Lawrence Berkeley National Laboratory

Recent Work

Title

THERMODYNAMICS OF GEOTHERMAL FLUIDS

Permalink https://escholarship.org/uc/item/15z6c2p7

Author Rogers, P.S.Z.

Publication Date 1981-03-01

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA, BERKELEY

EARTH SCIENCES DIVISION

THERMODYNAMICS OF GEOTHERMAL FLUIDS

Pamela Sue Zukas Rogers (Ph.D. thesis)

March 1981

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thermodynamics of Geothermal Fluids

Pamela Sue Zukas Rogers

Earth Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

This work was supported by the U. S. Department of Energy through Contract W-7405-ENG-48.

DISCLAIMER This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, aboaratus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and optionis of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

INSTRUCTION OF THIS DEFINERT IS MUNITIME

Thermodynamics of Geothermal Fluids

Pamela Sue Zukas Rogers

Abstract

A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Sodium chloride is the major electrolyte in most natural brines and geothermal fluids, so that an accurate description of sodium chloride solutions is necessary to develop a model for more complex systems. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0°C to 300°C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions.

A major part of the effort to build a model for geothermal fluids must be to obtain basic thermodynamic data. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30°C to 200°C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature.

Many problems in geothermal energy production and in geochemistry require prediction of the solubility of minerals in a natural brine. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

and a second a second a second seco

n an ann an Anna an Anna. Anna an Anna 28a - 20 an ammar a' anna an Anna.

b

DEDICATION

I wish to dedicate this dissertation to my husband, Scott. Only his continuing support, confidence, and encouragement made it's completion possible. I also thank my parents for the most precious gift they have given me, my education.

ACKNOWLEDGEMENTS

I wish to thank Dr. K. S. Pitzer for his expert and patient guidance in every phase of this project. I would also like to thank Dr. Daniel J. Bradley for his collaboration in obtaining the density data reported in Chapter 2.

This research was supported by the U. S. Department of Energy through Contract W-7405-Eng-48.

TABLE OF CONTENTS

	Pa	ige
INTRODUCTION	د • • • • • • • • • • • • • • • • • • •	1
Chapter		
1	VOLUMETRIC PROPERTIES OF AQUEOUS SODIUM CHLORIDE SOLUTIONS	4
	Introduction	4
	Equations	5
	1. Review of Pitzer's Equations	5
	2. Derivation of the Volumetric Fitting Equation	9
	Review and Evaluation of Literature Data	11
	Calculations	16
	Discussion	18
	1. Low Temperature and Overall Fit	18
	2. Estimation of Uncertainties	20
	3. Explanation of Tables	26
	Pressure Dependence of Thermodynamic Properties .	35
	1. Derivation of Equations	35
	2. Estimation of Uncertainties	74
	3. Explanation of Tables	75
	Conclusion	77
	References	98
2	MEASUREMENT OF THE DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS FROM 75°C TO 200°C AT 20 BAR	101
	Introduction	101
	Experimental	102
	1. Description of Apparatus	102
	2. Method	107

•

•

TABLE OF CONTENTS (continued)

		Page
3.	Derivation of Equations	109
4.	Corrections to the Raw Data	110
Resul	ts	112
Discu	ssion	128
Conc1	usion	131
Refer	ences	134
MEASURE	MENT OF THE HEAT CAPACITY OF AQUEOUS SODIUM	
SULFATE	SOLUTIONS FROM 30°C TO 200°C	135
Tatao	1	1 2 5
INCTO		122
Exper	imental	136
1.	Description of Apparatus	136
2.	Derivation of Equations	145
3.	Determination of Power Loss	146
4.	Dependence of Heat Capacity on Flow Rate	147
5.	Error Analysis	147
Resul	ts	151
1.	Heat Capacity Measurements	151
2.	Comparison with Literature Data	157
Calcu	lations	166
1.	Review of Equations	166
2.	Temperature Dependence of the Heat Capacity	168
-14 3	Prediction of the Enthalow Activity and	
•••	Osmotic Coefficient	171
4.	Comparison with Literature Data	174
Concl	usion	199
Refer	ences,	200

3

iv

TABLE OF CONTENTS (continued)

Chapter

4

.

i

ν

SOLUBILITY OF CALCIUM, STRONTIUM, AND BARIUM	ſ			
SULFATES IN SALINE WATERS	•	•	•	202
Introduction	•	•	•	202
Literature Review	•	•	•	203
Equations	•	•	•	205
Calculations	•	•	•	208
Results	•	•	•	211
Prediction of Gypsum Solubility in Seawate	r	•	•	220
Prediction of Strontium and Barium Sulfate	2			
Solubility	•	•	•	229
Conclusion	•	•	•	239
References	•	•		242

INTRODUCTION

Current interest in geothermal energy and in geopressurized brines has focused attention on the need for a model of aqueous solution properties at high temperatures and pressures. The number of different brines encountered in geothermal applications is large, so that detailed measurements on each of them are impractical. A model that can predict the properties of complex brines, yet is based on a minimum amount of experimental data on a few key systems, is desirable. The primary objective of this research is to develop such a model.

Sodium chloride is the major electrolyte in most natural brines and geothermal fluids. Thus an accurate description of the properties of aqueous sodium chloride solutions is necessary to develop a model for more complex systems. In addition, sodium chloride solutions are the only aqueous solutions that have been extensively studied at high temperatures and pressures. As the first step in providing a model for electrolyte solutions in this region, the volumetric properties of sodium chloride solutions to 300°C and 1 kbar have been incorporated in a parametric fitting equation. This work is presented in Chapter 1. The fitting equation was chosen from a model developed by Pitzer and co-workers¹⁻⁵ and tested by them at room temperature. Knowledge of the volumetric properties of a solution yields the pressure dependence of the activity and thermal properties. Pressure dependence information derived from the volumetric fitting equation has been used in this way to complete an equation of state for sodium chloride solutions.⁶

Even the comparatively large body of experimental data on sodium chloride volumetric properties was found to be sketchy at low pressures and high temperatures. Thus a simple apparatus was constructed to

determine the densities of aqueous solutions in this region. A description of the apparatus and results of density measurements at 20 bar are presented in Chapter 2.

