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Abstract

A connectionist architecture and learning algo-
rithm for sequential decision learning are pre-
sented. The architecture provides representations
for probabilities and utilities. The learning algo-
rithm provides a mechanism to learn from long-
term rewards/utilities while observing information
available locally in time. The mechanism is based
on gradient ascent on the current estimate of the
long-term reward in the weight space defined by
a “policy” network. The learning principle can
be seen as a generalization of previous methods
proposed to implement “policy iteration” mecha-
nisms with connectionist networks. The algorithm
is simulated for an “agent” moving in an environ-
ment described as a simple one-dimensional ran-
dom walk. Results show the agent discovers opti-
mal moving strategies in simple cases and learns
how to avoid short-term suboptimal rewards in or-
der to maximize long-term rewards in more com-
plex cases.

Introduction
Learning from Long-Term Rewards

If we imagine an agent (machine, animal or human)
making decisions and acting in an environment, how
can long-term payoffs received from the environment
influence present decisions? Similar questions have
been raised in different disciplines, including human
and animal psychology, machine learning, engineering,
robotics and economics (e.g., Bellman, 1957; Sutton
& Barto, 1987; Samuel, 1959; Slovic, Lichtenstein &
Fishoff, 1988; Watking, 1989). A number of mathe-
matical and numerical tools in the decision sciences
have been proposed to answer these questions. In par-
ticular, the theory of dynamic programming (Bellman,
1957) was specifically developed as an optimization
method to solve sequential decision problems.
Recently, Barto, Sutton, and Watkins (In Press) in-
tegrated methods from dynamic programming and pa-
rameter estimation methods to construct a framework
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for sequential decision learning. In the same spirit, this
paper integrates the classical decision theory frame-
work with learning principles from connectionist theo-
ries. Whereas Barto et al. mainly suggested connec-
tionist networks could be used as parametric models
to compute an evaluation function, this paper mainly
proposes the use of connectionist networks to compute
action policies. First, “connectionist representations”
for probabilities and utilities in static environments
are presented. The framework is then extended to
dynamic environments and compared to previous for-
malisms (e.g., Sutton 1990). Simulations of a simple
random walk then show how an agent can maximize
the long-term expected utility computed over the de-
cision period.

A Connectionist Framework for Decision
Making

The connectionist decision making framework sug-
gested in Chauvin (1991) introduces “connectionist
representations” of probabilities and utilities. The fi-
nal layers of a connectionist network are composed of
sets of e-units, p-units and u-units. The e-units are ex-
ponential units with activations e; = €P** where s; is
the input to the e-units and # a sensitivity parameter.
The p-units compute probabilities using the Boltzman
distribution:

eﬁ-‘n
2; eP;

= . (- 1

e ?
Utilities (considered as monotonic functions of re-
wards) are represented as “utility weights” u;; from
the p-units to the linear u-units. This set of weights
can be given a priori, observed from the environment,
or estimated during learning. The set of u-units then
computes an expected utility:

n
U.'Z E Uiy
i

where 7 is an index taken over a given set of categories.
In this framework, learning consists in maximizing
the expected utility computed by the u-units. Back-

(2)
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propagation principles can be used to compute the gra-
dient of expected utility with respect to the inputs to
the e-units:

U,

Bs; = Brj(usj — Uy) 3)
where ¢ represents a target category given an input
pattern. Note there is no “error” in this formula-
tion: The algorithm directly maximizes an expected
utility. Also note that the p-units compute “decision
beliefs” x; representing a decision behavior rather than
estimated probabilities of future environmental events.
These probabilities represent how the network should
classify input patterns to maximize expected utilities.
With simple environments, it is possible to show the
algorithm converges to optimal behavior. In particu-
lar, Bayesian optimality (pure decisions) is obtained
when the environment is stochastic. It is also possi-
ble to show that, using the Widrow-Hoff procedure,
the network parameters (decision and utility weights)
can be adapted “on-line” after each observation of the
environmental response (Chauvin, 1991).

