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Fixing Faults in Wireless Sensing Systems with Confidence

Nithya Ramanathan, Tom Schoellhammer, Eddie Kohler, Deborah Estrin

ABSTRACT

This paper presents Confidence, a tool for identifying and ad-
dressing faults in wireless sensing systems. Confidence pin-
points potential sensor and network faults in real time, allow-
ing users to validate unexpected data and address any failures
in the field. By introducing a well defined, low-dimension
feature space, and functions to map sensor data into this
space, we are able to achieve fault detection and diagnosis
with relatively simple mechanisms such as outlier detection.
Users can directly modify system outcomes by altering a clas-
sification label in instances when Confidence’s automated al-
gorithm draws the wrong inference. This label is applied to
all similar points in the feature space, enabling Confidence to
learn from user interaction in the field. This abstraction for in-
corporating user knowledge provides a lightweight and easy-
to-understand interface for the user, while limiting user bur-
den and reducing the required a priori environmental knowl-
edge. Confidence has performed well on real-world deploy-
ments, including one deployment of 130 sensors, replayed
datasets, and network simulations. Confidence accurately de-
tects and diagnoses at least 90% of all data, and user interac-
tion improves it’s performance.

1 INTRODUCTION

Even well-planned deployments of wireless sensing systems
(WSS) encounter large numbers of faults that reduce the
quantity and quality of collected data [29, 26, 24, 28, 18, 20].
Nodes suffer environmental depredations [26]; peripherals
such as sensor boards have bugs; collection networks are
unreliable due to low-power radios and environmental fac-
tors [31]. Worse, the sensors themselves are often faulty or
produce confusing data [16, 26]. These problems lead to data
gaps in space and time, which make it difficult to interpret
results reliably.

Distinguishing between data that is faulty or simply unex-
pected is a challenge even in contexts where the environment
is carefully characterized. It becomes more difficult for ex-
ploratory sensing systems, which are deployed precisely be-
cause the expected behavior is unknown. A sensor reporting
out-of-range values may be miscalibrated or it may be report-
ing an unexpected environmental phenomenon, such as a very
low concentration —we have observed both. Should the user
throw out the sensor and its data, or mark them as the most
interesting sensor and data in the deployment?

Scientists handle the uncertainty in these environments by
taking concrete actions in the field. An on-site user can ex-
tract a physical sample for lab analysis or deploy a high fi-
delity sensor to verify unexpected data. Simply by being at
the site when data is collected, human users collect and incor-

porate contextual information when detecting and diagnosing
faults that the system cannot sense. However, in-field valida-
tion and analysis is labor- and time-intensive, and only in-
creases with the number of sensors per deployment. While
unassisted manual interaction with each element in the sys-
tem does not scale, a fully automated approach is also likely
to fail in exploratory environments where system inputs are
inherently difficult to characterize in advance.

We propose a user-centric solution to address faults in ex-
ploratory environments.

Confidence pinpoints potential faults in wireless sens-
ing systems accurately, efficiently, and in real time, al-
lowing users to validate unexpected inputs and address

failures in the field.

Simple fault detection and diagnosis algorithms suggest ac-
tions a user can take to validate or fix potential sensor and
network faults. Algorithms rely on an informal model, built
using features that provide a user with intuition about the
data, long before information is available to build a domain-
specific model. In order to refine this initial model, Confi-
dence incorporates data that is proactively collected by the
user into system algorithms. By incorporating user feedback,
Confidence is able to better adapt to unknown or unexpected
environmental phenomena in real time. System design is in-
tentionally as simple as possible to facilitate this user interac-
tion.

We wrote Confidence out of dissatisfaction with the cur-
rent state of the art in fault detection and diagnosis systems.
The most popular of these techniques is to apply static thresh-
olds to features of the data or to features of the network to
identify faults [25, 28, 3, 19, 22, 15, 18]. But in order to use
this approach in our deployments, we had to manually tweak
system parameters for each new environment. This process
was not easy for unexplored environments where little or no
knowledge is available a priori; it became especially frustrat-
ing when a small change in a static threshold resulted in an
abrupt and inexplicable increase in the number of false posi-
tives or false negatives that the system reported.

In contrast, Confidence is simple and easy to use in the
field. It’s contributions are in the design choices that make
simplicity work, not the mechanisms themselves. We com-
pare Confidence to two static approaches, including Sympa-
thy [19], and find that our user-centric approach detects and
diagnoses faults more quickly and accurately than these static
systems.

We outline three design goals necessary to implement such
a user-centric system.



System transparency for decision support We define a
transparent system as one that 1) uses mechanisms that are
simple to understand and familiar to the user, and 2) makes
system reasoning visible to the user. Confidence is a trans-
parent system. We selected a subset of features from those
familiar to scientists, and designed a simple process to map
data to the space defined by these features. Users are given
access to this mapping.

Because users understand the features, a point’s location
in the feature space can help identify the source of a prob-
lem. Therefore, users with little system specific knowledge
can still take appropriate action in the field even when Confi-
dence’s automated algorithm draws the wrong inference. For
example the GRADIENT feature is defined as the ratio of the
difference in values to the difference in timestamps for two
readings from a sensor. A point that is uniquely located at
one extreme of the GRADIENT axis in the feature space indi-
cates that the data reported by that sensor has changed more
rapidly than data from similar sensors. Using this knowledge
along with context the system may not have, such as a recent
irrigation event in a field, a user can decide on the correct
course of action.

Incorporate user feedback In order to learn from the ac-
tions that a user takes, Confidence refines simplistic models
of the environment, using features selected in advance, with
feedback from the user. As they learn more about the environ-
ment, users can directly update the detection or diagnosis for
any data point. Outcome-based feedback and system trans-
parency lead to a simple and deterministic relationship be-
tween human input and system output. Outcome-based feed-
back tells the user exactly how their updates will influence
system behavior, making it easy to incorporate deployment
knowledge back into the system. This approach makes Con-
fidence easier to modify than static systems.

Manage the tradeoff between user burden and system
accuracy Solely relying on user feedback to classify data
would put too great a burden on the user. Confidence includes
automated fault detection and diagnosis algorithms so that
users do not have to label every point in the feature space.

The first key contribution of this paper is a multi-
dimensional feature space, defined by a small set of features.
This space is designed such that sensors that have the same
problem, or are operating correctly, produce points that are
located close together in the feature space. This trait reduces
fault detection and diagnosis to an automated process that ac-
curately classifies at least 90% of data using dynamic thresh-
olds and other simple mechanisms.

The second key contribution is a transparent process that
makes it easy for users to provide feedback to the system. Us-
ing a channel to directly modify system outcomes, users can
specify a point in the feature space as being faulty, as being
not faulty, or as requiring an action to validate questionable
data or address a fault. Nearby points are given this updated
label in order to minimize the outcome-based feedback re-
quired of the user.

The third key contribution is Confidence itself, which has
been deployed with several real-world wireless sensing sys-
tems. Confidence’s approach applies to faults in environmen-
tal sensors and network nodes. We have tested Confidence
in the field with two real-world deployments, on replayed
datasets, and in simulation. Confidence quickly and accu-
rately detects and diagnoses both injected and real faults in
system health and environmental sensors. We show that sys-
tem accuracy improves over time with limited user feedback.

2 FAULTS IN WIRELESS SENSING SYSTEMS

Confidence’s design was inspired by our experiences with ex-
ploratory deployments. In this section we provide concrete
examples taken from one of these deployments, undertaken
in Bangladesh in January, 2006. Examples include data that
initially appeared faulty but was actually not faulty, data that
initially appeared not faulty but was faulty, and faults with
hard to track causes. In all instances, external validation per-
formed while the data was collected was necessary to dis-
ambiguate the state of the data and, in some instances, track
down the cause of the fault.

