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Abstract

We utilize radial basis functions (RBFs) to construct numerical schemes for Hamilton–Jacobi (HJ) equations on

unstructured data sets in arbitrary dimensions. The computational setup is a meshless discretization of the physical

domain. We derive monotone schemes on unstructured data sets to compute the viscosity solutions. The essentially

nonoscillatory (ENO) mechanism is combined with radial basis function reconstruction to obtain high order schemes in

the presence of gradient discontinuities. Numerical examples of time dependent HJ equations in 2, 3 and 4 dimensions

illustrate the accuracy of the new methods.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

In the numerical solution of time dependent conservation laws such as

ut þr � f ðuÞ ¼ 0; ð1Þ

a method for solving the PDE is by dividing the spatial domain into grid cells and solving a Riemann

problem for each cell forward in time. For Hamilton–Jacobi equations of the form

ut þ HðruÞ ¼ 0; ð2Þ

we can think of our problem as being a conservation law such as (1) in the variable u ¼ ux in one spatial

dimension. This becomes precise in one dimension as we can see by taking the x derivative of (2). In this

way there is a direct link between conservation laws and HJ equations, with the solution to (1) being a

derivative of the solution to (2). Although this analogy fails in multiple spatial dimensions it guides us

towards the numerical methods of conservation laws when finding solutions to (2).
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On uniform grids in any dimension [21,22] and proposed extending the essentially nonoscillatory (ENO)

schemes of [16,26] for conservation laws to HJ equations by reconstructing locally smooth polynomial

interpolants of u in each individual spatial dimension, xi, and then taking the derivative, uxi of that in-
terpolant for use in HðruÞ. These methods have shown good results on uniform grids, avoiding the

oscillations typically associated with high order methods in the presence of discontinuities.

On nonuniform grids in higher dimensions there has been work done on extending the ENO type of

smooth polynomial interpolant reconstruction, see [1,12,31]. These methods have shown some success, but

also have some drawbacks. For example, when using divided differences as approximations to the higher

derivatives needed to obtain the Newton polynomial in 1D, we see that each time the polynomial is raised

by one degree, we need one extra evaluation point. In 2D on an arbitrary triangulated grid there are no

Newton divided differences to aid us in reconstruction. If we would like to use polynomial reconstruction

we now have the added burden of needing at least ½ðnþ 1Þðnþ 2Þ�=2 nodes to construct a degree n poly-

nomial. In K dimensions we would need at least nþ K
K

� �
nodes, and even with this many nodes there may

still be problems resulting from the ill conditioning of the linear system for the coefficients if the nodes are
not well spaced [1,17,31]. Attempts have been made to rectify these problems, but multidimensional

polynomial reconstruction is still far from being a ‘‘black box’’ procedure.

In this work we propose a new evolution procedure based on reconstruction using radial basis functions

(RBFs). Because of the discontinuites present in the gradient of the solutions of HJ equations we will

introduce monotone evolution schemes and ENO interpolations. The dimension independent framework

allows the methods presented to be generalized to higher dimensions.

We will begin in Section 2 by introducing radial basis function (RBF) interpolation. We then move in

Section 3 to a brief description of how we handle neighbor access in a meshless computational framework.
Next we cover the construction of monotone schemes in Section 4. We follow this in Section 5 by intro-

ducing a Roe with entropy fix scheme which minimizes artificial diffusion. In Section 6 we describe spatial

discretization to achieve higher order accuracy, followed by temporal discretization in Section 7. Finally,

we give a summary of the implementation procedure in Section 8.
2. Function reconstruction using RBFs

Instead of using polynomial reconstruction for a function U, which has been used successfully in 1D, we

will use a type of multidimensional spline [13,28]

UðxÞ :¼
XM
j¼1

cj/ðx� yjÞ þ
XQ
j¼1

bjpjðxÞ; ð3Þ

where / is a RBF, M is the number of cells in the reconstruction stencil, and the second sum is over

polynomials fpjg which form a basis of the kernel of the seminorm ½�; �� of the native space in which / lives
[18]. In general a spline, U, in a semi-Hilbert space, V , interpolating data, fuig, satisfies jUjV ¼ minu2A jujV
where A ¼ fv 2 V j hki; vi ¼ uig. So in this norm we are finding an optimal recovery function. The functions

/ are assumed to have radial symmetry. U is forced to have the property that on a given stencil fxigi¼1:M ,

UðxiÞ ¼ uðxiÞ and
XM
j¼1

cjpsðxjÞ ¼ 0; s ¼ 1; . . . ;Q: ð4Þ

So to find fcjgj¼1:M we need to solve the linear system

A ¼ V N
Nt 0ðQ;QÞ

� �
c
b

� �
¼ u

0ðQ;1Þ

� �
;
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where

vi;j ¼ /ðxi � xjÞ; ni;j ¼ pjðxiÞ: ð5Þ

For HJ equations of the form (2) we need to calculaterUðxÞ, so we assume the RBF /ðxÞ is well behaved
and differentiate (3).

