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Focal and Diffuse Lesions of Cognitive Models

Steven L. Small

Cognitive Modelling Laboratory
Department of Neurology
University of Pittsburgh

Abstract

With the recent ability to construct fault tolerant computer
models using connectionistapproaches, researchers are now able
toinvestigate theeffects of damage to these models. This has great
appeal for cognitive science as it provides a further way to venfy
or falsify acomputer model. Existing studies employ a concept of
network “lesioning” that fails to have explanatory adequacy for
neurobiology. While using anatomically plausible architectures
for cognitive models, they nonetheless use biologically implau-
sible methods for simulating neurological damage to these net-
works. This paper examines the different objects of computa-
tional networks and their analogical neurobiological counter-
parts, and suggests a taxonomy of connectionist network lesion
methods. Finally, an existing visual system model is used as a
testbed to study the differential effects of focal and diffuse lesions.
The experiments with focal damage versus diffuse damage sug-
gest that while the effects of focal brain injury may be due to the
particular computations performed in some brain area, the effects
of diffuse brain injury or degeneration may cause cognitive
deficits because of the inherent nature of the brain as a distributed
computational device, and not through differential local effects.

Part I: Introduction

One feature of connectionist networks that makes them
particularly interesting for cognitive modelling is their
computational relationship to the human brain. This rela-
tionship, expressed to a greater or lesser degree in different
types of network architectures and domains of modelling
(i.e, cognitive and/or neurobiological), contributes a new
classofconstraints tothe validation of such models (Sejnow-
skiand Churchland, 1988). One valuable new constraint is
thatof lesionability. Instead of evaluatingamodel solely on
its performance with respect to the normal processing
behavior of the object being modelled (e.g., input/output
behavior, intermediate representations), a model may now
be subject to computational disruption and be expected to
produce behaviors that are analogous to known abnormal
processing behaviors as well.

The analogy between the computational structures of a
cognitive model and the neurobiological structures of na-
ture can be of variable strength, due in part to (a) the nature
of the computational architectures themselves; and (b) the
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specification of the analogical relationships by the mod-
eller. This holds equally for the lesions inflicted on com-
putational networks in the name of neurological or cogni-
tive impairment. In this paper, we explore the ways in
which a connectionist network can be lesioned, and dis-
cuss their plausibility in terms of both basic neurobiology
and clinical neurology.

Neurological Lesions

Acquired damage to the human brain leads to dysfunc-
tional performance in a variety of modalities, depending
on both the quality of the damage and its quantity. The
damaged arca of the brain is considered the “lesion”
(Damasio and Damasio, 1989) and neurologists focus on
using various intellectual and radiographic techniques to
characterize the location, size, and cause of a particular
lesion. In the case of visual or linguistic disorders, ncurop-
sychologists employ specialized examination techniques
to make these inductions (Boller and Grafman, 1990).

While it has always been questioned to what extent
different functions localize to different parts of the brain,
the currently prevailing view is that there is in fact a
tremendous localization of functon (Galaburda, et al.,
1978). Such a view is necessary for the inductive reason-
ing steps described above to be meaningful. Although
localization of function definitely exists to some extent
(e.g., primary motor arca), there i1s ample reason Lo ask two
things: (1) What functions are the ones that localize? (2)
Over how large an area do functions localize, given the
probable distributed representations of the neural imple-
mentations of these functions? A corollary to question (2)
is how minutely can we attempt to localize particular
functions?

Many causes exist for brain lesions. Examples include
strokes, tumors, intoxications, and degenerative diseases.
A useful way to classify them is to divide them into two
main categories: Focal lesions represent damage to well
circumscribed regions of brain substance; while the extent
of such lesions cannot always be perfectly demarcated,
and frequently changes over time, there is nonetheless a
focus of impaired nervous system functioning. Strokes
constitute the most prevalent cause of focal brain lesions.
Diffuse lesions involve damage to a large number of
discrete neural elements over a widespread area of the
brain, involving one or more particular classes of ncurons
or neuronal elements. Alzheimer’s Disease is the most
prevalent cause of diffuse brain lesions.
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Study| Function Damage Nature of Model Disruption(s)
(1) Proportion of weights set o zero
(a) | Dyslexia Focal (2) Random number added to all weights
(3) Removal of some hidden units
(®) | Spaual neglect | Focal Unspecificd "damage” 10 "conncctions”
(c) | Schizophrenia | Diffuse | Decrease gain in particular subnetwork
(d) | Aphasia Focal Unspecified "noise" 1o "connections”