Sequential Decision Learning
Markovian Decision Hypotheses

Markovian decision problems are defined in terms of a
finite set of states X and state transition probabilities
Pry- At each time step k, an agent makes a decision a
among a set of permissible actions A, function of the
current state z. Depending on the chosen action, the
environment will switch from state z to y € Y(z,a)
with probability p;y(a). The set of permissible actions
for each state r can be characterized by a probability
distribution of actions 7., called a policy P. For each
state transition, the agent receives a reward/utility (or
incurs a cost) uzy.

The goal of the agent is to maximize the long-term
expected utility V;* from state z(0) = i:

VP = EP[Y 7 wlz(0) = i]

1=0

(4)

where u; = u,,,, is the utility received at time t by
moving from state z; to y, and where v is a discount
factor. The term V7 is called the evaluation function
of state 1 given the policy P. For the rest of this paper,
we assume that the environment has absorbing states
with 0 utilities and set ¥ to 1.

In the most general case, the learning environment is
supposed to be stochastic: 0 < pzy(a) < 1. For inter-
esting optimized functions, the agent’s optimal policy
can be shown to be deterministic: =;, € {0,1}. Dy-
namic programming approaches to sequential decision
problems generally consider a priori that the agent’s
actions have to be deterministic and provide mechan-
ims to maximize V over a set of finite policies. Barto et
al. (In Press) and others consider cases where no model
of the environment is known a priori. Using parameter
adaptation methods, they assume the agent’s actions
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can be stochastic and can be continuously adapted as
the agent learns about its environment.

In this paper, the stochasticity of the agent is as-
sumed a priori and is an essential property of the learn-
ing method. The environment itself is for now consid-
ered as deterministic: There is a one-to-one mapping
between actions a and resulting states y. We will see
that the prior assumption of agent stochasticity allows
us to derive an interesting gradient ascent method on
the current estimation of the evaluation function in a
“policy” network.

Proposed Formalism

We now extend the “static” connectionist representa-
tions for probabilities and utilities to dynamic environ-
ments by introducing time and delayed rewards. The
agent’s total expected utility is now a function of the
decision behavior over the complete decision period.
Suppose the agent is in state z, for a given policy P,
the immediate expected utility can be written as:

P
U; = E :uzd"":'a
a

where the action probabilities 7., characterize the pol-
icy P. From the current state z, suppose the agent can
reach a state y by taking action a € A, the long-term
expected utility from state z can then be written as:

V,P = U: =+ Z V,P?r!a (5}
aly

For a fixed policy P, that is for a fixed set of action
probabilities 7.4, we could compute V¥ by “backing
up” the state evaluation function one step from V‘,P ;

(5)

Suppose that at stage k, only an estimation 17,“’ (k)
of V;F is available, we can then compute the estimation
VP(k + 1) of VP using:

i}cp(k + 1) = 2[“:0 + i“:,||IP('i’)]"'ﬂ|
aly

™

This process is similar to value iteration in dynamic
programming. For a given policy P, with a small num-
ber of assumptions about the environment and about
the order of computations, value iteration will converge
to the value VP for each state z.

Equations 7 can be written as:

VPk+1)=3" Bea(k)za

8

with Upa(k) = urze + Vyp(k). This equation has the
same form as Equation 2. (Note, however, that the
indices have different interpretations.) The set of ac-
tion probabilities 7., can be computed using a set of
e-units and p-units and from a given connectionist rep-
resentation of each state z. The resulting network can
then be called the policy network. At each time step k,



the estimate of the long-term expected utility V.© can
be estimated with one linear u-unit where the utility
weights u;; of Equation 2 now become ¥z = uzq+ Vﬂp.
Our goal is to find the optimal policy P* which max-
imizes the long term expected utility V.F" = V'

Maz, Z(u,, + V) ) ea
aly

V= (9)

The idea is then to maximize V.7 by gradient ascent
on the current estimate of the evaluation function with
respect to the parameters of the policy network. From
Equations 3 and 8, for each time step, we can obtain
the gradient of V. (k) with respect to the inputs s, of
the exponential e-units. Simplifying the notation for
clarity, we obtain:

ovF
Js,

ﬂfﬂl(vxa = Vs)
Brra(uza +Vy = V.F) (10)

We can now imagine various methods to organize
the computations of the evaluation function and of the
corresponding policy. A possible on-line method is the
following. At each time step, an action a is chosen in
function of the current action probability distribution
implemented by the policy network. From the result-

ing state y, the current estimation ?yp(k) and the state

transitions utilities u, are used to compute V.7 (k) us-
ing Equation 7. The weights of the policy network are
then changed by gradient ascent on the current esti-
mate of the evaluation function. Equation 10 com-
putes this gradient with respect to the inputs of the
e-units. Back-propagation techniques can be used to
propagate this gradient further in the policy network
as a function of the chosen architecture.