52 N 1 2 30 4 Extension of the model to a complex mixture requires some know-- Arthon and a star of the second ledge of the properties of each of the pure electrolytes which make teat a up the solution. However, little experimental data are available for ·· 121 T+ . <u>B</u>.-the thermodynamic properties of electrolyte solutions, other than na to tur sodium chloride, at high temperatures and pressures. Thus a major part an the second second in the second of the effort to build a model for natural brines must be to obtain 3 5612 basic thermodynamic data. Presented in Chapter 3 is the design of a flow microcalorimeter used to obtain heat capacity data at high tempera-3.1 tures and pressures. Aqueous solutions of sodium sulfate have been studied from 35°C to 200°C and 1 bar to 200 bar. The heat capacity measurements have been used to derive values for the activity coefficient of sodium sulfate as a function of temperature.

The usefulness of a model for aqueous solutions at high temperatures and pressures is not limited to geothermal energy systems. Research and engineering design in the fields of desalination, solution mining, solution leaching of mine tailings, and hydrothermal ore deposition, all depend on a knowledge of brine chemistry. Many of these applications require prediction of the solubility of minerals in a natural brine. To determine the effectiveness of Pitzer's model in solubility calculations, recent data on the solubility of gypsum in $\{i_1, i_2, \dots, i_n\}$ 1 m 5 m common and noncommon ion solutions have been used to evaluate the mean . activity coefficient of calcium sulfate at high ionic strengths. In Chapter 4, these properties are used to predict the solubility of calcium, barium, and strontium sulfates in seawater and natural brines.

References

K. S. Pitzer, J. Phys. Chem. <u>77</u>, 268 (1973).
 K. S. Pitzer and G. Mayorga, J. Phys. Chem. <u>77</u>, 2300 (1973).
 K. S. Pitzer and G. Mayorga, J. Soln. Chem. <u>3</u>, 539 (1974).
 K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. <u>96</u>, 5701 (1974).
 K. S. Pitzer, J. Soln. Chem. <u>4</u>, 249 (1975).
 K. S. Pitzer and J. C. Peiper, personal communication.

and the second second

: به و ایم ه and the second second

and the second second second second second

and the second state of the se

and the second second

an an independent and the analysis expected a part area in the second second second second second second second

en ang sen tin ng sen ang sen a

securities a state of the constructor and a second state of the

en soular da fait e la trava de la caractería de la caractería de la companya de la companya de la companya de

and the state of the

Chapter 1

th 1200

VOLUMETRIC PROPERTIES OF AQUEOUS SODIUM CHLORIDE SOLUTIONS

Introduction

Sodium chloride is the major electrolyte in most natural waters and geothermal fluids. Thus, an accurate description of the properties of aqueous sodium chloride solutions is the first step in developing a model to represent these systems at high temperatures and pressures. Literature data for the volumetric properties of NaCl solutions, to concentrations of 5.5 m, from 0°C to 300°C and 1 bar to 1000 bar, have been compiled and critically evaluated. The model equations presented below have been used in conjunction with a least squares fitting routine to obtain a set of parameters capable of reproducing the experimental volumetric data. Derived values for the expansivity and compressibility of the solutions, to concentrations of 4 m, also are presented.

While the volumetric properties of NaCl solutions are of interest in their own right for many research, industrial, and engineering design applications, they are also important because they give the pressure dependence of the free energy, enthalpy, and heat capacity. Equations are given for calculating the pressure dependence of these properties.

The parametric fit of NaCl solution volumetric properties presented here differs from other descriptions found in the literature¹⁻³ in three important aspects. First, known values of the Debye-Hückel slopes for the apparent molal volume have been included in the fitting equations. Previous descriptions have uniformly ignored the theoretical constraint of a Debye-Hückel term. Secondly, every attempt has been made to reproduce the data to its experimental accuracy and to assure that the derived values for expansivity and compressibility are reasonable and vary smoothly with temperature, pressure, and molality. Third, the recent volumetric data of Franck and Hilbert²⁴ at high temperatures have been employed to determine the parametric fit in that region.

Equations

1. Review of Pitzer's Equations

The excess Gibbs free energy, G^{EX} , of a system is the difference between the Gibbs energy of the real system and that of an ideal system. In a solution containing n, moles of solvent and n₂ moles of solute,

$$G^{EX} = n_1 \bar{G}_1^{EX} + n_2 \bar{G}_2^{EX}$$
 (1)

where $\overline{G}_{i}^{\text{EX}}$ is the partial molal excess Gibbs energy of component i. For a completely dissociated, pure electrolyte MX dissolved in n₁ moles of water, the osmotic and activity coefficients are given by

$$\phi - 1 = -\frac{n_1}{\nu m RT} \left(\frac{\partial G^{EX}}{\partial n_1} \right)_{T,P}$$
(2)

and

$$\ln \gamma_{\pm} = \frac{1}{\nu RT} \left(\frac{\partial G^{EX}}{\partial n_2} \right)_{T,P}$$
(3)

where m is the molality of the solution, v is the total number of ions in salt MX (v=2 for NaCl), R is the gas constant, and T is the temperature in Kelvins.

The parametric equation used by Pitzer⁴ for the excess Gibbs energy of a binary electrolyte solution is

$$\frac{G^{EX}}{n_1 RT} = -A_{\phi} \left(\frac{4I}{b}\right) \ln(1+bI^{1/2}) + m^2 2\nu_M \nu_X(\beta^{(0)} + \frac{2\beta^{(1)}}{\alpha^2 I} \left[1 - (1+\alpha I^{1/2})e^{-\alpha I^{1/2}}\right] + m^3 (\nu_M \nu_X)^{3/2} C_{MX}^{\phi}.$$
(4)

The corresponding equations for the osmotic and activity coefficients are

$$\phi - 1 = -|z_{M}z_{X}| A_{\phi} \frac{I^{1/2}}{1+bI^{1/2}} + m \frac{2\nu_{M}\nu_{X}}{\nu} \left(\beta_{MX}^{(0)} + \beta_{MX}^{(1)} e^{-\alpha I^{1/2}}\right) + m^{2} \frac{2(\nu_{M}\nu_{X})^{3/2}}{\nu} c_{MX}^{\phi}$$
(5)

$$\begin{split} \ln \gamma_{\pm} &= -|z_{M} z_{X}| A_{\phi} \left(\frac{I^{1/2}}{1+bI^{1/2}} + \frac{2}{b} \ln(1+bI^{1/2}) \right) \\ &+ m \frac{2\nu_{M} \nu_{X}}{\nu} \left(2\beta_{MX}^{(0)} + \frac{2\beta_{MX}^{(1)}}{\alpha^{2}I} (1-(1+\alpha I^{1/2} - \frac{\alpha^{2}I}{2}) e^{-\alpha I^{1/2}}) \right) \\ &+ \frac{3m^{2}}{2} \left(2\frac{(\nu_{M} \nu_{X})}{\nu} c_{mx}^{\phi} \right). \end{split}$$
(6)