The RBFs / can be compactly or globally supported, and because we must solve (5) it is best if they are

positive definite in some sense, implying unique solvability of (5) [20]. In [20] it was shown that there is a

direct relationship between / being positive definite and the function t ! /ð
ffiffi
t

p
Þ being completely mono-

tone, i.e. f ðtÞ :¼ /ð
ffiffi
t

p
Þ is smooth and satisfies

ð�1Þmf ðmÞðtÞP 0; m 2 N0; t > 0:

If a function is completely monotone, then it is positive definite, thus it does not need to be augmented by

any polynomials in (3). However, if we only have that ð�1Þkf ðkÞðtÞ is completely monotone for some k > 0

then / is said to be conditionally positive definite of order k, and requires augmentation by polynomials of

degree k � 1. Using these types of tools analysts have proven the conditional positivity of many RBFs over

the years, and so there are numerous / from which to choose. Table 1 shows some useful RBFs and their

positive definite order, k.
Wu has also constructed a family of positive definite, compactly supported RBFs [28,30]. All of these

functions can be scaled by taking r ! ðr=hÞ with h problem dependent. Because of its radial construction, if

a basis function / can be used in n dimensions then it can be used just as well in any dimension less than n.
This allows for algorithms and theory to be developed and tested in low dimensions with easy extension to

problems in higher dimensions.

For our tests so far we have used the positive definite Gaussian and inverse multiquadric RBFs of the

form

e�ar2 and ðr2 þ aÞ�1=2
;

respectively. These do not require augmentation by polynomials when solving (3).

In order to achieve better reconstructions we will attempt to optimize the parameter (e.g. a in e�ar2 ) on

each stencil. It has been shown that the accuracy of a RBF interpolant is inversely related to the condition

number of the linear system in (5) [24]. Our optimization consists of choosing a maximum acceptable

condition number, jmax, and performing an iterative procedure to determine the value of a that yields
0 < jmax � ja < b for some tolerance b. In practice jmax is only related to the machine-e of the given

computing system, and we choose jmax ¼ 108, with b ¼ 106. This need only be done prior to evolution and

allows for optimization on different parts of the domain where mesh spacing may vary greatly. In the case

of ENO interpolations it is not feasible to test all possible stencils and store the optimal a on each, so we
Table 1

Sample radial basis functions

RBF /ðrÞ k

Polynomials rb; b > 0; b 62 2N k > b=2
Thin plate splines r2b log r;b 2 N k > b
Gaussians e�ar2 ; a > 0 kP 0

Multiquadrics ðc2 þ r2Þb=2; b > 0; b 62 2N k > b=2
Inverse multiquadrics ðc2 þ r2Þb=2; b < 0 kP 0
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only store a single a that will be acceptable for all the local stencils near a given data point. As long as the

mesh is well behaved this a should work adequately on local stencils.

It should be noted that the procedure for choosing an optimal RBF parameter is an area of current
research. There are other ways to optimize the parameter of the RBF [8,13,23], and any of these can be

incorporated into our framework.
2.1. Example of location dependent RBF parameter optimization

Let us take an example to show both the accuracy and method of parameter optimization. To keep

things simple we will work on a 2 point stencil, fa; bg in 1D. Obviously the best interpolation of our

function, f ðxÞ, that we can hope for is linear. In this case the best approximation to f 0ðxÞ is

f ðbÞ � f ðaÞ
b� a

;

or two-point finite differencing. Without loss of generality let a ¼ 0 and f ðaÞ ¼ 0. Using a general RBF

interpolation with basis function /ðrÞ we would like to find a condition on its parameter a such that for our

RBF approximation to f 0ðaÞ, called app, satisfies

app ¼ /xð0Þ /xðð � bÞÞ /ð0Þ �/ð�bÞ
�/ð�bÞ /ð0Þ

� ��
ð1� /ð�bÞ2Þ 0

f ðbÞ

� �
¼ f ðbÞ

b
;

using

/ð0Þ �/ð�bÞ
�/ð�bÞ /ð0Þ

� ��
ð1� /ð�bÞ2Þ ¼ A�1 from ð5Þ

and differentiating (3). By multiplying we see that if we assume /xð0Þ ¼ 0, which it should for all smooth

RBF basis functions, and scale / so that /ð0Þ ¼ 1, then we have

app ¼ �y0y
1� y2

f ðbÞ; ð6Þ

where y 0 ¼ /xð�bÞ and y ¼ /ð�bÞ. Solving the ODE

�y 0y
1� y2

¼ 1

b
ð7Þ

will give solutions yðbÞ ¼ /ðbÞ that yield an equivalent RBF interpolation to two-point finite differencing. If

we let /ðbÞ ¼ e�ab2 and let a ! 0, then we have a solution to (7). If we would like /ðrÞ ¼ ar2, then we need

a ¼
ffiffiffiffiffiffiffi
1

3b4

r
:

Other basis functions will have different restrictions on a.
Note that for the Gaussian a does not depend on b, which makes its optimization straightforward. In

practice if we wanted to optimize a when / ¼ e�ar2 all we would need to do is let a ! 0 until we find that

jjmax � jaj < �. Even for higher order approximations (with more nodes in the stencil) it can be shown that

letting a ! 0 with / ¼ e�ar2 approaches the optimal solution.

For other / whose optimal parameter may depend on the data locations (e.g. b above), we run a root
finding method on the equation jmax � ja ¼ 0 and iterate in a until jjmax � jaj < �. For many basis func-
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tions there exist a priori local error estimates in terms of a which clearly indicate limiting values of a for

which to strive during optimization [24,25].

