
UC Davis
UC Davis Previously Published Works

Title
Theoretical study of the mechanism of H2O+ dissociative recombination

Permalink
https://escholarship.org/uc/item/1604b538

Journal
Physical Review A, 92(1)

ISSN
2469-9926

Authors
Nkambule, Sifiso M
Larson, Åsa
dos Santos, Samantha Fonseca
et al.

Publication Date
2015-07-01

DOI
10.1103/physreva.92.012708
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1604b538
https://escholarship.org/uc/item/1604b538#author
https://escholarship.org
http://www.cdlib.org/


Theoretical study of the mechanism of H2O
+ dissociative recombination

Sifiso M. Nkambule and Åsa Larson
Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

S. Fonseca dos Santos and Ann E. Orel∗

Department of Chemical Engineering and Materials Science, University of California, Davis, USA

(Dated: July 4, 2015)

By combining electronic structure and scattering calculations, quasidiabatic potential energy sur-
faces of both bound Rydberg and electronic resonant states of the water molecule are calculated at
the multi-reference configuration interaction level. The scattering matrix calculated at low collision
energy is used to obtain explicitly all couplings elements responsible for the electronic capture to
bound Rydberg states. These are used to estimate the cross section arising from the indirect mech-
anism of dissociative recombination. Additionally, the role of the direct capture and dissociation
through the resonant states is explored using wave packet propagation along one-dimensional slices
of the multi-dimensional potential energy surfaces.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

There have been number of experimental studies of the
dissociative recombination (DR) of the water ion. How-
ever, there are significantly less theoretical studies on this
reaction. There are several unanswered questions about
the mechanism and the dynamics of the DR process in
this system. Here, we take a first step toward a theoret-
ical study of the reaction, attempting to obtain a better
understanding of the process.

The first measurement of the total cross section was
carried out in 1983 by Mul et al. [1]. The absolute cross
sections of DR have been measured both for the H2O

+ [1–
3] and HDO+ ions [2]. At low energies (< 2 eV), the cross
section decreases significantly faster than the E−1 behav-
ior expected for the direct mechanism of DR [2]. Around
0.3-0.4 eV the cross section drops by a factor of three,
indicating opening of a new autoionization channel. At
higher collision energies, around 5 and 15 eV, there are
pronounced peaks in the DR cross section that might re-
veal capture into higher lying resonant states. The ratio
of the HDO+/H2O

+ cross sections is about 0.6, and they
display very similar energy dependencies [2].

At zero collision energy, there are several dissociation
channels open and the energetics of the DR process are
shown below:

H2O
+ + e− −→











O(3P ) + H2 + 7.6 eV
OH +H(2S) + 7.5 eV
O(3P ) + H(2S) + H(2S) + 3.04 eV
O(1D) + H(2S) + H(2S) + 1.07 eV.

(1)
Here, the energies are given for OH and H2 in their elec-
tronic and vibrational ground states and with negligible
rotational energy.

∗Electronic address: aeorel@ucdavis.edu

There are numerous measurements of the branching
ratios. For DR of the water ion in the ground vibrational
state, the three-body breakup dominates with measured
ratios ranging from 0.57 ± 0.07 [2] to 0.73 ± 0.06 [3].
The propensity for three-body fragmentation is found in
most experimental studies of DR on small molecular ions
such as H+

3 [4], NH+
2 [5] and CH+

2 [6]. No theoretical un-
derstanding of this observation is presently available. In-
terestingly, branching ratio measurements on the HDO+

ion show that the OD+H channel is twice as probable as
dissociation into OH+D [2].

Note that there are two three-body channels ener-
getically open at zero collision energy, O(3P )+H+H
and O(1D)+H+H. Using an imaging technique, the
O(3P )/O(1D) ratios have been measured at the
CRYRING ion storage ring and found to be 3.5± 0.5 [7,
8]. The recoil kinetic energy of the hydrogen atoms have
been detected and different H-O-H angular distributions
are observed depending on the excited state of the oxygen
atom [7]. For break-up into the ground state fragments,
it is found that the angle either significantly increases or
decreases during the dissociation dynamics [8].

