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Hermaphrodites and parasitism: 
size-specific female reproduction 
drives infection by an ephemeral 
parasitic castrator
Caitlin R. fong1*, Armand M. Kuris1 & Ryan F. Hechinger2

Sex can influence patterns of parasitism because males and females can differ in encounter with, and 
susceptibility to, parasites. We investigate an isopod parasite (Hemioniscus balani) that consumes 
ovarian fluid, blocking female function of its barnacle host, a simultaneous hermaphrodite. As a 
hermaphrodite, sex is fluid, and individuals may allocate energy differentially to male versus female 
reproduction. We predicted the relationship between barnacle size and female reproductive function 
influences the distribution of parasites within barnacle populations. We surveyed 12 populations 
spanning ~400 km of coastline of southern California and found intermediate-sized barnacles where most 
likely to be actively functioning as females. While it is unclear why larger individuals are less likely to be 
actively reproducing as females, we suggest this reduced likelihood is driven by increased investment 
in male reproductive effort at larger sizes. The female function-size relationship was mirrored by the 
relationship between size and parasitism. We suggest parasitism by Hemioniscus balani imposes a cost to 
female function, reinforcing the lack of investment in female function by the largest individuals. Within 
the subset of suitable (=female) hosts, infection probability increased with size. Hence, the distribution 
of female function, combined with selection for larger hosts, primarily dictated patterns of infection.

Sex can drive patterns of parasitism in host populations for two overarching reasons. First, behavioral differences 
between males and females can lead to differences in encountering parasite transmission stages [e.g1–3.]. Second, 
males and females can differ regarding their compatibility as hosts after encounter4. An interesting twist occurs 
when sex is not fixed. In hermaphroditic species, individuals may allocate variable amounts of energy to male 
or female function5. In such cases, individuals may experience sex-based differences in levels of parasitism in a 
single lifetime.

Hemioniscus balani is a parasitic isopod that specialises on barnacle ovarian fluid and blocks female reproduc-
tion6–8. This protandrous isopod infects at least 14 species of hermaphroditic barnacles and has a cosmopolitan 
distribution6–9. Infection occurs when a highly mobile cryptoniscus larva finds an appropriate barnacle. This 
cryptoniscus is a large (>1 mm) and highly mobile isopod. The cryptoniscus enters the barnacle and attaches 
to and feeds on the ovaries, draining ovarian fluid. This results in suppression of female function while male 
function is retained6,9,10. The parasite metamorphoses from male to female inside the barnacle host, where it is 
fertilized by another cryptoniscus stage which then leaves that host6,9,10. Multiple infections are infrequent11. The 
parasite matures, releases its offspring, and dies, after which the host recovers female reproductive function6; 
mortality to the host has never been documented. The parasite offspring enter the plankton, likely attaching 
to a copepod intermediate host, before infecting the barnacle host to mature and complete their life cycle6,9,10. 
Mathematical models suggest that infection (time from entry to life cycle completion) lasts ~10 days12; thus, the 
parasite is very short lived compared to the barnacle host. This isopod is an ephemeral, semelparous parasitic 
castrator—a distinctive strategy with no other examples known to us (see13,14 for reviews of parasitic castration).

Chthamalus fissus is a species of barnacle frequently infected by Hemioniscus balani. Like many barnacles, 
C. fissus is a protandrous hermaphrodite—individuals begin their lives as males and, with increasing age and 
size, allocate more energy to female function to become simultaneous hermaphrodites5,15–18. Thus, the amount 
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of energy barnacles allocate to female function can vary with age. The parasite’s specialization on female ovarian 
fluid, combined with the hosts’ variable allocation to female function, makes this a useful and interesting system 
to study the intersection between parasitism and female sex allocation.

In this study, we use a survey approach to assess the relationship between barnacle size, female reproduc-
tion, and parasitism. We hypothesize that patterns of infection by H. balani mirror variation in barnacle female 
function because the parasite is an ovary specialist. However, among suitable (=female) hosts, we hypothesize 
infection risk increases with body size. This could happen for two reasons, though we are not able to discriminate 
between the two. First, larger barnacles are larger targets, and should be more likely to encounter infectious stages. 
Second, parasites might prefer, and actively infect, larger hosts with more resources (e.g.13,19–21). To test these 
hypotheses, we surveyed barnacles for size, female reproductive function, and parasitism by H. balani from 12 
populations at 6 localities along the Southern California Bight.