We also note that a given UðxÞ can be represented in a Lagrange type fashion

UðxÞ :¼
XM
j¼1

WjðxÞuj: ð8Þ

We can find the coefficient Wiðx0Þ in (8) by setting uj ¼ di;j for j ¼ 1; . . . ;M and solving

Uðx0Þ ¼
XM
j¼1

Wjðx0Þuj ¼ Wiðx0Þui: ð9Þ
3. Data access in the meshless computational domain

In this section we present the way in which we give some structure to our unstructured data set, allowing

access of nodes in a reasonable amount of time. If our data set, X , were to be stored as simply an unordered

list of points, then each time we needed to access a neighbor of a given node, xi, we would need to search

through the entire list giving a OðNÞ algorithm versus Oð1Þ on a uniform grid. Although the storage re-
quired for this method is minimal, the access time is much too slow for practical use.

Instead, we use a binning method. This method divides the entire domain, X � X , into a coarse,

structured grid C. Then for each coarse grid cell cj 2 C we create a list of all the nodes of X that lie inside cj.
When a neighbor of xi 2 cj needs to be accessed we only need to search the lists of the coarse neighbors of

cj. So the total neighbor access time is Oð1Þ to access the coarse neighbor list times OðlistjÞ to search the list

and find the neighbor. Of course this procedure can be iterated over multiple coarse levels so that the list

sizes are smaller, and other optimizations can be done such as noting which coarse cells are nonempty.

Similar ideas have been explored in the context of local level set methods [29].
For the evolution procedure we can find all appropriate stencils prior to time evolution if we would like,

and then the problem of neighbor access is only relevant in the preprocessing step and does not slow the

evolution down. This idea was used in [31].
4. Monotone fluxes

4.1. Introduction to monotone schemes

In solving equations of the form (2) an important class of numerical methods are monotone schemes

[10]. When they are also consistent these schemes have been shown to converge to the physically correct

viscosity solution of (2).

For uniform data in 1D there are numerous schemes available [22], and these schemes can be generalized

for uniform data in higher dimensions. In 2D on triangulated data there has been progress as well [2,9,19].

However, in higher dimensions there has not been as much progress for scattered data. One drawback is

that as the dimension grows, the triangulation becomes very complex and storage consuming (OðM dd=2eÞ
simplices for M points in d dimensions), and the number of neighbors of a given node grows very large.

In this section we will present some new monotone schemes for scattered data in an arbitrary dimension

that is not required to be triangulated. We will also discuss some details on implementation.
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4.2. Derivation of schemes

Given a Hamilton–Jacobi equation of the form (2), i.e.

ut þ HðruÞ ¼ 0 ð10Þ

to be solved on a point set, we would like to derive a first-order in time monotone scheme, see [2] for a

similar analysis. We will use two dimensions for simplicity here, and let i and j be 2D multi-indices. The

scheme will be of the form

unþ1
i ¼ un

i � dt ĤHiðunÞ; ð11Þ

where un
i is the numerical approximation to the solution of (2) at ðt ¼ tn; x ¼ xi1 ; y ¼ yi2Þ, and ĤHi is the

numerical Hamiltonian there. The requirement for a method to be monotone [10] is that

uni P vni 8i ) unþ1
i P vnþ1

i 8i:

For our scheme of the form (11) this means that if we fix an index i0, then at xi0 ,

oĤHi0

ouj
6 0 and 06 dt6

oĤHi0

oui0

 !�1

8j 6¼ i0: ð12Þ

Thus our goal will be to find a numerical Hamiltonian satisfying (12).
Guided by the fact that some of the standard monotone schemes on uniform grids, such as Lax–

Friedrichs, are approximations to solving the vanishing viscosity equation

ut þ HðruÞ ¼ �Du as � ! 0;

we will construct our numerical Hamiltonian as an approximation of

HðruÞ � �Du:

The procedure will be to reconstruct u near a given point, xi, using an interpolation method and then

differentiate the interpolant to get ru and Du. The interpolation method we will use is RBF reconstruction.
4.2.1. Monotonicity

If the basic time evolution procedure at node i can be written as

unþ1
i ¼ uni � dt HðrunÞf � �iDung ¼ uni � dtGiðuj1; . . . ; uNsten

Þ; ð13Þ

where Nsten is the number of nodes used in the stencil approximating run and Dun, then we will need to find

an �i that satisfies all the inequalities in (12). Thus for each node i we should be able to calculate a minimal

diffusion constant �i that guarantees monotonicity there. If we decide to evolve our solution using (13) with
a unique �i at each node i then the method will be called a local Lax–Friedrichs scheme. If we decide to take

�max ¼ maxi �i and evolve (13) using �i ¼ �max 8i, then the scheme will be called simply Lax–Friedrichs.