We deployed an exploratory WSS in a rice paddy in
Bangladesh to help scientists evaluate the relationship be-
tween irrigation and arsenic contamination in the ground wa-
ter [1]. Tens of millions of people in the Ganges Delta drink
well water impacted by arsenic. This massive environmental
poisoning is projected to cause approximately 3,000 deaths
per year [30]. The experiment was designed and deployed
with scientists and civil engineers from the Bangladesh Uni-
versity of Engineering and Technology and MIT. We de-
ployed 42 ion-selective electrodes (ISEs) to monitor ammo-
nium, calcium, carbonate, chloride, pH, oxidation-reduction
potential, and nitrate, along with 8 soil temperature, moisture
and pressure sensors distributed over 3 different depths and
locations. The network collected 26,000 measurements over
a period of 12 days.

This deployment was short-lived primarily because it relied
on ISEs, which were newly applied to in-situ sensing. While
extremely useful at uncovering otherwise difficult to observe
phenomena, ISEs become unreliable after extended field ex-
posure, making them a good driver for Confidence. Much of
our evaluation is based on successfully detecting and diag-
nosing ISE faults both on historic data traces and in the field.

In order to distinguish between faulty and non-faulty data
in the field, scientists identify the expected operational ranges
for a sensor during sensor calibration. (These ranges can also
be obtained from the datasheet.) The linear detection range
(LDR) is the high-precision range where the sensor is most
sensitive to changes in concentration. The non-linear detec-
tion range (NLDR) is the low-precision range above and be-
low the LDR where the sensor is less sensitive to changes
in concentration. Data outside of the LDR is traditionally
thrown out; however, as we shall see below, in some instances
this data can still provide useful information.

We describe several examples of faults and potential faults
observed in the ISE data. In all graphs, solid horizontal lines



delineate the LDR, and dashed horizontal lines delineate the
NLDR.

Seemingly Faulty Data is Vindicated The top graph in
Figure 1 is a graph of nitrate data collected from 3 sensors
in Bangladesh. Although almost all of the data is outside of
the linear detection range, an indication that the data is likely
faulty, after analyzing soil samples in the lab we determined
the data to be legitimate. The nitrate concentration was sim-
ply lower than the sensitivity of the sensor, so the readings
appeared within the NLDR of the sensor.

Seemingly Non-Faulty Data is Faulty However in some
instances data in the NLDR is in fact faulty. The bottom graph
in Figure 1 shows chloride data collected from 1 sensor in
Bangladesh. Measurements show diurnal variations that re-
semble other non-faulty sensors. However after analyzing soil
samples in the lab we determined that the data was faulty.

Transient Sensor Failures The top and bottom graphs
in Figure 2 are taken from the same ammonium sensor at
two different times. The top graph is of data collected in
Bangladesh where a fault is apparent towards the end of
the deployment. In order to reproduce the fault we deployed
the sensors after returning (bottom graph) and monitored the
data using an early version of Confidence. We discovered the
cause of the problem to be a short in the wiring. Data readings
revert to within range temporarily after we adjusted the wire
at those times indicated by () on the graph.
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Figure 1: Data that appears faulty and is good or vice versa Top: Nitrate
data taken from three different locations; potentially faulty but lab analysis
reveals sensor is good. Bottom: Chloride data taken from a single location;
Regular diurnal variations lead scientists to believe data is potentially good,
but lab analysis reveals data is likely faulty. In all graphs, solid lines delineate
the high-precision range and dotted lines delineate the low-precision range.

In summary, many sources of uncertainty present in WSS
deployments make it difficult to distinguish between expected
behavior and sensor faults. Moreover, minimal resources and
short-lived deployments leave users with less time, data, and
visibility with which to find and fix faults. Given these char-
acteristics, faults are persistent, and prevent WSS from being
deployed at broad scale as a reliable scientific instrument.

Ammonium, Bangladesh 2006 (2 ft)
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Figure 2: Actions in the field reveal source of fault. Top and bottom graphs
contain data from the same ammonium sensor. Data in top graph was col-
lected in Bangladesh, and data in bottom graph was collected after returning.
Circles in the bottom graph indicate points in time when we checked the
sensor and fixed the wiring. Top graph taken from a previous paper [1]

3 RELATED WORK

In this section we discuss systems like Confidence that pro-
vide fault detection, fault diagnosis, and/or decision support
in order to aid users in dealing with faults in WSS deploy-
ments. Fault detection systems define expected behavior; ob-
servations that violate the expectation are faulty. Fault diag-
nosis systems create fault signatures to characterize faults;
behavior that matches the signature receives the associated
diagnosis. Decision support systems provide information to
help a user take the appropriate action.

Hundreds of papers and books have been dedicated to these
subjects. We focus on a sampling of systems that have been
tested on real-world data. Systems included in this discussion
use two common mechanisms to classify faults: rules, deci-
sion trees, and thresholds; and machine learning. We discuss
each category separately.

3.1 Rules, Decision Trees, and Thresholds

We begin with a discussion of rules, decision trees, and
thresholds because they are the most common and simplest
approach available to detect and diagnose faults. Szewczyk
et al. and Tolle et al. apply static thresholds to sensor data
to detect and remove data faults after their deployments at
the Great Duck Island and in the San Francisco Redwoods,
respectively [25, 28]. Thresholds are defined using domain
knowledge of the environment and the sensors, and were only
used for a single deployment.

Analyzing features of the data, instead of the data, can
increase portability of the fault diagnosis system across de-
ployments. Krajewski et al. apply static thresholds to fea-
tures of sensor data collected from their deployment at an ur-
ban sewer to detect and diagnose sensor faults [3]. Data with
an anomalous value for a certain feature receive the diagno-
sis associated by the user. Sympathy [19], MOJO [22], and
Tulip [15] use decision trees to analyze network features for
WSS, 802.11 networks, and IP networks, respectively.



All of these systems use static thresholds which are diffi-
cult to set or modify before or during the deployment [19, 3].
Krajewski et al. found their approach to be most successful
only after the deployment was completed, when they had ac-
cess to all of the data and meta-information about the envi-
ronment. Confidence does not use static thresholds for this
reason. However, we select a subset of the features described
by Krajewski et al. to characterize sensor faults, and we se-
lect a subset of the features used by Sympathy to characterize
network faults.

Memento dynamically assigns thresholds to network fea-
tures extracted from WSS. Dynamic thresholds enable Me-
mento to adapt to different deployments and environments
with limited burden on the user [21]. The authors use Cheby-
shev’s inequality to identify outliers because it applies to
many different distributions. Confidence uses a normal dis-
tribution to dynamically identify outliers in the feature space.
While it is more constrained, using a normal distribution ful-
fills our primary design goals of system simplicity and trans-
parency.

3.2 Machine Learning

Machine learning techniques build dynamic models of ex-
pected and faulty behavior in order to adapt to different envi-
ronments. Systems differ from each other in where they ob-
tain the training data used to build the model.

Kiciman et al. and Fox et al. design fault detection sys-
tems that train on an initial pre-defined period of “normal”
operation on a large-scale Internet system [12, 8]. Kiciman et
al. report detecting 89-96% of anomalous behavior correctly.
Other approaches use historical traces captured from the sys-
tem when it is known to be operating correctly to build mod-
els for different types of behavior: Magpie [2] characterizes
events and resource usage from software components in an IP
network [2]; Eskin et al. characterize the expected ordering of
calls in an operating system [6]; Hines et al. characterize ex-
pected data collected from wired sensor networks [11]. All
of these systems assume that training data contains few or no
faults, and that training data accurately represents expected
behavior. Confidence does not rely on training data.