With this organization, the policy is adapted on-
line, in function of the estimation of the state eval-
uation function at each time step. Furthermore, the
state evaluation updating schedule is itself a function
of the current policy. Exploitation by gradient ascent
is therefore simultaneous with exploration, determined
by the set of action probabilities. The balance of ex-
ploitation and exploration may be obtained by tuning
the various model parameters and by modifications of
the organizations of the computations.

Various connectionist network architectures can be
used to compute the action probabilities 7., from the
set of possible states. The simplest network consists in
having one unit per state and direct connections be-
tween states and e-units. Such a network architecture
can be called “exhaustive” since there is one parame-
ter per state-action pair. Such an exhaustive network
is used in the simulations below and is shown in Fig-
ure 2. For an exhaustive network, the weight update
obtained by gradient ascent can be derived from Equa-
tion 10:

Awge = aPTza(tza + V,E = VF) (11)
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where o is a learning rate. Of course, it might be more
interesting to provide state representations and net-
work architectures which are specifically adapted to
the environment and to the application. In particu-
lar, layers of hidden units might be used to discover
compact internal state representations that would be
generated by the learning algorithm.

Decision Learning and Parameter
Estimation

Equation 7 can be seen as a standard backward dy-
namic programming technique. It is also related
to what Sutton (1988) calls the Temporal Difference
method. Barto et al. (In Press) point out the relation-
ships between Temporal Difference methods and dy-
namic programming in more complex situations. They
also suggest how an evaluation function V' could be
estimated using connectionist networks. By contrast,
in the framework proposed above, V is actually a ta-
ble look-up whereas the policy P is implemented with
a connectionist network. Of course, we can imagine
combinations of evaluation networks and policy net-
works and various techniques to integrate the connec-
tionist computations of the evaluation functions and
corresponding policies.

Barto, Bradtke and Singh (1991) use a variety of al-
gorithms to estimate evaluation functions, also inspired
from dynamic programming procedures. In their ex-
amples, policies are implemented using a Boltzman dis-
tribution:

eVu(B)/ T

ey V- BIT

where T' acts as a “computational” temperature. In
their simulations, the temperature is annealed as a
function of the learning performance. The agent’s
behavior becomes deterministic over the complete set
of states simultaneously as the temperature decreases.
In the framework proposed above, the level of deter-
minism depends on the weights of the policy network.
These weights are updated by gradient ascent on the
current estimation of the total expected utility. If from
a given state z, the current estimates are identical for
all permissible states y, the gradient is null and actions
remain equally random for that state. If for a given
state, the long-term expected utilities are well differen-
tiated over the set of admissible actions, the gradient
descent approach will make the behavior’s agent de-
terministic for that particular state. The agent should
learn how and where it should take deterministic de-
cisions, or whether it should keep exploring or not, as
a function of the value of this gradient. If reaching a
goal provides a high reward for the agent, the agent’s
behavior will quickly become deterministic when get-
ting close to the goal. The “amount” of determinism
will then “move backward” from the goal.

Sutton (1990) also suggests a Boltzman distribution

Pza = (12)
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Figure 1: Environment used in the simulations. The
starting state is D. The goal of the agent is to reach
G.

for action probabilities:
eWs?

