UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Prolegomena to a Task-Method-Knowledge Theory of Cognition

Permalink
https://escholarship.org/uc/item/164826x86
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Author
Murdock, J. William

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/164826x6
https://escholarship.org
http://www.cdlib.org/

Prolegomena to a Task-Method-Knowledge Theory of Cognition

J. William Murdock (murdock@cc.gatech.edu)
College of Computing
Georgia Institute of Technology
801 Atlantic Drive
Atlanta, Georgia 30332-0280, USA

Abstract

How can we integrate interrelated theories of individual ele-
ments of cognition? Computational models of reasoning pro-
cesses encode an understanding of reasoning. Consequently, a
computational modeling language may be ideally suited to the
presentation of theornes of cognition. By representing theories
of a variety of phenomena in a single modeling language, we
can potentially explore how these theories might interact. The
Task-Method-Knowledge (TMK) modeling language evolves
from artificial intelligence research on the subject of multi-
strategy reasoning. TMK models provide a compositional ac-
count of reasoning processes; they describe not only what the
elements of a process are, but also how the functional properties
of these elements combine to form the functional properties of
the process as a whole. This paper explores the composition of
theories of cognition within the TMK framework, drawing on
some existing theories within cognitive science as examples.

Introduction

The goal of cognitive science is the development of models of
the functionality of the human mind. The vast majority of re-
search in this field has focused on the development of specific
models of particular phenomena such as pattern recognition,
short-duration remembering, dual-task performance, etc. The
underlying assumption in such research is that these individ-
ual pieces of a general model of human intelligence could
potentially be combined to form a complete model. This ap-
proach raises the issue of how such an integration might be
accomplished.

Two very successful theories of a general framework for
models of cognition are SOAR (Laird et al., 1987) and ACT
(Anderson, 1983; Anderson, 1993). Both of these theories
model cognitive capabilities as production rules. Integration
of reasoning strategies within these frameworks is done by
combining sets of production rules. This provides a parsimo-
nious environment for combining models of various aspects of
cognition. Such systems generally provide a powerful mech-
anism for modeling precisely what a mind is doing. However,
such systems do not provide higher level abstractions which
combine individual productions into more complex units of
functionality. Consequently, I claim, production rule systems
are very limited in the extent to which they represent how and
why a mind does what it does. Thus a model in these frame-
works may not convey a full understanding of a phenomenon.

What does it mean to understand a complex system, such as
the mind? One answer to this question is suggested by a line
of research which examines computational representations of
physical devices (Goel, 1989; Bhatta, 1995; Goel et al., 1996;
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Goel etal., 1997, Griffith, 1997). In this work, it is shown that
a wide variety of reasoning tasks relating to physical devices
can be supported by models which are causal (i.e., that show
the mechanisms by which effects occur), compositional (i.e.,
that show how the effects of the separate elements of a device
are combined), and functional (i.e., that take an intentional
stance toward describing why elements are arranged as they
are). The basic idea behind these models is that the relation-
ship between the physical construction of a device and the
intended effect of that device is described by a flow of causal
interactions describing the device’s behavior. Because these
traits have been shown to produce models which enable a very
broad range of reasoning tasks, I argue that they form an ex-
ample of true comprehension. In other words, the important
contribution that this body of work makes to the argument I
am making here is:

An accurate causal, compositional, functional model of
a complex system inherently constitutes a deep under-
standing of such a system.

The Task-Method-Knowledge (TMK) modeling language
(Stroulia, 1994; Goel et al., 1996; Griffith, 1997, Murdock
and Goel, 1998) provides a causal, compositional, functional
framework for describing cognitive capabilities. TMK models
have been used to support processes such as explanation and
adaptation in a variety of Al systems. For example, (Mur-
dock and Goel, 1998) describes a recently developed agent
architecture for implementing, executing, and adapting TMK
models. TMK meodels are very much an extension of the
physical device modeling framework from which they were
derived. The division of reasoning into tasks (i.e., functional
elements) and methods (1.e., behavioral elements) very much
duplicates the functional and causal features of the physical
device models, and the explicit modeling of knowledge states
duplicates the compositional aspects of these models.