where the electrolyte MX contains v_M and v_X ions of charge z_M and z_X , and $v = v_M + v_X$. I is the ionic strength,

$$I = 1/2 \sum_{i} m_{i} z_{i}^{2}$$
,

and $A_{\dot\varphi}$ is the Debye-Hückel slope for the osmotic coefficient given by Bradley and Pitzer, 5

$$A_{\phi} = 1/3 \left(\frac{2\pi N_0 d_w}{1000}\right)^{1/2} (e^2/DkT)^{3/2}$$

- 111 E

- 7

The leading terms in Equations (5) and (6) are Debye-Hückel terms describing long range electrostatic interactions. The parameters b and α have 6

fixed values of 1.2 and 2.0 respectively for all 1-1 electrolytes. They are assumed to be temperature and pressure independent in this study. The adjustable parameters $\beta_{MX}^{(0)}$, $\beta_{MX}^{(1)}$, and C_{MX}^{ϕ} account for short-range interactions between ions and for indirect forces arising from the solvent. C_{MX}^{ϕ} depends on triple ion interactions and is important only at high concentrations.

Equations (5), (6), and their temperature derivatives have been used successfully to describe the activity and thermal properties of aqueous sodium chloride solutions. Use of the appropriate pressure derivatives of these equations to describe volumetric properties will make it easy to combine the volumetric results with those for the activity and thermal properties to form a complete equation of state for sodium chloride solutions.

The total volume of the solution, V, is given by the pressure derivative of the total Gibbs energy of the solution,

$$V = \left(\frac{\partial G}{\partial P}\right)_{\rm T}.$$
 (7)

The definition of the excess Gibbs energy is

3

$$G = n_1 \bar{G}_1^{\circ} + n_2 \bar{G}_2^{\circ} + G^{EX}$$
 (8)

so that the pressure derivative becomes

$$V = n_1 \overline{V}_1^{\circ} + n_2 \overline{V}_2^{\circ} + \left(\frac{\partial G^{EX}}{\partial P}\right)_T.$$
 (9)

The apparent molal volume is defined as

$$\phi \nabla = \frac{\nabla - n_1 \overline{\nabla}_1^{\circ}}{n_2} , \qquad (10)$$

so that from Equation (9),

$$\phi V = \overline{V}_2^{\circ} + \frac{1}{n_2} \left(\frac{\partial G^{EX}}{\partial P} \right)_{T}.$$

Here \overline{V}_2° is the partial molal volume of the solute at infinite dilution. Substitution of Equation (4) into Equation (11) yields the parametric form of the equation for the apparent molal volume,

$$\phi \nabla = \overline{\nabla}_{2}^{\circ} + \nu |z_{M} z_{X}| \frac{A_{v}}{2b} \ln(1+bI^{1/2}) + \nu RTm \beta_{v}^{(0)} + \frac{2\nu RTm}{\alpha^{2}I} (1-(1+\alpha I^{1/2})e^{-\alpha I^{1/2}}) \beta_{v}^{(1)}$$
(12)
$$+ \frac{\nu RTm^{2}}{2} c_{v}^{\phi},$$

with the shorthand equations

$$\beta_{v}^{(0)} = \frac{2\nu_{M}\nu_{X}}{\nu} \left(\frac{\partial\beta_{MX}^{(0)}}{\partial P}\right)_{T,m}$$

$$\beta_{v}^{(1)} = \frac{2\nu_{M}\nu_{X}}{\nu} \left(\frac{\partial\beta_{MX}^{(1)}}{\partial P}\right)_{T,m}$$

$$c_{v}^{\phi} = \frac{2(\nu_{M}\nu_{X})^{3/2}}{\nu} \left(\frac{\partial c_{MX}^{\phi}}{\partial P}\right)_{T,m}.$$
(13)

Also,

$$A_{v} = -4RT \left(\frac{\partial A_{\phi}}{\partial P}\right)_{T}.$$
 (14)

Values for A over a wide range of temperature and pressure are given by Bradley and Pitzer.⁵

8

(11)

· . (2

2. Derivation of the Volumetric Fitting Equation

Equation (12) gives the dependence of the apparent molal volume of the solution on \bar{v}_2° and the pressure derivatives of $\beta_{MX}^{(0)}$, $\beta_{MX}^{(1)}$, and C_{MX}^{ϕ} . This form of the equation can be used directly to determine $\bar{v}_{2}^{,\beta}$, $\beta_{v}^{(0)}$, $\beta_v^{(1)}$, and C_v^{ϕ} from a least squares fit of experimental data. However, preliminary analysis of the volumetric data over the wide range of temperature considered in this study indicated that this was not the best form of the equation to use at high temperatures. Above 200°C, the value of $\bar{v}_2^{'}$ decreases rapidly with temperature, reaching almost -100 cm 3 mol $^{-1}$ at 300°C, compared to a value of +18 cm³ mol⁻¹ at 25°C. \overline{v}_2° is a measure of the effect of the solute on solvent properties, so that the rapid change in \overline{V}_2 can be related to changes in the properties of pure water and to increased interaction between solute and solvent. One physical explanation for the large negative values of $\bar{\mathbb{V}}_2^\circ$ is that addition of salt to pure water at high temperatures results in a "condensation" of water molecules around the solute ions. In effect, as the temperature increases, the ion-dipole interactions between solute ions and water become progressively stronger than the dipole-dipole and hydrogen bonding interactions between water molecules, causing the water molecules to collapse around the solute ions. This explanation is further supported by examination of values for the heat of solution, which become large and negative at high temperatures. Essentially these are a measure of the heat liberated when water in a rather open structure condenses around the added solute ions.

We can use this physical picture to suggest a method of rewriting Equation (12). The purpose here is to avoid trying to fit the temperature dependence of \bar{v}_2° with a parametric equation, since this equation

would necessarily be very complicated.

