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Turbulent wakes are pervasive in man-made and natural environments. In the ocean and

the atmosphere, these wakes interact with the background ambient stratification to give rise to

a myriad of interesting phenomena, e.g., multistage decay of mean and turbulence, long-lived

coherent structures, and the appearance of internal gravity waves, to name a few. With the

rise in supercomputing power, high-fidelity numerical simulations have become an increasingly

feasible way to investigate the phenomenology of these wakes. As these simulations become

commonplace in research, there is an increased focus on the use of data-driven techniques to

uncover the rich dynamics from the obtained datasets. This dissertation is an examination of
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turbulent wakes using data-driven techniques and numerical simulations.

In the first part, spectral proper orthogonal decomposition is used to investigate a turbulent

disk wake database at Re = 5× 104 and Fr = ∞, 10, 2. We first study the evolution of the

vortex shedding mode and double helix mode in the unstratified wake (Fr = ∞), building on

and refining the previous experimental studies. Thereafter, the SPOD analysis of the stratified

wakes is performed that uncovers two new results: (a) coherence originating at the body gets

stronger and lives longer with progressively increasing stratification levels and (b) for Fr ≳ 2,

vortex shedding is the dominant mechanism of internal gravity wave generation.

In the second part of the work, large eddy simulations (LES) are used to investigate the

flow past a prolate 6:1 spheroid. Firstly, high-resolution hybrid simulation is used to simulate

the far wake of a 6:1 spheroid at 0-degree angle of attack and Re = 105, Fr = 2 and 10. The far

wake is compared to the above-mentioned disk database. The spheroid wakes show differences

in locations at which mean wake transitions take place. These differences are explained in light

of energy budgets. Secondly, large eddy simulations of flow past a 6:1 spheroid at Re = 5000,

Fr = ∞,6,1.9, 1, and a moderate angle of attack α = 10◦ are carried out. Body forces, mean wake

and vorticity dynamics, and flow spectra are analyzed in detail and presented in the dissertation.
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Chapter 1

Introduction

1.1 Phenomenology of turbulent wakes

A wake is the region of disturbance left behind when an object moves through a fluid

medium or equivalently if there is a flow past an object at rest. Due to their ubiquity in nature

as well as man-made environments, the phenomenology of wake has been extensively studied

throughout the course of last 50 years, e.g., Bearman (1984), Lin and Pao (1979), Oertel Jr

(1990), Reed and Milgram (2002), Thompson et al. (2021). In an incompressible medium, this

phenomenology is controlled by the Reynolds number Re = U∞D/ν. The Reynolds number

is a measure of the relative dominance of convective term (O(ρU2
∞/D)) to the viscous forces

(O(µU∞/D2)) in a flow. This dissertation focuses on the wakes in the limit of Re >> 1, i.e.,

turbulent wakes. Turbulent wakes are one of the most commonly occurring classes of flow in the

nature, e.g., flow past vehicles (Grandemange et al., 2015, 2013), geophysical features (Puthan

et al., 2021), urban flows (Tseng et al., 2006), to name a few. Similar to other classes of turbulent

flows (e.g., jets, shear layers, boundary layers), the academic research on the investigation of

the phenomenology of turbulent wakes have predominantly focused on two broad themes: (a)

investigation of self-similarity and scaling laws in the far wake and (b) characterizing the coherent
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structures in the flow using various statistical and visualization techniques. Both the scaling laws

and coherent structures have a strong dependence of the initial and boundary conditions, i.e.,

Reynolds number of the incoming flow and features of the wake generator, which lasts far from

the body.

1.1.1 Self-similarity and scalings in turbulent wakes

Under the framework of self-similarity for an axisymmetric wake, it has been traditionally

assumed that the mean wake dynamics at any downstream distance x is controlled by two

quantities: (a) mean wake defect velocity Ud(x) (<<U∞, the free stream velocity) and (b) mean

wake lengthscale L(x) (Pope, 2000, Tennekes and Lumley, 1972). Thereafter, the Reynolds

averaged Navier-Stokes (RANS) equations and continuity equations are simplified under the

boundary layer assumption of slow development in the x direction compared to the lateral direction,

i.e., ∂⟨·⟩/∂x << ∂⟨·⟩/∂y. After simplifications, for turbulent wakes of axisymmetric bodies, one

arrives at the following scalings: (a) Ud ∼ x−2/3 and (b) L ∼ x1/3. Note that UdL2 ∼ constant

comes from conservation of momentum. Earlier experimental works (Chevray, 1968, Uberoi and

Freymuth, 1970) lent support to these scaling laws in the far wake of axisymmetric bodies.

However as turbulent flow research developed, it came to light that the wake evolution is

not as simple as the foregoing self-similar evolution. George (1989) postulated that a turbulent

flow can exist in the state of partial self-similarity where only a certain range of flow scales evolve

self-similarly. In his work, George (1989) relaxed the assumption that the Reynolds stresses

evolve as Rs ∼U2
d and instead invoked the TKE transport equation along with high-Re dissipation

scaling ε ∼CεK3/2/L, where Cε is a constant, to arrive at the same scaling laws. Moreover, this

way of looking at the self-similar evolution naturally reproduces the low Re scaling of the wakes

(Ud ∼ x−1 and L ∼ x1/2) when ε ∼ νK1/2/L2. In the last twenty years, there have been numerous

experimental (Johansson and George, 2006a) and numerical (Dairay et al., 2015, Obligado et al.,

2016) confirming George (1989) hypothesis that the Reynolds shear stress does not always evolve
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in conjunction with Ud , i.e., Rs ∼U2
d need not hold. In recent years, an alternative non-equilibrium

dissipation scaling (Vassilicos, 2015) has amounted evidence in various shear flows. Under this

scaling, Cε is not a constant but instead varies with the global inlet Reynolds number ReI and local

Reynolds number ReL as Cε ∼ Rem
I /Ren

L where m and n are constants. In turbulent axisymmetric

wakes, numerical simulations (Chongsiripinyo and Sarkar, 2020, Dairay et al., 2015, Ortiz-Tarin

et al., 2021, Pal et al., 2017) have found this non-equilibrium dissipation scaling to hold over

large distances from the body and Ud decaying close to x−1 instead of x−2/3.

1.1.2 Coherent structures in turbulent wakes

Besides wake scaling laws, analysis and characterization of coherent structures have also

constituted one of the cornerstones in turbulent wake research. In the era before high-resolution

numerical simulations, the characterization was carried out primarily through experimental

visualization and hot-wire anemometry. The experiments of Taneda (1978) revealed the existence

of large-scale wavelike structures in the sphere wake below the supercritical regime. These

structures are reminiscent of the famous vortex shedding mechanism that is present across a

wide range of wake generators and Reynolds number. Besides visualizations, researchers have

extensively made use of spectra and two-point correlations to quantify the features of these

structures in the near and far field of the wake (Achenbach, 1974, Berger et al., 1990, Fuchs et al.,

1979). For a sphere, the most common bluff body prototype, these experimental studies have

established that at higher Re (but still in the sub-critical regime of Re < 3×105), there exist two

dominant frequencies in the pointwise spectra: (a) a low-frequency mode associated with the

vortex shedding in the bodies and (b) a high-frequency mode associated with the instability of the

separating shear layer.

The advent of supercomputers in the 1990s ushered in a new era in the study of turbulent

wakes as well. With numerical simulations, access to high-quality full spatiotemporal datasets

became feasible. Tomboulides and Orszag (2000) carried out direct numerical simulations of
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flow past a sphere in the range of Re ≤ 1000 focusing on the transition between the different

wake regimes as the Re is changed and discussing them in the light of linear stability studies

of Natarajan and Acrivos (1993) and Kim and Pearlstein (1990). Thereafter, there have been

several numerical studies studying the vortex shedding mode and its characteristics using flow

visualization of numerical data (Constantinescu and Squires, 2003, Rodriguez et al., 2011, Yun

et al., 2006).

While other common flow configurations like turbulent jets (Nekkanti and Schmidt, 2020,

2021, Nogueira et al., 2019, Schmidt et al., 2018) and wall-bounded flows (Abreu et al., 2020,

Muralidhar et al., 2019) have seen significant development with regards to the application of

data-driven techniques for coherence characterization and low-order modeling, studies using

rigorous data-driven methods to discern these coherent structures in a turbulent wake are scarce.

Hence, this endeavor has been one of the main focuses of this dissertation. Redford et al. (2012)

found that varying the structures and features of the initial seeding structures in their temporal

simulations led to a change in the decay rates of the subsequent wake evolution. However, due to

the absence of the wake generator, there was no vortex shedding structure in their flow. Likewise,

Bevilaqua and Lykoudis (1978) found that different wake generators showed different spreading

rates despite the decay rate of the defect velocity being the same for the corresponding wakes.

These studies hint towards a strong link between self-similarity and coherent structures. In the

view of the author, the statistical characterization of coherent structures in turbulent wake will

be a stepping stone towards merging the evolution of coherent structures and the self-similarity

framework, in the context of turbulent wakes.

1.2 Stratification effects on wake evolution

The turbulent wake evolution in a homogeneous medium is in itself a challenging problem.

The idea of universality in the far wake, the establishment of a direct link between the coherent
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structures and the self-similar decay rates, and ultimately controlling the wake remain difficult

problems to study. When we add stratification to the mix, the picture of wake evolution becomes

even more complex.

In the presence of stratification, the mean deficit in the turbulent wake decays in three

stages (Spedding, 1997): (a) 3D stage where the mean wake defect velocity, Ud , the decay rate

is similar to the unstratified wake corresponding to that specific wake generator, (b) NEQ or

non-equilibrium stage where the decay of Ud slows down compared to the unstratified wake,

with Ud ∼ x−1/4, and (c) Q2D or quasi-two-dimensional stage when the stratification strongly

inhibits the motions in the vertical direction and the decay rate accelerates again and Ud ∼ x−3/4.

It is worth noting that a clear distinction between these three regimes is observed only for

Fr ≳ O(10) or above and most of the work has been limited to either sphere wakes or body-

exclusive, temporal models of the wake. At lower Fr, the flow over the body itself gets strongly

modulated by the buoyancy, especially for long bodies with aspect ratio > O(1) (Ortiz-Tarin

et al., 2019). In terms of non-dimensional buoyancy time (Nt), Spedding (1997) found that

these regimes lasted as follows: (a) 3D regime for Nt < 1, (b) NEQ regime for 2 < Nt < 50,

and (c) Q2D regime for Nt > 50. Further numerical simulations of Brucker and Sarkar (2010)

and Diamessis et al. (2011) showed that the span of the NEQ regime increases with increasing

Re. In recent years, researchers have also attempted to characterize the multistage decay of

turbulence in the stratified wake at high Reynolds numbers. Zhou and Diamessis (2019) and

Chongsiripinyo and Sarkar (2020) borrowed this idea from the stratified homogeneous turbulence

community (Brethouwer et al., 2007, de Bruyn Kops and Riley, 2019) and presented the traversal

of stratified wakes through different regimes of stratified turbulence namely, weakly stratified

turbulence (WST), intermediately stratified turbulence (IST) and strongly stratified turbulence

(SST). The demarcation among these different stages is provided using a proxy of the local

horizontal buoyancy Reynolds number (RehFr2
h) and the local horizontal Froude number (Frh).

The majority of the experimental and numerical studies of turbulent stratified wakes
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have been concerned with wake scalings and flow energetics. In the early 90s, there were

few experimental studies investigating the existence/absence of the three-dimensional vortex

shedding mode in a stratified wake (Bonneton et al., 1993, Chomaz et al., 1993, Lin et al., 1992a).

However, these studies were at low Reynolds number, focused on the near wake using a few

points for quantitative analysis, and could not characterize the contribution of the discerned

coherent structures to the overall wake energetics. The simulations that followed the advent

of supercomputing were primarily temporal (Brucker and Sarkar, 2010, Diamessis et al., 2011,

Dommermuth et al., 2002, Gourlay et al., 2001) that could not resolve the wake generator. Hence

they missed the physics related to the peculiarities of the wake generator, e.g., steady lee waves,

flow separation, and vortex shedding. These studies also miss the causal link, if any, between near-

body flow structures and internal gravity wave generation. It is only recently that body-inclusive

simulations are being performed and used to study the stratified wake dynamics at moderate to

high Reynolds numbers (Chongsiripinyo and Sarkar, 2017, 2020, Ortiz-Tarin et al., 2019, Pal

et al., 2017). Similar to its unstratified counterpart, it remains to be seen how the mean wake

scalings relate to presence or absence of different types of coherent structures at high Reynolds

numbers.

Within the stratified wake research community, much emphasis has been placed on the

wake of bluff bodies, in particular, the sphere (Bonneton et al., 1993, Chomaz et al., 1993,

Orr et al., 2015, Pal et al., 2016, 2017, Spedding, 1997, 2002a). Despite its widespread use

in hydrodynamic applications, the stratified wake of a slender body has not received much

attention. In numerical simulations, resolving the boundary layer over a slender body becomes

very expensive. Coupled with the challenge of resolving until a far downstream location (x) to

properly uncover the effects of stratification (particularly at large Fr), the high-fidelity simulation

of a slender body wake becomes a very stiff computational problem. To the best of our knowledge,

Ortiz-Tarin et al. (2019) was the first study of flow past a spheroid under the effect of stratification.

Ortiz-Tarin et al. (2021) employed the hybrid method of VanDine et al. (2018) to study the far
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wake of an unstratified turbulent wake of a prolate 6:1 spheroid for the first time in the literature.

In the view of the author, there remain a lot of open questions in the literature on the stratified

wake of a slender body, some of which are answered in this dissertation.

1.3 Modal analyses for studying turbulent flows

With the rise in computational power has come an immense increase in the quantity and

quality of data available for analyses across a variety of engineering fields. The community of

turbulence researchers is no exception. As we get our hands on an ever-increasing amount of data,

the field is seeing a paradigm shift in the way these datasets are analyzed. Besides the classical

statistical analyses, data-driven techniques are becoming commonplace in turbulence research. A

lot of these techniques are based on the idea of decomposing the flow field into different modes

under a certain set of assumptions, hence the name modal analysis, e.g., Taira et al. (2017, 2020).

It is beyond the scope of this dissertation to discuss the many modal analysis techniques being

used today to study turbulent flows. Here, we limit ourselves to a brief overview of two famous

methods, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD).

Proper orthogonal decomposition (POD), in the context of turbulent flows analysis, was

first put forward by Lumley (Lumley, 1967, 1970). In POD, spatiotemporal fluctuations in a flow

are decomposed into an ordered set of eigenmodes and eigenvalues that capture a predefined norm

optimally. The norm can be fluctuation energy, fluctuation enstrophy, or any other semi-definite

positive quantity. The energy contained in a specific mode is represented by the eigenvalue

corresponding to that mode. In its original form, homogeneous directions of the flow are first

separated using Fourier transform and then the inhomogeneous direction is decomposed using

POD. However, this way of performing POD requires a large number of ensembles which is

often infeasible, both in terms of running simulations for a long time horizon and saving the

huge amount of data on the storage disk, for high fidelity simulations. Hence, the more common
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variant of POD used for the analysis of simulation data has been the snapshot POD variant of

Sirovich (1987). Snapshot POD treats the individual flow fields at different time instants as

statistically independent samples. Thereafter, the spatial correlation tensor is decomposed into

modes. Hence the snapshot POD modes retain spatial coherence, but their temporal coefficients

are not guaranteed to evolve coherently, unlike the original POD modes. In the recent literature,

Towne et al. (2018) revisited the original POD formulation of Lumley and employed Welch’s

method (Welch, 1967) to overcome the issue of convergence for numerical datasets. Since its

reformulation, spectral POD (SPOD), as named by Towne et al. (2018), has been used extensively

in distilling coherent structures across a wide variety of flow configurations.

Another famous data-driven method of modal analysis is dynamic mode decomposition

or DMD (Schmid, 2010). In DMD, the underlying operator stepping the flow from one time step

to the next is assumed to be linear. Thereafter, the eigenvalue decomposition of the similarity

matrix of this operator provides us with DMD eigenmodes and DMD eigenvalues. Different

from the POD eigenvalues, DMD eigenvalues provide the frequency at which the modes oscillate.

Unlike POD (or SPOD), there is not a strict hierarchy among the modes, i.e., one can not infer

the dominance of a particular mode from its eigenvalue alone. There have been different variants

of DMD thereafter building on the original algorithm, e.g., Jovanović et al. (2014). Readers are

referred to a recent review by Schmid (2022) on the recent developments of DMD.

Besides these two techniques, there are other methods that lie somewhere between the

purely data-driven and the purely operator-driven approach (e.g., linear stability analysis). One

such popular method is the resolvent analysis (McKeon and Sharma, 2010) for analyzing turbulent

channel flow. Resolvent analysis approaches the problem at hand from an input-output framework

whereby one obtains the forcing modes, the response modes, and the corresponding amplification

factor. Similar to SPOD, resolvent analysis has gained a lot of traction in recent times for turbulent

flow physics analysis and flow modeling (Pickering et al., 2021, Schmidt et al., 2018, Thomareis

and Papadakis, 2018, Yeh and Taira, 2019). Readers are referred to Rowley and Dawson (2017),
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Taira et al. (2017, 2020) for an in-depth survey of a wide variety of data-driven and operator-driven

analyses.

1.4 Organization and contributions of the dissertation

The contributions and organization of the two major themes of this dissertation, i.e., (a)

modal analyses of turbulent disk wake and (b) large eddy simulations (LES) of the prolate 6:1

spheroid wake, to delineate differences of a slender-body stratified wake from its bluff-body

counterpart, are outlined below. Readers are referred to the individual chapters for an in-depth

exposition of these contributions.

1.4.1 Modal analyses of the turbulent disk wakes

In chapter 2 (Nidhan et al., 2020), the coherent structures in the turbulent wake of a

disk at a moderately high Reynolds number (Re) of 5×104 are examined using spectral proper

orthogonal decomposition (SPOD) which considers all three velocity components in a numerical

database. The SPOD eigenvalues at a given streamwise (x) location are functions of azimuthal

wavenumber (m), frequency (St), and SPOD index (n). By x/D= 10, two specific modes dominate

the fluctuation energy: (i) the vortex shedding (VS) mode with m = 1,St = 0.135,n = 1, and (ii)

the double helix (DH) mode with m = 2,St → 0,n = 1. The VS mode is more energetic than

the DH mode in the near wake but, in the far wake, it is the DH mode which is dominant. The

DH mode, when scaled with local turbulent velocity and length scales, shows self-similarity

in eigenvalues and eigenmodes while the VS mode, which is a global mode, does not exhibit

strict self-similarity. Modes m = 0, 3 and 4, although subdominant, also make a significant net

contribution to the fluctuation energy, and their eigenspectra are evaluated. The reconstruction of

TKE and Reynolds shear stress, ⟨u′xu′r⟩, is evaluated by varying (m,St,n) combinations. Higher

SPOD modes contribute significantly to the TKE, especially near the centerline. In contrast,
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reconstruction of ⟨u′xu′r⟩ requires far fewer modes: |m| ≤ 4, |St| ≤ 1 and n ≤ 3. Among azimuthal

modes, m = 1 and 2 are the leading contributors to both TKE and ⟨u′xu′r⟩. While m = 1 captures

the slope of the shear-stress profile near the centerline, m = 2 is important to capture ⟨u′xu′r⟩ at and

near its peak. SPOD is also performed in the vicinity of the disk to describe the modal transition

to the principal contributors in the wake. The leading SPOD modes shows a high-frequency

shear-layer peak close to the disk and the vortex shedding mode commences its initial dominance

of the wake at the end of the recirculation region.

In chapter 3 (Nidhan et al., 2022b), we use spectral proper orthogonal decomposition

(SPOD) to extract and analyze coherent structures in the turbulent wake of a disk at Reynolds

number Re = 5×104 and Froude numbers Fr = 2,10. We find that the SPOD eigenspectra of

both wakes exhibit a low-rank behavior and the relative contribution of low-rank modes to total

fluctuation energy increases with x/D. The vortex shedding (VS) mechanism, which corresponds

to St ≈ 0.11−0.13 in both wakes, is active and dominant throughout the domain in both wakes.

The continual downstream decay of the SPOD eigenspectrum peak at the VS mode, which is a

prominent feature of the unstratified wake, is inhibited by buoyancy, particularly for Fr = 2. The

energy at and near the VS frequency is found to appear in the outer region of the wake when the

downstream distance exceeds Nt = Nx/U = 6−8. Visualizations show that unsteady internal

gravity waves (IGWs) emerge at the same Nt = 6−8. A causal link between the VS mechanism

and the unsteady IGW generation is also established using the SPOD-based reconstruction and

analysis of the pressure-transport term. These IGWs are also picked up in SPOD analysis as a

structural change in the shape of the leading SPOD eigenmode. The Fr = 2 wake shows layering

in the wake core at Nt > 15 which is captured by the leading SPOD eigenmodes of the VS

frequency at downstream locations x/D > 30. The VS mode of the Fr = 2 wake is streamwise-

coherent, consisting of V-shaped structures at x/D ≳ 30. Overall, we find that the coherence of

wakes, initiated by the VS mode at the body, is prolonged by buoyancy to far downstream. Also,

this coherence is spatially modified by buoyancy into horizontal layers and IGWs. Low-order
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truncations of SPOD modes are shown to efficiently reconstruct important second-order statistics.

1.4.2 Large eddy simulations of the prolate 6:1 spheroid wakes

In chapter 4, the high-Reynolds number stratified wake of a slender body is studied using

a high-resolution hybrid simulation. The focus is on identifying differences with a bluff-body

wake (specifically, a disk wake) and explaining said differences. The wake generator is a 6:1

prolate spheroid with a tripped boundary layer, the diameter-based body Reynolds number is

Re = U∞D/ν = 105, and the body Froude numbers are Fr = U∞/ND = {2,10,∞}. The wake

defect velocity (Ud) decays following three stages with different wake decay rates (Spedding,

1997) as for a bluff body. However, the transition points among stages do not follow the

expected Nt = Nx/U∞ values. Comparison with the wake of a circular disk in similar conditions

(Chongsiripinyo and Sarkar, 2020) quantifies the influence of the wake generator - bluff versus

slender - in stratified flow. The strongly stratified Fr = 2 wake is in a resonant state for the 6:1

spheroid and not for the disk. Under the resonant condition, the half wavelength λ/2 of the steady

lee waves coincides with the body length, i.e., λ/2 = L. This leads to the resonant Fr = L/πD.

The steady lee waves strongly modulate the mean flow and, relative to the disk, the 6:1 spheroid

(a high aspect ratio shape) wake at Fr = 2 shows an earlier transition from the non-equilibrium

(NEQ) stage to the quasi two-dimensional (Q2D) stage. The NEQ-Q2D transition is followed by

a sharp increase in the turbulent kinetic energy and horizontal wake meanders. At Fr = 10, the

start of the NEQ stage is delayed for the spheroid. Transfers between kinetic energy and potential

energy reservoirs (both mean and turbulence) are analyzed and the flows are compared in phase

space (local Froude and Reynolds number as coordinates). Overall, the results of this study point

to the difficulty of finding a universal framework for stratified wake evolution, independent of

the features of the body, and provide insights into how buoyancy effects depend on the wake

generator.

In chapter 5 (Nidhan et al., 2022a), large eddy simulations (LES) are performed to study
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the flow past a 6:1 prolate spheroid placed at an angle of attack of α = 10◦. The diameter-based

Reynolds number (Re = U∞D/ν) is set to a value of 5000 and four values of diameter-based

Froude numbers (Fr = U∞/ND) are analyzed: Fr = ∞,6,1.9, and 1. Visualizations of the

coefficient of pressure (Cp) and friction (C f ) contours reveal asymmetry in the Fr = ∞ and 6 flows

while, at Fr = 1 and Fr = 1.9, the flow over the body does not have any visible asymmetry. This

finding is further corroborated through the analysis of force coefficients on the body. The changes

in the pressure coefficients (Cp), friction coefficients (C f ), and drag coefficients (Cd) with the

Froude number are described in detail for α = 10◦. We also present the analyses of forces on the

body at α = 0◦ angle of attack for comparison with the α = 10◦ cases. After analyzing the flow

over the body, wakes of α = 10◦ cases are analyzed in detail through the means of turbulence

statistics, flow visualizations, and spectra. The distinct flow separation patterns at different Fr

have a lasting impact on the dynamics of the mean wake, mean streamwise vorticity, and the flow

structures in the wake.
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Chapter 2

Spectral POD analysis of the turbulent

wake of a disk at Re = 5×104

2.1 Introduction

The turbulent wake is a widely prevalent class of free shear flows that occurs whenever

a flow encounters an obstacle in its path or, equivalently, an obstacle moves in a surrounding

fluid. Like other types of free shear flows, turbulent wakes are assumed to evolve self-similarly

far away from their generators in classical analysis Tennekes and Lumley (1972). Often, wakes

contain large-scale anisotropic coherent structures Cannon et al. (1993), Taneda (1978) which

feed on the energy of the mean flow, and in turn modify the statistical descriptors of the flow.

The characteristics of these coherent structures are strongly influenced by the geometry of wake

generators and by boundary conditions. Hence, the study of turbulent wakes has revolved around

two major themes: (i) discerning the scaling laws of statistical mean and turbulent quantities, and

(ii) extracting and analyzing coherent structures.

Townsend (1976) hypothesized that free shear flows forget their initial conditions and

eventually asymptote towards a form that is both self-similar and universal. However, the study
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of Bevilaqua and Lykoudis (1978) showed that initial conditions significantly influence the

subsequent evolution of turbulent wakes. They compared the wakes of a sphere and a porous

disk, both of which produced the same drag, and found that, although both wakes exhibited a

self-similar regime with the same power laws, their spread rates were different. They attributed

this difference to the distinct nature of coherent structures in these flows, thus pointing towards a

link between the evolution of flow statistics and the nature of coherent structures. Decades later,

Redford et al. (2012) simulated a temporally evolving wake with two different types of initial

conditions: (i) an array of vortex rings, and (ii) small-amplitude broadband velocity fluctuations.

Both initial conditions led to a self-similarly evolving wake with the classical Ud ∼ x−2/3 decay

of the wake deficit velocity (Ud) but the magnitude of spread rates were different. Furthermore, it

was only after a very long time that the spread rates converged to a common value and a universal

self-similar form with Ud ∼ x−2/3 was achieved. Thus, it is possible that the imprint of coherent

structures generated due to initial and boundary conditions persist for a long time (or distance)

in the wake. A detailed understanding of the statistical behavior of low-dimensional coherent

structures is hence crucial to construct a complete picture of the wake evolution.

Early efforts to objectively study coherent structures in the context of wakes utilized

laboratory experiments. Fuchs et al. (1979) pioneered the use of two-point cross spectral analysis

to investigate the coherent structures in axisymmetric shear flows. They showed the dominance

of specific azimuthal modes, m = 1 and m = 2, in the wake of a disk. The azimuthal m = 1 mode

dominated at the vortex shedding frequency of the wake St =U f/D = 0.135 while the m = 2

mode peaked at a very low frequency of St ≈ 0.005 in their experiments. However, the analysis

was conducted at only two near-body stations, x/D = 3 and x/D = 9, and was limited to the

fluctuating streamwise velocity (u′x) and pressure (p′). Around the same time, flow visualizations

of Taneda (1978) revealed a wavelike structure in sphere wakes in the regime of subcritical Re.

Berger et al. (1990) investigated the near-wake (x/D ≤ 9) structure of a sphere and a disk using

cross-spectral analysis and smoke visualization. Three frequencies dominated the near wake of
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a disk: a low-frequency (St = 0.05) axisymmetric (m = 0) pumping of the recirculation bubble,

the vortex shedding frequency (St = 0.135) dominated by the helical m = 1 mode, and a high

frequency of (St = 1.62) related to the instability of the separated shear layer. The wake of a

sphere at subcritical Re was found to be similar to that of a disk. Cannon et al. (1993) found that

these large-scale helical m = 1 structures persisted even further downstream until x/D = 29. Later,

Johansson et al. (2002) analyzed the wake of disk at Re = 26,400 using hot-wire measurements

of u′x and proper orthogonal decomposition (POD) (Lumley, 1967, 1970). Two distinct peaks

were present in their POD spectra: (i) m = 1, St = 0.126 associated with vortex shedding from

the disk, and (ii) m = 2, St ≈ 0. They found that the m = 2 mode eventually dominated the energy

content of the wake by x/D = 50, where D is the diameter of disk. This study was later extended

by Johansson and George (2006a) who performed measurements until x/D = 150. They found

the dominance of m = 2 appeared at x/D ≈ 30 beyond which the turbulence statistics also started

exhibiting self-similar behavior.

Different from experiments, attempts to study the evolution of coherent structures in

turbulent wakes using numerical simulations have mainly relied on flow visualizations. Constanti-

nescu and Squires (2003) used the vortex identification method proposed by Jeong and Hussain

(1995) to visualize the coherent structures in the wake of sphere at Re = 10,000. They observed

that the main coherent structure shed patches of vorticity which then rotated irregularly while

being convected downstream. Yun et al. (2006) used the method of Jeong and Hussain (1995)

in conjunction with particle tracking to study the vortex structure of sphere wake at Re = 3700

and 10,000. At lower Re = 3700, the separated shear layer formed a cylindrical vortex sheet

becoming unstable at x/D ≈ 2. At Re = 10,000, the separated shear layer became unstable

immediately behind the body and formed vortex rings. Using particle tracking, they showed that

the helical structure of the wake was not due to the rotation of vortical structures in the azimuthal

direction but was due to a helical mode that translated downstream without rotation. This finding

was further confirmed in later studies of Rodriguez et al. (2011) at Re = 3700 and Chongsiripinyo
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and Sarkar (2017) at Re = 10,000.

In the classical formulation of POD proposed by (Lumley, 1967, 1970), the homogeneous

directions are first separated using the Fourier transform and then the cross-spectral tensor is

decomposed in the non-homogeneous directions to give POD eigenvalues and eigenmodes. Thus,

for statistically stationary flows, each POD mode is characterized by a single frequency. Since

its introduction to the fluid dynamics community, this original formulation of POD has been

extensively used by experimentalists to educe coherent structures in different types of turbulent

flows. In the context of free shear flows, Leib et al. (1984), Glauser et al. (1987), and Glauser

and George (1987) applied the classical POD to the near-field measurements of a turbulent

axisymmetric jet. Thereafter, there have been several experimental studies employing the classical

form of POD to study coherent structures in a variety of flow configurations: (i) turbulent

jets (Arndt et al., 1997, Bonnet et al., 1994, Citriniti and George, 2000, Davoust et al., 2012,

Gordeyev and Thomas, 2000, 2002, Iqbal and Thomas, 2007), (ii) mixing layers (Bonnet et al.,

1994, Delville et al., 1999, Ukeiley et al., 2001), and (iv) wakes (Johansson and George, 2006b,

Johansson et al., 2002, Tutkun et al., 2008).

There have been some POD studies of simulation data from various flows but POD

analysis of turbulent wake simulations is lacking. Simulation-based POD been dominated by

its ‘snapshot’-type variant introduced by Sirovich (1987). In snapshot POD Sirovich (1987), the

spatial correlation tensor is decomposed and the modes possess spatial coherence while evolving

randomly in time. As a result, the snapshot POD modes are generally not coherent in time. On the

other hand, application of classical POD for numerical simulations require long time integration

making its application challenging for large-scale computations. Recently Towne et al. (2018)

revisited a form of POD that leverages the temporal symmetry of statistically stationary flows

termed spectral POD (SPOD). SPOD has been extensively used to study the coherent structures

in compressible jets and their link to noise generation (Lesshafft et al., 2019, Nogueira et al.,

2019, Schmidt et al., 2017, 2018).
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The main objective of the present study is to improve upon our previous understanding of

the coherent structures in the wake of a disk. This is achieved by conducting an extensive SPOD

analysis of data from flow past a disk simulated at Re = 50,000 by Chongsiripinyo and Sarkar

(2020), specifically their case of the wake in a homogeneous, unstratified fluid. We improve

on previous experimental studies by including all three velocity components instead of solely

ux, by employing the high spatial resolution and coverage possible with simulation data, by

analyzing the flow field at several downstream locations from near the body to the far wake, and

by considering a higher Re. The ability of SPOD to separate temporal and spatial scales makes

it a desirable candidate to study the coherent structures in turbulent flows. It is hoped that the

qualitative findings of this study will be applicable to the wakes of other bluff bodies too, e.g., a

sphere.

While the previous experimental studies of the wake of a disk using POD have developed

our understanding of the role of the m = 1 vortex shedding mode and the dominance of the m = 2

double helix mode away from the body, a more complete analysis of the eigenspectrum and

eigenmodes of the azimuthal modes including their relative importance is missing. We bridge this

gap by analyzing the SPOD eigenmodes and eigenspectra of different azimuthal modes in detail.

Specifically, we consider the following questions. How is the energy distributed among SPOD

modes of different azimuthal wave numbers (m) and frequencies (St), both in the near as well as

the far wake? Does the turbulent wake of a disk at a higher Re, as in the present case, show the

dominance of the m = 2 azimuthal mode akin to the experimental investigations of the past? Do

the SPOD eigenvalues and eigenmodes of the different dominant modes exhibit self-similarity

indicating their connection to the local turbulence structure instead of being global modes?

We also explore the reconstruction of the turbulent kinetic energy (TKE) and ⟨u′xu′r⟩ to

further clarify the role of modal decomposition. In particular, we address the following questions.

What is the distribution of TKE and ⟨u′xu′r⟩ in the leading SPOD modes of the dominant azimuthal

wave numbers and frequencies? How does the reconstruction of both TKE and ⟨u′xu′r⟩ change
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when we systematically change the reconstruction parameters by varying m, St and the number of

SPOD modes?

The remainder of the paper is organized as follows. In section 2.2 and 2.3, we present the

numerical methodology and a brief description of SPOD, respectively. Some visualizations of the

flow follow in section 2.4. Section 2.5 is a presentation of some single-point statistics obtained

from ensemble-averaging (averaging in time and in the azimuthal direction) of the numerical

data. Section 2.6 and 2.7 is a description of SPOD eigenvalues and eigenmodes at locations

x/D ≥ 20. The sensitivity of the reconstruction of TKE and ⟨u′xu′r⟩ to the selection of SPOD

modes is discussed in section 2.8. Finally, we report the SPOD analysis at a few locations near

the body in Section 2.9 and present conclusions in section 2.10.

2.2 Governing equations and numerical scheme

The flow past a disk in a homogeneous fluid was simulated at Re = 50,000. As reported

by Chongsiripinyo and Sarkar (2020), a large eddy simulation (LES) approach was adopted and

the simulation was conducted with high resolution. The non-dimensional filtered Navier-Stokes

equations governing the flow are as follows:

continuity:
∂ui

∂xi
= 0, (2.1)

momentum:

∂ui

∂t
+

∂(uiu j)

∂x j
=− ∂p

∂xi
+

1
Re

∂
∂x j

[(
1+

νs

ν

)∂ui

∂x j

]
, (2.2)

where ui corresponding to i = 1,2, and 3 refers to filtered fluid velocities in streamwise (x1),

lateral (x2), and vertical (x3) directions, respectively. In Eq. (3.2), νs and ν refer to the kinematic

subgrid viscosity obtained from the LES formulation and the kinematic viscosity of the fluid,

18



respectively. The governing equations are non-dimensionalized using the following parameters:

free-stream velocity (U∞) for velocity, diameter of disk (D) for spatial locations (xi), dynamic

pressure (ρoU2
∞) for pressure (p), and advection time (D/U∞) for time (t). The Reynolds number

is denoted by Re =U∞D/ν.

The filtered Navier-Stokes equations given by Eq. (3.1) and Eq. (3.2) are solved in a

cylindrical coordinate system for the streamwise axial velocity (ux), radial velocity (ur), azimuthal

velocity (uθ) and pressure (p). The field variables are functions of streamwise location (x), radial

distance from the axis (r), and azimuthal location (θ). The disk is centered at (x1,x2,x3) = (0,0,0)

in the computational domain, and is represented by the immersed boundary method of Balaras

(2004); Yang and Balaras (2006). Spatial derivatives are computed using second-order accurate

finite central differences. The temporal marching is performed using the fractional step method

which combines the low-storage Runge-Kutta-Wray (RKW3) scheme with the second-order

Crank-Nicolson scheme. Taking the divergence of velocity in the predictor step, a pressure

Poisson equation is formed which, after taking account of periodicity in the azimuthal direction,

transforms to a linear system of equations for Fourier pressure modes. The linear system

involves a pentadiagonal matrix which is inverted using a direct solver Rossi and Toivanen (1999).

The kinematic subgrid viscosity (νs) is obtained using the dynamic eddy viscosity model of

Germano et al. (1991). At the inlet boundary, a uniform stream of velocity (U∞) is imposed

while an Orlanski-type convective boundary condition is used for the outflow Orlanski (1976).

Neumann boundary condition is imposed at the radial boundary of the domain for all three

velocity components.

The computational domain for the present simulation extends until x/D = 125 in the

streamwise and r/D = 15 in the radial direction. The number of grids points used to discretize

the domain is as follows: Nr = 364 in the radial direction, Nθ = 256 in the azimuthal direction,

and Nx = 4608 in the axial direction. This choice results in approximately 430 million elements.

The conducted LES has high resolution. At x/D = 10, ∆x/η is smaller than 10, decreasing to
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below 6 by x/D = 125. The resolution in the other directions is similarly good. Chongsiripinyo

and Sarkar (2020) can be referred for more details regarding the numerics.