Table 1: Existing Computer Model Lesioning Experiments

Computational Model Lesions

With the recentability toconstruct fault tolerant computer
models using connectionist approaches, rescarchers are
now able to investigate the effects of damage to these
models. Several investigators have taken this approach to
the study of cognition, and have lesioned particular cogni-
tive models, and then attempted to compare the resulting
model performance with that of people who have suffered
brain lesions. This method has great appeal for cognitive
science as it provides a further way to support or falsify a
computer model.

This method has been attempted in several areas, in-
cluding (a) acquired dyslexia (alexia) (Hinton and Shal-
lice, 1989); (b) “neglect dyslexia™ (spatial neglect in
reading) (Mozerand Behrmann, 1989); (c) schizophrenia
(Cohen and Servan-Schreiber, 1989); and (d) aphasia
(dysphasia) (Miikkulainen, 1990). In each case, an inter-
esting cognitive model was disrupted to produce one or
more behaviors thatresemble human information process-
ing under some condition of neurological damage. Table
1 shows for each model whether the human condition
reflects diffuse or focal damage and how the model was
disrupted to simulate that condition.

Note that these studies employ a concept of network
“lesioning” that fails to have explanatory adequacy
(Chomsky, 1965) in the neurobiological sense. Whereas
these researchers go to great trouble to build anatomically
plausible architectures for cognitive models, they none-
theless use biologically implausible methods for simulat-
ing neurological damage to these networks. For example,
while aphasia is typically the result of focal neurological
damage (e.g.,astroke), Miikkulainen (1990) adds “noise”
to the connections of his network, which is a diffuse

strategy. Spatial neglect also arises most typically from
focal brain damage, yet Mozer and Behrmann (1989)
nonspecifically “damage” some connections. In applying
their notion of “gain” in a diffuse manner (o a subnetwork
of their model, Cohen and Servan-Schreiber (1989) do in
fact meet the explanatory criteria suggested here, as they
are using diffuse lesions to account for impaired problem-
solving behavior in patients with diffusely damaged brains
(i.e., schizophrenia).

The study of Hinton and Shallice (1989) investigates the
effects of three different methods of network lesioning.
They applied each method to the different layers of their
model to observe the cffects, and explored empirically the
relationships between the reading behaviors of differently
impaired networks and dyslexic patients. While acquired
dyslexiatypically results from focal brain insults, the study
explored diffuse model lesions (i.e., reselting a proportion
of weights, adding a random number to all weights) in
addition to a method of focal lesioning (i.e., removing
some hidden units, which is only focal if these units are
physically adjacent to each other).

Part IT: A Taxonomy of Lesions

Connectionist models of cognitive processing typically
incorporate architectures that limit specifically the types of
lesions one might consider for computational experiments
of dysfunctional cognitive performance. Table 2 lists some
neurobiological concepts and their analogues in connec-
tionist models. It does not matter that a single unit in a
parallel distributed (PDP) cognitive model does not repre-
sent a single neuron in the brain (Sejnowski, et al., 1988).
Biological nervous systems have motivated massively
parallel approaches (Feldman, 1989) and in this paper, the

CNS Concept | Model Analogue | Nature Description

Neuron Unit Abstraction | Associated values and functions
Synaptic strength | Connection weight | Value Real number

Axon firing rate | Unit potential Value Real number

Synapse Unit input Value Weighted unit potential
Inhibition Negative weight Value Negative real number
Excitation Positive weight Value Positive real number
Depolarization Potential function | Function Adjusted sum of nputs
Threshold Bias Value Real number

Table 2: Computer Model Correlates of Neurobiological Concepts
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analogy between neurobiological and computational net-
works will be analyzed in terms of lesions that can be
produced.

For cach biological entity shown in the Table, a varicty
of neurological disruptions naturally occur in human ill-
ness. Furthermore, in viwro and in vivo studics of the
neuroanatomy, neurophysiology, and neuropharmacology
of these entities have led to some valuable information.