In order to study the DR reaction theoretically, the po-
tential energy surfaces of bound and resonant electronic
states of H2O must be computed. In this work, elec-
tron scattering calculations using the complex-Kohn vari-
ational method [9] are combined with structure calcula-
tions using the multi-reference configuration interaction
method (see section IIA). From the electron scattering
calculations, the autoionization widths of resonant states
are computed. The resonant states are “quasidiabatized”
as described below. As a first step toward understanding
the mechanism of H2O

+ DR, simplified models are ap-
plied to describe the direct and indirect processes. The
direct capture and dissociation along the resonant states
are modeled using one-dimensional wave packet propa-
gations, where either one or both bonds break while the
H-O-H angle is frozen (see section IIIA). No couplings
between the electronic states are included and there-
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fore we are not able to model the complicated dissoci-
ation dynamics and isotope dependence observed in the
experiments. As outlined in section III B, we perform
electron-ion scattering calculations just above the ioniza-
tion threshold and obtain all couplings elements directly
from the scattering matrix calculated with the variational
complex-Kohn method. These are then used to compute
cross section for indirect DR.
Unless otherwise stated, atomic units are used

throughout.

II. COMPUTATIONAL DETAILS

A. Electronic structure calculations

The X̃1A1 ground state of H2O has the dominant con-
figuration (1a1)

2(2a1)
2(1b2)

2(3a1)
2(1b1)

2 in C2v symme-
try. The electron in the highest occupied molecular or-
bital (HOMO) is bound with 12.6 eV, that if removed
leads to the formation of H2O

+ in its 2B1 ground state.
There are two other low-lying ionic states corresponding
to the removal of an electron in the (3a1) orbital leading
to the 2A1, and the 2B2 formed by the removal of the
(1b2) electron. The resonances seen in electron scatter-
ing from H2O

+ are Rydberg states converging to these
excited ionic states. They are crossed at large internu-
clear separations by states converging to even higher ionic
excited states.
In this work, two sets of electronic structure calcula-

tions have been performed. The first of them was carried
out to obtain Rydberg and resonant states involved in the
direct DR process, therefore we were particularly inter-
ested in achieving a good description of the curve crossing
between resonances and the ionic-core potential. The fo-
cus for the second set was on the indirect DR process,
and the calculations were optimized to describe as well
as possible the ionic ground state and its Rydberg series
at molecular geometries close to the equilibrium.
For the direct DR model, the potential energy surfaces

of the ion as well as excited states of the neutral molecule
are calculated using the multi-reference configuration in-
teraction (MRCI) method. This will provide us with the
potential energy of the electronically bound states that
are situated below the ground state of the ion. We also
use the structure calculations to interpolate the poten-
tials of the resonant states between the geometries where
electron scattering calculations are performed. Note that
although at equilibrium the molecule has C2v symmetry,
if the molecule is stretched asymmetrically the symmetry
becomes Cs and a larger CI calculation is needed. Calcu-
lations were carried out both in C2v and Cs symmetries.
In order to describe both the Rydberg series converging

to the various excited ionic states, which are the elec-
tronic resonances; as well as describing the bound Ry-
dberg states, we first carried out a self-consistent field
(SCF) calculation on the neutral with a basis set consist-
ing of (4s, 1p) primitive functions contracted to [3s, 1p]

for the hydrogen and (9s, 7p, 1d) contracted to [4s, 4p, 1d]
for the oxygen atom. In the next step, these SCF orbitals
were used in a MRCI calculation on the three lowest
states of the ion, where the lowest orbital [(1a1) in C2v or
(1a′) in Cs] mainly composed of the the 1s atomic orbital
on oxygen, was frozen and the next four orbitals formed
the active space. A full CI was done in the active space
and single and double excitations from this set of configu-
rations were allowed into the remaining orbitals. Natural
orbitals were obtained from averaging the orbitals, over
the lowest three ionic states. The natural orbitals were
then further expanded by adding diffuse (1s, 1p) orbitals
on oxygen and (2s, 2p) on hydrogen.

Then a MRCI calculation is carried out to deter-
mine the potential energy surfaces of the ground state
of the ion as well as excited states of the neutral
molecule. In these calculations, the lowest (1a′) core or-
bital was kept doubly occupied and the reference con-
figurations are constructed by excitations of eight elec-
trons (seven for the ion) among the seven orbitals:
(2a′),(3a′),(4a′),(5a′),(6a′),(1a′′), and (2a′′). Single exci-
tations out of the reference configurations were included.

