Lawrence Berkeley National Laboratory

Recent Work

Title

NUCLEAR SPINS, HYPERFINE STRUCTURES, AND NUCLEAR MOMENTS OF SCANDIUM-46 AND YTTRIUM-91

Permalink

https://escholarship.org/uc/item/1633w046

Authors

Petersen, F. Russell Shugart, Howard A.

Publication Date

1962-04-12

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

NUCLEAR SPINS, HYPERFINE STRUCTURES, AND NUCLEAR MOMENTS OF SCANDIUM-46 AND YTTRIUM-91

F. Russell Petersen and Howard A. Shugart

April 12, 1962

NUCLEAR SPINS, HYPERFINE STRUCTURES, AND NUCLEAR MOMENTS OF SCANDIUM-46 AND YTTRIUM-91

F. Russell Petersen and Howard A. Shugart

Department of Physics and Lawrence Radiation Laboratory University of California, Berkeley, California

April 12, 1962

ABSTRACT

The atomic-beam magnetic-resonance method has been used to study some atomic and nuclear properties of 84-day ${\rm Sc}^{46}$ and 58-day ${\rm Y}^{91}$. The results are:

医大类医原性病 经通知证据

NUCLEAR SPINS, HYPERFINE STRUCTURES, AND NUCLEAR MOMENTS OF SCANDIUM-46 AND YTTRIUM-91 *

F. Russell Petersen and Howard A. Shugart

Department of Physics and Lawrence Radiation Laboratory University of California, Berkeley, California

April 12, 1962

I. INTRODUCTION

The atomic-beam magnetic-resonance method has been used to continue his investigations of the radioactive yttrium isotopes 1,2 as well as to initiate similar experiments on the radioactive scandium isotopes. 3 Both elements have a $^2D_{3/2}$ electronic ground state which is separated from the next higher state ($^2D_{5/2}$) by only a few hundred wave numbers. 4 , 5 As a result, transitions can easily be observed in both states at the temperatures required to produce an atomic beam.

The electronic g factors are close to the LS coupling values of $g_J(^2D_{3/2}) = -0.8$ and $g_J(^2D_{5/2}) = -1.2$, and have been previously measured for the stable isotopes by atomic beam and other methods. 6, 7

Investigation of the hyperfine structure and nuclear moments of stable Y⁸⁹ and Sc⁴⁵ has already been carried out by other laboratories, ^{8,9,6,10} thus facilitating radioactive experiments. Experimental results for Y⁸⁹ and Y⁹⁰ indicated that Y⁹¹ could be expected to follow predictions of the shell model with reasonable accuracy. Measurements on Y⁹¹ should, therefore, tend to test the validity of the shell model in this region of mass numbers. Previous results for Sc⁴⁶, on the other hand, indicated that shell-model predictions are somewhat anomalous. Thus, an investigation of the properties of this odd-odd nucleus should increase an understanding of the nucleon coupling scheme.

II. THEORY OF THE EXPERIMENT

For a free atom, the noncentral interaction between the electrons and nucleus in the presence of an external magnetic field H may be represented by the Hamiltonian

$$\mathcal{H} \text{ (Mc/sec)= a } \underline{I} \cdot \underline{J} + b \frac{\left[3 \left(\underline{I} \cdot \underline{J}\right)^{2} + 3/2 \left(\underline{I} \cdot \underline{J}\right) - I(I+1) J(J+1)\right]}{2I \left(2I-1\right) J(2J-1)}$$

$$- g_{\underline{J}} \frac{\mu_{0}}{h} \underline{J} \cdot \underline{H} - g_{\underline{I}} \frac{\mu_{0}}{h} \underline{I} \cdot \underline{H},$$
(1)

where I and J are the nuclear and electronic angular momenta in units of \hbar , a and b are the magnetic dipole and electric quadrupole hfs coupling constants, and g_J and $g_{\bar{I}}$ are the electronic and nuclear g factors defined by μ_J/J and $\mu_{\bar{I}}/I$, respectively, where the magnetic moments μ_J and $\mu_{\bar{I}}$ are in units of the absolute value of the Bohr magneton, μ_0 . The terms in this Hamiltonian are, from left to right: the magnetic dipole interaction between the nuclear magnetic moment and the electronic magnetic field; the electric quadrupole interaction between the nuclear electric quadrupole moment and the gradient of the electric field produced by the electrons; the interaction between the electronic magnetic moment and the applied external field; and the interaction between the nuclear magnetic moment and the applied external field.

Because of symmetry considerations in the special case I or J=1/2, b is 0 and the second term in the Hamiltonian vanishes. In this case, the energy for any hyperfine level specified by the quantum numbers F, m may be expressed as a function of the magnetic field H by the familiar Breit-Rabi equation (for the case I=1/2)

$$\frac{W(F, m)}{h} = -\frac{\Delta v}{2(2J+1)} - g_J \frac{\mu_0}{h} Hm \pm \frac{\Delta v}{2} \left(1 + \frac{4mx}{2J+1} + x^2\right)^{1/2}, (2)$$

where

$$x = (-g_I + g_J) \frac{\mu_0 H}{h \Delta \nu} \quad \text{and} \quad \Delta \nu = a F_{\text{max}}. \tag{3}$$

Down a stroka with the in the contract

Here, the positive sign is taken with the F = J + 1/2 levels and the negative sign with the F = J - 1/2 levels. Figures 1 and 2 show the behavior of the hyperfine levels for Y^{91} , for which the nuclear moment has been assumed to be negative.