2.3 Description of spectral proper orthogonal decomposition

(SPOD)

2.3.1 Overview of POD for statistically stationary flows

Let us consider a zero-mean stochastic process u(x, t) in a finite spatial domain Ω. In

the context of turbulent flows, u(x, t) can be considered as the fluctuating component of the full

velocity field. POD proposed by (Lumley, 1967, 1970) aims at obtaining deterministic functions

Ψ(x, t) on which u(x, t) has the maximum ensemble-averaged projection. Analytically, this

maximization is expressed as,

max
Ψ

⟨{u(x, t),Ψ(x, t)}⟩
||Ψ(x, t)||2 , (2.3)

where ⟨.⟩ represents the ensemble average and the inner product {u(x, t),v(x, t)} is defined as

{u(x, t),v(x, t)}=
∫ ∞

−∞

∫
Ω
v∗(x, t)W (x)u(x, t)dxdt. (2.4)

Here, W (x) is a positive-definite Hermitian matrix and the asterisk denotes the complex conjugate

of the vector field. Using the calculus of variation Holmes, P. and Lumley, J. L. and Berkooz,

G. and Rowley, C. W. (2012), the minimization of the expression in Eq. (2.3) reduces to a

Fredholm-type integral eigenvalue equation given by

∫ ∞

−∞

∫
Ω

Ri j(x,x
′, t, t ′)W (x′)Ψ(n)

j (x′, t ′)dx′ dt ′ = λ(n)Ψ(n)
i (x, t), (2.5)
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where λ(n) and Ψ(n)
i (x, t) are the nth eigenvalue and the component of the corresponding eigen-

mode in the ith direction, respectively. In Eq. (2.5), Ri j(x,x
′, t, t ′) = ⟨ui(x, t)u∗j(x

′, t ′)⟩ corre-

sponds to the space-time cross-correlation tensor.

Since time (t) is a homogeneous direction in statistically stationary flows, Ri j(x,x
′, t, t ′)

for such flows can be written as,

Ri j(x,x
′, t, t ′) = Ri j(x,x

′,τ) =
∫ ∞

−∞
Si j(x,x

′, f )e−i2π f τ d f , (2.6)

where τ = t − t ′ and Si j(x,x
′, f ) is the Fourier transform of Ri j(x,x

′,τ). Using Eq. (2.6), the

eigenvalue problem given by Eq. (2.5) can be recast as the following equivalent problem Towne

et al. (2018), ∫
Ω

Si j(x,x
′, f )W (x′)Φ(n)

j (x′, f )dx′ = λ(n)( f )Φ(n)
i (x, f ), (2.7)

which can be solved at each frequency f . The modified eigenmodes are then given by Φ(n)
i (x, f )=

Ψ(n)
i (x, t)e−i2π f t . By virtue of the Hilbert-Schmidt theorem, the eigenvalues are sorted such that

λ(1)( f )≥ λ(2)( f )≥ . . .≥ λ(n)( f ) where λ(n)( f ) represents the energy content of the nth mode

at the frequency f . The eigenmodes are orthonormal to each other, i.e.,

∫
Ω
Φ∗(n)(x, f )W (x)Φ(m)(x, f )dx= δmn, (2.8)

where δmn is the Dirac-delta function. These eigenmodes also provide a complete basis for the

Fourier realization of the turbulent velocity field u(x, t) at frequency f , i.e.,

û(x, f ) =
∞

∑
n=1

a(n)( f )Φ(n)(x, f ), (2.9)

where a(n)( f ) = {û(x, f ),Φ(n)(x, f )} is the inner product of the Fourier transform of u(x, t)

and the nth eigenmode at frequency f .
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2.3.2 Numerical implementation of SPOD

In the present work, SPOD is applied to two-dimensional (2D) cross-stream slices of

the three-dimensional (3D) velocity field sampled at different streamwise locations from the

numerical simulation. Downstream locations, ranging from x/D = 5 to 100, are sampled at a

spacing of approximately 5D. Two additional locations at x/D = 110 and 120 are also sampled.

Besides these locations, SPOD is also performed at x/D = 0.1,1,2, and 5 to analyze the modal

distribution of fluctuation energy near the disk.

The turbulent wake behind a disk is homogeneous-periodic in the azimuthal direction. It

can be shown that the SPOD eigenfunctions in the azimuthal direction (or any other homogeneous

direction for that matter) are harmonic functions (Lumley, 1970, Towne et al., 2018). Owing to

the statistically stationary nature of the wake, the azimuthally decomposed velocity field can be

further decomposed into the temporal Fourier modes such that

u(x;r,θ, t) = ∑
m
ũm(x;r, t)eimθ = ∑

f
∑
m
ûm f (x;r)eimθei2π f t , (2.10)

where ûm f is the double Fourier decomposed velocity field for a given (m, f ) pair and ũm is the

azimuthally decomposed instantaneous snapshot at a time instant t .

For the numerical implementation of the SPOD, the velocity field is first decomposed in

the azimuthal direction and the data for each azimuthal mode is collected into a snapshot matrix

Um as

Um = [ũ
(1)
m , ũ

(2)
m , · · · ũ(N)

m ], (2.11)

where N is the total number of time snapshots used for the SPOD. Subsequently, Um is divided

into Nblk overlapping blocks, each containing N f req entries, as follows:

U
(l)
m = [ũ

(l)(1)
m , ũ

(l)(2)
m , · · · ũ(l)(N f req)

m ], (2.12)
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where U
(l)
m is the lth block consisting of N f req time snapshots. Each block is then Fourier

transformed in the temporal direction and all realizations at a given frequency f are collected into

a matrix Ûm f as

Ûm f = [û
(1)
m f , û

(2)
m f , · · · û

(Nblk)
m f ]. (2.13)

At this stage, the (r,θ, t) simulation data at each of the chosen streamwise planes has been

represented as a collection of Nblk independent realizations of the (r,m, f ) dependence of the

three velocity components. From this form of the data, eigenvectors and eigenvalues are obtained

by the eigenvalue decomposition of the weighted cross-spectral density matrix:

Û ∗
m fWÛm fΓm f =Λm fΓm f . (2.14)

Here, W is a 3Nr ×3Nr diagonal matrix which contains the quadrature weights of radial

grid points for all three velocity components, accounting for the numerical area-integration of

TKE on the discrete grid. This ensures that the obtained SPOD modes optimally capture the

area-integrated TKE at any x/D location. The SPOD modes for a given (m, f ) can then be

obtained from the eigenvectors Γm f as Φm f = Ûm fΓm fΛ
−1/2
m f . The obtained eigenmodes are

orthogonal and the eigenvalues are ordered with respect to their contribution to area-integrated

fluctuation kinetic energy as described in the previous section.

For the present analysis, N = 7200 snapshots are used for the analysis. Consecutive

snapshots are separated by non-dimensional time ∆tD/U∞ ≈ 0.07. N f req (size of each block)

and Nblk (overlap between two consecutive blocks) are set as 512 and 256 respectively, resulting

in total of Nblk = 27 SPOD modes for each pair of (m, f ). Thus, in the present application of

SPOD, Ûm f is a matrix of dimension 3Nr ×Nblk. It is worth noting that one block, consisting

of N f req = 512 snapshots, spans a time window Tblock = 36.91D/U∞. The integral timescale

at r/D = 0.5, evaluated by integrating the auto-correlation function of streamwise fluctuation

velocity (u′x) from a zero value of time lag (τ) to the first zero crossing (Katul and Parlange, 1995,
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O’Neill et al., 2004), varies from γ = 0.6045D/U∞ at x/D = 10 to γ = 1.6529D/U∞ at x/D = 120.

Thus, at x/D = 10, one block of 512 snapshots spans approximately 61 integral timescales which

decreases to approximately 22 integral timescales by x/D = 120. Readers are referred to Towne

et al. (2018) for more details regarding SPOD and its connection to different modal decomposition

techniques (e.g., DMD, resolvent analysis, etc.) and to Schmidt and Colonius (2020) for an

introduction to the method.

2.4 Visualizations

Figure 2.1 shows three-dimensional instantaneous visualizations of Q-criterion Hunt et al.

(1988), which is used to identify vorticity-dominated regions in a flow field. Q is the second

invariant of the velocity gradient tensor, defined as

Q =
1
2
(|Ω2|− |S|2), (2.15)

where

Ωi j =
1
2

(∂ui

∂x j
− ∂u j

∂xi

)
, Si j =

1
2

(∂ui

∂x j
+

∂u j

∂xi

)
(2.16)

are the rotation tensor and strain-rate tensor respectively. Regions with Q > 0 are dominated by

vorticity signifying that the fluid motion is primarily rotational in those regions.

At the high Re of the present study, velocity gradients are found to be dominated by small-

scale turbulent fluctuations. To focus on the large-scale coherent structures, the instantaneous

velocity field is filtered using a Gaussian low-pass filter, an in-built SciPy function named

gaussian filter. In the inputs for the function gaussian filter, the standard deviation (σ) of the

Gaussian kernel was varied systematically from σ = 2 to 30. Subsequently, based on visual

inspection, a Gaussian low-pass filter with σ = 10 was used for the present visualizations. Higher

σ values led to the smearing of large-scale coherent structures while visualizations with lower

24



Figure 2.1: Isosurfaces of Q-criterion. Q = 0.001 of the filtered velocity for (a) 0 < x/D < 30
and for (b) 30 < x/D < 100 at a given time instant; (c) Q = 0.05 of the residual field for
30 < x/D < 100.

σ still had significant imprints of the small-scale turbulence obscuring the large-scale coherent

structures. The width of the Gaussian kernel is set such that the Q of the filtered velocity field

elucidates coherent structures without much distortion and, at the same time, is not completely

dominated by the small-scale fluctuations.

In Fig. 2.1(a), it can be observed that vortex rings are shed in the immediate downstream

of the disk. These vortex rings represent the axisymmetric m = 0 mode. As the flow evolves

spatially, these rings become unstable and give way to a complex distribution of vorticity in the

wake. Instantaneous two-dimensional contours of Q in the vicinity of the disk (see Fig. 2.2)

shows higher azimuthal modes with m > 0 (see Fig. 2.2(a)) that emerge close to the disk and

distort the m = 0 vortex rings. At x/D = 0.5 and 1.05, the presence of m = 1 and m = 2 modes

can be seen in Fig. 2.2(b) and 2.2(c), respectively.

Despite the entangled arrangement of vortices, a helical orientation of coherent structures

in the wake can be discerned from the 3D visualizations of Fig. 2.1. These coherent structures

are the vortex shedding structures that originate near the disk from instabilities in m = 0 and
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Figure 2.2: Two-dimensional contours of Q-criterion of the filtered velocity fields at the same
time instant as in Fig. 2.1 at various streamwise locations: (a) x/D = 0.05, (b) x/D = 0.5, and
(c) x/D = 1.05.

advect downstream. Visual inspection of Fig. 2.1(a) and (b) reveal the following points. First,

the vortex shedding structures are separated approximately by λV S/D = 1/St where St = 0.135

(identified formally by the modal decomposition, as will be seen) is the vortex shedding frequency

of the disk wake at hand. Second, these structures meander away from the wake centerline as the

flow evolves downstream. For completeness, Q-criterion of the residual velocity field, obtained

by subtracting the filtered velocity from the original velocity, is presented in Fig. 2.1(c) for

30 < x/D < 100. The residual field also shows a helical-like orientation similar to the filtered

field observed in Fig. 2.1(b). It is worth noting that the above-mentioned procedure of obtaining

the residual field does not ensure the absence of an imprint of the large-scale features on the

residual field. It is also possible that this imprint can be physical (rather than the imperfection

of scale separation by a physical-space filter) in the sense that the structure of the fine-scale

turbulence is dependent on the coherent structures.
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Figure 2.3: Ratio of centerline turbulent intensities and |⟨u′xu′r⟩|
1/2
max to Ud as a function of x/D.

2.5 Evolution of turbulence statistics in the wake

Figure 2.3 shows the streamwise evolution of the centerline r.m.s. velocity fluctuations and

the maximum value of ⟨−u′xu′r⟩1/2(r), each normalized by the centerline defect velocity (Ud). The

normalized turbulent velocity scale (K1/2
o ), derived from the centerline TKE (Ko = ⟨u′iu′i⟩r=0/2),

is also shown. Chongsiripinyo and Sarkar (2020) found, using the same simulation, that the mean

velocity scale (Ud) and the turbulence velocity scale (K1/2
o ) did not follow the same decay rates

for 10 < x/D < 65; Ud was ∝ x−0.9 while K1/2
o was ∝ x−0.7. After x/D ≈ 65, the decay rates

of both Ud and K1/2
o became similar and close to the classical decay exponent of −2/3 for the

axisymmetric turbulent wake. The consequences of this difference in the initial decay rates can

be observed in Fig. 2.3 where the ratio of each r.m.s. velocity fluctuation to Ud keeps increasing

until x/D ≈ 65. Beyond x/D = 65, the ratios drop down and asymptote to approximately 1.2

for the individual r.m.s. fluctuations and 1.5 for K1/2
o . It can also be seen that the near-wake

turbulence (x/D < 40) is more anisotropic with the streamwise component dominating over
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Figure 2.4: TKE profiles scaled with Ko at different streamwise locations (20 < x/D < 120)
with radial direction scaled by: (a) D and (b) Lk.

the other two. It is beyond x/D = 40 that the r.m.s. velocity fluctuations become more or less

isotropic. Figure 2.3 also shows the ratio of square-root of the maximum value of ⟨−u′xu′r⟩(r)

to Ud . This ratio also increases for x/D < 65, albeit slowly, compared to the ratios of the r.m.s.

fluctuations. After x/D ≈ 80, the value of ⟨−u′xu′r⟩
1/2
max/Ud asymptotes to ≈ 0.7. Compared to

the previous experimental studies of flow past a disk (Johansson et al. (2003), Table 5.3 in Pope

(2000)), the ratios of turbulent intensities to the defect velocity are slightly higher in the present

case (an asymptotic value of 1.2 instead of approximately 0.9−1.1 found in the previous studies),

which may be due to the relatively high Re of the current study.

Figure 2.4 shows radial profiles of TKE at different downstream locations spanning

20 < x/D < 100. Normalization of r by the disk diameter (D) in part (a) is compared with

normalization by the local wake width (Lk) in part (b). Here, Lk is the half-width of the TKE

profile defined by K(x;r = Lk) =
1
2Ko(x). The downstream growth of wake thickness is seen

in Fig. 2.4(a) where the radial spread of K/Ko monotonically increases with increasing x/D.

When the radial direction is scaled by Lk, these profiles collapse onto a single profile implying

self-similar evolution of TKE beyond x/D ≈ 20. It is worth noting that the TKE becomes

approximately zero by r/Lk = 2.

In Fig. 2.5 we plot the scaled profiles of normal stresses along with ⟨u′xu′r⟩, the component
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Figure 2.5: Normal turbulent stresses (a, b, c) and ⟨u′xu′r⟩ (d) profiles at different streamwise
locations (20 < x/D < 120) scaled by their maximum values at the respective locations. The
radial direction is scaled by TKE-based wake width Lk.
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of Reynolds stress tensor that appears in the simplified Reynolds-averaged streamwise momentum

equation of the turbulent axisymmetric wake,

U∞
∂
∂x

(U −U∞) =−1
r

∂
∂r

(r⟨u′xu′r⟩). (2.17)

All the turbulent stresses in Fig. 2.5 have been scaled by their maximum values at the

corresponding x/D locations, and the the radial direction has been scaled by the TKE-based wake

width Lk. All the three normal turbulent stresses plotted in Fig. 2.5 collapse beyond x/D ≈ 40.

Until x/D ≈ 40, the profile of the streamwise component shows the largest deviation among

different locations. Besides ⟨u′xu′x⟩, which peaks between r/Lk = 0.5−0.75, the other two normal

turbulent stresses peak near the centerline and decay with increasing r. All three normal stresses

approach zero by r/Lk ≈ 2 as was also seen for the TKE profiles.

The profiles of ⟨u′xu′r⟩ collapse well for r/Lk < 0.75 when scaled with Lk. Beyond the

peak location of ⟨−u′xu′r⟩, which occurs near the peak of ⟨u′xu′x⟩, there is some spread in the

normalized profiles. The radial extent of the scaled profiles increases with increasing x/D. At

x/D = 20, the scaled Reynolds stress profile decays to zero by r/Lk ≈ 1.6. By x/D = 100, the

radial extent of the scaled profiles has increased to r/Lk ≈ 2.

2.6 SPOD eigenvalues and eigenspectra

Figure 2.6 shows the distribution of energy in the leading SPOD (or the most energetic

SPOD) eigenvalue λ(1) as a function of azimuthal mode (m) and non-dimensional frequency (St)

at four downstream locations: x/D = 20, 40, 80, and 100. At all locations, the energy in λ(1)

among all (m,St) pairs is predominantly contained in modes that satisfy m ≤ 4 and St < 0.4.

There are two distinct peaks in Fig. 2.6: (i) m = 1, St = 0.135 (vortex shedding (VS)

structure), and (ii) m = 2, St = 0 (double helix (DH) structure). The former has long been known

to be the vortex shedding structure in the turbulent wake of a disk (Berger et al., 1990, Cannon
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Figure 2.6: SPOD contour maps showing energy contained in leading SPOD mode, λ(1), as a
function of azimuthal wavenumber m and frequency St at different locations: (a) x/D = 20, (b)
x/D = 40, (c) x/D = 80, and (d) x/D = 100.
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et al., 1993, Fuchs et al., 1979, Johansson and George, 2006b, Johansson et al., 2002). The

existence of the latter in the high-Re wake of disk was first reported by Fuchs et al. (1979) and its

importance was expanded upon later by Johansson and George (2006b). The prominent peak at

St = 0 should be interpreted as a quasi-steady structure in the limit of St → 0 Nogueira et al. (2019).

The discrete nature of the Fourier transform and the limited temporal runtime (T ≈ 504D/U∞,

which is approximately four flow-through times) of these computationally intensive simulations

make it difficult to resolve very small frequencies in the limit of St → 0, leading to the energy of

very low frequencies being captured in St = 0. In the rest of the paper, St = 0 will be replaced

with St → 0 in the context of m = 2 to avoid misinterpreting it as a temporally stationary mode.

Figure 2.6 has two important implications. First, the peak associated with vortex shedding

persists far downstream, being still present at x/D = 100. Second, the leading SPOD mode of the

VS structure clearly dominates the near wake (at x/D = 20) and gradually declines in importance

relative to the DH structure which eventually dominates the energy content in λ(1) by x/D = 100.

This observation is consistent with the previous findings of Johansson and George (2006b) who

found that the DH structure dominated in the wake beyond x/D = 30.

To further analyze the contribution of different azimuthal modes to the area-integrated

TKE, the eigenspectrum of each m has been summed over all resolved frequencies and normalized

with ET
k (x/D) to obtain the percentage contribution of each m as follows:

ξ(i)(m;x/D) =

∑
St

λ(i)(m,St;x/D)

ET
k (x/D)

×100, (2.18)

where the index i corresponds to the ith SPOD mode and ET
k (x/D) is the area-integrated TKE

at that x/D location. The resulting frequency-integrated eigenspectrum has been plotted for

four locations x/D = 20,40,80, and 100 in Fig. 2.7. From Fig. 2.7 it can be ascertained that a

major contribution to TKE comes from the first five azimuthal modes in the near as well as far

wake. Another observation is the overall low-rank behavior of azimuthal modes m ≤ 4 in the
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Figure 2.7: Frequency-integrated eigenspectrum as a function of azimuthal mode number m
at different locations: (a) x/D = 20, (b) x/D = 40, (c) x/D = 80, and (d) x/D = 100. Three
leading SPOD modes (λ(1), λ(2), and λ(3) ) at each m are shown in terms of their percentage
contributions to the area-integrated TKE.
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sense that there is a significant difference between the contributions of λ(1) and λ(2) for these m.

At x/D = 20 in Fig. 2.7(a), m = 1 dominates the integrated eigenspectra followed by m = 2,3,

and 0 respectively. As x/D increases, the relative contribution of m = 2 starts increasing while

that of m = 1 starts declining. By x/D = 40 (Fig. 2.7(b)), both m = 1 and m = 2 have similar

contribution and eventually m = 2 starts dominating the integrated eigenspectra as seen in Fig.

2.7(c) and Fig. 2.7(d). Beyond m = 2, the energy content of λ(i) decreases monotonically with

increasing m.

The results of Johansson and George (2006b) showed the eventual dominance of the m = 2

mode beyond x/D = 40. In the present analysis, the m = 2 mode emerges as the dominant mode

at a farther downstream distance x/D = 60. It is worth noting that all three velocity components

are included in the SPOD kernel as opposed to the previous analysis Johansson and George

(2006b) which only included the streamwise velocity component. Besides this difference, the

present results show that the axisymmetric mode m = 0 is always significantly less dominant than

m = 1 and is of comparable magnitude to the m = 3 mode. In the previous results Johansson

and George (2006b), the axisymmetric mode was of comparable magnitude to m = 1 and was

significantly more dominant than m = 3 for all measurement stations at 30 ≤ x/D ≤ 150 (see Fig.

7 in their paper). It is also worth noting that Re = 50,000 is almost twice that of the previous

study.

The findings of Fig. 2.6 and 2.7 warrant a detailed investigation of the VS and DH

mode. In what follows, we investigate the m = 1 and m = 2 modes in more detail, particularly

in the context of the VS and DH modes. We also present some results on the eigenvalues and

eigenspectra of m = 0,3, and 4 modes since Fig. 2.7 shows that these modes, although not

dominant, also make appreciable contributions to the area-integrated TKE.
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Figure 2.8: SPOD eigenspectra of 25 modes (dark to light shade corresponds to high to low
energy eigenvalues): (a) m = 1, x/D = 20; (b) m = 1, x/D = 80; (c) m = 2, x/D = 20; (d)
m = 2, x/D = 80.
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2.6.1 Eigenspectra of m = 1 and m = 2 modes

As observed in Fig. 2.7, azimuthal modes m = 1 and m = 2 dominate the energy distri-

bution of the leading SPOD mode in the near as well as far wake. To further clarify the energy

distribution among different frequencies for these two azimuthal modes, Fig. 2.8 shows the SPOD

eigenspectra of the m = 1 and m = 2 modes at two representative locations in the near (x/D = 20)

and far (x/D = 80) wake. The area shaded by red denotes the difference between the energy

content of the first and second SPOD modes. For the m = 1 mode in Fig. 2.8(a) and (b), the

distinct peak at St = 0.135 is still clearly visible in the leading SPOD mode at x/D = 80. This is

in contrast to the results of Johansson and George (2006b) in which the VS structure was almost

undetectable in the eigenvalue spectra by x/D = 70 (see Fig. 2 of that paper). Interestingly the

peak at St = 0.135 is not visible in the subsequent SPOD modes. Besides, there is a significant gap

between the first and second SPOD modes at St ≈ 0.135, more so at x/D = 20 than at x/D = 80.

This large gap implies that vortex shedding contributes significantly to the dynamics of the overall

behavior of the m = 1 mode.

Contrary to the m = 1 mode, the eigenspectra of the m = 2 mode shown in Fig. 2.8(c) and

(d) peaks near St → 0 and decays monotonically with increasing St. This decay rate is observed to

increase for frequencies with St > 0.5 at both the locations. Like the m = 1 mode, the m = 2 mode

also exhibits a prominent gap between λ(1) and λ(2) at low frequencies with St < 0.3. SPOD

eigenspectra of m = 1 and 2 analyzed at other locations (not shown here) qualitatively exhibit

features similar to the locations shown in Fig. 2.8.

Figure 2.6 established that the energy in the leading SPOD mode is dominated by the DH

structure (m = 2 and St → 0) in the far wake. To further quantify this observation, the evolution

of λ(1) of the VS and DH structure is plotted in Fig. 2.9. Both SPOD modes exhibit a monotonic

decay which is in accordance with the decaying nature of wake turbulence. However, there are

salient differences in the nature of their decay. The leading SPOD mode of the VS structure

decays as λ(1) ∝ x−1.14 from 10 < x/D < 120. On the other hand, λ(1) of the DH structure decays
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Figure 2.9: Evolution of leading SPOD mode of m = 1, St = 0.135 and m = 2, St → 0 as x/D.

at a slower rate as λ(1) ∝ x−0.60 so that it eventually exceeds the VS mode in terms of energy

content beyond x/D = 35.

We now explore the self-similarity of λ(1) of the m = 1 and m = 2 modes. Figure 2.10

shows λ(1) for these two modes after scaling by (K1/2
o Lk)

2, a quantity representative of area-

integrated TKE in the wake. For m = 2, the eigenvalues collapse well when scaled by (K1/2
o Lk)

2

throughout 20 < x/D < 100 as seen in Fig. 2.10(b). The unscaled eigenvalues (not presented

here) for m = 2 show a variability of 50%− 60% for lower frequencies. The eigenspectra of

λ(1) for m = 2 always peaks at St → 0 for all downstream locations. The local timescale (ζ) of

an axisymmetric wake scales as x3m/2 if we assume: (i) Ud ∝ x−m, and (ii) ζ ∼ Ld/Ud . Thus,

the local frequency f ∝ x−3m/2 decays as x/D increases since m is a positive real number. The

conclusion that f decays with x/D is unchanged even if local turbulent velocity (K1/2
o ) and

TKE-based wake width (Lk) is used to form ζ. For the present case, f starts off as f ∼ O(10−2)

and decays to f ∼ O(10−3) by the end of the domain. The collapse of the m = 2 energy content
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Figure 2.10: λ(1) of: (a) m = 1 and (b) m = 2, scaled by (K1/2
o Lk)

2 for 20 < x/D < 100. Here
Ko is the centerline value of TKE and Lk is the TKE-based wake width.

by local shear variables, particularly in the limit of St → 0, suggests a possible link of this mode

to the local shear structure of the wake.

Figure 2.10(a) shows the eigenspectrum of the m = 1 mode scaled with (K1/2
o Lk)

2 for

20 < x/D < 100. There is a significant spread in the scaled eigenvalues around the vortex

shedding frequency St = 0.135. It is clear from the plot that the leading SPOD mode of the

vortex shedding structure does not collapse in local shear variables. This is a global mode which

originates near the disk and convects downstream. As St increases beyond 0.3, the collapse

improves indicating that the high frequency components in m = 1 might be linked to the local

turbulence structure. However their energy is small and hence the non-similar contribution of the

vortex shedding frequency dominates the overall behavior of m = 1.

POD is a statistical technique. Thus, although the obtained mode optimally capture the

fluctuation energy in an ensemble-averaged sense, these modes do not necessarily represent the

structures of instantaneous eddies in the flow. However, it is the case that these modes possess

the imprints of coherent structures found in instantaneous snapshots. To assess whether different

azimuthal modes which are found to be dominant from SPOD analysis are distinctly visible in the

flow field, u′x at three different downstream locations x/D = 10,40, and 80 and at some selected
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Figure 2.11: Instantaneous snapshots of the u′x field showing the imprint of the m = 1 (bottom
row) and m = 2 (top row) modes: (a,d) at x/D = 10, (b, e) at x/D = 40 , and (c, f) at x/D = 80.
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Figure 2.12: r-t plot of the real part of the azimuthally decomposed velocity field: (a) m = 1 at
x/D = 10, and (b) m = 2 at x/D = 80. Power spectra of time series: (c) r/D = 1, x/D = 10 for
m = 1, and (d) r/D = 2, x/D = 80 for m = 2, with the r/D locations shown by dashed black
lines in (a) and (b), respectively.

time instants is plotted in Fig. 2.11. These snapshots were selected by projecting instantaneous

u′x to leading SPOD modes of the VS and DH structures and requiring large values of projection

coefficient (similar to the approach of Hellstrom et al. (2016)). In the top row (Fig. 2.11(a,b,c)),

the instantaneous u′x has the imprint of the m = 2 velocity field at all three locations. Likewise

the bottom row shows the time instants at which the velocity field exhibits evidence of the m = 1

mode. Although these snapshots do not exactly mimic the mode shapes (inset contour maps of

Fig. 2.15) to be discussed later, they imply that aspects of the m = 1 and 2 modes can be found in

individual flow realizations. Both of these azimuthal modes are observed in the instantaneous

flow snapshots throughout the wake evolution from near (x/D = 10) to far wake (x/D = 80)

consistent with the eigenspectra analysis.
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The two most dominant SPOD frequencies, St = 0.135 and St → 0, are apparent in the

space-time history of the m = 1 and m = 2 modes as demonstrated by the r - t plot of these modes

of u′x in Fig. 2.12. The near-wake location of x/D = 10 (Fig. 2.12 a) has a clear periodicity in

the time series which corresponds to a peak at St ≈ 0.135 of the power spectrum of this signal at

r/D = 1 (Fig. 2.12 b). The SPOD spectrum, by exploiting correlation in space along with time,

makes this frequency for m = 1 more distinctive as was seen in Fig. 2.8(a). While discussing

Fig. 2.6, it was noted that the St = 0 peak in the SPOD spectrum of m = 2 is likely related to a

very low-frequency signal. Figure 2.12(b) substantiates this hypothesis since a signal with a very

large time period, shown by wide (in the t−axis) patches of blue and red, can be discerned. These

patches span the entire radial extent of the wake. The power spectrum calculated at r/D = 2 (Fig.

2.12 d) indeed peaks at low St ≈ 10−3.

2.6.2 Eigenspectra of m = 0,3, and 4 modes

The m = 0,3, and 4 modes are energetically the three important azimuthal modes after

the m = 1 and 2 modes. Therefore, it is of interest to characterize their eigenspectra and assess

the applicability of local similarity scaling of their magnitude.

Fig. 2.13 shows eigenspectra of the m = 0,3, and 4 modes at two locations x/D = 20 and

x/D = 80. Similar to the m = 1 and 2 modes, these azimuthal modes also exhibit a significant gap

between λ(1) and λ(2) SPOD modes for St < 0.5 shown by the red-shaded area. The eigenspectra

of the m = 0 mode shown in Fig. 2.13(a) and (d) exhibit a peak at St = 0.189 for λ(1). This peak

is evident even in the far wake location at x/D = 80. This peak is also found close to the disk

as will be discussed in more detail in Section 2.9. The other two azimuthal modes, m = 3 and

m = 4, exhibit features similar to the m = 1 and m = 2 modes, respectively. The eigenspectrum of

λ(1) for the m = 3 mode shows a peak at the vortex shedding frequency St = 0.135, although the

peak is much less pronounced than for the m = 1 case. Like the m = 2 mode, the eigenspectra of

the m = 4 mode peak at St → 0 and decay thereafter. An increased rate of decay with increasing
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Figure 2.13: SPOD eigenspectra of 25 modes (dark to light shade corresponds to high to low
energy eigenvalues) for m = 0 (left), m = 3 (middle) and m = 4 (right). Top row shows x/D = 20
and bottom row shows x/D = 80.
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Figure 2.14: Leading SPOD eigenvalue (λ(1)), scaled by (K1/2
o Lk)

2, are plotted over 20< x/D<
100 for the following modes: (a) m = 0, (b) m = 3, and (c) m = 4, Here Ko is the centerline
value of TKE and Lk is the TKE-based wake width.

frequency is also observed beyond St = 0.3, similar to the m = 2 case.

Figure 2.14 shows the eigenspectra of λ(1) for the m = 0,3, and 4 modes spanning

20 ≤ x/D ≤ 100 and scaled by (K1/2
o Lk)

2, to explore the presence of similarity as was done

with m = 1 and 2 in Fig. 2.10. There are two distinct peaks, St = 0 and 0.189, in the scaled

eigenspectra of the m = 0 mode presented in Fig. 2.14. The scaled eigenspectra show significant

spread for St ≤ 0.2 indicating that the low-frequency content in the m = 0 mode might have its

origin near the wake generator rather than being local. A proper collapse of scaled eigenvalues

is observed only beyond St > 0.35 for the m = 0 azimuthal mode. As discussed in the context

of Fig. 2.13(b) and (e), the scaled eigenspectra of m = 3 plotted in Fig. 2.14(b) show a peak at

the vortex shedding frequency St = 0.135, the magnitude of which, relative to (K1/2
o Lk)

2, decays

with increasing x/D. Somewhat similar to the scaled eigenspectra plot of the m = 0 mode in Fig.

2.14(a), the scaled eigenspectra of the m = 1 mode also show some spread for lower frequencies

St < 0.2 and collapse only beyond St ≈ 0.2. Finally the scaled eigenspectra of the m = 4 mode

peak at St → 0 and collapse well for St > 0.1. For St < 0.1, after x/D ≈ 50, the scaled eigenvalues

do collapse. The scaled eigenspectra of the m = 4 mode are quite similar to that of the m = 2

mode, apart from the lower magnitudes.
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Figure 2.15: Modulus of eigenmode shapes for all three velocity components corresponding to
λ(1) of the DH and VS structures: (a), (c), (e) correspond to ur, uθ, ux eigenmodes respectively
of the DH structure and (b), (d), (f) correspond to ur, uθ, ux eigenmodes respectively of the VS
structure.

The m = 0,3, and 4 modes, although suboptimal relative to the m = 1 and 2 modes

dominate over the remaining modes in terms of energy content. Based on the findings of Fig.

2.13 and 2.14, it can be concluded that the wake generator (disk in the present case) can have

a profound impact on the characteristics of the suboptimal modes too which can last for large

downstream distances, at least up to O(x/D = 100).

2.7 Eigenmodes of the dominant vortex shedding and double

helix modes

The shape of the eigenmodes for each velocity component is contrasted between the

dominant VS and DH modes in this section. The applicability of similarity scaling to these modes

is also assessed.

Figure 2.15 shows the shapes of leading SPOD modes of the VS and DH structures. For
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this purpose, moduli of eigenmodes scaled by their respective maximum values (|Φ(1)
i (r)|/|Φ(1)

i (r)|max)

are plotted as a function of the radial similarity coordinate. Figure 2.15 (a), (c), and (e) show

the ur, uθ, and ux components of the leading SPOD eigenmode of the DH structure at different

x/D locations. The ur and ux modes have single global peak at nearby locations, Φ(1)
r at at

r/Lk ≈ 0.7 and Φ(1)
x at r/Lk ≈ 0.75, throughout 20 < x/D < 100. It will be shown later that their

cross-correlation ⟨−u′xu′r⟩ also peaks at r/Lk ≈ 0.7. The radial shape of Φ(1)
x starts exhibiting

self-similarity from x/D = 20 onward while Φ(1)
r exhibits collapse beyond x/D = 40. Further-

more, for the DH mode, Φ(1)
x decays faster with increasing r relative to Φ(1)

r . The shape of the

Φ(1)
θ mode is qualitatively different with respect to its counterparts for radial and axial velocity.

At all downstream locations, |Φ(1)
θ | exhibits two maxima, at r/Lk ≈ 0.50 and 1.35, respectively,

and a minimum at r/Lk ≈ 1. The minimum in the plot of |Φ(1)
θ | is evident as a zero-crossing at

r/Lk ≈ 1 for Φ(1)
θ in the two-dimensional inset plot for this mode in Fig. 2.15 (c). Similar to

the other two components, Φ(1)
θ eventually becomes self-similar, beyond x/D ≈ 30. Fig. 2.15

suggests that the leading SPOD mode of the DH structure eventually becomes self-similar for all

three velocity components beyond x/D ≈ 40.

The inset figures in Fig. 2.15(a), (c), and (e) show the two-dimensional contour plots of

the real part of the corresponding velocity components of the leading SPOD mode of the DH

structure at x/D = 50. The characteristic 4-lobe structure of the m = 2 mode can be seen in

these contour maps. From the contour maps, it can be inferred that Φ(1)
r and Φ(1)

x are negatively

correlated at x/D = 50. It turns out that the imaginary parts of radial and axial components are

also negatively correlated (not shown here) resulting in an overall positive contribution from the

leading SPOD mode of the DH structure to ⟨−u′xu′r⟩, the most dominant Reynolds shear stress

term in axisymmetric turbulent shear flows. This positive contribution to ⟨−u′xu′r⟩ is found at all

other downstream locations sampled for SPOD analysis in the present study and will be discussed

with more detail in a later section.

Figure 2.15(b), (d), and (f) show the moduli of the leading SPOD mode of the VS structure.
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Except Φx(r), none of the other two components start off at zero near r = 0. Both |Φr(r)| and

|Φθ(r)| peak near the axis and decay monotonically to zero as r increases. On the other hand,

|Φx(r)| peaks at r/Lk ≈ 0.66. All three components of Φ(1)
i die out to zero by r/Lk ≈ 2 implying

that the prevalence of vortex shedding is confined to r/Lk < 2 at all locations. An immediate

observation can be made about the lack of self-similarity of the leading SPOD mode of the VS

structure. Although Φ(1)
x and Φ(1)

θ tend to collapse to some extent when r is scaled by Lk, there is

a significant spread in Φ(1)
r mode for all downstream locations.

The inset plots in Fig. 2.15(b), (d), and (f) show the two-dimensional contours of the real

part of the corresponding SPOD velocity components at x/D = 50. Similar to the leading SPOD

mode of the DH structure, the real parts of Φ(1)
r and Φ(1)

x are negatively correlated for the VS

structure too. The imaginary parts although not explicitly shown are also negatively correlated.

This implies that the VS structure also contributes positively to ⟨−u′xu′r⟩ in a similar fashion to

the DH structure.

2.8 Reconstruction of the TKE and Reynolds shear stress us-

ing SPOD modes

In this section, the utility of SPOD modes for capturing the spatial distribution of TKE

and ⟨u′xu′r⟩ is examined. By construction, SPOD modes in the present analysis optimally capture

the area-integrated TKE at a given cross-section (refer section 2.3). However there is no guarantee

that these modes will be optimal for the Reynolds shear stress ⟨u′xu′r⟩. Nevertheless it is generally

the case that the energetic structures are also the ones that carry a major portion of the turbulent

shear stress. In fact, as will become clear for the present example of a turbulent wake, SPOD is

successful as a low-order model for the Reynolds shear stress, more so than for the TKE.

The Reynolds stress tensor can be reconstructed from a selected number (n = 1 to Λ) of
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Figure 2.16: Reconstruction of TKE from a low-order truncation that comprises the leading
3 SPOD modes of azimuthal modes (|m| ≤ 4) with energy summed over −1 ≤ St ≤ 1: (a)
x/D = 20, (b) x/D = 40, (c) x/D = 80, and (d) x/D = 100.