A slightly different calculation was performed for the
indirect DR description. The first difference is regarding
the choice of the basis set. In the indirect DR model we
used the cc-pVTZ basis set [10] centered on each atom
and included all s, p and d orbitals. The second change
is with respect to the computation of the natural orbitals.
Since in the indirect DR model only the knowledge of the
Rydberg series converging to the ground state of the ion
is relevant, the natural orbitals are obtained simply from
a MRCI calculation on the ground ionic state. The refer-
ence configurations were generated by keeping the (1a′)
core orbital doubly occupied and by allowing all possible
excitations among the following eight orbitals. The last
difference in the bound state calculations is the choice
of expansion basis. The Rydberg energies were obtained
by further expanding the natural orbitals by adding at
the center of charge the diffuse universal Rydberg gaus-
sian basis set (8s, 7p, 6d) [11] to the initial gaussian ba-
sis. Then the potential energy surfaces of the ion and the
neutral system were generated using a MRCI calculation
with an active space of eight orbitals (again keeping the
core orbital frozen) and by allowing for single external ex-
citations. By using this approach, we were able to obtain
Rydberg states up to n = 5 and, therefore, guarantee the
convergence of the quantum defects with respect to the
principal quantum number.

B. Scattering calculations

The energy positions and autoionization widths of
the electronic resonant states were determined using the
complex-Kohn variational method [9]. The trial wave
function for the neutral (N + 1 electron) system is writ-
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ten as

ΨΓ0
=

∑

Γ

A[ΦΓFΓΓ0
] +

∑

µ

dΓ0

µ Θµ. (2)

The first sum is denoted as the P -space portion of the
wave function and runs over the energetically open tar-
get states. Here, the symbol index Γ labels all quantum
numbers representing a physical scattering state, i.e. in-
ternal state of the target and angular momentum quan-
tum numbers of the scattered electron. ΦΓ(r1, ..., rN )
represents the target wave function for the ion, while
the function FΓΓ0

(rN+1) is the one-electron wave func-
tion describing the scattered electron. A is an anti-
symmetrization operator for the electronic coordinates.
As the target wave function, we used the MRCI wave
functions constructed with the direct and indirect DR
picture in mind, respectively. The second term, denoted
as the Q-space portion of the wave function, contains the
functions Θµ(r1, ..., rN+1), which are square-integrable
N +1 configuration state functions (CSFs) that are used
to describe short-range correlations and the effects of
closed channels. We used the same natural orbitals as
those applied in the structure calculations as described
in the previous section. The advantage of using natural
orbitals is that the orbital space used to generate these
states is kept manageable small. The one-electron scat-
tering wave function FΓΓ0

is in the case of electron-ion
scattering further expanded as

FΓΓ0
(r) =

∑

j

cΓΓ0

j φj + (3)

∑

lm

[

fΓ
l δll0δmm0

δΓΓ0
+ T ΓΓ0

ll0mm0
gΓl

]

Ylm(r̂)/r.

Here φj(r) are a set of square-integrable functions, and
fΓ
l (kΓr) and gΓl (kΓr) are the incoming and outgoing
Coulomb functions for a scattered electron with channel
momenta kΓ. Ylm are spherical harmonics and angular
momenta up to l = 6 and |m| = 4 were included in the
calculation.
By inserting the trial wave function into the complex-

Kohn functional [9], the unknown coefficients in the trial
wave function can be optimized. Also the T -matrix
(T ΓΓ0

ll0mm0
) for elastic scattering is obtained and by fitting

the eigenphase sum of the T -matrix to a Breit-Wigner
form [12], the energy positions and autoionization widths
of the resonant states were determined. These electron-
scattering calculations are carried out for a fixed geome-
try of the target ion.
Slightly bigger calculations were made to treat the in-

direct DR process. In order to be able to perform the
scattering calculations, a different expansion basis was
used to expand the molecular orbitals. The initial gaus-
sian basis set was augmented with a small set of diffuse
orbitals (2s, 3p, 2d). As previously discussed [13], due
to the relative large dipole moment of H2O

+, the elec-
tron scattering calculations used for modeling the indi-
rect mechanism were carried out with the center of charge

of the molecular ion as the origin of the chosen reference
frame. Thus, incoming and outgoing Coulomb functions
and corresponding spherical harmonics were defined with
respect to the center of charge instead of the usual center
of mass. Since the effect of rotation of the molecular ion
is not included, the cross section for vibrational capture
is independent of the choice of the origin.

C. Quasidiabatization

The water molecular ion has the equilibrium bond
lengths ROH = 1.9086 a0 and a bond angle of θ = 108.8◦.
As mentioned above, the ionic ground state is dominated
by the configuration (1a1)

2(2a1)
2(1b2)

2(3a1)
2(1b1)

1. In
Cs this becomes: (1a′)2(2a′)2(3a′)2(4a′)2(1a′′)1. When
structure calculations are carried out, three types of
states are obtained. These are the Rydberg states con-
verging to the ground ionic cores, the states trying to de-
scribe the ionization continuum, as well as the resonant
states. Both the Rydberg states as well as the states de-
scribing the ionization continuum have the same config-
uration as the ground state of the ion plus an outer elec-
tron in a diffuse orbital. The resonant states are more or
less compact Rydberg states converging to excited ionic
cores. These resonant states all have a vacancy in either
the (1b2) or (3a1) [(3a