We begin by assuming that each mole of salt in an electrolyte solution is associated with a certain number, Y, of water molecules. If n_1 is the number of moles of water in the solution, and n_2 is the number of moles of salt, then the number of moles of water associated with solute ions is n_2 Y and the number of unassociated water molecules is (n_1-n_2Y) . From the definition of the apparent molal volume, the total volume of the solution is

$$V = n_1 \overline{V}_1^{\circ} + n_2 \phi V.$$
 (15)

Rewriting this equation to explicitly consider the two different classes of water molecules, one obtains

$$V = (n_1 - n_2 Y) \bar{V}_1^{\circ} + n_2 (\phi V + Y \bar{V}_1^{\circ}).$$

The conversion to molality yields

$$V = (1000/M_{w} - mY) \bar{V}_{1}^{\circ} + m(\phi V + Y\bar{V}_{1}^{\circ}), \qquad (16)$$

where M_w is the molecular weight of water. We also prefer to consider the apparent molal volume at the particular concentration m_1 , where $m_1 = \frac{1000}{M_w}$, since this property will vary less drastically with temperature than the infinite dilution property. Thus Equation (16) is rewritten as

$$\frac{V}{m} = [\phi V(m_1) + Y \overline{V}_1^{\circ}] + (\frac{1000}{mM_w} - Y) \overline{V}_1^{\circ} + \phi V(m) - \phi V(m_1)$$
(17)

Substitution of the parametric equations for ϕV yields

$$v = \left(\frac{m}{1000+mM_{2}}\right) \left\{ \frac{V(m_{1})}{m_{1}} + \left(\frac{1000}{m} - M_{w}Y\right) v_{w} + v \left| z_{M}z_{X} \right| \frac{A_{v}}{2b} \left(\ln\left(1+bI^{1/2}\right) - \ln\left(1+bI_{1}^{1/2}\right)\right) + vRT \beta_{v}^{(0)} (m-m_{1}) \right) + \frac{2vRT}{\alpha^{2}} \beta_{v}^{(1)} \left(\frac{m}{I} \left(1-\left(1+\alpha I^{1/2}\right) e^{-\alpha I^{1/2}}\right) - \frac{m_{1}}{I_{1}} \left(1-\left(1+\alpha I_{1}^{1/2}\right) e^{-\alpha I_{1}^{1/2}}\right)\right) + v/2 RT c_{v}^{\phi} (m^{2}-m_{1}^{2}) \right\},$$

$$(18)$$

where v is the specific volume of the solution, v_w is the specific volume of pure water, M_2 is the molecular weight of the solute, I_1 is the ionic strength of the solution at m_1 , and $V(m_1)$ is the total volume of the solution containing 1 kg of water, at concentration m_1 . The total volume of the solution varies monotonically with temperature, increasing more slowly with temperature the higher the concentration. The value of Y = 10was chosen to yield a concentration, $m_1 = 5.550825$ m, conveniently at the upper concentration limit of the existing data.

Review and Evaluation of Literature Data

The literature sources of volume and density data used in the overall fit of NaCl solution volumetric properties are listed in Table 1, along with estimates of the precision of the data. These data sets have been chosen from a literature search of the references listed in Potter's bibliography⁸ and other sources, on the basis of their precision and their coverage of a wide range of temperature, pressure, or molality. Estimates for the precision of the data were taken as stated by the original investigator or as one in the last decimal place of the reported data.

Data reported as a difference in the density or volume of solution versus that of water (Ref. 9-13,16,17) were used in that form. The high

T	a	Ь	1	е	1
---	---	---	---	---	---

Reference	Temperature Range (°C)	Pressure Range (bar)	Molality Range (molal)	Estimated Precision (ppm)	Standard of Fit I	Deviation (ppm) II
9	0- 55	1.01	.01-1.0	1	25	32
10	50	1.01	.005-1.0	2	18	19
Īl	5	1.01	.05-3.5	1	53	79
12	25	1.01	.03-3.7	1	10	36
13	1.5-45	1.01	.03-3.0	3	50	54
14	25-85	1-1000	15.7	10	35	60
15	0–50	1-1000	.1-2.0	30 30	88	90
16	15-45	1.01	.06-5.9	1273 ¹ 1	20	50
17	0-35	1.01	.01-1.5	1	20	30
18	0-20	1.01	46.0	100	105	127
19	75–200	20.	.1-1.0	50 j	-	179
20	75-200	20.	.05-4.0	200	-	170
21	200-300	saturatio	on .2-5.7	1000	_	6675
22,23	100-175	saturatio	on .1-3.6	100	-	775
24	100-300	100-1000	.02-5.7	1000	-	477

Literature Data for NaCl Volumetric Properties

overall standard deviation of fit 60 ppm 300 ppm

a ser para

 (x,t^{-1})

1.1

1 14 1 1 1 4 C

* Data sets from references 21-23 were omitted from the calculation of the standard deviation.

, .

÷ .

f

1.1.7

.

pressure data of Millero¹⁵ were reported as a difference in density between the solution at the experimental pressure and at one atmosphere, so that actual values of the density at high pressures were calculated using a fit of the one atmosphere literature data as a baseline. The data of Gibson and Loeffler¹⁴ were obtained experimentally as expansivities at one atmosphere and compressibilities at constant temperature. Since the data at 25°C and one atmosphere used as the reference for their measurements agreed to within their experimental error with more recent data, their data were used without correction. The literature data at high temperatures (References 19-24) also were used without correction.

In the high temperature region the major data set is that of Hilbert.²⁴ This set was chosen over that of Federov²⁵ since it was judged to be more precise, and it is in considerably better agreement with the low temperature data in the region of overlap. This is illustrated in Figure 1, where the low temperature data of Gibson and Loeffler,¹⁴ and the high temperature data of Hilbert and of Federov are compared. One should also note from Table 1 that there is a large difference between the precision of the data below and above 85°C.

Accurate volumetric properties for pure water are also important, since they enter directly into the fitting Equation (17). A review of the volumetric properties found in the literature²⁶⁻³³ and in the most widely used steam tables³⁴⁻³⁶ showed large discrepancies, especially at pressures near 1 kbar. In addition, Kell and Whalley²⁹ have made recent corrections to their density data, which are not included in published steam tables. Uematsu <u>et al.</u>²⁶ and Kell, McLaurin, and Whalley³⁰ have published significant, new volumetric data since formulation of the

Figure 1. Comparison of data of Hilbert and Federov. The plotted values are for $(\frac{\partial v}{\partial T})_{P,m} \ge 10^5 (\text{cm}^3 \text{ g}^{-1} \text{ K}^{-1})$ at 5.5 molal, calculated from the volumetric data^{24,25} as the finite difference over a 50 K interval. Values from Gibson and Loeffler¹⁴ are taken directly from their tables.

."

referenced steam tables. Because of these important changes and additions to the data base, it seemed imperative that a new compilation of the p, v, T properties of water be employed.