SPOD modes as follows:

⟨u′iu′j⟩(x;r) =
Λ

∑
n=1

m=M

∑
m=−M

St=N

∑
St=−N

λ(n)(x;m,St)Φ(n)
i (x;r,m,St)Φ(n)∗

j (x;r,m,St), (2.19)

where the first M azimuthal modes and the first N discrete frequencies are incorporated in

the reconstruction. Setting i = x and j = r gives the reconstructed ⟨u′xu′r⟩ and twice the TKE

is recovered when i = j adopting the convention of summation over repeated indices. The

reconstruction of TKE and ⟨u′xu′r⟩ is elaborated as follows.
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2.8.1 TKE reconstruction from SPOD modes

Figure 2.16 shows the reconstructed TKE using a low-order truncation that includes modes

with the following characteristics: |m| ≤ 4, |St| ≤ 1, and n ≤ 3. The fidelity of the reconstruction

is shown at four different locations x/D = 20,40,80, and 100 by comparison with the actual TKE

obtained as an ensemble average of the numerical data. For the given set of (m,St,n) triplets, the

qualitative nature of reconstructed TKE remains similar throughout all the locations considered in

Fig. 2.16. However, a closer inspection reveals that the TKE reconstruction deteriorates slightly

with increasing x/D. For instance, at x/D = 20, reconstructed TKE captures 50% of the actual

TKE at the centerline. By x/D = 80, this value comes down to 40%. It is worth noting that the

quality of reconstruction improves with increasing r/Lk as the flow becomes less turbulent away

from the centerline and fewer modes are required to accurately capture the TKE. The implications

of expanding the range of m,St, and n in the reconstruction will be discussed shortly.

The major contributors to the overall reconstructed TKE in Figure 2.16 are the m = 0,1,

and 2 azimuthal modes. However, only the m = 0 and m = 1 modes contribute to the centerline

TKE. All the other azimuthal modes with m ≥ 2 have zero TKE at the centerline. It can also be

seen that the relative contribution of the leading m = 1 mode to the centerline TKE reconstruction

declines progressively with increasing x/D. This decrease is linked to the declining relative

importance of the m = 1 mode in the integrated eigenspectra as discussed in preceding sections.

The sensitivity of the TKE reconstruction to the addition of more modes (m, St, or n) has

been investigated. The effect of increasing the number of modes is illustrated at one representative

location x/D = 40 for brevity. The trends do not change qualitatively at different x/D except

for a slight decrease in the energy capture at larger x/D locations pointing to an increasing

importance of higher modes. From Fig. 2.17(a) to (d), the upper limits of m, St, and n are

increased successively. The reconstruction of TKE shows a monotonically increasing accuracy

with the inclusion of additional m, St, and n.

Comparing Fig. 2.17(b) with (a) one can see that the reconstructed TKE improves in
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Figure 2.17: Reconstruction of TKE at x/D= 40 using: (a) |m| ≤ 4, |St| ≤ 1, n≤ 3, (b) |m| ≤ 10,
|St| ≤ 1, n ≤ 3, (c) |m| ≤ 10, |St| ≤ 2, n ≤ 3, and (d) |m| ≤ 10, |St| ≤ 2, n ≤ 10. Radial direction
is scaled with TKE-based wake width Lk and TKE is scaled with centerline TKE Ko.
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the region of r/Lk > 0.5 when more azimuthal modes are included keeping St and n same. This

indicates that the higher azimuthal modes (modes with increasing m) do not significantly influence

the TKE near the centerline and are only active beyond a certain r/Lk. This characteristic is

confirmed by the TKE profiles of solely the m = 3 and m = 4 modes which start off as zero near

centerline and peak at r/Lk ≈ 0.75.

When the reconstruction is performed using more frequencies, shown in Fig. 2.17(c), there

is a slight improvement in the overall reconstruction of the TKE. The individual contributions

from each azimuthal modes increase leading to an overall improvement of the reconstructed

profile

The inclusion of more SPOD modes leads to a significant boost in the quality of TKE

reconstruction in the wake core (r/Lk < 0.75). The reconstructed profile captures almost 80% of

the TKE at the centerline and in the wake core with 10 SPOD modes (Fig. 2.17 d) instead of about

50% with 3 SPOD modes (Fig. 2.17 c). The improvement away from the wake core is small and

the reconstruction remains at about 80% of the actual value. This implies that the higher SPOD

modes that are individually suboptimal, when summed together, can contribute significantly to

the TKE in the wake core where the turbulence is more intense. Referring back to Fig. 2.8, these

SPOD modes (λ(3) and beyond) are the ones which have almost uniform energy distribution

over St < 0.5 and do not contain evidence of any coherent structures. They are representative of

incoherent turbulence which is more prominent near the centerline.

2.8.2 Reconstruction of Reynolds shear stress with SPOD modes

In the same vein as Fig. 2.16 for the TKE, Fig. 2.18 compares the reconstruction of ⟨u′xu′r⟩

with the corresponding actual value at four locations x/D = 20,40,80, and 100. The leading 3

SPOD modes of the azimuthal modes |m| ≤ 4 and |St| ≤ 1 are employed. The reconstruction

turns out to have higher fidelity for ⟨u′xu′r⟩ than for TKE.

Figure 2.18 shows that the two major contributors to the Reynolds stress ⟨u′xu′r⟩ are the
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Figure 2.18: Reconstruction of ⟨u′xu′r⟩ from the leading 3 SPOD modes of various azimuthal
modes (|m| ≤ 4) summed over −1 ≤ St ≤ 1 at different streamwise locations: (a) x/D = 20, (b)
x/D = 40, (c) x/D = 80, and (d) x/D = 100.
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m = 1 and m = 2 modes followed by the m = 3 and m = 4 modes, respectively. Consistent with

the integrated eigenspectrum in Fig. 2.7, the m = 1 mode contributes more than m = 2 to the

reconstruction in the near wake, i.e., x/D = 20. With increasing x/D, the contribution from

the m = 2 mode gradually exceeds the m = 1 contribution, except close to the centerline, say

r/Lk < 0.25. The m = 0 mode carries negligible shear stress although it carries significant TKE

as seen in the previous subsection. It is worth noting that the accuracy of reconstruction of ⟨u′xu′r⟩

is significantly better at x/D = 20 and 40 than at the far wake locations of x/D = 80 and 100.

With increasing x/D, more azimuthal modes have to be included for the far wake so as to get the

same quality of reconstruction as in the near wake.

As pointed out, the two major contributors to ⟨u′xu′r⟩ are the azimuthal modes m = 1 and

m = 2. Interestingly, these two azimuthal modes capture different characteristics of the radial

variation of Reynolds shear stress. The m = 1 mode accurately captures the actual ⟨u′xu′r⟩ in

the central region with r/Lk < 0.25 including the slope at the axis (r/D = 0). Thereafter, its

contribution peaks between r/Lk = 0.25 and r/Lk = 0.5, and decays faster than the contribution

from the azimuthal mode m = 2. Contributions from the m = 2 and higher azimuthal modes start

off with zero slope at r/D = 0 and they do not contribute near to the centerline.

While the m = 1 mode dominates for r/Lk < 0.25, the m = 2 mode plays an increasing

important role in the reconstruction of ⟨u′xu′r⟩ at larger r/Lk. For instance, the maximum of the

m = 2 contribution coincides with the peak of actual ⟨u′xu′r⟩ at r/Lk ≈ 0.75.

The profiles of ⟨u′xu′r⟩, which were shown in Section 2.5, tend to flatten at the peak location

with increasing x/D. This flattening at the peak is also observed for the m = 2 contribution.

Compared to the m = 1 mode, the Reynolds stress in the m = 2 mode decays slowly with r and

dominates over the m = 1 contribution beyond r/Lk > 0.5 from x/D = 40 onward.

At x/D = 40, the error in reconstruction of ⟨−u′xu′r⟩max is already small, not more than

10 %. It is found that increasing the azimuthal mode count to |m| = 10 is sufficient to obtain

complete reconstruction (not shown). It is not necessary to increase the SPOD number beyond
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Figure 2.19: Reconstruction of ⟨u′xu′r⟩ at x/D = 40 using: (a) |m| ≤ 4, |St| ≤ 1, n ≤ 3, (b)
|m| ≤ 2, |St| ≤ 1, n ≤ 3, (c) |m| ≤ 2, |St| ≤ 0.5, n ≤ 3, and (d) |m| ≤ 2, |St| ≤ 0.5, n = 1. Radial
direction is scaled with TKE-based wake width Lk and ⟨u′xu′r⟩ is scaled with ⟨−u′xu′r⟩max.
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n = 3 and the frequency above St = 1.

The influence of decreasing the number of retained modes on the reconstruction of

⟨−u′xu′r⟩ has also been explored. Figure 2.19 illustrates the results for one representative location,

x/D = 40, noting that the same procedure at other locations results in the same qualitative

conclusions. In Fig. 2.19(b), the total number of azimuthal modes included for reconstruction is

decreased to m = 2 keeping St and the number of SPOD modes unchanged. The reconstruction

quality is reduced with the reconstructed ⟨u′xu′r⟩ capturing around 75% of the peak ⟨u′xu′r⟩ in Fig.

2.19(b). The location of the peak at r/Lk ≈ 0.5 is shifted erroneously closer to the centerline

since the higher-m modes, which peak at r/Lk ≈ 0.75, are now excluded from the reconstruction.

An additional decrease in the number of frequencies (Fig. 2.19 c) does not lead to any noticeable

difference in the reconstruction. Finally, the effect of further limiting the modal content to solely

the leading SPOD mode is shown in Fig. 2.19 (d). Although the change in the peak of ⟨−u′xu′r⟩ is

negligible, the reconstruction accuracy in the region r/Lk < 0.25 suffers. Thus, the inclusion of

a small number of additional SPOD modes (up to n = 3 in the present example) beyond λ(1) is

needed to accurately capture the trends in ⟨u′xu′r⟩ near the centerline. This is somewhat analogous

to the TKE reconstruction, where inclusion of more SPOD modes improved the accuracy at the

centerline. A notable difference is that, in the case of ⟨u′xu′r⟩, it is not necessary to include higher

SPOD modes beyond n = 3 unlike in the TKE reconstruction where they significantly improved

the accuracy.

For high Re axisymmetric shear flows, ⟨u′xu′r⟩ is the dominant off-diagonal Reynolds stress.

⟨u′xu′r⟩ extracts energy from the mean flow through turbulent production and transfers it to the

TKE. Reconstructions shown in Fig. 2.19 indicate that the majority of ⟨u′xu′r⟩ is contained in the

first few leading SPOD modes of low m and low St. This is in stark contrast to the reconstruction

of TKE. The same set of modes which captured 50% of the centerline TKE, capture about 90%

of the peak ⟨−u′xu′r⟩. The reconstruction of TKE using varying sets of modes presented in Fig.

2.17 showed that the higher modes (modes having large m, large St and higher SPOD index) can
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Figure 2.20: SPOD contour maps showing energy contained in leading SPOD mode, λ(1), as a
function of azimuthal wavenumber m and frequency St at different locations near the disk: (a)
x/D = 0.1, (b) x/D = 1, (c) x/D = 2, and (d) x/D = 5.

also contribute significantly to TKE when summed together. On the other hand, including more

SPOD modes does not significantly improve the Reynolds stress reconstruction. This leads to the

conclusion that the interaction between the mean flow and turbulence occurs primarily through

more energetic SPOD modes of low m and St. These modes then transfer the TKE to the less

energetic modes as the flow evolves.

2.9 SPOD analysis of locations near the disk

To conclude the results, we present a brief analysis of SPOD spectra at additional locations,

x/D = 0.1,1,2, and 5, so as to shed light on the modal energy distribution close to the disk and
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its transition to the wake.

Figure 2.20 shows the distribution of energy in the λ(1) constituent as a function of m and

St at four streamwise locations: x/D = 0.1,1,2 and 5. At x/D = 0.1 shown in Fig. 2.20(a), most

of the energy is concentrated in a narrow range: St ≤ 0.1 and m ≤ 2. The azimuthal m = 1 mode

shows a distinctive peak at St = 0.054. In their study of flow past a disk, Berger et al. (1990)

found a spectral peak at St ≈ 0.05 in the axisymmetric mode m = 0, not m = 1. They attributed

this frequency to pumping of the recirculation bubble. As will be seen later, the spectral peak at

St ≈ 0.05 does appear in the m = 0 SPOD eigenspectra at larger x/D.

The x/D = 1 location lies approximately in the middle of the recirculation region and

has a complex distribution of energy among different m and St. By x/D = 1 (Fig. 2.20 b),

the dominant St = 0.054, m = 1 peak has disappeared and a new peak at the vortex shedding

frequency, St = 0.135, appears. This location marks the initial appearance of the vortex shedding

structure which dominates the SPOD eigenspectra until x/D ≈ 40 (Fig. 2.6 and 2.7). Besides the

peak at the VS structure, a major portion of energy in the λ(1) constituent is also contained in the

region of St ≤ 0.05 distributed over 0 ≤ m ≤ 3. At x/D = 2 (Fig. 2.20 c), the contour map of λ(1)

is found to be dominated by the VS structure with m = 1,St = 0.135. The location of x/D ≈ 2

also marks the end of the turbulent recirculation region behind the disk and the contribution from

its high-m modes. The DH structure (m = 2,St → 0) which dominates the far wake is absent from

the energy distribution map of λ(1) at x/D ≤ 2, but appears as a local peak by x/D = 5 (Fig. 2.20

d).

The frequency-integrated eigenspectra, at the same four locations of x/D = 0.1,1,2 and 5,

are shown in Fig. 2.21, to contrast the relative importance of different azimuthal modes near the

disk. The procedure for obtaining the frequency integrated eigenspectrum is same as that used for

Fig. 2.7. At all four locations, the m = 1 mode dominates the frequency-integrated eigenspectrum,

followed by m = 2. At x/D = 2, the relative energy content in the m = 1 mode becomes almost

twice that at x/D = 1. This sudden increase in the relative importance of the m = 1 mode is also
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.

Figure 2.21: Frequency-integrated eigenspectrum as a function of azimuthal mode number m at
different locations in the near wake: (a) x/D = 0.1, (b) x/D = 1, (c) x/D = 2, and (d) x/D = 5.
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Figure 2.22: SPOD eigenspectra of 25 modes (dark to light shade corresponds to high to low
energy eigenvalues): (a) m = 0, x/D = 0.1; (b) m = 1, x/D = 0.1; (c) m = 2, x/D = 0.1; (d)
m = 0, x/D = 2; (e) m = 1, x/D = 2; (f) m = 2, x/D = 2.

seen in the energy distribution of λ(1) (Fig. 2.20) where the broadband distribution of energy

at x/D = 1 gives way to a single dominant peak at m = 1,St = 0.135 at x/D = 2. By x/D = 5,

the m = 2 mode starts gaining relative importance although m = 1 is still dominant. Besides

the m = 1 and 2 modes, the major contributors to the frequency-integrated eigenspectra are the

m = 0,3 and 4 modes, similar to the previously shown far-wake locations.

Figure 2.22 shows the SPOD eigenspectra of m = 0,1, and 2 azimuthal modes at two

locations: x/D = 0.1 (very close to the disk) and x/D = 2 (end of the recirculation region). At

x/D = 0.1 shown in the top row of Fig. 2.22, a distinct peak at the high frequency of St = 3.17 is

visible in the λ(1) eigenspectrum at all three values of m. This high-frequency peak is associated
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with the shear layer instability in the vicinity of the disk, arising from the instability of the

boundary layer which separates from the disk. It is also worth mentioning that the SPOD

eigenspectra of all three azimuthal modes m = 0,1, and 2 show a prominent gap between the

λ(1) and λ(2) SPOD modes at and near the frequency of St = 3.17. The study by Berger et al.

(1990) at Re = 15,000 identified St = 1.62 as the frequency related to the shear layer instability,

dominated by the m = 0 mode, and followed by m = 1 and 2 modes with equal contributions.

The higher St identified in the near-disk SPOD eigenspectra here is likely a consequence of the

higher Re = 50,000 of the current study. Fig. 2.22(b) shows the eigenspectra of the m = 1 mode

at x/D = 0.1. At this location, a broad peak around St = 0.05 is found as was was also seen in

the λ(1) contour map at x/D = 0.1 in Fig. 2.20(a).

Figure 2.22(d) shows the SPOD eigenspectra of the m = 0 mode at x/D = 2. At this

location, two small peaks can be found in the λ(1) constituent at St = 0.054 and St = 0.189,

respectively. The first of these frequencies is the axisymmetric pumping of the recirculation

bubble identified in previous studies (Berger et al., 1990, Yang et al., 2014) of flow past a disk.

The axisymmetric pumping is found to persist, albeit with decreasing strength, until x/D = 10.

The second of these frequencies, St = 0.189 has not been discussed in the existing literature of

flow past a disk. However, a peak at approximately this frequency does exist in the study of

Berger et al. (1990) (see Fig. 12 of their paper) although the authors do not discuss it. This peak

at St = 0.189 in the m = 0 mode is found to persist for long downstream distances as seen in Fig.

2.13(a) and (d) indicating that it is a global mode similar to the VS structure.

By x/D = 2, a distinct peak at St = 0.135 appears in the λ(1) eigenspectrum of the

m = 1 azimuthal mode (Figure 2.22 e). A large gap between the λ(1) and λ(2) spectra at the

vortex shedding frequency also appears by x/D = 2 implying that the vortex shedding structure

dominates the dynamics of the m = 1 mode from early on. The SPOD eigenspectra of the m = 2

mode, shown in Fig. 2.22(f), shows a peak at St ≈ 0.20. However, it is found that this peak

disappears in the eigenspectra of the m = 2 mode by x/D = 5 (not shown here).
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2.10 Summary and Conclusions

In the present study, we elucidate the characteristics of the coherent structures in the

turbulent wake of a disk at Re= 50,000 using the high-resolution LES database of Chongsiripinyo

and Sarkar (2020). For this purpose, we decompose the flow snapshots into azimuthal modes m

followed by SPOD analysis to further decompose the modes into non-dimensional frequencies St

and energy content. The eigenvalue (λ(n)) of the SPOD mode (n) of a given (m,St) pair represents

the fraction of area-integrated TKE contained in that mode, thus providing an objective framework

to rank the SPOD modes based on the energy content.

SPOD eigenspectra at different streamwise locations beyond x/D = 10 show that the

energy in the leading-order SPOD mode (λ(1)) is predominantly contained in the low azimuthal

modes (m ≤ 4) and low frequencies of St < 0.4. At all the streamwise locations, two distinct

peaks: (i) m = 1, St = 0.135 and (ii) m = 2, St → 0 are visible in the flow. The first peak has

long been established as the vortex shedding (VS) structure in the turbulent wake of a disk. The

importance of the second peak was established by the experimental studies of Johansson et al.

(2002) and Johansson and George (2006b). In particular, the double helix (DH) structure with

m = 2 and St → 0 was found to dominate over the VS structure from x/D = 30 onward in their

study. In the present case, the azimuthal mode m = 2 emerges as the dominant azimuthal mode at

farther downstream distance, beyond x/D = 60. This is also the location where the wake defect

law transitions from Ud ∝ x−0.9 to Ud ∝ x−2/3, and where the characteristic r.m.s turbulence scales

become proportional to Ud during the wake decay.

When λ(1) corresponding to the azimuthal modes m = 1 and m = 2 are scaled by a

parameter representing the area-integrated TKE, i.e., (K1/2
o Lk)

2, it is found that the eigenspectrum

of m = 2 at different streamwise locations beyond x/D = 20 collapse perfectly on to a single

curve. On the other hand, the scaled eigenspectrum of m = 1 at different x/D show a significant

spread around the vortex shedding frequency St = 0.135 while collapsing for higher frequencies
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St > 0.3. It is also found that the leading eigenmode of the DH structure collapses well in the

scaled radial coordinates (r/Lk), unlike the eigenmode of the VS structure. These findings, along

with the FFT analysis of the m = 2 mode, indicate that the DH structure is connected to the local

turbulence structure of the flow. On the other hand, the VS structure is a global mode which

originates near the wake generator (further clarified by our near-body SPOD analyses). More

studies, preferably with different wake generators, and at further higher Re are needed to explore

the robustness of the present results regarding the VS and DH modes.

Apart from m = 1 and 2, the summed contribution of the azimuthal modes m = 0,3,

and 4 to the TKE is also found to be significant. We also characterize the eigenspectra of these

sub-dominant azimuthal modes in the present work. The SPOD eigenspectra of m = 3 and 4

azimuthal modes show features similar to the m = 1 and 2 modes, respectively. The SPOD

eigenspectra of the m = 0 mode show a peak at St = 0.189, in the intermediate (x/D = 20) as

well as the far wake (x/D = 80). Further analysis reveals that this spectral peak is present in the

SPOD eigenspectra of the m = 0 mode at near-body locations (x/D = 2) too. We speculate that

the m = 0,St = 0.189 is a global mode (similar to the VS structure) which appears in the wake of

the disk at high Re. Further studies using global resolvent analysis (Thomareis and Papadakis,

2018, Yeh and Taira, 2019) may help decipher the physical origin and dynamics of this particular

mode.

Besides analyzing the SPOD eigenspectra and eigenmodes, we also perform reconstruction

of TKE and ⟨u′xu′r⟩ using SPOD modes at different x/D locations. In the reconstruction of TKE,

it is found that the first few modes of each kind (specifically |m|< 4, |St|< 1, and n ≤ 3) captures

approximately 50% of TKE in the central region. The contributors to the TKE at the centerline

(r = 0) are the azimuthal modes m = 0 and m = 1. Other higher azimuthal modes start off as zero

near the centerline and peak in the region, 0.5 < r/Lk < 1. The three parameters (m,St,n) are

then systematically varied to test the sensitivity of TKE reconstruction to different parameters. It

is found that higher n (more SPOD eigenmodes) is necessary for accurate reconstruction of the
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centerline TKE, implying that higher SPOD modes are more active near the centerline and are

turbulence controlled rather than being associated with coherent motions. Inclusion of additional

m and St monotonically improves the reconstruction quality of the TKE, considered over the

entire wake width. It is worth noting that in the experimental study by Johansson and George

(2006b) at Re = 26,700, the first three eigenmodes were able to capture 90% of the measured

streamwise fluctuation energy. A lower fraction (approximately 50%) is captured by these modes

in the present study because small-scale structures contribute more significantly at the higher

Re = 50,000 considered here, and the significantly higher radial and azimuthal resolution possible

in a simulation-based work enables accounts for the energy carried by these structures with small

spatial scale.

As far as the reconstruction of ⟨u′xu′r⟩ is concerned, it is worth noting that the primary pro-

duction term in the TKE equation for a turbulent axisymmetric wake is −⟨u′xu′r⟩∂⟨U⟩/∂r, where

⟨U⟩ is the ensemble-averaged streamwise velocity. Thus, ⟨u′xu′r⟩ is responsible for transferring

energy from the mean flow to turbulence within the Reynolds-averaged framework. It is found

that the same set of modes with low m, St and n, which capture only around 50% of centerline

TKE, almost completely reconstruct the ⟨u′xu′r⟩ in the near wake locations. The implication is that

it is only a considerably reduced set of (m,St,n) modes which directly interact with the mean

flow. Another important result from the reconstruction of ⟨u′xu′r⟩ is the dominance of azimuthal

modes m = 1 and 2, with each capturing different features of the actual profile. The azimuthal

mode m = 1 captures the slope of the actual profiles at r/D = 0 while m = 2 captures the location

of peak in the profile.

The near-body locations, x/D = 0.1,1,2 and 5 are also investigated using SPOD to

characterize the transition of modal content form the immediate lee of the body to the near wake.

The fluctuation energy at these near-body locations is primarily dominated by the m = 1 mode,

which is in turn dominated by the VS mode from x/D = 1 onward. In the close proximity of the

disk, at x/D = 0.1, a high frequency peak at St ≈ 3.10 is detected in all three azimuthal modes
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m = 0,1, and 2. This frequency value is significantly larger than St = 1.62 found by Berger et al.

(1990) in their study of coherent structures in the vicinity of the disk. However, the Re of the

current study is more than three times the Re = 15,000 of the previous study Berger et al. (1990).

The St ≈ 3.1 peak in the current study is likely the shear layer instability; the reason for the

comparatively higher magnitude of St is the high Re of the current study.

The VS mode appears in the SPOD eigenspectra of m = 1 at x/D = 1 (approximately in

the middle of the recirculation region). Surprisingly, the m = 1 mode shows a peak at St = 0.054

in the SPOD eigenspectra at x/D = 0.1, which then disappears in its SPOD eigenspectra at further

downstream locations. This low frequency has been associated to the axisymmetric (m = 0)

pumping of the recirculation bubble in some previous studies (Berger et al., 1990, Yang et al.,

2014). The eigenspectra of m = 0 mode shows small peaks at St = 0.054 (related to the pumping

of recirculation bubble) and St = 0.189 at x/D = 2. The DH structure which dominates the far

wake of the disk starts gaining importance relative to the VS structure at only x/D = 5.
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Chapter 3

Analysis of coherence in turbulent stratified

wakes using spectral proper orthogonal

decomposition

3.1 Introduction

Turbulent wakes are ubiquitous both in nature and man-made devices. From flow past

moving vehicles (Grandemange et al., 2015) to flow past topographic features (Puthan et al.,

2022a,b, 2021) in oceans, they play an important role in transporting momentum and energy

across large distances from the wake generator. In the ocean and the atmosphere, the background

density often has a stable density stratification. Buoyancy in a stable background enables the

emergence of several distinctive features, e.g., suppression of vertical turbulent motions (Spedding,

2002b), multistage wake decay (Lin and Pao, 1979, Spedding, 1997), appearance of coherent

structures in the late wake (Lin and Pao, 1979, Lin et al., 1992a), and formation of steady (Hunt

and Snyder, 1980) and unsteady (Bonneton et al., 1993, Gilreath and Brandt, 1985) internal

gravity waves, to name a few. A majority of wake studies utilize axisymmetric body shapes
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(sphere, disk, spheroid, etc.) since such canonical shapes make it convenient to understand the

phenomenology of turbulent stratified wakes.

The existence of coherent structures has been established to be an universal feature of

both unstratified and stratified turbulent wakes. The Kárman vortex street associated with vortex

shedding from the body at a specific frequency is a well known feature of unstratified bluff body

wakes which arises from the global instability of the m = 1 azimuthal mode as was demonstrated

for a sphere by Natarajan and Acrivos (1993) and Tomboulides and Orszag (2000). The Strouhal

number (St) associated with vortex shedding varies with the shape of the body. Vortex shedding

has been investigated in stratified wakes too. Lin et al. (1992b) conducted a detailed experimental

investigation of stratified flow past a sphere of diameter D towed with speed U in a fluid with

buoyancy frequency N for 5 ≤ Re (UD/ν)≤ 104 and 0.005 ≤ Fr (U/ND)≤ 20. At Fr ≳ 2, they

found that St in the near wake of the sphere, at x/D ≈ 3, attained a constant value of St ≈ 0.18,

same as in the unstratified wake. For Fr ≲ 2, the vortex shedding was two-dimensional and St

increased with decreasing Fr in the near wake, similar to the trend in the flow past a circular

cylinder. Chomaz et al. (1993) identified four regimes, differentiated by the value of Fr, in the

near wake of a sphere. These regimes showed structural differences in the shed vortices and their

interactions with the lee wave field.

Another distinctive feature of the stratified wakes is the generation of IGWs which are of

two types: (i) body generated steady lee waves and (ii) wake generated unsteady IGWs. In their

pioneering work on the wake of a self-propelled slender body, Gilreath and Brandt (1985) noted

a coupling between the unsteady IGWs in the outer wake and the wake core turbulence, which

suggests that the generation of the unsteady IGWs is inherently nonlinear in nature. Bonneton

et al. (1993) and Bonneton et al. (1996) examined IGWs in the flow past a sphere. Lee waves were

found to dominate when Fr ≲ 0.75 and, for Fr ≳ 2.25, the downstream wake was dominated by the

unsteady IGWs. Analysis of the density and velocity spectra in the outer wake showed a distinct

peak at the vortex shedding frequency of sphere, St ≈ 0.18. Brandt and Rottier (2015) found wake
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turbulence to be a dominant source term for IGWs at Fr ≳ 1 in their experimental work on sphere

wakes. However, they did not expand on the spectral characteristics of these wake-generated

IGWs. Recently, Meunier et al. (2018) also conducted a theoretical and experimental study of

waves generated by various wake generators, focusing primarily on the scalings of wavelengths

and amplitudes across various Fr and wake generators. Various aspects of IGWs have also been

studied through numerical simulations (Abdilghanie and Diamessis, 2013, Ortiz-Tarin et al., 2019,

Rowe et al., 2020, Zhou and Diamessis, 2016).

In the last two decades, the rise in computing power has enabled a number of numerical

studies which have improved our understanding of stratified wakes. A large body of numerical

literature employs the temporal model wherein the wake generator is not included (Abdilghanie

and Diamessis, 2013, Brucker and Sarkar, 2010, de Stadler and Sarkar, 2012, Diamessis et al.,

2011, Dommermuth et al., 2002, Gourlay et al., 2001, Redford et al., 2015, Rowe et al., 2020,

Zhou and Diamessis, 2019). Instead, these simulations are initialized with synthetic mean and

turbulence profiles mimicking those of a wake. Body-inclusive simulations which resolve the

flow at the wake generator and at a high enough Re that sustain turbulence are relatively recent

(Chongsiripinyo and Sarkar, 2020, Orr et al., 2015, Ortiz-Tarin et al., 2019, Pal et al., 2016, 2017).

The database from the body-inclusive simulation of Chongsiripinyo and Sarkar (2020),

hereafter referred to as CS2020, will be interrogated in this paper to analyze spatio-temporal

coherence. CS2020 perform large eddy simulation (LES) of flow past a disk at Re = 5×104 and

at various values of Fr. The authors find that the wake transitions through three different regimes

of stratified turbulence (provided buoyancy Reynolds number > O(1)), each with distinctive

turbulence properties: weakly stratified turbulence (WST) which commences when the turbulent

Froude number Frh decreases to O(1), intermediately stratified turbulence (IST) when Frh

decreases to O(0.1), and strongly stratified turbulence (SST) when Frh reduces to to O(0.01).

Here Frh = u′h/Nlv, where u′h, N, and lv are r.m.s. horizontal velocity fluctuations, buoyancy

frequency, and a characteristic turbulent vertical lengthscale, respectively. In the WST regime, the
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turbulence is not yet appreciably affected by buoyancy effects. Anisotropy in turbulent velocity

components, which is a key manifestation of stratification, has not kicked in yet (see figure 8

of CS2020). As the flow evolves downstream, turbulence anisotropy keeps increasing and the

turbulence transitions to the IST regime at Frh ∼ O(0.1). The SST regime, which commences

at Frh ≈ 0.03, is characterized by a strong anisotropy in turbulence. An indication of arrival of

this regime is the scaling of the vertical lengthscale with u′h/N as derived by Billant and Chomaz

(2001) (also see figure 12 in CS2020). In the SST regime, mean defect velocity and u′h decay

at the same rate of x−0.18 while vertical turbulent velocity (u′z) decays at a faster rate of x−1.

Regime classification based on turbulence instead of mean velocity was introduced in the context

of stratified homogeneous turbulence, e.g., Brethouwer et al. (2007), and was recently extended

to stratified turbulent wakes by Zhou and Diamessis (2019) and CS2020.

With the huge amount of numerical and experimental data becoming available, data-driven

modal decomposition techniques have also seen an unprecedented rise in their use to understand

the dynamics and role of coherent structures in turbulent flows. These techniques have also

been used to construct reduced-order models of these flows. One popular technique is proper

orthogonal decomposition (POD), proposed by Lumley (1967, 1970) in the context of turbulent

flows, which provides a set of modes ordered hierarchically in terms of energy content. Another

popular technique is dynamic mode decomposition (DMD), described by Schmid (2010), which

decomposes the flow into a set of spatial modes, each oscillating at a specific frequency.

However, applications of modal decomposition to stratified flows are few in number.

Diamessis et al. (2010) performed snapshot POD (Sirovich (1987)) on the vorticity field from a

temporal simulation at Re = 5×103 and Fr = 2, noting a link between wake core structures and

the angle of emission of IGWs in the outer wake. The layered wake core structure, which is a

distinctive feature of stratified turbulent wakes, was found in the POD modes with lower modal

index (corresponding to higher energy). As the modal index increased, the wake core was found

to be dominated by small-scale incoherent turbulence. Xiang et al. (2017) performed spatial
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and temporal DMD on the experimental data of the stratified wake of a grid showing that DMD

modes successfully captured lee waves and Kelvin-Helmholtz (KH) instability in the near wake

(Nt < 10). Nidhan et al. (2019) performed three-dimensional (3D) and planar two-dimensional

(2D) DMD on the sphere wake at Re = 500 and 104, respectively. At Re = 500 and Fr = 0.125,

they found that the 2D vortex shedding in the center-horizontal plane and ‘surfboard’ structures in

the center-vertical plane corresponded to the same DMD mode oscillating at the vortex shedding

frequency of St ≈ 0.19. At the higher Re = 104, DMD modes associated with vortex shedding

showed IGWs in the outer wake.

In the present work, we use spectral proper orthogonal decomposition (SPOD), originally

proposed by Lumley (1967, 1970) and recently revisited by Towne et al. (2018), to identify and

analyze the coherent structures in the turbulent stratified wake of a disk at Re = 5×104. In its

original form, POD is prohibitively expensive to apply on today’s large numerical databases

with high space-time resolution. The form put forward by Towne et al. (2018) leverages the

temporal symmetry of statistically stationary flows to improve computational tractability. SPOD

decomposes statistically stationary flows into energy-ranked modes with monochromatic fre-

quency content, thus separating both the temporal and spatial scales in the flow, unlike the popular

snapshot variant given by Sirovich (1987). SPOD has been used extensively in recent times

for analysis of coherent structures and reduced-order modeling in a variety of unstratified flow

configurations: (i) turbulent jets (Nekkanti and Schmidt, 2020, Nogueira et al., 2019, Schmidt

et al., 2017, 2018, Semeraro et al., 2016), (ii) turbulent wakes (Nidhan et al., 2020), (iii) channel

(Muralidhar et al., 2019) and pipe (Abreu et al., 2020) flows, (iv) flow reconstruction (Nekkanti

and Schmidt, 2021, 2022) and low-order modeling (Chu and Schmidt, 2021), (v) wakes of actuator

disks in turbulent environments (Ghate et al., 2018, 2020), etc.

The formation of coherent pancake vortices in the Q2D late wake does not necessarily

require vortex shedding from the body as was demonstrated by Gourlay et al. (2001) whose

temporally evolving model at Fr = 10 did not include the vortex shedding mode but still exhibited
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Q2D-regime pancake vortices. Our interest is also in coherent structures but in a region of the

far wake which is at large x/D but still not in the Q2D regime. We ask how does buoyancy

affect the space-time coherence as the flow progresses from the near wake to the far wake?

What are the salient differences between the unstratified (Fr = ∞) and stratified wakes in the

context of coherent structures? We will address these questions by analyzing the LES dataset

of CS2020, specifically the wakes at Fr = 2 and 10. We adopt SPOD for the data analysis since

it is well suited to extract modes which have spatial and temporal coherence and thus track the

evolution of specific modes, e.g. the vortex shedding (VS) mode, as the wake evolves downstream.

The SPOD analysis also allows us to address a second set of questions: (i) are coherent modes

linked to unsteady IGWs and (ii) how is the energy in dominant coherent structures distributed

across the wake cross-section during downstream evolution? SPOD modes can also be useful for

constructing reduced-order models prompting the third question: what is the efficacy of different

SPOD modal truncations in regard to the reconstruction of various second-order turbulence

statistics in turbulent stratified wakes?

The rest of the paper is organized as follows. Sections 3.2 and 3.3 give a brief overview

of the numerical methodology and SPOD technique. Visualizations of Fr = 2 and 10 wakes

are presented in section 3.4. The characteristics of SPOD eigenvalues and eigenspectrum are

discussed in section 3.5. The VS mode and its link to the unsteady IGWs are discussed in detail

in section 3.6. Sections sections 3.7 and 3.8 discuss the spatial structure of SPOD eigenmodes

and trends in the reconstruction of second-order statistics by sets of truncated SPOD modes,

respectively. Finally, the discussion and conclusions are presented in section 3.9.

3.2 Numerical methodology

We use the numerical database of the wake of a circular disk at Re = 5× 104 from

CS2020. In particular, we analyze the datasets of stratified wakes at Fr = 2 and 10 from their
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numerical database. CS2020 use high-resolution large eddy simulation (LES) to numerically

solve the filtered Navier-Stokes equations system along with density diffusion equation under the

Boussinesq approximation.

These equations are as follows:

continuity,
∂ui

∂xi
= 0, (3.1)

momentum,

∂ui

∂t
+

∂(uiu j)

∂x j
=− ∂p

∂xi
+

1
Re

∂
∂x j

[(
1+

νs

ν

)∂ui

∂x j

]
− 1

Fr2 ρ′δi3, (3.2)

and density diffusion,

∂ρ
∂t

+
∂(ρu j)

∂x j
=

1
RePr

∂
∂x j

[(
1+

κs

κ

) ∂ρ
∂x j

]
, (3.3)

where ui corresponding to i = 1,2, and 3 refer to velocity in the streamwise (x1 or x),

lateral (x2 or y), and vertical (x3 or z) directions, respectively. Gravity acts in the vertical direction

(3.2). The density field is decomposed into a background profile, ρb(z) = ρo +(dρb/dz)z (where

K is a constant), and density deviation (ρ′). Thus ρ(x,y,z, t) = ρb(z)+ρ′(x,y,z, t). In (3.2), νs

and ν refer to the subgrid kinematic viscosity obtained from LES and kinematic viscosity of the

fluid, respectively. Likewise, κs and κ in equation (3.3) refer to the subgrid density diffusivity

and density diffusivity of the fluid, respectively.