In the general case, including the second term of Eq. (2), a closedform expression for the energy cannot be found, and digital computing
techniques must be used to obtain the energy levels as a function of the external magnetic field.

The energy-level diagrams for scandium are not shown because of the large multiplicity of levels; however, the magnetic field dependences of several observable transitions are given in Figs. 3 and 4.

The interaction constants for a d electron are theoretically related to the nuclear moments by the expressions 11

$$a(Mc/sec) = \frac{2\mu_0^2 g_I L(L+1)}{10^6 h J(J+1)} \left\langle \frac{1}{r^3} \right\rangle_{av} F_r(J, Z_i),$$

$$b(Mc/sec) = \frac{e^2 Q(2J-1)}{10^6 h(2J+2)} \left\langle \frac{1}{r^3} \right\rangle_{av} R_r(L, J, Z_i).$$
(4)

Here, L is the electronic orbital angular momentum in units of \hbar , Q is the nuclear electric quadrupole moment in cm², e is the electronic charge, and $F_r(J, Z_i)$ and $R_r(L, J, Z_i)$ are relativistic correction factors given by Casimir¹² and tabulated by Kopfermann. 11

Since the factor $\left\langle \frac{1}{r^3} \right\rangle$ is difficult to estimate accurately, and since the nuclear constants for the stable isotopes are known, the nuclear magnetic moment can best be calculated from the Fermi-Segre-type relation

$$(g_I)_1 = (\frac{a_1}{a_2})(g_I)_2$$
 (5)

An uncertainty in this equation, which is usually less than 0.5%, may result from assuming similar electronic properties for the d electron of the two isotopes and from neglecting hfs anomalies. In a like manner, the nuclear quadrupole moment may be calculated from the expression

$$\mathbf{Q}_1 = (\frac{\mathbf{b}_1}{\mathbf{b}_2}) \ \mathbf{Q}_2. \tag{6}$$

. Geographic Roberts of State Market State of the state of the

If the quadrupole moment for the stable isotope is not known accurately, a better calculation consists of taking the ratio of the interaction constants for a given electronic state, with the resultant relation

$$Q = \frac{4g_{I}\mu_{0}^{2}}{e^{2}} \frac{F_{r}(J, Z_{i})}{R_{r}(L, J, Z_{i})} \frac{L(L+1)}{J(2J-1)} \frac{b}{a}.$$
 (7)

The foregoing theory has assumed that the electronic states are not mixed by the interaction. These effects have been discussed by Schwartz¹³ and the necessary corrections to the interaction constants are contained in reference 1.

- Angle A - Angle Angl

The training of Control of the Control of the State of State of the St

the state of the control of the state of

to were also the control with the state and the control of the many of their species

the many of the first own for the second of the second

Same Company to the

The Control of the State of the Control of the Control of the State of the Control of the Contro

III. ISOTOPE PRODUCTION AND IDENTIFICATION

Scandium-46 was produced by an n, γ reaction on the pure stable metal. Initial irradiations were done in the Livermore pool-type reactor, and later, in the General Electric test reactor at the Vallecitos Atomic Laboratory. Each sample, consisting of approximately 250 mg of metal, was bombarded for 1 to 2 weeks with a flux of (2 to 9) \times 10¹³ n/cm²-sec.

Yttrium-91, a fission product, was purchased as carrier-free YCl₃ in HCl solution from Oak Ridge National Laboratory. To each 250-mC sample of Y⁹¹, approximately 30 mg of stable yttrium in HCl solution was added. Hydrated YCl₃ crystals were then formed by vacuum evaporation of the solution. The water of hydration was removed by slight heating in a high vacuum. The anhydrous YCl₃ was then reduced by calcium in a tantalum oven at elevated temperatures. An increase in temperature evaporated the CaCl₂ slag, leaving the pure yttrium metal.

The decay schemes and half-lives of both isotopes have been established by previous experimenters. 14 As a result, pulse-height analysis of the γ -ray spectrum and observation of the decay rate over several half-lives were used to verify identity of each isotope.

IV. APPARATUS

The atomic-beam magnetic-resonance apparatus and radioactive technique used have been described previously, ¹⁵ so that only a brief description is included here.