In order to deal with situations where faults are common,
Demiriz et al. [5] and Dara et al. [4] propose systems that train
on a dataset labelled by a user. Because labelling a dataset
is labor-intensive, like Confidence, these systems reduce the
burden on the user by defining a space where similar data
groups together. The system only requires a small labelled
dataset to automatically associate a label with each cluster
before the deployment begins. However, the problem with
these approaches is that training datasets are difficult to obtain
and label for environments where WSS are deployed. Instead,
Confidence allows users to label regions both before and dur-
ing the deployment.

Larkey et al. [13] and Nath et al. [17] sidestep the problem
of obtaining a training dataset by building a model on-line as
data is collected. They use Naive Bayes classifiers to build
spatial distributions of expected data collected from WSS.
However, these systems assume that faults are not common

and that statistical spatial relationships between communica-
tion neighbors exist.

Most of these machine learning systems are built upon as-
sumptions that cannot be changed once the deployment be-
gins: training datasets should have few or no faults; labelled
datasets should accurately represent the expected operating
space of the system; or spatial relationships should exist be-
tween communication neighbors. These constraints do not
hold for the WSS deployments we have undertaken. Confi-
dence’s outcome-based feedback makes it easy for users to
modify the system’s assumptions and algorithms even after
the deployment has begun, enabling the system to better adapt
to previously uncharacterized environments.

4 SYSTEM DESIGN

We discuss our system design, beginning with a brief
overview of the system.

We designed a transparent feature space, using a small set
of features, so that faults can be detected and diagnosed using
simple mechanisms. We select features such that, in general,
data from sensors that are performing similarly will have sim-
ilar feature values. More specifically, features are selected and
specified such that: 1) non-faulty data points lie close to the
origin of the space (the point where the value for all features
is 0), 2) faulty data points lie far from the origin of this space,
and 3) faulty points that lie close together are likely remedied
by the same action. Given these properties, Confidence can
detect faults using a simple outlier detection algorithm that
identifies points that lie anomalously far from the origin. For
simplicity we use Euclidean distance as the distance metric in
this space. Confidence can diagnose faults using a simple re-
gioning algorithm that groups neighboring points in the fea-
ture space. The user assigns a diagnosis, which is an action
to be taken by the user, to each region in the feature space.
A point is given the diagnosis associated with the region in
space where it is located.

The feature space also simplifies the user’s interaction with
the system. We select a small set of features that are simple
to calculate and familiar to the user. For example, the GRA-
DIENT feature mentioned in Section 1 is calculated using the
equation fgmdient = ‘(xn — Xn—1 )/(tn - tn71)|~ Here, x;, is the
value and #, is the timestamp for the nth data point from a
sensor. Because the features are easy to understand, a point’s
location in the feature space provides intuition on the source
of the problem. Additionally, we use a small set of features
in order to create a low-dimensional space. As a result, the
space is easy to visualize and easy to manage for the user.

Figure 3 is a diagram of the overall system behavior. Sen-
sors periodically transmit data to a base station. Upon arrival
of sensor data, Confidence extracts the features and the result-
ing feature vector is mapped to the feature space. The figure
contains a sample two-dimensional space. We use a multi-
dimensional feature space in order to identify faults that are
uniquely represented by linear combinations of features. We
discuss feature selection and design in Sections 4.1 and 4.2.
Confidence uses the outlier detection algorithm to dynami-
cally update a distance threshold in the feature space (repre-
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Figure 3: Confidence overview.

sented by the black dotted line in the figure); feature vectors
that lie beyond this threshold are faulty. We discuss fault de-
tection in Section 4.3. Confidence groups data using statically
designated regions (represented by the solid red line in the fig-
ure); and notifies the user of the diagnosis associated with that
region of space (represented by the red text in the figure). We
discuss fault diagnosis in Section 4.4. Users can update the
label for any individual point or region in the feature space
at any time. Outcome-based feedback is discussed further in
Section 4.5.

4.1 Feature Selection

Features are selected and designed using four guiding princi-
ples. 1) The feature should be familiar to the user, easy to cal-
culate, and independently verifiable, in order to give the user
intuition about the data. 2) As the feature value increases, the
probability that the sensor is faulty should also increase, so
that faulty data group far from the origin and non-faulty data
group close to the origin. 3) Feature values should be numer-
ically quantifiable so that they can be mapped to the feature
space. 4) Only features that meaningfully distinguish diag-
noses are included in order to limit the number of features. If
two different features are indicators for the same diagnoses in
all instances, then only one of the features will be used.
Features that do not fulfill these requirements lead to a sys-
tem that is less transparent. For example, contrary to intuition
and current practice, we did not include spatial redundancy
as a feature. Scientists often place sensors close together in
order to create redundancy across sensors. This redundancy
is used both formally and in-formally to validate a question-
able sensor’s readings. However we were not able to define
a feature to represent spatial redundancy that met our guide-
lines. It is difficult to identify the minimum distance required
between two sensors in order to consider them redundant, or
to determine how close together values from two neighboring
sensors should be in order to validate each other. Moreover,
neighboring sensors can be in vastly different contexts: con-
sider the case when one temperature sensor is in the shade,
and a neighboring sensor is in the sun. These two temper-
ature sensors may be spatially close together, but will return
different readings. The same issues exist for sensors deployed
in soil, which contains complex and heterogeneous structures
at very small spatial scales. After considering these issues, we
decided not to include a location feature in our feature set.
Confidence uses a separate feature space to classify faults
in environmental sensors and a separate feature space to clas-
sify faults in network nodes. (For simplicity, we refer to both
types of devices as sensors, and refer to information received

from a sensor as data.) Using the guidelines above, we select
three features to define an environmental sensor feature space
and three features to define a system health feature space
(summarized in Figure 4 and described below).

System Health Features System health features are a sub-
set of those used in Sympathy [19]. These features charac-
terize faults that reduce the quantity of data received at the
base station. Like Sympathy, each node in the network is in-
strumented with code to periodically transmit system metrics
to the base station. Confidence extracts a pre-specified set of
features from these metrics. These features are summarized
in Figure 4, and described in more depth elsewhere [19].

Environmental Features With the aid of domain experts
and our guidelines, we selected 3 features from a set of 7 fea-
tures commonly used by scientists to characterize data qual-
ity faults [3]. These features apply to sensors that monitor
diffusion phenomena, such as chemical transport in water or
molecular movement in air. This large class of environments
is characterized by a relatively slow rate of change and an ab-
sence of sharp edges. In future work we plan to expand Con-
fidence to include non-diffusion phenomena such as audio or
image capture.

GRADIENT: Change in value over a period of time.
feradiens = |(x2 —x1)/(t2 —11)| where (x;,1;) is the value and
time-stamp for the i’th data point from a sensor. Diffusion
phenomena obey physical limits as to how quickly they can
change and by how much. Small values for GRADIENT be-
tween consecutive readings are typical, due to noise and le-
gitimate environmental variation. Large values for GRADI-
ENT can be a sign of a faulty sensor, a faulty connection, or a
battery that has a low voltage.

DISTANCE LDR: Distance from a sensor’s linear de-
tection range (defined in Section 2). fpiyrpr = max(x —
LDRypper, LDR;gyer — x,0), Where LDR,,per and LDR;gyer
can be obtained either by calibrating the sensor or from the
sensor’s datasheet. For example, a humidity sensor has phys-
ical limits and should never report humidity above 100% or
below 0%. Large values for DISTANCE LDR can be a sign
of a faulty or miscalibrated sensor, or of a concentration that
is simply outside of the normal detection range of the sensor
and requires external validation.