I claim that the TMK language provides a useful frame-
work for integrating models of cognitive processes because
a comprehensive model presented within this framework can
convey a deep understanding of cognition. This paper inves-
tigates this claim.

Technical Details

The three basic elements of TMK models are tasks, meth-
ods, and knowledge. Tasks are units of functionality; they
represent what is done. Methods are units of behavior; they
represent how something is done. Tasks and methods are in-
timately interconnected; tasks are linked to a set of methods
which accomplish those tasks, and methods are in turn linked



to aset of lower-level tasks which are necessary to accomplish
that method. Consider for example, the mathematical task of
adding a set of three digit numbers. This task might be accom-
plished by a standard long addition algorithm, which woulded
call a method in the TMK language. This method is delined
by the subtasks which accomplish it, i.e., adding of columns
and carrying of remainders, ordered in an iterative loop. The
task of adding a column might, in turn, be accomplished by
one of several methods, e.g., direct memory retrieval, count-
ing on one's fingers, etc. The knowledge portion of the TMK
models provides the language in which the requirements of
the tasks and the capabilities of the methods are defined; for
the addition task, the knowledge portion of the TMK model
might describe concepts such as numbers, digits, columns,
etc. as well as relationships such as sums of digits, adjacency
of columns, etc.

Consider a more elaborate example: qualitative, concep-
tual design of physical devices. The KRITIK series of systems
(Goel, 1989; Goel et al., 1997; Goel et al., 1996) instantiates a
theory of this reasoning process. Figure 1 shows a few of the
highest levels of a TMK model of design inspired by KRITIK.
This figure describes a design task with two top level methods:
case-based reasoning and generate and test. The case-based
reasoning method involves retrieval, adaptation, verification,
and storage. The generate and test method involves genera-
tion (e.g., by following simple design heuristics) followed by
verification. The task of design verification, which is com-
mon to the two top-level methods, is further elaborated by
two lower-level methods: qualitative simulation and physical
instantiation. The qualitative simulation method involves trac-
ing through the design to make certain that the device should
accomplish the specified function. The physical instantiation
method involves actually building the device and seeing if it
operates as specified (this method illustrates a crucial feature
of TMK models; they seamlessly integrate reasoning and ac-
tion by allowing tasks to be accomplished by both reasoning
strategies and action strategies).

Design

Case-Based
ign

e ————————— -

Qualitative Physical
Simulation nstantiatio

Figure 1: The top few levels of a TMK model of a design
process. Rectangular boxes represent tasks; round boxes rep-
resent methods. The circle-and-arrow diagrams within the
round dotted boxes represent the control portion of the meth-
ods.

Consider the top level task in this decomposition: de-

sign. The design task might be represented with the following
knowledge element:!

Task design
-domain: physical-devices
-input: (desired-function)
-output: (new-model)
-given: desired-function is feasible
-makes:
new-model is internally consistent
AND
the function of new-model is equivalent
to desired-function
-by: (case-based-design generate-and-test)

This knowledge element asserts that design is a process
which, given a desired function, produces a new model, where
the knowledge types associated with the desired function and
the new-model are defined within the domain of physical-
devices.? It further asserts that for this task to be performed,
the desired function must be feasible and that when the task
is completed, the new model should be an internally consis-
tent model whose function is equivalent to the desired func-
tion. Lastly, this knowledge element asserts that two methods
are known to accomplish this task: case-based design and
generate-and-test. Consider the following representation for
the case-based design method:

Method case-based-design
-domain: physical-devices
-given:
desired-function is feasible
2AND
there exists an old-model in the case memory
such that the function of the old-model
approximates desired-function
-makes:
new-model is internally consistent
AND
the function of new-model is equivalent
to desired-function

-subtasks: (case-retrieval design-adaptation
design-verification case-storage)
-control:
DO

(case-retrieval
design-adaptation
design-verification)

UNTIL new-model is verified
case-storage

This method has requirements and results (i.e,, :given
and : makes) which are consistent with the design task. How-
ever, there is an additional condition required for the method

'In this paper, | present examples in English-like pseudo-code
rather than provide an elaborate formal exploration of TMK syntax
and semantics. A technical presentation of the most recent computa-
tional implementation of the TMK language (in the SIRRINE2 agent
architecture) appears in (Murdock and Goel, 1998).