The atomic-beam apparatus used the "flop-in" geometry consisting of the usual three-magnet system (A and B magnets inhomogeneous, with gradients in the same direction, C magnet homogeneous). Atoms in the beam were not refocused unless transitions were induced in the C-field region corresponding to the change $m_T = \pm 1/2 \iff + 1/2$ in the high fields

of the A and B magnets. This condition together with the transition selection rules ($\Delta F = 0, \pm 1$; $\Delta m = 0, \pm 1$) limit the number of observable transitions. For yttrium-91 the possible transitions are shown in Figs. 1 and 2. The behavior of selected Sc^{46} resonance frequencies with magnetic field is shown in Figs. 3 and 4. The strength of the magnetic C field was measured by observation of the $\Delta F = 0$ "flop-in" transitions in Rb⁸⁵ and Rb⁸⁷.

Scandium beams were produced from small (3/8-in.-square) tantalum ovens heated by electron bombardment. Because of the bulkiness of the reduction reaction ingredients, the yttrium ovens were slightly larger (1/2 in. square) but of similar design. In both cases, sharp-edged tantalum crucibles were used inside the oven block to prevent the molten metal from creeping up the oven walls. The slits through which the beam emerged were adjusted to be 4 to 5 mils wide.

The radioactive beam was detected by collecting the atoms on sulfur-coated "buttons" which were subsequently counted in low-background continuous-flow-methane β counters. Undeflected scandium beam intensities varied from 1000 to 2000 counts/min for 1-minute exposures; undeflected yttrium beam intensities varied from 100 to 300 counts/min for the same exposure time. Normally, 60 to 70% of the scandium beam could be deflected by the magnet system. The deflectability for yttrium usually ranged from 30 to 60%; the reason it was lower was probably an incomplete reduction reaction. Resonance-signal intensities ranged from 10 to 30 counts/min with a 30% apparatus background for 10-min exposures for scandium and from 5 to 10 counts/min with a 30% apparatus background for 15-min exposures for yttrium. Counter backgrounds were normally about 2.5 counts/min.

Radio frequencies from 1 to 850 Mc/sec were produced by four signal generators in conjuction with suitable wide-band or traveling-wave-tube

And the control of the state of

amplifiers. The oscillators and their ranges were as follows: Tektronix, type 190, 0.35 to 50 Mc/sec; Hewlett-Packard, model 608C, 10 to 480 Mc/sec; Airborne Instruments, type 124C, 200 to 2500 Mc/sec; and Gertsch, model FM-4, 500 to 1000 Mc/sec. Frequencies were measured by using a Hewlett-Packard Transfer Oscillator, model 540A, in Conjunction with a model 524B electronic counter. The 100-kc/sec internal reference crystal in the counter was checked against a separate laboratory standard which was monitored weekly against WWV time signals and against a National Company Atomichron. All frequencies were recorded to the nearest kilocycle per second.

The grant of the second very record V. RESULTS

Royally Williams

For transitions of the type F = I + J, $\Delta F = 0$, and $\Delta m = \pm 1$, the frequency separations at low magnetic fields for the two observable electronic states are given by

$$(2D_{3/2}) = -g_J \frac{\mu_0^H}{h} \frac{3}{2I+3}$$

 ${f and}$. When the ${f and}$ is the Marketon ${f B}$, the ${f and}$ is ${f and}$ in ${f and}$ in ${f and}$ in ${f and}$

$$v(^2D_{5/2}) = -g_J \frac{\mu_0 H}{h} \frac{5}{2I+5}$$
,

where higher-order terms in H have been neglected. Thus, at a given magnetic field H, observation of an increase in signal intensity at a frequency corresponding to one of the assumed values for I gives a preliminary indication of the value of the nuclear spin. The results were $I(Sc^{46}) = 4$ and $I(Y^{91}) = 1/2$, in units of \hbar . These preliminary results were subsequently verified by observation of the proper field dependence for the $\Delta F = 0$ transitions.

As the magnetic field H was increased, the higher-order terms which have been omitted in Equation (8) become significant significant. Since these terms are functions of the zero-field hfs separations, the

quadratic shift was used to obtain preliminary estimates of the hyperfine interaction constants a and b. These preliminary estimates were used in the HYPERFINE computer routine, which uses a least-squares procedure to fit any combination of the constants a,b, g_I , and g_J to the observed data. Table I summarizes the various physical constants used in the computer routine and for subsequent calculations.

For Sc^{46} , 18 resonances corresponding to 13 transitions out of 23 possible ones in the $^2\mathrm{D}_{3/2}$ state and 18 resonances corresponding to 7 transitions out of 22 possible ones in the $^2\mathrm{D}_{5/2}$ state were observed. A sample $\Delta F = \pm 1$ transition is shown in Fig. 5. Because of health problems associated with the high-energy γ -ray activity of this isotope, we decided to concentrate on only those transitions which could provide the most information with a given amount of effort--namely $\Delta F = \pm 1$, $\Delta m = \pm 1$ transitions which were field-independent at high magnetic fields. By this method, we were able to determine the signs of the nuclear moments as well as measure the constants a, b, and g_{J} . Tables II and III summarize the field-independent points of these transitions and show the transition frequencies for both a positive and a negative nuclear magnetic moment as predicted by the final values of the interaction constants.