′) or (4a′) in Cs] orbitals. By iden-
tifying the states with this character, the resonant states
can be “diabatized” relative to the Rydberg states and
the ionization continuum. This is done in order to follow
the resonant states when they cross the ionic ground state
and interact with the Rydberg manifold situated below
the ionic potential. This approach is also employed to
obtain more data for the potential energy surfaces of the
resonant states above the ion and interpolate and extrap-
olate between the energies of the resonant states calcu-
lated using the electron scattering formalism. It should
be noted that this approach will provide us with the en-
ergy of the resonant state within the energy spread given
by the autoionization width. The H2O system has res-
onant states that are very narrow, and hence the use of
structure data to obtain resonant states is relatively ac-
curate.
We have only diabatized the resonant states relative to

the Rydberg states by using the CI-coefficients. We have
not calculated any electronic couplings between the neu-
tral states. In addition, we have not diabatized the res-
onant states among each other. As will be shown below,
there are clear indications of avoided crossings among the
resonant states.

III. THEORY

A. Direct process

In our theoretical model of the direct process, the wa-
ter ion captures an electron and a doubly excited reso-
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nant state is formed. The dynamics were here studied
separately for the “symmetric” and “asymmetric” mo-
tions. In the “symmetric” mode both OH bond dis-
tances vary R1 = R2, while the H-O-H angle θ = 108.8◦

is frozen. When considering the “asymmetric” motion,
R1 = 1.9086 a0 and θ = 108.8◦ are frozen, while R2

varies. Using a time-dependent formalism this can be
described with the initial condition for a wave packet
propagation [14]

Ψi(R, t = 0) =

√

Γi (R)

2π
χvi (R) . (4)

Here, R is a collective notation of the internuclear coor-
dinates. Γi is the autoionization width of resonant state
i obtained from the electron scattering calculations de-
scribed above and χvi is the initial vibrational wave func-
tion of the water ion.
The dynamics then proceed “quasidiabatically” along

the resonant state

i∂tΨi (R, t) =

[

T̂ + Vi (R)− i
1

2
Γi (R)

]

Ψi(R, t). (5)

One-dimensional wave packets were propagated numer-
ically using the Cranck-Nicholson propagation algo-
rithm [15]. Autoionization was here included within the
“boomerang model” [16, 17] as a local complex potential.
The wave packets were propagated in time and to pre-

vent reflection toward the end of the grid, a complex
absorbing potential was applied at large distances. The
contributions to the direct DR cross section from reso-
nant state i were computed with

σi(E) =
2π3

E
gi |Ti(E)|

2
, (6)

where gi is the ratio of the multiplicity for the final and
initial states and E is the electron scattering energy. The
transition matrix was obtained [18] using the half-Fourier
transform of the wave packet at an asymptotic internu-
clear distance, Rc.

Ti (E) =

√

K

2πµ

∫

∞

0

Ψi (Rc, t) e
iEtdt. (7)

Here, K is the wave number associating with the disso-
ciating fragments and µ is the reduced mass.
No couplings between the neutral states were included

in the wave packet propagation. At low collision energies,
some of the resonant states are quasidiabatically not open
for dissociation. This explains some of the sharp thresh-
olds observed in the calculated direct DR cross section
(see section IVC). Including electronic couplings be-
tween resonant states and also to the Rydberg manifold
will allow for a redistribution of flux and open pathways
for dissociation at energies below the threshold energy of
the resonant state.

B. Indirect process

The approach employed in this work is similar to the
one used to calculate the DR cross sections of highly sym-
metric ions [19, 20], as well as of linear polyatomic ions
in our recent works [13, 21]. Thus, only a brief overview
of the theory will be presented.
The starting point is the ab initio calculation of the

ionic electronic ground state and its series of Rydberg
states energies, as described in Sec. II A. As previously
suggested in Refs. [22, 23], the description of the vibra-
tional dynamics in the simplified model of the indirect
process developed by Jungen and Pratt [19, 24] consid-
ered the electronic capture as the decisive step in the DR
mechanism by neglecting autoionization; i.e., assuming
that after the neutral molecule is formed all the flux is
transferred into the dissociation channels. Hence, the
calculated cross section for the indirect DR mechanism
provides an upper bound limit because it does not reflect
the competition between the dissociation and autoion-
ization channels. Rotation of the molecular target was
also neglected, therefore the model only accounts for the
electronic and vibrational degrees of freedom. In addi-
tion, the cross section was averaged over the energy in-
terval between consecutive resonances leading to a con-
stant probability of electronic capture. Therefore, the
cross section will be structureless without the usual ro-
vibrational resonance features. The last simplification
was the treatment of the nuclear motion as harmonic,
which allows an analytical description of the vibrational
states and results in an analytical expression for the final
cross section [24].
The cross section can be obtained directly via the low-

