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EPIGRAPH

But the work of man is only just beginning, and it remains to conquer all the violence entrenched

in the recesses of our passion... and no race, possesses the monopoly of beauty, of intelligence, of

force, and there’s a place for all, at the rendezvous, of victory.

—Aime Cesaire, Notebook of a Return to the Native Land
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ABSTRACT OF THE DISSERTATION

Essays in Environmental Economics and International Trade

by

Wenxin Xie

Doctor of Philosophy in Economics

University of California San Diego, 2019

Professor Richard T. Carson, Co-Chair
Professor Gordon H. Hanson, Co-Chair

The first two chapters of this dissertation seek to understand how climate change affect

labor market outcomes and manufacturing firms in developing country contexts. Chapter One

provides worker-level evidence in Brazil on different labor-market adjustment margins with

respect to extreme heat shocks and the underlying transmission mechanism. Exploiting rich

employer-employee matched data, I find that quarterly heat shocks lead to significant increases

in the propensity of manufacturing-worker layoff through the direct labor productivity channel.

A significant proportion of manufacturing workers who experienced heat-related layoffs fail to

find any formal employment within 36 months. These results show that heat shocks lead to

xv



persistent negative employment effect in the formal manufacturing labor market due to failure in

job transitions over the medium run.

In Chapter Two, I turn the focus to manufacturing firms in Indonesia. In a heterogeneous

firm model with capital-biased productivity, I incorporate temperature shocks through the direct

labor productivity channel and illustrate how less productive firms decide on production and

re-optimize factor intensity as temperature increases. Empirically, I match gridded daily weather

data with the Indonesian firm-level industrial surveys. I find that under heat shocks, the initially

less productive firms are more likely to exit, highlighting the presence of survival bias intrinsic to

firm-level intensive margin analysis. Second, on the aggregate, resources reallocate from less to

more productive firms within industries. Among surviving firms, we observe factor substitution

from unskilled to skilled workers, and firms switching from using domestic to foreign intermediate

inputs.

Chapter Three investigates how global commodity price booms affect land use and forest

management, and the factors that influence sustainable environmental practices of mining firms.

We employ a spatial and temporal lens, by collecting proprietary data on more than 30,000 mines

located around the world and matching the location of these mines to high-resolution satellite

imagery. This allows a granular study of the relationship between commodity prices and loss of

forest cover worldwide, as well as the spatial distribution of global mines in relation to changes

in land use patterns and local economic activities as measured by nighttime luminosity. We find a

positive elasticity of forest cover loss. Mine owners from rich countries display larger disparity

in the elasticity of forest cover loss when operating in low versus high income countries. Our

estimates suggest that the early 2000s ”commodity super-cycle” contributes to roughly 8%-20%

of the observed total deforestation around mining sites, and that mining-induced deforestation is

not limited to the immediate surroundings of mining pits.
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Chapter 1

Labor-market adjustment under extreme

heat shocks: Evidence from Brazil

1.1 Introduction

Many developing countries located in tropical and subtropical zones are vulnerable to

climate change due to limited adaptation capacity and high baseline temperatures. Climate change

is associated with an expected increase in the frequency of extreme heat days. These drastic

environmental shocks could potentially bring about significant changes for the workforce in devel-

oping economies. Despite rich micro-level evidence on the contemporaneous labor-productivity

impact of extreme heat (Adhvaryu et al., 2016; Hancock et al., 2007), little work has been done

to examine the worker-level employment implications of temperature shocks over time. Answers

to these questions provide a missing perspective on how climate change affects worker welfare.

Assessing the costs of climate change within developing country institutions is also crucial for

calibrating country-specific calculation for the social cost of carbon.

In this paper, I provide worker-level evidence on different labor-market adjustment mar-

1



gins with respect to extreme heat shocks and the underlying transmission mechanism. First, using

employer–employee-matched data, I find that heat shocks lead to a significant increase in the

propensity of immediate manufacturing layoff. I further isolate the direct labor-productivity chan-

nel by focusing on heat shocks during the local nongrowing seasons, exploiting rich municipality-

level agricultural census and crop calendars. Second, I examine medium-run adjustment margins.

Tracking workers across employment spells, I find limited intersectoral and interregional worker

reallocation. A significant proportion of manufacturing workers fail to reallocate to another

formal-sector job within 36 months. Third, heat shocks during the nongrowing seasons have more

pronounced impact on workers in more routine manual-task-intensive occupations.

Heat leads to worker fatigue, lower task performance, and poorer decision making.1

Given the abundant evidence on the direct labor-productivity impact of heat shocks, one nat-

ural question is how much it contributes to economy-wide labor-market adjustment. Contract

theory suggests firms cannot fully insure workers against random shocks if efforts are not fully

observed (Holstrom and Milgrom, 1987). The magnitude of impact then is an empirical question,

depending on the degree of firm-level adaptation and such specific labor-market features as de

facto firing costs, downward wage rigidity and interaction with the informal economy. The

presence (or absence) of a direct labor-productivity channel also has important implications for

climate-change-adaptation policies.2 To separately identify the direct labor-productivity chan-

nel among many potential mechanisms through which weather shocks could affect industrial

workers,3 I exploit unique features of Brazilian employer–employee linked administrative data

(RAIS) and rich municipality-level agricultural census. With information on individual workers’

1 Using microdata from assembly lines, Somananthan et al. (2014) and Adhvaryu et al. (2016) show that daily
manufacturing labor productivity significantly decreases with temperature. See also Zander et al. (2015), Graff Zivin
and Neidell (2014), Niemela et al. (2002), Seppanen et al. (2006), Kjellstrom et al. (2009), and Park (2017).

2For example, installing air conditioners in factories versus adopting heat-resistant crops.
3 Direct labor-productivity channel: Adhvaryu et al. (2016), Somanathan et al. (2014), Heal and Park (2014);

interindustry linkages: input–output linkages: Acemoglu et al. (2012), agricultural local-demand channel: Santangelo
(2015), Henderson et al. (2017), agricultural labor reallocation: Colmer (2016), agricultural income and nutrition
channel: Garg et al. (2017)
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month of accession and separation from his/her employer, I am able to match temperature shocks

with individual employment outcomes on a quarterly basis to isolate heat shocks during local

nongrowing seasons. The underlying assumption is that weather shocks during nongrowing

seasons do not operate through agricultural channels (Burgess et al., 2018; Carleton, 2017).

Assessing the labor-market impact of heat shocks from the perspective of worker welfare

also requires data on gross instead of net employment flows. Aggregate employment at the

firm level provided in industrial surveys only gives net flows and could not inform us of worker

displacement if it is accompanied by worker inflow. This issue is particularly important given

the multiple, and potentially opposing, channels through which extreme heat could affect the

industrial labor market. For example, if temperature increase causes agricultural outmigration

into manufacturing due to lower crop yields, we may observe an increase in net firm-level em-

ployment. In reality, this increase could be accompanied by agricultural workers substituting

existing manufacturing workers, and/or existing workers being laid off due to lower manufacturing

labor productivity. Observing worker-level job accession and separation allows me to directly

address incumbent worker welfare, whereas the previous literature mostly focused on firm welfare

(Colmer, 2017; Santangelo, 2015)

For developing countries, labor-market transitional costs could interact with environmental

shocks to further exacerbate the cost of climate change. In particular, if significant cost exists in

job transitions, only accounting for the immediate adjustment margins would lead to an underesti-

mation of total worker welfare losses. To understand medium-run adjustment margins, I exploit

the employer–employee linkage feature of RAIS and provide evidence on worker reallocation.

Tracking each worker across job spells, I decompose postlayoff transition outcomes into seven

collectively exhaustive, mutually exclusive channels by the industry and region of the worker’s

next job. This helps us better understand the medium-run labor adjustment margins through an

3



examination of worker reallocation between sectors and across municipalities.

First, I find quarterly heat shocks lead to significant manufacturing-labor-market churn.

Isolating the direct labor-productivity channel, I show that extreme heat days4 during nongrowing

seasons lead to a higher propensity for manufacturing layoff but has no significant impact on

manufacturing hiring. In terms of magnitude, swapping a day with daily mean temperature below

17◦C for one with daily mean temperature beyond 31◦C during the nongrowing seasons increases

the probability of layoff by 0.8 percentage points, equivalent to a 11% increase in the baseline

layoff propensity. These results are robust to including a rich set of fixed effects controlling for

state- and industry-specific seasonality, state and industry growth trends, time-invariant munici-

pality characteristics, and lagged weather shocks.

Second, in terms of medium-run adjustment margins and worker reallocation, I find

limited intersectoral and interregional reallocation for manufacturing workers and a significant

failure rate to reallocate. 59% of manufacturing workers find another job in the same industry

either locally or in a different municipality. However, 24.3% of all formal manufacturing workers

laid off due to heat shocks fail to find any formal sector job within 36 months. This suggests

over the medium run, environmental shocks interact with labor-market transitional costs to trigger

prolonged unemployment or switching to the informal economy.

Third, consistent with the direct labor-productivity channel, the impact of heat shocks

is heterogeneous by occupational task intensity and by gender. Matching worker occupational

codes with measures from the Dictionary of Occupational Titles (DOT), I find that manufacturing

workers engaging in more routine-manual-intensive tasks are more likely to be laid off during the

nongrowing seasons, pointing to a potential source of distributional impact of climate change.

4Defined as daily mean temperatures above 31◦C.
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This paper provides a missing perspective on the aggregate employment implications

of extreme temperature shocks associated with climate change and establishes an underlying

mechanism using rich microdata. On the aggregate level, temperature shocks have been shown to

negatively affect GDP per capita, labor income, economic growth, and exports (Dell et al., 2012;

Jones and Olken, 2010; Park, 2017). Manufacturing output changes due to heat shocks are also

observed with firm-level evidence from China, India and Indonesia (Colmer, 2017; Deschenes

et al., 2018; Somanathan et al., 2014). On the micro-level, evidence from labs, call centers and

selected factory assembly lines points to a large negative labor-productivity impact of heat shocks

(Adhvaryu et al., 2016; Zander et al., 2015; Graff Zivin and Neidell, 2014; Niemela et al., 2002;

Seppanen et al., 2006; Kjellstrom et al., 2009). In contrast, we know surprisingly little about the

employment impact of extreme heat shocks 5, the associated worker displacement and welfare

losses, and the importance of the direct labor-productivity channel as a transmission mechanism.

Findings in this paper suggest the direct impact of thermal stress on manufacturing workers leads

to significantly higher layoff propensity. Identifying the worker-displacement effect is uniquely

achieved by examining administrative individual-level data, uncovering a previously ignored

source of worker welfare loss from climate change.

Second, this paper offers broader labor-market implications of environmental shocks

through various adjustment margins. In addition to the immediate employment effects, labor-

reallocation results suggest high worker adjustment costs to extreme heat shocks during worker–

firm rematching. I provide first evidence that heat shocks lead to persist negative employment

effect in the formal manufacturing labor market due to failure in job transitions over the medium

run. To study worker reallocation, I follow empirical methodology recently used in the trade

literature to examine the regional labor-market consequence of tariff reductions (Dix-Carneiro

5One exception is Wilson (2017) which studies short run aggregate impact. Instead my paper focuses on
worker-level employment outcomes over time and the underlying mechanism.
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and Kovak, 2017a; Menezes-Filho and Muendler, 2011; Autor et al., 2014). Compared with more

permanent shocks from trade liberalization, I show that even less persistent temperature shocks

lead to significant failure to reallocate, contributing to prolonged individual-worker welfare losses.

Next, I begin by describing the data and presenting relevant empirical facts. Section

1.3 presents the baseline empirical specification and net impact. Section 1.4 introduces my

methodology to identify the direct labor-productivity channel and main results on transmission

mechanisms. Section 1.5 focuses on medium-run adjustment margins in job reallocation. Section

1.6 discusses the heterogeneous impact. Section 1.7 offers further discussions and robustness

checks. Section 1.8 concludes.

1.2 Data and Empirical Facts

1.2.1 Data

Worker-level data comes from the Brazilian administrative records Relao Anual de Infor-

maes Sociais (RAIS), covering the years from 1990 to 2000. This employer–employee matched

contract-level data includes more than 90% of all formally employed workers in Brazil (Menezes-

Filho and Muendler, 2011). The records are created to provide information for the federal

wage-supplement program (Abono Salarial) and the employer-contribution program (FGTS).

RAIS provides data on worker-level contracts with the firm–plant registration number and

the worker ID. Since workers are identified by a unique ID number, which is fixed over time, I

am able to track each worker across employers. The finest geographic unit of identification is

a Brazilian municipality, which I use to match the administrative records with gridded weather

variables. For each worker, there is information on education, tenure, gender, monthly wage,

occupation, and month of accession into and separation from each contract. I also have plant-level
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information on sector, ownership, and plant size.

To construct the worker sample, I take the list of all worker IDs ever to have appeared in

RAIS, draw a 10% random sample, and track the selected worker IDs through the years across

multiple job spells. In the case of multiple jobs, only the highest paying, last formal employment

of the quarter is kept for each worker (Menezes-Filho and Muendler, 2011). For layoffs, I examine

job spells conditional on the worker being employed at the beginning of the quarter. Cases of

quitting, transfers, retirement, and death are excluded from the analysis. Since we do not observe

the worker during unemployment, hiring is defined at the region–industry level.

One important caveat is that RAIS only covers formal sector employment, defined as

working with a signed work card. Informal jobs are a significant portion of the Brazilian labor

market. According to the 1991 Demographic Census for workers aged 18–64, 28% of manufac-

turing and 55% of nontradable sector employment is informal (Dix-Carneiro and Kovak, 2017a).

Additionally, 89% of agricultural employment is informal. As a robustness check for results on the

agricultural sector, I restrict analysis to sugarcane workers only, where workers are predominantly

formal and unionized. Comparing with the household survey PNAD, Davis (2017) documents

that roughly 60% of sugarcane employment is captured in RAIS. Layoffs are defined in this paper

as layoff from the formal sector, which means the worker can be either unemployed or employed

informally. Formal sector layoff is meaningful for individual welfare because workers need the

signed work card to claim employment-related benefits and labor protections.

Data on weather outcomes are from the ERA-Interim reanalysis archive. I obtain measures

of daily mean temperature, dew point temperature, and cumulative rainfall on a 0.125◦×0.125◦

grid. Relative humidity is calculated from dry bulb and dew point temperature based on Lawrence

(2005). Weather variables are then linked to each municipality using GIS data from the Global
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Administrative Borders.

Regional crop production data are from the Municipal Agricultural Production Survey

(PAM), maintained through the data portal (SIDRA) by the Brazilian Institute of Geography and

Statistics (IBGE). This survey provides the annual production value, area, and average yield of all

temporary and permanent crops in Brazil by municipality. I use the municipality crop specific

production value from the PAM to determine the main crop of each municipality. To identify

the nongrowing seasons of each municipality, I use the Brazilian crop calendars collected by the

USDA World Agricultural Outlook Board. These calendars provide regional crop-growing cycles

in Brazil by sowing, growing, and harvest stages and allow me to distinguish between growing

and nongrowing seasons of major crops in Brazil. Finally, for heterogeneity analysis, I use the

occupational-task intensity measures from the Dictionary of Occupational Titles constructed by

Autor, Levy, and Murnane (2003).6 An underlying assumption here is that the relative ranking of

occupational task intensity is preserved across U.S. and Brazilian occupations.

1.2.2 Empirical Facts

In this section, I first briefly review the literature on thermal stress and labor productivity.

Next, I show the raw distribution of daily average temperature during the sample period of

analysis in Brazil. Third, I present the spatial distribution of extreme heat shocks to illustrate

from where the temperature variations exploited in later sections come.

One focus of this paper is to identify the direct labor-productivity channel as a transmis-

sion mechanism through which heat affects manufacturing employment. To put the extreme

heat shocks in Brazil into context, I briefly review key evidence on thermal stress and labor

6Concordance from the US Census occupational codes to the ISCO-88, and to the Brazilian occupational codes
CBO are from Autor and Dorn (2013), the Center for Longitudinal Studies in UCL, and Muendler et al. (2004).
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performance. A large body of literature has documented a highly nonlinear relationship between

temperature and individual labor productivity. Recent evidence from selected Indian garment

factories documents 29.5◦C as the physiological threshold above which temperature strongly

impedes human functioning (Adhvaryu et al., 2016). Meta-analysis in ergonomics (Pilcher et

al., 2002; Hancock et al., 2007) summarizing multiple experimental studies reveals that task

performance losses start to occur with the Wetbulb Global Temperature (WBGT) equivalent of

28◦C, at 80% relative humidity and normal sea level air pressures. Sharp performance losses are

observed with the WBGT equivalent of 32◦C. On the aggregate level, Hsiang (2010) estimates

that economic production losses begin at 29◦C.

As an important emerging economy, Brazil spans several climate zones and provides rich

regional temperature variations. Figure 1.1 plots the probability density distribution of daily

average temperature of all municipalities in Brazil, from 1990 to 2000. The mean is 22.82◦C,

with 3.43% of the observations above 29◦C, and 0.24% of observations above 31◦C. Throughout

this paper, I define an extreme-heat day as having daily mean temperature above 31◦C. With

climate change, this graph is expected to develop a fatter right tail. Because of the nonlinear

relationship between labor productivity and temperature, one expects to observe a strong impact

of days in the extreme-heat category.

Figure 1.2 plots the spatial distribution of daily mean temperature, averaged over the

period from 1990 to 2000. Figure 1.3 illustrates the spatial distribution of extreme-heat days. For

each municipality, I aggregate the number of days with daily mean temperature above 31◦C from

1990 to 2000. The white regions did not experience an extreme-heat day during the sample period,

such as the Amazons. The colored municipalities had from 1 to 471 days of extreme heat. The

municipality in the 95th percentile experienced 46 days of extreme heat cumulatively during the

sample period. Since extreme-heat shocks display spatial clustering, I include municipality fixed
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effects in all subsequent analysis to control for any region-specific time-invariant characteristics

that correlate with temperature.

Although extreme heat days are rare in Brazil during the period of my analysis (1990–

2000), climate projections indicate these days will drastically increase based on our current

emission trajectory (Sanford et al., 2014). Figure 1.4 plots the projected change (compared to

the baseline period 1986–2005) in annual extreme-heat days, defined as daily mean heat index

above 35◦C, equivalent to daily mean temperature above 31◦C with relative humidity at 60%.

Predictions are made assuming the Representative Concentration Pathway 8.5 scenario, which we

would surpass without sharp downward transitions. The underlying data comes from the Coupled

Model Intercomparison Project (CMIP5) used in the Intergovernmental Panel on Climate Change

(IPCC) fifth assessment report, and the World Bank Group’s Climate Knowledge Portal.

Figure 1.4 shows large regional disparity in predicted increase of extreme-heat days. For

the period 2040–2059, the predicted change in annual extreme-heat days is 0.95 for a southern

municipality like Sao Paulo, 69.75 days for a central municipality such as Palmas, and 34.5

days for a northeastern municipality such as Teresina. Later in my analysis, I discuss how these

differences in predicted heat exposure could lead to large variations in regional manufacturing

employment outcomes.
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Figure 1.1: Distribution of daily average temperature

This figure plots the probability density distribution of daily mean temperature for all municipalities in
Brazil, from 1990 to 2000. Daily mean temperature (t2m) on the X-axis is measured in terms of degrees
Celsius. The two red vertical lines represent the 29◦C and 31◦C thresholds.

Figure 1.2: Spatial distribution of daily mean temperature from 1990 to 2000

This map plots the spatial distribution of daily mean temperature, averaged over the period from 1990 to
2000. The finest geographic unit is a Brazilian municipality. Ranges in the legend are in terms of degrees
Celsius.
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Figure 1.3: Spatial distribution of extreme heat shocks (daily mean temp > 31◦C)

This map illustrates the spatial distribution of cumulative extreme-heat days. For each municipality,
“t2mBin8” represents the total number of days with daily mean temperature above 31◦C from 1990 to
2000. The finest geographic unit is a Brazilian municipality.
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Figure 1.4: Prediction of future extreme heat days: CMIP5, RCP8.5, access1 0

This chart shows the predicted change in annual count of extreme-heat days, defined as daily mean
heat index above 35◦C, relative to the reference period (1986–2005). These days represent extremely
uncomfortable conditions and are equivalent to daily mean temperature of 31◦C, at relative humidity
60%. The point estimates are given for three randomly selected cities: Sao Paulo, Palmas. and Teresina,
located in the south, central, and northeast regions in Brazil. Projections are given by the Coupled
Model Intercomparison Project (CMIP5) under the “access1 0” model, assuming the Representative
Concentration Pathway 8.5 (RCP 8.5) scenario. These data are available through the World Bank Group’s
Climate Knowledge Portal, and covers periods 2020–2039, 2040–2059, 2060–2079, and 2080–2099.

1.3 Baseline: Immediate Impact

Do quarterly temperature shocks lead to changes in the propensity of manufacturing

worker layoff and hiring? Existing literature provides ample evidence on the labor-productivity

impact of heat shocks. Whether these productivity shocks cause changes in employment outcomes,

however, is largely unexplored. A rather complex array of institutional, firm- and worker-specific

factors matter for the employment implications of heat-related productivity shocks. These include,

but are not limited to, the labor-market institutions on hiring and firing costs, the presence of

nominal wage rigidity, the degree of firm-level adaptation, heterogeneity in workers’ sensitivity

to heat, and firm managers’ attitudes towards ambiguity of quality signals (Ilut et al., 2018).

Section 1.7 of this paper provides suggestive evidence on how some of these factors matter in the
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Brazilian context.

Other than the direct labor-productivity channel, there are multiple potential mechanisms

through which heat shocks could affect the manufacturing labor market. Given what we know

about temperature and crop yields (Lobell et al., 2011), heat shocks could influence manufacturing

through various interindustry linkages with agriculture, including agricultural outmigration,

changes in farmer income and local demand, and changes in raw material prices. Section 1.4

discusses this issue in greater detail and addresses the identification challenge of transmission

channels by isolating heat shocks during the local nongrowing seasons. Before diving into the

mechanisms, I start with a baseline empirical specification and examine the net impact of heat

shocks through all combined channels.