’The precise content of the domain knowledge element itself
is, of course, a major component of the TMK language. In
general, domains contain descriptions of both abstract concepts
(e.g., the concept of a function) and concrete variables (e.g., the
desired-function variable). A detailed examination of this
portion of the TMK language is, however, beyond the scope of this

paper.
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to function: there must be a model in the case memory whose
function approximates the desired function. The case-based
design method sets up four subtasks: retrieval, adaptation,
verification, and storage. The control information for the
method indicates that the first three subtasks are to be ex-
ecuted in order, repeatedly, until a new model is produced
which is verified by the verification subtask, after which the
fourth subtask is executed. Under this control, a reasoner
based on this model would continue to retrieve, adapt, and
verify cases until it either succeeded, or it failed to retrieve
any more cases (in which case the requirements for the adap-
tation task would not be met and the method as a whole would
fail).

These examples illustrate the content of the tasks and meth-
ods of TMK models. Tasks are defined by (i) the knowledge
which they require and produce, and (ii) the methods which
accomplish them. Methods are defined by (i) the knowledge
which they require and produce, (ii) the subtasks which they
establish, and (iii) the ordering requirements that they define
for their subtasks.

Topics in Cognition
To explore the notion of TMK as a unifying theme for the
study of cognition, let us consider some specific topics and
models from the perspective of TMK. In doing so, we will
encounter deeper issues regarding the nature of the modeling
language.

Visual Pattern Recognition

An extremely basic task which forms a foundation for a wide
range of cognition is that of visual pattern recognition. Con-
sider the model of pattern recognition presented in (Treisman,
1988). This model involves four core elements:

e Immediate, simultaneous recognition of certain specific
primitive features such as color and size.

¢ Serial focus of an “attention spotlight” which binds together
clusters of features.

e Generation of an “object file” to label such a cluster.
e Recognition of a stored description matching an object file.

This model can be implemented in a TMK model with the
following task-method hierarchy:

+ Task: Recognize Pattern
* Method: Feature-Based Pattern Recognition
+ Task: Assign Object File
* Method: Spotlighting
+ Task: Identify Features
* Method: Feature Recognition
+ Task: Recognize Color
+ Task: Recognize Orientation
+ Task: Recognize Size
+ Task: Recognize Stereo Distance
+ Task: Focus Spotlight
+ Task: Create Object File
+ Task: Match Stored Description

Two particularly interesting issues arise from this repre-
sentation of this model of pattern recognition. The first of
these issues is the representation of the knowledge being ac-
cessed; for example, the form of the object file, the nature of
the stored object descriptions, and the mechanism for match-
ing the two are complex and interesting problems. I will not

consider this issue further because it is largely unspecified in
(Treisman, 1988). The other interesting issue raised by this
decomposition is the nature of the control information in the
methods above. For example, the feature recognition method
has four subtasks, all of which are executed simultaneously,
as many times as there are inputs available. In contrast, the
higher-level spotlighting task is serial and looping in nature;
the identify features task runs to completion, then the focus
spotlight and create object file subtasks run sequentially, but
repeatedly for as many clusters of features as are available.

TMK, in its current form, does not have sufficiently pow-
erful mechanisms for specifying control to implement the
ordering requirements described above. TMK does support
describing sets of tasks as not being bound by ordering con-
straints. However, it does not support the execution of mul-
tiple instances of the same task simultaneously; TMK could
specify a model in which the size, color, orientation, etc. of a
single shape were determined in parallel but not one in which
these features were identified for multiple shapes at once. The
reason for this restriction is that tasks in TMK must be defined
as being bound to a specific problem variable (e.g., the desired
functionality in the design case); the idea of running a task
on all inputs which are currently available does not have a
formalization within TMK.

This conflict affords two possible resolutions:

e TMK needs to be enhanced to support running identical
tasks in parallel over a range of inputs.

e Visual pattern recognition is outside of the scope of the
TMK framework.

