of VPD on SIF when 498 

Rad755 was used as a proxy of aPAR although there is no theoretical basis for describing the 499 

opposite pattern. Therefore, while Rad755 may be useful as a proxy of aPAR to approximate 500 

GPP and SIF due to its strong relationship with iPAR, it is less useful when the effect of 501 

environmental drivers other than light conditions must be considered. 502 

While we suggest using an aPAR definition that can be estimated from eddy covariance 503 

data (i.e., aPARchl) among the tested metrics, it may be preferable to use aPAR metrics that can 504 

be estimated more easily for larger-scale observations. Zhang et al. (2020), for example, 505 

compared the fraction of PAR absorbed by chlorophyll (faPAR) obtained from six different 506 

satellite products. Further research into how different definitions of the faPAR affect SIF and its 507 

response to changing environmental drivers is needed to improve the utility of SIF as a proxy for 508 

GPP because faPAR is heavily influenced by the canopy structure, including leaf-angle 509 
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distributions (Stovall et al., 2021; Yang et al., 2023). Future research into leaf-angle distribution 510 

and its temporal variations, for instance, using recent terrestrial light detection and ranging 511 

(lidar) techniques, would help improve our understanding of the impact of canopy structure on 512 

faPAR and SIF. 513 

We used SCOPE to simulate SIF with two different modes of fluorescence emission, 514 

Moderate and SM Stress, to compare with measured SIF and infer the mechanism of SIF 515 

response to VPD and soil moisture. The expected negative effect of VPD on SIF emerged when 516 

the SM Stress mode was used. When the response of quantum yields to aPAR was compared 517 

between the simulation modes, the response of fluorescence yield (𝛷") was found to be the most 518 

different (Figure 10; also refer to van der Tol et al. (2014) and Verrelst et al. (2015)). 519 

Specifically, in the case of the Moderate mode, 𝛷" decreased rapidly with increasing aPAR 520 

under low aPAR, but there was little change under moderate to high aPAR (Figure 10b). In the 521 

SM Stress mode, on the other hand, a negative relationship between 𝛷" and aPAR was found 522 

across the entire range of aPAR (Figure 10f). The patterns of 𝛷" found in both simulation modes 523 

were consistent with the descriptions in van der Tol et al. (2014), which suggested decreasing 𝛷" 524 

as an indication of water stress. Moreover, with the SM Stress mode, we found a reduction of 𝛷" 525 

across the entire range of aPAR with rising VPD (Figure 10). Considering the variability of 𝛷" 526 

in the SCOPE is mainly driven by aPAR and carboxylation capacity (van der Tol et al., 2014), 527 

the results of SIF simulation should be mainly reflective of the negative impact of VPD, 528 

temperature (due to VPD being a function of temperature), and/or soil moisture, on the non-529 

stomatal processes.  530 

 531 
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 532 

Figure 10. Variations of quantum yields (𝛷!: photochemistry, 𝛷": fluorescence, 𝛷#: non-533 

photochemical quenching, 𝛷$: non-radiative decay) with changing aPAR simulated by SCOPE 534 

using two different modes (i.e., Moderate and SM Stress modes) across different VPD levels 535 

(grouped based on the quartiles of the VPD distribution, Q1: 0.0 - 1.3 kPa, Q2: 1.3 - 1.9 kPa, Q3: 536 

1.9 - 2.5 kPa, and Q4: 2.5 - 3.7 kPa). 537 

 538 

The simulation results of quantum yields (Figure 10), as well as interactions between 539 

SIFsc, aPARsc, and VPD (Figures 6 & 8), indicate that the SIF-VPD relationship is dependent on 540 

soil moisture conditions. This implies that the negative effect of VPD on SIF observed when 541 

using aPARchl (Figure 6 & 8) may be driven by both VPD and soil moisture conditions. This is 542 

consistent with previous research (Liu et al., 2020), which investigated the relative effect of VPD 543 

and soil moisture on satellite-based SIF. Our study site is a mesic temperate forest with plenty of 544 

rainfall (long-term mean annual precipitation = 1,210 mm), a moderate level of soil moisture 545 

(i.e., volumetric water content over the study period (mean ± standard deviation) = 0.33 ± 0.05 546 

m3 m-3), and a low correlation between soil moisture and VPD (0.17 at the hourly scale and 0.12 547 
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at the daily scale). We note that the impact of soil moisture on SIF was only implied by the 548 