1.3.1 Empirical Strategy

The baseline empirical framework is a fixed-effect model

Yi jmt = ∑βkTempbink
m,t + f (Rainm,t ,Humiditym,t)+α1Xit

+θqy +θyr +θqr +Φy j +Φq j +Φr j + τm + εi jmt , (1.1)

where Yi jmt is the binary outcome of worker layoff, for worker i, employed in industry j, residing

in municipality m, at time t. Allowing for nonlinear effects, Tempbink
m,t is the number of days

in a quarter with daily mean temperature within the specified range k.7 f (Rainm,t ,Humiditym,t)

controls for the cumulative rainfall and relative humidity. Xit is a vector of worker and plant-level

controls including worker education, occupation categories, tenure, potential labor-force experi-

ence, plant size, and plant skill composition.

7Tempbin1, where t < 17◦C, is omitted.
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To causally identify the effect of heat shocks on worker layoff, a rich set of fixed effects

are included to control for confounders that could be correlated with temperature and to rule out

spurious relationships. First, since we are examining individual layoff decisions at the quarterly

frequency, it is crucial to include controls for seasonality which may correlate within-year employ-

ment cycles with temperature fluctuations. To control for state-specific employment seasonality, I

include Quarter × State fixed effects, and, for industry-specific seasonality, I include Industry ×

Quarter fixed effects.

One may also imagine that a general warming trend in temperature might be correlated

with national business cycles during this period. I address this concern by including Quarter ×

Year fixed effects. Further, warmer regions may have different institutions or other geographic

features that lead to different employment patterns. To control for any time-invariant municipal

characteristics, I include Municipality fixed effects. Finally, I include State × Year and Industry

× Year fixed effects to control for state and industry growth trends, and State × Industry fixed

effects for regional industrial patterns. This also means the temperature variations I exploit are

deviations from averages, instead of variations in raw temperature. Standard errors are clustered

at the mesoregion level to allow for serial and spatial correlation.

1.3.2 Results

We first examine the baseline immediate impact of heat shocks on individual layoff and

hiring, separately for manufacturing and agricultural workers. These results show that, after

pooling together all seasons and several potential mechanisms, temperature shocks significantly

influence individual labor-market outcomes.

We start with individual outcomes on layoff. Figure 1.5 illustrates that the probability of
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manufacturing-worker layoff increases in a nonlinear manner as temperature increases.8 Specifi-

cally, this figure plots the regression coefficients associated with each daily mean temperature bin,

where the <17◦C bin is the omitted category. The coefficient βk is interpreted as the estimated

impact of one additional day with daily mean temperature in temperature bin k on the propensity

for worker layoff, relative to the impact of a day with daily mean temperature less than 17◦C.

We start to see a significant effect with an additional day where daily mean temperature goes

beyond 27◦C. The point estimate indicates that swapping a day with daily mean temperature

below 17◦C for one with daily mean temperature beyond 31◦C increases the probability of layoff

by 0.236 percentage point, or a 3% increase in the baseline propensity (7.867 percentage points).

Similarly for agricultural workers, in Figure 1.6, we see that all estimates associated with daily

mean temperature beyond 27◦C are positively significant at the 5% level.

Next, we look at changes in baseline hiring rates. Since we do not observe the worker

if he or she is unemployed, I construct region–industry hiring shares by aggregating the total

number of individual accessions in each quarter at the municipality–industry level, normalized by

each municipality’s population in 1999. The empirical framework follows Equation 1.1, except

that we do not include worker- or plant-level controls. Figure 1.7 shows that heat shocks lead to a

lower propensity for hiring agricultural workers but has no significant impact on manufacturing

hiring.

8Coefficients are multiplied by 100.
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Figure 1.5: Quarterly heat shocks and manufacturing layoff: Net impact

Manufacturing Labor Market—Each point estimate reflects an individual regression coefficient, βk,
following Equation 1.1, where the dependent variable is the binary outcome on worker layoff. The
independent variables are the number of days in a quarter with daily mean temperature within a specific
range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The coefficient βk is interpreted as
the estimated impact of one additional day with daily mean temperature in temperature bin k on the
propensity for worker layoff, relative to the impact of a day with daily mean temperature less than 17◦C.
The regressions include quarter × state, quarter × industry, quarter × year, state × year, industry × year,
state × industry and municipality fixed effects, along with other weather covariates and a rich set of firm-
and worker-level controls (see text for details). All coefficients are multiplied by 100. Standard errors are
clustered at the mesoregion level.
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Figure 1.6: Quarterly heat shocks and agricultural layoff: Net impact

Agricultural Labor Market—Each point estimate reflects an individual regression coefficient, βk, follow-
ing Equation 1.1, where the dependent variable is the binary outcome on worker layoff. The independent
variables are the number of days in a quarter with daily mean temperature within a specific range,
Tempbink

m,t . The “<17◦C” bin is the omitted category. The coefficient βk is interpreted as the estimated
impact of one additional day with daily mean temperature in temperature bin k on the propensity for
worker layoff, relative to the impact of a day with daily mean temperature less than 17◦C. The regressions
include quarter × state, quarter × industry, quarter × year, state × year, industry × year, state × industry
and municipality fixed effects, along with other weather covariates and a rich set of firm and worker-level
controls (see text for details). All coefficients are multiplied by 100. Standard errors are clustered at the
mesoregion level.
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Figure 1.7: Agricultural vs. manufacturing hiring: Net impact

Agricultural and Manufacturing Labor Market—Each point estimate reflects an individual regression co-
efficient, βk, following Equation 1.1. The dependent variable is region–industry hiring share, constructed
by aggregating the total number of individual accessions in each quarter at the municipality–industry
level, normalized by each municipality’s population in 1999. The independent variables are the numbers
of days in a quarter with daily mean temperature within a specific range, Tempbink

m,t . The “<17◦C” bin
is the omitted category. The coefficient βk is interpreted as the estimated impact of one additional day
with daily mean temperature in temperature bin k on the hiring share, relative to the impact of a day
with daily mean temperature less than 17◦C. The regressions include quarter × state, quarter × industry,
quarter × year, state × year, industry × year, state × industry, municipality fixed effects, along with
other weather covariates (see text for details). Standard errors are clustered at the mesoregion level.

1.4 Transmission Mechanism

In Section 1.3, I show that quarterly heat shocks lead to immediate manufacturing and

agricultural labor-market churn. These meaningful changes in employment outcomes could be

driven by a wide range of underlying mechanisms, possibly operating in opposing directions. We

need to rely on additional research design to identify the presence of any specific mechanisms.

Motivated by recent evidence on thermal stress and labor productivity (Adhvaryu et al.,

2016), I now focus on identifying the importance of the direct labor-productivity channel in

driving heat-related manufacturing layoff and hiring. I first introduce a methodology to isolate

the direct labor-productivity channel from other transmission mechanisms, using the Brazilian
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agricultural surveys and regional crop calendars. Next, I present main results on manufacturing-

worker layoff and hiring during growing versus nongrowing seasons. In Appendix C, to verify the

underlying identifying assumption, I look at the formal agricultural labor market during growing

versus nongrowing seasons.

1.4.1 Identifying the Physiological Channel

Recent evidence from both the climate–economy and ergonomics literature points to a

significant labor-productivity drop as temperature increases.9 However, we know little about

whether this direct labor-productivity impact leads to changes in worker employment outcomes

in an economy-wide setting. Establishing this crucial link helps us understand how firms and

workers share the cost of climate change, and how to better design social-welfare programs in the

presence of such environmental shocks.

Numerous factors are relevant when we assess how heat-related productivity shocks matter

for market outcomes such as employment. For example, if individuals are heterogeneous in

their sensitivity to heat, firms may lay off workers who experience the most productivity drop

during heat shocks, or those who are less likely to exert effort when exposed to heat. Transitory

heat shocks may also lead to layoff in the presence of downward nominal wage rigidity. The

individual employment impact of heat shocks also depends on the degree of firm adaptation either

through installing air conditioners or adaptive managerial practices.10 Overall, the employment

implications of the direct labor productivity channel is a rather complex empirical question rooted

in labor-market institutions and firm- and worker-specific factors.

9 Evidence from assembly lines, laboratories, meta-analysis, and self-reported surveys: Somananthan et al.
(2014), Adhvaryu et al. (2016), Zander et al. (2015), Graff Zivin and Neidell (2014), Niemela et al. (2002), Seppanen
et el. (2006), Kjellstrom et al. (2009), Park (2017)

10 Adhvaryu, Kala and Nyshadham (2014) show that good managers adapt to air pollution shocks through worker
task reassignment.
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Identifying the transmission mechanism through which heat affects the manufacturing

labor market also has crucial policy implications for targeting efficient climate-change adaptation

strategies. If the direct labor-productivity channel is important in contributing to the labor-market

impact of extreme heat shocks, we may think about installing more air conditioners in factories

to mitigate the negative labor-productivity effect. On the other hand, if manufacturing workers

are laid off due to indirect agricultural channels, the policy implications would be quite different.

For example, if heat shocks reduce crop yield and raise agricultural input prices, input tariff

liberalization may be an effective response. Similarly, establishing farmer-income stabilization

programs would be helpful if the local demand channel is present.

The strategy I adopt in this paper to investigate the importance of the direct labor-

productivity channel is by isolating heat shocks during the nongrowing seasons of each mu-

nicipality. The underlying assumption is that heat shocks during local nongrowing seasons do not

influence agricultural outcomes, allowing me to shut off various indirect agricultural channels

through which temperature shocks affect the manufacturing labor market. A similar methodology

has been recently adopted (Carleton, 2017; Burgess et al., 2018) to study the mechanism of

how heat affects mortality. In Appendix C, I verify this identifying assumption by comparing

outcomes during growing versus nongrowing seasons in the agricultural labor market.

Discerning the regional nongrowing seasons in Brazil involves two steps. Exploiting

the Municipal Agricultural Production Surveys (PAM), I first determine the main crop of each

municipality based on crop-production shares. Figure 1.8 shows the main crop of each mu-

nicipality in Brazil ranked by production values. Major seasonal crops in Brazil include corn,

cotton, rice, soybean, and sugarcane. The white areas represent municipalities whose main crop

has year-round growing seasons. Next, I use the Brazil crop calendars from the USDA World
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Agricultural Outlook Board to determine the nongrowing seasons of each crop.11 A quarter for a

municipality is categorized as the nongrowing season if it is the regional nongrowing season of

the main crop of that municipality.

Figure 1.9 presents the resulting map showing the nongrowing seasons of each municipal-

ity. Excluding the municipalities with year-round growing seasons, quarter three, from July to

September, is the main nongrowing season for most central and southern regions in Brazil. In

the northeast, nongrowing seasons arrive later in quarter four, from October to December. This

categorization corresponds approximately to three months before the arrival of the rain season,

which is the approach adopted in Burgess et al. (2018) and Garg et al. (2017) to identify Indian

nongrowing seasons.

Figure 1.8: Main crop of municipality by production value

This map represents the main crop of each municipality in Brazil ranked by crop production values
(see text for details). Major seasonal crops in Brazil include corn, cotton, rice, soybean, and sugarcane.
The white areas represent municipalities whose main crop has year-round growing seasons (see text for
details).

11These nongrowing seasons also correspond to those in the crop calendars by Sacks et al. (2010), which result
from digitizing and georeferencing existing observations of crop planting and harvesting dates.
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Figure 1.9: Main-crop nongrowing season by production value

This map shows the nongrowing seasons in Brazil. A quarter for a municipality is categorized as the
nongrowing season if it is the regional nongrowing season of the main crop of that municipality.
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1.4.2 Manufacturing Layoff and Hiring: Nongrowing vs. Growing Sea-

sons

Having identified the regional nongrowing seasons, we are now ready to examine how

important the direct labor-productivity channel is for manufacturing layoff. Intuitively, heat

shocks during the nongrowing seasons do not affect agricultural outcomes, therefore allowing

me to shut off multiple indirect agricultural channels and identify the direct labor-productivity

channel. We proceed by comparing regression results during the growing versus nongrowing

seasons, and then testing sensitivity in a series of alternative specifications.

Nongrowing Seasons

We first estimate the effect of heat shocks on manufacturing worker layoff in the nongrow-

ing seasons. Under the assumption that nongrowing-season shocks have no effect on agricultural

outcomes, I isolate the impact of the direct labor-productivity channel by focusing on nongrow-

ing season shocks. The empirical framework follows Equation 1.2, which is a modification of

Equation 1.1, where the dummy for growing seasons, DGS
m,q, is interacted with temperature bins

and other weather covariates.

Yi jmt = ∑βkTempbink
m,t +∑βsDGS

m,q ∗TempBins
m,t +β1DGS

m,q + f (Rainm,t ,Humiditym,t)

+DGS
m,q ∗ f (Rainm,t ,Humiditym,t)+α1Xit +θqy +θyr +θqr +Φy j +Φq j +Φr j + τm + εi jmt

(1.2)

Figure 1.10 shows how the propensity for manufacturing-worker layoff varies with tem-

perature during nongrowing seasons. We see a significant, highly nonlinear relationship, with

extreme-heat days having a pronounced impact, starting with daily mean temperature above 29◦C.

In particular, the point estimate indicates that replacing a day with daily mean temperature below
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17◦C with one with daily mean temperature beyond 31◦C increases the probability of layoff

by 0.8 percentage points, a 11% increase from the baseline layoff propensity (7.2 percentage

points). This highly nonlinear relationship is consistent with the thermal-stress literature on

heat and individual labor productivity. Meta-analysis in ergonomics (Hancock et al., 2007)

documents that task performance losses start to occur at 28◦C and 80% relative humidity. Sharp

performance losses occur at 32◦C. Evidence from Indian garment factories documents 29.5◦C

as the physiological threshold above which temperature strongly impedes of human functioning

(Adhvaryu et al., 2016).

Figure 1.10: Manufacturing worker layoff: nongrowing seasons, with interacting specification

Manufacturing Labor Market, Nongrowing Seasons, Interaction Specification - Each point estimate
reflects an individual regression coefficient, βk, where the dependent variable is the binary outcome on
worker layoff. Following Equation 1.2, we estimate the specification where DGS

m,q is a dummy for growing
seasons. The independent variables are the number of days in a quarter with daily mean temperature
within a specific range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The coefficient βk is
interpreted as the estimated impact of one additional day with daily mean temperature in temperature bin
k on the propensity of worker layoff, relative to the impact of a day with daily mean temperature less than
17◦C, in the nongrowing seasons. The regressions include quarter*state, quarter*industry, quarter*year,
state*year, industry*year, state*industry and municipality fixed effects, other weather covariates, and a
rich set of firm and worker-level controls (see text for details). All coefficients are multiplied by 100.
Standard errors are clustered at the meso-region level.
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The nongrowing season results in Figure 1.10 show that through the direct labor-productivity

channel, thermal stress starts to significantly affect manufacturing layoff decisions only when

daily average temperature goes beyond 29◦C. This is consistent with the existence of firing and

hiring costs in the formal sectors. Intuitively, moderate productivity losses do not justify firing

costs, but large productivity losses under extreme heat increase the probability of worker layoff.

Taking the point estimate for the extreme-heat temperature bin (daily mean >31◦C), we

could compare the difference in layoff propensity for manufacturing workers in different regions.

Since my identifying variations in the fixed-effects framework come from quarterly average tem-

perature deviation, I first regress the raw number of days in the extreme-heat temperature bin on

the fixed effects in Equation 1.1. Then I examine the distribution of the residuals. A municipality

in a quarter with a “residual heat shock” in the 99th percentile experiences, on average, three

extreme-heat days relative to the fixed-effect averages. Compared with a municipality that does

not experience any extreme-heat days relative to the averages, the difference in the propensity of

manufacturing worker layoff is 2.4 percentage points, equivalent to 33.3% of the average baseline

layoff propensity (7.2 percentage points). This number should be interpreted with caution. Since

the temperature bin setup assumes equal effect of each additional extreme heat day, my point

estimate does not take into account possible harvesting effects.

Given these point estimates, future climate predictions also imply large disparities across

regional local labor markets in Brazil. Recall from Figure 1.4 that during 2040–2059, under the

RCP8.5 scenario, the central city of Palmas is projected to have 69.75 more days annually, or 17.4

more days quarterly of extreme heat. In contrast, the southern city of Sao Paulo incurs only 0.2

more extreme-heat days per quarter. These striking variations in the predicted number of extreme-

heat days indicate large labor productivity gap across regions, and likely large second-moment

differences in the frequency of productivity shocks from extreme heat. While this paper focuses
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only on increases in the second moment, absent adaptive capital and perfect labor mobility, both

changes have important implications for disparity in regional employment outcomes.

These results on the direct labor-productivity channel are robust to a number of alternative

specifications. First, to rule out worker sorting according to heat shocks based on unobserved

time-invariant ability, I test sensitivity to including worker fixed effects. Second, lagged response

to heat shocks during the growing seasons could influence layoff decisions during the nongrowing

seasons if temperature shocks are serially correlated, so I control for lagged weather shocks.

Third, to ensure the results are not driven by a few influential outliers, I run a robustness check

implementing Cook’s distance regression diagnostics. The main results hold under all these

alternative specifications (Figures 1.17, 1.18).

Why might quarterly heat shocks lead to manufacturing layoff? In a simple setting, heat

shocks during the nongrowing seasons lower marginal labor productivity. Incentive providing

firms could adjust by either lowering wages or laying off workers, particularly those with low

labor force attachment.12 This is especially plausible given that the Brazilian labor market during

this period is characterized by high turnover rate. Messina and Sanz-De-Galdeano (2014) show

that wages in Brazil during the 1990s were subject to substantial downward rigidity due to

indexation policies, and that wage adjustment was largely achieved through labor market turnover.

Many other relevant factors could also be at play. For example, the workers laid off could

be of lower quality. Recent papers show that workers are heterogeneous in their sensitivity to

heat or willingness to exert effort under adverse work conditions (Graff Zivin and Neidell, 2014).

Learning a worker’s type could be informative of how she/he responds to other types of shocks

12By law, manufacturing firms in Brazil pay a moderate penalty for firing workers without cause. The cost
amounts to about 8%–19% of the expected UI benefits paid to workers (van Doornik et al., 2017). De facto cost of
firing may be lower for firms further from enforcement offices (Almeida and Carneiro, 2012).
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to workplace conditions. This worker-specific information could be unknown to the employer

ex-ante, but revealed after extreme heat days, leading to layoff of those who experience a larger

productivity drop. Firms may also face cash flow constraints (Chodorow-Reich, 2013). Yet

another possibility is that workers are transitioning into the informal sector. In Section 1.7, I offer

further evidence with respect to some of these factors.

Growing Seasons

Unlike the nongrowing season impact, which is only driven by the direct labor-productivity

channel, heat shocks during growing seasons could influence manufacturing hiring and layoff via

a complex array of transmission mechanisms, both directly and through interindustry linkages.

As we see in Figure 1.11, manufacturing layoff propensity during growing seasons also increases

with temperature, but the magnitude is much smaller at extreme temperature ranges. Replacing

a day with daily mean temperature below 17◦C with one with daily mean temperature beyond

31◦C increases the probability of layoff by 0.12 percentage point, or a 1.5% increase from the

baseline layoff propensity (7.9 percentage points).
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Figure 1.11: Quarterly heat shocks and manufacturing layoff: Growing seasons

Manufacturing Labor Market, Growing Seasons, Interaction Specification - Each point estimate reflects an
individual regression coefficient, βk, where the dependent variable is the binary outcome on worker layoff.
Following Equation 1.2, we estimate the specification where DGS

m,q is a dummy for growing seasons. The
independent variables are the number of days in a quarter with daily mean temperature within a specific
range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The linear combination of coefficient βk +
βs is interpreted as the estimated impact of one additional day with daily mean temperature in temperature
bin k on the propensity of worker layoff, relative to the impact of a day with daily mean temperature less
than 17◦C, in the growing seasons. The regressions include quarter*state, quarter*industry, quarter*year,
state*year, industry*year, state*industry and municipality fixed effects, other weather covariates, and a
rich set of firm and worker-level controls (see text for details). All coefficients are multiplied by 100.
Standard errors are clustered at the meso-region level.

The point estimates in Figure 1.11 can be interpreted as the combined impact of the

direct labor-productivity channel and indirect agricultural channels through interindustry linkages.

Given the fixed-effects framework and controls on state- and industry-specific seasonality, I am

not able to directly compare the magnitude of estimates in Figure 1.10 and Figure 1.11 and infer

the direction of impact through agricultural channels. This is because the identified magnitude

through the direct labor-productivity channel could be different in growing versus nongrowing

seasons due to different baseline temperatures across seasons.
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The existing literature suggests that the indirect agricultural channels could be working

in an opposing direction as the direct labor-productivity channel at extreme temperature ranges.

Colmer (2017) finds that as temperature increases, the manufacturing sector absorbs displaced

agricultural workers during growing seasons. If the incoming workers complement incumbent

manufacturing workers, existing workers might benefit from this agricultural outmigration chan-

nel. If on the other hand, incoming workers substitute, then incumbent manufacturing workers

may experience displacement. In Section 1.5, I offer direct evidence on intersectoral labor reallo-

cation by directly tracking workers across job spells and decomposing postlayoff channels.

1.5 Labor Reallocation

In the presence of significant costs in the job reallocation process, only accounting for

the immediate adjustment margins would lead to underestimation of total worker welfare losses.

The unique employer-employee linkage feature of RAIS allows me to examine individual job

reallocation and better understand the medium-run adjustment margins for heat-related layoffs.

In this section, I present an empirical strategy and provide evidence on manufacturing worker

reallocation between sectors and across municipalities.

1.5.1 Empirical Strategy

To understand heat-related worker reallocation, I construct dummies for seven mutually

exclusive, collectively exhaustive categories for postlayoff transition outcomes. Conditional on

layoff, I assign the worker to be in one of the following seven categories according to reallocated

sector and region: (1) Move to the manufacturing sector in the same municipality within 36

months, (2) Move to the manufacturing sector in a different municipality within 36 months, (3)
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Move to the agricultural sector in the same municipality within 36 months, (4) Move to the

agricultural sector in a different municipality within 36 months, (5) Move to the service/primary

sector in the same municipality within 36 months, (6) Move to the service/primary sector in a

different municipality within 36 months, or (7) Fail to move to any formal employer within 36

months.