Fortunately, Haar, Gallagher, and Kell³⁷ have completed a new steam table in which they have emphasized reproduction of the volumetric properties of liquid water to within experimental accuracy. Haar has kindly made available to us, prior to publication, a copy of his equations, which have been placed on computer accessible tape for use with the sodium chloride solution fitting routine. It is important that these same values for the volumetric properties of water be used in reproducing the volumetric properties of sodium chloride solutions.

Calculations

The fitting Equation (18) gives the concentration dependence of the volumetric data at a single temperature and pressure. In preliminary isothermal, isobaric calculations, it was found that $\beta_v^{(1)}$ could not be determined from the volumetric data. Therefore

$$\left(\frac{\partial \beta_{MX}^{(1)}}{\partial P}\right)_{T,m}$$

has been set equal to zero throughout this study. The redundancy of $\beta_v^{(1)}$ is not surprising, since $\beta_v^{(1)}$ is important only at low molalities, where the quality of the data is likely to be poorest. Since

$$\left(\frac{\partial \beta_{MX}^{(1)}}{\partial P}\right)_{T,m}$$

cannot be determined, $\beta_{MX}^{(1)}$ will have no pressure dependence, whereas $\beta_{MX}^{(0)}$ and C_{MX}^{ϕ} will depend both on temperature and pressure in the final equation of state. In order to fit all of the volumetric data listed in Table 1 simultaneously, equations describing the temperature and pressure dependence of V(m₁), $\beta_v^{(0)}$, and C_v^{ϕ} are needed. The optimum forms for these equations are listed below, along with a reduced form of Equation (18) which is specific for NaCl solutions

$$\mathbf{v} = \left(\frac{\mathbf{m}}{1000 + \mathbf{m}M_{2}}\right) \left\{ \frac{\mathbf{v}(\mathbf{m}_{1})}{\mathbf{m}_{1}} + \left(\frac{1000}{\mathbf{m}} - 10 \ \mathbf{M}_{w}\right) \ \mathbf{v}_{w} + \frac{\mathbf{A}_{v}}{1.2} \left(\ln\left(1+1.21^{1/2}\right) - 10^{1/2}\right) \right\}$$
(19)
- $\ln\left(1+b\mathbf{I}_{1}^{1/2}\right) + 2RT \ \beta_{v}^{(0)} \ (\mathbf{m}-\mathbf{m}_{1}) + RT \ \mathbf{C}_{v}^{\phi} \ (\mathbf{m}^{2}-\mathbf{m}_{1}^{2}) \right\}$
$$\mathbf{v}(\mathbf{m}_{1}) = \mathbf{U}_{1} + \mathbf{U}_{2}T + \mathbf{U}_{3}T^{2} + \mathbf{U}_{4}T^{3} + (\mathbf{P}-\mathbf{P}_{0})[\mathbf{U}_{5} + \mathbf{U}_{6}T + \mathbf{U}_{7}T^{2}]$$
(20)
+ $(\mathbf{P}-\mathbf{P}_{0})^{2} \ [\mathbf{U}_{8} + \mathbf{U}_{9}T]$

$$\beta_{v}^{(0)} = U_{10} + \frac{U_{11}}{(T-227)} + U_{12}T + U_{13}T^{2} + \frac{U_{14}}{(680-T)}$$

$$+ (P-P_{0})[U_{15} + \frac{U_{16}}{(T-227)} + U_{17}T + U_{18}T^{2} + \frac{U_{19}}{(680-T)}] \qquad (21)$$

$$+ (P-P_{0})^{2} [U_{20} + \frac{U_{21}}{(T-227)} + U_{22}T + \frac{U_{23}}{(680-T)}]$$

$$\tilde{c}_{v}^{\phi} = U_{24} + \frac{U_{25}}{(T-227)} + U_{26}T + U_{27}T^{2} + \frac{U_{28}}{(680-T)} \qquad (22)$$

$$m_{1} = I_{1} = 5.550825 \text{ molal}$$

$$M_{2} = 58.4428 \text{ gm}$$

$$M_{w} = 18.01534 \text{ gm}$$

$$R = 83.1440 \text{ cm}^{3} \text{ bar mol}^{-1}$$

$$P_{0} = 1.01325 \text{ bar}.$$

where

Here T is the temperature in Kelvins and P is the pressure in bars. The factors 1/(T-227) and 1/(680-T) are used for convenience as functions which change rapidly in the region of 0°C and 350°C respectively. Expansivities at temperatures below 25°C, derived from the volumetric fit, are fairly sensitive to the value of the low temperature function. For this reason, the value of 227 K was chosen to coincide approximately with the temperature of a thermodynamic singularity for supercooled water reported by Kanno and Angell.³⁸ Use of the factor 1/(T-227) yields expansivity values that are consistent with those derived directly from the closely spaced volumetric data of Chen, Chen, and Millero¹⁷ at 1 bar. The choice of the high temperature factor has no theoretical significance.

Discussion

1. Low Temperature and Overall Fit

As a result of the large difference in precision of the data sets, a single, overall fit of the high and low temperature data cannot do justice to the quality of the low temperature data. Since we were particularly interested in deriving values for the expansivity of NaCl solutions, the inaccuracy of an overall fit in the low temperature region proved troublesome. For this reason, two different sets of the fitting parameters, U, are presented in Table 2. The first set reproduces the low temperature volumetric data with a high degree of precision, and can be used to obtain values for the volume, expansivity, and compressibility of NaCl solutions to 85° C. The second set reproduces the high temperature data to within the precision level of Hilbert's data and also describes the low temperature data to within an uncertainty of ± 150 ppm. It can be used to obtain volumetric properties over the