A summary of all observed experimental data as fitted by the HYPERFINE routine is shown in Tables IV and V. The residual represents the difference between the experimental resonance frequency and the value of this frequency predicted by the final computed atomic and nuclear constants. The weight factor is the reciprocal of the sum of the squares of the frequency uncertainties due to resonance line width and magnetic field uncertainty.

From the computer analysis, the final values for the $^2D_{3/2}$ state are $g_J = -0.7990(6)$, a = +150.576(7) Mc/sec, and b = +14.38(10) Mc/sec;

and, for the $^2D_{5/2}$ state, g_J = -1.1995 (13), a = +60.906 (3) Mc/sec, and b = +20.41 (7) Mc/sec. From these coupling constants, the zero-field hyperfine separations (in Mc/sec) are $^2D_{3/2}$

ing a state of which is the same part of the engineering of the contract of the engineering of the engineeri

$$\Delta \nu_{11/2-9/2} = 838.057 (79)$$

$$\Delta \nu_{9/2-7/2} = 674.124 (39)$$

$$\Delta \nu_{7/2-5/2} = 517.127 (73)$$

$$^{2}D_{5/2}$$

$$\Delta \nu_{13/2-11/2} = 405.841 (39)$$

$$\Delta \nu_{11/2-9/2} = 336.186 (16)$$

$$\Delta \nu_{9/2-7/2} = 270.140 (18)$$

$$\Delta \nu_{7/2-5/2} = 207.047 (23)$$

$$\Delta \nu_{5/2-3/2} = 146.250 (21)$$

Since the observable transitions in Y 91 have minimum field dependence at zero field, the sign of the nuclear magnetic moment could not be determined by the technique used for Sc 46 . Tables VI and VII summarize the observed data as fitted by the HYPERFINE routine. A sample $\Delta F = \pm 1$ transition is shown in Fig. 6. The final values of the magnetic dipole interaction constants of yttrium-91 are: $a(^2D_{3/2}) = \pm 68.34$ (1) Mc/sec and $a(^2D_{5/2}) = \pm 34.35$ (2) Mc/sec. The zero-field hyperfine-structure separations for each electronic state are $\Delta v(^2D_{3/2}) = \pm 136.686$ (24) Mc/sec and $\Delta v(^2D_{5/2}) = \pm 103.047$ (30) Mc/sec.

With the aid of Eqs. (5), (6), and (7), the following uncorrected nuclear moments were calculated from the measured interaction constants and the appropriate physical constants for Sc^{45} and Y^{89} :

$$\mu_{\text{Iuncorr}}(\text{Sc}^{46}) = +3.03 \text{ (2) nm},$$

$$Q_{\text{uncorr}}(\text{Sc}^{46}) = +0.119 \text{ (6) b},$$

$$\mu_{\text{Iuncorr}}(\text{Y}^{91}) = \pm 0.1634 \text{ (8) nm}.$$

VI. DISCUSSION

For Sc 46 , the shell model predicts an $f_{7/2}$ proton configuration and a $(f_{7/2})_{5/2}^{-3}$ neutron configuration. The revised coupling rule proposed by Brennan and Bernstein predicts $I = I_p + I_n - 1 = 5$. Thus, the measured spin I = 4 is a violation of this rule but not of the much weaker rule $\left|I_p + I_n\right| \geqslant I \geqslant \left|I_p - I_n\right|$ proposed by Nordheim. The directly measured spin agrees with previous results inferred from β - and γ -ray spectroscopy. If we use jj coupling to combine the magnetic-moment effects of the proton and neutron groups and use the g factors from the nucleon groups of neighboring odd-A nuclei, we obtain $\mu_s = +3.26$ nm. This result agrees reasonably well with the corrected experimental value $\mu_I = +3.03$ nm.

Since the 39th proton in Y^{91} is a single particle in a $p_{1/2}$ level, we would expect the shell model to predict the nuclear spin of this isotope with a great deal of certainty. The measured spin I = 1/2 confirms this prediction. We should also expect the nuclear magnetic moment to be very nearly equal to the moment of Y^{89} . If we assume the sign of the moment to be negative, then the slightly more negative experimental value follows a trend similar, for instance, to the odd-A silver isotopes.

. Pakajan sukkuji morala kalengo kona nationi, je te na nationi, kaj te na na nationi kaj sukiran kaj sukiran ka

The second of th

and the second section of the second section is the second section of the second section in the second section

Market All Carlos Commence of the Angelogical Angelogi

Contract States

responding to the state of the

we are the support over which is a first of the contract of the second

VII. ACKNOWLEDGMENTS

The authors are indebted to the many members of the Atomic Beam Group and of the Health Chemistry Division who contributed to the successful completion of these experiments.