The data requirement for studying worker reallocation is high. Using RAIS, I am able to

track each worker across job spells over time, identifying employers by sector and municipality.13

The empirical specification follows the fixed-effect model in Equation 1.3:

Y p
i jmt = ∑βkTempbink

m,t + f (Rainm,t ,Humiditym,t)+α1Xit +θqy +θyr +θqr +Φy j +Φq j

+Φr j + τm + εi jmt

(1.3)

where Y p
i jmt is the binary variable for whether the worker i, employed in industry j, resid-

ing in municipality m, at time t, belongs to a particular postlayoff category p.14 For example,

Y 1
i jmt takes the value of one if a worker experiences a layoff at time t, and subsequently moves

to a manufacturing employer in the same municipality within 36 months, and zero otherwise.

Because Y p
i jmts are conditional on layoff, a worker who has never experienced a layoff during the

sample period will have a value of zero for all the postlayoff transition outcomes.

The rest of this fixed-effect specification is the same as in Equation 1.1. Allowing for

nonlinear effects, Tempbink
m,t is the number of days in a quarter with daily mean temperature in

the specified range k.15 f (Rainm,t ,Humiditym,t) controls for the cumulative rainfall and relative

13To study worker reallocation 3 years postlayoff, I do not consider layoffs that occur during the last 3 years of
my sample period.

14To fully decompose the reallocation channels, we run eight regressions in total.
15Tempbin1, where t < 17◦C, is omitted.
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humidity. Xit is a vector of worker and plant-level controls including worker education, occupation

categories, tenure, potential labor force experience, plant size, and plant-skill composition.

I include Quarter*Sate, State*Year, and Quarter*Year fixed effects to control for state-

specific seasonality in employment, state growth trends, and national business cycles. Indus-

try*Year and Industry*Quarter fixed effects control for industry-growth trends and industry-

specific seasonality. State*Industry fixed effects control for regional industrial patterns of spe-

cialization. Municipality fixed effects control for any time-invariant municipality characteristics.

Standard errors are clustered at the mesoregion-level to allow for spatial and serial correlation.

1.5.2 Results: Reallocation for Manufacturing Workers

I examine medium-run worker-level adjustment margins of heat shocks by looking at

individual job reallocation channels after heat-related layoff. If heat shocks cause contemporane-

ous layoff but workers quickly transit to another formal employer in a short period of time, the

associated medium-run individual welfare loss could be small. However, as I show, a significant

portion of workers who experience layoff due to heat shocks fail to find any formal employer

within 36 months, leading to prolonged individual labor-market impact. In this subsection, I

focus on decomposing manufacturing reallocation outcomes following heat shocks in all seasons.

Appendix B offers further evidence for nongrowing seasons.

As illustrated in Table 1.1, the impact of heat shocks on postlayoff transition outcomes in

columns 1-7 sum to the impact on total layoffs, given in column 2. Swapping a day with daily

mean temperature below 17◦C for one with daily mean temperature beyond 31◦C increases the

total probability of manufacturing layoff by 0.25 percentage points. Note this point estimate is

slightly different from the magnitude in Figure 1.5 because I do not look at layoffs during the last
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3 years to analyze reallocation over the 3-year horizon.

Decomposing the reallocation channels associated with daily mean temperature beyond

31◦C, column 1 shows that 54% (0.14 percentage points) of manufacturing workers laid off due

to extreme heat find a formal-sector manufacturing employer in the same municipality within 36

months. Limited intersectoral and interregional reallocation exists for manufacturing workers laid

off due to heat shocks. Reallocation to the formal agricultural sector in the same municipality is

statistically significant though economically smaller (8%). Based on columns 2, 4, 5, 6, other

reallocation channels are economically small and not statistically significant at the 5% level.

Figures 1.12, 1.13 and 1.14 present visualizations of these results, where the left panels show

transitions within the same municipalities across sectors, and the right panels show interregional

worker reallocation.

Figure 1.15 and column 7 in Table 1.1 illustrate the salience of failure to reallocate for

manufacturing workers laid off due to heat shocks. A significant 24.3% of all manufacturing

workers who experienced heat-related layoffs fail to find any formal sector employment within

36 months. Swapping a day with daily mean temperatures below 17◦C for one with daily mean

temperatures beyond 31◦C increases the propensity of manufacturing layoff followed by failure

to reallocate within 3 years by 0.06 percentage points. This is equivalent to 0.8% of the baseline

layoff propensity.
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Table 1.1: Quarterly heat shocks and manuf. worker reallocation, all seasons

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff

b/se b/se b/se b/se b/se b/se b/se b/se
Temp(17-20) -0.00946* -0.00220** -0.00194** -0.00190** -0.00107 -0.00226* -0.00180 -0.02064**

(0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.008)

Temp(20-23) -0.00526 -0.00154 -0.00089 -0.00143 0.00010 -0.00240 -0.00101 -0.01243
(0.006) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.011)

Temp(20-25) 0.00799 -0.00022 -0.00052 0.00081 0.00245* -0.00245 -0.00014 0.00793
(0.007) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.012)

Temp(25-27) 0.00198 -0.00118 -0.00081 0.00015 0.00146 0.00039 0.00253 0.00451
(0.007) (0.002) (0.001) (0.001) (0.002) (0.002) (0.003) (0.013)

Temp(27-29) 0.02413** 0.00166 0.00117 0.00336** 0.00320 0.00628*** 0.00380 0.04359**
(0.010) (0.002) (0.001) (0.002) (0.002) (0.002) (0.003) (0.017)

Temp(29-31) 0.03784*** 0.00106 0.00420** 0.00454* 0.00478 0.00855*** 0.01252** 0.07350***
(0.014) (0.002) (0.002) (0.002) (0.003) (0.003) (0.005) (0.024)

Temp(>31) 0.13816* 0.01057 0.02177*** 0.00536 0.00705 0.00818 0.06142* 0.25250**
(0.075) (0.009) (0.007) (0.003) (0.006) (0.008) (0.032) (0.127)

N 16322039 16322039 16322039 16322039 16322039 16322039 16322039 16322039
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter × State, State × Year, Quarter × Year, Prod × Quarter, Prod × Year, Prod × State

Manufacturing Reallocation, All Seasons—Following Equation 1.3, the dependent variable Y p
i jmt is the binary variable for

whether the worker belongs to a particular postlayoff category, p. The independent variables are the numbers of days in a quarter
with daily mean temperature within a specific range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The outcomes for
Columns 1–8 are (1)failure to reallocate to any formal employer, within 36 months. (2)probability of total layoffs (3)reallocate
to the manufacturing sector, in the same municipality, within 36 months; (4) reallocate to the manufacturing sector, in a different
municipality, within 36 months; (5) reallocate to the agricultural sector, in the same municipality, within 36 months; (6) reallocate
to the agricultural sector, in a different municipality, within 36 months; (7) reallocate to the service/primary sector, in the same
municipality, within 36 months; (8) reallocate to the service/primary sector, in a different municipality, within 36 months. All
regressions include quarter × state, quarter × industry, quarter × year, state × year, industry × year, state × industry, and
municipality fixed effects, along with other weather covariates and a rich set of firm- and worker-level controls (see text for
details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level. *** Significant at 1%, **
5%, * 10%.
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Figure 1.12: Quarterly heat shocks and manufacturing workers layoff, with reallocation to
manufacturing within 36 months

Manufacturing Reallocation, All Seasons—Following Equation 1.3, the dependent variable Y p
i jmt is the

binary variable for whether a worker belongs to a particular postlayoff category p. The independent
variables are the number of days in a quarter with daily mean temperature in a specific range, Tempbink

m,t .
The “<17◦C” bin is the omitted category. The outcomes are (Left Panel) Reallocate to the manufacturing
sector in the same municipality, within 36 months and (Right Panel) Reallocate to the manufacturing
sector in a different municipality within 36 months. All regressions include quarter*state, quarter*industry,
quarter*year, state*year, industry*year, state*industry, and municipality fixed effects, other weather
covariates, and a rich set of firm and worker-level controls (see text for details). All coefficients are
multiplied by 100. Standard errors are clustered at the mesoregion level.

Figure 1.13: Quarterly heat shocks and manufacturing workers layoff, with reallocation to
agriculture within 36 months

Manufacturing Reallocation, All Seasons—Following Equation 1.3, the dependent variable Y p
i jmt is the

binary variable for whether the worker belongs to a particular postlayoff category p. The independent
variables are the number of days in a quarter with daily mean temperatures in a specific range, Tempbink

m,t .
The “<17◦C” bin is the omitted category. The outcomes are (Left Panel) Reallocate to the agricultural
sector in the same municipality within 36 months and (Right Panel) Reallocate to the agricultural sector
in a different municipality within 36 months. All regressions include quarter*state, quarter*industry,
quarter*year, state*year, industry*year, state*industry, and municipality fixed effects, other weather
covariates, and a rich set of firm and worker-level controls (see text for details). All coefficients are
multiplied by 100. Standard errors are clustered at the mesoregion level.
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Figure 1.14: Quarterly heat shocks and manufacturing workers layoff, with reallocation to
Services/Primary within 36 months

Manufacturing Reallocation, All Seasons—Following Equation 1.3, the dependent variable Y p
i jmt is the

binary variable for whether a worker belongs to a particular postlayoff category p. The independent
variables are the number of days in a quarter with daily mean temperatures in a specific range, Tempbink

m,t .
The “<17◦C” bin is the omitted category. The outcomes are (Left Panel) Reallocate to the services
sector in the same municipality within 36 months and (Right Panel) Reallocate to the services sector
in a different municipality within 36 months. All regressions include quarter*state, quarter*industry,
quarter*year, state*year, industry*year, state*industry, and municipality fixed effects, other weather
covariates, and a rich set of firm and worker-level controls (see text for details). All coefficients are
multiplied by 100. Standard errors are clustered at the mesoregion level.

Figure 1.15: Quarterly heat shocks and manufacturing workers layoff: failure to reallocate
within 36 months

Manufacturing Reallocation Failure, All Seasons—Each point estimate reflects an individual regression
coefficient, βk, following Equation 1.3, where the dependent variable is the binary outcome on whether the
worker experiences a layoff followed by failure to reallocate within 36 months. The independent variables
are the number of days in a quarter with daily mean temperature in a specific range, Tempbink

m,t . The
“<17◦C” bin is the omitted category. The regressions include quarter*state, quarter*industry, quarter*year,
state*year, industry*year, state*industry, and municipality fixed effects, other weather covariates, and a
rich set of firm and worker-level controls (see text for details). All coefficients are multiplied by 100.
Standard errors are clustered at the mesoregion level.
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A number of reasons could explain this high rate of failure to reallocate due to heat shocks.

First, after layoffs, other employers may take it as a signal that the worker is a low type and are

therefore reluctant to hire. However, this alone does not seem sufficient to explain the high rate

of prolonged failure to reallocate even in another sector or municipality within 3 years. Papers

examining labor reallocation after trade liberalization16 suggest that intersectoral reallocation

frictions are much more pronounced in developing countries such as Brazil relative to developed

countries such as the U.S. Compared with more permanent trade liberalization, here I show

that even transitory temperature shocks lead to significant failure to reallocate, possibly due to

frictions in the job rematching process.

Third, transitioning to informality could be an important aspect. Workers not reallocating

to another formal-sector job after heat-related layoff could be either unemployed or informally

employed. Dix-Carneiro and Kovak (2017b) find that the informal sector is an important absorber

of formal workers laid off during trade liberalization. Formal jobs are generally considered to

be of higher quality, offering more benefits and greater labor production than informal jobs (La

Porta and Sheleifer, 2014). Transitioning to the informal sector under extreme heat shocks could

have important worker-welfare implications; an area for future research.

Understanding worker reallocation better quantifies the full cost of climate change for the

labor market. Especially in developing countries, the long-term formal labor-market “scarring”

associated with heat shocks likely implies more pronounced individual welfare losses. Finally,

failure to reallocate happens for both growing and nongrowing season heat shocks. Details appear

in Section 1.10.

16Dix-Carneiro (2014), Goldberg and Pavcnik (2007), Autor et al. (2014).
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1.6 Heterogeneity

Having examined mechanisms and labor reallocation, I now turn to the distributional

impact of temperature shocks, identifying the most vulnerable groups in the manufacturing

workforce. In addition to the worker-level characteristics in RAIS, I further link variables from

the Dictionary of Occupation Titles (DOT) to study heterogeneity by occupation-task intensity.

Meta-analysis (Hancock et al., 2007) in the ergonomics literature suggests that thermal

stress has the highest impact on psychomotor and motor tasks, and the lowest impact on cognitive

skills. In more routine-manual task-intensive occupations, workers’ heterogeneous sensitivity to

heat may also be better revealed. So the hypothesis is that through the direct labor-productivity

channel, individual employment effects are significantly higher for workers in routine-manual-

intensive occupations.

1.6.1 Empirical Strategy

I follow Autor, Levy, and Murnane (2003) in using data from the DOT to construct

occupational task-intensity measures for the U.S. Census Occupational Codes. To match the

U.S. Census Occupational Codes to the Brazilian Occupational codes, I first concord across time

using data provided by Autor and Dorn (2013), and then map the 2000 U.S. Census Occupational

Codes to the International Standard Classification of Occupations (ISCO-88), provided by the

Center for Longitudinal Studies in UCL. Finally, the concordance from ISCO-88 to the Brazilian

occupational codes CBO is by Muendler et al. (2004). Assuming that Brazil and the U.S. share

similar relative task intensity across occupations, I obtain an index for routine-manual task inten-

sity (RMTI) based on the DOT measure of Finger Dexterity (Autor, Levy and Murnane, 2003).
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Table 1.2: Examples of occupations by RMTI

Occupations: Routine-manual task intensity

High Low

Fabric treating, printing workers Mathematicians and actuaries
Spinners, twisters, and related workers Production and research managers

Lace makers, weavers, dyers, Machine maintenance mechanics
Dressmakers Cabinet makers

Telephone, telegraph operators, Plastic product workers

Based on Brazilian CBO three-digit occupational codes in RAIS.

Table 1.2 gives some common examples of occupations (CBO, 3-digit) in RAIS with

the highest and lowest measures of routine-manual-task intensity. Highly routine manual task-

intensive occupations such as fabric treating and weavers require more motor or psychomotor

skills, whereas low routine-manual-task occupations require more cognitive skills.

The estimation framework follows Equation 1.4 and allows for heterogeneous impact

along a variety of worker and plant attributes:

Yi jmt = ∑β1kRMT Iit ∗Tempbink
m,t +∑β2kZit ∗Tempbink

m,t +∑β3k ∗Tempbink
m,t

+β40RMT Iit ∗Humm,t +β41Zit ∗Humm,t +β50RMT Iit ∗Rainm,t +β51Zit ∗Rainm,t

+ f (Rainm,t ,Humm,t)+α1Zit +θqy +θyr +θqr +Φy j +Φq j +Φr j + τm + εi jmt

(1.4)

Yi jmt is the binary outcome for worker layoff. Weather variables on temperature, rainfall,

and humidity are defined as before. RMT Iit measures worker i’s occupational routine-manual-task

intensity. Zit is a vector of worker-level covariates including wage, gender, tenure, and size of

the plant. Both RMT Iit and Zit are standardized. Xit are other worker or plant-level controls.

Fixed effects are included at the Quarter*Year, Year*State, Quarter*State, Industry*Year, In-

dustry*Quarter, State*Industry, and Municipality level. Standard errors are clustered at the

mesoregion-level.
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1.6.2 Results

The key coefficients of interest are β1k and β2k, capturing the differential impact of heat

shocks interacting with worker attributes on initial occupational-task intensity, wage, gender,

plant size, and tenure. Table 1.3 presents the key coefficients focusing on the interaction with the

highest temperature bin (> 31◦C). I separately examine heterogeneous effects in the nongrowing

seasons and in the full sample.

Column 1 shows the estimates for manufacturing worker layoff during the nongrowing

seasons, where only the direct labor productivity channel is at work. Here the hypothesis is that

as temperatures increase, labor productivity in more routine-manual-intensive tasks will see a

larger decrease. Consistent with the ergonomics literature on thermal stress, workers in routine-

manual-task-intensive occupations are more likely to experience heat-related layoff. Having a

routine-manual-task-intensity measure of one standard deviation beyond the mean increases the

effect of an additional extreme heat day by 0.27 percentage points. We also see that the impact of

heat shocks are more pronounced for those with less tenure at the plant, which could indicate that

workers laid off are more temporary or have lower labor force attachment.

In the full sample presented in column 2, a differential effect no longer emerges according

to occupational routine-manual-task intensity. Because in the full sample manufacturing workers

are laid off from a combination of direct labor productivity and indirect agricultural channels, a

pronounced differential impact is unlikely to occur by occupation. Finally, it is important to note

that the source of heterogeneity is consistent with, but not limited to, the direct labor productivity

channel. Differential coverage of climate controls in the same establishment, observed in Indian

diamond-processing factories by Somanathan et al. (2014), for example, could also explain this
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Table 1.3: Manufacturing layoffs: Worker-level heterogeneity

(1) (2)
layoff layoff
b/se b/se

Temp(>31) 0.0271 0.1037
(0.092) (0.072)

RMTI*Temp(>31) 0.2685** 0.0625
(0.103) (0.077)

Tenure*Temp(>31) -0.1443* -0.1162*
(0.083) (0.062)

Observations 1061664 14437797
Subsample NGSeasons Full
Clustering meso
Other FEs Quarter*State, State*Year, Quarter*Year, Prod*Quarter, Prod*Year, Prod*State
Y(mean) 6.304 6.422

Manufacturing Labor Market, Heterogeneity—Following Equation 1.4, the dependent variable Y p
i jmt is the

binary variable for worker layoff. The independent variables, “RMTI ×Tempbink,” are the worker’s occu-
pational routine-manual task intensity (normalized), interacted with the numbers of days in a quarter with
daily mean temperature within a specific range k. The ”< 17◦C” bin is the omitted category. All regressions
include quarter × state, quarter × industry, quarter × year, state × year, industry × year, state × industry, and
municipality fixed effects, along with weather covariates and a rich set of firm- and worker-level controls (see
text for details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level.
*** Significant at 1%, ** 5%, * 10%.

heterogeneity. Alternatively, if occupations differ in the ease with which workers can switch to the

informal sector, one could also observe a similar differential impact by occupational-task intensity.

Overall, heterogeneity analysis in this section informs identification of vulnerable groups in

the manufacturing workforce most affected by heat shocks, and reveals potential distributional

impact.

1.7 Additional Evidence

In Section 1.4, I briefly reviewed some possible scenarios in which transitory shocks

could lead to significant increases in manufacturing layoff. The simplest explanation is if firing

and hiring costs are not prohibitively high, which I test here using Bartik-type shocks in output.

Other relevant factors include asymmetrical adjustment costs leading to concave hiring rules (Ilut

et al., 2018), worker heterogeneity in heat sensitivity, or willingness to exert effort under heat
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exposure (Graff Zivin and Neidell, 2014), and downward nominal wage rigidity. In this section, I

also explore the role of nominal wage rigidity using historic inflation spikes in Brazil.

1.7.1 The Role of Nominal Wage Rigidity

Brazil experienced high and volatile episodes of inflation after the 1960s. I exploit

the inflation spike in the 1990s to check if downward nominal wage rigidity could cause the

employment effect of heat shocks. Intuitively, firms may choose to lay off workers when wages

are rigid downwards. During periods of high inflation, however, real wages are effectively lower,

leading to smaller employment effects of extreme heat shocks. The effect of inflation would not be

present if wages are always indexed. Throughout 1985–1999, however, the Brazilian government

periodically froze wages and stopped indexation to lower inflation expectations (Duryea and

Arends-Kuenning, 2003).

Yi jmt = ∑β1kIn f lationt ∗Tempbink
m,t +∑β2k ∗Tempbink

m,t +β3In f lationt ∗Humm,t

+β4In f lationt ∗Rainm,t + f (Rainm,t ,Humm,t)+θqy +θyr +θqr +Φy j +Φq j + τm + εi jmt

(1.5)

Yi jmt is the binary outcome for worker layoff. Weather variables of temperature, rainfall,

and humidity are defined as before. In f lationt is quarterly inflation measured by the Brazil-

ian national price index, INPC.17 Fixed effects are included at the Quarter*Year, Year*State,

Quarter*State, Industry*Year, Industry*Quarter, State*Quarter, and Municipality level. Standard

errors are clustered at the mesoregion level.

17These data are made public by Marc Muendler, http://econweb.ucsd.edu/muendler/.
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Figure 1.16: Quarterly Brazilian inflation index

This chart shows quarterly inflation measured by the Brazilian national price index, INPC, from
1985 to 2002. Raw data are made public by Marc Muendler, http://econweb.ucsd.edu/muendler/.

Figure 1.16 plots the “hyperinflation” period in Brazil using the quarterly inflation index

from 1986 to 2002. I match the data from 1990 to 2000 with RAIS and exploit the inflation

spike from 1990 to 1995. I interpose the inflation index with heat shocks to see whether the

employment impact of extreme heat is smaller during high inflation. My intuition indicates

that the employment effect of a labor productivity drop is larger when nominal wages are rigid

downward. By effectively lowering real wages, higher inflation dampens the effect on worker lay-

off. Kaur (2018) pioneered this test and found a similar mechanism in Indian village labor markets.

Table 1.4 shows the results of nongrowing versus growing seasons. Here I focus on the

effect of an additional extreme heat day, with daily mean temperatures beyond 31 degrees Celsius.