U

SET I

LOW TEMPERATURE FIT

SET II

OVERALL FIT

1	
2	
4	
- 5	
6	
7	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28	

	1.0837195E+03	1.0249125F+03
-	2.4749323E-01	2.7796679E-01
	1.2442861E-03	-3.0203919E-04
	0.	1.4977178E-06
-	7.7222249E-02	-7.2002329E-02
	3.2423439E-04	3.1453130E-04
-	5.7917599E-07	-5.9795994E-07
	3.3254437E-06	-6.6596010E-06
	0.	3.0407621E-08
-	2.1451068E-05	5.3699517E-05
	2.2324909E-03	2.2020163E-03
-	6.4950599E-08	-2.6538013E-07
	2.4503020E-10	8.6255554E-10
	0.	-2.6829310E-02
	1.0033371E-07	-1.1173488E-07
	·1.2784026E-06	-2.6249802E-07
-	4.6468063E-10	3.4926500E-10
	5.7054131E-13	-8.3571924E-13
	0.	3.0669940E-05
	0.	1.9767979E-11
	1.3581172E-10	-1.9144105E-10
	0.	3.1387857E-14
	0.	-9.6461948E-09
-	6.8152430E-06	2.2902837E-05
	2.5382945E-04	-4.3314252E-04
	6.2480692E-08	-9.0550901E-08
-	-1.0/31284E-10	8.6926600E-11
	0.	5.1904//7E-04

entire temperature range of 0°C to 300°C when this level of precision will suffice. High temperature values for the expansivity and compressibility can be calculated from this overall fit. Values for the volume, compressibility, and expansivity at 50°C calculated from the overall fit parameters agree, within the uncertainty quoted for that fit, with the values calculated from the low temperature parameters. Thus 50°C is the temperature recommended for changing from one set of parameters to the other when properties over a wide range of temperatures are required.

2. Estimation of Uncertainties

The regions of validity and the estimated uncertainties for the volumetric properties calculated from both sets of parameters are summarized in Table 3. In general, the volume of NaCl solutions can be reproduced up to 5.5 m, the compressibility to 5 m, and the expansivity to 4 m. However, below 25°C the molality range on all properties above 1.01 bar is limited to 2 m because of a lack of high concentration data at high pressures.

Estimates of the uncertainty in the expansivity and compressibility between 25°C and 85°C were made by comparing the values derived from the volumetric fit equations and the values tabulated by Gibson and Loeffler.¹⁴ The agreement in values from these two sources at 25°C is shown in Figures 2 and 3. At high temperatures, estimation of the precision of these properties becomes more difficult because of the wide and irregular spacing of Hilbert's measurements. However, assuming that the maximum precision in the fit of the volume is ±1000 ppm over a 50 K temperature interval or a 500 bar pressure interval, the uncertainties in derived values of the expansion and compression are both about +5%.

Table 3

14

.

ð

Estimated Uncertainty in Volumetric Properties

				Estimated Confidence Limits		
	Temperature	Pressure	Concentration	Low Temperature	High Temperature	
Property	Range (°C)	Range (bar)	Range (molal)	Fit (I)	(Fit (II)	
Volume	0 - 25	1 01	0.55	120	150	
VOIUME	0 - 25	1 1000	0 - 3.3	120 ppm	150 ppm	
	0 = 25	1 - 1000	0 - 2.0	120 ppm	150 ppm	
	25 - 85	1 - 1000	0 - 5.5	70 ppm	150 ppm	
	85 - 300	1 - 1000	0 - 5.5		700 ppm	
	0 07		0 / 0			
Expansivity	0 - 25	1.01	0 - 4.0	1%	(not	
	0 - 25	1 - 1000	0 - 2.0	1%	(recommended)	
	25 - 85	1 - 1000	0 - 4.0	1%	5%	
	85 - 300	1 - 1000	0 - 4.0	-	5%	
Compressibility	0 - 25	1 - 1000	0 - 2 0	59	(not recommonded)	
compressionity	25 25 05	1 1000	0 = 2.0	• J/3 E 9/		
	25 - 85	1 - 1000	0 - 5.0	. 3%	2%	
	85 - 300	1 - 1000	0 - 5.0	-	5%	

Figure 2. Comparison of expansivity values for NaCl solutions at 25°C. Solid lines represent values of $(\frac{\partial v}{\partial T})_{P,m} \times 10^4 (\text{cm}^3 \text{ g}^{-1} \text{ K}^{-1})$ calculated from the volumetric fit. Points are from the tables of Gibson and Loeffler.¹⁴

.

XBL 812-5193

 \mathcal{O}
Figure 3. Comparison of compressibility values for NaCl solutions at 25°C. Solid lines represent values of $(\frac{\partial v}{\partial P}) = x \cdot 10^5$ (cm³ g⁻¹ bar⁻¹) calculated from the volumetric fit. Points are from the tables of Gibson and Loeffler.¹⁴

The compressibilities derived from the volumetric fit differ from those of Rowe and Chou³⁹ by as much as 10%. The values for the compressibility of pure water used by Rowe and Chou also differ by as much as 3% from those of Haar;³⁷ however, this difference can not account for the total discrepancy in the compressibilities of sodium chloride solutions.

3. Explanation of Tables

Values of the apparent molal volume at infinite dilution also can be obtained from the fitting parameters and the calculated values of the specific volume. The change in the fitting parameters $\frac{V(m_1)}{m_1}$, $\beta_v^{(0)}$, and C_v^{ϕ} with temperature is shown in Figures 4-6, and the temperature dependence of \overline{v}_2° is shown in Figure 7. Values of v_w , \overline{v}_2° , $\beta_v^{(0)}$, C_v^{ϕ} , and the Debye-Hückel slopes are listed at ten degree intervals in Table 4. These can be used directly in Equation (12) to calculate the apparent molal volumes of sodium chloride solutions. The specific volume of a solution can be obtained through the identity

$$v = \frac{m^{\phi} V + 1000 v}{(1000 + mM_2)} .$$
 (23)

The temperature and pressure derivatives of the parameters and the volume of pure water are given in Tables 5 and 6. The expansivity and compressibility of sodium chloride solutions can be calculated using these values and the following equations:

$$\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} = \frac{1}{v(1000 + mM_2)} \left\{ 1000 \left(\frac{\partial v}{\partial T}\right)_{P} + m \left[\left(\frac{\partial \overline{v}^{\circ}}{2}\right)_{P} + \frac{A_x}{b} (1 + bI^{1/2}) + 2RTm \left(\frac{\partial \beta^{(0)}}{\partial T}\right)_{P} + RTm^2 \left(\frac{\partial C^{\phi}}{\partial T}\right)_{P} \right] \right\}$$
(24)

XBL 812-5186

. . .

XBL 812-5172

Figure 6. Fitting parameter C_v^{ϕ} as a function of temperature.

, . ,

١

X BL 812-5173

Figure 7. The apparent molal volume at infinite dilution, \overline{V}_2° , for NaCl solutions as a function of temperature.