DISTANCE NLDR: Distance from a sensor’s non-linear
detection range (defined in Section 2). fpignipr = max(x —
NLDRppers NLDRg\ver —x,0). Many sensors have a range
where users are less confident of the data but consider it still
useful. Large values for DISTANCE NLDR can be a sign of a
faulty or miscalibrated sensor.

4.2 Feature Vector Scaling

After a feature value is calculated, it is scaled such that a value
of 0 represents non-faulty data, and a value of 10 or more
represents almost certainly faulty data. This scaling ensures
that no one feature dimension unfairly weights the Euclidean
distance calculation used to detect faults. The result is that
non-faulty data group near the origin of the feature space and
faulty data group far away from the origin.



Feature Description \ Scaling
Environment

GRADIENT Change in value divided by the change in time | max(0,log,(X/16))

max(0,log, (X))

DISTANCE LDR Distance from the linear detection range max(0,log, (X))

DISTANCE NLDR Distance from the non-linear detection range log,(X)

System Health

NODE DEADNESS
APPLICATION DEADNESS
CONGESTION

Time elapsed since node n heard from by any other node
Time elapsed since base-station received application data from node n
Ratio of CRC errors to non-corrupted packets received from node n 10X

max(0,log,(X/8))
max(0,log, (X/16))

Figure 4: Summary of features used for both environmental data and system health data, with associated scaling functions.

Scaling functions need not be exact. The system can adapt
to a large range of scaled values (discussed in the evaluation).
This flexibility is available because each feature value is not
mapped to an explicit state of faulty or not faulty. Instead,
Confidence’s fault detection algorithm detects the boundary
between the non-faulty data, clustered near the origin, and
the faulty data, clustered farther from the origin.

We designed Confidence’s scaling functions to be as simple
as possible. The system first takes a log base-2 transformation
of the value. This works because for all of our features, as the
value increases smaller changes in value are less important.
A log transformation scales data to match this intuition. In
instances when feature values still do not match the 0 to 10
mapping, we divide the value by a constant, S, in the scaling
function max(log2X /S,0). S is chosen for each feature such
that logoX < S for most non-faulty values of the feature X.
The scaling function for each feature is listed in the right col-
umn of Figure 4.

While, in theory, each class of environmental sensor needs
its own scaling function for each feature, in our experience
with over 15 different types of sensors, we are able to use
the same scaling constants for most sensors and features. We
explore this further in the evaluation.

4.3 Fault Detection

In order to detect faulty data, Confidence dynamically calcu-
lates a threshold to separate faulty and non-faulty data in the
feature space. Feature vectors that lie beyond this threshold
in the feature space are classified as faulty.

Confidence builds and continuously refines a distribution
of the distances of non-faulty feature vectors. We assume
these distances are normally distributed because this distribu-
tion is simple to update in real time and transparent to users.
Updating the distribution consists of maintaining running es-
timates for the moving average (i) and standard deviation
(o). Points that lie outside the threshold u + 20 are labelled
faulty, and are not used to update the distribution.

Confidence uses an Exponentially Weighted Moving Av-
erage (EWMA) to update parameters. A EWMA slowly de-
cays the weight of older points, enabling Confidence to bet-
ter adapt to dynamic environments. Static environments are
not adversely impacted by the use of a EWMA. We set the
EWMA parameter, @, to a standard value of .9, and incorpo-
rate the distance of the Nth feature vector, dy, into the cur-
rent moving average, Uy: Uy = (1 — &t)dy + Clly—1. Oy is

similarly updated using oy_; and a running estimate of the
standard deviation, o, calculated using a standard equation:

6= 1/Nx /N x (T, &) — (£, di)?

When the system is initialized, u and ¢ need to be boot-
strapped. During an initial phase, P, feature vectors with dis-
tances from the origin greater than a static threshold, Dy, are
considered faulty. Dy is set to 5, the midway point between
the minimum and maximum scaled values for features. Fea-
ture vectors with distances less than D; are considered not
faulty, and used by Confidence to initialize the distribution
parameters.

The disadvantage of assuming a normal distribution is, of
course, that in many instances highly correlated faulty behav-
ior appears not faulty. However, as we discuss in the evalua-
tion, this approach adapts to a wide range of scenarios and is
robust to a variety settings for Dy and P;, even when over one
half of the dataset is faulty or when faults occur during the
bootstrap phase.

4.4 Fault Diagnosis

Confidence suggests actions a user can take to remediate or
further elucidate potentially faulty data. We design the fea-
ture space such that feature vectors in a similar region are
likely to be addressed by the same action or actions. The sim-
plest approach to group similar feature vectors in the multi-
dimensional feature space is to divide the space into symmet-
ric regions. Confidence defines R regions in each dimension
of the feature space. For an N-dimensional space, R" regions
are defined. Because N is automatically set by the number
of features, R is used to control the number of regions in the
space.

Many values of R result in acceptable system performance,
and we evaluate the tradeoffs in setting this parameter in Sec-
tion 5. Setting R to 3 or higher provides acceptable results, so
we set R to 3 to minimize the number of regions the user has
to label.

The user can assign an action or set of actions to each re-
gion at any point in time. For our deployments, we initialized
the environmental feature space with one of four possible ac-
tions for a user to take: 1) validate questionable sensor data,
2) re-calibrate a sensor, 3) replace a sensor, or 4) replace bat-
teries. We assigned actions to regions with the help of domain
experts and past deployment experience. These actions are re-
fined based on user feedback (described below). The user is



notified of the action(s) associated with the region where the
faulty feature vector is located.

4.5 Outcome-Based Feedback From Users

Confidence’s performance improves with feedback from a
user. The system design enables two modes of user feedback
to Confidence’s fault detection and diagnosis algorithms.

First, the user can provide information to refine the de-
tection and diagnosis algorithms. Although the feature space
makes fault detection simple, it incorrectly assumes that
faulty data are always located far from the origin. In our expe-
rience, instances arise when data located far from the origin
are not faulty, or vice versa. This scenario could arise due to
unexpected environmental conditions: For example an unusu-
ally heavy rain may lead to unexpectedly low concentrations
of certain ions in the soil (further examples provided in Sec-
tion 5.6).

The use of regions in the feature space makes it easy for
users to rectify these problems. The user begins by requesting
a snapshot of the feature space. For each region in the space,
the snapshot includes 1) the feature vector located at the re-
gion’s center, and 2) the list of the most recent data points
associated with that region, each point’s feature vector, and
if the point is faulty or not. Users can manually assign labels
to specific regions, updating either the action associated with
that region or the fault state that should be associated with
data in that region. Data can either be from a specific type of
sensor or all sensors associated with that region. We evaluate
the impact of this kind of interaction on detection accuracy
using data from a recent deployment in our evaluation.

Second, the user can provide information to refine the cal-
culation of feature vectors, which feeds into the detection and
diagnosis algorithms. Data that generate feature vectors as-
sociated with regions in the middle of the feature space are
not definitely faulty, and require further validation. Upon no-
tification, the user can validate readings from a sensor and in-
form Confidence if the reading is valid or not. If the reading is
not valid, the user needs to further investigate the problem. If
the reading is valid, the user informs Confidence. Confidence
uses this information to expand the detection range for this
sensor. One of the reasons we selected DISTANCE LDR and
DISTANCE NLDR was to facilitate this kind of interaction.

The user provides feedback to Confidence through a com-
mand line interface, and obtains information about the system
in two log files.