Column 1 shows that during nongrowing seasons, swapping a day with daily mean temperatures

below 17◦C for one with daily mean temperatures beyond 31◦C increases the probability of layoff

by 1.4 percentage points, or a 19.45% increase of the baseline layoff propensity (7.17 percentage

points). The effect does not vary with inflation, suggesting downward nominal wage rigidity is
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Table 1.4: Heat shocks and nominal wage rigidity: Growing vs. nongrowing seasons

(1) (2)
Layoff Layoff

b/se b/se
Temp(>31) 1.3946*** 0.1245**

(0.358) (0.049)

Temp(>31) × Inflation 0.2678 -0.0956**
(0.278) (0.037)

Humidity -0.0113 -0.0047
(0.056) (0.011)

Humidity × Inflation -0.0775 -0.0100
(0.068) (0.016)

Observations 1,377,060 16,182,508
Municipality FE Yes Yes
Subsample NGSeasons GSeasons
Clustering meso meso
Y (mean) 7.17 7.75

Manufacturing Labor Market, Nominal Wage Rigidity—
Following Equation 1.5, the dependent variable, Y p

i jmt , is the
binary variable for worker layoff. The key independent vari-
ables, Tempbink× inflation, are the number of days in a quarter
with daily mean temperature within a specific range k, inter-
acted with the quarterly inflation index. The “< 17◦C” bin is
the omitted category. All regressions include quarter × state,
quarter × industry, quarter × year, state × year, industry ×
year, state × industry, and municipality fixed effects, along
with weather covariates and a rich set of firm- and worker-level
controls (see text for details). All coefficients are multiplied
by 100. Standard errors are clustered at the mesoregion level.
*** Significant at 1%, ** 5%, * 10%.
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not a dominant cause of the manufacturing layoffs observed in Section 1.4.2.1. That is, even

when the wage floor is flexible, firms still choose to lay off workers under extreme heat during

nongrowing seasons. One possibility consistent with this evidence is if workers who are more

heat sensitive or who exert less effort when exposed to heat are revealed after heat shocks, they

may be laid off regardless of wage rigidity. In contrast, Column 2 shows that layoffs during

growing seasons are dampened during high inflation. Intuitively, growing-season layoffs could be

caused by lower local demand or higher input price from indirect agricultural channels. Firms are

less likely to lay off workers when inflation enables downward real-wage adjustment.

1.7.2 Bartik Shocks in Output

Whether a significant labor productivity shock caused by heat stress would lead to worker

layoff depends on specific labor-market institutions in Brazil. In this subsection, I provide relevant

institutional details on hiring and firing costs, and check the ease with which firms lay off workers

in the presence of temporary output contraction.

Firms in Brazil in general face moderate firing and hiring costs. In the case of layoffs

without a special cause, the firm pays 40% of the accumulated job security fund (FGTS) upon

layoff (Menezes-Filho and Muendler, 2011), which is about 0.5 month’s salary for the average

person being laid off in my sample.18 The firm’s penalty for laying off a worker is around 8–19%

of the UI benefit paid to the worker (Van Doornik et al., 2017). However, Almeida and Carneiro

(2012) also suggest that due to imperfect enforcement, the de facto cost of firing a worker may be

less than it appears on paper.

To check the ease with which firms lay off workers in Brazil, I estimate the impact of

18The median tenure of workers at the time of layoff in my sample is around 15 months.
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Bartik output shocks on firm employment following an approach similar to Hershbein and Kahn

(2018). If layoff decisions respond to the regional share of national changes in output, the firing

costs are unlikely to be prohibitively high. I use the full sample data in RAIS to construct

regional industry employment weights and the Industrial Physical Production Index from the

PIM (IBGE) for industry-specific changes in national output during the years 1992–2000.19

φm,k,τ stands for the regional industry employment share of industry k in municipality m in a

prior year (1989). lnBkt is the log of national output in industry k in year t. The Bartik shock in

output for municipality m in year t, ∆Bmt , is calculated following Equation 1.6. I estimate how

the probability of worker layoff responds to Bartik shocks in output following the fixed-effect

framework in Equation 1.7.

∆Bmt =
k

∑φm,k,τ(lnBkt− lnBk,t−1) (1.6)

Yikmt = β1∆Bmt +α1Xit +θkt +Φks + τm + τi + εikmt (1.7)

Yi jmt is the binary outcome for worker layoff at the yearly frequency. Xit is a vector of

worker and plant-level controls. I also include controls for industry growth trends, industry spe-

cializations, and municipality and worker fixed effects. Standard errors are clustered at the worker

and municipality levels. To examine layoff response to output contraction versus expansion, I

look at the subsample where the Bartik shock is negative rather than positive. Table 1.5 shows

that the probability of layoffs responds strongly to annual output contraction and less so to output

expansion, consistent with firms having concave hiring rules (Ilut et al., 2018). In particular, a

one-percentage-point (relative) regional output reduction leads to a 0.57 percentage point increase

in the probability of worker layoff, whereas an output expansion of the same magnitude only

leads to a 0.16 percentage point decrease in the propensity of layoff.

19The index is not available for 1991.

46



Table 1.5: Manufacturing layoff and yearly Bartik shock in output

(1) (2)
Layoff Layoff

b/se b/se
∆Bout put

mt -0.5659*** -0.1565**
(0.153) (0.075)

Observations 1,488,964 2,537,323
Worker FE Yes Yes
Municipality FE Yes Yes
Subsample ∆Bmt < 0 ∆Bmt > 0
Clustering Worker, Municipality

Manufacturing Labor Market—Following Equa-
tion 1.7, the dependent variable, Yi jmt , is the binary
outcome for worker layoff at the yearly frequency.
The independent variable, ∆Bmt , is the municipality-
level Bartik shock in output (see text for details).
All regressions include industry × year, state × in-
dustry, worker, and municipality fixed effects, along
with a rich set of firm- and worker-level controls.
*** Significant at 1%, ** 5%, * 10%.
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1.8 Conclusion

Climate change poses significant challenges to manufacturing labor markets in developing

countries, especially given future climate predictions. In this paper, I examine the short- and

medium-run employment adjustment margins of heat shocks through individual worker layoff,

hiring, and job reallocation. By focusing on heat shocks during the nongrowing seasons of each

local labor market in Brazil, I show that the direct labor-productivity channel associated with

extreme heat days leads to significant worker layoff. These effects are more pronounced for

workers in more routine manual task-intensive occupations. Over time, a significant 24.3% of

all manufacturing workers who were laid off due to quarterly heat shocks failed to find another

formal job within 36 months, suggesting large worker-level costs over the medium run.

I address several natural extensions in ongoing work. The first is to further understand

how climate change affects worker transition into informality and associated implications for

worker welfare. Second, I expand work on various adjustment margins that include the firm,

industry, and regional perspectives, which helps better explain the adjustment process in general

equilibrium. Finally, given more pronounced impact on workers in lower skilled occupations

and the large fraction of workers near minimum wage in Brazil, the next step is to quantify how

existing social welfare programs interact with climate change and how to better design such

programs.

Findings from this research inform a more comprehensive cost assessment of climate-

change damages. Worker-level evidence is one step closer to identifying certain groups in the

workforce who are more vulnerable to these dramatic environmental changes, and to targeting

mechanism-specific interventions. This paper also shows that existing labor-market transitional

costs in developing countries could further interact with heat shocks and exacerbate worker
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welfare loss. Together, this micro-level evidence suggests the importance of incorporating sector,

region, and worker-specific estimates of climate-change damages, building on existing tools such

as the Integrated Assessment Models (Nordhaus, 2017).
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1.10 Additional Figures and Tables

Figure 1.17: Manufacturing worker layoff: nongrowing seasons, with worker fixed effects and
lagged weather shocks

Manufacturing Labor Market, Nongrowing Seasons, Worker FE, Lags - Each point estimate reflects an
individual regression coefficient, βk, following Equation 1.1, where the dependent variable is the binary
outcome on worker layoff. The independent variables are the number of days in a quarter with daily
mean temperature within a specific range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The
coefficient βk is interpreted as the estimated impact of one additional day with daily mean temperature
in temperature bin k on the propensity of worker layoff, relative to the impact of a day with daily
mean temperature less than 17◦C, in the nongrowing seasons. The regressions include quarter*state,
quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed effects,
other weather covariates, and a rich set of firm and worker-level controls. In addition, this specification
controls for worker fixed effects and average weather shocks for the past three quarters. All coefficients
are multiplied by 100. Standard errors are clustered at the meso-region level.
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Figure 1.18: Manufacturing worker layoff: nongrowing seasons, excluding outliers (cooksd)

Manufacturing Labor Market, Nongrowing Seasons, Cook’s Distance - Each point estimate reflects an
individual regression coefficient, βk, following Equation 1.1, where the dependent variable is the binary
outcome on worker layoff. The independent variables are the number of days in a quarter with daily mean
temperature within a specific range, Tempbink

m,t . The “<17◦C” bin is the omitted category. We drop
influential outliers with Cook’s distance larger than 4/n, where n is the total number of observations. The
coefficient βk is interpreted as the estimated impact of one additional day with daily mean temperature
in temperature bin k on the propensity of worker layoff, relative to the impact of a day with daily
mean temperature less than 17◦C, in the nongrowing seasons. The regressions include quarter*state,
quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed effects,
other weather covariates, and a rich set of firm and worker-level controls. In addition, this specification
controls for worker fixed effects and average weather shocks for the past three quarters. All coefficients
are multiplied by 100. Standard errors are clustered at the meso-region level.
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Table 1.6: Quarterly heat shocks and manuf. worker reallocation, nongrowing seasons

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff

b/se b/se b/se b/se b/se b/se b/se b/se

Temp(>31) 0.530*** 0.053** 0.019*** 0.006 0.027** 0.033 0.283*** 0.952***
(0.133) (0.024) (0.007) (0.006) (0.012) (0.021) (0.069) (0.251)

Decomposition 55.7% 5.6% 2.1% 0.6% 2.9% 3.45% 29.7% 100%

N 16322039 16322039 16322039 16322039 16322039 16322039 16322039 16322039
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter × State, State × Year, Quarter × Year, Prod × Quarter, Prod × Year, Prod × State

Manufacturing Reallocation, Nongrowing Seasons—Following Equation 1.3, the dependent variable Y p
i jmt is the binary

variable for whether the worker belongs to a particular postlayoff category, p. The independent variables are the
numbers of days in a quarter with daily mean temperature within a specific range, Tempbink

m,t . The “<17◦C” bin
is the omitted category. The outcomes for Columns 1–7 are (1) reallocate to the manufacturing sector, in the same
municipality, within 36 months; (2) reallocate to the manufacturing sector, in a different municipality, within 36
months; (3) reallocate to the agricultural sector, in the same municipality, within 36 months; (4) reallocate to the
agricultural sector, in a different municipality, within 36 months; (5) reallocate to the service/primary sector, in the
same municipality, within 36 months; (6) reallocate to the service/primary sector, in a different municipality, within 36
months; and (7) failure to reallocate to any formal employer, within 36 months. All regressions include quarter × state,
quarter× industry, quarter× year, state× year, industry× year, state× industry, and municipality fixed effects, along
with other weather covariates and a rich set of firm- and worker-level controls (see text for details). All coefficients are
multiplied by 100. Standard errors are clustered at the mesoregion level. *** Significant at 1%, ** 5%, * 10%.
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1.11 Agricultural Layoff and Hiring: Nongrowing seasons vs.

Growing seasons

I briefly examine the formal agricultural labor-market impact to verify the underlying

assumption for isolating the direct labor productivity channel. Recall that we identify the direct

labor productivity channel by focusing on heat shocks during the nongrowing seasons. A key

assumption here is that heat shocks during the nongrowing seasons have no significant impact on

agricultural outcomes.

We verify this by looking at agricultural layoff and hiring during growing versus non-

growing seasons. As shown in the left panels of Figure 1.19 and Figure 1.20, heat shocks during

growing seasons increase the propensity of agricultural layoff and reduce the propensity of hiring,

consistent with the literature on temperature and crop yield.20 Since crop yield decreases with

temperature, there would be less demand for agricultural workers.

Crucial for our identification assumption, the right panels of Figure 1.19 and Figure 1.20

show that heat shocks during nongrowing seasons have no significant impact on the agricultural

labor market. This is expected if there is little agricultural crop growing activity which is

temperature sensitive occurring outside the growing seasons.21 Together, these results are

consistent with the identifying assumption that heat shocks during nongrowing seasons do not

operate through agricultural channels. Finally, I do additional robustness check focusing on

sugarcane workers only. In Brazil, the sugarcane sector is unionized, 70% formal, and therefore

has better coverage in RAIS. The findings are similar (Figure 1.21).

20(Schlenker and Roberts, 2009; Lobell et al., 2011)
21There may still be agricultural workers employed during the nongrowing seasons, engaging in marketing, and

looking for opportunities to sale of their crops.
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Figure 1.19: Quarterly heat shocks and agricultural layoff

Agricultural Labor Market, Growing seasons versus Nongrowing seasons - Each point estimate reflects an
individual regression coefficient, βk, following Equation 1.1, where the dependent variable is the binary
outcome on worker layoff. The independent variables are the number of days in a quarter with daily
mean temperature within a specific range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The
coefficient βk is interpreted as the estimated impact of one additional day with daily mean temperature
in temperature bin k on the propensity of worker layoff, relative to the impact of a day with daily
mean temperature less than 17◦C. The regressions include quarter*state, quarter*industry, quarter*year,
state*year, industry*year, state*industry and municipality fixed effects, other weather covariates, and
a rich set of firm and worker-level controls. All coefficients are multiplied by 100. Standard errors are
clustered at the meso-region level.
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Figure 1.20: Quarterly heat shocks and agricultural hiring

Agricultural Labor Market, Growing seasons versus Nongrowing seasons - Each point estimate reflects an
individual regression coefficient, βk, following Equation 1.1. The dependent variable is region-industry
hiring share, constructed by aggregating the total number of individual accession in each quarter at the
municipality-industry level, normalized by each municipality’s population in 1999. The independent
variables are the number of days in a quarter with daily mean temperature within a specific range,
Tempbink

m,t . The “<17◦C” bin is the omitted category. The coefficient βk is interpreted as the estimated
impact of one additional day with daily mean temperature in temperature bin k on the hiring share, relative
to the impact of a day with daily mean temperature less than 17◦C. The regressions include quarter*state,
quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed effects,
and other weather covariates (see text for details). Standard errors are clustered at the meso-region level.
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Figure 1.21: Sugarcane worker layoff: growing versus nongrowing seasons

Sugarcane Labor Market, Growing seasons versus Nongrowing seasons - Each point estimate reflects an
individual regression coefficient, βk, following Equation 1.1, where the dependent variable is the binary
outcome on worker layoff. The independent variables are the number of days in a quarter with daily
mean temperature within a specific range, Tempbink

m,t . The “<17◦C” bin is the omitted category. The
coefficient βk is interpreted as the estimated impact of one additional day with daily mean temperature
in temperature bin k on the propensity of worker layoff, relative to the impact of a day with daily
mean temperature less than 17◦C. The regressions include quarter*state, quarter*industry, quarter*year,
state*year, industry*year, state*industry and municipality fixed effects, other weather covariates, and
a rich set of firm and worker-level controls. All coefficients are multiplied by 100. Standard errors are
clustered at the meso-region level.
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1.12 Reallocation for Agricultural Workers

Table 1.7 shows agricultural worker reallocation post layoff, due to heat shocks during

the growing seasons. More intersectoral reallocation happens for agricultural workers, possibly

because manufacturing is better represented in the formal sectors. As shown in column 3 and 4 in

Table 1.7, 54.1% of all heat-related layoffs find another agricultural employment within the same

municipality, while 19.7% workers find another agricultural employment in a different municipal-

ity, both within three years. Based on column 1 and 2, roughly 16.8% of heat-related agricultural

layoffs find the next job in manufacturing, either in the same or a different municipality.

Table 1.7: Quarterly Heat Shocks and Agr. Worker Reallocation, GS

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff

b/se b/se b/se b/se b/se b/se b/se b/se
Temp(17-20) 0.00098 -0.00006 -0.01737 -0.01957*** -0.00507*** -0.01247*** -0.01427** -0.06783**

(0.002) (0.003) (0.016) (0.007) (0.002) (0.003) (0.007) (0.032)

Temp(20-23) -0.00102 0.00091 0.00112 -0.00768 -0.00499*** -0.00449 -0.01079 -0.02694
(0.003) (0.004) (0.017) (0.010) (0.002) (0.005) (0.009) (0.040)

Temp(23-25) 0.00404 0.00641 0.02841 -0.00115 -0.00619** -0.00371 -0.01274 0.01506
(0.003) (0.004) (0.019) (0.010) (0.002) (0.005) (0.009) (0.043)

Temp(25-27) 0.00785** 0.01090** 0.05281** 0.01085 -0.00350 0.00061 -0.00215 0.07736
(0.004) (0.005) (0.026) (0.011) (0.003) (0.006) (0.011) (0.057)

Temp(27-29) 0.01351** 0.02196*** 0.11323*** 0.03619** 0.00072 0.00732 0.01289 0.20582***
(0.005) (0.006) (0.038) (0.015) (0.003) (0.008) (0.014) (0.077)

Temp(29-31) 0.02148** 0.02493*** 0.13927*** 0.03694** -0.01006 0.00413 0.01723 0.23393**
(0.010) (0.007) (0.052) (0.018) (0.007) (0.009) (0.017) (0.098)

Temp(>31) 0.02149* 0.04504*** 0.21399*** 0.07791*** 0.00006 0.01003 0.02727 0.39579***
(0.012) (0.011) (0.076) (0.023) (0.007) (0.012) (0.027) (0.136)

N 1677744 1677744 1677744 1677744 1677744 1677744 1677744 1677744
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter*State, State*Year, Quarter*Year, Prod*Quarter, Prod*Year, Prod*State

Agricultural Reallocation, Growing Seasons - Following equation 1.3, the dependent variable Y p
i jmt is the binary variable for whether

the worker belongs to a particular post-layoff category p. The independent variables are the number of days in a quarter with daily
mean temperature within a specific range, Tempbink

m,t . The ”<17◦C” bin is the omitted category. The outcome for column 1-7
are: (1) Reallocate to the manufacturing sector, in the same municipality, within 36 months (2) Reallocate to the manufacturing
sector, in a different municipality, within 36 months (3) Reallocate to the agricultural sector, in the same municipality, within 36
months (4) Reallocate to the agricultural sector, in a different municipality, within 36 months (5) Reallocate to the service/primary
sector, in the same municipality, within 36 months (6) Reallocate to the service/primary sector, in a different municipality, within 36
months (7) Failure to reallocate to any formal employer, within 36 months. All regressions include quarter*state, quarter*industry,
quarter*year, state*year, industry*year, state*industry and municipality fixed effects, other weather covariates, and a rich set of firm
and worker-level controls (see text for details). All coefficients are multiplied by 100. Standard errors are clustered at the meso-region
level. *** Significant at the 1 percent, ** 5 percent, * 10 percent.
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The majority of the Brazilian agricultural workers are informal and therefore not covered

in RAIS. Alternatively, I focus only on sugarcane workers who are highly unionized and better

represented in the formal sector (Table 1.8). We see around 72% sugarcane workers reallocate

within the agricultural sector in the same or a different municipality. 7.2% and 7.3% reallocate

to manufacturing or services in a different municipality. Although failure to reallocate is not

significant for the full agricultural sample, a significant 11.2% sugarcane workers fail to find any

formal sector employment within the next three years. This failure rate is much lower compared

to manufacturing. Out of the many possible explanations, we might expect agricultural workers

to be more willing to switch to manufacturing and services due to a higher wage premium, while

manufacturing workers may be less willing to switch to agriculture.

Table 1.8: Quarterly Heat Shocks and Sugarcane Worker Reallocation, GS

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff

b/se b/se b/se b/se b/se b/se b/se b/se
Temp(17-20) 0.03543** 0.01736 0.05293 -0.01565 -0.00238 0.00486 -0.00772 0.08482

(0.015) (0.017) (0.067) (0.030) (0.006) (0.009) (0.011) (0.108)

Temp(20-23) -0.01328 0.01325 0.10262 0.03931 -0.00665 0.01228 0.00648 0.15401
(0.021) (0.020) (0.075) (0.046) (0.007) (0.013) (0.019) (0.157)

Temp(23-25) 0.01509 0.04480** 0.19791* 0.05176 -0.02086 0.02409 0.01424 0.32702*
(0.022) (0.021) (0.104) (0.051) (0.013) (0.018) (0.024) (0.185)

Temp(25-27) 0.00988 0.04089 0.22959* 0.08187 -0.01048 0.02403 0.02206 0.39783*
(0.023) (0.031) (0.119) (0.053) (0.009) (0.019) (0.030) (0.227)

Temp(27-29) 0.01994 0.09371** 0.41827** 0.16739** 0.00105 0.04552* 0.05445 0.80034**
(0.033) (0.042) (0.161) (0.075) (0.011) (0.026) (0.042) (0.320)

Temp(29-31) 0.04807 0.13761** 0.65303*** 0.19977** 0.01136 0.04100 0.06194 1.15278***
(0.047) (0.057) (0.216) (0.099) (0.024) (0.031) (0.067) (0.421)

Temp(>31) 0.27051 0.39336*** 3.01420* 0.91793*** -0.15311 0.39783*** 0.61068*** 5.45141***
(0.172) (0.144) (1.803) (0.185) (0.102) (0.111) (0.226) (1.985)

N 1677744 1677744 1677744 1677744 1677744 1677744 1677744 1677744
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter*State, State*Year, Quarter*Year, Prod*Quarter, Prod*Year, Prod*State

Sugarcane Worker Reallocation, Growing Seasons - Following equation 1.3, the dependent variable Y p
i jmt is the binary variable

for whether the worker belongs to a particular post-layoff category p. The independent variables are the number of days in a
quarter with daily mean temperature within a specific range, Tempbink

m,t . The ”<17◦C” bin is the omitted category. The outcome
for column 1-7 are: (1) Reallocate to the manufacturing sector, in the same municipality, within 36 months (2) Reallocate to
the manufacturing sector, in a different municipality, within 36 months (3) Reallocate to the agricultural sector, in the same
municipality, within 36 months (4) Reallocate to the agricultural sector, in a different municipality, within 36 months (5)
Reallocate to the service/primary sector, in the same municipality, within 36 months (6) Reallocate to the service/primary sector,
in a different municipality, within 36 months (7) Failure to reallocate to any formal employer, within 36 months. All regressions
include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed effects,
other weather covariates, and a rich set of firm and worker-level controls (see text for details). All coefficients are multiplied by
100. Standard errors are clustered at the meso-region level. *** Significant at the 1 percent, ** 5 percent, * 10 percent.
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Chapter 2

Heterogeneous firms under regional

temperature shocks: exit and reallocation,

with evidence from Indonesia

2.1 Introduction

Climate change shifts the annual distribution of daily weather outcomes and increases

the frequency of extreme heat waves. To assess climate change damages and devise policies

for adaptation, there is considerable interest in understanding how temperature shocks affect

local economic activities, and in particular, industrial production. Such an assessment is perhaps

especially pressing for less-developed countries where the adverse consequences of climate

change concentrate and adaption is relatively costly (World Economic Outlook, IMF, 2017).