Methods
Chthamalus fissus is reproductive year-round, with peak brooding in spring through summer21. Female reproduc-
tive functionality can fluctuate as a product of the brooding cycle and food availability, while male functionality is 
always present once maturity is reached22. We use the presence of female functionality as a binary approximation 
of female reproductive effort because these barnacles can complete an entire brood cycle in ~2 weeks, and ovary 
development and brooding can overlap [22, pers obs]. However, these barnacles have regressed ovaries when 
not reproducing as female, or when between broods22, making the absence of ovary development or brooding 
eggs an indicator that the individual is not currently investing in female reproductive effort. Thus, we infer that 
the fraction of the population investing in female reproduction at any given size provides an index of the female 
reproductive effort of that size class.

Over three days (16–18 September 2013), we collected barnacles from 2 habitat types, natural rock and pier 
pilings, at 6 localities spread throughout the Southern California Bight for a total of 12 populations (Fig. 1). At 
each locality, we collected barnacles from the two habitats to assess possible differences between these habitats 
because previous research indicates naturally occurring versus artificially constructed habitats ecologically differ 
(e.g., in species numbers, abundances, and diversity), possibly due to differences in water flow23,24. Localities were 
chosen for accessibility and availability of both habitat types. To minimize tidal differences and differences in 
encounter rate, barnacles were collected in a stratified random design from the lower 10 cm of their elevational 
range. We collected all barnacles encountered in 10 haphazardly placed circular 11.34 cm2 cores. Barnacles likely 
assess mating group size through physical contact with their penises; thus, our quadrat size should encompass 
at least one mating group, and likely parts of more along the edges (scaling based on25). Barnacles were frozen 
immediately until dissection.

In the laboratory, all barnacles were thawed, identified, and dissected. We ensured each dissected barnacle 
belonged to the genus Chthamalus based on plate arrangement. C. fissus is the most common Chthamalus spe-
cies in southern California26,27. We cannot exclude the possibility that another Chthamalus species, C. dalli, was 
present in our samples. However, such an event would likely be unimportant, given its rarity. Further, the two 
species are similar in size, biology, and ecology26 and Hemioniscus balani infects both species9. Hence, we refer to 
the host as C. fissus.

For each barnacle, length was measured as the widest shell base diameter to the nearest 0.25 mm. Barnacles 
were recorded as infected or uninfected, and as non-reproductive or reproductive, based on barnacle female 
reproductive function, where reproductive individuals had ripe ovaries (as indicated by yellow/orange fluid 
within the ovary), developing eggs, or oviposited eggs. The cryptoniscus is >1 mm in length, simplifying detec-
tion of early infections. We only included barnacles ≥1 mm, avoiding barnacles that are typically pre-reproductive 
(16; CRF personal observations).

Figure 1. Locations of the 12 survey sites, which were at six localities spread throughout the Southern 
California Bight. Localities included Gaviota (a,b), Goleta (c,d), Santa Barbara (e,f), Ventura (g,h), San 
Clemente (i,j), and La Jolla (k,l), the site lettering corresponds to the site panels in Figs. 2 and S1.
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We determined whether the size frequency distribution of infected hosts was a non-random subset of the size 
frequency distribution characterizing the entire barnacle population using a Kolmogorov-Smirnoff test (infected 
versus whole sample).

Figure 2. Size-frequency distributions of the barnacle populations at the 12 study sites, which were located 
throughout the Southern California Bight. Bars indicate number of barnacles that were uninfected/non-
reproductive (white), reproductive (black), and infected (red). Natural rock habitats are on the left, while pier 
habitats are on the right. Sites are ordered from north to south: Gaviota (a,b), Goleta (c,d), Santa Barbara (e,f), 
Ventura (g,h), San Clemente (i,j), and La Jolla (k,l).
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We examined the influence of size, habitat type, and locality on the probability of female function and infec-
tion using logistic regression. We implemented logistic regression as generalized linear mixed models with a 
binomial error distribution and a logit link28. To permit hump-shaped relationships with size, we included size 
along with a quadratic term (using centered-size data to preclude collinearity problems)29. Because we sampled 
each of the two habitat types at each locality (factors were crossed), and we were interested in whether there were 
any consistent differences among habitats or localities, we included these factors as fixed effects along with their 
interactions with each other and with size. We modelled individual replicate core as a random effect to account 
for the potential lack of independence of barnacles within individual cores. For this “CoreID” random effect, we 
included both random intercepts and random slopes (with size), which permits the most accurate parameter 
estimates for the fixed effects30.