(3.1) - (3.3) are non-dimensionalized using the following parameters: (i) free stream

velocity (U∞) for velocity field, (ii) diameter of disk (D) for spatial locations xi, (iii) dynamic pres-

sure (ρoU2
∞) for pressure field, (iv) advection timescale (D/U∞) for time t, and (iv) −(dρb/dz)D

for density deviation. There are three non-dimensional parameters of interest: (1) body-based

Reynolds number (Re) defined as U∞D/ν, (2) body-based Froude number (Fr) defined as U∞/ND

where N is the buoyancy frequency, N2 =−g/ρo(dρb/dz), and (3) Prandtl number (Pr) defined
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as ν/κ which is set as 1 in CS2020 simulations. κs is also set equal to νs for the LES simulations.

A cylindrical coordinate system is adopted and the disk is represented using the immersed

boundary method (IBM) of Balaras (2004), Yang and Balaras (2006). Spatial derivatives are

computed using second-order central finite differences and temporal marching is performed

using a fractional step method which combines a low-storage Runge-Kutta scheme (RKW3)

with the second-order Crank-Nicolson scheme. The kinematic subgrid viscosity (νs) and density

diffusivity (κs) are obtained using the dynamic eddy viscosity model of Germano et al. (1991).

At the inlet and outlet, Dirichlet inflow and Orlanski-type convective (Orlanski (1976)) boundary

conditions are specified, respectively. The Neumann boundary condition is used at the radial

boundary for the density and velocity fields. To prevent the spurious propagation of internal

waves upon reflection from the boundaries, sponge regions with Rayleigh-damping are employed

at radial, inlet, and outlet boundaries.

The radial and streamwise domains span 0 ≤ r/D ≤ 80 and −30 ≤ x/D ≤ 125, respec-

tively. A large radial extent facilitates weakening of the IGWs before they hit the boundary and

thereby also controls the amplitude of spurious reflected waves. The distribution of grid points are

as follows: Nr = 531 in the radial direction, Nθ = 256 in the azimuthal direction, and Nx = 4608

in the streamwise direction, resulting in approximately 530 million elements. The grid resolution

is excellent by LES standards in all three directions. Readers may refer to Chongsiripinyo and

Sarkar (2020) for more details on the grid resolution and numerical scheme.

3.3 Spectral proper orthogonal decomposition - theory and

present application

In this work, we employ spectral POD (SPOD) to study the dynamics of coherent struc-

tures in stratified wakes, rather than the more commonly employed snapshot POD (Sirovich,

1987). SPOD enables the identification of dominant structures evolving coherently in both space
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and time by exploiting temporal correlation among flow snapshots. This approach is particularly

well-suited for flow configurations like turbulent wakes which are known to be dominated by

mechanisms operating at specific frequencies, e.g., vortex shedding, pumping of recirculation

bubble, shear layer breakdown, to name a few (Berger et al., 1990). On the contrary, snapshot

POD assumes each snapshot of the flow to be an independent realization. As a result, the temporal

coherence of POD modes is not guaranteed. Furthermore, it can be also shown that the coeffi-

cients dictating the temporal evolution of snapshot POD modes are broadband, i.e., containing

contributions from a range of frequencies (Towne et al., 2018). SPOD requires a larger amount of

time-resolved data compared to snapshot POD. Hence, snapshot POD has dominated the literature

compared to SPOD.

3.3.1 Theory of SPOD for statistically-stationary stratified flows

For the SPOD analysis of stratified wakes, the fluctuating density fields (ρ′(x, t)) and

velocity fields (u′(x, t) = [u′r(x, t),u
′
θ(x, t),u

′
x(x, t)]

T ) are taken together as a single state-space

field Λ(x, t) = [u′(x, t),ρ′(x, t)]T . Following Lumley (1970), we seek POD modes Ψ(x, t) that

have maximum ensembled-average projection on Λ(x, t), expressed as:

max
Ψ

⟨|{Λ(x, t),Ψ(x, t)}|2⟩
{Ψ(x, t),Ψ(x, t)} , (3.4)

where ⟨.⟩ denotes the ensemble average. We define the inner product {Λ(1)(x, t),Λ(2)(x, t)} as:

{Λ(1)(x, t),Λ(2)(x, t)}=
∫ ∞

−∞

∫
Ω
Λ(2)∗(x, t)diag

(
1,1,1,

g2

ρ2
oN2

)
Λ(1)(x, t)dxdt, (3.5)

where (.)∗ denotes the Hermitian transpose. The so-defined inner-product norm ensures that

the obtained POD modes are optimal in terms of capturing two-times the overall sum of tur-

bulent kinetic energy (TKE) and turbulent potential energy (TPE), where TKE = ⟨u′iu′i⟩/2 and
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TPE= g2

2ρ2
oN2 ⟨ρ′ρ′⟩.

Following Holmes, P. and Lumley, J. L. and Berkooz, G. and Rowley, C. W. (2012), (3.4)

can be expressed as a Fredholm-type integral eigenvalue problem as follows:

∫ ∞

−∞

∫
Ω

Ri j(x,x
′, t, t ′)W (x′)Ψ(n)

j (x′, t ′)dx′ dt ′ = λ(n)Ψ(n)
i (x, t), (3.6)

where W (x) is a positive-definite Hermitian matrix accounting for the weights of each variable

as defined in the (3.5). In (3.6), λ(n) and Ψ(n)
i (x, t) correspond to the nth eigenvalue and the ith

component of the nth eigenmode. The kernel Ri j(x,x
′, t, t ′) which is the two-point two-time

correlation tensor, is defined as follows:

Ri j(x,x
′, t, t ′) = ⟨u′i(x, t)u′j(x′, t)⟩, i, j = 1,2,3, (3.7)

Ri4(x,x
′, t, t ′) = ⟨u′i(x, t)ρ′(x′, t)⟩, i = 1,2,3, (3.8)

R4 j(x,x
′, t, t ′) = ⟨ρ′(x, t)u′j(x

′, t)⟩, j = 1,2,3, (3.9)

R44(x,x
′, t, t ′) = ⟨ρ′(x, t)ρ′(x′, t)⟩. (3.10)

For statistically stationary flows, such as the turbulent stratified wake in the present case, the

kernel Ri j(x,x
′, t, t ′) is only a function of time difference τ = t − t ′, x, and x′. Furthermore, it

can be Fourier-transformed in the temporal direction as follows:

Ri j(x,x
′,τ) =

∫ ∞

−∞
Si j(x,x

′, f )ei2π f τ d f , (3.11)

where Si j(x,x
′, f ) is the Fourier transform of the kernel Ri j(x,x

′,τ). Using (3.11), the Fredholm-

type eigenvalue problem in (3.6) can be transformed into an equivalent eigenvalue problem which

73



is solved at each frequency f , following Towne et al. (2018),

∫
Ω

Si j(x,x
′, f )W (x′)Φ(n)

j (x′, f )dx′ = λ(n)( f )Φ(n)
i (x, f ), (3.12)

where λ(n)( f ) are the eigenvalues at f and Φ(n)
i (x, f ) = Ψ(n)

i (x, t)e−i2π f t are the modified eigen-

modes. The eigenvalues are ordered such that λ(1)( f ) ≥ λ(2)( f ) ≥ . . . ≥ λ(n)( f ). The sum

over all the eigenvalues at frequency f equates to two-times the total fluctuation energy content,

i.e., ⟨u′iu′i⟩ + g2

ρ2
oN2 ⟨ρ′ρ′⟩ at that frequency. The obtained eigenmodes in the frequency space are

spatially orthogonal to each other such that:

∫
Ω
Φ∗(n)(x, f )W (x)Φ(m)(x, f )dx= δmn, (3.13)

where δmn is the Dirac-delta function.

3.3.2 Numerical implementation of SPOD for current work

In this work, we primarily present results from SPOD on two-dimensional planes at

various x/D − ranging from x/D = 10 to 100 − sampled at a spacing of approximately 5D.

The domain of 10 ≤ x/D ≤ 100 spans: (i) 5 ≤ Nt2 ≤ 50 for Fr = 2 and (ii) 1 ≤ Nt10 ≤ 10 for

Fr = 10 in terms of buoyancy time. In the radial direction, the SPOD domain spans 0 ≤ r/D ≤ 10,

resulting in a total of NSPOD
r = 333 points. In the azimuthal direction, the number of grid points

Nθ = 256.

For numerical implementation, the mean-subtracted data, consisting of N temporal snap-

shots, is divided into Nblk blocks with an overlap of Novl p snapshots. Each block contains N f req

entries: Q= [q(1),q(2),q(3), · · ·q(N f req)]. Here, q(i) = [u′(i),ρ′(i)]T where u′ and ρ′ are velocity

and density fluctuations, respectively. Thereafter, discrete Fourier transform (DFT) of each block

is performed in the temporal direction and the ensemble of Nblk Fourier realizations of any given
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frequency, let us say f , is collected as Q̂ f = [q(1)( f ),q(2)( f ),q(3)( f ), · · ·q(Nblk)( f )]. Once, Q̂ f is

obtained, SPOD eigenvalues and eigenvectors corresponding to f are given by the following

eigenvalue decomposition:

Q̂∗
fWQ̂ fΓ f = Γ fΛ f , (3.14)

where Λ f = diag
(

λ(1)
f ,λ(1)

f , · · ·λ(Nblk)
f

)
is a diagonal matrix containing eigenvalues ranked

in the decreasing order of energy content from i= 1 to Nblk. The corresponding spatial eigenmodes

Φ̂ f can be obtained as Φ̂ f = Q̂ fΓ fΛ
−1/2
f . In (3.14), W is a diagonal matrix of size 4NSPOD

r Nθ,

containing the numerical quadrature weights multiplied by coefficients required to form the

energy quantities given in (3.5).

The parameters for SPOD are set as follows: (i) total number of snapshots N = 7168 with

consecutive snapshots separated by ∆tD/U∞ ≈ 0.09 and 0.104 for Fr = 2 and 10, respectively,

(ii) number of frequencies N f req = 512, and (iii) overlap between blocks Novl p = 256, resulting in

total of Nblk =
N−Novl p

N f req−Novl p
= 27 SPOD modes at each frequency. Interested readers are referred to

Towne et al. (2018) and Schmidt and Colonius (2020) for more details on the theoretical aspects

and numerical implementation of SPOD.

Most of the results are obtained from SPOD analyses at constant x/D planes with modes

maximizing the two-times sum of TKE and TPE. However, for some results, we perform additional

SPOD analyses. For example, to illustrate the streamwise variation of a certain leading-order

SPOD mode in section 3.7, we perform SPOD analysis on fluctuating velocity and density fields

at the center-vertical plane (y = 0 plane) with reduced number of snapshots N = 5376 and half-

resolution in vertical and streamwise directions. N f req and Novl p are kept the same as SPOD on

fixed x/D planes. The spatial resolution and N are reduced to avoid memory limitations since

large matrices with complex double precision have to be stored in the intermediate steps of SPOD.

Also in section 3.6, we present results from SPOD analyses of the Fr = 2 wake (at constant

x/D planes) with (i) density fluctuations replaced by pressure fluctuations and (ii) norm defined
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such as to maximize the sum of ⟨p′p′⟩ and ⟨u′iu′i⟩. N,N f req, and Nblk are kept the same as in the

previous paragraph. The motivation behind performing this additional set of SPOD analyses is

explained in section 3.6.

3.4 Flow visualizations

Three-dimensional visualizations of the Q criterion and planar views of the vorticity and

velocity fields in this section provide a first look at the vortical and unsteady IGW structure of the

simulated wakes. The structure of the steady (in a frame attached to the disk) lee wave field is

not discussed in this paper. To emphasize the large-scale coherent structures, the instantaneous

velocity fields have been filtered using a SciPy Gaussian low-pass filter (gaussian filter) in all

three directions with standard deviation σ = 5 before calculating the Q criterion and vorticity

fields.

Figure 3.1 shows that, in both wakes, circular vortex rings appear immediately downstream

of the disk. At Fr = 2, the buoyancy induced anisotropy between horizontal and vertical directions

commences in the near wake. The wake contracts in the vertical at x/D ≈ 5 (visible in the side

view given in figure 3.1(b)) owing to the oscillatory modulation by the lee wave. The top view

(figure 3.1(a)) shows a distinct large-scale waviness in the intermediate wake, shown by the dashed

black line. Its approximate wavelength is λ/D ≈ 1/StV S, where StV S is the vortex shedding (VS)

frequency. Likewise, large-scale VS structures separated approximately by λ/D ≈ 1/StV S can

also be identified in the Fr = 10 wake (figure 3.1(c)). The value of StV S and the spatial behavior

of the VS mode will be made precise formally using SPOD in the subsequent sections.

Figure 3.2 shows the instantaneous vertical vorticity (ωzD/U∞) on the central horizontal

plane (z = 0) for the Fr = 2 (top) and Fr = 10 (bottom) wakes. Similar to figure 3.1, ωz is

calculated using filtered velocity fields to emphasize large-scale features. In both wakes, the

complex spatial distribution of vorticity in the immediate downstream of the disk gives way to a
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Figure 3.1: Isosurfaces of instantaneous Q criterion at Q = 0.01: (a,b) Fr = 2 and (c) Fr = 10.
Streamwise domain is limited to 0 < x/D < 20 for clarity.

Figure 3.2: Instantaneous snapshot of vertical vorticity at the central horizontal plane (z = 0):
(a) Fr = 2 and (b) Fr = 10.
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well-defined coherent distribution of opposite signed vortices in the intermediate to late wakes.

For the Fr = 2 wake, spatial coherence is visible as early as x/D ≈ 20. Beyond x/D ≈ 20, the

regions of opposite-signed ωz remain separated till the end of the domain. On closer inspection, a

streamwise undulation of length λ/D ≈ 1/StV S can be observed in figure 3.2(a). At this point,

it is important to emphasize that the Fr = 2 wake remains actively turbulent throughout the

computational domain as demonstrated by CS2020 through spectra and visualizations of the

turbulent dissipation rate. From x/D ≈ 40 onward, the Fr = 2 wake resides in the strongly

stratified turbulent (SST) regime. Different regimes of stratified turbulence are discussed briefly

in section 3.1. The strong signature of coherence in the Fr = 2 wake is not a consequence of the

transition into the weakly turbulent state of the Q2D regime noted in previous works, e.g. by

Spedding (1997).

The Fr = 10 wake also shows a distinct wavy motion with non-dimensional wavelength

≈ 1/StV S. However, the separation between the regions with opposite signed vorticity is not as

well defined as in the Fr = 2 wake. According to CS2020, the Fr = 10 wake stays in the weakly

stratified regime (WST) from x/D ≈ 10 to 50 and thereafter stays in the intermediately stratified

regime (IST) till the end of the domain.

To conclude this section, instantaneous snapshots of fluctuating spanwise velocity (u′y/U∞)

are shown in figure 3.3 at locations in the near, intermediate and far wake at Fr = 2 (top

row) and Fr = 10 (bottom row). An ellipse with major and minor axes equal to 2LHk and

2LV k, where LHk and LV k are the TKE-based wake widths in horizontal and vertical directions,

respectively, is also shown. LHk is defined by TKE(x,y = LHk,z = 0) = TKE(x,r = 0)/2 and LV k

by TKE(x,y = 0,z = LV k) = TKE(x,r = 0)/2. Here, r = 0 denotes the disk centerline. It is worth

noting that using the sum of TKE and TPE to define the wake widths (not shown here) result in

values similar to LHk and LV k for both Fr = 2 and Fr = 10 wakes. Following CS2020, we use

the TKE-based definitions in the rest of the results and discussions. This ellipse, based on LHk

and LV k, is used to approximately demarcate the wake core from the outer wake. In subsequent
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Figure 3.3: Instantaneous snapshots of the fluctuating spanwise velocity u′y/U∞ shown for
Fr = 2 (top row) and Fr = 10 (bottom row): (a,d) at x/D = 10, (b,e) at x/D = 50, and (c,f) at
x/D = 100. Dashed close curve in white shows wake core.
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sections, this definition of the wake core will prove to be useful for the interpretation of some

SPOD results.

At Fr = 2, an appreciable effect of buoyancy is already present in the near wake as shown

in figure 3.3(a) for x/D = 10, which corresponds to Nt2 = 5 in buoyancy time units. At the same

streamwise location, the Fr = 10 wake still has a circular cross-section with an imprint of the

m = 1 azimuthal mode which was found to be energetically important in the unstratified wake

(Nidhan et al. (2020)). As both the wakes evolve downstream, buoyancy has a progressively

increasing effect on the the wake core as well as the surrounding outer wake. By x/D = 50,

vertically flattened wake cores can be observed in figure 3.3(b,d) for both the wakes, more so at

Fr = 2 than at Fr = 10. It is also worth noting that the wake core of Fr = 2 consists of distinct

layers by x/D = 50. The Fr = 2 wake also shows a significant amount of IGW activity in the

outer region, i.e. outside the ellipse in figure 3.3(b). Farther downstream at x/D = 100, the u′y

field of Fr = 2 (figure 3.3(c)) shows IGWs occupying a significant portion of the outer wake with

the wake core being further flattened and comprising an increased number of horizontally oriented

layers. The Fr = 10 wake core also starts showing appreciable IGW activity in the ambient by

x/D = 100 (Nt10 = 10), as shown in figure 3.3(f).

3.5 Characteristics of SPOD eigenvalues and eigenspectra

We start the discussion of SPOD modes by evaluating their overall contribution to fluctu-

ation energy and by their eigenspectra. There are significant effects of buoyancy as elaborated

below.

3.5.1 Cumulative modal contribution to fluctuation energy

Figure 3.4 shows the variation of cumulative energy (ξ(n)) as a function of SPOD modal

index (n) at four downstream locations: x/D = 20,40,80, and 100. To calculate ξ(n), the energy
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Figure 3.4: Variation of the cumulative energy, ξ(n), as a function of modal index n for (a)
Fr = 2 and (b) Fr = 10 wakes, shown till n = 15 SPOD modes.

across all resolved frequencies St at each modal index up to n is summed and normalized by the

total energy as follows:

ξ(n;x/D) =

n
∑

i=1
∑St λ(i)( f ;x/D)

Nblk
∑

i=1
∑St λ(i)( f ;x/D)

, (3.15)

where Nblk is the total number of SPOD modes at a given St. Comparison among the various

x/D curves shows that the energy captured by leading SPOD modes in both wakes increases

with downstream distance. This behavior is in contrast to the unstratified wake where the relative

importance of the dominant SPOD modes decreases with increasing x/D (Nidhan et al., 2020).

Although both stratified wakes exhibit an increasing dominance of the leading modes as x/D

increases, there is a quantitative difference in that the jump of modal energy fraction from its

x/D = 20 value is larger for the the Fr = 2 wake relative to the Fr = 10 wake.

As discussed in the introduction, CS2020 found that the Fr = 2 wake traversed the WST,

IST and SST regimes during its streamwise evolution and the Fr = 10 wake accessed only the

WST and IST regimes. Readers are referred to section 3.1 for an introduction to these regimes

in stratified turbulence. These transitions also appear in the the evolution of the modal energy

content ξ(n;x/D). For example, the Fr = 2 wake in figure 3.4(a) shows a transition at x/D ≈ 40
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whereby the ξ(n) curves for x/D ≥ 40 collapse onto a single profile. This result is consistent

with CS2020 who find that x/D ≈ 40 (Nt2 ≈ 20) is the location where the Fr = 2 wake wake

transitions from IST to SST. The Fr = 10 wake was found by CS2020 to stay in the WST regime

till x/D ≈ 50 (Nt ≈ 5) and thereafter transitioned to the IST regime. For the Fr = 10 wake in

figure 3.4(b), the ξ(n) curves collapse separately, i.e. there is one curve showing collapse between

x/D = 20 and 40 which lie in the WST regime, and there is another showing collapse between

x/D = 80 and 100 which lie in the IST regime. Plots of ξ(n) at other values of x/D (not shown

here) confirm that locations with x/D ≤ 50 collapse on the x/D = 20,40 curve and locations with

x/D ≥ 80 collapse on the x/D = 80,100 curve.

The energy summed over frequencies instead of modal indices is now examined. Figure

3.5 shows the variation of ξ(St) calculated as follows:

ξ(St;x/D) =

St
∑

f=−St

Nblk
∑

i=1
λ(i)( f ;x/D)

Nblk
∑

i=1
∑St λ(i)( f ;x/D)

. (3.16)

Figure 3.5 shows that ξ(St) increases for low-St modes with increasing x/D in both wakes, which

is a trend also seen for ξ(n). This is yet another indication of the increasing importance of the

coherent modes as buoyancy effects come into play in these stratified wakes. Besides, for both

wakes, ξ(St) increases steeply between St = 0.1 and 0.2 at all downstream locations. The reason

behind this sharp increase will be discussed shortly. Another observation of interest is that almost

all the fluctuation energy at large x/D is captured by the modes with St < 1 in both wakes.

From x/D = 20 to 40, there is a large jump in ξ(St) for the Fr = 2 wake in figure 3.5(a).

As mentioned previously, x/D = 40 also marks the arrival of the Fr = 2 wake into the SST regime.

Also, the ξ(St) curves collapse for locations x/D = 80 and 100. On analyzing other streamwise

locations (not shown here), we find that the ξ(St) curves for x/D ≥ 70 collapse together similar

to the previously shown ξ(n) curves of the Fr = 2 wake. One difference is that the collapse of
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Figure 3.5: Variation of the cumulative fraction of energy, ξ(St), as a function of St for (a)
Fr = 2 and (b) Fr = 10. The plots are shown for 0 ≤ St ≤ 1 for both cases. Inset plots show
zoomed-in variation of ξ(St) for 0 ≤ St ≤ 0.2.

ξ(n) commences closer to the body at x/D ≈ 40.

Contrary to the Fr = 2 wake where the change in ξ(St) from x/D = 20 to x/D = 40 was

large, the corresponding change for the Fr = 10 wake (figure 3.5(b)) is small and consistent with

an absence of regime change. However, the Fr = 10 wake exhibits a significant jump of ξ(St)

between x/D = 40 and 80, which lie in the WST and IST regime, respectively.

To summarize, figures 3.4 and 3.5 have the following implications. First, the relative

importance of the leading SPOD modes increases with x/D for the stratified wakes, which is in

stark contrast to their behavior in the unstratified wake (Nidhan et al. (2020)). Second, the trend

of increasing dominance of leading SPOD modes is more pronounced for the strongly stratified

wake of Fr = 2 as compared to Fr = 10. Third, transitions between WST, IST and SST regimes

discussed by CS2020 for the turbulence statistics are also qualitatively reflected in the energetics

of SPOD modes too.

3.5.2 SPOD eigenspectra of Fr = 2 and 10 wakes

Figure 3.6 shows the SPOD eigenspectra of the Fr = 2 (left column) and Fr = 10 (right

column) wakes at various downstream locations. The spectrum of the leading SPOD mode
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Figure 3.6: SPOD eigenspectra of 25 most energetic modes, λ(1) to λ(25), for the Fr = 2 (left
column) and Fr = 10 (right column) wakes at four streamwise locations: (a,b) x/D = 20, (c,d)
x/D = 40, (e,f) x/D = 80, and (g,h) x/D = 100. Dark to light shade corresponds to increasing
model index i in λ(i).
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(λ(1)) shows a distinct spectral peak in the vicinity of St = 0.13−0.15 at all locations and for

both wakes. This pronounced peak is the reason why there was a sharp increase of ξ(St) within

0.1 < St < 0.2 for both wakes in figure 3.5.

In the Fr = 10 wake, the λ(1) eigenspectrum at all locations has a distinct peak at St ≈ 0.13,

which is very close to the vortex shedding (VS) frequency of the unstratified wake (St = 0.135) at

the same Reynolds number (Nidhan et al. (2020)). SPOD eigenspectra at x/D < 2 (not presented

here) show that this spectral peak has its origin near the wake generator and corresponds to vortex

shedding in the Fr = 10 wake.

Unlike the Fr = 10 wake, the spectral peak in λ(1) for the Fr = 2 wake shifts slightly

from St ≈ 0.15 at x/D = 20 to St ≈ 0.13 at x/D = 40 and onward. At the far wake location of

x/D = 80, the peak in the λ(1) eigenspectrum broadens to reach St ≈ 0.11. Near-body SPOD

eigenspectra (not shown here) for the Fr = 2 wake show a prominent peak at St ≈ 0.15 (slightly

larger relative to the unstratified and Fr = 10 wakes) just downstream of the recirculation zone at

x/D ≈ 2. Furthermore the pressure spectrum (not presented here) in the immediate proximity

of the disk, at x/D = 0.5 and r/D = 0.5, also peaks at St ≈ 0.15, indicating that this frequency

corresponds to the VS mechanism for the Fr = 2 wake. The shift in the spectral peak towards

lower St at later x/D is consistent with the sphere-wake study of Spedding (2002a) who report a

gradual reduction in the dominant wake St during 40 < Nt < 100 (see figure 5 of their paper).

In the Fr = 2 wake, there is a large gap (demarcated in red) between the λ(1) and λ(2)

spectra for frequencies with St < 0.2. Beyond St ≈ 0.2, values of all λ(i) fall sharply. This large

difference between λ(1) and λ(2) implies that the dynamics of the Fr = 2 wake is low-rank, i.e. it

is dominated by the leading SPOD mode. The sharp drop-off in energy at higher St points to the

dominance of low-frequency energetic structures with St in [0,0.2], specifically around the VS

frequency.

In terms of low-rank behavior, the Fr = 10 wake shows a peculiar difference from the

Fr = 2 wake. Although the gap between λ(1) and λ(2) is significantly less compared to that for
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Figure 3.7: Fraction of energy (at a given St) accounted by each SPOD mode as a function of
frequency at x/D = 50 for: (a) Fr = 2 and (b) Fr = 10 wakes. The solid and dashed white lines
indicate the number of SPOD modes required to retain 75% and 50% of the total fluctuation
energy respectively at each frequency.

Fr = 2, there is a significant gap between λ(2) and λ(3) around the VS frequency St ≈ 0.13, shown

in red in the right column of figure 3.6. Furthermore, the variation of λ(2) with St is very similar

to that of λ(1). On further investigation, we find that the SPOD eigenmodes of λ(1) and λ(2)

at the VS frequency have similar spatial structure, but with a rotation in their orientation. We

hypothesize that λ(1) and λ(2) modes at the VS frequency are the manifestation of m = 1 and

m =−1 azimuthal modes in the weakly stratified Fr = 10 wake.

Figure 3.7 shows the fraction of energy in each SPOD mode as a function of St for both

wakes at a representative location of x/D = 50. In both wakes, the leading SPOD mode at the VS

frequency capture at least 40% of the total energy contained in the VS frequency. This also holds

true for the near (x/D = 10) and far (x/D = 100) locations in both wakes (not discussed here for

brevity). Also, in both, wakes, less than 5 SPOD modes are required to capture 75% of the total

energy in the vicinity of the VS frequency, as indicated by the solid white line in figure 3.7.

The key takeaway from figure 3.6 and figure 3.7 is twofold: (i) the VS frequency is the

leading contributor to the fluctuating energy content of both Fr = 2 and 10 wakes and (ii) its

dynamics are primarily governed by a few leading SPOD modes. Previous experimental studies
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of Chomaz et al. (1993) and Lin et al. (1992a) have showed the existence of the VS mode in

the near wake at moderate stratification using hot-wire measurements (at few select locations)

and shadowgraph techniques. The present SPOD analysis enables us to establish the dominance

of the VS mode in stratified wakes from near the body to 100 body diameters downstream by

providing an ordered set of λ(i) eigenvalues for different St.

3.6 The energetics of the vortex shedding (VS) mode

A comparison between SPOD eigenspectra of the stratified wakes (figure 3.6) and the

unstratified wake (figure 3 in Nidhan et al. (2020)) reveals that both types of wakes are dominated

by vortex shedding which gives rise to a distinct spectral peak in the vicinity of St ≈ 0.13. For the

unstratified wake, besides the VS structure, which appears in the azimuthal mode m = 1, a double

helix (m = 2) mode with a peak at St → 0 is also found to be energetically important (Johansson

and George, 2006a, Nidhan et al., 2020). In the stratified wake, as elaborated below, we find that

the VS mode is persistent, is linked to unsteady internal gravity waves (IGWs), and is thereby

responsible for the accumulation of fluctuation energy outside the wake core.

Stratification qualitatively affects the streamwise evolution of the energy in different

frequencies. The evolution of the frequency-binned energy is shown for the stratified wakes in

figure 3.8 (a)-(b). For the unstratified case (Fr = ∞), the azimuthal modes m = 1 and m = 2 are

shown in figure 3.8(c) and (d), respectively. For the stratified wakes in figures 3.8 (a)-(b), the

spectral peak in the vicinity of St ≈ 0.13 remains prominent for significant downstream distances,

especially for Fr = 2. A somewhat wide band (0.1 ≤ St ≤ 0.2), centered around St ≈ 0.13 of

the VS mode, is excited for the stratified wakes. Furthermore, this band persists into the far

wake. Even at x/D = 100, this band has larger energy density than at other frequencies. Such

persistence in the energetic dominance of the VS mode (and neighboring frequencies) is absent in

the unstratified Fr = ∞ case where the energy at the two peaks of: (i) St = 0.135 in the m = 1
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Figure 3.8: x/D−St contour maps showing the variation of total energy in the leading 15 SPOD
modes: (a) Fr = 2, (b) Fr = 10, (c) Fr = ∞, m = 1 (vortex shedding) mode, and (d) Fr = ∞,
m = 2 (double helix) mode.
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Figure 3.9: Evolution of the energy contained in leading 15 SPOD modes at the vortex shedding
frequency is shown for Fr = 2,10, and ∞ wakes. The energy is normalized by its value at
x/D = 10.

mode (figure 3.8(a)) and (ii) St = 0 in the m = 2 mode (figure 3.8(b)) declines sharply with

increasing x/D.

Figure 3.9 shows the streamwise evolution of energy in the leading 15 SPOD modes and

in a frequency band around the VS frequency. The energy in the Fr = 2 wake remains almost

constant till x/D = 60 and starts decaying slowly thereafter. On the other hand, the Fr = 10 wake

shows an initial decay in the VS mode energy which closely follows that of the Fr = ∞ wake till

x/D = 20. Subsequently, buoyancy effects set in for the Fr = 10 wake to slow down the energy

decay.

To investigate the reason behind the downstream persistence of the VS spectral peak

in stratified wakes, the total energy in the leading 15 SPOD modes is partitioned into two

components: (i) energy of the wake core, Ecore and (ii) energy of the outer wake, Eouter. The

energy in each of the regions is calculated as:

Ecore(x/D,St) =
15

∑
n=1

∫
A∈Ω

λ(n)(x/D,St)Φ∗(n)
i (x/D,St)Φ(n)

i (x/D,St)dA, (3.17)
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Figure 3.10: Energy partition between core and outer wake: (a) wake core of Fr = 2, (b) outer
wake of Fr = 2, (c) wake core of Fr = 10, and (d) outer wake of Fr = 10.
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Eouter(x/D,St) =
15

∑
n=1

∫
A∈H −Ω

λ(n)(x/D,St)Φ∗(n)
i (x/D,St)Φ(n)

i (x/D,St)dA, (3.18)

where Ω denotes the wake core at a given x/D, as defined in section3.4. H denotes the area of

the circular cross-section bounded by 0 ≤ r/D ≤ 10 at a given x/D. Here, Φ(n)
i corresponds to

the nth SPOD eigenmode for a given x/D and St.

The energy in the wake core peaks around the VS-mode frequency, St ≈ 0.12−0.13, for

both wakes (see figure 3.10(a,c)). With increasing x/D (or Nt), the VS signature in the wake core

decays for both wakes. The energetics of the outer wake is remarkably different. Eouter, which

starts off with a small value across all St at x/D ≈ 10 in the Fr = 2 wake, develops a peak at

St ≈ 0.15 at x/D ≈ 20. Note that this peak is the same as the peak in the SPOD eigenspectrum for

the entire wake (figure 3.6(a)). Farther downstream, there is significant energy content in the outer

wake for x/D ≈ 16− 80 (Nt2 ≈ 8− 40) with a spectral peak located at St ≈ 0.13− 0.15. The

spectral peak is broad, i.e. nearby frequencies with 0.1 ≤ St ≤ 0.2 also have comparable energy

levels. For the Fr = 10 wake, Eouter picks up only beyond x/D = 60 (Nt10 = 6), and thereafter

increases progressively in the vicinity of St ≈ 0.13 till the end of the domain. We also find that

the qualitative nature of the variation of energy in the outer wake and wake core found in figure

3.10 does not change when the number of modes over which energy is summed is decreased from

15 to 3 (not presented here for brevity).

In figure 3.11, we sum up the SPOD energies across St ∈ [−0.4,0.4] separately for the

wake core and the outer wake and compute their percentage contribution to the entire area-

integrated fluctuation energy as follows,

χcore(x/D) =

∑
|St|=[0,0.4]

Ecore(St,x/D)

ET
k (x/D)+ET

ρ (x/D)
×100, (3.19)

χouter(x/D) =

∑
|St|=[0,0.4]

Eouter(St,x/D)

ET
k (x/D)+ET

ρ (x/D)
×100, (3.20)
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Figure 3.11: Streamwise variation of χcore, χouter, and χcore +χouter: (a) Fr = 2, (b) Fr = 10.

where ET
k (x/D) and ET

ρ (x/D) are area-integrated TKE and TPE in the circular region of 0 ≤

r/D ≤ 10 at the x/D location under consideration. The streamwise evolution of χcore and χouter

are shown in figure 3.11.

For the Fr = 2 wake (figure 3.11(a)), χouter increases monotonically until x/D ≈ 60

followed by a slight decrease. At its peak, χouter constitutes up to 50% of the total fluctuation

energy, becoming even larger than χcore. In the Fr = 10 wake (figure 3.11(b)), χouter remains

negligible till x/D = 60, followed by a monotonic increase. The increase in the value of χouter

is accompanied by a decrease in the wake-core contribution. The percentage of total energy

captured by the leading 15 SPOD modes and |St| ∈ [0,0.4], i.e., χwake +χouter (shown in green),

increases for both wakes from its initial value at x/D = 10. This reinforces a main finding of this

work that stratified wakes display an increased coherence of fluctuation energy as they evolve

downstream.

Figure 3.10 suggests that the unsteady IGWs in the outer wake radiate from the VS mode

at intermediate to late Nt. Nevertheless, to further establish causation between the unsteady IGW

emission and the VS mode, we perform additional SPOD analyses for the Fr = 2 wake. In these

analyses, we replace the fluctuating density field ρ′ with the fluctuating pressure field p′. These
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SPOD analyses are performed at x/D = 10,20, · · · ,90,100. At all locations, the eigenspectra

obtained from these modified SPOD analyses show a prominent peak at the VS frequency with a

large gap between λ(1) and λ(2) for St < 0.2, qualitatively akin to the left column of figure 3.6.

Using p′ along with u′i enables us to reconstruct the pressure transport term in the radial

direction, ⟨p′u′r⟩, which accounts for the energy transferred radially from the wake core to the

IGW dominated outer wake region through pressure-work (de Stadler and Sarkar, 2012, Rowe

et al., 2020). We reconstruct ⟨p′u′r⟩ contours using leading 15 SPOD modes and frequencies in

the range of (i) St ∈ [0.1,0.2] and (ii) St ∈ [0.1,0.3] as follows:

⟨p′u′r⟩(x;y,z) = ∑
St

15

∑
n=1

λ(n)(x;St)Φ(n)
ur (x;y,z,St)Φ(n)∗

p (x;y,z,St), (3.21)

Figure 3.12 shows the actual (top row) and reconstructed (middle and bottom rows) ⟨p′u′r⟩

at three streamwise locations x/D = 20,40, and 60 for the Fr = 2 wake. The actual ⟨p′u′r⟩ shows

a strong signature of IGW flux in the outer wake region at all three downstream locations in figure

3.12. We found that the nonlinear transport term was negligible outside the wake core (not shown

here). Hence the primary source of the energy transfer to the outer wake is the pressure-work

term due to the IGW radiation. The reconstructed ⟨p′u′r⟩ using St ∈ [0.1,0.2] (middle row) shows

qualitative agreement with the spatial distribution of actual ⟨p′u′r⟩, both in the wake core as well

as outer wake region, at all downstream locations. As more frequencies are included (bottom

row), adjacent to the VS frequency, the accuracy of reconstruction increases. The key spatial

characteristics of ⟨p′u′r⟩ remain similar in both reconstructions, showing that frequencies in the

vicinity of the VS frequency satisfactorily capture the key dynamics of unsteady IGW generation.

To further elucidate the causal link between the VS mode and the IGW generation, we

plot the x/D− St variation of the integrated ⟨p′u′r⟩ in the outer wake region (similar to 3.18),

reconstructed using 3 and 15 SPOD modes (figure 3.13). The evolution of integrated ⟨p′u′r⟩ in the

outer wake of the Fr = 2 wake is very similar to that of the energy in the outer wake region (figure

3.10(b)). It starts off at a small value at x/D ≈ 10, develops a broad peak centered at St ≈ 0.15
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Figure 3.12: Contours of ⟨p′u′r⟩ for the Fr = 2 wake obtained from: (i) temporal averaging (top
row), reconstruction using leading 15 SPOD modes and (ii) St ∈ [0.1,0.2] (middle row) and (iii)
St ∈ [0.1,0.3] (bottom row). Three streamwise locations x/D = 20,40, and 60 are shown.
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Figure 3.13: x/D−St contour maps showing the variation of integrated ⟨p′u′r⟩ in the outer wake
region using: (a) leading 3 SPOD modes and (b) leading 15 SPOD modes for the Fr = 2 wake.

between 20 ≤ x/D ≤ 80, and gradually starts declining beyond x/D = 80. Increasing the number

of modes from 3 to 15 makes the active St region broader while intensifying the reconstructed

values.