In this paper, I show that there is important within-industry heterogeneity in how manufac-

turing firms are affected by climate change in the context of Indonesia. Initially less productive

firms incur significantly more damage. Further, results on differential firm exit highlight the
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presence of survival bias in firm-level intensive margin analysis. On the combined extensive (firm

exit) and intensive margin (firm output), temperature shocks lead to a within-industry resource

redistribution from the initially less to more productive firms. I illustrate the intuition for this

result building on a heterogeneous firm model with capital-biased technology based on Burstein

and Vogel (2016), and incorporate temperature shocks through the labor productivity channel.

Given the ample evidence at the aggregate-level on the disproportional impact of climate

change on less-developed countries 1, one important challenge lies in identifying the sources

of such heterogeneity in damages (Hsiang, Oliva, and Walker, 2017). In this paper, I show in a

simple model that heterogeneity in productivity across firms within sectors give rise to individual

damage functions based on initial firm-level attributes, which alone could generate differences in

observed damages even without variations in exposure to heat shocks or non-linear effects.

The model (Burstein and Vogel, 2016), featuring a mechanism of ”capital-biased pro-

ductivity”, captures the empirical fact that more productive firms within each sector are also

less labor intensive. This approach gives different individual damage functions incorporating

important within sector firm heterogeneity and the strong correlation between firm-level attributes.

Intuitively, the initially less productive firms within each industry, which experience significantly

more damage from heat shocks, are also the initially most labor intensive. Regional temperature

shocks and associated labor productivity decrease lead to a rise in the zero-profit cutoff productiv-

ity level, and push the least productive firms to exit the market. On the aggregate, heat shocks

reshuffle industrial output from less productive to more productive firms within sectors.

The firm-level industrial survey in Indonesia offers an opportunity to test predictions

on differential firm exit and within industry resource reallocation. Indonesia is an important

1Dell, Jones and Olken (2012), Burke, Hsiang, and Miguel (2015a), Jones and Olken (2010)
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developing economy which is vulnerable to extreme weather conditions. As is the case for many

developing countries heavily integrated into the world market, manufacturing production is an

important part of national income for Indonesia. According to the World Bank National Accounts

data, manufacturing value-added takes up 21% of annual GDP for Indonesia in 2014. Firm

production technologies are widely different in terms of total factor productivity, capital and

labor intensity. Regions in Indonesia also differ drastically in temperature and humidity due to

changes in latitude, elevation, and proximity to coast. This paper exploits the rich variations in

local level exposure to heat shocks and within industry firm productivity differences to examine

heterogeneous dose-responses to temperature shocks across Indonesian manufacturing firms.

Unlike more advanced economies, the manufacturing sector in Indonesia may be less

adapted to temperature shocks due to low air conditioner penetration. Using data from the

World Bank’s Living Standards Measurement Surveys (LSMS), an EPA report 2 estimates a 2.7%

residential air conditioner saturation rate in 1997 for Indonesia, whereas the saturation rate was

72% for the U.S in 2001 and 85% for South Korea in 2000. These data point to a relatively low air

conditioner penetration rate at the initial period of our analysis in Indonesia, as one may expect in

a developing country context.

In terms of mechanisms, a key motivation for this paper comes from recent empirical evi-

dence suggesting a significant negative relationship between temperature and labor productivity.

Heat leads to fatigue, lower performance in physical tasks, and poorer decision making. Higher

temperature is also associated with lower measured and self-reported work performance, as well

as substantial change in labor supply 3.

2Auffhammer (2011)
3Zander et al.(2015), Graff-Zivin and Neidell (2014), Niemela et al.(2002), Seppanen, Fisk, and Lei (2006),

Kjellstrom et al.(2009), Park (2017)
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Using daily micro-data from selected Indian plants, Somanathan et al., (2014) and Ad-

hvaryu et al., (2016) show labor productivity significantly decreases with temperature in a

manufacturing setting. While there are many other channels through which heat shocks could

affect manufacturing firms 4, I offer evidence that the direct physiological channel is important for

firm-level outcomes in the Indonesian context. When excluding all ISIC sectors which primarily

use agricultural input, I found slightly more magnified results on resource reallocation. Consistent

with the hypothesis that manual labor are more affected by thermal stress than skilled labor, we

also observe that less productive firms which survived substitute unskilled workers with skilled

workers.

This paper is also closely related with the recent literature examining the impact of tem-

perature shocks on manufacturing firm-level outcomes. Deschenes et al., (2017) found large

negative effects of temperature on Chinese firm-level manufacturing output, mainly driven by

decreases in total factor productivity. Somanathan et al., (2014) found a 2.8 % decrease in Indian

firm-level manufacturing output per one degree (Celsius) change in average annual temperature.

Colmer (2017) found that higher temperature leads to a net increase in manufacturing output in

flexible labor markets and have no significant impact in rigid labor markets in India.

Motivated by the salience of within-industry heterogeneity among Indonesian manufac-

turing firms, I show theoretically that an increase in temperature leads to differential exit across

firms within each sector, pushing out the initially less productive firms. On the aggregate, heat

shocks also generate resource redistribution from less to more productive firms within industries.

However, these predictions do not suggest that temperature increases are welfare enhancing. One

degree (Celsius) increase in yearly average temperature away from the kabupaten mean leads to a

significant 10.37% decrease in aggregate output for less productive firms, but only a marginally

4Such as: the agricultural income and local demand channel (Burke and Emerick, 2016), the agricultural
input/output linkage channel (Acemoglue, et al., 2012), the sectoral labor reallocation channel (Colmer, 2017).
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significant gain for more productive firms. Like many other developing countries, Indonesia has

a firm size distribution with a heavy left tail, suggesting heat shocks would likely be welfare

reducing to the manufacturing sector on the aggregate, despite of its pro-competitive effect.

Empirically, instead of focusing on firm-level intensive margin changes alone, this paper

shows that heat shocks lead to differential firm exit, highlighting the presence of survival bias

for intensive margin analysis in the Indonesian context. A positive and significant coefficient

of temperature on firm-level output in the unbalanced panel could result from selection and/or

shifts in market structure, accompanied by significant losses for firms that exit. Also distinct from

existing work on climate change heterogeneity at the firm-level, I focus on heterogeneity across

firms within sectors consistent with firm-level empirical facts. This approach simultaneously

addresses the silence of the strong correlation between firm-level attributes and allows us to

examine resource reallocation within sectors.

Findings in this paper offers a potential explanation for why poor countries are more

affected by climate change from the perspective of firm size distribution. The development litera-

ture documented the prevalence of small firms in less developed countries using cross-country

micro data5. A number of studies in the climate change literature estimate an approximate 2

percent industrial output loss per 1◦C increase in temperature, but only in poor countries. 6

Accounting for the non-linear effect of temperature could explain this disproportional impact,

given the strong negative correlation between baseline income and baseline temperature. (Burke

et al., 2015) Results in this paper suggest that less productive firms, which are more prevalent in

poor countries, may be more vulnerable due to underlying productivity-specific damage function

when temperature increases. The aggregate loss may be larger for countries whose firm size

distribution is skewed to the left in the absence of adaptation.

5(Hsieh and Olken, 2014) (Poschke, 2017)
6Dell, Jones and Olken (2012), Jones and Olken (2010)
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Section 2.2 introduces data sources and relevant empirical facts. Section 2.3 outlines a

simple heterogeneous firm model with temperature shocks and comparative statics. Section 2.4

presents the main empirical strategies and results on differential firm exit and within industry

resource reallocation. I also present descriptive results on factor substitution and intensive margin

changes conditional on survival. Section 2.5 discusses underlying mechanism. Section 2.6

concludes.

2.2 Data Background and Empirical Facts

2.2.1 Data Background

This paper relies on four data sources. The main data on firm-level outcomes come

from the Indonesian Large and Medium-scale Manufacturing Survey, or the Statistik Industri

(SI). This is a establishment-level survey conducted by the Indonesian BPS and answered yearly

by all manufacturing firms with more than 20 employees, which allows for the construction

of a firm-level panel. I explore variables on employment, value-added output, domestic and

foreign input, industry category and other firm-level balance sheet information through the period

2001-2012.

Each establishment in the SI is matched with an Indonesian administrative 2-level regency,

or kabupaten. I then use GIS data from the GADM database of Global Administrative Areas to

obtain the coordinates of the centroid of each kabupaten. The matched panel gives variations

at the kabupaten-by-year level for both weather and firm outcomes, which I exploit later in the

empirical section.

Daily weather variables from 2001-2012 are obtained from NASA’s Prediction of World-
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wide Energy Resource (POWER) database, which provides global coverage on a 1◦ latitude

by 1◦ longitude grid. I calculate the yearly average temperature based on the daily average air

temperature for each kabupaten. I also obtain daily weather outcomes on relative humidity, and

cumulative precipitation to add as controls.

Finally, to transform the yearly nominal value-added output reported in the SI to real

output values, I use the GDP deflator from the World Bank National Accounts data.

2.2.2 Empirical Facts

In this section, I first describe data patterns in the Statistik Industri which motivates the

heterogeneous firm model with capital-biased productivity in Section 2.3. Second, I show de-

scriptive facts on the spatial distribution of regional temperature variations and industrial clusters.

A key contribution of this paper is to show how within-industry firm heterogeneity condi-

tion firms’ responses to regional temperature shocks. Before diving into formal analysis, I present

facts on the salience of heterogeneity across firms within each sector.

Table 2.1 gives the standardized coefficients from regressions of within-industry firm

productivity on a series of firm-level covariates using the SI. Each cell represents a single re-

gression, where standard errors are clustered at the firm-level. Firm productivity is measured as

value-added per employee, ranked in terciles within each firm’s two-digit ISIC industry code.

Focusing on Column 3, which uses pre-period productivity in 2001, we see that more productivity

firms have higher output, measured by both value-added and total sales, are less labor intensive,

have higher skilled to unskilled labor ratio, and pay higher average wages. They are also more
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likely to be exporters.7

Figure 2.1 illustrates how firm labor intensity, measured by total wage bill over total

value-added output, varies within and across industries. On the x-axis, firms in each industry

were put into ten productivity bins using their value-added per employee in 2001 ranked within

respective two-digit ISIC industry codes. Firm-level labor intensity decreases as within-industry

productivity measure increases. This suggests that within-industry firm heterogeneity gives rise

to important sources of variations in labor intensity.

In Section 2.3, I adopt a heterogeneous firm model developed by Vogel and Burstein

(2016) with capital-biased productivity motivated by these facts. Intuitively, heat shocks working

through the labor productivity channel would have heterogeneous response from firms with

different initial (within-industry) productivity draws, along with other firm-level covariates.

7A large body of empirical and theoretical trade literature has highlighted the importance of considering firm
heterogeneity in response to changes in trade barriers and product market shocks. (Bernard and Jansen, 1999) (Melitz,
2003) (Chaney, 2008) (Bernard et al., 2012)
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Table 2.1: Standardized coefficients of productivity on firm characteristics

Productivity (V.A./employee) Obs

(1) (2) (3)*
Total V.A. .3732** .3659** .3732** 72,153

(.1670) (.1646) (.1670)

Total Sales .3387*** .3276*** .1474*** 72,076
(.1020) (.0998) (.0378)

Exporter status .1032*** .1276*** .1603*** 56,862
(.0091) (.0101) ( .0111)

Capital/Prd employee 0.0271 .0257 .0206** 71,756
(.0238) (.0230) (.0085)

Nonprd/Prd employees .0891*** .0764*** .0667*** 72,132
(.0194) (.0174) ( .0136)

Labor Intensity (Wage bill/V.A.) -.2916*** -.2811*** -.2406*** 72,153
(.0099) (.0095) (.0060)

Wages/employee .4256*** .4123*** .2681*** 72,153
(.0355) (.0388) (.0114)

2-digit industry F.E. No Yes No

(a)This table shows standardized coefficients from a regression of firm productivity
(measured by V.A. per employee) on firm characteristics. (b)The first 2 columns use
current period productivity (c)*Column 3 uses pre-period productivity, ranked within
2-digit ISIC codes. (d)Errors are clustered at the firm-level (e)*p<0.10, **p<0.05,
***p<0.01
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Figure 2.1: Mean Labor Intensity and firm productivity

Figure 2.2: Average daily temperature at 2pm
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To illustrate the variation in temperature by kabupaten, Figure 2.2 plots the daily mean

temperature averaged from 1997-2011. Figure 2.3 plots the difference in yearly average tempera-

ture between 2012 and 1997. Many regencies in the East Java region where manufacturing firms

are clustered have a higher average temperature baseline, and experienced warming through the

sample period. In the empirical analysis, I explore year-to-year temperature shocks by kabupaten,

defined as deviations from the kabupaten, and year-by-island mean temperature.

Finally, Figure 2.4 shows geographic firm size distribution. Firms are categorized into

quantiles within their respective two-digit ISIC industry according to their average value-added

output through the sample period. There is a cluster of small firms in the East Java region. In the

empirical analysis, I include region or firm fixed effects to exclude initial spatial sorting.

Figure 2.3: Yearly average temperature difference between 2012 and 1997
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Figure 2.4: Firm size distribution by quantiles within two-digit ISIC industry

2.3 The Model

I begin with a model where firms are monopolistically competitive and derive how firms

with different productivity draws optimally choose their factor intensity under temperature shocks.

To echo the empirical facts on within-industry firm productivity and labor intensity reported in

the previous section, I adopt a production function developed by Burstein and Vogel (2016) where

more productive firms are also less labor intensive.

To the original production function, I add an element of temperature shocks faced by

the firm modeled as a change in labor productivity. This modeling choice is motivated by the

empirical literature on thermal stress and labor productivity impact discussed earlier. There

are many other channels through which manufacturing firms could be affected by heat shocks.

Section 2.5 offers a brief discussion of mechanisms and offer empirical support that the direct

thermal stress channel is important in the Indonesian context. In this section, focusing on the

direct physiological channel, I show how within-industry firm heterogeneity in productivity could

condition their responses to heat shocks.
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2.3.1 Temperature Shocks

Temperature shocks influence manufacturing production through changes in labor produc-

tivity. In this section, I assume that heat exposure negatively impact production (or unskilled)

workers more than skilled workers, and labor productivity more than capital productivity.

Specifically, temperature enters the firm’s production function through labor productivity

F(T ), which is modeled flexibly to allow for possible nonlinear relationship between temperature

and labor productivity. Numerous empirical studies suggest that F(T ) is single-peaked, with a

global maximum at the ideal body temperature point t0, although the value of t0 could differ by

population and geographic characteristics.

2.3.2 Demand

As in Melitz (2003), the representative consumer has CES utility over a continuum of

goods, each produce by a single firm, indexed by ω.

U = [
∫

ω∈Ω

q(ω)σdω]1/σ (2.1)

Consumption varieties has the elasticity of substitution σ. Here I assume that consumption

goods are substitutes, i.e. σ > 1. Solving the consumer’s utility maximization problem, we can de-

rive the demand function for an individual variety ω, given by q(ω) = p(ω)−σRPσ−1 = Γp(ω)−σ.

R is the national income, and P is the national price index. For now in the partial

equilibrium analysis, both are assumed to be fixed and taken as exogenous under regional

temperature shocks. In addition, I assume that there’s a numeraire good in an outside agricultural

sector which fixes wage.
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2.3.3 Production

Firms face monopolistic competition and each produces variety (ω, j) where j is the

industry index. There are two factors of production, capital k, and labor l. Let ρ denote the

elasticity of substitution between factors. I assume for now that factors are substitutes with the

elasticity ρ > 1. Each industry j faces a sector total factor productivity A( j).

In order to produce, firms have to incur a fixed cost f . Upon entry, each firm has a

productivity draw, from an i.i.d. distribution of random variables z(ω, j) = u−θ, where u is

exponentially distributed with mean and variance 1.

To capture the empirical fact that more productive firms are also less labor intensive, I

employ a production function with ”capital-biased productivity” proposed by Burnstein and Vogel

(2016).

y = A( j)z(ω, j)∗ [α
1
ρ

j (z(ω, j)
φ

2 k)
ρ−1

ρ +(1−α j)
1
ρ (z(ω, j)

−φ

2 F(T )l)
ρ−1

ρ ]
ρ

ρ−1 (2.2)

α j is the industry input elasticity. z(ω, j) represents within industry productivity. Both

α j ∈ (0,1) and φ ∈ [−2,2] shape the labor-intensity of production.

In addition to the firm’s initial productivity draw z(ω, j), temperature shapes labor produc-

tivity through F(T ). Beyond the ideal body temperature point, increases in temperature reduces

effective labor. The production function given in equation 2.2 deviates from the classic CES

production function by incorporating the ”capital-biased productivity” mechanism, assuming

φ(ρ−1)> 0. This is reflected in the equilibrium condition that firms with a higher productivity

draw z(ω, j) also has a higher capital to labor ratio.
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2.3.4 Price-Setting

The production function given in equation 2.2 has constant returns to scale and a con-

stant variable cost c(r,w,z). The firm therefore sets its price p, maximizing profit according

to: pq(ω)− cq(ω)− f = Γp1−σ− c(r,w,z)p−σ− f . From the profit function, we can derive

the optimal price: p(ω)∗ = σ

σ−1c. As in the Melitz model, we also have that optimal price is a

constant mark-up of the constant variable cost.

It is worth noting that in the monopolistic competition setting with CES preferences the

price of a variety (ω, j) does not depend on the number of competing firms in the market. The

price elasticity of demand for any variety also does not respond to changes in the number or

prices of competing varieties.

For now, I continue the baseline model with the settings in Melitz (2003), the optimal

quantity produced is:

q(ω) = Γ(
σ

σ−1
c)−σ = Gc−σ (2.3)

where G = Γ( σ

σ−1)
−σ = RPσ−1( σ

σ−1)
−σ and the firm’s profit is π(ω)∗ = 1

σ−1Gc1−σ− f .

2.3.5 Expenditure Minimization

To derive the firm’s optimal factor choices, I solve the following expenditure minimization

problem. A firm in industry j, producing variety ω, faces the following cost minimization problem

upon entry:

min
k,l

e = wl + rk+ f ,s.t : y = x (2.4)

From the equilibrium condition of the cost minimization problem, I derive the capital-to-labor

ratio equation which illustrates the ”capital-biased productivity” mechanism in the production
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function.

k(ω, j)
l(ω, j)

= (
r
w
)−ρ

α j

1−α j
z(ω, j)φ(ρ−1)F(T )1−ρ (2.5)

Here we see that when φ(ρ−1)> 0 as assumed before, firms with a higher productivity

draw z(ω, j) will have a higher capital to labor ratio in equilibrium, thus productivity is capital-

biased. Assuming factors are substitutes, or ρ > 1, we see that the firm’s capital to labor ratio

increases as temperature shocks decrease labor productivity. The equilibrium-level of capital to

labor ratio is shaped by both industry parameters, φ and ρ, as well as the within industry firm-

specific productivity, z(ω, j), which is the key parameter for comparative statics and empirical

analysis.

2.3.6 The Zero Profit Cutoff Condition

Next, I look at how temperature shocks impact firm exit and regional productivity cut-

offs. From optimal price-setting, we know that each firm has the maximized profit π(z) =

1
σ−1Gc(z,T )1−σ− f . We can show that c(z,T ) is monotonically decreasing in z, and monotoni-

cally increasing in T .

For any fixed temperature T , there exist a unique productivity cutoff z∗ such that π(z∗) = 0,

so that any firm with a productivity draw z < z∗ will immediately exit and never produce. The

zero cutoff productivity z∗ is given by the condition:

c(z∗) = [
f (σ−1)

RPσ−1( σ

σ−1)
−σ

]
1

1−σ = [
f (σ−1)

G
]

1
1−σ (2.6)

74



2.3.7 Comparative Statics

Prediction 1: Less productive firms are more likely to exit under heat shocks.

Intuitively, as temperature increases in a region and everything else staying the same, unit

cost of production also increases. From equation 2.6 we see that the marginal firm which satisfies

the zero profit cutoff condition has a fixed unit cost c(z∗). Since unit cost as a function of the

productivity cutoff c(z∗) is pinned down by deep parameters in the model and has to remain the

same, the productivity cutoff z∗ must increase. Absent of significant adaptation behavior, less

productive firms in a region-year which experienced temperature shocks will be more likely to

exit through the physiological channel.

Prediction 2: Less productive firms will have larger percentage output loss from heat

shocks.

Prediction 3: As temperature increases, firms will re-optimize factors by switching from

capital to labor, or from unskilled workers to skilled workers

So far in the model, we have used k to represent capital and l to represent labor. When

capital adjustment cost is high, firms may substitute unskilled workers with skilled workers as

long as the former is more negatively affected by heat shocks than the later. Empirical obser-

vations support this claim in two ways. First, there is evidence that the performance of manual

tasks is more impacted than cognitive tasks under thermal stress 8. Second, skilled workers may

operate in environment with better climate control, as suggested by Indian factory-level evidence

from Somanathan et al,. (2015).