Structures to Lesion
Processing Units
ConnectionWeights
Activation Functions

Table 3: Objects to Lesion

In focal neurological disease, whole collections of neu-
rons, supporting structures, and connections are lostin one
brain area. By contrast, in diffuse disease, one particular
aspect of (one type of) neuronal functioning might be lost
throughout the entire brain.

Lesion Objects

Lesions to network models can occur either focally or
diffusely to the three general structures listed in Table 3.
Each network object has a neurobiological correlate, and
different lesions to these objects have neurological ana-
logues.

The specific subpopulation for focal lesions depends on
the architecture of the particular network representations
in the model. One method of classification is by location in
the overall network. Table 4 shows that the concept of
location has several possible interpretations, all of which
are interesting and relevant.

Locations
Functional Location in Cognitive System
Functional Location in Computational Processing
Spaual Location

Table 4: Object Selection by Location

The input and output layers of a network are locations
from the vantage point of computational function. The
subpart of the input layer that represents the phonological
input lexicon for a model of lexical access is a location in
the cognitive domain. The bottom left quadrant of a two
dimensional drawing of a network is a topographically

Values
Range of Absolute Values
Range of Signed Values
All Values of a Particular Sign

Table 5: Object Selection by Value

specified location. Note that this latter specification, which
sounds more arbitrary and untheoretical, may in fact be the
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most accurate way of (focally) lesioning a cognitive
(neuroscientific) model. This is a consequence of the
vascular organization of the brain, which leads to brain
lesions that follow a spatial pattern, rather thana functional
one.

Dynamic aspects of computational networks include the
valuesassociated with the fixed structures over time. Table
5 lists several specific categories of values that can be used
as sclection criteria for choosing structures to lesion. Note
that both ranges of values and their signs alone are useful.

Network Lesions
Ablation (Deletion)
Attenuation
Augmentation
Resetting
Addition of Noise

Table 6: Lesion Methods

The neurobiological plausibility of the different selec-
tions by value depends to some extent on the specific
intended analogy between the lesioned structures and the
brain or cognitive system. However, the existence of
anatomical differences between (certain) inhibitory and
excitatory synapses in the brain (Shepherd and Koch,
1990) suggests that a strategy based on signed values (or
signs alone) may have validity for different classes of
structures.

Lesion Methods

A network model can be computationally lesioned by a
number of different operations. Table 6 lists a few possi-
bilities, involving (a) removal of an object; (b) increasing
or decreasing its value by a fixed percentage or by adding
random noise; and (c) setting the value of an object to some
previous value,

Units

Insofaras the computational units are analogous o neurons
in the brain, they represent a well founded candidate
population for lesioning experiments. Since a typical
computational unit represents a collection of values and
functions, the designation of a lesion must be more spe-
cific, e.g., unit output value, as shown in Table 7.

A straightforward disruption of the functioning of an
individual unit is to delete it from the network. This is
achieved by removing all of its connections, such that no
further network processing includes computations origi-
nating there. Less drastic manipulations include increasing
or decreasing its output by a certain percentage or a fixed
amountoradding noise (random values withinsome range)
to the output.

Unitdeletion has a neurobiological correlate in destruc-
tive brain damage (e.g., stroke). The biological correlate of
unit potential is the axonal firing rate. Augmentation and
aticnuation of this value are analogous Lo incrcases and



decreases in firing rate, which could be the result of
changes in (a) neurotransmitter (or ncuromodulator) con-
centration; (b) excitatory inputs; (c) inhibitory inputs; or
(d) axonal conduction. Certain conditions lead to changes
in ncurotransmitter concentrations in particular brain ar-
eas, €.g., dopamine concentration in the striatum in
Parkinson’s disease. Ananalogy to random noise in affcct-
ing axonal firing rate might be brain intoxications of
various kinds, either by external toxins (e.g., drugs) or
internal ones (e.g., metabolic derangements).

Unit Lesion Sites
Potential (Output Value)
Input Values
Activation Functions

Table 7: Aspects of Units

The biological correlate of a unit input value is the
synapse. Since the synapses of a neuron are spatially
distributed along a variety of dendrites, it makes more
sense to talk about subpopulations of units than either
individual synapses or all synapses. Relevant subpopula-
tions include the synapses on a particular dendrite or ones
that utilize a particular neurotransmitter. Attcnuation or
augmentation of the analogous values in the model corre-
sponds to the under- or over-sensitivity of particular syn-
aptic transmission (e.g., post-synaptic receptor density),
and could be caused by local neurotransmitter changes.
Toxins could produce effects analogous to the addition of
noise.