FOOTNOTES AND REFERENCES

- *This research was supported in part by the U.S. Air Force Office of Scientific Research and the U.S. Atomic Energy Commission.
- [†] Now at the National Bureau of Standards Boulder Laboratories
- 1. F. Russell Petersen and Howard A. Shugart, Phys. Rev. 125, 284 (1962).
- 2. F. R. Petersen and H. A. Shugart, Bull. Am. Phys. Soc. 6, 514 (1961).
- 3. F. R. Petersen and H. A. Shugart, Bull. Am. Phys. Soc. 6, 363 (1961).
- 4. Charlotte E. Moore, Atomic Energy Levels, Vol. I (Circular of the National Bureau of Standards 467, 1949).
- 5. Charlotte E. Moore, Atomic Energy Levels, Vol. II (Circular of the National Bureau of Standards 467, 1952).
- 6. e.g., G. Fricke, H. Kopfermann, S. Penselin, and K. Schlüpmann, Z. Physik 156, 416 (1959).
- 7. Siegfried Penselin, Z. Physik 154, 231 (1959).
- 8. G. Fricke, H. Kopfermann, and S. Penselin, Z. Physik 154, 218 (1959).
- 9. E. Brun, J. Oeser, H. H. Staub, and C. G. Telschow, Phys. Rev. <u>93</u>, 172 (1954).
- 10. D. M. Hunten, Can. J. Phys. 29, 463 (1951).
- 11. Hans Kopfermann, Nuclear Moments, English version by E. E. Schneider (Academic Press Inc., New York, 1958), 2nd edition.
- 12. H. B. G. Casimir, On the Interaction Between Atomic Nuclei and Electrons (Teyler's Tweede Genootschap, Haarlem, 1936).
- 13. Charles Schwartz, Phys. Rev. 97, 380 (1955).
- 14. D. Strominger, J. M. Hollander, and G. T. Seaborg, Revs. Modern Phys. 30, 585 (1958).

- 15. J. P. Hobson, J. C. Hubbs, W. A. Nierenberg, H. B. Silsbee, and R. J. Sunderland, Phys. Rev. 104, 101 (1956); also W. B. Ewbank, L. L. Marino, W. A. Nierenberg, H. A. Shugart, and H. B. Silsbee, Phys. Rev. 120, 1406 (1960).
- 16. Norman F. Ramsey, Molecular Beams (Oxford University Press, New York, 1956).
- 17. H. Kopfermann and E. Rasmussen, Z. Physik 92, 82 (1934).
- 18. H. Schüler and T. Schmidt, Naturwiss. 22, 758 (1934).
- 19. M. F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1310 (1949).
- 20. H. Kuhn and G. K. Woodgate, Proc. Phys. Soc. (London) A63, 830 (1950).
- 21. M. H. Brennan and A. M. Bernstein, Phys. Rev. 120, 927 (1960).
- 22. L. W. Nordheim, Phys. Rev. <u>78</u>, 294 (1950); Revs. Modern Phys. <u>23</u>, 322 (1951).

Table I. Summary of physical constants used in analysis of the Sc46 and Y91 experimental data

$$M_p/M_e = 1836.12$$

 $\mu_0/h = 1.399677 \text{ Mc/gauss-sec.}$

Rb⁸⁵ (Refs. 11, 16)

$$I = 5/2$$

$$\mu_{Iuncorr} = +1.348190(5) \text{ nm}$$

$$2s_{1/2} \begin{cases} g_J = -2.00238(4) \\ \Delta \nu = 3035.735 \text{ (2) Mc/sec} \end{cases}$$

Rb⁸⁷ (Refs 11, 16)
$$I = 3/2$$

$${}^{2}S_{1/2} \{ \begin{cases} g_{J} = -2.00238(4) \\ \Delta \nu = 6834.685(2) \text{ Mc/sec} \end{cases}$$

Sc⁴⁵ (Refs. 17, 18, 10, 6)
$$I = 7/2$$

$$\mu_{I_{uncorr}} = +4.74916(12) \text{ nm}$$

$$Q_{uncorr} = -0.22(1) \text{ b}$$

$$^{2}D_{3/2}\begin{cases} g_{J} = -0.800(4) \\ a = +269.560(20)\text{Mc/sec} \\ b = -26.37(10) \text{ Mc/sec} \end{cases}$$

$$^{2}D_{5/2}\begin{cases} g_{J} = -1.20(1) \\ a = +109.034(10) \text{ Mc/sec} \\ b = -37.31(10) \text{ Mc/sec} \end{cases}$$

$$Y^{89}(Refs. 19, 20, 9, 7, 8)$$

$$I = 1/2$$

$$\mu_{Iuncorr} = -0.136825(4) \text{ nm}$$

$$2D_{3/2} \begin{cases} g_{J} = -0.79927(11) \\ a = -57.217(15) \text{ Mc/sec} \\ g_{J} = -1.20028(19) \\ a = -28.749(30) \text{Mc/sec} \end{cases}$$

Table II. Regions of minimum field dependence of some of the observable $\Delta F = \pm 1$ transitions in the $^2D_{3/2}$ electronic state of Sc⁴⁶. The calculations were performed for a = 150.576 Mc/sec and b = 14.38 Mc/sec.