We first fit global models including all terms of interest. We used AIC values to determine whether sim-
pler models would be favored, with a particular emphasis on whether maintaining the quadratic-size term was 
favored, indicating unimodality. We focused on the top model, but examined all favored models (i.e., those within 
2 AIC values of the top model31) to ensure general consistency in results.

We examined the probability of female function for two sets of the data. We first did so only among uninfected 
barnacles. However, disproportionate infection of barnacles with female function would lead to underestimat-
ing this probability. For instance, in the extreme case of 100% infection of barnacles with female function, there 
would be zero probability of female function. Hence, we also examined the probability of female function by 
including infected barnacles as “reproductive females”. This is sensible given the parasite’s specialization on female 
ovaries, which necessarily implies that the barnacle was a functional female at time of infection. The predicted 
values from both analyses were very similar (r = 0.89, p < 2.2 × 10−16, n = 6,018) as expected given the typically 
low prevalence of infection. We therefore present the results counting infected individuals as barnacles with 
female function, because that likely provided the best representation of the pattern.

We examined the probability of infection among all barnacle individuals, and, separately, for the subset of 
barnacles in the “susceptible class,” defined as only uninfected, reproductive barnacles, and infected barnacles 
(i.e., excluding uninfected barnacles that had zero female function).

We used the regression equations from the favored models to extract the host size corresponding to the max-
imum probabilities of female function and infection for each site. We compared the size of maximum probability 
of female function to the maximum probability of infection at each site using a paired t-test.

We ran all analyses in R v. 3.5.232 and JMP Pro v. 12 (SAS Institute, Inc.). We used the glmer function in the 
Lme4 package v. 1.1-2133 for the logistic regressions. We assessed model adequacy using Pearson goodness of fit 
tests (suitable, given the high replication at each size), plots of Pearson residuals versus predicted values for the 
global models28,31,34, and, for the favored models, by comparing model predicted values to observed data.

Results
We dissected 6,381 barnacles, of which 362 were infected, providing a regional prevalence (percentage infected) 
of 5.7% [5.1–6.3 95% CI] (Table 1). However, prevalence varied substantially between sites and ranged from 0.0 to 
23.9%. The size frequency distribution of infected barnacles was significantly different from uninfected barnacles 
at all sites at which there were at least 10 infections (Table 1). Thus, the distribution of infected individuals was not 
a random subset of the host population (Fig. 2).

All favored models for female function included barnacle host size, habitat type, and locality, and several 
interactions between these variables (Table 2). These interactions reflected variation among localities and habi-
tats in the specific shape of the relationship between reproduction and size. Despite this population-level varia-
tion, the probability of female reproduction was consistently unimodal, with intermediate-sized barnacles always 

SITE KS P-VALUE # INFECTED N
PREVALENCE (%)
[95% CI]*

Gaviota Rock 0.9973 2 629 0.3 [0.1–1.2]

Gaviota Pier <0.0001 75 536 14.0 [11.3–17.2]

Goleta Rock 0.0005 25 615 4.1 [2.8–5.9]

Goleta Pier 0.0003 31 201 15.4 [7.3–14.2]

Santa Barbara Rock <0.0001 143 598 23.9 [20.1–27.5]

Santa Barbara Pier <0.0001 52 614 8.5 [6.5–10.9]

Ventura Rock 0.0003 10 743 1.3 [0.7–2.5]

Ventura Pier 0.4317 4 410 1.0 [0.4–2.5]

San Clemente Rock 0.4846 8 308 2.6 [1.3–5.0]

San Clemente Pier 0.0198 10 572 1.7 [1.0–3.2]

Scripps Rock 0.8701 2 413 0.5 [0.1–1.7]

Scripps Pier — 0 642 0.0 [0–0.6]

Table 1. Sites sampled over 3 days in 2013, number of Chthamalus fissus barnacles examined (N), number 
infected by of Hemioniscus balani and parasitism prevalence. Kolmogorov-Smirnoff (KS) test probabilities 
comparing the size frequency distribution of infected and uninfected barnacles at each site. N also indicates 
barnacle density (number in 10 randomly placed circular 11.34 cm2 cores). *Mean values of prevalence are 
reported followed by 95% confidence interval, calculated using the score method49.
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having the highest probability of being female (Fig. 3). While localities did vary in overall levels of parasitism, 
their effects also varied by habitat type. Further, one habitat type did not consistently have a higher probability 
of female function than did the other (indicated by the weak main effect of habitat type, but the retention of the 
locality*habitat type in all favored models).