energy scattering matrix calculated through the varia-
tional complex-Kohn method. In this approach, the scat-
tering matrix is expressed in the spherical harmonic chan-
nel basis as Sα

ll′mm′ = 〈lm|Ŝ|l′m′〉, where Ylm(θ, φ) =
〈θφ|lm〉 are centered at a fixed origin in the molecular
frame; (θ, φ) are polar angles. The indirect DR cross
section is given by:

〈σ〉 =
π

2E

∑

α νn
ll′mm′

gα |〈χ0 |S
α
ll′mm′ |χνn〉|

2 Θ(Eνn − E). (8)

In the above expression, the brackets indicate that the
cross section is averaged over Rydberg resonances. Since
at low energies only the first few vibrational states are im-
portant, we can approximate the vibrational wave func-
tions χνn by harmonic oscillators in each of the three
normal modes. Therefore, each individual S-matrix ele-
ment was fitted to a quadratic form simplifying the ma-
trix elements in equation (8). We took into consideration
only the contribution of transitions from the ground vi-
brational state to the first and second vibrational states.
The cross section is obtained by summing over the elec-
tronic symmetry of the scattering wave function (α), the
different vibrational transitions for the three modes (νn),
as well as all the elements of the scattering matrix. Here,
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gα is the multiplicity ratio for the given electronic sym-
metry. The Heaviside step function guarantees that the
contribution to the cross section becomes zero when the
electronic energy is greater than the corresponding vibra-
tional threshold, Eνn .

IV. RESULTS

A. Resonant states for direct DR

We show slices of the calculated potential energy sur-
faces for two cases, the “asymmetric” and the “symmet-
ric” modes. When considering the “asymmetric” mo-
tion, R1 = 1.9086 a0 and θ = 108.8◦ are frozen, while
R2 varies. In the “symmetric” mode both OH bond dis-
tances vary R1 = R2, while the H-O-H angle θ = 108.8◦

is frozen.
By carrying out electron scattering calculations and

combining these with the structure calculations, we can
extract potential energy surfaces of the resonant states
of H2O. We calculated five resonant states in each of
singlet and triplet A′ symmetries and two of each sin-
glet and triplet A′′ symmetries. These are the resonant
states with energies below the first excited state of the
ion. As described above, the resonant states were dia-
batized relative to the Rydberg states converging to the
ground ionic core. However, the resonant states were
not diabatized relative to each other. In Fig. 1, we dis-
play the H2O resonant states for the asymmetric mode.
The energies of the resonant states calculated with the
electron scattering calculation are displayed with solid
circles (red online). As can be seen these energies agree
very well with energies obtained with structure calcula-
tions (shown with red solid curves online). Especially
at larger distances (roughly R2 > 3.0 a0) one note res-
onances that are Rydberg states converging to excited
ionic cores interact with lower resonant states leading to
multiple avoided crossings.
In Fig. 2, the states are displayed for the symmetric

mode. Here, the potential energy surfaces of the lowest
two electronic states of the ion are displayed (black thick
solid lines) together with the resonant states in C2v (solid
colored online lines) and Cs (dotted colored online lines).
We note that in C2v symmetry potentials of resonant
states belonging to different irreducible representations
cross each other, while the corresponding potentials in
Cs symmetry are not allowed to cross. (Note that in
this figure, the potential energies of the electronic bound
states are not shown).
As a function of the angle, the potential energy sur-

faces of the resonant states show clear indications of
conical intersections. Similar conical intersections are
found among the potential energy surfaces of excited
ionic states [25]. Since the resonant states are Rydberg
states that converge to the excited ionic cores, the same
behavior of the potentials are found for the resonant
states. In Fig. 3, the resonant states of 1A′ symmetry

are plotted as a function of the bending angle, when the
bondlengths are frozen at the equilibrium distance. The
energies of the resonant states decrease with increasing
angle.
The electron scattering calculations do not only pro-

vide us with the energy positions of the resonant states,
but also the autoionization widths. The autoionization
widths of the resonant states of H2O are relatively small.
As an example, in Fig. 4, the autoionization widths of
the resonant states of 1A′ symmetry are displayed, for
the case of asymmetric stretch. It can be noted that the
magnitudes of the widths change as the resonant states
change character at avoided crossings or conical intersec-
tions.