8In a study using matadata, Ramsey (1995) found that for perceptual motor tasks, performance is lowered with
high temperature exposure, although no dominant effect of thermal level was found on mental/cognitive tasks.
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From Table 2.1, we know that firms with larger within-sector productivity is associated

with higher skilled-to-unskilled worker ratio. We could substitute the ”capital-biased mechanism”

with a ”skill-biased mechanism”, where the two factors of production are skilled and unskilled

labor. Taking log on both sides of equation 2.5 and assume that factors are substitutes, or ρ > 1,

we see that the skilled to unskilled worker ratio will increase as temperature increases.
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2.4 Empirical Results

2.4.1 Firm Exit

Are less productive firms more likely to exit under temperature shocks? Prediction 1

derived from the zero profit condition in section 2.3.7 suggests that as temperature increases

and labor productivity decreases, firms who continue to produce need to have a higher initial

productivity draw. This subsection examines the empirical evidence for this prediction in a

discrete time hazard framework.

To construct a panel of firm exit typical for hazard analysis, I treat the first year that a firm

is in the survey as its entry year and last year in the survey as the exit year. The sample period of

analysis is from 2001-2012. I start with all firms that are present in the initial year, 2001, and

look at exit outcomes thereafter. The binary variable on exit takes a value of zero if a firm does

not exit in the next period, and one otherwise.

Firms were put into three bins according to their initial within-sector productivity. Initial

productivity bins were obtained by ranking each firm’s value-added per worker in the year 2001

within their respective two-digit ISIC industry codes. This is therefore a measure which reflects

within-industry productivity. I define the year 2001 as the pre-period and examine the effects of

subsequent regional temperature shocks on firm exit. Exit behavior exhibits duration dependence,

so that the likelihood of exit depends on the elapsed time that the firm has been in the sample.

Empirical Strategy

The empirical framework I use is a discrete time hazard model. The probability of firm exit

in any period is a function of the elapsed duration of the firm’s survival τ, the initial productivity
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bin that the firm belongs to, pdtys
i , and the temperature facing the firm in the current period,

tempi,τ+1. Each spell is represented as a sequence of (0, 1) observations.

P(ti j = τ+1 | ti j > τ, pdtys
i ∗ tempi,τ+1, pdtys

i ∗ raini,τ+1, pdtys
i ∗humidityi,τ+1, pdtys

i ∗age2001
i ,

θ jt) = g(τ, pdtys
i ∗ tempi,τ+1, pdtys

i ∗ raini,τ+1, pdtys
i ∗humidityi,τ+1, pdtys

i ∗age2001
i ,θ jt)

(2.7)

Exit is a binary variable that takes the value of one if the firm exits in the next period

and zero otherwise. pdtys
i are dummies for whether firm i’s initial productivity rank is in the sth

tercile within their industry, with s = 1,2,3. tempi,τ+1 measures the temperature faced by firm i in

period τ+1. Duration dummies τ are included to nonparametrically model duration dependence.

This yields a cross-section regression where I look at how current period temperature influences

firm exit across time-invariant productivity bins, controlling for other covariates.

To the baseline hazard model, I add in a set of fixed effects to control for other variations

in the data possibly correlated with regional average temperature. Year*Industry fixed effects

control for product demand shocks. Year*Island fixed effects control for island-specific business

cycles. Industry*Island fixed effects control for island-specific industry specializations. Because

of the inclusion of these fixed effects, the regional variations in temperature I am exploiting are

temperature shocks, measured as deviation from the year-by-island, year-by-industry average.

To address the fact that firms with different initial productivity ranks and initial age

may have distinct exit probability, I include a firm’s initial productivity by age-in-2001 bins,

pdtys
i ∗ age2001

i , to control for the main effects on exit. Finally, I control for productivity-bin-

specific relative humidity and rainfall. Standard errors are clustered two-way, at the firm-level

and kabupaten*year level.
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Results

I begin by presenting the results on exit patterns for firms in different initial productivity

bins. Table 2.2 shows the coefficients on the interaction terms of firm’s initial productivity bins

with temperature and humidity. The interaction terms with rainfall are controlled for but omitted

from the reported table. All coefficients are multiplied by 100. Pdtybin12001 corresponds to firms

with the smallest initial productivity tercile ranking, measured by value-added per worker in 2001

within their respective two digit ISIC industry codes.

Column (1) - (3) demonstrates a cascade of specifications with increasingly more re-

strictive fixed effects. The temperature variation exploited here are deviations of the annual

average kabupaten temperature from the year-by-island, year-by-industry averages. Pdtybin32001

is omitted from the regression, so that the interpretation for the main effect on temperature is for

firms with the largest initial productivity. Pdtybin2001
1 ∗Temperature gives the differential exit

propensity for firms in smallest initial productivity bin.

We focus on estimates from the preferred specification in column (3), where year*industry,

year*island and industry*island fixed effects are all included. We see that an increase in yearly

average temperature makes it more likely for all firms to exit. Moreover, exit propensity for firms

with the smallest initial productivity is significantly higher under heat shocks, consistent with

earlier theory prediction. In particular, one degree Celsius increase in average yearly temperature

from the year-by-island, year-industry mean increases the probability of exit for firms in the

largest productivity bin by 1.97%, and for firms in the smallest initial productivity bin by 3.37%.

This corresponds to a 27.02% increase in exit propensity relative to the baseline average firm exit

rates (7.29%) for firms with the largest initial productivity, and 34.35% increase in exit propensity
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Table 2.2: Differential firm exit under heat shocks (main)

(1) (2) (3)
exit exit exit
b/se b/se b/se

Pdtybin12001*Temperature 1.1586** 1.1687** 1.4018***
(0.571) (0.549) (0.529)

Pdtybin22001*Temperature 0.2891 0.3626 0.5114
(0.470) (0.452) (0.440)

Temperature 2.0434*** 2.1497*** 1.9731***
(0.476) (0.561) (0.535)

Pdtybin12001*Humidity 0.2311 0.2380 0.2654*
(0.151) (0.145) (0.145)

Pdtybin22001*Humidity -0.0217 -0.0054 0.0175
(0.120) (0.117) (0.117)

Humidity 0.4088*** 0.5833*** 0.5305***
(0.128) (0.178) (0.173)

Observations 108187 108187 108187
Year*Industry FE Yes Yes Yes
Year*Island FE Yes Yes
Industry*Island FE Yes
Bin*Age2001 Yes Yes Yes
Clustering Firm, KabuXYear Firm, KabuXYear Firm, KabuXYear
Y(mean): pdtybin1 9.81 9.81 9.81
Y(mean): pdtybin2 8.11 8.11 8.11
Y(mean): pdtybin3 7.29 7.29 7.29

(a) *p<0.10, **p<0.05, ***p<0.01 (b) PdtybinS2001 ∗Temperature are the interaction terms
of the firm’s pre-period within-industry productivity ranks and yearly average temperature (c)
Controls for rainfall, BinsXRain, BinsXAge2001 and duration dummies are omitted from the
table. (d) All coefficients are multiplied by 100
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relative to the baseline (9.81%) for the initially least productive firms.

These results suggest that temperature shocks have significant impact on manufacturing

firm exit in the context of Indonesia, and that these extensive margin effects are larger for firms

with the smallest initial within-industry productivity. Importantly, a firm exit in this paper is

defined as the firm exiting the survey. Given that the Statistik Industri only contains firms with

more than 20 employees, this could mean the firm is either going out of business, downscaling to

below 20 employees, or becoming informal.

Intensive margin analysis conducted at the firm-level in the Indonesian context is therefore

subject to survival bias. In the following subsection, I present aggregate-level results aiming to

mitigate selection concerns.

2.4.2 Resource Redistribution: Combined Effects

Do temperature shocks redistribute value-added output from less productive to more

productive firms? The answer involves a combination of the extensive margin changes (which

firms are more likely to exit), and the intensive margin changes (how output changes for each

surviving firm). The extensive margin results in section 2.4.1 suggest that less productive firms

are more likely to exit under regional heat shocks. In this subsection, I aggregate firms within

each productivity bin, industry and kabupaten to examine the differential net effect of heat shocks

on firms’ combined margins, and within-industry resource reallocation.

I start with the full sample of the unbalanced panel, covering the years 2001-2012. Con-

trary to the regressions on exit propensity, I include not only firms that were in the sample in

2001 but also firms that entered later into the survey. This means the extensive margin changes

will now account for both firm entry and exit. Value-added output for each year measured in the
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Indonesian rupiah is adjusted using the GDP deflator from the World Bank National Account

Database.

To construct the time-invariant productivity tercile cutoffs for each two-digit ISIC industry,

I first rank the annual productivity for each firm within their industry, and take the average of

tercile cutoffs across all years for each industry. Each firm is then placed in a productivity tercile

based on its productivity in the first available year since 2001. This gives us the firm-specific,

time-invariant initial productivity ranking within the industry a firm belongs to.

In order to account for both the intensive and extensive margin changes for firms in each

productivity tercile, I aggregate the value-added output for firms in each productivity bin, region,

industry and year so that the new unit of analysis is at the productivity bin*region*industry level.

Given the results on exit, analysis for the intensive margin at the firm-level would be subject to

selection bias. Aggregating to the productivity bin-by-region-by-industry level would lessen this

concern. Within each productivity tercile, both firm exit and output reduction will show up as a

decrease in the aggregate value-added output.

Empirical Strategy

The combined effect of temperature shocks on firms in each productivity tercile is esti-

mated with the following fixed effects model:

yit = α0 +∑
s

α1sPdtyBininitial
is ∗Temperatureit +∑

s
α2sPdtyBininitial

is ∗Humidityit

+∑
s

α3sPdtyBininitial
is ∗Rainit +βsPdtyBininitial

is ∗ t +θi +σ jt + γrt + εit

(2.8)
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Here we are interested in how the aggregate value-added output at the region-industry level for

firms in each productivity tercile is impacted by temperature shocks. I control for bin*region*industry

fixed effects, and focus on the changes across years for the within estimator. The outcome of in-

terest, yit , measures the log of value-added output, or percentage changes in output. PdtyBininitial
is

are dummies for whether the aggregate-level observation i’s initial productivity rank is in the

sth tercile within their industry, with s = 1,2,3. Temperatureit measures the average annual

temperature for observation i in year t.

Similar to the specification in 4.1.1, I also include a rich set of fixed effects to control

for concurrent shocks which may be correlated with the observed weather variations. I add

Year*Industry fixed effects, to control for year-specific unobserved heterogeneity related to

industry demand or factor prices. Year*Island fixed effects control for year-specific regional

business cycles. The identification of α1s comes from the differential impact of temperature on

the aggregate output of firms in different productivity bins.

To exclude the possibility that the differential impact on the combined margin is driven

by weather variables other than temperature, I control for productivity-bin-specific annual cu-

mulative rainfall, and annual average relative humidity. Finally, I allow for differential time

trends for each productivity bin. Standard errors are clustered at the bin*kabupaten*industry level.

Results

Table 2.3 presents the combined effects of temperature shocks on aggregate value-added

output. The three specifications with increasingly restrictive fixed effects yield numerically

similar estimates. We focus on the preferred specification in column 3, where shocks are defined
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as temperature deviation from the year-industry, year-island, and kabupaten average. Firms in the

smallest productivity tercile experienced a significant percentage decrease in aggregate value-

added output as temperature increases, while firms in the largest productivity tercile experienced

a marginally significant percentage increase.

Across specifications in columns 1-3, we observe that heat shocks redistribute value-added

output on the aggregate, from the least productive firms, to the most productive firms in each

industry. In particular, one degree (Celsius) increase in yearly average temperature from the

kabupaten, year-industry, year-island average leads to a 10.37% percentage loss in aggregate

output for firms in the smallest initial productivity tercile. This negative impact results from a

combined intensive and extensive margin changes. Firms in the largest productivity bin incur

a marginally significant percentage increase of 6.85% in aggregate output per 1◦C increase in

temperature. Since the SI only include medium and large establishments with employment more

than 25, I do not observe the effects on the smallest firms.

Comparing these results with previous studies in the literature 9 which consistently find a

2.5% percent decrease in aggregate industrial output per 1 degree (Celsius) increase in yearly

temperature, we see that the magnitude of impact from temperature shocks on the least productive

firms may be much larger than the industry aggregate. Changes in aggregate output and per capital

income under temperature shocks could be accompanied with substantial resource reshuffling

within each industry.

9Dell, Jones and Olken (2012), Jones and Olken (2010)
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Table 2.3: Temperature Shocks and Combined Effects on Output

(1) (2) (3)
ln(vlad) ln(vlad) ln(vlad)

b/se b/se b/se

Pdtybin1initial*Temperature -0.1049*** -0.1037*** -0.1037***
(0.035) (0.038) (0.038)

Pdtybin2initial*Temperature -0.0321 -0.0323 -0.0323
(0.032) (0.035) (0.035)

Pdtybin3initial*Temperature 0.0666* 0.0685* 0.0685*
(0.035) (0.038) (0.038)

Pdtybin1initial*Humidity -0.0338*** -0.0373*** -0.0373***
(0.007) (0.009) (0.009)

Pdtybin2initial*Humidity -0.0155* -0.0190* -0.0190*
(0.008) (0.010) (0.010)

Pdtybin3initial*Humidity 0.0142** 0.0108 0.0108
(0.007) (0.009) (0.009)

Observations 31329 31329 31329
Year*Industry FE Yes Yes
Year*Island FE Yes Yes
Kabu*Bin*Industry FE Yes Yes Yes
Bin*time Yes Yes Yes
Clustering bin*kabu*year bin*kabu*year bin*kabu*year

Given the results on temperature shocks and firm exit, one important motivation for con-

ducting the combined margin analysis on the aggregate level is to mitigate concerns of selection

bias, which arises in firm-level intensive margin analysis for the Indonesian context. In the next

subsection, I present firm-level intensive margin results using the original unbalanced panel, and

provide suggestive evidence that the ”selected” firms behave differently due to changes in market

structure and/or better adaptation behavior.

2.4.3 Factor Substitution and Intensive Margins

The remaining analysis uses the unbalanced panel and conduct analysis at the firm-level.

First, we look at evidence for factor substitution within firms under temperature shocks. Second,
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I present results on firm-level output and suggest that selection bias is an important consideration

when interpreting these estimates.

Factor Substitution

Taking logs on both side, I transform the equilibrium condition in equation 2.5 to the

following equation which directly relates capital to labor ratio with labor productivity F(T ):

ln[
k
l
]it = β0 +θ1F(T )it + ri + εit (2.9)

Both the industry-specific input elasticity α j and the firm-specific productivity draw

z(ω, j) are absorbed in the firm-fixed effect term ri. As discussed previously, θ1 = σ(ρ−1) is

assumed to be larger than zero under the ”capital-biased productivity” mechanism.

Absent of adaptation behavior such as air-conditioner installation, a degree increase in

temperature would lead to the same percentage change in the capital to labor ratio for all firms.

In other words, firm-level heterogeneity does not necessarily lead to different factor substitution

behavior under temperature shocks. However, if the initially more productive firms have higher

air-conditioner penetration rate, the same temperature shock would lead to a smaller decrease in

labor productivity F(T ) for these firms. As a result, we would observe less factor substitution for

more productive firms as temperature increases.

I take the original unbalanced panel and construct initial productivity bins following the

procedure described in section 2.4.2. To test whether firms adjust factor inputs under temperature

shocks, and whether these adjustment responses differ across firm productivity bins, I estimate
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the following firm fixed-effect model:

yit = α0 +∑
s

α1sPdtyBininitial
is ∗Temperatureit +∑

s
α2sPdtyBininitial

is ∗Humidityit

+∑
s

α3sPdtyBininitial
is ∗Rainit +βsPdtyBininitial

is ∗ t +ηi +σ jt + γrt + εit

(2.10)

This specification is essentially the same as equation 2.8 for the combined margins, but without

aggregating to the bin*kabupaten*industry level. The fixed effect ηi is therefore at the firm level.

Standard errors are clustered two-way, at the firm and kabupaten-by-year level. The outcome of

interest, yit , measures the log of capital intensity or alternatively, skill intensity. Capital intensity

is defined as the firm’s estimated capital over the number of production workers. Capital each

year is adjusted using the GDP deflator from the World Bank. Skill intensity is measured as the

firm’s number of skilled (non-production) workers over the number of unskilled (production)

workers.

Here I use the the terms skilled workers/non-production workers, and unskilled work-

ers/production workers inter-changeably. Although the production/nonproduction division does

not map perfectly into skill levels, previous research using the SI showed that the average level of

education attainment is much higher for nonproduction workers than production workers. 10

In addition to firm fixed effects, I include year*island, year*industry, industry*island fixed

effects, and productivity bin specific rainfall, humidity and time trends as before. Column (1)

and (2) in Table 2.4 show results on two kinds of factor substitution within firms: switching from

unskilled workers to skilled workers, and switching from unskilled workers to capital. Figure 2.5

plots the coefficients on the interaction terms of a firm’s initial productivity and temperature,

corresponding to the specification in column 1. We observe significant factor switching from

10See for example, Amiti and Cameron (2011)
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unskilled to skilled workers, but only for firms with the smallest initial productivity. There is no

evidence for factor substitution from unskilled labor to capital, possibly because of non-negligible

capital adjustment cost.

Figure 2.5: Factor substitution to skilled labor
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Table 2.4: Temperature Shocks and Firm-level Factor Substitution

(1) (2) (3)
lmp ratio lCaptoProd lrawimp ratio

b/se b/se b/se

Pdtybin1initial*Temperature 0.0565*** 0.0124 0.0837**
(0.020) (0.024) (0.041)

Pdtybin2initial*Temperature 0.0024 0.0232 0.0560
(0.016) (0.023) (0.035)

Pdtybin3initial*Temperature -0.0045 0.0368 0.0550**
(0.015) (0.029) (0.028)

Pdtybin1initial*Humidity 0.0095** 0.0036 0.0120
(0.004) (0.005) (0.008)

Pdtybin2initial*Humidity -0.0017 0.0048 0.0113
(0.003) (0.005) (0.007)

Pdtybin3initial*Humidity -0.0073** 0.0056 0.0026
(0.003) (0.006) (0.006)

Observations 212197 153435 35406
Year*Industry FE Yes Yes Yes
Year*Island FE Yes Yes Yes
Bin*Time Yes Yes Yes
Firm FE Yes Yes Yes
Clustering Firm, KabuXYear Firm, KabuXYear Firm, KabuXYear
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Evidence from the physiological literature suggests that heat exposure may impact the

performance of manual tasks more than cognitive tasks. 11 Another possible explanation is

that skilled workers may work in conditions with better climate control, as suggested by Indian

factory-level evidence from Somanathan et al,. (2015) To the extent that the negative labor

productivity shock is larger for manual task workers than for cognitive task workers, firms would

adapt to heat shocks by switching to skilled workers.

A unique feature of the Statistik Industri is that it includes variables on imported raw

materials and total raw materials, which allows us to look at firm switching from domestic to

imported intermediate inputs. These measures have been previously exploited in Amiti and

Konings (2007) to examine the effects of input tariff reduction on firm productivity. Column

(3) in Table 2.4 shows the differential impact of temperature shocks on log(imported input/total

input). One degree (Celsius) increase in yearly average temperature relative to the year*industry,

year*island, kabupaten mean leads to a 8.37% increase in the imported input ratio for the initially

least productive firms, and a 5.5% increase for the initially most productive firms. This evidence

suggests that temperature shocks may also operate through an agricultural channel and influence

domestic input prices, in addition to the physiological channel this paper focuses on.

Intensive Margins

To look at firm-level changes on the intensive margin, I follow the exact same specification

in equation 2.10. The outcome of interest yit is log(value-added output), or the percentage change

in output. This estimator is identified through within-firm output changes for firms in different

productivity bins under temperature shocks, conditional on being observed in the SI (survival).

11In a study using matadata, Ramsey (1995) found that for perceptual motor tasks, performance is lowered with
high temperature exposure, although no dominant effect of thermal level was found on mental/cognitive tasks.
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Figure 2.6 illustrates how value-added output changes as temperature increases for firms

in different productivity bins. This corresponds to column (3) in Table 2.5, where firm fixed

effects, year-industry fixed effects and year-island fixed effects are all present. We see the

surviving firms with the largest initial productivity increased their value-added output as temper-

ature increases while the initially least productive firms incur a smaller, marginally significant loss.

Figure 2.6: Firm-level value-added output
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Table 2.5: Temperature Shocks and Firm-level Output

(1) (2) (3)
ln(vlad) ln(vlad) ln(vlad)

b/se b/se b/se

Pdtybin1initial*Temperature -0.0234 -0.0363* -0.0394*
(0.019) (0.021) (0.020)

Pdtybin2initial*Temperature 0.0245 0.0083 0.0075
(0.015) (0.018) (0.017)

Pdtybin3initial*Temperature 0.1294*** 0.1173*** 0.1143***
(0.018) (0.020) (0.019)

Pdtybin1initial*Humidity -0.0089** -0.0162*** -0.0159***
(0.004) (0.005) (0.005)

Pdtybin2initial*Humidity 0.0052* -0.0024 -0.0024
(0.003) (0.004) (0.004)

Pdtybin3initial*Humidity 0.0286*** 0.0212*** 0.0204***
(0.004) (0.004) (0.004)

Observations 238889 238889 238889
Year*Industry FE Yes Yes
Year*Island FE Yes Yes
Bin*Time Yes Yes Yes
Firm FE Yes Yes Yes
Clustering Firm, KabuXYear Firm, KabuXYear Firm, KabuXYear
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Comparing the previous aggregated combined margin results in Table 2.3, column (3),

with the firm-level intensive margin results in Table 2.5, column (3), some interesting patterns

emerge. The negative impact of a heat shock on the initially least productive firms decreases from

10.37% to a marginally significant 3.94%. The firm-level intensive margin analysis also yields a

larger, more significant impact on the initially most productive firms.

One important consideration in interpreting these large, positive impact of heat shocks

on firm-level output is the presence of survival bias. In section 2.4.1, I show that heat shocks

lead to firm exit and the attrition is differentially higher for the initially less productive firms. In

other words, looking at the intensive margin changes at the firm-level would only give us the

treatment effect on firms what survived. These firms are likely to be better adapted to temperature

shocks. Further, as we have seen previously how heat shocks lead to firm exit and shifts in market

structure, the positive impact could also occur as the surviving firms gain larger market share.