Designation in Fig. 3.		(dv/dH) _r (Mc/sec gauss	_	H(approx) (gauss)	ν(g _I ⁺) (Mc/sec)	v(g _I) (Mc/sec)
j	9/2, -5/2 - 7/2, -3/2	2 0	25	368.8	535.904	535.477
i	9/2, -3/2 - 7/2, -5/2	2 0	::	414.9	584.494	584.975
h	$9/2, -3/2 \leftrightarrow 7/2, -1/2$	2 0		231.8	631.084	630.816
g	$9/2, -1/2 \leftrightarrow 7/2, -3/2$	2 0		189.1	664.264	664.483
f	$9/2, -1/2 \leftrightarrow 7/2, 1/2$	2 0		78.1	670.460	670.369

Table III. Regions of minimum field dependence of some of the observable $\Delta F = \pm 1$ transitions in the $^2D_{5/2}$ electronic state of Sc⁴⁶. The calculations were performed for a = 60.906 Mc/sec and b = 20.41 Mc/sec.

Designati	on Transition (∂v_1) $F_1, m_1 \leftrightarrow F_2, m_2 \text{ (Mc}$	[/] ∂H) mir /sec- auss)	H(approx) (gauss)	ν(g _I ⁺) (Mc/sec)	v(g _I) (Mc/sec)
. 	$13/2, -7/2 \leftrightarrow 11/2, -7/2$	77	151.0	380.960	380.960
D	$11/2, -5/2 \leftrightarrow 9/2, -5/2$		130.3	301.825	301.825
$\{a_i\}$ $\mathbf{A}_{i,j}$	$9/2$, $1/2 \leftrightarrow 7/2$, $3/2$	0,	19.4		268.629
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		0	55.1	255.143	255.079
i i .C	$9/2, -3/2 \leftrightarrow 7/2, -1/2$	0	88.6	219.023	218.921

Table IV. Summary of Sc 46 resonances in the 2D3/2 state.

Designation in Fig. 3	H ⁺ (gauss)	δH ⁺ (gauss)	F ₁	m ₁	F ₂	m ₂	vobs (Mc/sec)	δν _{obs} (Mc/sec)	Residual (Mc/sec)	Weight factor
k	10.021	0.041	11/2	-7/2	11/2	-9/2	3.085	0.035	+0.009	721.3
k	200.080	0.089	11/2	-7/2	11/2	-9/2	71.000	0.075	+0.015	144.0
k	399.907	0.120	11/2	-7/2	11/2	- 9/2	164.450	0.200	-0.035	22.7
1	10.055	0.041	9/2	-5/2	9/2	-7/2	1.950	0.050	-0.012	389.6
1	200.122	0.079	9/2	-5/2	9/2	-7/2	53.800	0.080	+0.006	139.2
1	399.842	0.210	9/2	-5/2	9/2	-7/2	150,050	0.225	-0.028	14.4
m	5.000	0.075	11/2	-7/2	9/2	-7/2	836.080	0.070	-0.010	173.5
a	5.033	0.082	9/2	9/2	7/2	7/2	678.750	0.250	-0.047	14.6
ь	5.033	0.082	9/2	7/2	7/2	5/2	677.800	0.200	+0.062	23.0
c	5.033	0.082	9/2	5/2	7/2	3/2	676.800	0.200	+0.119	24.0
đ	5.033	0.082	9/2	3/2	7/2	1/2	675.800	0.200	+0.175	24.6
e	5.033	0.082	9/2	1/2	7/2	-1/2	674.680	0.075	+0.108	176.0
f	5.033	0.082	9/2	-1/2	7/2	1/2	673.600	0.100	-0.100	99.5
f	78.109	0.075	9/2	-1/2	7/2	1/2	670.460	0.020	+0.000	2500.0
g	189.210	0.161	9/2	-1/2	7/2	-3/2	664.275	0.020	+0.012	2500.0
h	231.738	0.079	9/2	-3/2	7/2	-1/2	631.075	0.020	-0.009	2500.0
i	415.108	0.163	9/2	-3/2	7/2	-5/2	584.500	0.030	+0.007	1111.1
j	368.912	0.163	9/2	-5/2	7/2	-3/2	535.895	0.015	-0.009	4444.0

[†] Magnetic field and uncertainties are the averages of those computed from Rb⁸⁵ and Rb⁸⁷ calibrations.

Table V. Summary of Sc^{46} resonances in the $^{2}\mathrm{D}_{5/2}$ state.