B. Quantum defects and eigenphases - Indirect DR

We have used two main criteria to check the accuracy
of our bound state calculations: the value of the per-
manent dipole moment and the value of the vibrational
frequencies, which are presented in Table I and compared
with different values available in the literature. We have
also performed a separate coupled electron pair approxi-
mation (CEPA) calculation using the MOLPRO suite of
codes [26] to have another basis for comparison. As can
be seen in the table, our MRCI results, which are fur-
ther used in both Rydberg bound states and continuum
scattering calculations, agree well with other studies as
well as with our CEPA calculations. Thus, it confirms
that a good description of the core-ion is achieved, indi-
cating that the interaction potential and exchange with
the Rydberg or continuum electron should be correctly
represented.

Symm. Bending Asymm. µe Method Taken from
3339.5 1522.7 3402.7 — CEPA This work
3127.1 1538.9 3454.1 2.37 MRCI This work
3388 1518 3469 — MCSCF/CI Ref. [27]
— — — 2.370 MRD-CI Ref. [28]

3380.6 1476.6 3436.3 2.398 MRCI Ref. [29]
3182.7 1401.7 3219.5 — Exp. Ref. [30]
3212.9 — 3259.0 — Exp. Ref. [31]

TABLE I: Vibrational frequencies of the symmetric stretch,
bending and asymmetric stretch normal modes, and perma-
nent dipole moments of H2O

+ obtained in this study. For
comparison other theoretical and experimental results are also
shown. Frequencies are given in cm−1 and permanent dipole
moments µe in Debye.

As discussed in section II B, we have chosen the cen-
ter of charge as the origin of the reference frame in the
electron scattering calculations. Our choice of origin lead
to better convergence of the calculations and a simplifi-
cation in the analysis of the results as it prevented the
asymptotic coupling of partial waves through the long-
range anisotropic dipole potential. Once the coupling
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FIG. 1: (Color online) Potentials of H2O of (a) 1A′, (b) 3A′, (c) 1A′′ and (d) 3A′′ symmetries are displayed as functions of
one OH coordinate, while the other OH distance R1 = 1.9086 a0 and the angle θ = 108.8◦ are frozen. The potential energy
surfaces of the resonant states are shown with solid lines (red online), while the potential of the lowest two electronic states
of the ion are displayed with thick solid black lines, and the dashed-dotted lines (blue online) show the potentials of electronic
bound states of H2O.

due to the strong dipole potential is removed, what re-
mains are the non-adiabatic couplings induced by geom-
etry distortions and by the small dipole originating from
the changes in geometry. We have extracted the quan-
tum defects from the eigenphases of the scattering matrix
given by the complex-Kohn method using Seaton’s the-
orem (S = e2iπµ) [32]. The eigenphases are extracted at
an energy just above the ionization threshold, approxi-
mately at 30 meV.

In the left panel of Fig. 5, we show the variation of
the quantum defects of the singlet electronic states as
functions of the asymmetric stretch normal mode coordi-
nate. The eigenchannel quantum defects vary smoothly
with changes in the nuclear mode coordinates. An an-
gular momentum quantum number was assigned to each
curve based on the dominant partial wave information
extracted from the scattering matrix. Note that as a
function of the asymmetric stretch coordinate, the l = 0
and l = 1 quantum defects in 1A′′ symmetry are not par-
allel. This is due to the coupling between these states.

The geometry dependence of the quantum defects were
obtained using the Rydberg formula

Vn,α(Q) = V +(Q)−
1

2 [n− µα(Q)]
2
, (9)

where V +(Q) is the ion energy and Vn,α(Q) represents
the energy of the Rydberg state |α〉 with corresponding
principal quantum number n. In the right panel of Fig. 5,
we show a comparison between these geometry dependent
quantum defects from the bound state calculations and
the eigenphase divided by π from the scattering data. As
discussed in section III B, the variation of the quantum
defect with the normal mode coordinate determines the
indirect DR cross section. The agreement between the
absolute values of the quantum defects is not exact. How-
ever, their variations along the normal mode coordinate
agree. Therefore, cross sections obtained using quan-
tum defects from bound Rydberg state calculations or
obtained from the electron scattering calculations should
be nearly identical. The indirect DR cross section was
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FIG. 2: (Color online) Potential energy surfaces of the H2O resonant states of (a) 1A′, (b) 3A′, (c) 1A′′ and (d) 3A′′ symmetries
are plotted as functions of the OH coordinate where both OH bond distances vary R1 = R2, while the H-O-H angle θ = 108.8◦

is frozen. The solid lines show potential energy surfaces of resonant states in C2v symmetry, while the dotted lines are the
potentials of the corresponding states in Cs symmetry. The potentials of the lowest two ionic states are displayed with the
black thick solid lines.

calculated using equation (8) [13] with the S-matrix ob-
tained from the electron scattering calculations.