SCOPE simulation and was not evaluated by in-situ data in our study, due to the limited amount 549 

of data to decouple the effect of soil moisture, VPD and aPAR. Long-term, high-frequency data 550 

collection will aid in decoupling the impact of multiple environmental drivers on SIF, which is a 551 

significant advantage of tower-based SIF measurements over other methods. 552 

Finally, similarity in the seasonal patterns between the measured SIF (SIFFS2) and GPP 553 

indicates the robustness of tower-based SIF measurement for tracking the seasonal variability of 554 

carbon assimilation (Figure 4). SIFFS2 and GPP levels were highest during the early growing 555 

season (May) and gradually decreased over time. On the other hand, the simulated SIF (SIFSC) 556 

was highest during the summer, which coincided with the pattern of iPAR. The discrepancy in 557 

the seasonal patterns is likely to be determined by whether the SIF or GPP reflects seasonal 558 

variability in photosynthetic capacity (i.e., Vcmax). Vcmax is positively related to fluorescence yield 559 

under moderate to high light conditions (Frankenberg & Berry, 2018; van der Tol et al., 2014), 560 

and seasonally, the highest Vcmax is often reported during the early growing season (around May) 561 

for deciduous trees growing in temperate forests (Grassi et al., 2005; Wilson et al., 2000). 562 

Therefore, we presume that the observed seasonal patterns of SIFFS2 and GPP are more reliable 563 

than the seasonal pattern of SIFSC, because Vcmax was set as a constant for the simulation (60 564 

𝜇mol m-2 s-1) and light conditions would have a greater impact on SIFSC than they would on 565 

SIFFS2. This is demonstrated by a greater similarity in the seasonal pattern between SIFSC and 566 

iPAR than between SIFFS2 and iPAR (Figure 4). Therefore, our findings suggest that prescribing 567 

Vcmax and its seasonality in the model is important for improving simulation accuracy. 568 

 569 

5. Conclusion 570 



 31 

SIF is widely accepted as a proxy for GPP due to its strong relationship with GPP 571 

observed from the field, airborne, and spaceborne measurements. Among these, tower-based SIF 572 

measurement enables continuous monitoring of SIF variation at a canopy or stand scale. 573 

Continuous measurement is particularly well suited to addressing physiological responses to 574 

rapidly changing environmental drivers, such as VPD (i.e., atmospheric dryness), which is highly 575 

variable during the day and is expected to increase with climate change. However, there is a 576 

potential challenge when using SIF to address the impact of environmental drivers: because of 577 

the strong and close relationship between SIF and aPAR, the response of SIF to environmental 578 

drivers might not be as evident as what we can learn from GPP. Our findings show that the SIF 579 

response to changing VPD, which is comparable to the response of GPP, can be replicated not 580 

only with high-frequency measurements (< hourly) but also with low-frequency measurements 581 

(> daily), if a proper definition of aPAR with a corresponding observational scale (canopy), such 582 

as aPARchl, is used. We also emphasize the importance of further research into methods for 583 

evaluating the fraction of aPAR at various observational scales to clarify the relationships 584 

between SIF, light conditions, and other environmental drivers. 585 
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List of Figure Captions 837 

Figure 1. The design of instrument setup (Fluospec 2) at the study site (Virginia Forest Research 838 

Facility, a) and a sample thermal image taken at 13:00 EST on August 8, 2019 at the top 839 

platform of a flux tower near the SIF sensors (b). Fluospec 2 is composed of a SIF spectrometer, 840 

a computer for system operation (Raspberry Pi), and an optical shutter. The system is enclosed in 841 

a thermostatic box, with the temperature inside the enclosure set at 25℃, and resides inside a 842 

research hut. The ends of optical cables measuring irradiance and canopy radiance are installed 843 

on the top platform of a flux tower (40 m tall). Note that the field of view (FOV) of the optical 844 

fibers (25 degree) is smaller than the FOV of the thermal camera (45 degree). Thus, SIF is 845 

observed for a smaller area than appears in the thermal image in panel b. 846 

 847 

Figure 2. An example of data collected by Fluospec 2 at noon on June 14, 2019. Irradiance 848 

(orange in panel a) was collected by an upward-looking cosine corrector, and radiance (blue in 849 

panel a) was collected by an optical fiber pointing to the target tree canopy. Reflectance (b) was 850 

calculated by dividing radiance by irradiance and multiplying by 𝜋. The shaded area in green in 851 

panel b indicates the fitting window (759.5-761.5 nm) used for O2A retrieval (Chang et al., 852 

2020). 853 

 854 

Figure 3. Example of data transformation of SIF, GPP, and aPAR for different levels of VPD 855 

(grouped based on the quartiles of the VPD distribution, Q1: 0.0 - 1.3 kPa, Q2: 1.3 - 1.9 kPa, Q3: 856 