To find the appropriate size of �i we begin by writing our reconstructed partial derivatives in the Lag-

range form (8). If we know that

ou
oxk

ðxiÞ �
XNsten

j¼1

ck;juj; k ¼ 1; 2; and DuðxiÞ �
XNsten

j¼1

djuj

then
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oGi

ouj
¼ rHðZÞ � ðc1;j; . . . ; cNdim ;jÞ � �1dj;

where Zk 2 ½minðruÞk;maxðruÞk�:
Note that in the construction of our stencil if we do not have that

dj > 0 8j 6¼ i and di < 0; ð14Þ

then we have a bad stencil which cannot yield a monotone scheme. In practice we have many more re-

strictions than (14), because this restriction can allow arbitrarily large diffusion terms which smear our

solution. So we make sure to enforce restrictions on the relative sizes of cj and dj to keep diffusion to a

minimum. Details of how this is done will be presented later.

We will now construct an �1 that satisfies the first Nsten � 1 inequalities in (12), and an �2 that satisfies the
dt inequality, then finally set �i ¼ maxð�1; �2Þ. Thus we need

XNdim

k¼1

max
x2X

jHkðxÞkck;jj
 !

� �1dj 6 0; j 6¼ i:

The �1 for the scheme at xi satisfies

max
j6¼i

PNdim

k¼1 maxx jHkðxÞkck;jj
dj

" #
6 �1; ð15Þ

so to minimize the viscosity we choose �1 to satisfy the equality in (15).

Next we find �2 that satisfies

06 dt6
oGi

oui

� ��1

ð16Þ

where

oGi

oui
¼ rHðZÞ � ðc1;i; . . . ; cNdim;iÞ � �2di:

So we need that �2 satisfiesPNdim

k¼1 maxx jHkðxÞkck;ij
�di

" #
6 �2 ð17Þ

as di < 0. As this must hold for all x we choose �2 to satisfy the equality in (17), and finally choose

�i ¼ maxð�1; �2Þ.
The CFL condition is then given by

dt6
1PNdim

k¼1 maxx jHkðxÞkck;ij � �idi
:

4.2.2. Consistency and convergence

The consistency of schemes using RBF interpolants has not been fully explored as of yet. There is a large

amount of research demonstrating the error bounds of RBF interpolants and their convergence properties,

but the strict definition of consistency where we require that
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ĤHðpÞ ¼ HðpÞ if uðxÞ � p � xþ k0

has not been proven for general basis functions /. However, it is only machine precision that limits us from

getting an interpolant, U such that

jrU� pj6 d1 and jUxixi � 0j6 d2 for i ¼ 1 : Ndim; ð18Þ

for arbitrarily small d1; d2; given an underlying linear function uðxÞ � p � xþ k0.
Thus, if consistency is wanted we can adjust the Lagrange coefficients of Uxi and Uxixi so that they exactly

reproduce uxi and uxixi when uðxÞ � p � xþ k0. We must satisfy (18) with d1; d2 ¼ 0. Assume at a given node

we have a Lagrange representation for Ux1 �
PN

j¼1 cjuj ¼ c � u, and that the underlying function that we are

trying to reconstruct is uðxÞ � p � xþ k0. If our interpolation is not consistent, then

c � u� p1 ¼
XN
j¼1

cj
XNdim

i¼1

ðpixj;iÞ
 

þ k0

!
� p1 ¼ r; ð19Þ

where xj;i is the ith coordinate of the jth stencil node.

To eliminate this residual r we need to find new coefficients dj that satisfy

XN
j¼1

dj ¼ 0;
XN
j¼1

djxj;1 ¼ 1;
XN
j¼1

djxj;i ¼ 0 for i ¼ 2 : Ndim: ð20Þ

To find these dj we solve

XN
j¼1

bj ¼ �
XN
j¼1

cj; ð21Þ
XN
j¼1

bjxj;1 ¼ 1�
XN
j¼1

cjxj;1; ð22Þ
XN
j¼1

bjxj;i ¼ �
XN
j¼1

cjxj;i for i 6¼ 1; ð23Þ

and take d ¼ cþ b to replace c. If the system determined by (21)–(23) is underdetermined (which it will be if

N > Ndim þ 1), then we take the least squares solution b, thus moving our new approximation as little as

possible from the original U. In practice we have found that kbk is usually very small.
Similarly, if the approximation for Uxixi yields

c � u ¼
XN
j¼1

cj
XNdim

i¼1

ðpixj;iÞ
 

þ k0

!
¼ r; ð24Þ

where r 6¼ 0, we need

XN
j¼1

dj ¼ 0;
XN
j¼1

djxj;i ¼ 0 for i ¼ 1 : Ndim: ð25Þ
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So we solve a similar system to (21)–(23) and take d ¼ cþ b.

It should be noted that the diffusion coefficient � needs to be chosen after finding these new consistent,

monotone Lagrange formulations for rU and DU.
Having a consistent scheme, in order to obtain a convergence estimate we could construct a doubling-

variable function and proceed along the lines of the proof in [3,9,10]. However, we focus on the numerical

implementation here.

4.3. Implementation details of schemes

We can see that there are some inequalities which must be satisfied by our RBF reconstruction at a point

xi before our scheme is deemed monotone. Firstly, we must satisfy (14). Once this is done it is straight-
forward to calculate the diffusion terms �i and CFL condition.