The latter resolution is not entirely unreasonable; existing
TMK work has largely focused on extremely high-level cog-
nition (such as design) which are generally accepted to be
roughly serial in most regards (Newell and Simon, 1972). For
such a topic, one could expect to treat pattern recognition
as inherently primitive. However, to the extent that we are
seeking to use TMK as a unifying framework across levels of
abstraction, this is a very unsatisfying solution. I think that it
1s more fair to say that to the extent to which we want to work
at this level, the TMK language needs to be augmented.

Automatization

Automatization is a phenomenon which, while not as primi-
tive as pattern recognition, is still a relatively basic element
of cognition. Consider the issue addressed by (Logan, 1988),
speed-up learning in simple, repeated tasks such as lexical de-
cision and “alphabet arithmetic™ (a more complex task involv-
ing determining the truth of equations of the form A+2=C, etc.
where the position of letters in the alphabet determines their
value). Logan’s model could be described with the following
task decomposition (for the alphabet arithmetic problem; the
lexical decision problem is represented similarly):

+ Task: Solve Problem

* Method: Instance Retrieval
+ Task: Retrieve Instance

* Method: Analytical Solution
+ Task: Compute First Letter Value
+ Task: Compute Second Letter Value
+ Task: Add numbers
+ Task: Compare
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Some key commitments of Logan’s model which provide
particular challenges to the TMK analysis are:

¢ The instance retrieval and the analytical solution methods
are run in parallel and only the results of the first method
to succeed are used.

¢ The time taken by the instance retrieval method when a
single instance is in memory should be a variable of a
specific distribution (under very broad assumptions).

e The time taken by the instance retrieval method when N
instances are in memory should then be the minimum of N
such variables.

The TMK language does not specify a mechanism for al-
lowing alternative methods (as opposed to tasks) to be run
in parallel; this would, however, be a trivial addition. The
second issue is one of how the retrieve instance task is im-
plemented; however, it seems extremely plausible that a rea-
sonable implementation would satisfy this requirement. The
third issue is somewhat tricky. We could support this method
by performing the retrieve instance task simultaneously on
all instances on memory (as per the feature recognition tasks
in the previous example). There is a significant difference;
the feature recognition task runs in parallel on all inputs and
concludes when all inputs are concluded, this task runs on
all inputs and concludes when any input is concluded. How-
ever, I feel that by augmenting TMK to support both of these
sorts of parallelism, we can represent both of these models of
cognition.

A key observation here is that immediately prior to solving
the problem, the viewers are required to recognize the letters
and numbers in the problem. This would be represented in
the TMK model as a repeated sequence of pattern recognition
tasks. These tasks could, in turn, be represented by the feature
based recognition method described in the previous example.
In this way, TMK provides a framework for integrating these
models.

Implicit Memory

Consider the model of implicit memory tasks from (Jacoby,
1991). This work generally posits two general subtasks of
recognition: determination of recollection and determination
of familiarity. Two top level tasks are presented to subjects:
inclusion recognition (i.e., recognition with priming known to
be correct) and exclusion recognition (i.e., recognition with
priming known to be incorrect). The methods posited for
use in the two tasks both invoke these same two recognition
subtasks but they use a different procedure for synthesizing
the results. We can describe this model using the following
TMK decomposition:

+ Task: Inclusion Recognition
* Method: Inclusion Recognition Method
+ Task: Familiarity Analysis
+ Task: Recollection Analysis
+ Task: Inclusion Result Synthesis
+ Task: Exclusion Recognition
* Method: Exclusion Recognition Method
+ Task: Familiarity Analysis
+ Task: Recollection Analysis
+ Task: Exclusion Result Synthesis

Let us look at some of these items in more detail:

Method Exclusion-Recognition-Method
-domain: word-recognition-domain
-makes:

recognized? holds IF AND ONLY IF

stimulus was seen in training

AND

stimulus was not seen in priming

-control:

DO IN PARALLEL
(Familiarity-Analysis
Recollection-Analysis)

Exclusion-Result-Synthesis

This method states that the exclusion recognition method
produces a boolean result recognized? which should be
true if and only if the word was seen during stimulus training
or was seen during stimulus priming. The method has two
serial components: first the two memory tasks are executed (in
parallel or arbitrary order) and then the results are synthesized.
Let us consider the synthesis task:

Task Exclusion-Result-Synthesis
-domain: memory-synthesis-domain

-input: (recalled-from-priming? familiar?)
-output: (recognized?)
-makes:

recognized? holds IF AND ONLY IF
familiar? AND NOT recalled-from-priming?
-by: exclusion-logic-procedure

This specification says that the exclusion result synthesis
task takes as input information (derived from the memory
subtasks) about whether the stimulus is familiar and whether
it is recalled from the earlier (exclusive) priming. It then
derives a truth value for whether the word is recognized by
a logical inference which holds if and only if the word is
familiar and not recalled from the priming.

This analysis shows how the TMK modeling language can
encode a memory retrieval mechanism. A great many tasks
referred to in cognitive models of other phenomena make use
of memory retrieval; it is possible that some of the familiarity
and retrieval tasks can be used as subtasks to other, more
complex tasks. Using this framework, knowledge derived
about these two tasks (e.g., implications of their conditional
independence) can be established within this model and then
directly applied to other models.

Reflection

If TMK models present a framework by which we, as sci-
entists, can understand cognition, might they also provide a
basis for a knowledge account of how humans understand their
own cognition? Since humans are able to provide explana-
tions (albeit often incomplete and incorrect ones) of their own
reasoning, it is apparent they do have some form of internal
knowledge of themselves.

Recall from the introductory section that TMK models are
originallyderived from early work in the modeling of physical
devices. These physical device models have been used for a
wide variety of tasks, but the most prevalent task to which
they have been applied (and the one to which they are most
tightly tuned) is that of adaptive redesign. Consequently, it
is not unreasonable to suspect that TMK models might be
appropriate to the adaptive redesign of an intelligent reasoner.
In fact, some Al research has suggested that TMK models do
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provide support for such adaptation (Stroulia, 1994; Murdock
and Goel, 1998). To the extent that these Al systems use
TMK models to redesign themselves, the TMK language can
be viewed as encoding the knowledge which enables reflective
learning. Because these models have been shown to support
this sort of reasoning in artificial agents, it is conceivable that
they could approximate the analogous knowledge possessed
by humans.

If we accept that TMK might provide a (possibly limited)
account of knowledge, there arises the question of whether
and to what extent this knowledge is consciously accessible.
(Stroulia, 1994, p. 249) argues that reasoning using mod-
els of this sort corresponds with conscious reflection. Are
consciousness and model-based reflection simply different
perspectives on the same phenomenon or is the relationship
between them more complex?

One obvious measurement of consciousness is introspec-
tive accessibility.> It is apparent that humans are able to
introspectively describe their processing mechanisms. How-
ever, it is also apparent that humans are severely limited in
this ability and frequently produce demonstrably incorrect or
incomplete descriptions of their own reasoning. How can we
account for this common observation within a cognitive TMK
framework? Some possibilities include:

1. TMK models are purely conscious reasoning structures, but

they are inherently incomplete and incorrect.

TMK models are purely unconscious reasoning structures.
To the extent that people can describe them, they are only
inferred from the consequences of their use.

TMK models are both conscious and unconscious reason-
ing structures. They are only partially and inaccurately
available to conscious thought.

The first possibility seems to be the most superficially ob-
vious choice: given that these models may be elicited from
people in an incomplete / incorrect form, the default hypothe-
sis 1s clearly that people have incomplete / incorrect versions
of these models in their conscious memory. However, there
are serious problems with this idea; most significantly, much
of the work on reflective self-redesign which provides the
primary motivation for TMK models as cognitively plausi-
ble structures, involves self-adaptations which are difficult to
envision being completely accessible to consciousness. I be-
lieve that it would be possible, with empirical studies, to show
that some adaptive learning scenarios which were typical of
the kinds of TMK self-redesign we have proposed involve
components of the TMK models which are not consciously
accessible. If this were done, we could rule out possibility 1
as an account of the relationship between consciousness and
TMK models.