λ, -

e,

33

$$\frac{1}{v} \left(\frac{\partial v}{\partial P}\right)_{T,m} = \frac{1}{v(1000 + mM_2)} \left\{ 1000 \left(\frac{\partial v_w}{\partial P}\right)_T + m \left[\left(\frac{\partial \overline{v}_2}{\partial P}\right)_T + \frac{A_k(1+bI^{1/2})}{b} + 2RTm \left(\frac{\partial \beta_v^{(0)}}{\partial P}\right)_T + RTm^2 \left(\frac{\partial C_v^{\phi}}{\partial P}\right)_T \right] \right\}.$$
(25)

 A_x and A_k are the Debye-Hückel slopes for the expansivity and compressibility of electrolyte solutions and are given in Paper XII.⁵ In Tables 4-6, the low temperature fit (Parameter Set I) has been used from 0°C to 50°C. The overall fit (Parameter Set II) has been used above 50°C, accounting the discontinuity in the parameters observed in the tables at 50°C. Even though the parameters are discontinuous at 50°C, calculated values of the specific volume, expansivity, and compressibility at this temperature agree within the uncertainty limits quoted for the overall fit. For convenience, values of the specific volume, expansivity, and compressibility, and compressibility at rounded concentrations are given in Tables 7-9.

Pressure Dependence of Thermodynamic Properties

1. Derivation of Equations

Knowledge of the volumetric properties of the solution also can be used to calculate the pressure dependence of activity and thermal properties. A review of the equations for the enthalpy and heat capacity, as given by Silvester and Pitzer,⁶ is presented before the pressure dependent equations are derived.

The relative enthalpy of an electrolyte solution, L, is defined as the difference between the total enthalpy of the solution and the enthalpy of the solution in its standard state,

$$L = H - H^{\circ}.$$
 (26)

Т	а	Ъ	1	e	- 4	

Parameters for Calculation of the Apparent Molal Volume

Т	Р	vw	D-H Slope	\bar{v}_2°	β <mark>(</mark> 0) v	$c^{\phi}_{\mathbf{v}}$
°C	bar	$\frac{cm^3}{g}$	$\frac{\text{cm}^3}{\text{mol}}$	$\frac{\mathrm{cm}^3}{\mathrm{mol}}$	<u> </u>	$\frac{g^2}{mol^2 bar}$
0		1.000171	1.504E+00	1.327E+01	2.746E-05	-3.26E-06
10		1.000259	1.643E+00	1.506E+01	1.956E-05	-2.25E-06
20		1.001771	1.793E+00	1.625E+01	1.431E-05	-1.56E-06
25		1.002947	1.875E+00	1.668E+01	1.234E-05	-1.29E-06
30		1.004365	1.962E+00	1.702E+01	1.069E-05	-1.07E-06
40		1.007851	2.153E+00	1.750E+01	8.152E-06	-7.19E-07
50		1.012115	2.372E+00	1.774E+01	6.366E-06	-4.71E-07
50 60 70 80 90 100	1 1 1 1 1	1.01-2115 1.017087 1.022724 1.028999 1.035897 1.043414	2.372E+00 2.622E+00 2.909E+00 3.238E+00 3.615E+00 4.050E+00	1.782E+01 1.791E+01 1.781E+01 1.754E+01 1.710E+01 1.649E+01	5.733E-06 4.415E-06 3.513E-06 2.925E-06 2.577E-06 2.408E-06	-3.32E-07 -2.00E-07 -1.22E-07 -7.97E-08 -6.02E-09 -5.46E-08
110	1	1.051530	4.550E+00	1.571E+C1	2.368E-06	-5.59E-08
120	2	1.060271	5.127E+00	1.475E+01	2.412E-06	-5.87E-08
130	3	1.069653	5.795E+00	1.360E+01	2.498E-06	-5.87E-08
140	4	1.079700	6.572E+00	1.226E+01	2.587E-06	-5.23E-08
150	F	1.090444	7.477E+00	1.070E+01	2.637E-06	-3.65E-08
i 40	6	1.101926	8.536E+00	8.911E+00	2.606E-06	-8.63E-09
1 70	8	1.114196	9.779E+00	6.863E+00	2.448E-06	3.36E-08
1 80	10	1.127316	1.125E+01	4.523E+00	2.112E-06	9.24E-08
1 90	13	1.141359	1.299E+01	1.849E+00	1.542E-06	1.70E-07
2 00	16	1.156413	1.506E+01	1.215E+00	6.729E-07	2.69E-07
210	19	1.172584	1.756E+01 -	-4.742E+00	-5.691E-07	3.91E-07
220	23	1.190001	2.058E+01 -	-8.826E+00	-2.272E-06	5.38E-07
230	28	1.208817	2.425E+01 -	-1.360E+01	-4.538E-06	7.15E-07
240	33	1.229223	2.878E+01 -	-1.923E+01	-7.494E-06	9.24E-07
250	40	1.251452	3.440E+01 -	-2.596E+01	-1.129E-05	1.17E-06
260	47	1.275795	4.149E+01 -	-3.414E+01	-1.612E-05	1.45E-06
270	55	1.302623	5.052E+01 -	-4.426E+01	-2.221E-05	1.79E-06
280	64	1.332417	6.224E+01 -	-5.704E+01	-2.987E-05	2.18E-06
290	74	1.365815	7.775E+01 -	-7.360E+01	-3.951E-05	2.63E-06
300	86	1.403691	9.873E+01 -	-9.508E+01	-5.167E-05	3.17E-06