2.5 Mechanisms

Main results in this paper are motivated by micro-level evidence of the physiological

channel, that is, the negative labor productivity impact of temperature shocks on manufacturing

workers. However, there are many other potential mechanisms through which variations in

temperature could affect manufacturing firms. For example, heat shocks could lead to changes in

agricultural income and generate local demand shocks (Burke and Emerick, 2016). Higher temper-

ature may affect manufacturing firms through input/output linkages with agriculture (Acemoglue,

et al., 2012). Heat shocks could also lead to sectoral labor reallocation through influencing crop

yields (Colmer, 2017). In this section, I offer suggestive evidence that the physiological channel

is one of the channels at work in driving the main empirical results.
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2.5.1 Agricultural Input Linkages

A large strand of literature found significant negative impact of temperature shocks on

agricultural yields in both OECD and developing countries. 12 If higher temperature raises the

price of agricultural raw materials, upstream manufacturing firms could face higher cost, reduce

their output or exit. To make sure that previous results are not solely driven by changes in raw

material prices, I exclude two-digit ISIC sectors which primarily use agricultural input.

Table 2.6 gives a breakdown of the 2-digit industry codes for all manufacturing firms in

the SI. As a robustness check, I exclude firms that are in industries 31, 32, 33 and 34, producing

food, textile, wood and paper products. The remaining sectors mainly use raw materials from the

metals and minerals sector, which is less affected by temperature shocks.

12(Fisher et al. 2012) (Guiteras, 2009)(Schlenker and Lobell, 2010)(Lobell, Schlenker, Costa-Roberts, 2011)

94



Table 2.6: Excluding Sectors Using Agricultural Input

In Table 2.7, I implement the same fixed effects model as in equation 2.8, excluding

the four industries which mainly use agricultural input. These coefficients are comparable to

previous results in Table 2.3. One degree (Celsius) increase in yearly average temperature from

the kabupaten, year-industry, year-island average leads to a 12.91% percentage loss in aggregate

output for firms in the smallest initial productivity tercile. Effects on firms with the largest initial

productivity is statistically insignificant. These results show that the resource reallocation on the

aggregate combined margins does not solely operate through linkages with agriculture.
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Table 2.7: Temperature Shocks and Combined Effects on Output (Robustness)

(1) (2) (3)
ln(vlad) ln(vlad) ln(vlad)

b/se b/se b/se

Pdtybin1initial*Temperature -0.0837* -0.1246** -0.1291**
(0.051) (0.055) (0.055)

Pdtybin2initial*Temperature 0.0131 -0.0360 -0.0395
(0.053) (0.056) (0.056)

Pdtybin3initial*Temperature 0.0627 0.0211 0.0129
(0.055) (0.059) (0.059)

Pdtybin1initial*Humidity -0.0300*** -0.0488*** -0.0485***
(0.011) (0.013) (0.013)

Pdtybin2initial*Humidity 0.0070 -0.0117 -0.0121
(0.013) (0.014) (0.014)

Pdtybin3initial*Humidity 0.0208* 0.0029 0.0009
(0.011) (0.012) (0.013)

Observations 12849 12849 12849
Year*Industry FE Yes Yes
Year*Island FE Yes Yes
Kabu*Bin*Industry FE Yes Yes Yes
Bin*Time Yes Yes Yes
Clustering bin*kabu*year bin*kabu*year bin*kabu*year
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2.5.2 Agricultural labor reallocation

Temperature shocks could affect manufacturing firm outcomes through shifting labor

supply. Jayachandran (2006) and other papers 13 suggest that negative weather shocks would

drive down agriculture wages and lead to outmigration. When inter-sectoral mobility is high and

inter-regional mobility is low, if temperature shocks push workers out of agriculture, it could

potentially lead to an increase in manufacturing labor supply. As a result, manufacturing firms

could experience positive impact from temperature shocks due to lower factor prices. (Colmer,

2017)

Since the inter-sectoral labor reallocation mechanism is beneficial to the manufacturing

sector through the provision of lower wage agricultural labor, it is unlikely to be contributing to

the differential exit and combined margin resource reallocation results earlier. In a related project,

I exploit the Brazilian employer-employee matched labor records (RAIS) which track formal

workers across jobs to directly examine the existence of the labor reallocation channel and its

heterogeneous impact on the incumbent manufacturing workforce.

2.6 Conclusion

There is significant within-industry heterogeneity in climate change impact among manu-

facturing firms. The initially less productive firms are more likely to exit as temperature increases.

Analysis on the combined margins implies that value-added output reallocate from the initially

less to more productive firms within each industry. Among surviving firms,, we observe factor

substitution from unskilled to skilled workers, and firms switching from domestic to foreign

intermediate input. The initially more productive firms that survived also incur output gain under
13(Gray and Muller, 2012) (Feng, Oppenheimer, and Schlenker, 2012) (Feng, Krueger and Oppenheinmer, 2010)

(Munshi, 2003)

97



heat shocks possibly due to shifts in market structure or selection.

In developing countries such as Indonesia where electrification capacity and per capita

income remain relatively low, air conditioners are not widely installed for manufacturing. Firm

size distribution in poorer countries also tends to be more skewed to the left, where less productive

firms are dis-proportionally impacted by heat shocks. As a result, these heterogeneous impact of

heat shocks are not necessarily welfare-enhancing despite of being pro-competitive.

The significant extensive margin changes under temperature shocks highlights the presence

of selection bias intrinsic to the intensive margin analysis at the firm-level in the Indonesian

context, which could potentially lead to underestimation of climate change impact if ignored.
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Chapter 3

Mining Activity and Spatio-Temporal

Dynamics of Forest Cover Loss

3.1 Introduction

Deforestation is among the largest sources of carbon emissions related to human activities,

highlighted as a key area for international coordination in the Paris Accord. Regional economic

growth and associated market fluctuations could have important global environmental footprint.

One example is the recent ”commodity super-cycle” and related expansions in mining activities

worldwide. So far there lacks a comprehensive assessment of mining-induced deforestation on

a global scale, partly because mining sites are often in remote locations and harder to quantify.

More generally, reducing forest-based emissions requires a better understanding of not just the

sources of forest cover loss but also the institutional and firm-level factors which affect sustainable

forest management.

In this paper, we provide global, disaggregated evidence on the forest cover loss around

more than 30,000 mining sites and examine the political economy of the environmental impact of
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mining expansion. First, combining high-spatial resolution data on deforestation and proprietary

mining intelligence data, we estimate the elasticity of forest cover loss with respect to mineral

price fluctuations. Our results suggest that, on average, the early 2000s ”commodity super-cycle”

contributes to roughly 8%-20% of the observed total deforestation around mining sites. Second,

incorporating sources of firm-level ownership data, we examine country and firm-level factors

which influence sustainable forest management. We find empirical evidence supporting the

intuitions of an environmental Kuznets curve, and that the behavior of mining firms from high

income countries contributes significantly to the differential impact across host countries. Third,

we study impact on local economic activities in nearby communities using nighttime luminosity

measures.

Hotelling’s model (Hotelling, 1931), the seminal work on the extraction of exhaustible

resources, predicts the price net of marginal cost of extraction rises at the rate of interest when-

ever production occurs. Under competitive markets, the optimal extraction path coincides with

the planner’s solution. 1 However, there exists sources of externality such as public goods or

ecosystem services directly and indirectly affected by the extraction of minerals. In their recent

modification of the Hotelling model, Anderson et al. (2018) show that drilling activities on the

extensive margin respond strongly to price incentives whereas oil production from existing wells

does not, due to constraints in reservoir pressure. Instead of directly examining responses of

mining activities to global mineral price fluctuations, we study changes in forest cover loss in

different buffer zones surrounding mining sites. We interpret the deforestation results within

the immediate mining area as tracing out the supply curve. In addition, we use remote sensing

satellite imagery to assess environmental impact outside the immediate mining location and

quantify associated forest cover loss in nearby communities, illustrating an additional source of

environmental externality from commodity price booms.

1See Slade and Thille (2009) for a review on the literature of finite resource extraction
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Global initiatives aimed at reducing forest-based emissions, such as the UN’s REDD++

programs, benefit from understanding the political economy factors that influence deforestation.

However, institutions which foster sustainable practices also differ in geographic, demographic

and economic features. Existing studies often explore within-country quai-experiments such

as institutional changes (Burgess et al., 2012) and regional variations in legal requirements for

logging (Alesina et al. 2014) to achieve casual inference. Instead, our paper exploits exoge-

nous global commodity price shocks and compare forest cover loss with different institutional

and firm-level determinants before and after the shocks. Our data covers 31 commodities and

provides information on the primary commodity produced by each mine, allowing us to exploit

the differential timing of prices changes across minerals, and controlling for a rich set of fixed

effects at the country, year and mine-level. Most similarly, Berman et al. (2017) also relies on the

”commodity super-cycle” for identification, but their paper focuses on civil conflicts in Africa. To

our knowledge, this is the first paper to analyze the institutional and firm-level determinants of

sustainable forest management with highly disaggregated data on a global scale.

First, we find a positive and significant 77 elasticity of forest cover loss around mines.

Conditional on initial forest cover being higher than 40%, increasing the average primary com-

modity price by one standard deviation increases the percentage of forest cover loss by 0.6

within the 1 kilometer buffer zone. Our estimates also suggest that the early 2000s ”commodity

super-cycle” contributes to roughly 8%-20% of the observed total deforestation around mining

sites, within the 30 kilometer radius. Our results indicate that mining-induced deforestation is

not limited to the immediate surroundings of mining pits, but often geographically dispersed,

possibly resulting from transportation access or nearby economic activities.

Second, we indirectly examine the political economy of environmental impact of mining
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expansion. Matching top owner firms of each mining property from our mining intelligence

data with a global firm-level database, we investigate the country and firm-level determinants of

deforestation during the ”commodity super-cycle”. Our results are robust to a rich set of controls

including differential time trends by initial forest cover, time-invariant mine characteristic by year,

commodity and mine fixed effects. We find that the elasticity of forest cover loss with respect

to price is higher in low income countries, where environmental regulations enforcement could

be weaker. The mine’s firm ownership also plays an important role. State ownership interact

with the host country’s GDP per capita to influence the elasticity of deforestation. Mine owners

from high income countries display larger disparity in the elasticity of forest cover loss when

operating in poor versus rich countries. Most strikingly, mining firms from high income countries

deforest more during commodity price hikes when operating in poor countries, but not so when

operating in rich countries. One possibility is that mining firms from high income countries have

the capacity to minimize environmental impact during expansions but do not bother to do so

when operating in countries with weaker environmental regulation enforcement.

Our findings on the local economic impact of commodity price booms using nighttime

luminosity data reveal an alternative explanation. Nearby economic activities as measured by

night lights increase with commodity prices when the mining firm is from a high income country,

but decreases with prices when the mining firm is from a low income country. Commodity booms

are often associated with employment opportunities and settlements for nearby communities. The

differential deforestation rates by mine owners from high income countries at larger radius could

therefore also be due to differential logging activities from nearby settlements.

This paper provides first micro-level evidence on a global scale of mining-induced de-

forestation, contributing to the literature on the environmental impact of mining. Romero and

Saavedra (2017) employ a difference in difference strategy to estimate the impact of gold mining
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on the health of newborns in Columbia. A related body of work document negative health

effects of coal use in terms of air pollution and mortality (Beach and Hanlon, 2016) and effective

environmental regulations targeted at coal for generation (Tanaka, 2015). There has been less

work on the deforestation impact of mining partly because mining occupies smaller, remote areas

that are harder to detect. 2 Recent ”commodity super-cycles” driven by the rapid growth from

emerging markets (Carter et al. 2011, Humphreys, 2010, Reinhardt et al. 2016) renews interest in

understanding the environmental footprint of mining expansions. Using remote sensing satellite

imagery, Maryati et al. (2012) provide frameworks for evaluating the environmental impact of

mining in Indonesia, while Alvarez-Berros and Aide (2015) offer regional assessment of gold

mining on deforestation in South America. However, so far to our knowledge, this paper is the

first to offer a global assessment of the effect of mining booms on forest cover loss based on

high-spatial resolution panel data. Our findings suggest a positive elasticity of forest cover loss

with respect to commodity prices, and the losses are spatially dispersed, located both within and

outside the immediate areas of mining pits.

Second, our paper speaks to a broader literature on the environmental Kuznets curve by

examining institutional and firm-level factors influencing deforestation in a worldwide mine-level

panel. Grossman and Krueger (1991, 1995) find economic growth brings an initial phase of

environmental deterioration followed by a subsequent phase of improvement. Though intuitive,

the interpretation of this inverse U-shaped relationship has been limited due to concerns of

simultaneity (Stern, 2004). Andreoni and Levinson (2001) propose a theoretical model with

increasing returns in pollution abatement, an explanation not requiring differences in political

institutions. Instead of examining pollutant indicators as is traditional in this literature, we

quantify worldwide deforestation as another important measure of environmental degradation,

exploiting demand-driven global commodity price shocks for identification. We find evidence

2See Busch et al. (2017) for a review on the causes of deforestation.
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consistent with the environmental Kuznets curve. With firm and mine-level data, we provide

further evidence that mining firm ownership plays a key role in driving differences between host

country deforestation rates. Our results on forest cover loss outside the immediate mining areas

suggest the potential importance of institutions and environmental regulation enforcement.

We begin by describing the data and relevant empirical facts. Section 3.3 presents the

baseline estimation framework for the elasticity of forest cover loss. In Section 3.4, we examine

institutional and firm-level factors which influence deforestation around mining sites. Section 3.5

provides further evidence on the local economic impact of mining expansions using nighttime

luminosity data. Section 3.6 concludes.

3.2 Data and Empirical Facts

3.2.1 Data

First, we obtain proprietary data containing information on more than 30,000 mining sites

around the world, provided by SNL Financial. This market intelligence company offers current

and historic operating and financial data on mines at the property-level, collected from company

annual reports, news articles, etc. For each mine, there is information on main commodities

produced, mine characteristics, reserves, work history and owner firm information. However,

annual production data is not available for the majority of the properties. We also link each

property with other spatial variables using longitude and latitude of the mining sites.

To learn more about the mine owner firms, we further match the SNL data with a global

firm-level database, ORBIS-Bureau van Dijk. The ORBIS data is constructed by standardiz-

ing balance sheet, income statements and news reports, covering more than 300 million firms
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worldwide. We are particularly interested in information on firms’ domestic and international

ownership structure. We match the top three owners of each mining property, and obtain data

on these direct owner firms and their global ultimate owners. Key variables of interest include

state ownership status, operating revenue and multinational status of both the direct and global

ultimate owners.

Data on yearly global forest cover loss around mining properties come from Hansen’s

Global Forest Change database. The GFC data uses earth observation satellite images from

Landsat and characterizes forest cover loss at the Landsat pixel scale. We draw upon this spatially

and temporally detailed data and calculate forest cover loss for different buffer zones around all

mining properties worldwide, using coordinates provided in the SNL data. The sample period is

from 2000 to 2014 3.

We also gather other sources of spatial data to control for market access to mines. These

include: data on the nearest urban agglomerations from the United Nations World Urbanization

Prospects, data on the nearest port from the World Port Index, data on the nearest road from

the Global Roads Open Access, data on thhe nearest lake from the Global Lake and Wetlands

Database, and other spatial data sources from the ESRI.

Commodity price data by year and commodity type come from SNL Financial, supple-

mented by the IMF Primary Commodity Prices and the Historical Statistics for Mineral and

Material Commodities from the USGS. We also use other country-level indices. GDP per capita,

rule of law, CPI and corruption ranking indices are from the World Bank’s World Development

Indicators, supplemented by data from the World Governance Indicators and Transparency Inter-

national.

3A newer version of the GFC data is now available until 2018.
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3.2.2 Empirical Facts

In this subsection, we present summary statistics and empirical facts. First, we plot

summary graphs for commodity price fluctuations, and forest cover loss around mines. Second,

we give illustrative examples of how mining operations and nearby communities look like using

satellite imagery from Google Earth. Finally, we provide summary statistics on average mine

characteristics.

Figure 3.1 and 3.2 plot the standardized prices of major and minor commodities produced

by mines around the world. We see a sharp rise in prices for most commodities starting from

the early 2000s 4 and a following drop after the recession. Most previous studies attribute this

commodity ”super-cycle” to rising global demand, driven by rapid growth and search for natural

resources from emerging markets (Carter et al. 2011, Canuto, 2014, Humphreys, 2010, Reinhardt

et al. 2016). In our analysis, we use information on the primary commodity produced in each

mine and exploit the differential timing of the price changes across minerals.

Next, we show summary graphs of forest cover loss around mines in different buffer zones.

Figure 3.3 gives a simple bar chart of the average percentage of forest cover loss around mines,

from 2000 to 2014, by radius. The sharpest losses occur around the immediate 1km buffer zone.

Figure 3.4 to Figure 3.6 plot the average forest cover loss at 5km from 2000 to 2014, against mine

operating country and mine owner country’s GDP per capita in 2000. The graphs at 20km can be

found in Section 3.8. We see that mine operating countries have a wide range of GDP per capita

while mine owning countries are usually richer in comparison. Figure 3.4 is plotted using the

full sample, whereas Figure 3.5 and 3.6 restrict to mines with initial forest cover in 2000 being

4with the exception of diamonds
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higher than 25% and 40% respectively. Focusing on Figure 3.6, average forest cover loss during

the sample period ranges from 0 to 66%, with more than half of the sample having forest cover

loss less than 5%. There is no apparent correlation between forest cover loss and mine operating

country’s GDP per capita, whereas a positive correlation exists in the raw data between average

forest cover loss and mine owner country’s GDP per capita.

Third, we give visual illustrations of open-pit mining sites from different countries borrow-

ing satellite imagery from Google Earth . Mining operations range in shapes and sizes, spanning

from less than 1 kilometer to more than 25 kilometers in radius. Figure 3.7 and Figure 3.8

visualize two open pit mines in Argentina and Australia. In Section 3.8, we show additional

images for the Batu Hijau Mine in Indoenisa, the Belchatow mine from Poland, the Huckleberry

Mine from Canada, the Tagebau Hambach from Germany, the Lavender Pit from Arizona and

the Berkeley Pit from Montana. Though often located in remote places near forest, canyons and

deserts, many mining sites have nearby towns attached to them. For example, the Cadia-Ridgeway

mine in Australia, in Figure 3.8, has a radius of around 0.8km, but the nearby communities have

much larger land cover. Mines with irregular shapes such as the Mina Cerro Vanguardia from

Argentina could stretch further, taking up to 6 kilometer in radius. With a few exceptions, many

mines are contained within the 10 kilometer radius buffer zone, a fact relevant for our latter

analysis on the direct and indirect causes of forest cover loss from mining activities.

Finally, Table 3.1 and Table 3.2 provide summary statistics on average mine characteristics

and primary commodities produced. We have data on 33,262 unique mining sites, around 20% of

which are open pit. 3% of all mine-year observations have state ownership status where as 40%

have multinational status. 38.5% of our sample produce gold as the priamry commodity. Other

primary commodities include coal, copper, iron ore, nickel, U308, silver, zinc, etc.
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Figure 3.1: Standardized Prices of Major Commodities

Figure 3.2: Standardized Prices of Minor Commodities
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Figure 3.3: Average Forest Cover Loss around Mines by Radius, 2000-14

Figure 3.4: Average Forest Cover Loss at 5km by Country, 2000-14
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Figure 3.5: Average Forest Cover Loss at 5km by Country, IFC>25%, 2000-14

Figure 3.6: Average Forest Cover Loss at 5km by Country, IFC>40%, 2000-14
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Figure 3.7: Mina Cerro Vanguardia: gold and silver mine, Argentina

Figure 3.8: Cadia: gold mine, Australia
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Table 3.1: Average Mine Characteristics

Observations

Number of mine countries 159 199572
Number of owner countries 139 130326
Number of mines 33262 199572
Number of commodities 31 199572
Average owner SOE status 0.03 175662
Average owner MNC status 0.4 133614
Average number of commodities per mine 1.82 199572
Whether open pit 0.21 199572
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Table 3.2: Share of Primary Commodity

Commodity Percentage Observations

Antimony 0.15 199572
Chromium 0.02 199572
Coal 15.52 199572
Cobalt 0.11 199572
Copper 12.77 199572
Diamonds 4.32 199572
Gold 38.59 199572
Ilmenite 0.42 199572
Iron Ore 5.57 199572
Lanthanides 0.99 199572
Lead 0.75 199572
Lithium 0.58 199572
Manganese 0.59 199572
Molybdenum 0.9 199572
Nickel 3.52 199572
Niobium 0.09 199572
Palladium 0.08 199572
Phosphate 0.8 199572
Platinum 0.98 199572
Potash 0.57 199572
Scandium 0.02 199572
Silver 3.2 199572
Tantalum 0.21 199572
Tin 0.65 199572
Titanium 0.08 199572
Tungsten 0.39 199572
U3O8 5.06 199572
Vanadium 0.14 199572
Yttrium 0.01 199572
Zinc 2.9 199572
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3.3 Elasticity of Forest Cover Loss

How do commodity price fluctuations affect land use and forest management around

mining sites? What are the country and firm-level determinants of sustainable practices? Since

mining sites are often in remote locations, previous studies have been limited in scope and data

accuracy, often relying on local observational analysis. In this section, we exploit global demand-

driven mineral price changes since 2000, and examine forest cover loss surrounding different

types of mining sites worldwide, combining several sources of microdata and high-resolution

satellite imagery.

3.3.1 Baseline: Empirical Strategy

The baseline empirical specification is a fixed effect model

FCLP Rit = β1l pzit + γt + γc + γi + εit (3.1)

FCLP Rit is the percentage of forest cover loss in year t, measured every three years, at

radius R around mining property i. We draw buffer zones of 1, 3, 5, 10, 20, 30 kilometers radii

around each mining site. For the baseline results, we focus on buffer zones where the initial forest

cover in 2000 is larger than 40%. l pzct is the average standardized main commodity price for mine

i, from year t−2 to year t. To capture potential common time trends in both commodity prices

and deforestation, we include year fixed effects γt . To control for time-invariant confounders that

are mineral and mine specific, we include commodity fixed effects γc and mine fixed effects γi.