Thus we explain how we find a stencil at xi that satisfies (14). Actually we will tighten the restrictions on

(14) significantly, as it allows for diffusion terms that are too large. What we require is that (14) holds, but

also that �i < �max for a specified �max which is usually dependent on the spacing of the local mesh. Generally

what this requires is that any Lagrange coefficient, lj, of uj in the approximation to uxixi will have mag-

nitude � cj dx; as it would if we were using finite difference approximations.

Once we have decided on the bounds for � and d we can begin searching for acceptable stencils at a given

node, xi. The problem that usually arises is that for a given candidate stencil, SC, one or more of the co-
efficients dj of the Du approximation are too small in magnitude or the wrong sign because xj is either

collinear or almost collinear with another node in SC. Thus we will try to make our stencil as isotropic as

possible. To do this we will decide on a stencil size, N þ 1 (the stencil will always include the node xi), define
N equispaced rays, xi þ vkt; t > 0 emanating from xi and find the neighbor xj of xi that maximizes

V ¼ xj � xi
kxj � xik

� vk
kvkk

ð26Þ

by searching through the bins of the coarse grid that are near xi, and only allowing points xj such that

kxj � xik < nðxiÞ, where the radius nðxiÞ is a function of the local density of nodes, the desired stencil size,

and the dimension.

For example in 2D if the local density of nodes is q ¼ 10=h2, and the desired stencil size is 5, then we
choose n such that pn2=h2 � 5=10. Then the vectors vk are chosen as

ðcos; sinÞðh0 þ 2pk=NÞ for k ¼ 0 : N � 1:

We search over a few different orientations (h0 in 2D) of the axes for a fixed stencil size, and stop when we

find an acceptable stencil that satisfies our conditions on � and d. As noted in Section 2 we optimize the

RBF interpolation on each candidate stencil by trying to find the best function parameter for the basis

function. If none of the candidates satisfy our bounds for � and d then we change the stencil size by either

increasing it or decreasing it by 1, and repeat the search for a prespecified number of increments, I , until we
find an acceptable stencil. If we cannot find an acceptable stencil then our mesh is very bad and we must use
the best of the candidate stencils we have examined. However, this has not yet occurred in our compu-

tations. If this were to occur it would mean that our scheme would not be guaranteed to be monotone under

the current restrictions on � and d. Thus, we can examine the possible stencils that failed to satisfy the

original criteria for � and d, and see if any of them satisfy the minimal requirements of (14). Then we choose

the stencil that has the smallest diffusion coefficient �, and also satisfies (14). While this last procedure may

yield a large diffusion term, it does guarantee a monotone scheme.

The only ambiguous point in the description above is the definition of a neighbor of xi. Unless a tri-

angulation of the data is constructed we do not have a rigorous definition of what a neighbor is. One
method is to search through the coarse cells near xi for theM closest points, where M is arbitrary but on the
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order of the stencil size. The neighbors of xi are then said to be these M closest points. However, this may

not work well for stencils with large discrepancies in distances between nodes near xi. Therefore it is

possible to adjust the stencil choosing algorithm so that given an axis vk as described above we maximize a
function f ðxj � xi; vkÞ instead of (26), where f could penalize kxj � xik and perhaps place increased weight

on the value V obtained in (26), such as taking f � V 2 as kV k6 1. In our implementation we use (26),

which corresponds to f ðV Þ ¼ V , and we have run tests with f ðV Þ ¼ V 2; V 3 and have not found significant

differences in the results. This topic of defining and finding a neighbor of a node on a meshless grid without

creating a triangulation warrants further research.

Another option is to create a local triangulation of the M closest points to xi and use this to define

neighbors. We have not implemented this procedure yet. This method will take more time, but will in

general give a smaller number of neighbors and more compact candidate stencils. As long as this local
triangulation is not stored permanently this method is acceptable. It is when triangulations of large data

sets in high dimensions must be stored that we exhaust memory restrictions.

Again it should be noted that this search for acceptable stencils need only be done prior to evolution if

we are willing to store the nodes of the stencil at xi.
5. A Roe–Fix scheme

Given that we are able to construct a prototypical Lax–Friedrichs scheme, we are tempted to push

further and find a monotone scheme with even less diffusion. For uniform grids in 1d and even triangulated

grids in higher dimensions there are upwind schemes which can be proved to be monotone [5]. These are

based specifically on linear reconstructions (standard two-point upwinding in 1D). When upwinding is used

at all non-sonic points, combined with a vanishing viscosity approximation such as LF or LLF at sonic

points we have a method known as Roe–Fix or RF. This would be readily implementable were we to have a

definition of upwinding that applies to our RBF reconstructions, but unfortunately we do not. However, we

can construct a RF method using RBF interpolation and make an argument as to its convergence prop-
erties.