The second possibility also seems initially appealing; since
people clearly don't have full access to these models, why
should we believe that they have any access at all. It would be

*While the limitations of introspection as a general mechanism
for studying cognition are well known, it seems like an essential
tool for studying consciousness as a phenomenon. It is difficult to
argue that some aspect of cognition is conscious but not accessibleto
introspection; under these assumptions, what would the term “con-
sciousness’ mean? For a more detailed look at some of these issues,
see (Reisberg, 1997, p. 589, f.f.).

750

difficult to empirically validate or falsify this position; from
a behavioral perspective, it is difficult to distinguish between
knowledge that exists and knowledge that is inferred whenever
it is needed.

However, our knowledge of memory phenomena suggests
that it is unlikely that these models are always computed, in
that many computational tasks have been widely shown to be
supplanted by memory access when applicable. For example,
both the effect of prior (even “unremembered”) exposure to
words on fragment completion (Tulving, 1985) and the preva-
lence of cryptomnesia in more complex tasks (Marsh and
Bower, 1993) suggest that, at the very least, specific memory
traces of past inference process are available; to the extent
that we have had occasion to infer TMK structures for certain
reasoning tasks in the past, it is potentially reasonable to claim
that these inferred structures are available in memory, even if
their source (i.e., the particular reasoning event during which
this TMK model was inferred) has been forgotten.

Consider the position taken by (Kahneman and Miller,
1986) with respect to the issue of the existence of norms
(i.e., judgements of typical instances of a class) as a memory
structure. This view is very similar to the position taken in
possibility 3; their paper focuses on post-hoc, inferred norms
(analogous to inferred TMK structures) but claim that for some
situations, pre-existing, known norms do exist (analogous to
remembered TMK structures). Pending further evidence, I
would like to make a similar claim here; that, to the extent
to which the TMK language provides a plausible account of
self-knowledge, this self-knowledge is partially but not fully
accessible to conscious memory.

The notion of TMK models as partially conscious reason-
ing structures seems to relate to the notion of a consciousness
“fringe" as described in (Mangan, 1993).* Can we consider
reflective self-representation of the sort embodied in TMK
models to be guiding reasoning from the fringe of conscious-
ness? If so, we would expect that attempts to bring such
representations into fully conscious focus (for example, in
introspective descriptions of one’s own reasoning) to resem-
ble other phenomena which involve shifts from fringe to fo-
cal consciousness. An example of such a shift which Man-
gan presents is the “tip-of-the-tongue” (TOT) phenomenon in
which people know that they have encountered some fact but
can not immediately recall it. To what extent do the limita-
tions and restrictions of conscious access to self-knowledge
resemble the limited memory access of TOT? Further research
is needed to address these topics.

Conclusions

It is clear that a great many issues need to be resolved be-
fore the TMK modeling language can be used effectively as a
theoretical framework for synthesizing models of cognition.
As I have argued, the TMK mechanisms for specifying con-
trol of instantiation of subtasks needs to be enhanced to deal
with a variety of different kinds of parallel computation. Fur-
thermore, there do seem to be (at least) two kinds of cognitive
issues for which the TMK modeling framework provides little
value:

“This paper further cites (James, 1890) but presents the notion
in the context of a modemn, cognitive framework; it is this modem
formulation to which | am referring here.



o Cognitive processes which are inherently atomic, i.e.,
which cannot be further decomposed into elements. These
are easily modeled in TMK (i.e., as a single task) but such
models provide very little insight. Issues of this sort can
be seen as below the level of abstraction for which TMK is
useful.

o Cognitive processes which are inherently inamenable to
teleological analysis. (van Gelder, 1997) argues that cog-
nition may not be decomposable into causal flows of func-
tionalelements. To the extent that this is true of even certain
cognitive phenomena, TMK is probably not useful for these
phenomena.

Despite these limitations, I believe that TMK models do
provide a useful mechanism for integrating models of cog-
nition. The overwhelming majority of models of cognitive
phenomena which have been developed do not fall into ei-
ther of the two categories above: they are complex in nature
and are decomposed into functional elements. In providing
causal, compositional, functional descriptions of reasoning
processes, the TMK language suggests an account of how
models of reasoning may be combined to form a deep un-
derstanding of cognition. Furthermore, since these models
can provide such an understanding, they also form a plau-
sible hypothesis regarding the knowledge content of human
self-understanding.
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