4.6 Discussion

Our current feature space does not detect stuck-at-faults that
occur inside the detection range of a sensor. Data from a sen-
sor that is “stuck” at a certain value has a GRADIENT of 0,
which is considered non-faulty in our current feature space
definition. One way to address this situation would be to in-
troduce a component of time into the feature space, because
a GRADIENT of 0 for a short period of time likely indicates
non-faulty behavior, but a GRADIENT of 0 for a long period
of time likely indicates a fault.

5 EVALUATION

Our performance hypothesis is that 1) the system correctly
detects and diagnoses at least 90% of all data in a wide range
of deployment scenarios; 2) system accuracy improves when
a user incorporates outcome-based feedback; and 3) Confi-
dence performs better than common thresholding techniques,
with less burden on the user. We show that Confidence de-
tects and diagnoses most faults, in many different deployment
scenarios, quickly and with few false positives and negatives,
even when over one half of the data are faulty. In addition, we
evaluate Confidence’s sensitivity to values of various system
parameters.

5.1 Methodology

Our primary metric for system performance is the fraction of
non-faulty and faulty data that is correctly detected and di-
agnosed. We evaluate system performance in addressing in-
jected and actual sensor faults in real-world deployments, real
faults in replayed data-sets collected by exploratory sensor
deployments, and injected network faults in simulation.

To use accuracy as our metric, we need to know what data
is truly faulty, what data is truly not faulty, and when any
faults occurred. In other words, we need access to ground
truth. In a simulation, ground truth is precise because we can
inject a known fault at a known time into the simulation. At-
taining ground truth in the field, especially for environmental
data, is not so straightforward. Our exploratory sensing de-
ployments collected data about environments where little is
known about the exact chemistry and daily biological reac-
tions. The scientists did not know what to expect from the
data, and in fact data from our deployments revealed diur-
nal variations in ammonium and carbonate concentrations in
Bangladesh, and in nitrate concentration in the San Joaquin
River, that were previously unexpected. In these instances, an
approximation to ground truth is achieved using a combina-
tion of manual analysis by domain experts, results of physical
samples that were extracted during the deployment and ana-
lyzed in a lab, and post-deployment analysis and calibration
of sensors. We treat the results of this analysis as ground truth
when evaluating accuracy for environmental sensor faults.

We describe our methodology in evaluating Confidence’s
performance in detecting and diagnosing sensor faults and
network faults separately.

Sensor Faults Environmental sensor faults are difficult to
simulate authentically, so we use replayed data sets collected
from past deployments. However, the validation process we
describe above is a laborious task, so even these data sets are
rare.

We use a subset of data from two deployments for which
we can systematically detect and diagnose faults using our
ground truthing process. The first data set is from a deploy-
ment undertaken in Bangladesh in January, 2006 (described
in Section 2). We use 15,000 points collected over the course
of 2 weeks from 33 sensors (30 ion-selective electrodes, 3
temperature sensors). Of the 8,000 points that are known to
be faulty, we are able to assign confirmed diagnoses to 4,000



points. The second dataset is from an ongoing deployment at
James Reserve (JR) initially set up in October, 2005. The pur-
pose of this deployment is to explore the spatial and temporal
scales at which sub-surface measurements should be taken,
and to study the relationship between soil CO, fluxes, mois-
ture, and temperature conditions in the soil. We use 35,400
points collected over the course of a day from 130 sensors,
3800 of which are known to be faulty. We could not confirm
the diagnoses for any of the faults that occur at JR although
the faults themselves were confirmed by domain experts. This
information is summarized in Figure 5.

In order to simulate scenarios beyond these two deploy-
ments, we vary system parameters and re-run Confidence on
our two datasets.

We evaluate the value of outcome-based feedback by quan-
tifying fault detection accuracy with and without user interac-
tion for the deployment at JR.

We evaluate Confidence’s ability to manage system accu-
racy versus user burden by comparing Confidence with two
common thresholding techniques used by scientists to iden-
tify faults.

We also deploy Confidence in the field with two real de-
ployments: one in the San Joaquin River Valley, and one at
the James Reserve (discussed in Section 5.6).

Network Faults To evaluate system performance in ad-
dressing network faults, we compare Confidence with a pre-
vious similar system, Sympathy [19], in simulation. We sim-
ulate different deployment scenarios by varying network pro-
tocol parameters and topologies in order to validate the first
part of the performance hypothesis. Simulations are run on a
25 node network, where each node transmits a system health
packet to the sink once every 3 minutes and environmen-
tal data from each sensor once every 3 minutes. Simulations
were performed in EmStar [9], and parameters were set to re-
flect a realistic wireless sensing system deployment. After an
initial start up period, fail-stop faults are injected into either
a single node or multiple nodes in the network at some ran-
dom time. For a single fault, we ran 24 simulations with faults
injected into different nodes. For multi-fault simulations, a
test consisted of injecting a set of faults simultaneously. Sets
range in size from 2 to 9 nodes, and each test is repeated 5
times.

5.2 Detection and Diagnosis Accuracy for Sensor
Faults

Base Performance We begin by establishing a point of
comparison for subsequent experiments by quantifying sys-
tem accuracy when running Confidence with default parame-
ter settings on datasets from Bangladesh and James Reserve.
System parameters are set to their default values: the fault
detection EWMA « is set to 0.9; initialization distance and
duration Dy and P are set to 5 and 300, respectively; the num-
ber of regions in each dimension of the parameter space, R,
is 3; and feature selection and scaling factors are as defined
in Figure 4. The system meets our baseline performance con-
straints.

Bangladesh JR

Number Sensors 33 130

Faulty / Total # Points | 8000/ 15000 3800 /35400
Non-Faulty Detected | 98% 90%

Faulty Detected 94% 83% 1 99.9%
Faulty Diagnosed 92% NA

Figure 5: Confidence fault detection and diagnosis accuracy using default
parameter settings.

Of the 15,000 points from Bangladesh, Confidence cor-
rectly detects 98% of non-faulty points and 94% of all faulty
points. Of the 4,000 faulty points with known diagnoses, Con-
fidence assigns the correct diagnosis to 92%. Figure 5 sum-
marizes the results and introduces labels for these three cate-
gories used in all subsequent plots.

Of the 35,400 points from James Reserve, Confidence cor-
rectly detects 90% of non-faulty points and 83% of all faulty
points, with an overall detection accuracy of 89%. Most of the
faults that Confidence does not detect occur at a node which
returns a value of O for all sensors for limited time. This oc-
curred because the software on the node returns O in a fault
condition; unfortunately O is a valid reading for many sensors.
When we manually modified the data set to reflect a fix in the
software to return —10000 instead of 0, detection of faulty
data improves from 83% to 99.9%.

In subsequent sections, we only provide results from
Bangladesh due to space constraints. Confidence’s perfor-
mance on the dataset from James Reserve is similar to per-
formance on the dataset from Bangladesh.

Feature Selection We evaluate our feature set by compar-
ing detection and diagnosis accuracy when using any com-
bination of 1, 2, or all 3 features. All of the features Confi-
dence uses are necessary to meet our baseline performance
constraints, though each feature is not equally important in
detecting and diagnosing faults.

Figure 6 contains two bar graphs. Each bar represents one
run of Confidence using a subset of features, and tics on the x-
axis are labelled with the features that were used for that test.
The top plot quantifies the amount of faulty and non-faulty
data Confidence correctly detects, the bottom plot quantifies
the amount of faulty data Confidence correctly diagnoses. De-
tection performance of non-faulty data is not impacted as long
as at least one feature is used, so all performance differences
can be attributed to differences in identifying faulty data.