The two favored models for infection probability also included barnacle host size, habitat type, and locality, 
and some two-way interactions (Table 2). Here too, infection probability was consistently a unimodal relationship 
with host size (the quadratic term was not only maintained in the two favored models, but in the top 8 models). 
That is, intermediate-sized barnacles had the highest probability of infection, irrespective of population (Fig. 3). 
The specific shape of the unimodal relationship between infection probability and size was more consistent than 
that of female function among populations, with only the habitat*size interaction being favored. However, local-
ities and habitats did vary in overall infection risk (e.g., the height of the curves)—with one population even 
completely lacking infection, and the strength of their effects depended on one another (the habitat*locality 
interaction maintained in the top models).

model locality habitat size
locality* 
size

habitat* 
size

habitat* 
locality

habitat* 
locality* size size*size

size* size* 
locality

size* size* 
habitat

size* size* 
habitat* locality AIC

(A) Model selection for the probability of being susceptible to infection

1 x x x x x x x x x 6519.9

2 x x x x x x x x 6520.7

3 x x x x x x x x x x 6521.6

4 x x x x x x x x x x x 6521.7

5 x x x x x 6523.3

6 x x x x x x 6524.1

7 x x x x x x 6528.5

8 x x x x x x x 6528.7

9 x x x x 6724.8

10 x x x x x x x 6726.5

11 x x x x x 6731.3

12 x x x x x x 6733.3

13 x x x x 6761.5

(B) Model selection for the probability of being infected

1 x x x x x x 2010.6

2 x x x x x x x 2010.7

3 x x x x x x 2012.6

4 x x x x x x x x 2013.6

5 x x x x x 2014.8

6 x x x x x x x x x 2015.3

7 x x x x x x x x x x 2023.7

8 x x x x x x x x x x x 2031

9 x x x x 2077.1

10 x x x x x 2079

11 x x x x x x 2080.9

12 x x x x x x x 2084.3

13 x x x x 2152.9

(C) Model selection for the probability of being infected given susceptibility

1 x x x x x 1217.1

2 x x x x x x 1217.1

3 x x x x x x x 1221

4 x x x x x x 1221.2

5 x x x x x x x 1221.7

6 x x x x 1221.7

7 x x x x x x x x 1225.5

8 x x x x x x 1226.7

9 x x x x x x x x x 1227.4

10 x x x x x 1229

11 x x x x x x x x x x 1235.8

12 x x x x x x x x x x x 1243.9

13 x x x x 1269.9

Table 2. Summary of the generalized linear mixed models and AIC used for model selection.
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The favored model for infection probability within the class of susceptible barnacles included site, habitat, and 
size (Table 2). The quadratic size term was not retained in the top models, reflecting the general increase of the 
probability of infection with size (Fig. 2). This general increase with size occurred at most populations, though 
the height and shape of the curves varied among localities (locality and locality*size terms being retained in each 
favored model). Here too, habitat had an inconsistent effect among localities (locality*habitat term retained in 
top two models).

Discussion
Intermediate sized barnacles were most likely to have female reproductive function and most likely to be infected. 
We consistently detected that parasitism tracked the distribution of female function, consistent with the known 
biology of H. balani, which specialises on female function of the host and has an active searching stage that should 
permit it to find preferred barnacle hosts. For Chthamalus fissus, male function reaches maturity before female 
function22; thus, small barnacles are only male. Once female reproductive maturity is attained, barnacles have 
both female and male function35,36. Theoretical models predict at maturity, allocation is predominantly to female 
function, with allocation to male function increasing with sperm competition to a maximum of 50%5. There is 
a linear relationship between barnacle size and number of eggs (a proxy for reproductive success) for C. fissus22. 