Pra = = 13
2ieat™ e

Furthermore, after each action taken by the agent, the
distribution parameters are changed according to:

Awge(t+1) = a(za + V, — Vi) (14)

Note the similarities between Equation 14 and Equa-
tion 11. The difference in the two weight update equa-
tions resides in the action probability 7;,. But in
Sutton, actions are chosen according to the multino-
mial probability distribution parametrized by the p.,.
Therefore, if we imagine the evaluation function is up-
dated only after a large number of actions have been
sampled according to this probability distribution, the
weight update becomes Awgy = @' frq(uza + Vy — Vi)
where f;, represents a frequency of actions and is an
unbiased estimate of the “propensity” of action m,.
Therefore, Sutton’s weight update equation can be
seen as a stochastic form of a gradient ascent on the
estimation of the evaluation function in an exhaustive
network.

Simulations

Random Walk Environment

The environment used in the simulations is inspired
from the random walk process introduced by Sutton
(1988). It consists of seven possible states, as shown
in Figure 1. The agent’s initial position is state D. In
each state, the agent has to make a decision about the
direction of the following move, left or right. When
the agent moves, it might receive a payoff which de-
pends on the current state and on the moving decision.
These payoffs may be negative (e.g., they may repre-
sent an amount of energy being spent for the move) or
positive (e.g., they may represent a received amount of
food). These payoffs may then be represented in a two-
dimensional utility matrix. When the agent reaches the
absorbing states A or G, it is put back to the initial
state . The goal of the agent is to maximize the total
utility received from the initial state to the goal state
G. In the simulations below, we look at the agent’s
learning behavior as a function of given arbitrary util-
ity matrices.
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Figure 2: Policy network. The architecture is “exhaus-
tive”: there is one parameter per state-action pair.

Policy Network Architecture

The policy network architecture is exhaustive (Figure
2) and can be seen as composed of two subnetworks.
The first subnetwork computes move decision probabil-
ities m,; = p(left|state) and ., = p(right|state) from
each possible state, where states are represented by
single binary input units. The second decision subnet-
work computes long-term expected utility from deci-
sion probabilities and utilities. During learning, the de-
cision weights between states and e-units are changed
by gradient ascent on the long-term expected utility us-
ing the algorithm described above. In this framework,
we suppose the agent stores present and estimated fu-
ture utilities in memory. Although an evaluation net-
work could compute these utilities as needed (Barto et
al., In Press), we simply assume for now that learn-
ing operates through utilities perfectly retrieved from
memory by the agent.

Results

Case 1: Learning from Long-Term
Rewards

The approach is first illustrated with the utility ma-
trix shown in Table 1. A simulation run is defined
as a new set of initial decision weights, representing a
new agent. A simulation trial is defined as a sequence
of moves from the initial state D to the goal G. The
network performance can then be judged by the num-
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Table 1: Cost/utility matrix for case 1.
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Figure 3: Average number of moves to reach the goal
as a function of trial number in cases 1, 2, and 3.

ber of moves (averaged over a given number of runs)
it takes for the agent to reach the absorbing state G
as a function of trial number. If the agent first reaches
absorbing state A, it is put back to the initial state D,
incrementing the move counter by 1. Figure 3 shows
the agent’s performance up to 15 trials averaged over
50 runs. Simulations show the agent always reaches
optimal performance (3 steps to the right from state
D to G). Absolute performance characteristics obvi-
ously depend on the learning parameters (such as the
learning rate).

As the network learns how to estimate the correct
long-term expected utilities, it also learns how to es-
timate optimal decision probabilities. This process
works “backward in time”. At first, the agent reaches
goal G from initial state D by chance. In doing so,
it observes current payoffs, updates future utility esti-
mation, and adjusts its behavior through the learning
mechanism. Eventually, the agent’s behavior in state
F then converges to optimal behavior. The total ex-
pected utility subsequently converges to the optimal
value V. When in state E, the agent reaches state F
by chance: the long-term utilities and policy will then
be adapted using the estimations obtained for state F'.
The learning mechanism back-propagates the gradient
of long-term expected utility through updated utility
weights to modify the decision weights. The utility re-
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State BRI - TR
Lelt move | -2 -2 -2 -2 -2
Right move | -2 -2 -2 -2 10

Table 2: Cost/utility matrix for case 2.

State I R R
Left move [-1 -1 +1 -1 -I
Right move | -1 -1 -1 -1 10

Table 3: Cost/utility matrix for case 3.

ceived from state F' to G will make the agent’s behavior
more deterministic in state F', then backward from F
to D. In some sense, both evaluation function and pol-
icy’s determinism are “backed up” from the goal to the
initial state.