If we are advancing the solution at a node xi the first thing we must determine is whether or not we are at

a sonic point. Assume we have constructed a suitable stencil Si at xi, adhering to the constraints of Section

4.2. At each node xj 2 Si we calculate rHðruðxjÞÞ using the stencil Sj. If oH=ouxk � Hk changes sign for

any k ¼ 1; . . .Ndim when searching over j ¼ 1; . . . ; jSij then we are at a sonic point and we advance the

solution using either LF or LLF schemes. If Hk does not change sign then we are not at a sonic point, so we

would like to use upwinding. Since we do not have a triangulation of the nodes surrounding xi we cannot

choose a triangle, Tc, from which the characteristics are flowing and then use the nodes of Tc to linearly
reconstruct the function yielding a monotone, upwind scheme. However, as long as the nodes of Si sur-
round xi sufficiently we have encompassed the domain of dependence for unþ1

i , assuming the CFL condition

is small enough. Here, surrounding xi means that the convex hull of Si contains xi. Thus, if u is smooth near

xi then our RBF reconstruction can be interpreted as a higher order reconstruction extended from the linear

interpolant uL on Tc. This reconstruction for u should then only differ from uL by terms of order OðdxpÞ
where pP 2. Using this interpolant for u and dropping the artificial diffusion terms of the LF and LLF

schemes should then give us a scheme that differs from a monotone scheme by OðdtdxÞ, similar to the

argument given in [22] for high order ENO schemes. Because of the lack of the artificial diffusion term we
should see better resolution.

Note that we require u to be smooth near xi for this argument to be valid. This is usually the case when

we are far away from sonic points, but will not be the case when we are at a moving kink, which is a moving

discontinuity in first derivatives. In that case the RBF interpolant may extend over the discontinuity and

differ from uL significantly. So our scheme may differ from a monotone scheme by more than OðdtdxÞ
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there. If a monotone method is desired at points of this type then we can easily insert a check into our

algorithm such that when the jump in derivatives of u near xi is too large it will trigger the use of LF or LLF

schemes even if the signs of Hk indicate upwinding.
6. High order ENO reconstruction

While the ability of monotone schemes to correctly converge to the viscosity solution of Hamilton–

Jacobi equations makes them desirable, they do have an undesirable property: they are at most first order

accurate [9,11,15]. In one dimension on uniform grids this drawback is overcome by taking ENO poly-

nomial function reconstructions that avoid using interpolants which cross discontinuities, causing spurious
oscillations. The familiarity of polynomials and the ability to simply construct their derivatives using di-

vided differences made the ENO methods for conservation laws and Hamilton–Jacobi equations very

popular [16,22,26]. In multiple dimension on nonuniform grids there has been some progress using poly-

nomials [4,31], and RBFs [18]. Here we present an incremental stencil selection method which exploits the

LU factorization of the RBF coefficient matrix. We also introduce a self-similar smoothness indicator that

allows the ENO stencil to be chosen.

Our ENO reconstruction will involve extending an existing reconstruction in a smooth fashion. Assuming

we have a reconstruction UMðxÞ on an existing M point stencil SM ¼ [M
i¼1fPig, where Pi 2 X , that has been

constructed starting with Sr 3 xk ¼ P1 for r6M , we want to extend it to M þ 1 nodes in an ENO fashion.

There are two pieces of information we need which are somewhat arbitrary. One is the choice of nodes

from which to choose PMþ1, and the other is the measure of smoothness of our reconstructed function,

UMþ1ðxÞ. A suggestion for choosing the candidates fPcandj
Mþ1 g for PMþ1 is that we choose the N (again arbitrary,

but finite) nodes Pcandj
Mþ1 2 X that make the center of gravity of the stencil SM [ Pcandj

Mþ1 closest to xk, or closest to
the center of gravity of SM . In practice we choose fPcandj

Mþ1 g from a small selection (N < 5) of nodes that make

the center of gravity of the stencil SM [ Pcandj
Mþ1 closest to xk. The number of choices we have for candidates

depends on the surface area of the existing stencil, SM , so in higher dimensions the potential cost incurred by
maximizing cardðfPcandj

Mþ1 gÞ becomes prohibitive. There are many strategies to extend stencils [4,14,27,31],

however, these are usually based on polynomial reconstruction and take steps so as to ensure the inter-

polation coefficient matrix has a good condition number. For RBF reconstruction the condition number

depends on / and the stencil, and in practice we have not found any problems with it. Since / is radially

symmetric there should not be any directional bias which causes polynomials to have badly conditioned

coefficient matrices, see [1] for details about this problem.

For the measure of smoothness we use the self-similar indicator

b ¼
X

26 jaj6 s

Z
Pk

jPkjð2jaj�NÞ=N ðDaUðxÞÞ2dx; ð27Þ

where jPkjð2jaj�NÞ=N
makes b invariant under grid scaling in N dimensions when jPkj is the area of a grid cell

containing Pk, a is a multi-index, and s is proportional to the size of the stencil [31]. For polynomial in-

terpolants, we can take s is the order of the interpolant, but with RBFs U can be a weighted average of C1

functions. Therefore we take s proportional to stencil size because we cannot expect that Dau is influencing

DaU for derivatives of order P jaj if we are using far fewer than jaj points. In practice we choose s as the
largest n such that # Sten � nþN

N

� �
.

Once we have made the above decisions we can proceed systematically to obtain the M þ 1st stencil.

When constructing the Mth stencil it was necessary to solve the system of equations (4), that we will write

Ac ¼ �uu which is usually small enough to be done by Gaussian elimination/LU factorization. Noting that A
is symmetric we have an M �M LLt factorization (here we assume that Q ¼ 0 in (3)). For the M þ 1st cell

we must solve a new Ac ¼ �uu that can be written as
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A ¼ LLt a
at d

� �
¼ �uu

�uuMþ1

� �
;

where a and d are found as in (5). To obtain LMþ1 we compute the Schur complement S ¼ d � atðLLtÞ�1a of

LLt and get

LMþ1 ¼
L 0ðM ;1Þ

atðLtÞ�1
ffiffiffi
S

p
� �

:

Having the new LMþ1 we can find the new set of fcjg and compute b for each candidate stencil. The

stencil with the smallest b is chosen as the M þ 1st stencil.