Figure 3.10, 3.12, and 3.13 firmly establish that the VS mode energy radiates out of the

wake core instead of being acted on by nonlinear interactions in the turbulent wake responsible

for the usual energy cascade. Therefore, unlike their unstratified counterpart, the stratified wakes

exhibit a persistent VS spectral peak when the energy in the full domain of influence (denoted by

H ) of the wake is taken into account as in the SPOD results of figure 3.8(a,b).

3.7 Spatial structure of SPOD eigenmodes

3.7.1 Spatial structure of the VS eigenmode

The spatial structure of the dominant eigenmodes sheds further light on the manner in

which buoyancy helps spread unsteady flow perturbation to well outside the turbulent core of

the wake. Figure 3.14 shows the real part of the normalized (by L∞ norm) leading SPOD mode,

Φ(1)
y (y,z,St;x)/||Φ(1)

y (y,z,St;x)||∞, of the lateral velocity uy. The plotted modes correspond to
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Figure 3.14: Shape of the leading SPOD mode (real part corresponding to λ(1)) for spanwise
velocity, Φ(1)

y (y,z,St;x/D). At each x/D, the shown mode corresponds to the peak in the
eigenspectrum of λ(1). Real part of each mode is shown. Dashed closed curve in white shows
wake core.
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the VS mode, which is at St corresponding to the eigenspectrum peak and are shown for selected

values of x/D. The ellipsoid wake core (dashed blue curve) with dimensions 2LHk and 2LV k is

also shown. At Fr = 2 (upper row), the wake core exhibits flattening from x/D = 10 (Nt = 5)

onward and the eigenmodes in the core show horizontal layering for x/D ≥ 50. The layering

becomes visible in the eigenmodes at x/D ≈ 30 (not shown here). The region outside the core

has little activity at x/D = 10 but shows IGW phase lines at x/D = 50 and 100. There is a clear

and continuous transition of the eigenmode from its layered core to an IGW structure in the outer

region at the far downstream locations. The flattening of the wake core and the IGW related

spread of the eigenmode is delayed for the Fr = 10 wake (bottom row) relative to Fr = 2 since

equivalent Nt values occur farther downstream.

Comparing figure 3.14(b,c) with figure 3.3(b,c), there are striking similarities in the

layered structure of the Fr = 2 wake core between the dominant eigenmodes and the instantaneous

snapshots at the far downstream locations of x/D = 50 and 100. Although SPOD only guarantees

that the obtained modes optimally capture the prescribed energy norm of the flow (see section

3.3.1), these modes do generally contain the imprints of actual flow structures, as is the case here.

The outer wake shows that distinct IGWs are associated with the wake core structure of dominant

eigenmodes at late Nt for both Fr = 2 and 10 wakes. For the Fr = 2 wake, IGW activity in the

outer region of the eigenmodes shown in figure 3.14 is negligible at x/D = 10 (Nt2 = 5) while it is

readily noticeable at x/D = 50 (Nt2 = 25) and x/D = 100 (Nt2 = 50). The IGWs are found to be

emitted within 30◦−60◦ with the y axis. For Fr = 10, the IGWs found at x/D = 100 (Nt10 = 10)

are emitted at ≈ 45◦ from the horizontal. A comparison between figure 3.3 and 3.14 reveals that

the IGW in the dominant eigenmodes (figure 3.14) represent the IGWs in actual snapshots (figure

3.3) to a satisfactory extent, emphasizing that the VS mechanism is an important IGW generation

mechanism in stratified wakes.

The leading VS modes at different locations show asymmetry about the y = 0 line, in both

Fr = 2 (at x/D = 10) and Fr = 10 (at x/D = 50 and 100) wakes. This might be a consequence of
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Figure 3.15: Shape of the leading SPOD mode for spanwise velocity, Φ(1)
y (x,z,St ≈ 0.13;y = 0)

in the center-vertical plane for the Fr = 2 wake. Real part of the mode is shown in domain
z,x ∈ [−10,10]× [2,100].

the presence of a very-low frequency mode (VLF) in the wake (Grandemange et al., 2013, Rigas

et al., 2014). For the SPOD, we partitioned the full set of snapshots (spanning T ≈ 700D/U∞)

into blocks with N f req = 512 entries. This corresponds to time windows of T = 46D/U∞ and

54D/U∞ for the Fr = 2 and 10 wakes respectively. While these durations are sufficient to resolve

the VS mode, they are significantly smaller than resolution requirements for the VLF mode

which resides at the timescale T ∼ O(103D/U∞). Hence it is possible that the asymmetry in the

leading modes at the VS frequency is a consequence of the VLF mode combined with limited

time window of SPOD blocks. Computations with each block spanning T ∼ 1000D/U∞ while

desirable, are outside the scope of this work and available computing resources.

To analyze the streamwise coherence of the leading SPOD eigenmode at the VS frequency,

we conduct an additional SPOD analysis for the Fr = 2 wake, using the fluctuating density and

velocity fields, at the center-vertical plane (y = 0). Specific details of this SPOD analysis are

mentioned towards the end of section 3.3.2. The SPOD eigenspectrum (not shown here for

brevity) shows a broad peak at St ≈ 0.13 .

Figure 3.15 shows the spatial structure of the spanwise component of the leading SPOD

mode at St ≈ 0.13. The VS mode appears to be strongly coherent in the streamwise direction with

a wavelength of λ/D ≈ 1/StV S. It has two distinctive features: (i) emergence of a well-defined

IGW signature beyond x/D ≈ 20 and (ii) gradual transition of the opposite signed lobes into
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Figure 3.16: Shape of the 15th SPOD mode (real part corresponding to λ(15)) at St = 0.40 for
spanwise velocity, Φ(15)

y (y,z,St;x/D). Dashed closed curve in white shows the wake core.

V-shaped structures as the wake progresses downstream. These structures get progressively

thinner and shallower (with respect to x axis) as x/D increases.

3.7.2 Spatial structure of high St, high n eigenmodes

To contrast the structure of less energetic SPOD eigenmodes with the dominant SPOD

eigenmodes, the uy eigenmode at n = 15 and St = 0.40 is plotted in figure 3.16 at the same

downstream locations of x/D = 10,50, and 100 considered previously. It should be noted

that these SPOD modes have low energy, O(10−2) that of the dominant SPOD modes. Visual

inspection shows that the spatial coherence in the wake core, which is a characteristic of dominant

SPOD modes, is lost for the the high-n and high-St modes similar to the result in the snapshot

POD study of Diamessis et al. (2010). For both Fr = 2 and 10 wakes, Φ(15)
y (y,z,St = 0.40)
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in the wake core is dominated by small-scale turbulence. For the Fr = 2 wake, the distinct

layered structure found in the leading VS eigenmodes at x/D = 50 and 100 is absent in the

low-energy mode at the same locations. Nevertheless, buoyancy-induced anisotropy is evident

at Nt ≥ 5 in both wakes even in these low-energy modes with high n and St. Moreover, the

Φ(15)
y (y,z,St ≈ 0.40) mode also shows IGWs in the outer wake at x/D = 50 and 100 in the Fr = 2

wake (figure 3.16(b,c)), albeit with smaller wavelength than for the VS mode. Contrary to the

Fr = 2 wake, the Φ(15)
y (y,z,St = 0.4) mode for the Fr = 10 wake does not show any IGW in

figure 3.16(e,f).

3.8 Reconstruction using SPOD modes

In this section, we demonstrate the effectiveness of SPOD modes in reconstructing the

following turbulence statistics: (i) turbulent kinetic energy (TKE), ⟨u′iu′i⟩/2, (ii) lateral production

Pxy = ⟨−u′xu′y⟩∂⟨U⟩/∂y, and (iii) buoyancy flux B = ⟨−ρ′u′z⟩/Fr2. The reconstruction from

SPOD modes is performed as follows:

TKE(x;y,z) =
1
2

Λ

∑
n=1

St=Str

∑
St=−Str

λ(n)(x;St)Φ(n)
i (x;y,z,St)Φ(n)∗

i (x;y,z,St), (3.22)

Pxy(x;y,z) =
Λ

∑
n=1

St=Str

∑
St=−Str

−λ(n)(x;St)Φ(n)
x (x;y,z,St)Φ(n)∗

y (x;y,z,St)
∂⟨U⟩

∂y
, (3.23)

B(x;y,z) =
1

Fr2

Λ

∑
n=1

St=Str

∑
St=−Str

−λ(n)(x;St)Φ(n)
ρ (x;y,z,St)Φ(n)∗

z (x;y,z,St). (3.24)

In (3.22)−(3.24), the values of Λ and Str determine the set of modes used for reconstruction. The

so-obtained turbulence statistics vary spatially in spanwise and vertical directions for different

x/D.

Throughout this section, two sets of low-order truncation are used for reconstruction: (i)
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n ≤ 5, |St| ≤ 0.20 (R1) and (ii) n ≤ 15, |St| ≤ 0.40 (R2). While the R1 truncation primarily takes

the VS mode into account for both wakes, R2 also accounts for some of the low-energy modes

which reside at relatively higher n and St. It should be noted that R1 and R2 set of modes account

for approximately 0.7% and 4.34% of the total SPOD modes in both wakes.

Figure 3.17 compares the reconstructed TKE with its actual value for the Fr = 2 wake at

x/D = 20,50, and 100. The actual TKE decays in magnitude, expands horizontally, and narrows

vertically with increasing x/D. At x/D = 50 and 100, the TKE contours display horizontal

layering. At all three locations, reconstruction using the R1 set of modes (middle column) gives

a fairly accurate estimate of the shape and spatial extent of the TKE contour. The layering at

x/D = 50 and 100 is also captured by the R1 reconstruction. These layers were also present in the

reconstruction using only n = 1 and |St| ≤ 0.2 modes (not shown here), indicating the low-rank

nature of layering in stratified wakes. On further increasing [n,St] as in the R2 reconstruction

(right column), the overall shape and structural features of the reconstructed TKE remain un-

changed, while the magnitude increases, particularly at intense TKE locations, increasing the

overall accuracy. It can also be ascertained visually that the accuracy of R1 and R2 increases

with downstream distance pointing to the increasing coherence of the wake as it progresses

downstream.

Figure 3.18 pertains to the reconstruction of the lateral production Pxy in the Fr = 2 wake.

We limit ourselves to the lateral component since it dominates its vertical counterpart after the

onset of buoyancy induced suppression of vertical turbulent motions (Brucker and Sarkar (2010),

de Stadler and Sarkar (2012), Redford et al. (2015)). In the IST and SST regimes of the disk wake,

Pxy is the dominant component of turbulent production. The actual Pxy (left column) shows two

off-axis lobes of intense production primarily located near the horizontal center plane (z/D = 0).

With increasing x/D, these lobes flatten owing to buoyancy. With respect to the lateral production,

the R1 and R2 set of modes capture the spatial distribution accurately for the Fr = 2 wake as

shown in the middle and right column of figure 3.18, respectively. Although SPOD modes are
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Figure 3.17: Contours of TKE for the Fr = 2 wake obtained from temporal averaging (left
column), reconstruction from R1 set of modes (middle column), and reconstruction from the R2
set of modes (right column). Three streamwise locations x/D = 20,50, and 100 are shown.
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Figure 3.18: Contours of Pxy for the Fr = 2 wake obtained from temporal averaging (left
column), reconstruction from R1 set of modes (middle column), and reconstruction from R2 set
of modes (right column). Three streamwise locations x/D = 20,50, and 100 are shown.
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optimal for capturing the area-integrated sum of ⟨u′iu′i⟩ and ⟨ρ′ρ′⟩/Fr2 by construction, we find

that these modes provides an excellent low-order approximation for the production too.

Finally, we explore the effectiveness of buoyancy flux (B) reconstruction in figure 3.19.

Unlike TKE and Pxy, B is not a same-signed quantity in the turbulent wake, as can be seen from

figure 3.19(a,d,g). The R1 reconstruction of B (middle column) accurately captures the structural

features of B at all locations: (i) layers of positively and negatively signed B at x/D = 50,

100, and (ii) IGWs in the outer wake which carry significant B at x/D = 20 and 50. On closer

inspection, the R1 truncation is found to underpredict the strength of B in these outer regions

with intense buoyancy flux. Including higher St and n modes for reconstruction, as done for R2,

significantly improves the quality as shown in the right column.

The reconstruction trends of these statistical quantities are also investigated for the Fr = 10

wake, but are not shown here for brevity. Qualitatively, the trends are similar to that of the Fr = 2

wake, wherein the R1 set captures the structural features of these quantities very satisfactorily.

Further addition of high-n and high-St modes in the R2 truncation improves the quantitative

prediction of these statistics, particularly in the region where they are found to be intense in the

actual data.

To conclude this section, the streamwise variations of the wake-core-integrated TKE and

Pxy for the Fr = 2 and Fr = 10 wakes are shown in figure 3.20. The corresponding variation for

B is not shown here as it fluctuates between small positive and negative values, unlike TKE and

Pxy which decay monotonically with x/D.

For the Fr = 2 wake, wake core TKE shows two distinct decay rates: (i) TKE ∼ x−1.11

in the IST regime spanning 10 ≤ x/D ≤ 40 (5 ≤ Nt2 ≤ 20) and (ii) TKE ∼ x−0.30 in the SST

regime spanning 60 ≤ x/D ≤ 100 (30 ≤ Nt2 ≤ 50). The quality of TKE reconstruction improves

monotonically from R1 to R2 at all downstream locations for both wakes, as is observed in figure

3.20(a,b). For Fr = 2, the TKE contained in the R1 set of modes stays approximately constant

for x/D ≥ 40 (figure 3.20(a)). It is only after high-St and high-n modes are added, as in R2, that
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Figure 3.19: Contours of B for the Fr = 2 wake obtained from temporal averaging (left column),
reconstruction from R1 set of modes (middle column), and reconstruction from R2 set of modes
(right column). Three streamwise locations x/D = 20,40, and 100 are shown.

105



Figure 3.20: Streamwise variation of wake core TKE and Pxy reconstructed from R1 and R2
truncations: (a) TKE for Fr = 2, (b) TKE for Fr = 10, (c) Pxy for Fr = 2, and (d) Pxy for Fr = 10.
Here,

∫
C (.)dC denotes the integration in the wake core.
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the reconstructed TKE follows the decay rate of actual TKE. Reconstructed TKE from further

lower-order truncations (not shown here), i.e., with lesser n and St than in R1, showed an increase

in wake core TKE at large x/D, opposite to the decrease in the actual value. For the Fr = 10

wake, reconstruction from low-order truncations decay quite similar to the actual TKE (figure

3.20(b)).

The accuracy of R1 and R2 increase approximately three-folds and two-folds from

x/D = 10 to 100 for the TKE reconstruction in the Fr = 2 wake, suggesting development of

low-rank dynamics in the Fr = 2 wake. By x/D = 100, R1 and R2 modes capture ≈ 63% and

≈ 82% respectively of the wake core TKE for Fr = 2. On the other hand, the reconstruction

quality of the moderately stratified Fr = 10 wake changes only slightly from x/D = 10 to 100 for

both low-order truncations: (i) TKE in R1 modes changes from ≈ 29% of total TKE at x/D = 10

to ≈ 38% at x/D = 100 and (ii) TKE in R2 modes change from ≈ 45% to ≈ 55% between

x/D = 10 and 100.

Figure 3.20(c,d) show the reconstruction trends for wake core Pxy term in the Fr = 2 and

10 wakes, respectively, along with its actual variation obtained from temporal averaging (shown

in red). The wake core Pxy for Fr = 2 decays as x−0.85 throughout the spatial domain under

consideration (figure 3.20(c)). Both R1 and R2 provide very good reconstruction of Pxy beyond

x/D ≈ 30 and exhibit better approximations relative to that for TKE. With its additional modes,

R2 follows the behavior of the actual value of Pxy very closely. The wake core Pxy for the Fr = 10

wake shows a faster decay rate of x−2 in 10 ≤ x/D ≤ 70 (figure 3.20(d)). Beyond x/D ≈ 80, it

decays at a slower rate of x−0.52. Similar to the Fr = 2 wake, R2 reconstructs the actual wake

core Pxy very well.

The visually good reconstruction of Pxy by the R2 set of modes can be quantified for

both wakes. At x/D = 10 and 100, R2 already accounts for ≈ 66% and ≈ 92% of the actual Pxy,

respectively, for the Fr = 2 wake. For the Fr = 10 wake, the R2 set of modes capture ≈ 80% of

the actual Pxy at both x/D = 10 and 100. The SPOD modes provide a better low-order truncation
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for the lateral production as compared to the TKE for both wakes. This is similar to the trend

observed by Nidhan et al. (2020) for the unstratified wake at same Re.

3.9 Discussion and conclusions

In this study, we have extracted and analyzed coherent structures in the stratified turbulent

wake of a disk using spectral POD (SPOD). Body-inclusive LES databases from Chongsiripinyo

and Sarkar (2020) (referred to as CS2020) at Re = 5×104 and Fr = 2,10 are used in this study.

Streamwise distance spanning 10 ≤ x/D ≤ 100 is analyzed for both wakes. The obtained SPOD

eigenvalues (λ(n)) are a function of modal index (n), frequency (St), and streamwise distance

(x/D). By construction, SPOD modes have the following properties: (i) coherence in both space

and time, (ii) optimal capture of the area-integrated total fluctuation energy, summed over kinetic

and potential energy components, and (iii) ordering such that the energy content (given by λ(n))

decreases with increasing n for a given (x/D,St). To the best of the authors’ knowledge, this is

the first numerical study utilizing SPOD and body-inclusive simulation data together to uncover

the dynamics of coherent structures in high-Re stratified wakes.

Q criterion and vorticity visualizations of both Fr = 2 and 10 wakes give a qualitative

indication of the prevalence of large-scale coherent structures in these wakes. SPOD analysis

reveals their dominance, namely, the first five (n = 1 to 5) modes, summed across all resolved

St, capture around 60% of the total fluctuation energy in both wakes. Likewise, most of the

contribution to the total energy comes from SPOD modes with St < 1 in both wakes. Contrary to

the unstratified wake, the coherence in the stratified wakes increases with x/D. This is observed

in both n and St variation of the SPOD eigenvalues, wherein the relative contribution of the

low n and St eigenvalues increases with x/D. This increase in coherence is found to be more

pronounced in the Fr = 2 wake compared to the Fr = 10 wake. Interestingly, the transitions

between different turbulence regimes (WST, IST, and SST) in these wakes, discussed in detail by
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CS2020, are also reflected in the n and St variations of the SPOD eigenvalues.

SPOD eigenspectra of both wakes at downstream locations ranging from the near to

the far wake uncover a prominent spectral signature of the vortex shedding (VS) mechanism at

St ≈ 0.11−0.13. Both wakes exhibit a low-rank behavior in the vicinity of the vortex shedding

frequency at all locations analyzed here, i.e. the leading modes have significantly higher energy

content than the sub-optimal modes (n > 2). While previous experimental studies of Lin et al.

(1992b) and Chomaz et al. (1993) have shown the existence of the VS phenomenon in stratified

wakes using qualitative visualizations and measurements of spectra at a few locations, SPOD

enables us to objectively isolate and quantify the VS mechanism by providing the optimal

decomposition of the two-point two-time cross-correlation matrix.

We also find that the Fr = 2 wake exhibits the slowest decay of the energy at the VS

frequency, followed by the Fr = 10 and ∞ wakes, respectively. To further analyze this trend,

the energy in the leading 15 SPOD modes is partitioned between the wake core and outer wake

region for (x/D,St) pairs. The outer wake in the Fr = 2 case shows significantly elevated energy

levels during 8 ≤ Nt2 ≤ 40 (16 ≤ x/D ≤ 80) with a strong spectral peak at the VS frequency. On

the other hand, the outer-wake energy at Fr = 10 remains negligible till x/D = 60 (Nt10 = 6) and

increases monotonically thereafter, again with a spectral peak at St ≈ 0.13 (the VS frequency).

Additional SPOD analyses of the Fr = 2 wake using fluctuating pressure and velocity components

show that the frequencies in the vicinity of the VS mechanism contribute significantly to energy

transfer from the wake core turbulence to the IGWs in the outer wake region, establishing a firm

causal link between the VS mode and unsteady IGW generation in stratified wakes. It is also

noteworthy that the outer-wake energy constitutes up to 50% of the total cross-section energy at

the point where its contribution to the total energy peaks in the Fr = 2 wake.

In their recent temporally evolving simulations, Rowe et al. (2020) found that the most

energetic IGWs were generated during 10 ≤ Nt ≤ 25. They analyzed the instantaneous power

extracted from the wake core at high Re and varying Fr. Other works employing a temporal
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model for the wake (Abdilghanie and Diamessis (2013), de Stadler and Sarkar (2012))have also

found strong IGW activity in the range of 20 ≤ Nt ≤ 70. In our SPOD analysis, the results are in

qualitative agreement with the findings of these temporal model studies. However, the temporal

simulations were not able to capture the vortex shedding mechanism. Also, the IGW energy

appears in the outer wake at Nt = 6−8 in the present simulation, which is somewhat earlier than

in the previous studies. The current results expand our knowledge by establishing that it is the VS

mode in bluff-body wakes which links the wake core to the outer region of IGW activity in the

NEQ wake, at least up to x/D = 100.

The visualizations of spatial structures of the leading SPOD eigenmodes at the VS

frequency reveal layering in the wake core of the Fr = 2 case beyond x/D ≥ 30. The layering in

the stratified wake core, although consistent with the finding of Spedding (2002b), has notable

differences. Spedding (2002b) found that the number of layers increases once the sphere wake

reached the Q2D regime at Nt ≈ 50, contrary to the present results where the increase happens

between Nt2 = 15 and 50. Spedding (2002b) also hypothesized that the vertical layers become

decorrelated at late times (between 50 < Nt < 100). In the present results, we see that vertical

layers correspond to well-defined coherent structures (coherent in the y− z plane) at late x/D

locations, captured in the respective leading SPOD eigenmodes at St ≈ 0.13, implying that the

layering found here connects to the body-generated VS mechanism. We also analyze the leading

eigenmode of the VS frequency at the center-vertical (y = 0) plane, finding that the VS mode is

correlated in the streamwise direction throughout the domain. Far from the disk, it organizes into

V-shaped structures which progressively get shallower and thinner. These V-shaped structures

were previously identified by Chongsiripinyo et al. (2017) in the instantaneous visualizations of

sphere wake at a lower Re = 3700. Utilizing SPOD, we show that these structures are a robust

feature of the flow even at higher Re and reside at the VS frequency.

We also find that SPOD modes provide an efficient reconstruction of second-order statistics

that are important in stratified wakes: (i) TKE, (ii) lateral production (Pxy), and (iii) buoyancy
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flux (B). The spatial distribution of all three statistics is captured satisfactorily even with a few

energetic SPOD modes (n ≤ 5 and St ≤ 0.2). Inclusion of additional SPOD modes with higher

n and St further increases the accuracy of the reconstruction. Between Fr = 2 and 10, we find

that reconstruction accuracy is better for the strongly stratified Fr = 2 wake. Furthermore, we

also find that Pxy shows significantly better reconstruction than TKE. This was also observed in

the reconstruction trends of the unstratified wake at the same Re by Nidhan et al. (2020). Thus,

similar to the Fr = ∞ wake, it is only a significantly small set of SPOD modes in the stratified

wake that interact with the mean shear, although a larger set of modes is required to reconstruct

TKE. These are primarily the large-scale coherent structures which are captured by SPOD modes

in the limit of low n and St.

Overall, SPOD turns out to be a very effective technique in isolating space-time coherent

structures and establishing that they have a strong link to various distinctive features of turbulent

stratified wakes. SPOD as well as other modal decomposition techniques (e.g., resolvent analysis)

have been extensively used in other flow configurations to construct reduced-order models and

shed light on various aspects of those flows. However, applications to stratified flows, particularly

wakes, are relatively scarce. In the future, further studies of stratified wakes using different modal

decomposition techniques will surely help in advancing our understanding of these flows and our

ability to efficiently model them.
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Chapter 4

The high-Re stratified wake of a slender

body and its comparison with a bluff body

wake

4.1 Introduction

Due to their low drag coefficients, slender bodies are extensively used in aerospace and

naval applications. Multiple studies have described the flow around these bodies focusing on

the drag force, the boundary layer, and the flow separation (Chesnakas and Simpson, 1994,

Constantinescu et al., 2002, Costis et al., 1989, Fu et al., 1994, Wang, 1970, Wang et al., 1990,

Wikström et al., 2004). However, despite their presence in many underwater applications, only

a few works have looked into the wake of a slender body (Chevray, 1968, Jiménez et al., 2010,

Kumar and Mahesh, 2018) and, only recently, the far wake of a slender body has been studied

(Ortiz-Tarin et al., 2021).

The near wake of a slender body with a turbulent boundary layer (TBL) is characterized

by having a small recirculation region. The recirculation region is surrounded by a ring of
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small scale turbulence that emerges from the boundary layer and does not show strong vortex

shedding (Jiménez et al., 2010, Kumar and Mahesh, 2018, Ortiz-Tarin et al., 2021, Posa and

Balaras, 2016). As a result, the wake is thin and develops slowly compared to the wake of bluff

bodies. These particular features of the slender body high-Re near wake lead to interesting effects

further downstream: (i) despite having a smaller drag coefficient than bluff bodies, the defect

velocity (Ud =U∞ −U) of the slender body wake can be larger than that of a bluff body for a

long downstream distance, (ii) the turbulent kinetic energy of the wake shows an off-center radial

peak at the location where the turbulent boundary layer separates – instead of a Gaussian profile

with a central peak, and (iii) helical instabilities come into play only in the intermediate and far

field of the wake. These particularities affect the scaling laws of the wake. In a domain spanning

80D the defect velocity, the kinetic energy, and the dissipation do not follow the classic high-Re

scaling and they decay differently than bluff body wakes (Ortiz-Tarin et al., 2021) exhibiting a

non-equilibrium scaling of dissipation (Dairay et al., 2015, Vassilicos, 2015).

The few studies that look into slender body wakes assume that the body moves in an

unstratified environment, where the density of the surrounding fluid is constant. However, in a

realistic underwater marine environment the effect of density stratification due to salinity and

temperature can become relevant. Density stratification suppresses vertical motions, triggers the

formation and sustenance of coherent structures, and leads to the radiation of internal gravity

waves. More importantly, in a stratified environment, the wake of a submersible lives longer

than in an unstratified environment, i.e., it takes more time for the flow disturbance to die out

(Spedding, 2014). The study of stratified wakes has been nearly exclusively focused on the flow

past bluff bodies (Chomaz et al., 1992, Hanazaki, 1988, Lin and Pao, 1979, Lin et al., 1992b,

Orr et al., 2015, Pal et al., 2017) and underwater topography (Baines, 1998, Castro et al., 1983,

Drazin, 1961). Here, we study the influence of stratification on the high-Re wake of a prolate

spheroid with a turbulent boundary layer.

The strength of ambient stratification is measured by the body-based Froude number
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Fr =U∞/ND. This is the ratio between the convective frequency of the flow, U∞/D – where U∞

is the freestream velocity and D the diameter of the body – and the buoyancy frequency N. In the

wake of ocean submersibles, Fr ∼ O(1−102). However, since the velocity deficit in the wake

Ud(x) decays with the streamwise distance and the wake width L(x) increases, the Froude number

defined with local variables Frl =Ud/NL decreases as the flow evolves. Thus, even in a weakly

stratified environment, eventually all wakes are affected by stratification.

Since the relative strength of stratification increases locally as the flow develops, the

evolution of the stratified wake is multistage in nature. Based on the measurements of Ud and L

in high-Fr (i.e. initially weak stratification) bluff body wakes, Spedding (1997) identified three

regimes in stratified wake evolution based on the power-law decay rates of Ud . These regimes

are generally identified by empirically fitting decay rates to Ud in different temporal (or spatial)

regions and are as follows:

1. Three-dimensional (3D) regime: Close to the generator, wake decay is similar to the

unstratified wake of the corresponding body shape. This is the so-called 3D regime

and lasts until the buoyancy time defined by Nt = Nx/U = x/D ·1/Fr approaches O(1),

equivalently until x/D ∼ Fr.

2. Non-equilibrium (NEQ) regime: As the wake evolves, buoyancy effects become pro-

gressively stronger. The decay of Ud slows relative to the 3D regime and, furthermore,

anisotropy between the vertical and horizontal velocity components increases. Spedding

(1997) reported this non-equilibrium (NEQ) region to last for Nt ≈ 2−50. Later, temporal

simulations of Brucker and Sarkar (2010) and Diamessis et al. (2011) found an increase

in the span of the NEQ regime at higher Reynolds numbers. Ud ∼ x−0.25±0.04 during the

NEQ regime according to Spedding (1997). However, there has been some variability in

the observed NEQ decay rate in later studies. Bonnier and Eiff (2002) reported a NEQ

regime with Ud ∼ x−0.38 for 1.5 < Fr < 5. Brucker and Sarkar (2010) and Diamessis
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et al. (2011) reported Ud ∼ Nt−1/4 during the NEQ regime in their temporal simulations.

Chongsiripinyo and Sarkar (2020) found that Ud ∼ x−0.18 during the NEQ regime of their

Fr = 2 and 10 disk wakes. For wakes with Fr ∼ O(1), the NEQ decay rate is preceded by a

pronounced oscillatory modulation in Ud which is linked to lee waves (Chongsiripinyo and

Sarkar, 2020, Ortiz-Tarin et al., 2019, Pal et al., 2017).

3. Quasi two-dimensional (Q2D) regime: After the NEQ regime, the stratified wake enters

into the quasi two-dimensional regime (Q2D regime). The Q2D regime is characterized by

transition in the Ud power law to a significantly increased decay rate, e.g. Spedding (1997)

reports a transition to Ud ∼ x−3/4. In the Q2D regime, the wake progressively organizes

into vortices that meander primarily in the horizontal plane (Brucker and Sarkar, 2010,

Dommermuth et al., 2002, Gourlay et al., 2001) and take the form of ‘pancakes’. Although

the wake motion in this regime is primarily in the horizontal plane, there is a variability in

the vertical direction in the form of layers (Spedding, 2002a), hence the prefix ‘quasi’.

In recent literature, stratified wakes have been characterized using turbulence features

(Chongsiripinyo and Sarkar, 2020, Zhou and Diamessis, 2019) instead of the Ud-based criteria of

Spedding (1997). These studies are motivated by an attempt to connect buoyancy-related wake

transitions to the broader stratified turbulence field.

Notice that the arrival of the wake into each of the three stages in its evolution depends on

the value of Nt, which is equivalent to a downstream distance of x/Fr from the wake generator.

At high Froude number, the downstream distance required to reach the NEQ and Q2D regions can

become very large. Consequently, the size of the computational domain required to access these

regimes rapidly becomes computationally unfeasible. To circumvent these limitation temporal

simulations were used in the study of Gourlay et al. (2001). Temporal simulations use a reference

frame moving with the wake where time correlates with streamwise distance in a fixed reference

frame. By assuming that the streamwise development of the flow is slow, periodic boundary
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conditions can be used and the equations are advanced in time without the need of introducing the

wake generator. This reduces the computational cost significantly. Most of the studies that have

contributed to our current understanding of stratified wakes use temporal simulations (Abdilghanie

and Diamessis, 2013, Brucker and Sarkar, 2010, de Stadler and Sarkar, 2012, Diamessis et al.,

2011, Dommermuth et al., 2002, Gourlay et al., 2001, Redford et al., 2015, Rowe et al., 2020).

The main drawback of the temporal model is the influence of its initialization. Since the

flow at the wake generator is not solved, the starting profiles of the mean and turbulence have to

be assumed. These simulations lack some specific features that are generated due to the body, e.g.,

steady lee waves, near-wake buoyancy effects, and the vortical structures shed from the boundary

layer. Even when it is tempting to assume that body specific features are lost far from the body,

the universality of the wake decay has remained elusive to experiments (Bevilaqua and Lykoudis,

1978, Redford et al., 2012, Wygnanski et al., 1986), even in unstratified wakes. An alternative to

temporal simulations are body inclusive simulations that retain the wake generator dependent

features at the expense of a higher computational cost and a limited domain size (Chongsiripinyo

et al., 2017, Gola et al., 2022, More and Ardekani, 2020, 2021, More et al., 2021, Nidhan et al.,

2019, Orr et al., 2015, Pal et al., 2017).

To the best of authors’ knowledge, Ortiz-Tarin et al. (2019) performed the first study of a

stratified flow past a slender body that investigates the near and intermediate wake dynamics. Their

analyses reveal that at Fr ∼ O(1) the type of separation and the subsequent wake establishment is

strongly dependent on the characteristic frequency of the lee waves and the aspect ratio of the

body. When half the wavelength of the steady lee waves (λ = 2πFr) matches the length of the

slender body (L), the separation of the boundary layer is inhibited by buoyancy effects. Based on

this condition, a critical Froude number can be defined Frc = L/Dπ. When Fr > Frc stratification

suppresses the generation of turbulence in the near wake, when Fr ≈ Frc buoyancy strongly limits

the flow separation and can lead to a relaminarization of the wake at low Reynolds numbers.

Finally, when Fr < Frc, the lee waves enlarge the separation region and there might be an increase
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in the turbulence intensities in the wake. When Fr ≈ Frc the wake is in a resonant state with

both the separation and the wake dimensions being strongly modulated by the steady lee waves

(Chomaz et al., 1993, Hunt and Snyder, 1980, Ortiz-Tarin et al., 2019).

As mentioned before, the use of body inclusive simulations has one major limitation, i.e.,

the high computational cost. Due to the high resolution required to solve the boundary layer of

the wake generator, the downstream domain is limited and thus the possibility of looking into

the far wake gets significantly restricted, particularly at high Re. VanDine et al. (2018) presented

a hybrid spatially-evolving model, which builds on the hybrid temporally-evolving model of

Pasquetti (2011), and addresses most of the aforementioned problems. The hybrid method uses

inflow conditions generated from a well-resolved body-inclusive simulation to perform a separate

temporal simulation in the case of Pasquetti (2011) or spatially-evolving simulation in the work

of VanDine et al. (2018) without including the body. By doing so, the amount of required points

is substantially reduced since the flow near the body does not have to be resolved. This important

reduction of the computational cost allows one to extend the domain farther downstream to gain

insight in the far wake.

Here, we use a hybrid method that combines a body-inclusive simulation and a spatially

evolving body-exclusive simulation to study the stratified high-Re far wake of a slender body for

the first time. The Reynolds number is set to Re =U∞D/ν = 105 and two levels of stratification

are used, Fr =U∞/ND = 2 and 10. The simulation at Fr = 10 allows us to study the evolution of

a weakly stratified wake in a domain that spans 80D. Additionally, Fr = 2 is chosen because it

is close to the critical Froude number for a 6:1 prolate spheroid Frc = (L/D)/π = 6/π. At the

critical Froude number, the size of the separation region is strongly reduced by the lee waves

(Ortiz-Tarin et al., 2019). These choices also allow us to compare our results with the findings of

Chongsiripinyo and Sarkar (2020) (hereafter referred as CS20) regarding the stratified wake of a

disk.

In CS20, the stratified wake of a disk at Re = 5×104 is studied at Fr = 2,10,50,∞. Apart
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from a detailed analysis of the decay rates of the mean and turbulent quantities, CS20 links the

general evolution of stratified homogeneous turbulence (Brethouwer et al., 2007, de Bruyn Kops

and Riley, 2019) with the evolution of the wake turbulence. As the disk wake evolves, the

influence of buoyancy is ‘felt’ by the turbulent motions at progressively smaller scales. First

the mean flow and the large scales and later the r.m.s. velocities are affected by stratification.

Simultaneously, the horizontal eddies start gaining energy. Based on the strength of these effects,

three distinct stages can be identified: weakly, intermediate and strongly stratified turbulence. In

CS20, the transition between these regimes is examined and parameterized using local Froude

and Reynolds numbers. Zhou and Diamessis (2019) also examined these transitions and their link

with the evolution of stratified homogeneous turbulence using temporal simulations.

The present work is the continuation of Ortiz-Tarin et al. (2021) – referred to as ONS21

– where the unstratified wake of a 6:1 prolate spheroid with a turbulent boundary layer was

studied and compared with a large number of simulations and experiments. In our previous study

we found that the particularities of the slender body wake, e.g., small recirculation region, low

entrainment, large defect velocity, bimodal distribution of the turbulent kinetic energy, among

others affect the wake decay significantly. In this study we are analyzing how these features affect

the evolution of the stratified wake. We also analyze the simulations of CS20 to closely compare

our results with the stratified bluff body wake.

Some of the questions we want to answer are: do the stratified decay laws and their

transition points depend on the shape of wake generator? how does the turbulence evolve in

stratified slender body wakes and are there difference with bluff body wakes? how does the

phase-space evolution of the stratified turbulence compares between bluff and slender body

wakes? In broader terms, we attempt to find whether a turbulent stratified wake retains some

imprint of the wake generator in the mean and turbulence evolution.

A description of the solver and the methodology is given in §2. The wakes are visualized

in §3. The decay of the mean wake properties is analyzed in §4. Finally, the evolution of
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the turbulence and the phase-space analysis of the wake are presented in sections §5 and §6,

respectively. The study is concluded in §7.

4.2 Methodology

To study the far wake of a slender body at a high Reynolds number we use a hybrid

simulation. The hybrid model combines two simulations: body-inclusive (BI) that solves the flow

past the wake generator and body-exclusive (BE) that resolves the intermediate and far wakes.

Here, we use a spatially-evolving simulation following the procedure validated by VanDine et al.

(2018). In the implementation, data from a selected cross-plane in the BI simulation is interpolated

on to a new grid and used as an inlet boundary condition for the BE stage. This procedure allows

us to alleviate the natural stiffness of the wake problem. Whereas the BI simulation is designed

to capture the turbulent boundary layer and the flow separation, the BE simulation resolves the

turbulence in the wake. Both the grid size and the time step required to solve the turbulent

boundary layer are much smaller than those needed in the intermediate and far wakes. This

method leads to significant savings in computational cost without compromising accuracy.