Figure 3. Probabilities from the favored models relating size to (a) probability of being susceptible 
(reproductive + infected), (b) probability of being infected, and (c) the probability of being infected given 
susceptibility (reproductive + infected).

https://doi.org/10.1038/s41598-019-55167-x
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This linear relationship between size/age and female function is generally assumed in simultaneous hermaphro-
dites37. Thus, both models and empirical data support an increased likelihood of female reproductive function 
and female reproductive success with increased sized (Fig. 4).

It is unclear why larger individuals are less likely to be actively reproducing as females. We suggest this reduced 
likelihood is driven by increased investment in male reproductive effort at larger sizes (Fig. 4). We find it implau-
sible that the largest individuals do not invest at all in reproduction, as the life history of most species does 
not involve a substantial post-reproductive growing period38,39. We also find it unlikely that physical damage to 
female reproductive organs due to sequential infections made investment in female function impossible, because 
this unimodal relationship was generalizable across populations with low and high parasitism. We suggest male 
reproductive success may increase with barnacle length if sperm production and penis length increases with 
length. Research indicates sperm production can be plastic; an androdiecious barnacle shows reduced allocation 
to sperm production in solitary versus gregarious populations40. Our species is a gregarious settler with large mat-
ing groups and plasticity in sperm production may result in increased allocation in large groups. In this system, 
male reproductive success is limited by penis length. Thus, large individuals may have increased reproductive 
success by functioning primarily as male, as in other hermaphroditic mating systems41–43.

We posit parasitism by Hemioniscus balani imposes a cost to female function, reinforcing the lack of invest-
ment in female function by the largest individuals. There are some parallels to this shift in sex allocation in 
another system. A protogynous sequentially hermaphroditic reef fish can be infected by a myxozoan parasite that 
renders the eggs infertile. In this system, infected individuals transition to male at smaller sizes, suggesting plas-
ticity in response to parasitism44. Thus, parasites can impose substantial fitness costs, altering patterns of female 
reproduction.

Within the subset of appropriate (=female) hosts, parasitism increased with size. We implicate active parasite 
choice as a driver of this pattern. The actively searching stage of a parasite can be highly selective; for example, 
adult female wasps select hosts for their parasitoid offspring based on a range of host characteristics including 
size45,46. Larger hosts typically result in increased body size/reproductive output for parasitic castrators13. This is 
the case for H. balani, as parasite body size and fecundity increase in larger hosts11. The highly mobile crypto-
niscus searching stage of H. balani presumably has the physical and behavioral capacity to select a host. While 
parasite prevalence often increases with host size because cumulative infection risk is higher for older/larger indi-
viduals3, this is unlikely here because the parasite is semelparous and short-lived. We cannot exclude increased 
encounter rate as a driver—larger hosts are larger targets and thereby have increased encounter rates, and rejec-
tion of a host might pose to great of a cost to enable choice. However, while experimental evidence would be 
more compelling, we find active host choice the most likely mechanism for the increased parasitism of larger, 
susceptible hosts, due to the searching capability of H. balani and the fitness gains from infecting a larger host.

There is another useful system for comparison that may further our understanding size, parasitism, and sex 
allocation. Other species of barnacles are infected by rhizocephalan parasites in the family Chthamalophilidae. 
This family of parasites infects barnacles and takes up space in the brood cavity47,48. While sexual function is 
retained, the brood cavity does become filled, which may limit brood size47,48. This cost to female reproduction 
may influence mating groups and sex allocation. A key difference between H. balani and Chthamalophilidae 
is H. balani is semelparous while Chthamalophilidae are a more typical parasite with a longer life span. Thus, 
comparisons of the effects of sex allocation may be particularly useful for elucidating underlying principles of sex 
allocation, size, and parasitism.

Data availability
The datasets generated for the current study are available from the corresponding author on reasonable request.

Received: 24 July 2019; Accepted: 25 November 2019;
Published: xx xx xxxx

Figure 4. Conceptual diagram of reproductive success as relates to barnacle size. Along the top we have 
indicate our hypothesized sex allocation. Reproductive success for females is depicted as a solid black line under 
3 scenarios: no parasitism, average parasitism, and maximum parasitism. A dashed black line represents male 
reproductive success.
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