C. Cross Sections: direct and indirect DR

The cross section for direct DR is calculated for both
the “asymmetric” and “symmetric” stretches where ei-
ther one or both OH bonds break. For the asymmetric
stretch, the electronic resonant states of H2O are not
open for dissociation at low collision energies. An en-
ergy larger than 2 eV is needed to break the bond if
the states are followed “quasidiabatically” as described
above. Fig. 6 shows the cross section for direct DR when
only one the OH bonds breaks. The resonant states pro-
duce a cross sections with sharp peaks and oscillations.
Some of the peaks can be explained by tunneling reso-
nances (shape resonances) formed by barriers in the po-
tential energy curves. As seen for other systems, the
regular oscillations above 4 eV are due to energy depen-

dence of the electron capture probability [33, 34]. For
collision energies below 3 eV electronic resonant states
of 3A′′ symmetry dominate, while above this energy, 3A′

states become important.

The calculation of the direct DR cross section for the
“symmetric” stretch can be computed by either follow-
ing resonant states in Cs or C2v symmetries. In Fig. 7
we compare the total cross section calculated with the
two symmetries. For resonant states of Cs symmetry, we
display the contributions from the different irreducible
representations. When both bonds break some resonant
states are open for dissociation at low collision energies.
Most important are resonant states of 3A′ symmetry and
it is the lowest resonant state of this symmetry driving
the direct electron capture at low energies. When the
states were diabatized conserving the C2v symmetry, the
direct DR cross section does not significantly change com-
pared to the Cs result. There are some differences in the
cross sections at larger energies where the higher lying
resonant states contribute.
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FIG. 3: (Color online) Potential energy surfaces of the reso-
nant states of H2O of 1A′ symmetry as functions of the bend-
ing angle and for fixed radial coordinates (ROH = 1.986 a0).
Also the potentials of the three lowest ionic states are shown
with thick solid lines. Dotted (blue online) lines show poten-
tial energy surfaces of electronically bound states.

FIG. 4: (Color online) Autoionization widths for the 1A′ reso-
nant states of H2O plotted as functions of one OH coordinate,
while the other OH distance R1 = 1.9086 a0 and the angle
θ = 108.8◦ are frozen.

The indirect DR cross section has been calculated up
to the energy that corresponds to v = 2 of the asymmet-
ric stretch threshold, as shown in Fig. 8. The sharp drops
in the energy dependence of the indirect cross section re-
sults from the thresholds of the v = 1 and v = 2 levels
of the three normal modes of H2O

+, as given by the ex-
pression (8). For comparison, we have also plotted the
data reported from a single-pass merged beam measure-
ment [1], and the results obtained in the ASTRID [2] and
CRYRING [3] storage ring experiments. The cross sec-
tion taken from the merged-beammeasurement needed to
be divided by 2 due to an error in their calibration proce-
dure, as reported latter by Mitchell [35]. The ion-storage
ring data shown in the figure are the measured rate co-

efficient divided by the velocity 〈σ〉 = 〈vσ〉 /v. This will
deviate from the cross section when the collision energy
is comparable to the energy-spread of the electrons [2].
At low collision energies where the indirect process domi-
nates, computed and measured cross sections are in fairly
good agreement. Above 1 meV, the calculated indirect
cross section is larger than the experimental results. This
is an expected behavior since in our theoretical model we
neglect autoionization under the assumption that predis-
sociation takes place on a much faster time scale.

At low energies the cross sections from the two ion-
storage ring experiments have been fitted to stronger
energy dependencies than the E−1 dependence, as pre-
dicted by Wigner’s threshold law [36]. The CRYRING
team reported a E−1.24 behavior [3], while ASTRID
found a cross section that goes like E−1.35 [2]. This
steeper slope has been attributed to the presence of an
indirect mechanism driving the DR reaction [3]. We in-
deed find the indirect mechanism to be important at
low energies. However, by definition, our cross sec-
tion calculated with the simplified model has the form
(a1+a2+a3)E

−1, where the ai coefficients are related to
the factors (capture probabilities) relevant to each nor-
mal mode qi. Therefore, even though our cross section is
the result of a pure indirect DR mechanism, it can not
reproduce the steep slopes found in the storage ring mea-
surements. The theory predicts drops in the cross section
at energies corresponding to the vibrational threshold en-
ergies. The storage ring experiments show no drop near
the v = 1 threshold for the bend, but does for the v = 1
symmetric and asymmetric stretches and v = 2.