The setup and the solver here are the ones used in ONS2021 with the addition of strat-

ification. Both simulations solve the three-dimensional Navier-Stokes with the Boussinesq

approximation in cylindrical coordinates. The solver uses a third-order Runge-Kutta method com-

bined with second-order Crank-Nicolson to advance the equations in time. Second-order-accurate

central differences are used for the spatial derivatives in a staggered grid. A wall-adapting local

eddy viscosity (WALE) is used to properly capture the turbulent boundary layer dynamics (Nicoud

and Ducros, 1999). Both the BI and BE simulations use Dirichlet boundary conditions at the

inflow, convective outflow and Neumann at the radial boundary. Similarly to Ortiz-Tarin et al.

(2019) a sponge layer is added to the boundaries to avoid the spurious reflection of gravity waves.

An immersed boundary method (Balaras, 2004, Yang and Balaras, 2006) is used to resolve
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the flow past a 6:1 prolate spheroid at zero angle of attack. A numerical bump is introduced on the

surface of the body to accelerate the transition of the boundary layer to turbulence. The annular

bump is located where the surface favorable pressure gradient is nearly zero. This location is

found at approximately 0.5D from the nose. The radial extent of the bump is 0.002D (∼ 15 wall

units) and the streamwise extent is 0.1D.

The stratification is set by a linear background density profile characterized by the Froude

number, Fr = U∞/ND, where N is the buoyancy frequency. Three levels of stratification are

simulated: Fr = 2,10 and ∞. Fr = 2 is close to the critical Froude number Frc = 6/π for the

6:1 spheroid at which the suppression of turbulence in the wake by stratification is optimal

(Ortiz-Tarin et al., 2019). Fr = 10 is a moderate level of stratification closer to oceanic values.

Finally Fr = ∞ is the unstratified case which will be used as a reference (ONS21).

The cylindrical coordinate system is (x,r,θ) with the origin at the body center. For

convenience, the Cartesian coordinate system (x,y,z) will also be used, where z is the vertical

direction aligned with gravity, y is the spanwise direction, and x is the streamwise direction.

The BI grid is designed to resolve the turbulent boundary layer and the small-scale wake

turbulence. The turbulent boundary layer is resolved with ∆x+ = 40, ∆r+ = 1, and r∆θ+ = 32.

There are 10 points in the viscous sublayer and 130 across the buffer and log layers. The mean

velocities and turbulence intensities within the boundary layer were validated against existing

studies (Kumar and Mahesh, 2018, Posa and Balaras, 2016) and the law of the wall. Additionally

a grid refinement study was performed to guarantee the independence of the statistics to the grid

choice.

In the wake, the peak ratio between the grid size and the Kolmogorov length η= (ν3/ε)1/4,

in both BI and BE domains is max(∆x/η) = 7.5, max(∆r/η) = 6, and max(r∆θ/η) = 5. A figure

showing the ratio between the Kolmogorov scale and the grid resolution can be found in ONS21

(figure 2). Additionally, the unstratified wake decay coincides with all the previous existing

numerical and experimental works on slender body wakes (see figure 1 of ONS21).
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Table 4.1: Parameters of the body-inclusive simulation of prolate 6:1 spheroid. L−
x and L+

x are
the upstream and downstream distances from the wake generator.

Case Re Fr Lr Lθ L−
x L+

x Nr Nθ Nx

1 105 ∞ 5 2π 8 15 746 512 2560
2 105 10 60 2π 20 30 848 512 3072
3 105 2 60 2π 20 30 848 512 3072

Table 4.2: Parameters of the body-exclusive simulations. xe is the extraction location of the BI
simulations that is fed as inlet to the BE simulations.

Case Re Fr Lr Lθ xe Lx Nr Nθ Nx

1 105 ∞ 10 2π 6 80 479 256 4608
2 105 10 57 2π 9 90 619 256 4608
3 105 2 57 2π 9 90 619 256 4608

The domain size in the stratified cases is large so that internal gravity waves are weak

before reaching the sponge region near the walls. The total number of grid points across BI and

BE domains is approximately 1.5 billion in the unstratified case and 2 billion in the stratified

simulations. Tables 4.1 and 4.2 include the most relevant parameters of BI and BE simulations,

respectively. Further details on the grid design can be found in section 2 of ONS21.

Once the flow has reached statistically steady state, the statistics are obtained by temporal

averaging, denoted by ⟨·⟩. Instantaneous quantities are written with lower case, mean quantities

with upper case, and fluctuations with prime. In the stratified cases the average is performed

over 270D/U∞, approximately three flow-throughs. In the unstratified simulation flow statistics

are obtained through the temporal (over 100D/U∞) as well as azimuthal averaging. Apart from

Table 4.3: Parameters of the disk simulations (CS20).

Case Re Fr Lr Lθ L−
x L+

x Nr Nθ Nx

1 5×104 ∞ 15.14 2π 30.19 125.51 364 256 4608
2 5×104 10 80 2π 30.19 125.51 529 256 4608
3 5×104 2 80 2π 30.19 125.51 529 256 4608
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temporal averaging, some statistics are obtained from cross-wake area integration denoted by {·}.

Unless otherwise indicated, the integral is performed over a cross-section of radius 4D. All the

flow statistics presented here die out well before they reach the limit of the integrated region.

Reported velocities and lengths are normalized with the free-stream velocity U∞ and the

body minor axis D, respectively. The normalized streamwise distance from the center of the body

x is also measured as a function of the buoyancy frequency and the time. The time in the Nt axis

refers to time measured by an observer attached to the mean flow that sees the body move at a

speed −U∞. A Galilean transformation yields x/Fr = Nt.

To compare the stratified wake of the 6:1 spheroid with that of a bluff body we use the

body-inclusive disk wake simulations of CS20. The solver used in CS20 is the same as the one

used here although, instead of using the WALE closure model, CS20 uses a variant of dynamic

Smagorinsky. The eddy-viscosity model was changed in the spheroid simulations since WALE

was demonstrated to capture the behavior of the turbulent boundary layer with the resolution

used in the present wall-resolved LES. Both sets of simulations are very well resolved and have

a small subgrid contribution – see ONS21 and CS20 – hence the validity of the comparison.

Further details of the simulations can be found in ONS21 and CS20. The main parameters of disk

simulations are shown in table 4.3.

4.3 Visualizations

Figure 4.1 shows instantaneous snapshots of the near wake of a spheroid and a disk at

Fr = 2 and Fr = 10. At both Fr, the near wake structure of the two bodies is very different.

Compared to the spheroid with turbulent boundary layer (TBL), the disk wake has a large

recirculation region (∼ 2D), as shown by the red isolines in figure 4.1. This large recirculation

region oscillates (Rigas et al., 2014) and generates a vortex shedding structure that is advected

downstream (Nidhan et al., 2020). In a spheroid with TBL, the recirculation region is very
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Figure 4.1: Instantaneous contours of streamwise velocity in the near wake for spheroid (left)
and disk wakes (right) at Fr = 2 and Fr = 10 on center-vertical (y = 0) and center-horizontal
(z = 0) planes. Red isolines show the limit of recirculation regions where the streamwise velocity
is zero.

small (∼ 0.1D) and is surrounded by the small scale turbulence of the boundary layer. As a

result, the near wake is highly organized and large scale oscillations are not observed in the near

wake (Jiménez et al., 2010, Kumar and Mahesh, 2018, Ortiz-Tarin et al., 2021). Only further

downstream, does the wake begin to show a helical structure. This change in the structure of

the slender body wake has been found to lead to a change in the decay rate and dissipation

scaling in the unstratified wake (ONS21). In the following sections, we will analyze how the

differences between the near wake of a disk and that of a spheroid lead to distinct trends of mean

and turbulence evolution in a stratified environment. But first, let us describe different snapshots

of the spheroid intermediate and far wakes. Snapshots of the disk intermediate and far wakes can

be found in CS20.

Figure 4.2 shows an instantaneous visualization of the spheroid Fr = 2 wake in the center-

vertical and center-horizontal planes. One of the distinctive features of the spheroid wake is that at

Fr ∼ O(1) the separation of the boundary layer can be strongly modulated by the steady lee waves
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Figure 4.2: Instantaneous contours of streamwise velocity of the spheroid Fr = 2 wake in
center-vertical (a,b) and center-horizontal planes (c,d).
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(Ortiz-Tarin et al., 2019). This interaction between the lee waves and the wake is particularly

strong when the Froude number is close to a critical Froude number Frc = AR/π, where AR

is the body aspect ratio. When Fr ≈ Frc, half the wavelength of the lee wave (λ/D = 2πFr)

coincides with the length of the body and the size of the separation region is reduced. The flow

is then in what is called resonant or saturated lee wave regime, (Chomaz et al., 1992, Hanazaki,

1988). At low Reynolds numbers, this effect can lead to the relaminarization of the turbulent

wake (Ortiz-Tarin et al., 2019, Pal et al., 2016). In the present case, figure 4.2(a) reveals that,

even at Re = 105, the wake height is strongly modulated by the waves, although the wake is not

relaminarized due to the high Re of the flow. For example, the wake height exhibits oscillations

with a wavelength of λ/D = 2πFr = 4π. The modulation of the wake by the waves leads to an

unusual configuration in the intermediate wake (x = 20−40) where the wake width LH is smaller

than the wake height LV , figure 4.2(a) and (c). In these figures, sinuous oscillations are observed

only in the horizontal plane (figure 4.2d) due to strong stratification. These horizontal sinuous

instabilities contrast with the lee wave induced varicose modulation in the vertical plane. As the

wake evolves, the LH < LV configuration transitions to the expected LH > LV . In this late region,

the small-scale turbulence of the boundary layer has been dissipated and a layered-layer structure

is observed in the vertical plane, figure 4.2(b). The qualitative trends of LH and LV discussed here

are quantified in §4.4.

The main features of the Fr = 10 wake can be observed in the instantaneous snapshots of

figure 4.3. The near wake, figure 4.3(a,c), is thin and carries the small scale turbulence generated

in the boundary layer. Similar to the unstratified wake of ONS21, in the x < 20 region, it has a

quasi-cylindrical structure. Only after x ≈ 20, a helical structure develops. In the unstratified

wake, the oscillation found at x ≈ 20 is present until the end of the domain. Here, the Fr = 10

wake does not show major oscillations after x ≈ 30. Stratification restrains the vertical motions in

the wake and enhances the horizontal spread as can be seen in the visualization of the late wake,

figure 4.3(b,d). Unlike the Fr = 2 wake, the horizontal and vertical Fr = 10 wake extent grow
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Figure 4.3: Instantaneous contours of streamwise velocity of the spheroid Fr = 10 wake in
center-vertical (a,b) and center-horizontal planes (c,d).
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Figure 4.4: Decay of the peak defect velocity in (a) spheroid and (b) disk. The red dashed line
in (a) indicates the decay of the Fr = 2 centerline defect velocity. For all other cases, centerline
and maximum Ud coincide. Note that the origin of the Nt scale is 1.5 for Fr = 2 and is 0.3 for
Fr = 10.

monotonically with increasing downstream distance.

4.4 Evolution of the mean flow in spheroid and disk wakes

4.4.1 Evolution of the mean defect velocity (Ud)

The decay rate of the mean defect velocity Ud = U∞ −U shows the different stages in

the evolution of a wake. In a stratified environment, wakes transverse the 3D, NEQ and Q2D

regimes (Spedding, 1997). Figure 4.4 compares the decay of Ud among the unstratified, Fr = 10,

and Fr = 2 spheroid and disk wakes. To facilitate a one-to-one comparison, we present the disk

data in the domain 3 ≲ x ≲ 80, coinciding with the domain of the spheroid wake. Since x is

measured from the center of the body, the location of x = 3 is in the near wake for the disk and is

at the terminus of the body for the spheroid. The unstratified spheroid wake (figure 4.4a) shows

a transition between the classical high-Re decay Ud ∼ x−2/3 to Ud ∼ x−6/5 at x ≈ 20 coinciding

with the development of a helical structure (ONS21). The Fr = ∞ disk wake decays as Ud ∼ x−0.9

from 10 ≲ x ≲ 65 and transitions to the classical high-Re decay of x−2/3 afterward (CS20), as

shown in figure 4.4(b). Compared to the disk, the Fr = 10 and Fr = ∞ spheroid wakes have
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a higher value of Ud , owing to weaker near-wake entrainment and the slower development of

slender body wakes.

In the weakly stratified Fr = 10 regime, the defect velocity of the spheroid wake (figure

4.4a) evolves similarly to the unstratified wake until Nt ≈ 3.5, when the decay rate slows down.

However, at the same value of Fr = 10 but for the disk wake (figure 4.4b), Ud deviates from the

unstratified case at Nt ≈ 1. Based on Ud , the end of the 3D region and the beginning of the NEQ

region of the spheroid wake occurs at x ≈ 30 whereas in the disk it occurs at x ≈ 10. We discuss

the reason behind this delayed deviation of the spheroid-wake Ud from its unstratified counterpart

in §5.

At Fr = 2, there are significant differences in Ud evolution between the disk and spheroid

wakes. In the Fr = 2 spheroid wake, Ud shows an increased decay rate from the beginning.

Although not shown here, the wake establishment is affected similarly to the Fr = 1 wake of the

4:1 spheroid of Ortiz-Tarin et al. (2019), where there was no 3D regime. The boundary layer

evolution on the body and the separation are affected by stratification. At Nt ≈ π, there is a

sudden change in the decay rate due to the lee-wave-induced oscillatory modulation (Pal et al.,

2017) observed in the 3 ≲ x ≲ 10 region. This oscillatory modulation gets weaker downstream as

the lee-wave amplitude decreases with the distance from the source.

At Nt ≈ π, the wake transitions to the NEQ stage where Ud exhibits a slower decay

compared to both the preceding stage and the following stage which commences at Nt ≈ 15.

Fitting a power law to the NEQ stage between x = 6−25 results in a decay with x−0.266. This

decay is close to the -1/4 decay in the NEQ regime found in the experiments of Spedding (1997)

and later in numerical simulations (Brucker and Sarkar, 2010, Diamessis et al., 2011, Pal et al.,

2017, Redford et al., 2015). More details about the fitting strategy can be found in ONS21. At

Nt ≈ 15, the spheroid wake transitions to the Q2D regime with a sharper decay and a power-law

fit between x = 30−80 results in Ud ∼ x−0.72, which is close to the x−0.75 behavior established

by Spedding (1997) for the Q2D regime. The Fr = 2 disk wake shows a very different behavior.
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Figure 4.5: Wake dimensions measured using the mean defect velocity Ud for the spheroid (a,c)
and disk (b,d) wakes in center-vertical (a,b) and center-horizontal (c,d) planes. The legends are
same as in figure 4.4.

Until at least x = 125 (Nt = 62.5) – the full extent of the computational domain – the disk wake

exhibits no transition to the Q2D regime. Instead, after transitioning to the NEQ regime with a

power law of Ud ∼ x−0.18, the disk wake stays in that regime.

Thus, the NEQ regime in the spheroid wake at Fr = 2 is significantly shortened compared

to the disk wake, with it starting at Nt ≈ π and ending early at Nt ≈ 15 when Q2D commences.

In the experiments of Spedding (1997), the NEQ regime is reported to last until Nt ≈ 40. Other

temporal studies have found that the span of the NEQ regime depends on the Reynolds number.

For example, in temporal simulations, Diamessis et al. (2011) found an increase of the NEQ

duration to Nt ≈ 50 when the Reynolds number increased to Re = 105. Brucker and Sarkar (2010)

found a transition to a Q2D-type power law at Nt ≈ 100. Only Redford et al. (2015) observed an

earlier transition around Nt ≈ 25. The reasons behind the early arrival of the Q2D regime in the

spheroid Fr = 2 wake will be discussed in §5.

4.4.2 Evolution of the mean horizontal (LH) and vertical (LV ) lengthscales

The evolution of the mean wake dimensions in the spheroid and disk wakes is shown in

figure 4.5(a,c) and (b,d), respectively. L is defined such that U∞ −U(L) = 1
2Ud . The subscripts

{V,H} indicate that these measures have been taken in the vertical and horizontal planes so that
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(a)
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Figure 4.6: Instantaneous radial velocity contours of the Fr = 2 spheroid wake in the (a) center-
vertical and (b) center-horizontal planes.

they represent the half height and the half width.

The wake of a slender body is generally thinner than its bluff body counterpart. Compared

to the disk wake of CS20, the present unstratified wake is smaller by a factor of about 3 – contrast

black lines in figure 4.5(a) to (b). The difference in wake size stems from the different near-wake

features. Here, the initial non-dimensional wake width is around 0.2 whereas its value for the

disk is around 0.7. This observation agrees well with the scaling proposed by Tennekes and

Lumley (1972) and used in stratified wake experiments by Meunier and Spedding (2004), where

the wake dimensions behind a body with diameter D scale with the drag coefficient
√

CD. We find

that Cdisk
D ≈ 1.11 and Cspheroid

D ≈ 0.13 resulting in (Cdisk
D /Cspheroid

D )0.5 ≈ 3.2. Besides the initial

dimensions, the near-wake growth rates of the spheroid and disk are also very different. Whereas

in the x = 3−20 region the spheroid unstratified wake grows as L ∼ x0.2, the disk wake grows as

L ∼ x0.45. Later, the growth rate of both wakes becomes comparable but the difference in size is

already established and dictated by the near wake.

The evolution of the Fr = 10 spheroid wake height (LV ) is similar to its unstratified

counterpart until Nt ≈ 3.5 where the growth of LV slows down. While LV remains almost

constant beyond Nt ≈ 4, LH keeps increasing with a growth rate of ∼ x1/3. In the Fr = 10 disk
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wake, the deviation from the Fr = ∞ case happens at x ≈ 20 (Nt ≈ 2). Interestingly, after Nt ≈ 2,

the disk wake shows a continuous decrease in wake height. LH of both spheroid and disk wakes

at Fr = 10 closely follow the trend of the corresponding unstratified wake. See figures 4.5(c,d).

The wake dimensions at Fr = 2 for both disk and spheroid show oscillations with a

wavelength of λ/D = 2πFr. This reveals the influence of the steady lee waves especially on the

wake height, see figure 4.5(a,b). From Nt = 1−15 the oscillations of LV and LH are consistent

with the conservation of momentum deficit, i.e., to counteract the contraction of LV caused by

buoyancy, LH is enhanced. Note that these initial oscillations are of similar amplitude in both

disk and spheroid. However, the relative change over the initial wake dimensions is much more

pronounced in the spheroid wake (∼ 10 times) owing to its initial thinness. The influence of the

lee waves on the spheroid Fr = 2 wake dimensions is illustrated by radial velocity contours in

figure 4.6. The wake width contracts significantly in the region where the vertical velocity of the

lee wave induces a rapid increase of wake height. Starting at Nt = 20, the width of the spheroid

wake shows a rapid growth LH ∼ x1.3 corresponding with: (i) the development of the horizontal

wavy motions observed in figure 4.2(d) and (ii) the arrival of the Q2D stage with Ud ∼ x−3/4.

The growth of LV remains constant at a rate of x0.25. Both, the very rapid growth of LH and the

sustained increase in LV of the spheroid wake, are very different from the trends in the Fr = 2

disk wake. In the disk wake, we find that, instead of an increase, the vertical height exhibits a

decrease ( LV ∼ x−0.18) at x ≳ 20. Furthermore, LH grows at x1/3, a moderate rate relative to its

rapid growth rate in the disk wake.

4.4.3 Comparison of flow topology between stratified spheroid and disk

wakes

The difference between the spheroid and disk with regards to the evolution of mean

length scales (LV and LH), particularly at Fr = 2, points toward qualitative differences in the flow

topology. To further characterize these differences in the Fr = 2 wake, figure 4.7 shows contours
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Figure 4.7: Fr = 2 wakes of spheroid (a-f) and disk (g-i) at different streamwise locations.
Contour limits are between the minimum (red) and maximum (white) values of the respective
quantity at a given x with ten levels in between. Radial extent span till r = 1 and r = 4 for the
spheroid and disk contours.
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of mean streamwise velocity (U) at different streamwise locations for the spheroid (top two rows)

and the disk (bottom row). In each panel of figure 4.7, the right half shows Ux and the left half

shows turbulent kinetic energy (TKE), EK
T = (⟨u′2x ⟩+ ⟨u′2y ⟩+ ⟨u′2z ⟩)/2.

For the sake of brevity, we have not included contours of the Fr = 10 disk and spheroid

wakes since their topology is similar – the mean can be well approximated by a vertically-squeezed

two-dimensional Gaussian while the TKE evolves from a bimodal (off-center peaks) distribution

in the radial direction to a Gaussian at intermediate to late streamwise distances. In the case of

the disk, the TKE evolves as a two-dimensional Gaussian right beyond the recirculation region.

We first discuss the disk wake (bottom row). The mean shows a monotonic spread in

the horizontal direction and resembles the shape of an ellipse or a two-dimensional Gaussian

squeezed in the vertical direction. This shape does not change until the end of the computational

domain at x ≈ 125. The TKE for the disk wake also has a similar vertically squeezed appearance.

Turning to the spheroid wake, we find that its turbulence topology is different from that

of the mean. In the region 5 ≤ x ≤ 15, TKE shows two off-center peaks reminiscent of the TBL

shedding from a slender body (Jiménez et al., 2010, Kumar and Mahesh, 2018, Ortiz-Tarin et al.,

2021, Posa and Balaras, 2016) while mean Ux shows a single central peak. At x = 20, we see

the start of a horizontal contraction of the mean velocity in the central region of the wake and

the emergence of a ‘butterfly’ shape reminiscent of the separation and wake patterns observed in

Ortiz-Tarin et al. (2019), where the Frc = 4/π ≈ 1 wake of a 4:1 spheroid was studied. Note that

in this stage, the wake is thinner than taller, i.e., LH < LV . At x ≈ 20, TKE starts transitioning

from a bimodal distribution to a single peak near the center-horizontal plane. In the next section,

we will analyze how the horizontal contraction of the mean wake between x = 20 and x = 40

results in an increased horizontal mean shear, resulting in the maximum TKE being produced

close to the center-horizontal plane. This leads to a transition in the TKE topology from bimodal

distribution to a squeezed-Gaussian distribution at x ≳ 40. By x ≈ 60, U has been organized into

two distinct layers while TKE is sustained between these two vertically off-center layers. Note
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that the multi-layered mean flow structure at late x in the Fr = 2 spheroid wake is reminiscent of

the layered structure of the Q2D regime Spedding (1997).

Previously, temporal simulations (Brucker and Sarkar, 2010, Gourlay et al., 2001, Redford

et al., 2015) have shown that the mean and the turbulence can evolve differently. Indeed, the effect

of buoyancy is ‘felt’ very differently by the large and the small scales in the flow. The general

trend is that, in the late wake, the turbulence occupies a smaller and smaller vertical fraction of

the mean defect as time passes (Redford et al., 2015). Instead, the finding here for the spheroid

wake is the combined effect of having a wake in saturated-lee-wave state and initial off-center

peaks of TKE, established by the TBL separation. These characteristics of the flow have not been

not captured in temporal simulations since they have not accounted for the wake generator and

the steady lee waves.

4.5 Evolution of the turbulent flow in spheroid and disk wakes

The energy of the flow is contrasted between spheroid and disk wake in this section. The

turbulent kinetic energy (TKE also denoted as ET
K ), turbulent potential energy (TPE, ET

P ), mean

kinetic energy (MKE, EM
K ) and mean potential energy (MPE, EM

P ) are defined as:

ET
K = (⟨u′2x ⟩+ ⟨u′2y ⟩+ ⟨u′2z ⟩)/2 , ET

P = γ⟨ρ′ρ′⟩/2, (4.1)

EM
K = (U2

d + ⟨uy⟩2 + ⟨uz⟩2)/2 , EM
P = γ⟨ρd⟩2/2, (4.2)

where γ = g2/ρ2
oN2. In what follows, trends of area-integrated values, denoted by {·}, of these

energy measures are reported. Area-integrated quantities are preferred because the peaks of mean

and turbulence in stratified slender wakes are often times off-centered as can be seen in figure 4.7.

The integration allows for a uniform comparison across cases. Also note that temporally averaged

134



3 10 40 80x
10−4

10−3

{ET
K}

x−2/5

x1.1

x−1.1
Unstratified
Fr = 10
Fr = 2

3 5 10 40

1 6 8Nt

3 10 40 80x
10−3

10−2

10−1

{ET
K}

x−2/3

3 5 10 40

1 6 8Nt

3 10 40 80x
10−3

10−2

10−1

{ET
Kx}

3 10 40 80x
10−4

10−3

{ET
Kx}

3 10 40 80x
10−4

10−3

{ET
Ky}

3 10 40 80x
10−3

10−2

10−1

{ET
Ky}

3 10 40 80x
10−3

10−2

10−1

{ET
Kz}

3 10 40 80x

10−4

10−3

{ET
Kz}

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Comparison of evolution of TKE between spheroid (left) and disk (right) wakes.
(a,b) total TKE, (c,d) streamwise TKE, (e,f) spanwise TKE, and (g,h) vertical TKE.

quantities are denoted by the angled brackets ⟨·⟩.

4.5.1 Evolution of TKE, spectra and PE-to-KE ratios

The evolution of the area-integrated TKE of the disk and spheroid wakes is shown in

figure 4.8. The most noticeable aspect is that, for all Fr numbers, {ET
K} in spheroid wakes is an

order of magnitude smaller than in corresponding disk wakes. Although it is not shown here, we

found a similar result for the area-averaged TKE (over an area of r = 4D cross-section), instead

of area-integrated TKE.

The decay of the unstratified wake is studied in more detail in ONS21 for the spheroid and

CS20 for the disk. In unstratified flow, {ET
K} decays following {ET

K} ∼ x−2/5 for the spheroid

and the disk wake follows {ET
K} ∼ x−2/3. Note that these fits are empirical. Both decay rates

are consistent with the decay of the peak TKE (k) and the growth of wake width (L) under the
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self-similarity framework, i.e., {ET
K} ∼ kL2. Specifically, in the case of the spheroid L ∼ x3/5

and k ∼ x−8/5 (Ortiz-Tarin et al., 2021) and, in the case of the disk, L ∼ x1/3 and k ∼ x−4/3

(Chongsiripinyo and Sarkar, 2020).

At Fr = 10 and for both the spheroid and the disk, {ET
K} deviates from the unstratified

case at between Nt ≈ 1 and Nt ≈ 3, see figure 4.8(a,b).Interestingly, while the TKE is affected by

stratification in the similar Nt range for both wake generators, the mean flow showed a different

behavior. In the disk Fr = 10 wake, Ud deviated from its unstratified counterpart at Nt ≈ 1 while,

in the spheroid, this change occurred later at Nt ≈ 3. The onset of deviations from the unstratified

case will be explained in more detail in the following subsections.

At Fr = 2, there is a striking influence of the wake generator on the evolution of TKE.

Whereas in the disk wake, the TKE decays monotonically, the far wake of the spheroid displays a

rapid increase.

The disk wake shows a monotonic decay in {EK
T } and its individual components through-

out 3 < x < 80. Compared to the horizontal components, {EK
T z} shows a sharper decay after

Nt ≈ 10 and turbulence anisotropy progressively increases. In the spheroid Fr = 2 wake, {EK
T }

decays rapidly until Nt ≈ 10. However, after Nt ≈ 10, the decay slows down and is followed by a

period of sustained growth starting at Nt ≈ 20 and lasting until the end of the domain. The region

of TKE growth coincides with the development of the large scale horizontal motions observed

in figure 4.2(d) and the rapid growth of LH shown in figure 4.5(c). It also coincides with the

accelerated decay rate of Ud starting at Nt ≈ 20.

Notice that right before the start of the rapid increase of TKE, the Fr = 2 wake has a

configuration where LH < LV (figure 4.7d). The horizontal response of the flow to the strong lee

waves is what sustains this configuration. It is only after their strength subsides that the control

on the wake is released to allow the horizontal wavy motion to develop. The rapid development

of this motion coincides with the rapid increase in horizontal TKE, namely {ET
Ky} and {ET

Kx} as

seen in figure 4.8(c,e). To the best of the authors’ knowledge this is the first wake study, resolving
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Figure 4.9: Energy spectra of the Fr = 2 spheroid wake computed with the spanwise velocity
fluctuations at the centerline at (a) x = 10,30 and (b) x = 50,70.

the flow at the body, that observes an increase of fluctuation energy with downstream distance

instead of its usual decrease.

To further quantify the horizontal wavy motions observed in figure 4.2(d), the energy

spectra of the spanwise velocity are computed at the centerline. These spectra are compared

between locations before (figure 4.9a) and after (figure 4.9b) the start of the the TKE increase

associated with the Q2D regime. The spectra before x < 40 do not show preferential energization

of the low frequencies. This finding is consistent with the visualizations in figure 4.2 where

the intermediate wake does not show any sign of large scale motions. Beyond x = 40, however,

spectra show a strong peak at Strouhal number St = f D/U∞ ≈ 0.35 (figure 4.9b). This value of

Strouhal number agrees with the approximate wavelength of structures in figure 4.2(d), where

the wavelength λ/D ≈ 1/St. To summarize, the arrival of the Q2D regime in the Fr = 2 wake is

accompanied by a strong increase in TKE (figure 4.8a) and the appearance of large scale motions

in the center-horizontal plane (figure 4.2d and 4.9b).

In the Fr = 2 disk wake, the vortex shedding mode at St = f D/U∞ ≈ 0.13− 0.14 is

dominant throughout the whole domain. The horizontal meanders, which are prevalent in the

spheroid wake, are absent in the disk wake at least until the end of the domain at x/D = 125.
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Figure 4.10: Ratio of area-integrated (a) turbulent potential energy to turbulent kinetic energy
and (b) mean potential energy to mean kinetic energy in stratified spheroid and disk wakes.

Since the vortex shedding mode, its long-lasting effect on the wake, and its internal wave field are

described in detail by Nidhan et al. (2022b), we do not discuss these aspects further.

The spheroid wake has significantly lower TKE content relative to the disk wake and also

a different distribution of the mean momentum. The content of potential energy relative to that of

kinetic energy is also of interest. Figure 4.10 shows the ratio of area-integrated potential energy

(PE) to kinetic energy (KE). Both fluctuating (4.10a) and mean (figure 4.10b) components are

shown at Fr = 2 and 10 for both wake generators.

At Fr = 10, the turbulent PE-to-KE ratio increases steadily in both disk and spheroid cases

indicating an increasing influence of buoyancy on turbulence (figure 4.10a). In the Fr = 2 wakes,

the turbulent PE-to-KE ratio peak around x ≈ 30 in both cases and decay afterward. By the end

of the measurement region at x = 80, the turbulent PE-to-KE ratios are similar across Fr = 2 and

10 wakes. Thus, stratification and body shape do not qualitative affect the ability of turbulence to

stir the density field in the intermediate and far wake. Quantitatively, the TPE-to-TKE ratios are

somewhat higher for the disk relative to the spheroid for both wakes.

The mean PE-to-KE ratios in the Fr = 10 wakes (figure 4.10b) are minuscule compared

to their turbulent counterparts. At Fr = 2, the mean-based ratio is much larger, particularly close

to the wake generators, pointing towards a strong influence of the steady lee waves. Both disk

138



and spheroid mean-based ratios oscillate with a characteristic lengthscale corresponding to the

wavelength of steady lee waves at Fr = 2. It is particularly revealing as to how much larger is

the magnitude of {EM
P }/{EM

K } in the spheroid wake compared to the disk, as it explains why the

spheroid flow is so strongly modulated by the lee waves. It is worth noting that comparison of the

absolute value of MPE between the disk and the spheroid reveals that it is the disk that has the

larger MPE, an order of magnitude larger. The amplitude of the lee wave generated by the disk is

larger than that of the spheroid by about a factor of 2.

4.5.2 Analyses of the spheroid TKE budget terms

To quantitatively understand the origin of TKE increase in the Fr = 2 spheroid wake, we

look into the different terms of the TKE transport equation:

Ui
∂ET

K
∂xi

+
∂Ti

∂xi
= P− ε+B , (4.3)

where P is the turbulent production, ε is the turbulent dissipation and B denotes the turbulent

buoyancy flux. These quantities are defined by:

P =−⟨u′iu′j⟩
∂Ui

∂x j
, ε = 2ν⟨s′i js

′
i j⟩−⟨τ′si js

′
i j⟩ , B =− g

ρ0
⟨ρ′u′z⟩ , (4.4)

where si j = (∂ jui+∂iu j)/2 is the strain-rate tensor and τs
i j =−2νssi j is the subgrid stress

tensor. The contribution of the subgrid term to the TKE transport equation is found to be small.

The turbulent production is a source of TKE and a sink in the MKE equation. The

turbulent buoyancy flux transfers energy between TKE and TPE and the turbulent dissipation is

a sink of TKE. Along with the sinks and sources of energy, there is a term responsible for the

spatial redistribution of TKE, the turbulent transport,

Ti =
1
2
⟨u′iu′ju′j⟩+ ⟨u′i p′⟩−2ν⟨u′js′i j⟩−⟨u′jτ′si j⟩ . (4.5)
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The turbulent transport redistributes energy, primarily in the y-z plane, and its contribution to the

area-integrated budget is negligible.

The production term in equation (4.3) can be further expanded as follows:

P =−⟨u′xu′j⟩
∂Ux

∂x j
−⟨u′yu′j⟩

∂Uy

∂x j
−⟨u′zu′j⟩

∂Uz

∂x j
. (4.6)

For the stratified wakes at hand, Uy,Uz << Ux. Hence equation (4.6) can be further

simplified as below:

P =−⟨u′xu′x⟩
∂Ux

∂x
−⟨u′xu′y⟩

∂Ux

∂y
−⟨u′xu′z⟩

∂Ux

∂z
. (4.7)

In a wake developing in the x direction, P is primarily dominated by the transverse shear

terms since |∂Ux/∂y|, |∂Ux/∂z|>> |∂Ux/∂x|. Hence in the discussions on {P} to follow, we focus

on the transverse terms, namely Pxy = ⟨u′xu′y⟩∂yUx and Pxz = ⟨u′xu′z⟩∂zUx.

Figure 4.11 shows the evolution of the area-integrated terms in the TKE transport equation

of the spheroid wake. We do not present the TKE transport terms of the disk wakes here as

they are presented and discussed in great detail in CS20. We first discuss the trends of the

area-integrated production, {P}, and its components in Fr = 2 and 10 spheroid wakes. This

is followed by a discussion of the area-integrated dissipation, {ε}. Thereafter, the variation of

{P}/{ε} sheds light on why an increase in TKE is observed in the Fr = 2 spheroid wake for

x > 30.

{P} in the Fr = 10 spheroid wake decays at a rate comparable to its unstratified counterpart

until Nt ≈ 3 when it starts to deviate (figure 4.11a). Ud in the Fr = 10 spheroid wake also starts

deviating around Nt ≈ 3 (figure 4.4a). At Nt ≈ 3, the contribution of Pxz = ⟨u′xu′z⟩∂zUx starts

declining due to a reduction in ⟨u′xu′z⟩ (not shown here for brevity). At Nt ≈ 4.5, the contribution

of the lateral production Pxy exceeds that of the vertical production Pxz.

The reduction of {Pxz} in the Fr = 10 wake coincides with the transition of Ud to a
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Figure 4.11: Spheroid wakes. (a) Area-integrated production. (b) Main components of the tur-
bulent production. (c) Area-integrated dissipation. (d) Ratio between area-integrated production
and dissipation. (e) Area-integrated buoyancy flux. (f) Maximum value of mean horizontal shear
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slower decay rate. In figure 4.11(b), we note that {Pxz} starts decaying faster than its unstratified

counterpart between 3 < Nt < 4 (or 30 < x < 40). In figure 4.4(a), we see that this the location

where Ud of the Fr = 10 spheroid wake starts deviating from the Fr = ∞ spheroid wake. At the

same location that {Pxz} starts decaying rapidly, there is a maximum in the buoyancy flux {B}

(figure 4.11e) and a slowdown in the growth of LV (figure 4.5a). Buoyancy is starting to affect the

wake decay.

The initial value of {P} in the Fr = 2 wake is higher than in the unstratified case. The

distinct separation pattern and the vertical contraction of the mean flow (figure 4.5a) lead to an

increase in the vertical shear and hence {Pxz}, see red dashed lines in figure 4.11(b). This initially

high value of {Pxz} rapidly decays as LV increases, leading to a reduction in the vertical shear.

Note that the beginning of the Ud-based NEQ regime at Nt ≈ π also coincides with this reduction

of {Pxz}. However, the mechanism at Fr = 2 is different from that of the Fr = 10 wake. Whereas

at Fr = 10, the reduction of ⟨u′xu′z⟩ causes the decay of {Pxz}, at Fr = 2 the decay of ⟨u′xu′z⟩ is

accompanied by a sudden reduction of ∂zUx (not shown here). The reduction in vertical shear is

driven by the expansion of LV due to lee wave modulation in figure 4.5(a).

As the modulation of the wake by the lee waves continues, the horizontal production

is enhanced by the strong reduction in LH (figure 4.5c) in the NEQ region during 7 < x < 20.

The value of {Pxy} overtakes {Pxz} at Nt ≈ 5. The magnitude of {Pxy} remains nearly constant

until the end of the domain. Figure 4.11(f) shows the maximum of the horizontal mean shear

(∂Ux/∂y), i.e., max(r,θ=0)∂Ux/∂y, in the central streamwise-horizontal plane for both wakes. The

mean shear in the Fr = 2 wake increases in the region 10 < x < 30, exactly in the region where

the TKE decay starts plateauing (see figure 4.8a). The enhanced mean horizontal shear at Fr = 2

prevents the horizontal production from decaying monotonically unlike Fr = 10.