We note that in practice all L�s can be found and stored before the time evolution begins as long as data

point set doesn�t change during the calculation. Thus, the above Schur complement procedure does not save

as much time as when it is applied to an adaptive mesh, where the linear system inversions must be done at

each timestep. However, for large fixed data sets in higher dimensions the storage of the L matrices can

become too large to be practical, and any acceleration to the matrix inversion procedure is helpful.
7. Time derivatives

We use total variation diminishing (TVD) Runge–Kutta (RK) methods for time advancement [26]. The

procedure is as follows: given a node xi and function values at time tn we define the operator

Li ¼ �dt ĤHðunÞ;

where ĤH is the numerical Hamiltonian. We then advance the solution using a Runge–Kutta procedure of

the form

uðkÞ
i ¼

Xk�1

m¼0

½akmuðmÞ
i þ bkmL

ðmÞ
i �; k ¼ 1; . . . ; r;

where uð0Þ
i ¼ un

i ; uðrÞ ¼ unþ1
i . If the forward Euler version (i.e. r ¼ 1, a1;0 ¼ 1, b1;0 ¼ 1) is TVD under the

CFL condition

dt=dx6 k0;

then the RK method can be proven to be TVD under the CFL condition

dt=dx6Crk0:

Coefficients for the popular second- and third-order TVD-RK methods are shown in Table 2.

Together the ENO and TVD-RK methods give highly accurate solutions and can be quickly adapted to

almost any Hamiltonian H .
8. Outline of evolution procedure

In this section we will outline the procedure for solving (2) given initial values u0ðxjÞ on a dataset

X ¼ fxjg of points contained in the computational domain, X.
1. Construct a coarse mesh C over X and for each coarse grid cell ci 2 C create a list of all the nodes of X

that lie within in ci. If C is uniform then this should take OðjX jÞ time. An iterated coarse mesh can also



Table 2

TVD RK coefficients

Order akl bkl Cr

2 1 1 1

1/2 1/2 0 1/2

3 1 1 1

3/4 1/4 0 1/4

1/3 0 2/3 0 0 2/3
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be constructed or any other mechanism which allows the user to determine the Mð� jX jÞ closest points
to a given node in less than OðjX jÞ time.

2. For each xi 2 X
do

• Construct a new candidate stencil SC, using the guidelines of Section 4.3.

• Optimize RBF parameter a on SC.
• Determine if dj�s and � are acceptable for SC,
while (dj�s and � are unacceptable).

Set the chosen stencil Si ¼ SC.
It is actually a matter of memory versus time as to what the user stores here. If memory is abundant and

its access is fast then for each stencil all the Lagrange coefficients (cj�s, dj�s) and �i can be stored, making the

evolution procedure faster. If memory is scarce then just the nodes of the stencil and the optimal RBF

parameters a should be stored.

3. For tn ¼ 0 : T ,
do

• Compute ru at all nodes using stencil from step 2.

• If higher order accuracy of ru is desired then use an ENO reconstruction for u as described in Sec-

tion 6.

• For each node, if using RF scheme determine if sonic fix is necessary using rH . If so, or if the scheme

is LF or LLF, then compute Du and diffusion weight �.
• For each node, advance solution one step in time using unþ1 ¼ aun � bdt ĤHðunÞ.
If RK method is being used then go to beginning of this do loop as many times as appropriate.

end do loop.

If adaptive grid is being used repeat stencil finding procedure in step 2, otherwise go to the beginning of

this for loop.
9. Numerical examples

Unless otherwise noted the examples are calculated on a domain of ½�1; 1�d in d dimensions. Figures
showing multiple evolution frames should be read from left to right and then top to bottom chronologi-

cally.

We begin with a level set evolution of the form

ut � jruj ¼ 0;

calculated on a grid of points that lie on concentric circles as in Fig. 1. The nodes used lie at the vertices of

the triangulation shown. Note that this triangulation is not necessary for our calculation and is only used in
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Fig. 1. 2D concentric grid, nodes at vertices of triangles.
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the visualization. As the characteristics flow outward we use ‘‘upwind’’ reconstruction stencils at the

boundary consisting of nodes within the domain. Fig. 2 shows how our method captures the vanishing

viscosity solution.
Fig. 2. Evolution of (2) with HðpÞ ¼ �jpj.
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The accuracy and convergence order of this method are shown in Table 3. The error is measured using

the data points that lie on the concentric circle with radius ¼ 0:4. Each reconstruction stencil used contains

six nodes.
In Table 4 we show an accuracy and convergence analysis of a smooth solution on a uniform grid using

periodic BCs where we solve

ut þ ux þ uy ¼ 0; uðx; y; t ¼ 0Þ ¼ cosðpðxþ yÞÞ:

The error of is measured at time t ¼ 1:0.
Fig. 3 shows the solution of

ut þ sinðux þ uyÞ ¼ 0;

calculated on a uniform grid, but using our meshless method. Periodic BCs are imposed in both directions.