Designation in Fig. 4	H [†] (gauss)	δH ⁺ (gauss)	F ₁	m ₁	F ₂	m ₂	vobs (Mc/sec)	δν _{obs} (Mc/sec)	Residual (Mc/sec)	Weight factor
G	10.021	0.064	13/2	-7/2	13/2	-9/2	6.600	0.035	+0.023	327.6
Ģ	30.857	0.061	13/2	-7/2	13/2	-9/2	21.125	0.200	+0.161	23.9
G	75.346	0.125	13/2	-7/2	13/2	-9/2	54.900	0.250	-0.068	13.7
G	150.414	0.068	13/2	-7/2	13/2	-9/2	123.400	0.250	-0.054	14.9
G	199.988	0.063	13/2	-7/2	13/2	-9/2	177.300	0.375	-0.066	6.9
F	10.056	0.064	11/2	-5/2	11/2	-7/2	5.975	0.050	+0.022	248.6
F	30.854	0.061	11/2	-5/2	11/2	-7/2	19.430	0,100	+0.069	85.3
F	75.275	0.113	11/2	-5/2	11/2	-7/2	53,200	0.200	-0.005	20.3
F	150.419	0.068	11/2	-5/2	11/2	-7/2	131,600	0.300	+0.070	10.3
F	200.030	0.070	. 11/2	-5/2	11/2	-7/2	200.800	0.425	-0.082	5.2
E	10.056	0.064	9/2	-3/2	9/2	-5/2	4.815	0.050	-0.033	281.5
В	6.058	0.074	13/2	-7/2	11/2	-7/2	404.300	0.150	-0.070	43.8
В	151.062	0.154	13/2	-7/2	11/2	-7/2	380.965	0.020	+0.003	2499.9
D	4.707	0.085	11/2	-5/2	9/2	-5/2	334.750	0.050	-0.067	322.4
D	130,373	0.127	11/2	-5/2	9/2	-5/2	301.835	0.020	+0.010	2499.9
A	19.955	0.042	9/2	1/2	7/2	3/2	268.660	0.030	+0.007	1111.1
A	19.982	0.042	9/2	1/2	7/2	3/2	268.660	0.030	+0.007	1111.0
С	88.521	0.083	9/2	-3/2	7/2	-1/2	219.012	0.020	-0.011	2499.9

 $^{^{\}dagger}$ Magnetic field and uncertainty are averages of those computed from ${\rm Rb}^{85}$ and ${\rm Rb}^{87}$ calibrations.

Table VI. Summary of Y⁹¹ resonances in the ²D_{3/2} state

H [†] (gauss)	δH [‡] (gauss)	Fl	m 1	F ₂	m ₂	vobs (Mc/sec)	δνobs (Mc/sec)	Residual (Mc/sec)	Weight factor
4.645	0.085	2	1	2	0	3.900	0.100	-0.011	66.0
30.447	0.061	. 2	1	2	0	26.275	0.100	+0.040	77.3
49.915	0.104	2	1	· 2	0	43.850	0.150	-0,038	31.5
100.242	0.126	2	1	2	0	92.200	0.300	-0.426	9.4
199.803	0.155	. 2	1	2	0	197.100	0.300	+0.052	8.5
49.848	0.050	1	0	2	0	147,550	0.200	-0.069	24.7
49.902	0.149	1	0	2	0	147.500	0.200	-0.141	22.8
5.051	0.106	-1	0	2	0	136.775	0.050	-0.027	396.2
3.088	0.107	1	0	. 2	. 0	136.735	0.025	+0.006	1577.1
3.014	0.107	1	0	2	0	136.730	0.025	+0.003	1578.2

^{*} Magnetic field and uncertainty are the averages of those computed from Rb⁸⁵ and Rb⁸⁷ calibrations.

Table VII. Summary of Y^{91} resonances in the $^2D_{5/2}$ state.

H [†]	δH [†]	F ₁	m ₁ F ₂	m_{2}^{ν} obs (Mc/sec)	$\frac{\delta \nu}{\text{obs}}$ (Mc/sec)	Residual (Mc/sec)	Weight factor
5.058	0.106	2	0 3	0 103.375	0.100	-0.021	97.9
4.964	0.106	2	0 3	0 103.350	0.100	-0.033	98.0
3.022	0.107	. 2	0 3 3	0 103.185	0.050	+0.014	388.0
	- 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					•	

 $^{^\}dagger$ Magnetic field and uncertainty are averages of those computed from ${\rm Rb}^{85}$ and ${\rm Rb}^{87}$ calibrations.

FIGURE CAPTIONS

- Fig. 1. Energy-level diagram of the hyperfine structure in the $^2D_{3/2}$ state of Y⁹¹. The nuclear magnetic moment has been assumed to be negative (a = -68.34 Mc/sec).
- Fig. 2. Energy-level diagram of the hyperfine structure in the $^2D_{5/2}$ state of Y^{91} . The nuclear magnetic moment has been assumed to be negative. (a = -34.35 Mc/sec).
- Fig. 3. Frequency dependence of transitions in the $^2D_{3/2}$ state of Sc 46 .

 The identification of levels is given in Tables II and IV.
- Fig. 4. Frequency dependence of transitions in the $^2D_{5/2}$ state of Sc 46 .

 The identification of levels is given in Tables III and V.
- Fig. 5. A sample resonance corresponding to the transition F, m = 9/2, $-1/2 \leftrightarrow 7/2$, 1/2 in the $^2D_{3/2}$ state of Sc⁴⁶ at H = 78.1 gauss.
- Fig. 6. A sample resonance corresponding to the transition F, m = $2.0 \leftrightarrow 3.0$ in the $^2D_{5/2}$ state of Y 91 at H = 3.0 gauss.