Not all features contribute equally to the detection and di-
agnosis of faulty data. DISTANCE LDR is the most important
feature in detecting faulty data. When the DISTANCE LDR
feature is excluded (3rd bar on the plot), detection accuracy
drops to 83%, and diagnosis accuracy drops to 66%. In other
words, for 17% of all data and 26% of faults with known diag-
noses, since the GRADIENT and DISTANCE NLDR features
have normal values, DISTANCE LDR is the only feature that
can be used to detect and diagnose these faults. Excluding
DISTANCE NLDR (4th bar on plots) does not impact fault
detection. This is expected because the DISTANCE LDR fea-
ture is always greater than or equal to the DISTANCE NLDR.
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Figure 6: Detection and diagnosis accuracy achieved when Confidence uses
every possible subset of features to define the feature space. For the X-axis,
All means that all features were used in detecting and diagnosing faults,
NLDR refers to DISTANCE NLDR, LDR refers to the DISTANCE LDR,
and Grad refers to GRADIENT.

However, diagnosis accuracy drops to 26% when DISTANCE
NLDR is not used.

GRADIENT is the least powerful of the features for our
datasets. When it is the only feature used, 52% of faulty and
non-faulty data are correctly identified, and only 2% of faults
are correctly diagnosed. Excluding GRADIENT reduces de-
tection accuracy by only 2%, and drops diagnosis accuracy
by only 1%. While not impacting performance significantly
for these datasets, GRADIENT is necessary to detect and diag-
nose certain types of faults, as we will see in our deployment
experiences.

Feature Scaling Confidence relies on domain expertise to
set the scaling constant, S, for each feature/sensor pair. Simi-
lar to the case where a feature is excluded from the feature set,
scaling constants impact detection and diagnosis accuracy be-
cause they control each feature’s weight in the distance cal-
culation and the region of space where the feature vector is
located. We evaluate the sensitivity of detection and diagno-
sis algorithms to the scaling constant, and find that system
performance is robust to a wide range of constants.

Figure 7 contains representative results from our simula-
tions. We plot detection and diagnosis accuracy on the Y-axis
and the setting for the inverse scaling constant (1/S) on the
X-axis. As 1/S increases, so does the scaled feature value.
Each line in the plot corresponds to a set of tests where a
constant group of features was scaled by the value on the
X-axis. The top two lines correspond to detection and diag-
nosis accuracy when scaling DISTANCE LDR, and the bot-
tom line corresponds to the detection accuracy when scaling
Di1STANCE LDR and DISTANCE NLDR together. In all in-
stances, as 1/ falls below 1 for a feature, the system behaves
as if that feature were not included. As 1/S increases, detec-
tion and diagnosis accuracy are not impacted. Detection accu-
racy is not impacted because the threshold is dynamically cal-
culated and can adapt to the changing spatial distribution of
faulty data. We initially expected diagnosis accuracy to suffer
because the regions are statically assigned. However, diagno-
sis accuracy is not significantly impacted because, even in the
extreme case, all faults receive the action associated with the
most outer region. In most instances, this action is the same

as the action assigned to the neighboring region in the space.

As users update the feature space with different actions, di-
agnosis accuracy will be impacted if 1/S is set inconsistently
with the region labeling. We ignore this case because the user
assigns both the scaling constants and the actions in the re-
gions, so both should be consistent.

We also evaluate performance when the log base used to
scale feature vectors is varied; any log base less than 4 results
in acceptable performance.

Accuracy vs Scaled Feature Value

LDR —8—
LDR Diagnosis —a—
LDR + NLDR —%—

0.1 1 10
1/S (Scaling Constant)

Accuracy
o
(6]

Figure 7: Detection and diagnosis accuracy when varying scaling factors ap-
plied to DISTANCE LDR individually, DISTANCE NLDR individually, and
both at the same time.

Fault Detection We continue our sensitivity analysis on
fault detection parameters (¢, Dy and P;). We vary settings for
these parameters and quantify detection accuracy. (We do not
quantify diagnosis accuracy because these parameters do not
impact the diagnosis algorithm.) o and P; impact detection
accuracy when spatial distributions of faulty and non-faulty
data change over time. Data distributions remain relatively
stable for our datasets, so detection accuracy is not signifi-
cantly impacted by these parameters (plots not shown). Dy is
varied in integer steps from 1 to 10.

Confidence meets our performance constraints as long as
at least 50% of faulty feature vectors lie farther than Dy
units from the origin of the feature space. In our Bangladesh
dataset, 50% of faulty feature vectors are 9 or more units
away from the origin. So Confidence accurately classifies
most data if Dy is set to 9 or less for this dataset.

Confidence does not impose assumptions on the frequency
of faults. However, there is a dependence on where the faulty
feature vectors lie in the feature space.

Static Regions —
Online Clustering ——3

11

Number Regions/Clusters

Diagnosis Accuracy

Figure 8: Diagnosis accuracy with varying number of regions or clusters in
the feature space.

Fault Diagnosis We continue our sensitivity analysis for
the fault diagnosis algorithm. We evaluate the impact of 1)
the number of regions in the feature space, and 2) the choice



of static regioning versus on-line clustering on diagnosis ac-
curacy. (We do not evaluate detection accuracy because the
number of regions does not impact the detection algorithm.)

We begin with an evaluation of the number of static re-
gions. As discussed in the architecture section, the number of
regions is set to N¥ where N is the number of features in the
feature set, and R is the number of divisions in each dimen-
sion. We vary R from 2, the minimum number of divisions,
to 5, producing from 8 to 125 regions in the space. System
transparency drops as the number of regions increases.

The darkly shaded boxes in Figure 8 represent the relation-
ship between diagnosis accuracy and the number of static re-
gions in the feature space. Diagnosis accuracy is not impacted
when R is set to at least 3, with 27 corresponding regions in
the 3-dimensional feature space. As the number of regions
falls below 27 dissimilar feature vectors are grouped together,
resulting in an increase in the number of incorrect diagnoses.
As the number of regions increases beyond 27 accuracy is not
initially impacted, but similar feature vectors are more likely
to be separated across multiple regions. In this case, users
will have to label and update more regions, making diagnosis
inefficient and the system less transparent.

We also evaluate performance when using an online vari-
ant of K-means clustering to group similar data in the feature
space. K-means is a lightweight, online clustering algorithm
commonly used by systems to classify faults [14, 10, 7, 27].
Our implementation is largely based on an on-line version of
K-means clustering described in [23], which is one of the few
algorithms to meet our criteria. The lightly shaded boxes in
Figure 8 represent diagnosis accuracy as we vary the initial
number of clusters. As the number of initial regions is set to
27 or more, static regions performs as well as well as online
clustering because cluster movement drops and clusters es-
sentially mimic static regions. However, clustering also per-
forms well even with fewer clusters. This is likely because the
clusters move around in the space, adapting their location to
the data (unlike the static regions).

While clustering performs as well or slightly better than
static regioning, we chose the latter because static regions
lead to a more transparent system. A user assigns an action to
each region of the feature space. Static regions do not change
location in the feature space, unlike clusters, so the relation-
ship between user updates and expected outcomes is deter-
ministic and transparent to the user.

5.3 Network Faults

We quantify Confidence system performance in detecting and
diagnosing network faults in a range of different deployment
scenarios: a simulation with a single injected fault, a simula-
tion with multiple injected faults, and simulations where net-
work and application parameters are varied to simulate dif-
ferent types of deployments. We can evaluate both fault de-
tection and fault diagnosis accuracy because we control the
simulation. A false positive is either a notification of a fault at
a non-faulty node, or a notification of the incorrect diagnosis
at the faulty node. We can also evaluate detection latency in
this context because we have access to the time the fault is in-

10

troduced into the network. Detection latency is important for
systems that aim to enable real-time user interaction. We run
Confidence and Sympathy in simulation and compare their
accuracy and latency.