1.9 - 2.5 kPa, and Q4: 2.5 - 3.7 kPa). The non-linear power functions for the SIF-aPAR (SIF = 857 

a⋅aPARb) and GPP-aPAR relationships (GPP = a⋅aPARb) were transformed by applying natural 858 
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log to both sides of the equation (e.g., ln (SIF) = ln a + b⋅ln(aPAR), where b is the slope, and ln a 859 

is the intercept in the transformed relationships.) 860 

 861 

Figure 4. Monthly mean diurnal patterns of GPP estimated from the eddy covariance method, 862 

SIF measured by Fluospec 2 (SIFFS2), SIF simulated by SCOPE (SIFSC), and environmental 863 

variables including incident PAR (iPAR), vapor pressure deficit (VPD), and air temperature (Ta), 864 

and their monthly mean between 10 am to 2 pm. Error bars represent standard deviations. 865 

 866 

Figure 5. Relationships between incident PAR (iPAR) and different absorbed PAR (aPAR) 867 

metrics. Gray dashed lines indicate a 1:1 line. Red solid lines indicate linear regression fit. 868 

 869 

Figure 6. Effect of VPD on GPP-aPAR relationship at hourly scale. The top row (a-d) shows the 870 

results of Johnson-Neyman analysis, identifying the range of aPAR metrics where the influence 871 

of VPD on GPP-aPAR regression is significant (P < 0.05, shaded in green). The thicker 872 

horizontal lines at 0 in Johnson-Neyman plots indicate the observed range of aPAR metrics. The 873 

middle row (e-h) shows scatter plots of log-transformed and GPP and aPAR metrics. The bottom 874 

row (i-l) shows the results of Simple slopes analysis, illustrating GPP-aPAR regressions held at 875 

three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD 876 

minus 1.5 times standard deviation. Note that confidence intervals are illustrated in gray around 877 

the fitted lines (i-l) but are barely visible because they are very narrow, especially under high 878 

aPAR. Slope and standard error (SE) values are presented (i-l), and the text colors match the 879 

colors of the fitted lines. 880 
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 881 

Figure 7. Effect of VPD on SIF-aPAR relationship at hourly scale. The top row (a-e) shows the 882 

results of Johnson-Neyman analysis, identifying the range of aPAR metrics where the influence 883 

of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal 884 

lines at 0 in Johnson-Neyman plots indicate the observed range of aPAR metrics. The middle 885 

row (f-j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k-886 

o) shows the results of Simple slopes analysis, illustrating SIF-aPAR regressions held at three 887 

VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 1.5 888 

times standard deviation. Note that confidence intervals are illustrated in gray around the fitted 889 

lines (k-o) but are barely visible because they are very narrow, especially under high aPAR. 890 

Slope and standard error (SE) values are presented (k-o), and the text colors match the colors of 891 

the fitted lines. 892 

 893 

Figure 8. Effect of VPD on SIF-aPAR relationship at daily scale. The top row (a-e) shows the 894 

results of Johnson-Neyman analysis, identifying the range of aPAR metrics where the influence 895 

of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal 896 

lines at 0 in Johnson-Neyman plots indicate the observed range of aPAR metrics. The middle 897 

row (f-j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k-898 

o) shows the results of the Simple slopes analysis, illustrating SIF-aPAR regressions held at three 899 

VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 1.5 900 

times standard deviation. Note that confidence intervals are illustrated in gray around the fitted 901 

lines (k-o) but are barely visible because they are very narrow, especially under high aPAR. 902 
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Slope and standard error (SE) values are presented (k-o), and the text colors match the colors of 903 

the fitted lines. 904 

 905 

Figure 9. Non-linear relationships between GPP and SIF measured by Fluospec 2 at different 906 

levels of VPD (grouped based on the quartiles of the VPD distribution, Q1: 0.0 - 1.3 kPa, Q2: 1.3 907 

- 1.9 kPa, Q3: 1.9 - 2.5 kPa, and Q4: 2.5 - 3.7 kPa) at hourly (a, b, c) and daily scales (d, e, f). 908 

The GPP-SIF relationships were fitted using a power function (i.e., GPP = k × SIFa). Error bars 909 

represent standard errors of means (95% confidence). Coefficient k (b & e) or exponent a (c & f) 910 

marked with different letters are significantly different (p < 0.05). 911 

 912 

Figure 10. Variations of quantum yields (𝛷!: photochemistry, 𝛷": fluorescence, 𝛷#: non-913 

photochemical quenching, 𝛷$: non-radiative decay) with changing aPAR simulated by SCOPE 914 

using two different modes (i.e., Moderate and SM Stress modes) across different VPD levels 915 

(grouped based on the quartiles of the VPD distribution, Q1: 0.0 - 1.3 kPa, Q2: 1.3 - 1.9 kPa, Q3: 916 

1.9 - 2.5 kPa, and Q4: 2.5 - 3.7 kPa). 917 