Figure 4.11(c) shows the evolution of {ε} as a function of x for Fr = ∞,10 and 2 spheroid

wakes. In the Fr = 10 case, the decay of ε is similar to that of the unstratified wake until Nt ≈ 3

after which the decay rate increases slightly. The Fr = 2 wake dissipation shows a sharper decay
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until x ≈ 20. After x ≈ 20, the decay rate appears to be closer to the Fr = ∞ decay rate of x−7/5

(Ortiz-Tarin et al., 2021).

Since the turbulent dissipation keeps decreasing monotonically in the Fr = 2 spheroid

wake (figure 4.11c), while the production tends to asymptote for x > 30 (figure 4.11a), the value

of {P}/{ε} becomes greater than 1 in the Fr = 2 spheroid wake, see figure 4.11(d), explaining the

rapid increase of TKE beyond x≈ 30. Note that the {P}/{ε} ratio oscillates with the characteristic

wavelength of the lee waves revealing the strong influence of wave-related buoyancy effects on

the energetics of the Fr = 2 wake.

One of the features of the arrival of the NEQ regime reported in previous studies is the

radiation of internal gravity waves (Abdilghanie and Diamessis, 2013, de Stadler and Sarkar,

2012, Rowe et al., 2020). In these spheroid wakes, we find that the integrated wave flux remains

negligible compared to the other terms in the TKE budget and hence is not shown here. The small

magnitude of the turbulent wave flux is consistent with the findings of Meunier et al. (2018) who

found that the magnitude of the wake-generated waves depends on the body drag coefficient –

and the 6:1 spheroid has a very low drag compared to bluff bodies.

4.5.3 Early arrival of the Q2D regime in the Fr = 2 spheroid wake

Remember that the Q2D regime in stratified wakes is characterized by a faster decay of

the mean defect velocity (Ud ∼ x−3/4) and the organization of wake into distinct layers in the

vertical direction. Due to the strong effects of buoyancy, the fluid motions are primarily confined

to the horizontal plane. However, the vertical variations in the velocity profiles still exist during

the Q2D regime, primarily in the form of layered structures.

A key difference between the Fr = 2 disk and spheroid wakes is the early arrival of the

Q2D regime in the spheroid wake. Whereas in the disk wake, CS20 did not observe a transition

to the Q2D in a domain that extended up to x = 125 (Nt = 62.5), here we observe a transition

at x ≈ 40 (Nt ≈ 20). The early transition in the spheroid wake is a consequence of the strong
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modulation of the intermediate wake by buoyancy, an effect that occurs for bodies with large

aspect ratio (L/D) and, specifically, when Fr is near its critical value Frc = L/Dπ.

Figure 4.5(c) shows that LH in the Fr = 2 spheroid wake contracts in the region 5 < x < 30

as a response to the expansion of LV (figure 4.5a) by steady lee waves. This phenomenon leads to

the ‘butterfly’ shaped structure of mean Ux (figure 4.7(d,e)) which was also observed at a lower

Reynolds number, Re = 104 in Ortiz-Tarin et al. (2019). In that study, which was performed at

Re = 104, the spheroid wake at critical Frc relaminarized. Here, at a higher Re = 105, the flow

response at the resonant state is quite different. The constriction of LH leads to an enhancement

in the mean horizontal shear shown in figure 4.11(f). This enhancement significantly slows down

the decay of horizontal production (figure 4.11b). While ε continues to decay, {P}/{ε} becomes

> 1 leading to an increase of TKE for x > 40 (figure 4.8a). In figure 4.7(d-f), we also see the

maximum TKE location moving to the wake axis from its off-center location in the near wake. It

is worth noting that the enhanced {P} that acts as a source of TKE is a sink for the mean energy.

The sharp increase in TKE leads to a faster decay of Ud , and the Fr = 2 wake transitions to the

Q2D regime early on, at x ≈ 40.

In the disk wake, LH is initially 3−4 times larger than in the spheroid wake. While the

lee wave modulation of LH is present in the disk wake as well (figure 4.5d), its amplitude relative

the original value of LH is quite small. Hence the horizontal mean shear (not shown here) and the

horizontal production in the Fr = 2 disk wake continue to decay unlike in the spheroid wake.

The arrival of the Q2D regime in the spheroid wake is also accompanied by distinctive

features of the Q2D regime reported in previous literature. Figure 4.2(d) shows lateral meanders

in the late Fr = 2 wake similar to the lateral meanders in temporal simulations in the literature

(Brucker and Sarkar, 2010, Diamessis et al., 2011), albeit the temporal-simulation meanders

occur much later in Nt units. As noted during the discussion of spectra, the waviness in the

late wake has a characteristic frequency St ≈ 0.35. The mean wake in the Q2D regime has a

layered topology (figure 4.7f) as reported by Spedding (2002b) and Chongsiripinyo et al. (2017).
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Figure 4.12: Area-integrated (a) production and (b) buoyancy flux in the disk and spheroid
Fr = 10 wakes. The unstratified wake (Fr = ∞) production is also shown in (a). The terms
are normalized by the Lagrangian rate of change of their corresponding mean kinetic energy
{δtEM

K }= {EM
K }U∞/x.

The turbulence state in the Q2D regime is characterized by weak vertical fluctuations u′z << u′h

(Spedding, 1997) with {ET
Kz}/{ET

Kh}< 0.1 at x > 60 – where subscript h denotes the horizontal

component of the fluctuations. Since the Q2D regime of the spheroid wake is in a relatively early

phase, pancake vortices do not appear until the end of the simulation domain, x = 80.

4.5.4 Late transition to the NEQ regime in the Fr = 10 spheroid wake

At Fr = 10, the main difference between the disk and spheroid wakes is the location at

which Ud deviates from the unstratified counterpart, i.e., the transition point to the NEQ regime.

In the spheroid wake this transition occurs around Nt ≈ 3, whereas in the disk it occurs at Nt ≈ 1,

compare the Fr = 10 curves between figure 4.4 (a) and (b). The beginning of the NEQ regime is

marked by a slowdown in the decay rate of Ud in the stratified wake as compared to its unstratified

counterpart. The NEQ regime is also characterized by the progressively increasing anisotropy

between the horizontal and vertical components of TKE.

To understand better how this transition occurs we look into the mean kinetic energy

(MKE) transport equation. The TKE transport equation was given in equation (4.3). In a similar

fashion, the MKE transport equation is given by:
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Ui
∂EM

K
∂xi

+
∂T M

i
∂xi

=−P− εM +BM , (4.8)

where superscript M denotes the mean counterparts of terms in equation (4.3).

Figure 4.12(a) shows the area-integrated production {P} normalized by the Lagrangian

change of the MKE ({EM
K }U∞/x) in the disk and spheroid wakes at Fr = ∞ and 10. Likewise,

figure 4.12(b) shows the normalized area-integrated mean buoyancy flux {BM}. Normalization

by the Lagrangian change of MKE allows us to quantify the individual importance of each budget

term to the change of MKE .

Broadly, the mean and turbulence quantities in stratified wakes deviate from their un-

stratified counterparts as a result of buoyancy. In the MKE transport equation, buoyancy can

affect (a) the turbulence production P as an indirect effect and (b) the MKE ↔ MPE transfer,

through the mean buoyancy flux BM. In both the disk and spheroid Fr = 10 wakes, we find that

the contribution of the mean buoyancy flux to the MKE transport is significantly smaller than

the contribution of the production, particularly for x ⪅ 40. Now turning to the area-integrated

production in figure 4.12(a), we find that the production at Fr = 10 displays a strong reduction

from the Fr = ∞ wake later in the spheroid at x ≈ 30 (Nt ≈ 3) compared to the disk where a

similar strong reduction occurs at x ≈ 10 (Nt ≈ 1). This explains the late transition of the spheroid

wake to the NEQ regime, i.e. Ud deviates from unstratified behavior later (Nt ≈ 3) for the spheroid

than the Nt ≈ 1 transition point for the disk.

The decreased production in the Fr = 10 wakes of both bodies is a consequence of the

decreased ⟨u′xu′z⟩ correlation (not shown here for brevity) in stratified turbulent shear flows. In

stratified wakes, this buoyancy effect has been observed experimentally by Spedding (2002b) and

numerically by Brucker and Sarkar (2010). The deviation between production of the Fr = 10 and

∞ wakes (figure 4.11a) is indeed caused by a reduction in its {Pxz} component, see blue dashed

lines in figure 4.11(b).
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vertical mean Froude number FrV , (b) local vertical turbulent Froude number Frv, (c) local
horizontal turbulent Froude number Frh, and (d) local horizontal Reynolds number.

4.6 Evolution of the local flow state and its trajectory in the

phase space

In previous sections, we showed how the spheroid and the disk wake do not transition

between the 3D, NEQ and Q2D regimes at the same Nt. In this section, we examine the evolution

of key local non-dimensional numbers describing the mean and fluctuating state to explore their

roles. These non-dimensional numbers are local, streamwise-varying measures of stratification

(Froude number) and the dynamical range of inertially dominated scales (Reynolds number). We

also plot the trajectory of each wake in the Froude-Reynolds phase space.

The mean vertical Froude number (FrV ) and the turbulent vertical and horizontal Froude

numbers (Frv, Frh) are defined as

FrV =
Ud

2NLV
, Frv =

u′h
Nlv

, Frh =
u′h

NLHk
, (4.9)
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where u′h =(⟨u′2x ⟩+⟨u′2y ⟩)1/2 is the r.m.s. of the horizontal fluctuations and l2
v = ⟨u′2x +u′2y ⟩/⟨(∂zu′x)

2+

(∂zu′y)
2)⟩ is a vertical turbulent length scale (Riley and DeBruynKops, 2003).

The mean Froude number is defined consistently with the global Froude number (Fr =

U∞/ND), this is, with the wake full height 2LV . The turbulent Froude numbers are defined with

turbulence length scales in the energy-containing range. Since the horizontal turbulent integral

length scale (lh) is not easy to compute in a spatially evolving flow, we use the TKE-based

horizontal half wake width (LHk) as a surrogate following CS20. LHk at a downstream location x

is calculated by ET
K (y = LHk,z = 0,x) = 0.5ET

K (y = 0,z = 0,x).

The mean vertical Froude number FrV (figure 4.13a) becomes O(1) in both disk and

spheroid wakes at the location at which the decay of Ud slows down signaling the beginning of

the NEQ regime, marked by Nt ≈ 1 for the disk and Nt ≈ 3 for the spheroid. For the Fr = 2

cases, FrV in the spheroid wake starts dropping faster beyond x ≈ 40 − the streamwise location

where the wake transitions from NEQ to Q2D regime.

The turbulent Froude numbers play an analogous role to those based on the mean. When

their values become O(1), turbulence starts being affected by buoyancy. Frv is defined using lv

which has a significance to shear instability. Defined with lv, Frv is proportional to Ri−1/2, where
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Ri is the Richardson number of the fluctuating shear ( Riley and DeBruynKops (2003), CS20).

When Frv becomes O(1) (figure 4.13b) is also when the spanwise and vertical components of the

TKE start showing anisotropy of the turbulence stress tensor and ET
Ky > ET

Kz as shown in figure

4.8 for the Fr = 2 wakes. See also figure 8 of CS20.

The avid reader will notice that the four Frv = u′h/Nlv curves could collapse if plotted

against Nt instead of x. Indeed, these curves collapse in the (Frv, Nt) plot for 1 < Nt < 10 and the

factor of 5 present between the curves in figure 4.13(b) is simply the ratio of buoyancy frequency

N between Fr = 2 and Fr = 10. This result points to the fact that the spheroid and disk wakes are

at a sufficiently high Re so that there is a range of small-scale wake turbulence with dynamics

relatively unaffected by the large scales and, therefore, by neither the shape of the wake generator

nor buoyancy. u′h/lv is a quantity that reflects such dynamics and thus, on dimensional grounds,

evolves as u′h/lv ∼ t−1 so that Frv = u′h/Nlv ∼ (Nt)−1. We note that buoyancy does affect large

scale wake features, which are affected by the body particularities – hence the lack of collapse in

FrV . The values of the buoyancy Reynolds number Reb = ε/νN2 and the Reynolds of the Taylor

micro-scale Reλ =
√

kλ/ν where λ2 = 15νu′2x /ε (not included here for brevity) are very similar

in magnitude for both disk and spheroid wakes at the two levels of stratification. This finding is

consistent with the initial collapse of Frv when plotted against Nt.

In figure 4.13(c), the Fr = 10 wakes of both disk and spheroid reach Frh ∼ O(1) at

x ≈ 10− 20, the location at which the {ET
K} starts deviating from its unstratified counterpart

(figure 4.8(a,b)). In the Fr = 2 spheroid wake, Frh < 1 throughout the domain and {ET
K} deviates

from the unstratified decay from the very beginning in both disk and spheroid wakes. Overall, we

find that Frh ∼ O(1) is a good indicator of the deviation of {ET
K} from the unstratified counterpart.

In contrast, Frv ∼ O(1) marks the location at which turbulence anisotropy between the vertical

and the spanwise components starts growing. Figure 4.13(d) shows the evolution of turbulence

Reynolds number, Reh = u′hLHk/ν with u′h being the intensity of horizontal turbulent fluctuations.

The value of Reh (figure 4.13d) changes slowly as the wake evolves, remaining at O(104) for the
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disk wake and at O(103) for the spheroid wake.

A consolidated view of the evolution of the state of fluctuations is provided in phase

space (Brethouwer et al., 2007, Chongsiripinyo and Sarkar, 2020, de Bruyn Kops and Riley,

2019, Zhou and Diamessis, 2019). In the phase-space portrait, one axis measures the buoyancy

effect on the large scales through the turbulent Froude number (Frh) and the other axis is a

measure of Reynolds number that is not Reh but one which accounts for buoyancy in addition

to inertia. Ozmidov-scale eddies are the largest eddies unrestrained by buoyancy. The Ozmidov

scales lo = (ε/N3)1/2 and uo = (ε/N)1/2 lead to the definition of Reb = uolo/ν = ε/νN2 as the

so-called buoyancy Reynolds number. Another convenient measure of Reynolds number, which

does not require explicit computation of the turbulent dissipation rate, is the buoyancy-weighted

Reynolds number, RehFr2
h (Billant and Chomaz, 2001, Riley and DeBruynKops, 2003). The

Reynolds numbers based on buoyancy tend to decrease with downstream distance as buoyancy

progressively increases in importance and limits the range of scales which are susceptible to 3D

turbulent motions. As long as RehFr2
h > O(1), viscous effects do not dominate.

Following CS20, figure 4.14 shows the evolution all four wakes in the RehFr2
h−Frh phase

space, where Reh = u′hLHk/ν, u′h being the intensity of horizontal turbulent fluctuations. The

flow evolves in the direction of the arrow from a state where buoyancy effects are weak (almost

negligible) to a region characterized by the presence of stratified turbulence. Within the state

of stratified turbulence, three different regimes can be demarcated: weakly, intermediately, and

strongly stratified turbulence (WST, IST, and SST). Unlike the case of freely decaying turbulence,

the mean velocity is also important here. Therefore, CS20 elected to distinguish between WST

(where buoyancy begins to affect the mean velocity) and IST (where the turbulence anisotropy

begins to be affected) as we do here. The SST regime is one where buoyancy effects on the large

scales is very strong (Frh ≪ 1) but nevertheless the value of RehFr2
h is sufficiently large so that

viscous effects are not dominant at the large scales.

The slope in the RehFr2
h −Frh plane is similar for both disk and spheroid wakes in the
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weak buoyancy and WST stages. The slope almost follows a line of constant Reh, marked by

a dashed line, signaling the slow evolution of Reh compared to that of Frh. However, there are

significant differences in the way the spheroid wakes transverse the phase space. The spheroid

wake starts out thinner than the disk wake, leading to larger local Froude numbers. Also, despite

the body-based Re being larger in the spheroid wake by a factor of two, the turbulence intensity

in the disk wake is higher, hence the Reh difference observed in figure 4.13(d). This difference in

Reh can be seen in the horizontal offset between the disk and spheroid lines in the phase-space

representation.

Despite the larger spheroid body-based Reynolds number – Re = 105 instead of Re =

5×104, turbulence in the spheroid wake is unable to access either the the IST regime or the SST

regime while the disk wake is able to access these regimes of stratified turbulence. Furthermore,

the increase in TKE, which is not observed in the Fr = 2 disk wake, reverses the trajectory of the

Fr = 2 spheroid wake. To the authors’ best knowledge, a reversing trend of phase-space trajectory

has not been seen before in the stratified turbulence literature. These differences reveal that the

phase space evolution, at least for Fr ≤ 10, depends on the features of the wake generator, e.g.,

its aspect ratio or the type of BL separation.

Based on the phase-space portrait alone, one may hastily conclude that stratified slender

body wakes always experience a weaker buoyancy effect relative to bluff bodies. This is true

for the Fr = 10 case, at least for the limited Nt simulation time, in terms of the relative amount

of TPE (figure 4.10) and the vertical scale (LV ) deviation from the unstratified case – note that

both are smaller in the spheroid wake than in the disk. However, we have also shown that for

the Fr = 2 spheroid wake, compared to the disk wake, there is a much earlier onset of the Q2D

regime. The mean and turbulence quantities are highly intertwined and the strong modulation of

the mean flow by steady lee waves of the high aspect-ratio spheroid in the Fr = 2 case ultimately

leads to an early entry into the Q2D regime. Hence, it is not entirely accurate to say that the

slender body wakes are weakly affected by stratification. The present work calls for a need to
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generalize the parameter space of {Re,Fr} in turbulent shear flows to account for the mean flow

field (also possibly its instabilities) to build a more comprehensive understanding of buoyancy

effects in shear flows. In the case of wakes, the shape of the body generator is brought into play

through the mean flow as shown here.

4.7 Discussion and final remarks

The high-Reynolds number stratified wake of a slender body has been studied using a

high-resolution hybrid simulation. The wake generator is a 6:1 prolate spheroid with a tripped

turbulent boundary layer, the diameter-based Reynolds number is Re = 105 and the Froude

numbers, namely Fr =U∞/ND = {2,10,∞}, take moderate to large values. By comparing the

spheroid wake with the disk wake of Chongsiripinyo and Sarkar (2020) (referred to as CS20), we

are able to study the influence of the wake generator - slender versus bluff - in the establishment

and evolution of stratified wakes.

The near wake of the 6:1 prolate spheroid with a turbulent boundary layer is characterized

by a small recirculation region (∼ 0.1D). The recirculation region is surrounded by small-scale

turbulence that emerges from the boundary layer and the flow does not show strong vortex

shedding at the body(Jiménez et al., 2010, Kumar and Mahesh, 2018, Ortiz-Tarin et al., 2021,

Posa and Balaras, 2016). As a result, the wake is much thinner and develops slower than the wake

of a bluff body like the disk, which has a large recirculation region (∼ 2D) and vortex shedding

from the body (Nidhan et al., 2020). These body-dependent features of the near wake were

recently shown to affect the decay of the far wake in environments without density stratification

(Ortiz-Tarin et al., 2021). In the present stratified simulations also we find substantial differences

in the decay of the disk and spheroid wake. Particularly, we find that the starting locations of

the non-equilibrium (NEQ) and the following quasi-2D (Q2D) regions of wake deficit velocity

depend on the wake generator.
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At Fr = 2 ≈ (L/D)/π, the wake of a 6:1 prolate spheroid is in a resonant state. The half

wavelength of the lee waves is equal to the body length and, as a result, the flow separation and the

wake are strongly modulated by the waves. Whereas previous works had described this regime

in laminar-separation configurations of a sphere (Chomaz et al., 1993, Hanazaki, 1988) and a

4:1 spheroid (Ortiz-Tarin et al., 2019), the present results show that the influence of the waves

persists even at high Reynolds numbers and with the separation of a turbulent boundary layer. At

Fr = 2, the flow and the turbulence in the spheroid wake evolve very differently from the disk

wake. Both the lack of strong shedding in the near wake (Ortiz-Tarin et al., 2021) and the strong

modulation of the mean flow by the lee waves, lead to a wake with vertical and horizontal profiles

of mean velocity that depart strongly from Gaussian. These features are not observed in the disk

wake at Fr = 2, which shows a vertically-squeezed Gaussian topology and a weak imprint of lee

waves on the wake dimensions.

At Fr = 2, both disk and spheroid wakes transition to the NEQ regime at Nt ≈ π. However

the transition to the Q2D regime - with enhanced wake decay relative to the NEQ regime - is very

different; whereas the spheroid wake transitions at Nt ≈ 15, the disk wake does not access the

Q2D regime in a domain that spans Nt ≈ 60. Other bluff bodies, e.g., the towed sphere (Spedding,

1997) show transition to the Q2D regime at Nt ≈ 50, a location which is also delayed with respect

to the spheroid wake. The early transition to the Q2D regime of the spheroid wake is driven by

its strong modulation – horizontal contraction and expansion of the wake width – in response

to the vertical contraction and expansion by the lee waves. This modulation has a particularly

strong effect on the slender wake of a spheroid where the horizontal contraction is a large fraction

of the wake width. The early start of the Q2D regime in the spheroid wake is accompanied by

a sustained increase of turbulent kinetic energy (TKE), driven by an increase of the horizontal

mean shear which acts on the turbulence of the separated boundary layer. The TKE increase is

limited to the horizontal velocity with the spanwise component being strongest, having almost

an order of magnitude larger energy than the vertical. Although coherent vortical structures and
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spanwise flapping are seen in the horizontal motion, pancake eddies are incipient and not fully

formed at the end of the domain, x/D = 80.

At Fr = 10 also, there are differences between the disk and the spheroid wakes. Particularly

in the spheroid wake, the beginning of the NEQ stage occurs later, at Nt ≈ 3 instead of Nt ≈ 1

(x ≈ 30 instead of x ≈ 10). The difference in the start of the NEQ can be attributed to the value

of the local mean Froude number FrV =Ud/2NLv. As noted previously, the spheroid wake is

thinner than the disk wake, the mixing in the near wake is weaker, and as a result the defect

velocity in the intermediate wake is larger. These features increase the value of the spheroid wake

local Froude number and delay the onset of the buoyancy effect that gives rise to the NEQ regime.

Additionally, the analysis of the mean kinetic energy (MKE) transport terms shows that the onset

of buoyancy effect on the mean flow of both the disk and spheroid Fr = 10 wakes is associated

with the decreased energy transfer from MKE to TKE.

Taking the unstratified case as a base line, the effect of buoyancy in the spheroid Fr = 10

wake is observed earlier (at Nt ≈ 1) on the decay of the TKE than its effect (at Nt ≈ 3) on the

decay of Ud . In the spheroid wake at Fr = 10, the transfer from TKE to TUE is responsible for

the enhanced decay of TKE at Nt ≈ 1. On the other hand, the decrease in turbulent production

at a farther downstream distance (compared to the disk Fr = 10 wake) in the spheroid Fr = 10

wake is responsible for the slowed decay of the mean defect velocity at Nt ≈ 3. The decrease

in the production is caused by a reduction in the ⟨u′xu′z⟩ correlation (Brucker and Sarkar, 2010,

Spedding, 2002a).

Meunier and Spedding (2004) compared the evolution far into the stratified wake, up to

x ≈ 8000, among several body shapes that also included a 6:1 prolate spheroid and a circular

disk. The body Reynolds number was Re = 5000 and their diameter based Froude numbers were

Fr = 4 and 16. When normalized using Deff = D
√

CD/2 instead of D, the evolution of the peak

defect velocity of different wake generators exhibited approximate collapse for Nt ⪆ 50 (see

their figure 5b) with a Q2D decay rate of ∼x−0.75. Similarly, the wake width in the horizontal
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of different shapes approximately collapsed for x/Deff > 400 to exhibit a growth rate of ∼x0.35.

Since their 6:1 spheroid data starts from x/D ≈ 100 (see their figure 5a), a direct comparison is

not possible with our simulations that end at at x/D = 80.

In regard to the mean defect decay, a major difference between Meunier and Spedding

(2004) and our results is that the transition to Q2D power-law behavior appears earlier, around

Nt ≈ 15, in the Fr = 2 spheroid wake relative to the the Fr = 2 disk wake which does not

transition to the Q2D decay rate until the end of the domain at Nt = 62.5. The value of Re = 105

in the spheroid wake is larger here and it is possible that the features that we have linked to the

early onset of the Q2D stage for the spheroid Fr = O(1) wake, i.e., the instability that leads to

horizontal meanders and also the enhanced TKE production, are inhibited by viscous damping at

the lower Re of the experiments.

The present simulations, both of the disk and the spheroid, do not extend into the very

far wake regime reached by their experiments. Future hybrid simulations or experimental work

at higher Re that probe the very far wake would clearly be useful. At any given Re and Fr, it

will also be of interest to look at how tripping affects the wake evolution for the different body

shapes.

The simulations show that the buoyancy timescale Nt alone is not sufficient to determine

the state of the wake decay for both generators. However, we find that the value of the local

turbulent and mean Froude numbers can be a good proxy to describe some aspects of the wake

state. For both disk and spheroid wakes, FrV = Ud/2NLv becomes O(1) at the location at

which the decay of Ud slows down; Frh = u′h/NLHk ∼ O(1) marks the location at which the

area-integrated TKE of the stratified wake starts deviating from the unstratified case; and Frv =

u′h/Nlv ∼ O(1) signals the location at which anisotropy between the different TKE components

starts growing.

The buoyancy-weighted Reynolds number (RehFr2
h) has been used widely in stratified

flow as a convenient surrogate for the buoyancy Reynolds number (Reb = ε/νN2) since it displays
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similar trends during the flow evolution and the two quantities can be shown to be proportional

using classical inviscid scaling of the turbulent dissipation rate. The surrogacy is true for the

stratified wakes considered here except for the spheroid Fr = 2 wake after its entry into the

stage of Q2D wake decay. The horizontal fluctuation energy, therefore Frh, increases owing

to horizontal meanders and flapping of the flow. However, ε continues to decrease, albeit at a

reduced rate relative to the NEQ regime. The value of Reb = O(10) is not high in the Q2D regime

realized here at Fr = 2. It remains to be seen if, in the Q2D regime at even higher body-based

Reynolds number, the equivalence between RehFr2
h and Reb is recovered and whether the unusual

upward trajectory seen here in {Frh,RehFr2
h} phase space is also seen in {Frh,Reb} space. The

duration of the upward trajectory in phase space until the eventual downward shift toward the

viscous regime is also of interest.

The differences between bluff body (disk) and slender body (6:1 spheroid) wakes illustrate

the difficulty of finding a universal scaling for the high-Re stratified wake. The initial magnitude

of Ud for different wake generators and levels of stratification can be roughly scaled with the

global Fr and the body drag coefficient (Meunier and Spedding, 2004). However, the start and the

duration of the NEQ regime cannot be assumed to be independent of the wake generator. We find

that rather than a particular Nt, the local mean Froude number is a good proxy for the onset of the

NEQ regime in the mean defect velocity and the values of local turbulent Froude number provide

guidance for the behavior of TKE, e.g., the onset of buoyancy effect as well as the location

at which the ratio of vertical to horizontal TKE starts decreasing. We are unable to connect

Froude number to the Q2D regime transition of the wake. More numerical and experimental

work spanning different wake generators, different sources of turbulence including freestream

turbulence, and longer downstream distances will be instrumental in building a comprehensive

picture of the effect of initial/boundary conditions on subsequent wake evolution.
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Chapter 5

Wake of a slender body at a moderate angle

of attack in stratified and homogeneous

environments

5.1 Introduction

Despite their widespread presence in applications, slender body flows have received

significantly less attention compared to the flows past bluff bodies. There are some particularities

that make the study of slender body flows especially challenging. In a numerical simulation,

resolving the boundary layer (BL) of a long body is computationally more expensive than

resolving the BL of a blunt body. Additionally, in experimental studies, slender bodies can take

up a significant portion of the measurement section and, since they normally generate thin wakes,

they are potentially harder to probe and measure.

The first experimental study of flow past a slender body dates back to Chevray (1968)

who investigated the wake of a 6:1 prolate spheroid at Re = 4.5×105. The wake measurements

spanned a streamwise distance of x/D = 18. Han and Patel (1979) conducted an experimental
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study of flow past a 4.3:1 spheroid at different angles of attack (α) at Re ≈ 2×104. They primarily

focused on the flow separation pattern, identifying two regimes as α was changed: (i) closed

or bubble separation and (ii) open or free-vortex type separation. Wang et al. (1990) extended

the study of Han and Patel (1979) to prolate spheroids with aspect ratios of 2:1, 3:1, and 4:1

for a wide range of α in the range [0◦,90◦]. Experimental studies have also been performed at

higher Re with tripped BL by Fu et al. (1994) and Chesnakas and Simpson (1994). Jiménez et al.

(2010) and Ashok et al. (2015a) studied the high Re wake of a DARPA SUBOFF at α = 0◦ and

in pitch configurations, respectively. While Jiménez et al. (2010) focused on the self-similarity

and scalings in the near to intermediate wake, Ashok et al. (2015a) characterized the wake

asymmetries induced due to the pitch configuration.

Numerical simulations have also been used to study slender body flows. Constantinescu

et al. (2002) and Wikström et al. (2004) conducted RANS and LES studies of flow past a 6:1

prolate spheroid at Re = 4.2× 106 and α = 10◦, 20◦. Tezuka and Suzuki (2006) carried out a

three-dimensional stability analysis study for the flow past a 4:1 spheroid for varying α. For

α ̸= 0◦, as Re was increased, they found transition from a symmetric to an asymmetric flow

configuration in the longitudinal center-plane. The flow asymmetry at nonzero angle of attack

was later studied in more detail using DNS by Jiang et al. (2015). In the last few years, the wake

of a DARPA SUBOFF has also been studied through LES by Kumar and Mahesh (2018), Posa

and Balaras (2016) at Re ∼ O(105). Ortiz-Tarin et al. (2021) was the first study of an unstratified

slender body flow that probed far wake statistics, extending to x/D = 80.

The LES study by Ortiz-Tarin et al. (2019) is the first to take background stratification into

account for the study of slender body flows. Their high-resolution LES study was conducted for a

4:1 spheroid at zero angle of attack, Re = 104 and Fr = ∞,3,1 and 0.5. They analyzed the laminar

BL evolution, force distribution, and the near- and far-field characteristics of the steady lee waves.

Recently Ortiz-Tarin et al. (2021, 2022a,b) conducted hybrid simulations to investigate the far

wake of a slender 6:1 spheroid at zero angle of attack in unstratified and stratified environments.
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Figure 5.1: Schematic of the flow configuration in the cylindrical solver. L−
x , L+

x and Lr refer to
the upstream, downstream and radial domain distance, respectively. Re, Fr and α correspond
to the diameter-based Reynolds number, diameter-based Froude number and angle of attack,
respectively.

In recent years, there has also been an increased focus on experimentally characterizing the

stratified wakes at non-zero incidence, e.g., Ohh et al. (2022), Ohh and Spedding (2021), owing

to their immense importance in hydrodynamic applications. In the current work, we build upon

their work studying the effect of varying Fr on the flow past a 6:1 spheroid placed at a moderate

angle of attack (α = 10◦). We analyze the effect of stratification on: (i) the variation of Cp, C f ,

(ii) the forces on the body, (iii) the flow separation, (iv) the mean wake and streamwise vorticity

dynamics, and (v) the unsteady structures and spectra in the wake. We also present a brief analysis

of forces on the body at α = 0◦ for comparison with α = 10◦ cases. To the best of our knowledge,

this is the first study exploring the characteristics of an inclined slender body flow in stratified

environments, both on the body as well as in the wake.
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5.2 Numerical Methodology

Figure 1 shows the schematic of the simulation set-up wherein a 6:1 prolate spheroid,

with major and minor axis given by L = 6D and D respectively, is placed at an angle of attack α

in a cylindrical computational domain. Non-dimensional filtered Navier-Stokes equations under

the Boussinesq approximation are solved, in conjunction with the continuity and density diffusion

equation, to simulate the flow past a prolate spheroid:

(i) continuity,

∂ui

∂xi
= 0, (5.1)

(ii) momentum,

∂ui

∂t
+

∂(uiu j)

∂x j
=− ∂p

∂xi
+

1
Re

∂
∂x j

[(
1+

νs

ν

)∂ui

∂x j

]
− 1

Fr2 ρ′δi3, (5.2)

(iii) density diffusion,

∂ρ
∂t

+
∂(ρu j)

∂x j
=

1
RePr

∂
∂x j

[(
1+

κs

κ

) ∂ρ
∂x j

]
. (5.3)

Equations 5.1-5.3 are solved to obtain non-dimensional velocity ui, density ρ, and pressure

p as the flow evolves. Following the Boussinesq approximation, ρ is decomposed as follows:

ρ(xi, t) = ρ0 +ρb(xi)+ρ′(xi, t), (5.4)

where ρ0 corresponds to the base density, ρb(xi) is the background density variation and

ρ′(xi, t) is the density fluctuation. For linear stratification, ∂ρb(xi)/∂z =C, where C is a constant.

It is assumed that ρb/ρ0 << 1 and ρ′/ρ0 << 1, which lead to the simplified continuity and

momentum equations as shown in equations 5.1 and 5.2 respectively.

The following parameters are used for the non-dimensionalization: (i) free-stream velocity
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U∞ for ui, (ii) minor axis length D for xi, (iii) dynamic pressure ρ0U2
∞ for p, (iv) D/U∞ for time t,

(v) −DC for density, (vi) kinematic viscosity ν for the subgrid kinematic viscosity νs, and (vii)

molecular diffusivity κ for the subgrid molecular diffusivity κs.

The non-dimensionalization procedure leads to the following non-dimensional parameters:

(i) Reynolds number Re =U∞D/ν, (ii) Froude number Fr =U∞/ND, where N is the buoyancy

frequency given as N =
√

−gC/ρ0, and (iii) Prandtl number Pr = ν/κ. In our simulations, we

keep the Re and Pr fixed at values of 5000 and 1 respectively while varying the Fr and fixing

angle of attack α at 10◦. Various parameters of different simulation cases are presented in table

5.1.

The 6:1 prolate spheroid is represented in the computational domain using immersed

boundary method (IBM) of Balaras (2004), Yang and Balaras (2006). The governing equations

given from equation 5.1-5.3 are solved in cylindrical coordinates for the pressure p, density ρ,

and three velocity components, ur,uθ,ux. Here, r,θ, and x correspond to the radial, azimuthal,

and axial directions respectively. These directions along with the Cartesian coordinate system

are also shown in figure 5.1. Second-order finite difference schemes are used to calculate the

spatial derivatives while the temporal marching is performed using a fractional step method which

combines the Crank Nicolson method with the low-storage Runge-Kutta scheme (RKW3). The

pressure Poisson equation in the predictor step is solved using a direct solver (Rossi and Toivanen

(1999)). The kinematic subgrid viscosity νs and density diffusivity κs are obtained using the

dynamic Smagorinsky model given by Germano et al. (1991). For a detailed description of the

solver employed here, readers can refer to Chongsiripinyo and Sarkar (2020), Pal et al. (2017).

At inlet, an uniform inlet velocity boundary condition, [ux,ur,uθ] = [U∞,0,0] = U, is

prescribed for velocity components. The outlet boundary condition for velocities corresponds

to the Orlanski-type convective boundary condition (Orlanski (1976)). The pressure p is set to

zero at the inlet boundary. On the rest of the boundaries (outlet and radial), a Neumann boundary

condition is used for pressure. For stratified cases, a Robin boundary condition is used at radial
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Table 5.1: Simulation parameters at α = 10◦.

Case Re α Fr Lr Lθ L−
x L+

x Nr Nθ Nx

1 5000 10◦ ∞ 22 2π 12 48 718 256 2560
2 5000 10◦ 6 53 2π 30 53 1000 128 3584
3 5000 10◦ 1.9 53 2π 30 53 1000 128 3584
4 5000 10◦ 1 53 2π 30 53 1000 128 3584

boundary satisfying ∂ρ/∂z =C. This means that the density variation far away from the wake

generator is unperturbed. On the body surface, a no-slip condition is prescribed for velocity and

the normal gradients of pressure and density are set as zero. To avoid reflection of internal gravity

waves from the boundaries, a sponge layer for velocity and density is used at the inlet, outlet,

and radial boundaries of the form φ(x)(u−U)2 and φ(x)(ρ−ρb)
2. Here, ρb corresponds to the

background density state.

At α = 0◦, we simulate the wakes until a downstream distance of x/D = 30. The radial

extent of the domain is r/D = 17 and 53 for unstratified and stratified cases, respectively. The

grid point distribution for α = 0◦ cases are as follows: Nr = 1000 and 910 for stratified and

unstratified cases, respectively, Nθ = 128, and Nx = 3584. They are not presented in the form of a

table here for brevity.

5.3 Body forces at α = 0◦

Figure 5.2(a) and (b) show the variation of the pressure coefficient Cp = (P−P∞)/0.5ρU2
∞

and skin-friction coefficient C f = Re0.5|τx|/0.5ρU2
∞, respectively, for different values of Fr at

α = 0◦. In the reported C f , the raw skin friction coefficient is multiplied by Re0.5 to obtain an

O(1) value. The θ = 0◦ and 90◦ labels correspond to the horizontal x− y and vertical x− z plane,

respectively. An averaging time window of 30D/U∞ is used to obtain these results.

For Fr ≥ 1.9 cases (figure 5.2(a)), the drop of pressure and its recovery primarily occur

towards the beginning and the end of the body, respectively. For −2 ⪅ x/D ⪅ 1, Cp remains
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Figure 5.2: Variation of (a) pressure coefficient Cp and (b) skin-friction coefficient C f for
different Fr at α = 0◦. The θ = 0◦ and 90◦ curves correspond to variations on the surface in
the horizontal and vertical plane, respectively. Plotted value of C f is Re0.5 times the friction
coefficient.

approximately constant for Fr ≥ 1.9. On the other hand, Cp in Fr = 1 case shows a monotonic

decay till x/D ≈ 2 and a slight recovery for x/D ⪆ 2, indicating strong effect of buoyancy on the

flow over the body. For Fr ≥ 1.9, Cp variations are qualitatively very similar. The differences

between Fr = ∞ and the critical Frc curves are less pronounced in the 6:1 spheroid (Frc = 1.9)

than what was observed in the 4:1 spheroid (Frc ≈ 1) as reported by Ortiz-Tarin et al. (2019).