Confidence reports significantly fewer false positives than
Sympathy in each simulation. The top graph in Figure 9 is
a histogram of the number of false positives that occur in
each simulation. Some of the false positives generated by
Sympathy occur because the decision tree and thresholds are
statically defined. Correlated behavior that initially appears
faulty triggers Sympathy’s decision tree, but does not appear
anomalous in Confidence’s feature space. Furthermore, Sym-
pathy’s attempt to provide precise diagnoses is more often
wrong than Confidence’s more broad action-based diagnoses.

Confidence correctly identifies faults in less than half the
time it takes Sympathy. The bottom graph in Figure 9 is an
empirical cumulative distribution function (CDF) of the de-
tection latency of faults for all 24 runs. Sympathy takes longer
to classify faults because 1) Sympathy obtains system health
metrics, such as the neighbor list, from the routing layer,
which is subject to its own timers; and 2) faults must persist
in Sympathy for 540 seconds ( a hard threshold set in the fault
tree) before they are identified. The system designers of Sym-
pathy note that decreasing this timer may improve detection
latency, but increases false positive notifications [19].
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Figure 9: When compared to Sympathy, Confidence produces fewer false
positives (top graph) and detects faults more quickly (bottom graph).

We evaluate Confidence’s ability to adapt to different de-
ployment scenarios by changing network and application pa-
rameters, and injecting faults in up to a third of the network.
We vary the periodicity of routing beacons from 10 to 100
seconds and application data periodicity from 2 to 10 min-
utes. Periods are bounded above by simulation lifetime. De-
tection latency is not impacted, and the average number of
false notifications reported in one simulation doubles (from
.45 to .9) when beacon periodicity increases by a factor of 10
and application data increases by a factor of 5.

We evaluate Confidence’s ability to correctly classify faults
when multiple faults are injected into the system. When up to
a third of the network is faulty (i.e. 9 faulty nodes in a network
of 25 nodes), Confidence detects most of the injected faults
with few false positives. Figure 10 is a graph of the number
of faults correctly detected divided by the number of total
injected faults, averaged over all runs. As expected, as the
number of faults injected increases (plotted on the X-axis),



the percent of faults correctly detected decreases (plotted on
the Y-axis). In all instances, Confidence never reports more
than 3 false positives. Confidence’s dynamic calculation of
the distance threshold in the feature space enables Confidence
to automatically adapt to the different scenarios. Sympathy
was not designed to detect more than one fault and performs
significantly worse.
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Figure 10: Confidence detects most faults with few false positives when up
to a third of the network is faulty.

5.4 Incorporating Outcome-Based Feedback

To validate that system accuracy improves when a user in-
corporates outcome-based feedback (the second part of the
performance hypothesis), we quantify fault detection perfor-
mance with and without user feedback using replayed data
collected at JR. We use the dataset from JR because we had
deployed Confidence with this deployment and took actions
in the field to validate potential faults. Confidence correctly
classifies 90% of non-faulty data without user interaction, and
correctly classifies almost 100% of non-faulty with outcome-
based feedback from the user.

The top plot in Figure 11 is a snapshot of the feature space
containing data from the deployment. We project the data
onto two (of the three total) dimensions: GRADIENT and DIS-
TANCE LDR. The plot contains data that Confidence initially
classified as faulty, and our outcome-based feedback to the
system. We used the three dimensional version of this snap-
shot in the field to identify actions to take during the deploy-
ment. We describe the actions we took in the field and our use
of outcome-based feedback to improve system accuracy.

Confidence first notified us of faulty soil moisture data that
occurred outside of the LDR for those sensors; data is rep-
resented by red Xs in the figure. After taking a soil sample
we determined that the environment contained no moisture,
so the sensors were operating outside of their expected sam-
pling range. We updated the label for soil moisture data in this
region as “not faulty” (updated label shown in red text in the
figure). When we re-run Confidence on the replayed dataset
with this updated label, Confidence classifies an additional
8% of non-faulty data correctly.

Confidence also notified us of faulty PAR (i.e. light) data
that had high gradients: data is represented by grey triangles
in the figure. After physically observing the sensors, we dis-
covered that the sensors were located directly under a tree.
Because it was an extremely windy day the tree branches
moved back and forth, causing the sensors to perceive ex-
treme changes in light intensity over short periods of time.
We updated the label for PAR data in this region as “not
faulty” (updated label shown in grey text in the figure). Con-
fidence classifies an additional 1.9% of non-faulty data cor-
rectly when we re-ran the system on replayed data from the
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field with this updated label. We were unable to improve the
incorrect classification of the final 600 faulty points because
these points clustered near the origin of the feature space, near
points from the same sensors that were not faulty.

Confidence’s static regions accurately group similar data,
so a single label can be applied to a cluster of data. As a
result, in many instances system accuracy improves signif-
icantly each time the user updates a single label. The bot-
tom plot in Figure 11 contains the same snapshot of the fea-
ture space with the addition of Confidence’s static regions. In
most cases, similar types of faults group together in the same
region. Therefore a single updated label is accurately general-
ized to the group of similar data, leading to improved system
accuracy.
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Figure 11: Both plots are snapshots of a Confidence feature space with data
from the deployment at JR projected onto two (of the three total) dimensions:
GRADIENT and DISTANCE LDR. The top plot contains data that Confidence
initially classified as faulty, and our outcome-based feedback to the system.

Thus, preliminary results indicate that outcome-based
feedback can improve system accuracy — in this deployment,
10% fewer false positives — with limited work by the user.
Future work will include running Confidence in more de-
ployments in order to evaluate performance in the presence
of more heterogeneous behavior.

5.5 Comparison to Thresholding

To validate that Confidence performs better than common
thresholding techniques with less burden on the user (the third
part of our performance hypothesis), we compare Confidence
to two common thresholding techniques. Rejecting data that
falls outside of a threshold is one of the easiest, and there-
fore most commonly used, outlier detection methods. With
limited feedback from the user, Confidence more accurately
classifies data than these thresholding techniques, even when
thresholds are manually tuned to maximize detection accu-
racy. We use the data collected during our James Reserve
deployment because we took actions in the field and incor-
porated feedback into the system. Therefore, we can quantify
user feedback to Confidence (in the form of updating region
labels) and detection accuracy as described in the previous
subsection.
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Figure 12: Plot of number of points that have been mis-classified by one
of three techniques: Dynamic thresholding, static thresholding, and Confi-
dence. The two horizontal lines in the plot correspond to the performance
achieved by the thresholding techniques with optimal parameter settings; the
third line corresponds to Confidence’s performance as the user interacts with
the system.

We implement two common thresholding techniques and
manually tune parameters in order to identify the thresh-
olds that achieve the best detection accuracy for each sen-
sor. The first approach applies static ranges to data values.
We begin with ranges assigned by domain experts. (These
are the ranges used by Confidence to calculate the DIS-
TANCE LDR for each sensor.) We then adjust each range
by small increments to find the range which correctly clas-
sifies the most data for each sensor. The second approach dy-
namically calculates a range using running estimates of the
mean (1) and standard-deviation (0): Range,,per = 4 +NO,
and Rangejyyer = U — No. We identify the value of N that
achieves the best detection accuracy.

The plot in Figure 12 summarizes our results. The two
horizontal lines correspond to the performance achieved by
the best possible threshold value for both thresholding tech-
niques; the final line corresponds to Confidence’s perfor-
mance as the user updates region labels.