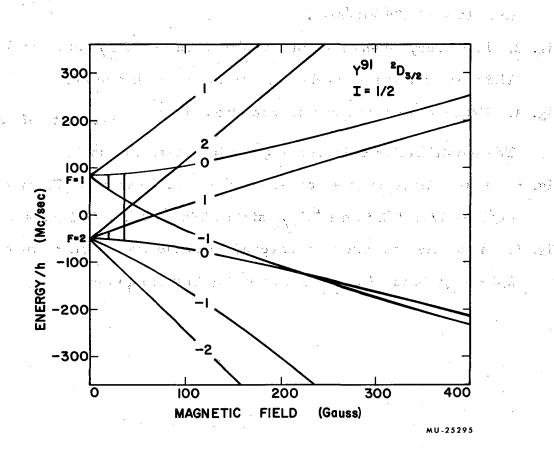


Fig. 1

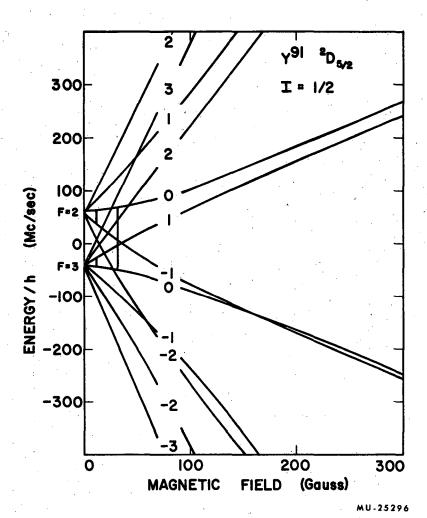


Fig. 2

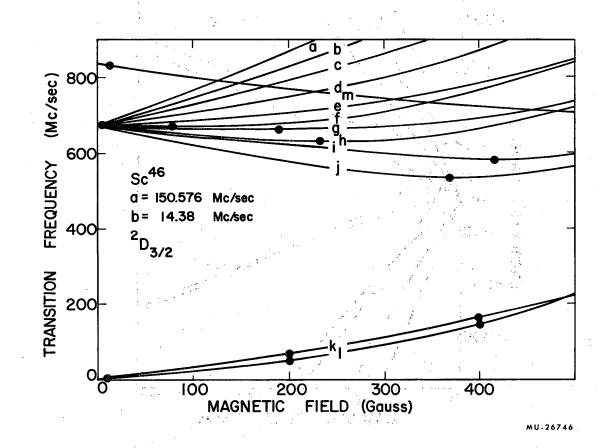


Fig. 3

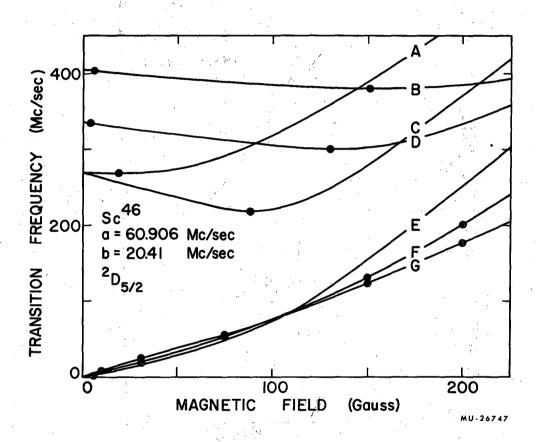
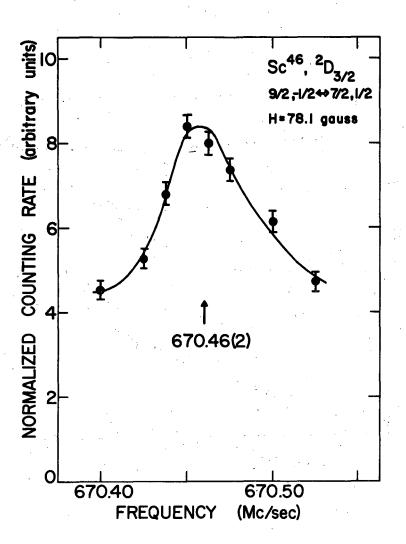



Fig. 4

MU-26748

Fig. 5.

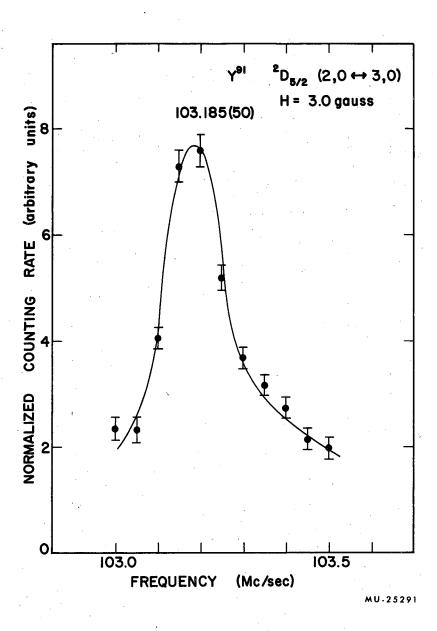


Fig. 6

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.