Standard errors are clustered at the country level.

3.3.2 Baseline: Results

We start by examining how the elasticity of forest cover loss with respect to commodity

prices varies with distance. Across buffer zones, we find positive and significant elasticity of
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forest cover loss, suggesting a typical supply curve.

The estimates for different buffer zones are presented in Table 3.3. Across radii, forest

cover loss positively increases with the price of the main commodity produced. This elasticity

reduces in magnitude as distance from the mining site increases. Conditional on initial forest

cover being higher than 40%, column 1 suggests that increasing the average primary commodity

price by approximately one standard deviation increases the percentage of forest cover loss by 0.6,

within the 1 kilometer buffer zone. This magnitude reduces to 0.2 as we focus on the 30 kilometer

buffer zone. Combining column 1 to 6, we interpret these results as tracing out the supply curve,

with higher mineral prices leading to more mining activities and associated nearby deforestation.

During the boom in the early 2000s, most commodities experienced price increases

roughly equal to 3 standard deviations, corresponding on average to a 1.8 percentage increase in

forest cover loss within the 1 kilometer buffer zone, and a 0.6 percentage increase in forest cover

loss within the 30 kilometer buffer zone. The average percentage of forest cover loss within the 1

kilometer and 30 kilometer buffer zones during our sample period (2000-2014) was 8.9, and 7.7,

respectively. So our estimates suggest the early 2000s ”commodity super-cycle” contributes to

roughly 8%-20% of the observed total deforestation around mining sites during this period.
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Table 3.3: Percentage of Forest Cover Loss, Initial Forest Cover>40%

(1) (2) (3) (4) (5) (6)
FCLP FCLP FCLP FCLP FCLP FCLP
b/se b/se b/se b/se b/se b/se

Commodity Price 0.629*** 0.453*** 0.422*** 0.339** 0.261** 0.194**
(0.158) (0.144) (0.161) (0.133) (0.10) (0.091)

Observations 51111 54003 54767 55341 55297 55325

Adjusted R2 0.18 0.2 0.22 0.25 0.32 0.38

Clustering Country Country Country Country Country Country

Fixed Effects Year, Commodity, Mine

Initial Forest Cover (Higher than, %) 40 40 40 40 40 40

Radius (km) 1 3 5 10 20 30

Forest Cover Loss, Price Elasticity-Following Equation 3.1, the dependent variable FCLP Rit is the
percentage of forest cover loss in year t, measured every three years, at radius R around mining property i.
The independent variable l pzct is the average standardized main commodity price for mine i, from year
t−2 to year t, spanning from 2000 to 2014. We draw buffer zones of 1, 3, 5, 10, 20, 30 kilometers radii
around each mine and focus on buffer zones where the initial forest cover in 2000 is larger than 40%. All
regressions include year, commodity and mine fixed effects. All coefficients are in percentage points.
Standard errors are clustered at the country level. *** Significant at 1%, ** 5%, * 10%.
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3.4 Country and Firm-Level Determinants of Deforestation

Previous literature on the political economy of deforestation and environmental Kuznets

curve (Alesina et al. 2019, Burgess et al. 2012, Grossman and Krueger, 1995) points to the

importance of within-country institutional differences, ethnic diversity and national income as key

factors influencing environmental degradation. In this section, we exploit exogenous commodity

price shocks and investigate country and firm-level determinants of deforestation during mining

expansions on a global scale, using mine-level panel data covering 159 countries. To do this, we

match the top owner firms of each mining property from SNL Financial with the global firm-level

database, ORBIS-Bureau van Dijk. We first examine the country and firm-level determinants in a

double-interaction specification, and then look at triple interaction results.

3.4.1 Double Interaction

FCLP Rit = β1wit ∗ l pzit +β2wit +β3l pzit + γc + γi +θit + εit (3.2)

The empirical specification builds on equation 3.1. FCLP Rit is the percentage of forest

cover loss in year t, measured every three years, at radius R around mining property i. l pzct is the

average standardized main commodity price for mine i, from year t−2 to year t. wit is the GDP

per capita of the mine’s operating country or the dummy for whether the mine is state-owned, in

year t. As before, we include commodity fixed effects γc, and mine fixed effects γi. In addition,

we also control for differential time trends by initial forest cover, as well as time-invariant mine

characteristics by year fixed effects. Standard errors are clustered at the country level.

Table 3.4 shows how the elasticity of forest cover loss varies with GDP per capita of

the mine’s operating country. We present results for the 3, 5, 10 and 20 kilometer buffer zones.

Across radii, the coefficient on the interaction of main commodity prices and mine operating
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Table 3.4: Interaction with Mine Country GDPPC

(1) (2) (3) (4)
FCLP FCLP FCLP FCLP
b/se b/se b/se b/se

Commodity Price 0.625*** 0.575*** 0.485*** 0.414***
(0.102) (0.151) (0.118) (0.080)

MineGDPPC*ComPrice -0.624*** -0.493** -0.419* -0.459**
(0.214) (0.238) (0.203) (0.164)

Observations 33629 34037 34291 34063

Adjusted R2 0.14 0.16 0.18 0.26

Clustering Country Country Country Country

Fixed Effects Year, Commodity, IFC*Year, MineChar*Year, Mine

Initial Forest Cover (Higher than, %) 40 40 40 40

Radius (km) 3 5 10 20

Forest Cover Loss, Interaction with Mine Country GDPPC -Following Equation 3.2, the
dependent variable FCLP Rit is the percentage of forest cover loss in year t, measured every
three years, at radius R around mining property i. The independent variable l pzct is the
average standardized main commodity price for mine i, from year t−2 to year t, spanning
from 2000 to 2014. wit is the GDP per capita of the mine’s operating country in year t.
We focus on buffer zones where the initial forest cover in 2000 is larger than 40%. All
regressions include commodity, mine, IFC (initial forest cover) x year and MineChar x year
fixed effects. All coefficients are in percentage points. Standard errors are clustered at the
country level. *** Significant at 1%, ** 5%, * 10%.
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Table 3.5: Interaction with Owner Firm SOE Status

(1) (2) (3) (4)
FCLP FCLP FCLP FCLP
b/se b/se b/se b/se

Commodity Price 0.375** 0.373** 0.301* 0.216*
(0.148) (0.179) (0.156) (0.123)

OwnerSOE*ComPrice 0.018 -0.063 0.015 0.020
(0.302) (0.248) (0.226) (0.223)

Observations 47981 48677 49255 49287

Adjusted R2 0.21 0.23 0.26 0.33

Clustering Country Country Country Country

Fixed Effects Year, Commodity, IFC*Year, MineChar*Year, Mine

Initial Forest Cover (Higher than, %) 40 40 40 40

Radius (km) 3 5 10 20

Forest Cover Loss, Interaction with Owner Firm SOE Status -Following Equation 3.2, the
dependent variable FCLP Rit is the percentage of forest cover loss in year t, measured every
three years, at radius R around mining property i. The independent variable l pzct is the
average standardized main commodity price for mine i, from year t−2 to year t, spanning
from 2000 to 2014. wit is the dummy for whether the mine is state-owned in year t. We focus
on buffer zones where the initial forest cover in 2000 is larger than 40%. All regressions
include commodity, mine, IFC (initial forest cover) x year and MineChar x year fixed effects.
All coefficients are in percentage points. Standard errors are clustered at the country level.
*** Significant at 1%, ** 5%, * 10%.
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country GDPPC is significantly negative. This shows the elasticity of forest cover loss with

respective to price is lower in richer countries. With the same commodity price hike, mines

located in countries with higher GDPPC deforest less. The results on state-ownership is less

stark. Table 3.5 illustrates double interaction results of commodity prices with the mining firm’s

ownership status. We categorize a mine to be state-owned if at least one of its top three owners is

a State-Owned Enterprise (SOE). There is no significance across radii of the elasticity of forest

cover loss varying with state ownership status. However, as we would see later in section 3.4.2,

SOE status does matter in the triple interaction setting. In particular, it affects the differential

elasticity of forest cover loss between rich versus poor mine operating countries.

3.4.2 Triple Interaction

We now explore how different country and firm-level factors interact with each other to

influence the elasticity of deforestation in a triple interaction fixed-effect setting

FCLP Rit = β1zit ∗wit ∗ l pzit +β2zit ∗ l pzit +β3wit ∗ l pzit +β4zit ∗wit

+β5zit +β6wit +β7l pzit + γc + γi +θit + εit

(3.3)

FCLP Rit is the percentage of forest cover loss in year t, measured every three years, at

radius R around mining property i. l pzct is the average standardized main commodity price for

mine i, from year t−2 to year t. wit is the GDP per capita of the mine’s operating country in year

t. zit is the GDP per capita of the mine owner country, or the dummy for whether the mine is

state-owned, in year t. As before, we include commodity fixed effects γc, and mine fixed effects

γi, initial forest cover by year fixed effects, and time-invariant mine characteristics by year fixed

effects. Standard errors are clustered at the country level.

We first look at the triple interaction between mine operating country GDP per capita,
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mine owner country GDP per capita and commodity prices, conditional on having more than

40% initial forest cover. At small radii, focusing on the triple interaction term in Table 3.6, the

coefficient is positive and not significant. At higher radii, the triple interaction becomes negatively

significant, which tells us that the elasticity of forest cover loss is lower in high income countries

and when mining firms are from richer countries. This differential elasticity is starker at higher

radii, where presumably the mining operator has more discretion in the rate of deforestation.

Table 3.6: Triple Interaction: MineGDP*OwnerGDP*Price

(1) (2) (3) (4) (5) (6)
FCLP FCLP FCLP FCLP FCLP FCLP
b/se b/se b/se b/se b/se b/se

Price 0.801*** 0.734*** 0.685*** 0.557*** 0.454*** 0.333***
(0.179) (0.102) (0.146) (0.121) (0.073) (0.076)

MineGDP*Price -0.788*** -0.600** -0.210 -0.141 -0.293 -0.340*
(0.269) (0.262) (0.159) (0.181) (0.179) (0.183)

OwnerGDP*Price 0.094 -0.136 -0.161 -0.128 -0.040 0.011
(0.527) (0.232) (0.149) (0.136) (0.105) (0.110)

MineGDP*OwnerGDP*Price 1.520 0.256 -0.355 -0.416* -0.430*** -0.425***
(0.898) (0.401) (0.312) (0.233) (0.139) (0.133)

Observations 23180 24214 24506 24760 24596 24616

Adjusted R2 0.14 0.15 0.16 0.18 0.26 0.32

Clustering Country Country Country Country Country Country

Fixed Effects Year, Commodity, IFC*Year, MineChar*Year, Mine

Initial Forest Cover (Higher than, %) 40 40 40 40 40 40

Radius (km) 1 3 5 10 20 30

Forest Cover Loss, Triple Interaction: MineGDP*OwnerGDP*Price -Following Equation 3.3, the dependent
variable FCLP Rit is the percentage of forest cover loss in year t, measured every three years, at radius R around
mining property i. The independent variable l pzct is the average standardized main commodity price for mine i,
from year t−2 to year t, spanning from 2000 to 2014. wit is the GDP per capita of the mine’s operating country
in year t. zit is the GDP per capita of the mine owner country in year t. We focus on buffer zones where the
initial forest cover in 2000 is larger than 40%. All regressions include commodity, mine, IFC (initial forest
cover) x year and MineChar x year fixed effects. All coefficients are in percentage points. Standard errors are
clustered at the country level. *** Significant at 1%, ** 5%, * 10%.

121



Figure 3.9: Triple Interaction: MineGDP*OwnerGDP*Price

Initial Forest Cover>40%, by buffer radius

Alternatively, Figure 3.9 visualizes this triple interaction by buffer radius. ”High” and

”Low” refers to one standard deviation above and below mean of each variable. Thicker lines

denote statistical significance below the 10% level. Generally, mine owners from rich countries

display larger disparity in the elasticity of forest cover loss when operating in low versus high

income countries. Take the 20 kilometer buffer zone for example: in low income countries,

owners from rich and poor countries deforest at the same rate. In high income countries, owners

from poor countries have a significantly higher elasticity of forest cover loss with respect to

prices. The green solid line at larger radii is flatter and insignificant, suggesting mine owners

from rich countries do not deforest much more during commodity price hikes when operating in

rich countries. There are many potential explanations for this. One possibility is that mining firms

from rich countries have the capacity to minimize environmental impact during mining operation

when the institutional incentives for doing so is strong. Alternatively, rich host countries may
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agree to different standards of environmental conservation for firms from different countries.

Next, we also examine the triple interaction between mine operating country GDP per

capita, mine owner’s state ownership status and commodity prices. The estimation results are

presented in Table 3.7. Across radii, we see positive and significant effects on the triple interaction

term. Recall that in section 3.4.1, we see no significant evidence of the elasticity of forest cover

loss varying with state ownership status. Table 3.7 shows that state ownership status matters, for

the differential elasticity of forest cover loss between rich versus poor mine operating countries.

For non-state owned mining firms, the elasticity of forest cover loss is lower in high income

countries, echoing previous findings. For state-owned mining firms, perhaps surprisingly, the

elasticity of forest cover loss is higher in high income countries.

3.5 Mining Activities and Night Lights

Are the forest cover loss associated with commodity booms a direct effect of mining

expansion or an indirect effect from nearby economic activity and population growth? To inves-

tigate the relationship between local economic activities and commodity price fluctuations, we

look at nighttime luminosity measures from satellite imagery in this section. This data has been

used in the literature to capture economic development, particularly for countries with insufficient

capacity in national statistics collection.

The main empirical strategy follows fixed-effect models similar as before. Table 3.8

presents estimation results on nighttime luminosity measures for buffer zones of 5, 10 and 25

kilometer radius. Column 2,4,6 follows equation 3.1, controlling for year, commodity and mine

fixed effects. Across radii, we see that commodity prices significantly increase local economic
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Table 3.7: Triple Interaction: OwnerSOE*MineGDP*Price

(1) (2) (3) (4) (5) (6)
FCLP FCLP FCLP FCLP FCLP FCLP
b/se b/se b/se b/se b/se b/se

Price 0.709*** 0.615*** 0.581*** 0.490*** 0.418*** 0.333***
(0.109) (0.086) (0.146) (0.120) (0.079) (0.077)

MineGDP*Price -0.215 -0.590*** -0.474** -0.409** -0.485** -0.516**
(0.290) (0.202) (0.211) (0.192) (0.174) (0.184)

OwnerSOE*Price -0.277 -0.066 -0.200 -0.127 -0.099 -0.250
(0.515) (0.208) (0.227) (0.135) (0.174) (0.262)

OwnerSOE*MineGDP*Price 1.628*** 0.885** 0.762* 1.031*** 1.021*** 0.915**
(0.551) (0.321) (0.373) (0.317) (0.312) (0.360)

Observations 28297 29659 30023 30313 30145 30157

Adjusted R2 0.14 0.15 0.16 0.18 0.26 0.33

Clustering Country Country Country Country Country Country

Fixed Effects Year, Commodity, IFC*Year, MineChar*Year, Mine

Initial Forest Cover (Higher than, %) 40 40 40 40 40 40

Radius (km) 1 3 5 10 20 30

Forest Cover Loss, Triple Interaction: OwnerSOE*MineGDP*Price -Following Equation 3.3, the dependent
variable FCLP Rit is the percentage of forest cover loss in year t, measured every three years, at radius R
around mining property i. The independent variable l pzct is the average standardized main commodity price
for mine i, from year t−2 to year t, spanning from 2000 to 2014. wit is the GDP per capita of the mine’s
operating country in year t. zit is the dummy for whether the mine is state-owned in year t. We focus on buffer
zones where the initial forest cover in 2000 is larger than 40%. All regressions include commodity, mine,
IFC (initial forest cover) x year and MineChar x year fixed effects. All coefficients are in percentage points.
Standard errors are clustered at the country level. *** Significant at 1%, ** 5%, * 10%.
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activities measured by nighttime luminosity, although the magnitude decreases as we look at

larger buffer zones. Next, for the triple interaction between mine operating country GDP per

capita, mine owner country GDP per capita and commodity prices, we follow the specification

in equation 3.3. The coefficients on the triple interaction are significantly positive. This says

that the impact of commodity booms on nearby economic activities is larger if the mine owner is

from a rich country and when the mine operating country is rich. Commodity booms are often

associated with employment opportunities for nearby mining towns, possibly resulting in local

economic booms. Here we focus on the immediate effect, although it would be also interesting

to see the medium and long run effects of commodity price booms on local economic development.

Table 3.8: Triple Interaction: MineGDP*OwnerGDP*Price

(1) (2) (3) (4) (5) (6)
DlSOL DlSOL DlSOL DlSOL DlSOL DlSOL
b/se b/se b/se b/se b/se b/se

Price -0.009 0.013*** -0.010 0.010*** -0.010 0.008**
(0.010) (0.004) (0.010) (0.004) (0.010) (0.004)

OwnerGDP*Price 0.076*** 0.065*** 0.053***
(0.012) (0.010) (0.010)

MineGDP*Price -0.010 -0.004 0.000
(0.013) (0.011) (0.010)

OwnerGDP*MineGDP*Price 0.028*** 0.026*** 0.026***
(0.005) (0.005) (0.004)

Observations 49513 130004 49513 130004 49517 130008

Adjusted R2 -0.04 0.009 0.03 0.08 0.14 0.19

Clustering Country Country Country Country Country Country

Other Fixed Effects Year, Commodity, Mine, MineChar

Radius (km) 5 5 10 10 25 25

Nighttime Luminosity, Triple Interaction: MineGDP*OwnerGDP*Price -The dependent variable
DlSOLit is the log difference in nighttime luminosity in year t, measured every three years, at
radius R around mining property i. The independent variable l pzct is the average standardized main
commodity price for mine i, from year t−2 to year t, spanning from 2000 to 2012. wit is the GDP
per capita of the mine’s operating country in year t. zit is the GDP per capita of the mine owner
country in year t. All regressions include year, commodity, mine, MineChar fixed effects. Standard
errors are clustered at the country level. *** Significant at 1%, ** 5%, * 10%.
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Figure 3.10: Triple Interaction on Night Lights: MineGDP*OwnerGDP*Price

Initial Forest Cover>40%, by buffer radius

We visualize the triple interaction in Figure 3.10. Across radii from 1 to 50 kilometers,

nighttime luminosity around mining sites increases with commodity prices when the mine op-

erating country and mine owner country are both high income. For smaller buffer zones with

radius below 5 kilometer, the elasticity of night lights is also positive when the mine owner is high

income and the mine operating country is low income. 5 However, the effects reverse when the

mine owner is from a low income country. Perhaps surprisingly, nighttime luminosity decreases

during commodity price booms when the mine owner is from a country with average GDP per

capita one standard deviation below sample mean.

In some cases, We could infer the causes of forest cover loss, combining results on

nighttime luminosity with previous results in section 3.4. First, recall mine owners from poor
5We do not focus on results within the 5 kilometer buffer zone given that the regression fit is very low, possibly

because few economic activities happen at night in the immediate area surrounding mines.
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countries deforest at a higher rate in both high and low income countries. Given that nearby

economic activities do not increase, the forest cover loss more likely results from direct expansion

of mining activities. In fact, when mine owners are from poor countries, the price effect on

deforestation becomes insignificant when we look at the 30 kilometer buffer zone, as illustrated

in Figure 3.9.

When mine owners from high income countries operate in low income countries, we see

an increase in both local economic activity and forest cover loss across buffer zones, suggesting

both direct expansion in mining operation and local economic growth could contribute to defor-

estation. Given most mines are less than 10 kilometer in radius, it is likely that the deforestation

in larger buffer zones occur due to indirect effects.

3.6 Conclusion

Reducing forest-based emissions as an important strategy to curb global carbon emissions

relies on accurate understanding of the causes and factors affecting deforestation. In this paper,

we offer global, mine-level evidence on mining-induced deforestation during the ”commodity

super-cycle” since 2000. We further explore the political economy of the environmental impact

of mining, and find that the elasticity of forest cover loss with respect to price is higher in low

income countries. Mining firm ownership plays a key role in understanding the large disparity

in deforestation rates between rich versus poor host countries. Further evidence from nighttime

luminosity data suggests indirect effects of mining expansion on nearby economic activities may

be an important channel through which commodity booms affect deforestation.

This paper offers a natural starting point to evaluate the effectiveness of forest conservation

programs on a global scale. A rich recent literature evaluates policies under UN’s REDD++
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relying on local randomized controlled trials 6, country-level aggregate data 7, and country-specfic

quantitative counterfactual estimation 8. Exploring submission data from the Forest Reference

Emission Level (FREL) proposals to the UN, and the World Database on Protected Areas (WDPA)

for evaluating forest policies during commodity booms is an area for future research.

6Jack and Jayachandran, 2019; Jayachandran, 2013; Jayachandran et al. 2017
7Duchelle et al. 2018; Overman et al. 2019
8Souza-Rodrigues, 2018
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3.8 Additional Figures

3.8.1 Average Forest Cover Loss at 20 km

Figure 3.11: Average Forest Cover Loss at 20km by Country, 2000-14
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Figure 3.12: Average Forest Cover Loss at 20km by Country, IFC>25%, 2000-14

Figure 3.13: Average Forest Cover Loss at 20km by Country, IFC>40%, 2000-14
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3.8.2 Google Earth Images of Open Pit Mines

Figure 3.14: Batu Hijau: copper and gold mine, Indonesia
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Figure 3.15: Belchatow: coal mine, Poland

Figure 3.16: Tagebau Hambach: lignite mine, Germany
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Figure 3.17: Lavender Pit: Arizona

Figure 3.18: Berkeley Pit: copper mine/superfund site, Montana
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Figure 3.19: Huckleberry Mine: copper/molybdenum/gold/silver, Canada
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