User feedback lets Confidence achieve better accuracy than
both thresholding techniques. We tuned the thresholding tech-
niques once we had access to all of the data and ground
truth, but this approach was still more difficult than using the
outcome-based feedback channel to update region labels. In-
stead of attempting to modify thresholds or add new, possibly
conflicting, rules to the system, Confidence users simply up-
date the label for a data point. Because the feature space accu-
rately groups similar points together, the system can general-
ize this label to all neighboring points. This approach makes it
easy for users to identify and correct a large number of corner
cases in the field. Moreover, users can visually see the results
of their interaction immediately in the feature space, leading
to a more transparent and intuitive interface.

5.6 Deployment Experience

Scientific deployments differ significantly from indoor or out-
door testbeds because scientific goals supersede all others, in-
troducing an unexpected set of challenges and faults that are
otherwise ignored. Therefore, we evaluated Confidence in the
field with two real-world WSS deployments, a deployment in
a riverbed in the San Joaquin River Valley and a deployment
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in a forest in the James Reserve. This second deployment is
separate from the JR deployment described in the previous
subsections. We used Confidence to detect real sensor faults
and injected sensor faults in the field. Our experience with
using Confidence has been positive.

5.6.1 San Joaquin

In our first deployment, we accompanied a group of scien-
tists to install a WSS at the confluence of the Merced and
San Joaquin River. The group’s scientific goal was to bet-
ter understand how the agricultural runoff that pollutes the
San Joaquin river impacts the riverbed just past the conflu-
ence. We deployed 14 ammonium and nitrate ion-selective
electrodes and 7 temperature sensors in the soil. We system-
atically validated data collected from all 21 sensors to ensure
that Confidence did not miss any faults, and did not direct
us to take any unnecessary actions in the field. Detection and
diagnosis accuracy are important because in-field actions are
time and labor intensive. Confidence correctly detected and
diagnosed all faults, with no false positives.

We took two steps to validate data collected from sensors.
First, we deployed a redundant set of sensors to shadow the
scientist’s main deployment. However, the heterogeneous na-
ture of soil makes it virtually impossible to provide true mea-
surement redundancy in these environments. Even tempera-
ture has been observed to differ by several degrees in under-
ground measurements located within a foot of each other. So
we took a second step to further validate sensor readings: We
periodically extracted water samples from each sampling site
to obtain an independent measurement of the ammonium and
nitrate concentrations. Water samples were analyzed using a
Hach Kit, which is a mobile spectrometer designed to ana-
lyze samples in the field. Because pollutant concentrations
can vary during the day, we extracted samples at the begin-
ning and end of each of the five days from all seven sampling
sits. Extracting and analyzing even a single sample requires
two people working in parallel for half an hour, so our six
person team spent most of the deployment either validating
sensor data, deploying sensors, or testing sensors.

We describe two of the faults. The first fault was a bad ni-
trate sensor. Confidence notified us to validate the sensor be-
cause the value for GRADIENT was anomalously high com-
pared to all other sensors in the deployment, and data from
the sensor occasionally fell outside of the LDR. The scien-
tist’s initial intuition was that Confidence was wrong and the
sensor was OK because much of the nitrate data fell within
the operating range of the sensor. We extracted a water sam-
ple to validate the data, and confirmed that the data was ac-
tually faulty. The validation point and sensor data are shown
in Figure 13. In the graph the small points correspond to sen-
sor readings, and the large [J corresponds to the results of the
physical sample. Upon removing and re-calibrating the sen-
sor, we discovered that the sensor was not completely dead,
but that the membrane had lost much of its sensitivity and
needed to be replaced.

A second fault was a temperature sensor with a discon-
nected wire. The temperature data was within the operat-
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Figure 13: Nitrate readings generated by an ISE. Confidence identified this
sensor due to a large value for GRADIENT. Samples used for lab analysis of
nitrate (large square) show large discrepancies compared to the ISEe. The
ISE was determined to be broken when calibrated after the deployment.

ing range of the sensor, but values for GRADIENT were
anomalously high. Confidence notified us to check the sensor,
and upon inspection we found that the sensor’s ground wire
had become disconnected. With the ground disconnected the
ADC pin was floating, producing wild variation in readings.
After reconnecting the wire, we notified Confidence of the ac-
tion we had taken. The data returned to normal once we made
the fix.

Confidence accurately classified data from 10 ISEs and 6
temperature sensors as not faulty. We verified that the data
from the ISEs were not faulty by comparing the readings to
the physical samples extracted during the deployment.

5.6.2 James Reserve

We also deployed Confidence in the field with our deploy-
ment at James Reserve. We have already described this de-
ployment in the beginning of this section. Over the course of
two days, we injected faults into sensors to further validate
Confidence’s detection and diagnosis accuracy. We chose
sensors that were easily accessible, and replaced them with
one of our own sensors so as not to damage deployed sen-
sors collecting critical scientific data. In order to inject faults
we moved sensors to an extreme micro-climate specific to the
sensor. We moved soil temperature and moisture sensors from
the soil into a cold bag of water, and moved humidity and air
temperature sensors into an enclosed pitcher of hot water. In
all instances, Confidence detects the injected fault within 5
minutes.

Confidence also notified us of a fault on a temperature sen-
sor located next to the site where we were working. The sen-
sor was reporting temperature 10 degrees higher than the sur-
rounding sensors. After checking on the sensor, we immedi-
ately discovered that it had become unearthed and was ex-
posed to direct sunlight. This fault was likely an unintended
consequence of our work at the neighboring site. Without be-
ing at the site, it would be virtually impossible to determine
the cause of the problem.

5.7 Evaluation Summary

We show that Confidence detects and diagnoses both real and
injected sensor and network faults quickly and with few false
positives and negatives, even when over one half of the data
are faulty. We use replayed data from two deployments, net-
work simulations, and two real-world deployments to evalu-
ate a three-part performance hypothesis. First, we show that
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Confidence correctly detects and diagnoses at least 90% of
data in this wide range of deployment scenarios. We establish
ground truth for the datasets using a combination of sensor
calibration, redundant sensor deployment, in-field observa-
tion, and soil sample analysis. Second, we show that system
accuracy improves when a user incorporates outcome-based
feedback. We quantify fault detection performance with and
without user feedback using replayed data from our first de-
ployment at JR. Third, we show that with limited feedback
from the user, Confidence accurately classifies more data than
common thresholding techniques, even when thresholds are
manually tuned to maximize detection accuracy. Our sensi-
tivity analysis shows that Confidence performs well under a
wide range of system parameter settings.

6 CONCLUSION

We present a novel solution to the problem of deploying sys-
tems in uncharacterized environments by incorporating user
feedback into system algorithms during the deployment. Con-
fidence’s outcome-based feedback is transparent and enables
users to directly modify outcomes, thereby avoiding such
frustrating events as forcing a user to blindly tune parameters
in the field. Confidence limits the outcome-based feedback re-
quired of the user through the design of a feature space that:
1) reduces fault detection and diagnosis to outlier-detection
and other simple automated mechanisms, and 2) enables the
system to re-use user feedback on future data. We have run
Confidence on data from several wireless sensing systems:
We have run it in the field with a deployment of up to 130 sen-
sors, and tested it on replayed data traces collected from past
deployments. Confidence has been tested on over 15 different
types of sensors. We demonstrate that Confidence detects and
diagnoses most faults, in many different deployment scenar-
ios and with little knowledge about the environment required
in advance, quickly and with few false positives and nega-
tives, even when over one half of the data are faulty.
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