Anisotropy between horizontal and vertical plane Cp curves appears at Fr = 1.9 and increases

slightly at Fr = 1. Pressure visualizations (not shown here) confirm that the low pressure region

in the tail of the spheroid (in the vertical plane) at Fr = 1 is imposed by the steady lee-wave field,

indicating a strong influence of buoyancy on the flow at this value of Fr.

Figure 5.2(b) shows the variation of C f for different Fr at α = 0◦. Similar to the behavior

of Cp, the variation of C f for Fr = 6 and ∞ are very similar. The flow separates at x/D = 2.34 for

the unstratified flow (marked by C f → 0). This value is in excellent agreement with the result

of Patel and Kim (1994). Fr = 1.9 shows elevated and suppressed levels of C f in vertical and

horizontal planes, respectively, compared to Fr = 6 and ∞. At Fr = 1, C f in the vertical plane

further increases compared to Fr = 1.9. Moreover, in the horizontal plane as well, Fr = 1 shows

higher C f than Fr = ∞ and 6 for x/D ⪆ 0.5. Increased C f in the vertical plane for Fr = 1 and 1.9
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Table 5.2: Drag coefficients (Cd) and corresponding pressure (Cp
d ) and friction contributions

(C f
d ) for α = 0◦ at different Fr.

α = 0◦, Fr Cd C f
d Cp

d ∆Cd =Cd −Cd(∞)
Fr = ∞ 0.24 0.22 0.02 0
Fr = 6 0.26 0.23 0.03 0.02

Fr = 1.9 0.32 0.25 0.07 0.08
Fr = 1 0.52 0.29 0.23 0.28

is a consequence of thinner BL over the body (not shown here for brevity) compared to Fr = 6

and ∞. In the horizontal plane, for Fr = 1 (compared to Fr = ∞), BL thickens between x/D ≈−2

to 0 and gets thinner beyond x/D ≈ 1, explaining the trend of C f in the horizontal plane for

Fr = 1.

Table 5.2 presents Cd = Fd/(0.5ρoU2
∞A) for different Fr at α = 0◦. Here, A = πD2/4.

There is a monotonic increase in Cd , Cp
d , and C f

d with increasing stratification levels. Friction

contributes more to the drag than pressure (except at Fr = 1), as expected for a slender body flow.

However, compared to flow past a 4:1 spheroid (Ortiz-Tarin et al., 2019), we find that the effect of

stratification on the overall drag, quantified by ∆Cd =Cd −Cd(∞), is weaker in the 6:1 spheroid.

Between Fr = ∞ and Fr = 1.9, Cd changes by ≈ 33% in the present case while there was a 100%

increase in the 4:1 spheroid. This smaller increase in Cd for 6:1 spheroid is primarily due to a

smaller increase in Cp
d at Frc = 1.9 (compared to Fr = ∞), unlike in the 4:1 prolate spheroid. It is

only when Fr = 1 that we see a sharp jump in Cp
d leading to a ≈ 100% increase in Cd , consistent

with the differences we observe in Cp curves (figure 5.2a) between Fr = 1 and Fr ≥ 1.9 cases.

It is a well-established observation that the amplitude of steady lee-waves decreases with

increasing value of Fr in the Fr ≥ 1 regime for a variety of wake generators, including 6:1 prolate

spheroid (Bonneton et al., 1993, Meunier et al., 2018). Specifically, Meunier et al. (2018) found

that the lee-wave amplitude for a 6:1 spheroid (based on ∂w/∂z) decayed as Fr−2. On the other

hand, it should be noted that the definition of critical Frc given by Ortiz-Tarin et al. (2019) is

based purely on kinematic considerations, i.e., by equating half-wavelength of the lee-wave to
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the length of the body. As a result, Frc = L/πD increases linearly with the aspect ratio. Thus,

for the 6:1 spheroid, we see a weaker effect of stratification on the drag at its critical value of

Frc = 6/π = 1.9 compared to the 4:1 spheroid for which Frc = 4/π = 1.27 is lower. That the

lee wave field in the Fr = 1.9 case is weaker than in the Fr = 1 case is also confirmed also by

quantification of the pressure field, not shown here for brevity.

5.4 Body forces at α = 10◦

Introducing even a moderate angle of attack, namely α = 10◦, significantly changes the

characteristics of flow on the body, reflected by significantly different trends of Cp, C f and force

coefficients in α = 10◦ flows compared to their α = 0◦ counterparts. In what follows, we discuss

the trends of above-mentioned quantities when α = 10◦ and Fr = ∞,6,1.9, and 1. For α = 10◦, a

time averaging window of approximately 50D/U∞ is used.

5.4.1 Coefficient of Pressure Cp

Figure 5.3(a-h) show the pressure contours on the leeside and windside of the body. We

also present the variation of Cp along y = 0 line on the leeside and windside in figure 5.3(i,j),

respectively. Cp obtained from potential flow solution is also presented for comparison in figure

5.3(i,j). On both sides, the agreement between the potential solutions and LES simulations

is excellent till x/D ≈ 1. Beyond x/D ≈ 1 LES simulations deviate from potential solutions,

presumably due to the three-dimensionality of BL evolution and effects of flow separation.

Pressure drop on both sides primarily happens near to the nose of the body and in the ascending

order of Fr, i.e., the pressure drop in the nose for Fr = 1 > 1.9 > 6 > ∞ (figure 5.3(i)). It is also

worth noting that the Fr = 6 and ∞ cases show asymmetry in the leeside pressure contours about

the y = 0 plane as shown in figure 5.3(a,c).

On the leeside, for Fr ≥ 1.9 cases, pressure recovers continuously, albeit slowly, after
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Figure 5.3: Pressure contours on the leeside (a,c,e) and windside (b,d,f) of the spheroid shown
for all simulated Fr at α = 10◦. Also shown is the variation of Cp (i, j) on the leeside and
windside of the body surface in the y = 0 plane. Potential solution for Cp in dashed line from
Piquet and Queutey (1992).
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Figure 5.4: Contours of Re0.5|τx| (a-h) on the leeside and windside of the spheroid for all Fr at
α = 10◦. Dashed lines in (a) and (c) correspond to y = 0. Variation of C f (i, j) on the leeside
and windside of the body at y = 0 plane.
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Figure 5.5: Force coefficients decomposed between pressure and shear contribution: (a) coeffi-
cient of drag Cd , (b) coefficient of lift Cl , (c) lateral force Cy at α = 10◦, and (d) Cd at α = 0◦.

the initial drop in the nose (figure 5.3i). On the contrary, pressure in the Fr = 1 case, which

shows the lowest initial drop (from the stagnation value at the nose) of all cases in the fore of

the body (x/D < 0) drops below that of the remaining cases for x/D > 0. This is evident both

from contours (figure 5.3g) and Cp plots (figure 5.3i). Mean pressure contours in the vicinity

of the spheroid (not shown here for brevity), reveal a strong low-pressure region on the entirety

of the leeside. This low-pressure region is imposed by the steady lee wave field at Fr = 1. The

differences between the unstratified case and strongly stratified cases (Fr = 1.9 and 1) are even

more pronounced on the windside compared to the leeside of the spheroid. Beyond x/D ≈ 2, Cp

of Fr = 1.9 and 1 fall significantly below those of Fr = ∞ and 6 (figure 5.3j), followed by a sharp

recovery towards the end. The contours in figure 5.3(b,d,f,h) confirm this trend of higher and

lower pressure at the head and tail, respectively, for the Fr = 1 and 1.9 cases compared to Fr ≥ 6.
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5.4.2 Coefficient of Friction C f

Figure 5.4(a-h) show the contours of scaled shear stress Re0.5|τx| on the leeside (left) and

windside (right) for all cases at α = 10◦. In figure 5.4(i,j), we present the variation of C f on

the spheroid surface and in the y = 0 plane on both sides. Similar to the pressure contours, a

distinct asymmetry is present on the leeside of Fr = ∞ and 6 flows as shown figure 5.4(a,c), to be

discussed in more detail in the next subsection.

The shear stress contours show that flow separation primarily happens on the leeside at

α = 10◦ across all Fr. The region of separated flow can be identified by the region of |τx| → 0,

marked in green in figure 5.4 contours. For Fr = ∞ and 6, flow separates primarily from the two

lateral sides on the lee of the body (figure 5.4(a,c)). There is a central region near y = 0 which

remains attached until nearly the tail. In the Fr = 1.9 case, separation occurs from the sides as

well as the central region around the y = 0 plane (figure 5.4e) while in the Fr = 1 case, separation

primarily happens in the central region (figure 5.4g) and not at the sides. Thus, it can be inferred

that the stratification level strongly influences the flow separation even at the moderate non-zero

angles of attack of this study.

In the vertical-center plane (y = 0), C f varies similarly for all Fr on both sides (figure

5.4(i,j)) till x/D ≈ 0. On the leeside (figure 5.4i) and for x/D ≥ 0, the Fr = ∞ and 6 cases show

higher C f than the strongly stratified cases of Fr = 1.9 and 1. On the windside, beyond x/D ≈ 1,

Fr ≤ 1.9 cases show elevated C f as compared to Fr ≥ 6 (figure 5.4j). This region of elevated

surface shear in the Fr = 1.9 and 1 flows coincides with the region of steep pressure drop observed

at x/D > 1 (figure 5.3j).

5.4.3 Force Coefficients

Figure 5.5(a,b,c) present the force coefficients (Ci =Fi/0.5ρU2
∞A) at α= 10◦, decomposed

between pressure and friction contributions. Here Cx,Cy and Cz correspond to drag (Cd), lateral
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force, and lift (Cl) on the body, respectively. We first discuss Cd and Cl and follow by noting the

unusual characteristics of Cy for α = 10◦. Figure 5.5(d) also shows Cd for α = 0◦ for reference.

In α = 0◦ cases, Cl ≈ 0 and Cy ≈ 0 at all Fr indicating no asymmetry in the flow over body.

For all Fr, Cd , C f
d and Cp

d (figure 5.5a) at α = 10◦ increase relative to the zero degree

angle of attack ((figure 5.5d). Similar to α = 0◦, there is a weak monotonic increase in Cd till

Fr = 1.9 and a large jump thereafter at Fr = 1. This jump primarily comes from an approximately

100% increase in Cp
d from Fr = 1.9 to Fr = 1. Figure 5.3(g,h) show that the pressure contours at

Fr = 1 are quite different from those of Fr ≥ 1.9. The tail and nose on the leeside and windside,

respectively, are at a lower and higher pressure (compared to Fr ≥ 1.9 cases) which leads to an

enhanced Cp
d . For Cl , primary contributor is the pressure rather than shear, as expected for a

moderate angle of attack. It is interesting to note that Cl decreases till Fr = 1.9 and then increases

significantly at Fr = 1 case, resulting from an increase in Cp
l . The reason for this increase is the

large difference between the leeside and windside pressure in Fr = 1 flow as shown in figure

5.3(g,h).

Figure 5.5(c) shows that Cy ̸= 0 for Fr = ∞ and 6 at α = 10◦. For Fr = ∞, Cy ≈ −0.05

and for Fr = 6, Cy ≈ 0.05. This value is approximately 12% of the streamwise drag force in both

cases. Intuitively, Cy should be equal to zero due to reflectional symmetry in the configuration

about the y = 0 plane. Non-zero Cy implies lateral asymmetry in the flow on the body. Pressure

and friction contours in figure 5.3(a,c) and 5.4(a,c), respectively, show that this is indeed the case

and the asymmetry originates on the leeside of the body at x/D ⪆ 1 (the y = 0 intersection of the

body surface is shown to better identify this lateral asymmetry). No asymmetry is present on

the windside flow over the spheroid. When the value of Fr is decreased to 1.9, Cy → 0. Further

decrease to Fr = 1 also results in Cy = 0. This indicates that the flow asymmetry is suppressed as

the stratification is increased. Figure 5.3(e,g) and figure 5.4(e,g) also confirm that for Fr = 1.9 and

1, no asymmetry is visually evident on the leeside of the spheroid. Hence, two important findings

from the analysis of Cy are: (i) the weakly stratified (Fr = 6) and unstratified (Fr = ∞) flow
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exhibit lateral asymmetry and (ii) this asymmetry is suppressed as the strength of stratification is

increased, i.e., at Fr = 1.9 and 1.

Our finding regarding lateral asymmetry in the unstratified case is in accord with previous

studies on flow past slender bodies (Ashok et al., 2015a,b, Jiang et al., 2015, Tezuka and Suzuki,

2006). It is also interesting to note that the Cy of Fr = ∞ and Fr = 6 are similar in magnitude

but flipped in sign. We hypothesize that the Fr = ∞ and Fr = 6 flows might be locked in two

different reflectional-symmetry-breaking states, with each state being equally probable. There can

be a switching between these two states at a very large timescale. The existence of a long time

scale for switching between different reflection-symmetry-breaking states have been extensively

researched in flow past three-dimensional blunt bodies (Dalla Longa et al., 2019, Grandemange

et al., 2013, Rigas et al., 2014). Interestingly, Jiang et al. (2015), who also found lateral asymmetry

in their flow (6:1 spheroid at α = 45◦), did not find a switch even after 600D/U∞. We aim to

investigate the characteristics of the intermediate to far wake, besides looking at near-body flow.

Hence, running the simulations for T ∼ 1000D/U∞ would be prohibitively expensive and out of

scope of the current work.

5.5 Mean wake field in α = 10◦ cases

5.5.1 Mean wake velocity and lengthscales

After describing the mean flow field over the body, we move to the description of the

mean wake at near and intermediate distances. Figure 5.6 shows the mean defect velocity Ud

contours across all Fr and streamwise locations x/D = 3,10,20 and 30.

For the unstratified case and Fr = 6, the asymmetry, observed in the pressure and shear

profiles on the body, leaves its imprint on the ensuing near wake as well (see figure 5.6(a,b,e,f)).

The reversal of the asymmetry between the Fr = ∞ and Fr = 6 cases is also observed in the

contours at x/D = 3 and 10. At Fr = 1.9 and 1, Ud contour is symmetric across y/D = 0 plane.
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Figure 5.6: Mean defect velocity (Ud) contours at x/D = 3,10,20 and 40 (row-wise) for
Fr = ∞,6,1.9 and 1 (column-wise). The radial domain is r/D = 1 unless explicitly mentioned
(see x/D = 10,20,40 for the Fr = ∞ wake).
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Figure 5.7: (a) Decay of the mean defect velocity peak, U peak
d , and (b) area-integrated mean

kinetic energy, {EM
K }, decay for α = 10◦ cases.

A double-lobed structure of Ud appears at Fr = 1, figure 5.6(d). These two lobes are connected

by a thin thread lying on the y/D = 0 plane.

As the wake evolves downstream, the initial asymmetry causes both Fr = ∞ and Fr =

6 wakes to be displaced from the y/D = 0 line (figure 5.6(i,j,m,n)). The unstratified wake

continuously drifts away from the centerline. Due to the inhibiting effect of buoyancy in the

vertical direction, the extent of veering away from the centerline is contained in the Fr = 6 wake.

By x/D = 30, the wake center appears to settle at a slightly negative vertical location in the Fr = 6

wake (figure 5.6(j,n)). In the Fr = 1.9 case, Ud shows an oscillation in the vertical direction

initially, compare figure 5.6(c) to 5.6(k). Unlike the Fr = ∞ and 6 cases, the wake center remains

on the y/D = 0 line. The two lobes in the Fr = 1 maintain their integrity until x/D = 30. Both

these lobes spread in the horizontal direction as x/D increases. Figure 5.6 shows that differences

in the initial flow separation have a lasting impact on the mean wake profiles of the simulated

cases. By x/D = 30, there are significant qualitative differences across these cases.

Figure 5.7(a) shows the decay of peak mean defect, U peak
d as a function of x/D for all

four cases. The magnitude of Upeak
d follows the following order: Upeak

d for Fr = 1 > Fr = 1.9 >

Fr = 6 > Fr = ∞ beyond x/D ≈ 6. The unstratified wake transitions from a faster decay rate
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to ∼ x−0.52 from x/D ≈ 20 onward. Around the same time, the decay of Fr = 6 slows down

significantly to ∼ x−0.13, signaling the increasing dominance of stratification. Upeak
d in Fr = 1.9

and Fr = 1 cases show a decay rate of Upeak
d ∼ x−0.6 for x/D > 15. Figure 5.7(b) shows the

decay of area-integrated mean kinetic energy, {EM
K } =

∫
C(U

2
d + ⟨uy⟩2 + ⟨uz⟩2dC, of simulated

cases. Cross-section areas of radii r/D = 2 and r/D = 3.5 are used for the stratified cases and

the unstratified case, respectively. These radii ensure that the wakes lie inside the domain of

integration for all x/D. The MKE of Fr ∼ O(1) wakes is higher than the Fr = ∞ and Fr = 6 cases

by almost two orders of magnitude. Unlike the decay of Upeak
d , lee-wave induced oscillations

are visible in both Fr = 1.9 and 1 wakes. The area-integrated energy in both Fr ∼ O(1) wakes

is of comparable magnitude throughout the domain. The unstratified wake and Fr = 6 wake

{EM
K } values remain close till x/D ≈ 13 after which the decay rate of Fr = 6 wake slows down

significantly compared to the unstratified wake.

Figure 5.6 makes it clear that wakes of the prolate spheroid at an angle of attack need

not be centered at the r/D = 0 line and evolve in a complex fashion, both in terms of wake

lengthscales and center. Figure 5.8 presents the evolution of wake center and lengthscale in the

spanwise and vertical direction as a function of x/D. Following Brucker and Sarkar (2010) and

de Stadler and Sarkar (2012), these quantities are calculated as follows:

YC =

∫
yU2

d dA∫
U2

d dA
, ZC =

∫
zU2

d dA∫
U2

d dA
(5.5)

L2
y =

∫
(y−YC)2U2

d dA∫
U2

d dA
, L2

z =

∫
(z−ZC)2U2

d dA∫
U2

d dA
(5.6)

Figure 5.8(a,b) shows the evolution of the wake center in the horizontal and vertical

direction, respectively, as a function of downstream distance. It becomes clear that all four

wakes evolve in a very different manner. The unstratified wake veers away in both y/D and

z/D coordinates as the flow evolves, more so in the z (vertical) direction than the y (horizontal)
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Figure 5.8: Evolution of wake center in the (a) horizontal (Y c) and (b) vertical (Zc) directions.
Evolution of wake (a) horizontal (Ly) and (b) vertical (Lz) lengthscales.
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direction. Though both the unstratified wake and the Fr = 6 wake start from the body in a very

similar fashion (figure 5.6(a,b)), their further development, in terms of the wake center, deviate

very early on. YC for the Fr = 6 wake asymptotes to a value of ≈−0.09 (figure 5.8a) while ZC

(figure 5.8b) stays very close to the zero value. Readers with a keen eye can also notice a very

weak oscillation of wavelength λ/D = 2πFr in the ZC of the Fr = 6 wake. YC of the Fr = 1.9

and 1 wake remain zero throughout their evolution, see figure 5.8(a). In the vertical direction,

the Fr = 1.9 wake shows a lee-wave induced oscillation in the ZC trend (figure 5.8b). It is quite

interesting to note that the ZC of the Fr = 1 wake also stays close to zero, implying that the

vertical coordinate centers of the two lobes in figures 5.6(d,h,l,p) balance each other out.

Figure 5.8(c,d) show the evolution of horizontal (Ly) and vertical (Lz) lengthscale, respec-

tively. Ly of Fr = ∞ and 6 wakes evolve in a similar fashion, albeit Ly of the Fr = 6 wake is

consistently smaller than the unstratified wake. The other two cases show an initial contraction

of Ly between 7 < x/D < 15 and a very weak increase thereafter. Contrary to Ly, Lz evolution

between the Fr = ∞ and 6 wake is quite different. While the unstratified wake has a growth of

Lz ∼ x1.8 beyond x/D ≈ 10, the Fr = 6 wake vertical lengthscale increases only slightly between

x/D = 3 and 40. The Fr ∼ O(1) wakes, on the other hand, show a slight reduction in Lz. All

three stratified cases have an imprint of lee-wave-induced oscillation in Lz trends.

5.5.2 Mean streamwise vorticity field in the wake

Next, we investigate the dynamics of streamwise vortices developing over the body and

in the wake in this subsection. Figure 5.9 shows the instantaneous streamwise vorticity ωx at

locations x/D = 0,1,2 and 2.75 as the flow develops over the body. We present the view at

these four locations from left and right to focus on the structure of both the negative and positive

vorticity, respectively.

In the Fr = ∞ and 6 cases, the vortex filaments can be seen as early as x/D = 0 (figure

5.9(a,b,c,d)). By x/D = 1, they develop identically, maintaining the symmetry about the vertical

177



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Instantaneous streamwise vorticity (ωx) on the spheroid at x/D = 0,1,2 and 2.75
for all Fr at α = 10◦. Left and right views are shown.
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centerplane through the spheroid. At x/D = 2, we can observe asymmetry developing between

these two vortices, as one side rolls up earlier than the other. Between the unstratified and the

Fr = 6 case, the side that rolls up earlier is interchanged, i.e., positive vortex filament for the

unstratified wake (figure 5.9b) and the negative vortex filament (figure 5.9c) for the Fr = 6 wake.

By x/D = 2.75, the difference in the evolution of the two filaments is even more stark (figure

5.9(a,b,c,d)).

As the stratification strength increases to Fr = 1.9, we see that the asymmetry in the left

and right filament is suppressed (figure 5.9(e,f)). The shape of the vortex filaments also changes

qualitatively, i.e., at Fr = 1.9 these filaments are thinner and longer (in the vertical direction) than

the ones at Fr = ∞ or 6. Stratification starts affecting the evolution of the vorticity as early as

x/D = 1, compare figure 5.9(b,d) to figure 5.9(f). At Fr = 1, the vorticity field gets more complex.

The roll-up is inhibited compared to the Fr = 1.9 case. Besides that, the region away from the

spheroid also contains streamwise vorticity, unlike in the Fr = 1.9 flow (compare x/D = 2.75

slice between the last and third row in figure 5.9).

Moving away from the body, we track the evolution of the vorticity field into the wake.

Figure 5.10 shows the contours mean streamwise vorticity Ωx from x/D = 3 to 30 for all four

cases. Figure 5.10(a,e,i,m) show the evolution of Ωx for the Fr = ∞ wake. As the flow evolves,

it is interesting to note that the two vortices maintain their spatial integrity, similar to high-Re

studies on DARPA SUBOFF by Ashok et al. (2015a). On the contrary in the Fr = 6 wake, Ωx

field at x/D = 20 and 30 does not contain the distinct imprint of the two vortices that left the

body. At further low stratification levels of Fr = 1.9 and 1, Ωx field is quite complicated beyond

x/D = 10. These wakes are strongly modulated by the presence of internal gravity waves that also

carry vorticity. The wake vorticity and the IGW vorticity interact in a complex fashion making it

difficult the discern the fate of the shed vortices from the contours alone, unlike the Fr = ∞ wake.

Figure 5.11 presents the clockwise and counterclockwise circulation (Γ =
∫

A ΩxdA) as a

function of x/D for all four wakes. Similar to other area-integrated statistics, the area-integration
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Figure 5.10: Mean streamwise vorticity (Ωx) contours at x/D = 3,10,20 and 30 (row-wise) for
Fr = ∞,6,1.9 and 1 (column-wise). The radial domain is r/D = 1 unless explicitly mentioned
(see x/D = 10,20,30 for the Fr = ∞ wake).
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Figure 5.11: Mean circulation at a streamwise cross-section of x/D for all Fr at α = 10◦.
Positive and negative circulations are shown with solid and dashed lines, respectively.
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Figure 5.12: Top view of instantaneous λ2 criterion for (a) Fr = ∞, (b) Fr = 6, (c) Fr = 1.9,
and Fr = 1 cases. λ2 thresholds are different for x/D < 15 and x/D > 15 to elucidate the near
wake and the intermediate wake features, respectively.

is performed over a circular cross-section of radii r/D = 3.5 and r/D = 2 for the unstratified case

and the stratified cases, respectively. The net circulation is zero over the area of integration across

all four cases. Γ in Fr = ∞ and 6 wakes are similar in magnitude and lie below that of Fr = 1 and

1.9 wakes. Oscillations in the Γ trends for stratified wakes are approximately half the wavelength

of the steady lee waves. In stratified cases, we see that the IGWs carry significant vorticity. The

source of vorticity production in these waves is the baroclinic torque that goes as ∇ρ.∇p/ρ2
o.

Since the baroclinic torque is a product of two terms both of which have the same wavenumber

corresponding to the steady lee wave, it has a wavelength half of that of the steady lee waves. As

a result, Γ, that consists of significant contribution from these waves show oscillation wavelength

half of that of the steady lee waves.
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5.6 Visualizations and spectra in the wake

Figure 5.12 shows the iso-contours of instantaneous λ2 criteria for all four flow fields.

The iso-contour threshold is different for the x/D ⪅ 15 and x/D ⪆ 15 locations for all four cases

to enhance the structures in the near as well as the intermediate wake of the body. At both Fr = ∞

and Fr = 6 wakes, we see a very distinct signature of vortex shedding structures being shed

from the body. As found beforehand in the pressure, shear, and vorticity contours, these vortex

shedding structures are asymmetrical as well. When one goes to locations x/D ⪆ 15, it becomes

difficult to discern these structures from the naked eye in figure 5.12(a,b). At lower Fr = 1 and

1.9 (figure 5.12(c,d)), the near wake instantaneous λ2 structures are layered. These layers then

subsequently break down into small-scale structures as the wake evolves.

To further quantify the spectral characteristics of these structures in the wake, we present

the spectra of probes ranging from the near to the intermediate wake locations in all four cases

in figure 5.13. Figure 5.13(a,b) presents spectra in the unstratified and Fr = 6 wakes. At all

the four locations presented, we see a spectral peak at St ≈ 0.62 and St ≈ 0.57 in Fr = ∞ and

Fr = 6, respectively. These St correspond to the vortex shedding frequency in these wakes. Near

the body, the small scales, e.g., St > 1, have very different energy content owing to asymmetry

in both cases (compare the dashed lines to the solid lines). As the wake evolves further, this

difference is attenuated. For Fr = 1.9 (figure 5.13(c)), the vortex shedding frequency peak is

not present. Instead, a low-frequency signal appears at x/D = 3 around St ≈ 0.1. At further

downstream locations as well, this peak is present, however significantly weaker than at x/D = 3.

Visualizations (not shown here) show that this frequency is associated with an unsteady oscillation

in the near wake. At further lower Fr = 1, neither St ≈ 0.6 nor St ≈ 0.1 is present in the near wake

(see solid and dashed maroon lines in figure 5.13(d)). When one looks at x/D > 10 locations,

there are spectral peaks in the vicinity of St = [0.6,0.9]. We hypothesize that these peaks are

associated with the breaking down of layers into small structures.
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Figure 5.13: Power spectral density of streamwise velocity fluctuations (u′x) across the four
simulated cases. (a) Fr = ∞, (b) Fr = 6, with solid and dashed lines corresponding to θ = 225◦

and θ = 315◦. (c) Fr = 1.9, (d) Fr = 1, with solid and dashed lines corresponding to θ = 0◦ and
θ = 180◦.
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5.7 Conclusions

Large-eddy simulations (LES) are performed to study the characteristics of flow over a 6:1

spheroid placed at an angle of attack α = 10◦. We present results at Re = 5000 and Fr = ∞,6,1.9,

and 1. Additionally, flows past a 6:1 spheroid at the same (Re,Fr) combinations but at α = 0◦

are simulated to provide a basis for comparison. We find that the buoyancy effect introduced by

stratification strongly modulates the pressure and friction forces on the body. The critical Froude

number (Ortiz-Tarin et al., 2019) given by Frc = L/πD is defined kinematically by equating the

body length to the half-wavelength of the generated lee wave. For the 6:1 spheroid, the effect of

stratification on Cp,C f , and Cd is more pronounced at Fr = 1 than at the critical Froude number

Frc ≈ 1.9. For both α = 0◦ and 10◦ cases, Cd monotonically increases with decreasing Fr. At

α = 10◦, a distinct lateral asymmetry is visible in the Cp and C f contours for Fr = 6 and ∞

cases. This gives rise to a non-zero lateral force whose magnitude is approximately 12% of the

streamwise drag at α = 10◦. Further increasing the stratification kills the asymmetry at Fr = 1.9

and 1. At α = 10◦, we also find that the flow separation over the body is strongly dependent on

the value of Fr. At Fr = 6 and ∞, the flow separates from the lateral sides on the lee of the body

while at Fr = 1, the flow separates predominantly near the vertical center plane y = 0.

In the ensuing wake, we find that the flow separation patterns have a lasting impact on

the wake dynamics, at least until x/D ≈ 40 for α = 10◦ cases. The mean wake defect Ud of

the Fr = ∞ wake continues to drift away from the centerline while the Fr = 6 wake is inhibited

significantly from drifting. As the Fr decreases further to O(1), the wake remains close to the

centerline and is modulated by the steady lee waves both in Ud (the defect velocity) and wake

lengthscales. The mean streamwise vorticity (Ωx) contours show that while the unstratified wake

maintains its structural integrity until x/D = 40, Ωx in the stratified cases is quite complex, a

consequence of the interaction of the wake vorticity field with the vorticity of the steady lee

waves. Spectra and visualizations reveal the vortex shedding mechanism being present for Fr ≥ 6
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cases. At lower Fr, the vortex shedding is not observed in the spectra and other spectral features

corresponding to different phenomena appear.

5.8 Acknowledgments

Chapter 5 is being prepared for publication titled: S. Nidhan, J. L. Ortiz-Tarin, and S.

Sarkar, “Wake of a slender body at a moderate angle of attack in stratified and homogeneous

environments”. Parts of chapter 5, with slight modifications, also appear in the conference

proceeding titled: S. Nidhan, J. L. Ortiz-Tarin, and S. Sarkar, “ Flow past an inclined spheroid in

homogeneous and stratified environments”, 12th International Symposium on Turbulence and

Shear Flow Phenomena, Osaka, Japan (Virtual). The dissertation author is the primary investigator

and author of this work.

186



Chapter 6

Conclusions

As mentioned in the foregoing, the dissertation has been divided into two parts. The

conclusions specific to each chapter are present at the end of each chapter. Here, a big picture

summary of both the themes of the work is given.

6.1 Modal analysis of bluff body wakes

In chapters 2 and 3, the turbulent wake of a disk at Re = 5×104 in homogeneous and

stratified conditions, respectively. For the stratified wakes, body-based Froude numbers of Fr = 2

and 10 were analyzed. Spectral proper orthogonal decomposition (SPOD) was used to distill the

coherent structures from the LES database of Chongsiripinyo and Sarkar (2020). The statistically

steady nature of a spatially developing wake and the presence of distinct frequency signatures

make turbulent wake datasets especially suitable for the SPOD analysis.

In the unstratified wake, owing to the azimuthal homogeneity, fluctuations are first

decomposed in azimuthal modes (m). Thereafter, SPOD is performed at different x/D locations

to decompose the turbulent flow into modes quartets. These modes are functions of streamwise

distance (x/D), modal index (n), Strouhal number (St), and azimuthal wavenumbers (m). SPOD

reveals the presence of two very distinct large-scale structures in the flow that persist at least
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until O(100D) downstream distance. These two structures are (a) the vortex shedding (VS)

mode at n = 1,m = 1,St = 0.135 and (b) the double helix (DH) mode, n = 1,m = 2,St → 0.

In the beginning, the VS mode dominates but the DH mode overtakes as the wake progresses

(after x/D ≈ 40). Scaling analyses reveal fundamental differences in the way the eigenvalues and

eigenmodes of these two different modes scale as x/D increases. Furthermore, TKE and Reynolds

stress reconstructions are also performed at different x/D locations to assess the contribution of

different modes to the second-order moments.

In stratified wakes, owing to the azimuthal inhomogeneity, flow snapshots at different x/D

locations are directly decomposed into (St,n,x/D) modes. The VS mode is the most dominant

mode in both Fr = 2 and Fr = 10 wakes. Compared to the unstratified wake, we find that the

large-scale coherence lasts longer in the stratified wakes, more so in the Fr = 2 wake than in the

Fr = 10 wake. Partitioning the energy at any cross-section into the wake core and outer wake

region reveals that this sustenance of large-scale coherence is a consequence of unsteady internal

gravity waves (IGWs) being emitted from the wake core to the outer wake. Further, reconstruction

of the pressure wave flux term using the SPOD modes confirms the causal link between the VS

mode and the IGW generation. We find that at least for Fr ≥ 2, the VS mode is the most dominant

source of the unsteady IGW generation. Similar to the unstratified wake, TKE and Reynolds

stress reconstruction trends are analyzed for the stratified wakes as well.

The one key takeaway message from both chapters 2 and 3 is that the turbulent wakes at

high Re are still characterized by the dominance of the large-scale structures in the flow, more

so than other sister shear flows like turbulent jets or wall-bounded flows. These large-scale

structures can modulate other crucial phenomena in these wakes, e.g., the generation of IGWs

in the stratified wakes. The current dissertation focuses on analyzing flow physics using SPOD.

Future studies can aim at the low-order modeling of these flows using SPOD (or other data-driven

techniques). For example, reconstructing back the flow field from the SPOD modes (Nekkanti

and Schmidt, 2021), one can modify the SPOD modes and initialize a hybrid simulation similar
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to VanDine et al. (2018). In this fashion, several important questions can be tackled: (a) What

happens to the IGW characteristics when one removes the VS contribution in the stratified wakes

and let the flow evolve downstream? (b) How do the turbulence statistics and SPOD modes change

if we remove the VS mode in the unstratified wake and let the flow evolve? (c) Can one mimic

a high Re wake by initializing the simulation with a large-scale contribution obtained from a

cheaper low Re wake simulation and the small-scale contribution modeled using flow-enrichment

techniques (Ghate et al., 2020)?

6.2 Large eddy simulations of slender body wakes

In chapters 4 and 5, the focus was on the characterization of slender body wakes. First, we

study the turbulent stratified wakes of a prolate 6:1 spheroid at a body-based Reynolds number of

105 and Fr = 2, 10. The slender wake is compared to the disk wake at Re = 5×104 and Fr = 2,10

(Chongsiripinyo and Sarkar, 2020). Second, the stratified wake of a prolate 6:1 spheroid placed at

a moderate angle of attack α = 10◦ and Re = 5000 is analyzed for varying levels of stratification

Fr = ∞,6,1.9 and 1. A scarcity of studies on the slender body wakes in stratified conditions,

despite their widespread importance, is the motivation for our study.

In chapter 4, the hybrid simulations of slender body stratified wakes at high Re reveal a

significant difference between the wake of a slender body (6:1 spheroid) and a bluff body (circular

disk). A key difference is found in terms of the arrival locations (in non-dimensional buoyancy

time Nt) of various mean wake regimes (3D, NEQ, and Q2D). At Fr = 2, strong modulation of the

wake by lee waves results in the early arrival of the Q2D-like decay regime at Nt ≈ 15. Contrary

to the spheroid, the disk Fr = 2 wake does not enter the Q2D regime at least until Nt = 62.5.

In the Fr = 10 case, we see a delay in the arrival of the NEQ regime in the spheroid wake (at

Nt ≈ 3) compared to the disk wake (at Nt ≈ 1). This phenomenon was analyzed under the light

of the MKE and TKE budget terms, revealing that the decrease in the turbulent production at
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a farther downstream distance in the spheroid wake is responsible for the late NEQ transition.

Thereafter, the wake evolution of spheroid and disk was compared in terms of the evolution of

local non-dimensional numbers.

In chapter 5, we perform large eddy simulations of flow past a 6:1 spheroid at Re = 5000

and four different stratification levels ranging from the unstratified case to Fr = 1. A key finding is

the presence of lateral asymmetry in the mean as well as statistics of the fluctuating fields at Fr = 6

and Fr = ∞. The asymmetry strength is similar in magnitude but is reflected across the y/D = 0

centerplane between the two cases, implying the possibility of a steady or very low-frequency

unsteady bifurcation at these two Fr. As the stratification strength is further increased, we find

that the flow on the body as well as in the wake becomes symmetric, leading to the result that

the stratification kills the asymmetry. Another important finding is that in the unstratified case,

the vortex pair that is shed from the body, maintains its spatial integrity until x/D = 40 while

the vortex pair in stratified wakes (specifically Fr = 1.9 and 1) interact with the surrounding lee

wave field, leading to a very complex Ωx distribution. As a result, a direct connection between

the initial streamwise vortex pair and its late presence (at x/D = 40) is not discernible from the

contours alone at stronger Fr. Even for the lower Fr = 6 case, the streamwise vortex pair differs

substantially from its unstratified counterpart within a few body lengths from its trailing edge.

Further visualizations and flow spectra are also shown delineating specific differences among the

four cases.

The key takeaway from the second part of the dissertation is that finding a universal

framework for stratified turbulent wakes across various controlling parameters like body shape,

angle of attack, Re, Fr, etc. is a daunting task at best and an elusive goal at worst. Both our studies

show that slight changes in the initial conditions leave a lasting impact on the wake evolution. The

universality in the wake evolution might be achieved only at far downstream locations (Redford

et al., 2012). Thus in author’s opinion, a feasible way to build our understanding of these flows is

to first create an extensive wake database across different controlling parameters. Thereafter it
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is imperative to perform detailed analyses of the quantities of interest, e.g., coherent structures,

first-order moments, second-order moments, forces on the body, etc. As more analyses and

databases come to light, one can hope that different classes of wakes will show similar behavior,

pointing towards possible universality among the wakes of those specific classes. This modified

notion of universality, i.e., looking at different classes of wakes instead of clubbing all the various

turbulent wakes under one big umbrella, can then inform the design decision for engineering and

geophysical applications.
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