Activation Functions

Activation functions take unit inputs and produce an out-
put. The ncurobiological correlate of the activation func-
tion is membrane depolarization, and many different fac-
tors bear on the ability of the neuronal membrane 10
depolarize. While the absolute number of active synapses
plays a role, perhaps more important are their spatial
distribution and chemical characteristics. This was noted
above, and lesions to subpopulations of unit inputs consti-
tute reasonable analogies to neurological damage to neuro-
transmitter systems or dendritic locales.

Table 8 lists four aspects of activation functions that are
subject to lesioning. Each of these aspects corresponds 1o
a stage in the application of the function, and affects the
ultimate behavior of the unit. The unit first computes the
(weighted) sum of all inputs, corresponding roughly to the
combined membrane electrical effects of

and the precise sigmoidal curve obtained depends on a
value called the “gain”, the adjustment of which is the
subject of the interesting lesioning experiments of Cohen
and Servan-Shreiber (1989) discussed carlier. Lastly, ac-
tion potential propagation depends on this final value
exceeding a threshold, which can also be varied. The

Activation Function Lesion Sites
Unit Input Sum
Adjustment of Input Sum
Gain
Threshold (Bias)

Table 8: Activation Functions

presence of different physiological properties of neurons
and responses (o neuromodulators (Shepherd, 1990),e.g.,
peptides, provide ample neurobiological correlation of
these mathematical manipulations.

Weights

The connection strengths or weights of an artificial neural
network correspond to synaptic strengths of connections.
Negative weights are analogous to inhibitory synapses,
positive weights to excitatory synapses. Weight lesions
thus correspond to disruptions in the role of particular
synapses in effecting the action potential.

Part III: Experimental Results

We have recently been investigating network lesions in a
general manner by incorporating lesioning into a connec-
tionist simulator (called DYSNET) and using it to study
various models in cognitive neuroscience. Lesion specifi-
cation in DYSNET involves selection of one feature from
each column of Table 9, and then declaration of the
appropriate parameter(s). Particularly useful selection
criteria include specific network partitions (subnetworks),
which may be lesioned independently, and value ranges,
either absolute (e.g., all weights with absolute value less
than 2.0), signed (e.g., all values between -1.0 and 1.5), or
signs themselves (e.g., all inhibitory weights).

Motivation

One computational experiment was motivated by an inter-
esting difference in visual system performance under dif-
ferent conditions of damage. Focal damage to the paricto-
occipital junction can lead to a syndrome of visuospatial

the chemistry of the synapses. Thisnum- | ypiect Type|Functional Location Range Lesion Type
ber is then muz:mpzllaled i':"f:me“ca“y D Weight Layer Absolute Value| Deletion
produceanother value, which comesponds Unit Partition Signed Value | Attenuation
to the total membrane depolarization, In :

connectionist networks, the summed val- Sign Re;cl
ues are combined by a “squashing func- Noise

tion” (Rumelhartand McClelland, 1986),
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Table 9: Parameters Characterizing Computational Lesions



disruption known as Balint’s Syndrome (Balint, 1909).
Patients with this syndrome are unable visually to guide
their hands toaparticular location in space in order Lo grasp
an object. They are able to tell what object was shown to
them, but seem to have difficulty in using visuospatial
knowledge. Focal damage to the posterior temporal lobes
can lead to objectrecognition problems, without visuospa-
tial difficulties.

Patients with diffusec ncurological damage from
Alzheimer’s Disease have problems with both object rec-
ognition and spatial orientation. However, problems with
object recognition both precede the development of
visuospatial dysfunction and are more serious than the
spatial problems (Mendez, et al., 1990).