In Fig. 8, the total cross section for the direct DR
along the “symmetric” and “asymmetric” stretches are
included. Both calculations are performed following the
resonant states in Cs symmetry. The direct electron cap-
ture and dissociation along resonant states contribute to
the low energy DR cross section when both bonds si-
multaneously break. At low energies, the cross section
from the direct mechanism is, however, almost two orders
of magnitude smaller than the indirect one. The direct
DR cross section calculated for the “asymmetric” stretch,
where only one of the OH bonds breaks contribute to the
DR cross section for energies above 1 eV where the res-
onant states are open for dissociation. The calculated
one-dimensional direct DR cross section section is signif-
icantly smaller than the measured cross sections. In this
case, we treated the direct and indirect mechanisms as
independent processes. These should be treated together
and couplings between the states involved should be con-
sidered. This will produce new pathways to dissociation
resulting in a larger cross section and less pronounced
structures. In addition, including several dimensions will
also softening these sharp peaks.

At higher scattering energies, the direct cross section
due to the resonant states with energies below the first
excited state of the ion drops. The direct cross section in
this region (E > 1.9 eV) arises from capture into higher
resonant states that lie above the first excited state of the
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FIG. 5: (Color online) Left panel: Quantum defects for singlet electronic states as a function of the asymmetric stretch
vibrational mode. The plot shows the variation of the quantum defect with respect to the normal mode coordinate Q and
the different angular momentum values associated with each state. Right Panel: An example of the agreement between the
geometry-dependent quantum defects obtained from our bound state calculations (solid lines) and the eigenphase shifts, divided
by π, from our scattering results (dashed lines) as a function of the symmetric stretch normal mode coordinate.

FIG. 6: (Color online) The direct DR cross section for the
“asymmetric stretch” dissociation. Colored lines show to-
tal direct contributions from resonant states of different elec-
tronic symmetries.

FIG. 7: (Color online) The direct DR cross section for the
“symmetric stretch” where the resonant states have been fol-
lowed in Cs (black solid line) or C2v (black dashed line) sym-
metries. Colored lines show the total direct contribution from
Cs resonant states of the different electronic symmetries.

ion. In order to estimate the contributions from these
higher resonant states, it is necessary to include two tar-
get channels in the electron scattering calculations and
also to compute not only the total autoionization width,
but the partial width [37]. We carried out additional cal-
culations to determine the energies and widths of several
of these resonant states with vertical excitation energies

FIG. 8: (Color online) The calculated cross sections for indi-
rect and direct DR are compared with the results from the
ion-storage rings ASTRID [2] and CRYRING [3], as well as
the single-pass merged electron-ion beams [1] (this cross sec-
tion has been divided by two). The contributions from the
resonant states lying below the first excited state of the ion
(Direct low) are shown separately from the contributions from
higher lying resonant states (Direct high).

less than 5 eV. We use this molecular data as input for
wave packet calculations. The contributions to the DR
cross section from these states peak in the vicinity of the
measured high energy structure at 5 eV as can be seen
in Fig. 8. The experiments also observe a peak around
15 eV. This is due to higher lying resonant states not
considered in present study.
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V. CONCLUSION

Potential energy surfaces, autoionization widths and
elements of the scattering matrix are obtained by com-
bining structure with electronic scattering calculations
at the MRCI level of theory. Calculations on the direct
and indirect mechanisms of dissociative recombination
of H2O

+ are performed. One-dimensional wave packet
studies of direct dissociation along electronic resonant
states are performed to estimate the cross section for di-
rect DR. Contribution to the low-energy cross section
from the direct mechanism is found when both bonds si-
multaneously break. At collision energies above 1 eV also
the two-body fragmentation seems to be important.
The indirect mechanism is modeled by performing a vi-

brational frame transformation of the scattering matrix
elements obtained at low collision energies (where reso-
nant states do not contribute). The model neglects con-
tribution from autoionization and only includes contri-
butions from the v = 1 and v = 2 vibrational states. The

calculation shows that the indirect mechanism is clearly
important at electron collision energies less than 1 eV.
At low collision energies the indirect DR cross section is
slightly larger than measured ones and it drops at the
opening of vibrationally excited states of the target ion.
Strong couplings are observed between the Rydberg

states that mediate the indirect process and the dissocia-
tive resonant states. In order to obtain branching ratios
and fragmentation patterns, multidimensional dynamics
including the couplings must be done.
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