For this example the ENO reconstruction is used. The initial stencil at xi;j is a five-point centered stencil

consisting of points

xi;j; xi	1;j; xi;j	1;

and is extended in an ENO fashion by adding one of the diagonal points xi	1;j	1.

In Fig. 4 the solution to Burgers� equation

ut þ 0:5ðux þ uy þ 1Þ2 ¼ 0;

with periodic BCs, is shown.

In Figs. 6 and 7 we show level set solutions of

ut � jruj ¼ 0;

for initial conditions of a sphere and torus. Again characteristics flow outward and boundary recon-

structions use interior point stencils. The computational domain consists of nodes that are approximately

equispaced, lying on concentric spheres as in Fig. 5.

Figs. 8–10 show evolution sequences of the level set of a four-dimensional hypertorus initialized as
Table 3

2D convergence order analysis for HðpÞ ¼ �jpj on concentric grid

� dx L1 error L1 rate L1 error L1 rate

0.1 0.013637 – 0.020314 –

0.05 0.002740 2.315 0.006998 1.537

0.025 0.000425 2.686 0.002554 1.454

0.0125 0.000089 2.243 0.000971 1.395

Table 4

2D convergence order analysis for Hðr/Þ ¼ /x þ /y on a uniform grid with periodic BCs

dx L1 error L1 rate L1 error L1 rate

0.1 0.0539332 – 0.0860662 –

0.05 0.012960489 2.057053543 0.0205767 2.064435145

0.025 0.002687455 2.269807805 0.00423452 2.280741279

0.0125 0.0000936797 4.842360447 0.0001479 4.839504486



Fig. 3. Evolution of (2) with Hðux; uyÞ ¼ sinðux þ uyÞ.

Fig. 4. Evolution of (2) with Hðux; uyÞ ¼ 0:5ðux þ uy þ 1Þ2.
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Fig. 6. Level set evolution of (2) with HðpÞ ¼ �jpj. Initial time view and later time views as sphere expands.
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Fig. 5. Points on smaller (top) and larger (bottom) concentric spheres used for 3D unstructured grid calculation.
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uðx; y; z;wÞ ¼ r3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2

p
� r1

h i2r
� r2

" #2vuut ;

where r1 ¼ 0:2; r2 ¼ 0:4; r3 ¼ 0:8, subject to the PDE

ut � jruj ¼ 0:



Fig. 7. Level set evolution of (2) with HðpÞ ¼ �jpj.

Fig. 8. Level set of fixed dimension 1 slice of a 4D hypertorus evolving under (2) with HðpÞ ¼ �jpj.
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In each figure we take a 3D slice of the data keeping the coordinate xi fixed for the indicated ith di-
mension, and then plot the level set fxjuðxÞ ¼ 0g as a surface in 3D. In the future we will implement a local

level set framework allowing for high dimensional computations of this type to be performed without

storing gridpoints that are far away from the interface. The storage for this method would then be on the

order of the size of the interface (an interface that is of codimension P 1 with respect to the dimension of



Fig. 9. Level set of fixed dimension 3 slice of a 4D hypertorus evolving under (2) with HðpÞ ¼ �jpj.
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the computational domain). The speed would then be dependent on whether the user decided to precal-

culate the Lagrange coefficients of ru or decided to do this at each timestep. In the first case the speed

would be comparable to existing level set methods on uniform grids, with a penalty for data access speed

only. In the second case the speed would be penalized by the need to invert the coefficient matrix at each
Fig. 10. Level set of fixed dimension 4 slice of a 4D hypertorus evolving under (2) with HðpÞ ¼ �jpj.
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data node for each timestep. For small stenciled reconstructions this is not too slow, and is unavoidable if

the unstructured mesh is adaptive in time, no matter what reconstruction procedure is used.
10. Conclusion

The numerical solution of Hamilton–Jacobi equations on unstructured grids is becoming increasingly

important. As higher dimensional problems are encountered we would like to isolate the important features

of the solution and resolve them locally instead of globally. Examples such as local level set computations

are already pushing the computational boundaries on coarse grids in 5D [7]. Minimization and control

theory problems on irregularly shaped domains also call for scattered meshes to save space.
The methods presented here yield solutions which converge to the vanishing viscosity solution of HJ

equations of the form (2). Error estimates for RBF interpolations and estimates on their partial derivatives

have been proved, and are an area of current research. Optimal node choice, RBF parameter choice, and

RBF basis function form are also areas that are being studied, and demand further theoretical results and a

more intuitive description.

It should be noted that the arguments made for monotonicity and convergence of the LF and LLF

schemes constructed in Section 4 can be applied to other interpolation schemes for meshless numerical

methods such as moving least squares, kernel based approximations, and partition of unity methods by
writing these methods in Lagrange form [6]. However, we cannot hope to apply our monotone construction

to global interpolation schemes, as they will not satisfy the restrictions on the signs of dj.
Other questions to be addressed concern the optimal way to handle neighbor access on a meshless data

set, and what is the best way to automate the stencil selection process. We have addressed these problems

here, but as they often consume the bulk of the computational time we suggest further study.
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