Of course, the agent’s behavior resulting from the
implementation of this process might not be as sequen-
tial as it sounds. As explained above, evaluation and
policies are changed as a function of the current state
and of the current decision move, which are stochastic
and depend on the organization of the computations.
Similarly to on-line policy iteration methods, the agent
does not wait to reach the goal to update action prob-
abilities. The agent just looks one step ahead to adjust
its “propensities” of action for the current state. For
the given utility matrix, because the agent eventually
visits the goal and because no other reward may mod-
ify the adaptation of behavior, it should always reach
optimal behavior.

Case 2: Learning from Long-Term
Rewards with Moving Costs

In the second set of simulations, the agent obtains a
+10 utility when it reaches the absorbing goal G and a
-2 utility when moving from any state to a neighboring
state. The corresponding utility matrix is shown in Ta-
ble 2. Figure 3 shows the agent’s learning performance
up to 15 trials averaged over 50 runs. With this new
utility matrix, the agent reaches optimal performance
faster than with the utility matrix used in case 1. This
result might not be intuitive since the state expected
utilities have now become smaller in reason of the -2
costs “spent” between step moves. The reason for this
result is actually that there is now a differential ex-
pected utility between going left and going right. For
example, the optimal long-term expected utilities Vg
and Vi from states £ and F are respectively 8 and
10. This differential expected utility creates a differ-
ential utility gradient between each move, forcing the
agent to become deterministic earlier and to learn more
rapidly how to move in the correct direction.

Case 3: Avoiding Suboptimal Immediate
Rewards



One of the motivations for studying sequential decision
making and for using dynamic programming method-
ologies is to avoid suboptimal short-term decisions
which may prevent future optimal decisions. The util-
ity matrix shown in Table 3 illustrates this situation.
In this case, the agent gets an immediate reward by
moving left from the initial state. However, the late
reward from state F' to G should force the agent to
ignore the immediate reward on the left, to move right
and to receive the late reward at the goal. When the
agent learns about the environment, it will probably
be attracted to the immediate reward at first. But by
exploration, the agent should learn about the delayed
reward and should adjust its behavior over time to ig-
nore the early reward. The short-term reward from D
to C should simply delay learning of the optimal strat-
egy. Figure 3 shows the network learning performance
for case 3. The learning curve reflects the predicted
behavior. At first, it takes more steps to reach the
goal because the short-term reward leads the agent in
the wrong direction. During early learning, the agent
actually learns how to move to the left. However, af-
ter sufficient learning, for the given utility matrix, the
agent always learns how to avoid short-term rewards
and to move directly to the goal. In general, the ex-
act behavior learned by the agent will depend on the
balance between exploration and exploitation, which
in turn will depend on the model parameters and on
the organization of the computations.

Conclusion

A sequential decision learning formalism is proposed
which integrates elements of standard decision the-
ory with connectionist principles. In statistical pat-
tern recognition, standard procedures may first esti-
mate model parameters to estimate class probabilities.
Costs may then be invoked to compute minimal risk
classification. In dynamic environments, dynamic pro-
gramming techniques, such as policy iteration may gen-
erated successive evaluate decision strategies and long-
term expected rewards until optimal decision behavior
is obtained. The present approach directly updates the
parameters of a policy network by gradient ascent of
the current estimate of the long-term expected utility.
The formalism may be seen as a generalization of some
of the policy adaptation methods proposed by Sutton
(1990) and Barto et al. (1991).

The learning procedure was simulated and tested in
a simple environment. In various cases, the proce-
dure was actually shown to generate interesting and
intelligent looking learning dynamics. There are many
ways the proposed formalism could now be integrated
with other dynamic programming concepts or com-
bined with other parameter estimation methods. Of
course, it remains to be seen if these learning princi-
ples may be powerful enough to generate intelligent
decision behavior in more complex environments. But
the formalism can be seen as a generalization of previ-
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ously proposed mechanisms and the gradient ascent
approach appears to be conceptually satisfying and
promising.
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