Two Pathways

In order to model this difference, a number of lesion
experiments were conducted using the visual system model
of Rueckl and his colleagues (Rueckl, et al., 1989). Their
network classifies two-dimensional visual images into two
categories, (1) what object was shown,and (2) where in the
visual image the object appeared. The empirical studies of
Mishkin and his colleagues (1983) on macaque visual
processing constrained the architecture of the connection-
ist model and led to computational hypotheses. When
required to perform the dual task of visual object recogni-
tionand spatial localization, the macaque uses two separate
visual systems to perform the two tasks, atemporal “what”
system and a parietal “where” system (Desimone, et al.,
1985; Mishkin, et al., 1983). Rucckl, Cave, and Kosslyn
(1989) showed thatacomputational neural network learned
the two tasks much faster if the network were subdivided
into two parallel networks, one to perform the object
recognition and the other to perform the spatial localiza-
tion.

Hypotheses

The conclusion of these researchers is that the learning of
an objectrecognition and spatial localization task is easier
with separate “what” and “where” networks than with a
single integrated network. The current investigation of
lesioning aims to build upon this research, and to test
further its neurobiological plausibility by comparing its
functioning when lesioned to several general features of
impaired human functioning.

As noted, Balint’s Syndrome (Balint, 1909) involves
significant problems in visuospatial analysis (Newcombe
and Ratcliff, 1989). Brain lesions that cause such problems
are in the junction of the occipital and parietal lobes, and
are typically the result of focal damage such as stroke.
Patients with Alzheimer Disease (AD) canalso get Balint’s
syndrome from their diffuse degenerative disease, but
early deficits in AD involve object recognition and not
visuospatial tasks. In fact, the appearance of Balint’s
syndrome in AD is accompanied by very impaired object
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Table 10: Lesion Experiments Conducted

recognition in all cases (Mendez, et al., 1990).

This information, combined with the modelling results
described above, has led to two hypotheses regarding
lesions to the Rueckl network:

Focal Lesion Hypothesis: Focal lesions to an object
recognition and spatial localization task can disproportion-
ately affecteither spatial localization or objectrecognition,
depending on the site of damage.

Diffuse Lesion Hypothesis: Diffuse lesions to an object
recognition and spatial localization task initially affect
object recognition, but with sufficient damage, can disrupt
spatial localization as well.

Multiple computer model lesioning experiments were
conducted to test these hypotheses.

Lesioning the Rueckl Model

For this project, the (non-recurrent) feed forward connec-
tionist network described in (Rueckl, et al., 1989) was
reimplemented using the DYSNET simulator. Specific
choices regarding potential functions, learning parame-
ters, error measure, and weight updating function may
differ from those in the original model (available on
request). The “what” and “where” components of the
network were implemented as distinct partitions of the
network that share common input nodes.

Many different lesions were introduced into the model,
and a simple analysis of the resulting behavior was re-
corded. This included (a) the number of spatial location
errors (false positive and false negative); (b) the number of
objectidentification errors; (¢) the sum squared error of the
“where” subnetwork; (d) the sum squared error of the
“what” subnetwork; and (¢) the sum squared error of the
entire network.

The different lesions performed on the network are
summarized in Table 10. This Table lists the number of
specific experiments conducted using each selection method
(e.g., selection by location or value) and specific network
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Figure 1: Lesions to Visual System Model

lesioning type (e.g., attenuation of value).

The pooled results of the experiments with focal damage
(“object selection by partition” in Table 10) show that focal
damage to the “parietal” (or “where”’) part of the network
produces computational problems with the spatial orienta-
tion task and that focal damage to the “temporal” (or
“what”) part of the network produces problems with the
object recognition part of the network. In the diffuse
lesioning experiments, the pooled data show that while
errors occurred in both the object recognition and spatial
discrimination subtasks, the object recognition task was
disproportionately affected. The results from all experi-
ments are shown graphically in Figure 1. The sum squared
error of each subnetwork across all focal and diffuse
experiments was averaged and this value is shown in the
graph, along with the standard error.

Discussion

The connectionist model study suggests that the neuro-
psychological deficits of Alzheimer’s Disease and other
central nervous system disruptions caused by diffuse (rather
than focal) damage may have a computational basis. In
other words, the particular pattern of cognitive disruption
may not be due to a special predilection of the disease
process for one or another part of the brain. Rather, diffuse
brain injury or degeneration may cause these cognitive
deficits because of the inherent nature of the brain as a
distributed computational device, with patterns of connec-
tivity that implement specific processing tasks.
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