Parameters for Calculation of the Apparent Molal Volume

Т	P	v w	D-H Slope	\bar{v}_2°	β ⁽⁰⁾ v	$c^{\phi}_{\mathbf{v}}$
°C	bar	$\frac{\mathrm{cm}^3}{\mathrm{g}}$	$\frac{cm^3}{mol}$	$\frac{\mathrm{cm}^3}{\mathrm{mol}}$	g mol bar	$\frac{g^2}{mol^2 bar}$
0 10 20 25 30 50	200 200 200 200 200 200 200	.990367 .991052 .992910 .994196 .995690 .999244 1.003486	1.462E+00 1.587E+00 1.724E+00 1.799E+00 1.879E+00 2.055E+00 2.255E+00	1.452E+01 1.607E+01 1.711E+01 1.749E+01 1.780E+01 1.824E+01 1.846E+01	2.525E-05 1.801E-05 1.317E-05 1.133E-05 9.792E-06 7.404E-06 5.717E-06	-3.26E-06 -2.25E-06 -1.56E-06 -1.29E-06 -1.07E-06 -7.19E-07 -4.71E-07
50	200	1.003486	2.255E+00	1.852E+01	5.187E-06	-3.32E-07
60	200	1.008358	2.484E+00	1.858E+01	4.005E-06	-2.00E-07
70	200	1.013825	2.745E+00	1.848E+01	3.224E-06	-1.22E-07
80	200	1.019865	3.043E+00	1.822E+01	2.746E-06	-7.97E-08
90	200	1.026463	3.383E+00	1.780E+01	2.502E-06	-6.02E-09
100	200	1.033614	3.772E+00	1.723E+01	2.434E-06	-5.46E-08
110	200	1.041317	4.217E+00	1.650E+01	2.497E-06	-5.59E-08
120	200	1.049580	4.728E+00	1.561E+01	2.651E-06	-5.87E-08
130	200	1.058416	5.315E+00	1.456E+01	2.859E-06	-5.87E-08
140	200	1.067844	5.991E+00	1.333E+01	3.086E-06	-5.23E-08
150	200	1.077890	6.773E+00	1.192E+01	3.296E-06	-3.65E-08
160	200	1.088587	7.679E+00	1.031E+01.	3.453E-06	-8.63E-09
170	200	1.099978	8.734E+00	8.473E+00	3.517E-06	3.36E-08
180	200	1.112113	9.967E+00	6.399E+00	3.444E-06	9.24E-08
190	200	1.125054	1.141E+01	4.052E+00	3.185E-06	1.70E-07
200	200	1.138874	1.312E+01	1.396E+00	2.684E-06	2.69E-07
210 220 230 240 250	200 200 200 200 200 200	1.153664 1.169532 1.186608 1.205052 1.225063	1.515E+01 1.758E+01 2.051E+01 2.407E+01 2.846E+01	-1.618E+00 -5.055E+00 -9.001E+00 -1.357E+01 -1.892E+01	1.872E-06 6.700E-07 -1.019E-06 -3.314E-06 -6.363E-06	3.91E-07 5.38E-07 7.15E-07 9.24E-07 1.17E-06
260	200	1.246892	3.392E+01	-2.529E+01	-1.036E_05	1.45E-06
270	200	1.270855	4.083E+01	-3.300E+01	-1.553E-05	1.79E-06
280	200	1.297370	4.974F+01	-4.257E+01	-2.221E-05	2.18E-06
290	200	1.326994	6.147E+01	-5.477E+01	-3.082E-05	2.63E-06
300	200	1.360501	7.737E+01	-7.091E+01	-4.195E-05	3.17E-06

Table 4

Parameters for Calculation of the Apparent Molal Volume

Т	Ρ	V W	D-H Slope	\overline{v}_2°	β ⁽⁰⁾	$c_{\mathbf{v}}^{\phi}$
°C	bar	3. <u>cm</u> g	$\frac{\mathrm{cm}^3}{\mathrm{mol}}$	$\frac{1}{2} \frac{3}{m n 1} \frac{1}{r_{cirr}}$	g mol bar	$\frac{g^2}{mol^2 bar}$
0	400	. 981139 1	.419E+00	1.566E+01	2.325E-05	-3.26E-06
10	400	. 982347 1	.532E+00	1.698E+01	1.665E-05	-2.25E-06
20	400	. 984517 1	.657E+00	1.789E+01	1.217E-05	-1.56E-06
25	400	. 985902 1	.726E+00	1.822E+01	1.047E-05	-1.29E-06
30	400	. 987468 1	.799E+00	1.850E+01	9.028E-06	-1.07E-06
40	400	. 991092 1	.961E+00	1.889E+01	6.779E-06	-7.19E-07
50	400	. 995322 2	.145E+00	1.910E+01	5.177E-06	-4.71E-07
50	400	.995322 2	.145E+00	1.914E+01	4.708E-06	-3.32E-07
60	400	1.000115 2	.355E+00	1.919E+01	3.642E-06	-2.00E-07
70	400	1.005441 2	.593E+00	1.909E+01	2.953E-06	-1.22E-07
80	400	1.011282 2	.864E+00	1.884E+01	2.552E-06	-7.97E-08
90	400	1.017626 3	.171E+00	1.845E+01	2.371E-06	-6.02E-09
100	400	1.024466 3	.520E+00	1.792E+01	2.359E-06	-5.46E-08
110	400	1.031802 3	.918E+00	1.725E+01	2.474E-06	-5.59E-08
120	400	1.039636 4	.370E+00	1.644E+01	2.681E-06	-5.87E-08
130	400	1.047976 4	.886E+00	1.548E+01	2.947E-06	-5.87E-08
140	400	1.056837 5	.476E+00	1.437E+01	3.242E-06	-5.23E-08
150	400	1.066235 6	.151E+00	1.310E+01	3.538E-06	-3.65E-08
160	400	1.076195 6	.927E+00	1,165E+01	3.803E-06	-8.63E-09
170	400	1.086745 7	.819E+00	1,002E+01	4.007E-06	3.36E-08
180	400	1.097921 8	.848E+00	8,196E+00	4.115E-06	9.24E-08
190	400	1.109765 1	.004E+01	6,150E+00	4.087E-06	1.70E-07
200	400	1.122329 1	.143E+01	3,863E+00	3.880E-06	2.69E-07
210	400	1.135670 1	.305E+01	1.307E+00	3.441E-06	3.91E-07
220	400	1.149859 1	.494E+01	-1.555E+00	2.708E-06	5.38E-07
230	400	1.164978 1	.718E+01	-4.765E+00	1.608E-06	7.15E-07
240	400	1.181124 1	.984E+01	-8.380E+00	4.760E-08	9.24E-07
250	400	1.198411 2	.302E+01	-1.247E+01	2.086E-06	1.17E-06
260	400 1	1.216977 2	.686E+01	-1.714E+01	4.937E-06.	1.45E-06
270	400 1	1.236985 3	.153E+01	-2.251E+01	8.692E-06	1.79E-06
280	400 1	1.258636 3	.728E+01	-2.876E+01	1.359E-05	2.18E-06
290	400 1	1.282174 4	.446E+01	-3.613E+01	1.997E-05	2.63E-06
300	400 1	1.307904 5	.358E+01	-4.501E+01	2.826E-05	3.17E-06

Parameters for Calculation of the Apparent Molal Volume

T	P `	v w	D-H Slope	\bar{v}_2°	β ⁽⁰⁾ v	$C^{\phi}_{\mathbf{v}}$
°C	bar	$\frac{\mathrm{cm}^3}{\mathrm{g}}$	$\frac{\text{cm}^3}{\text{mol}}$	$\frac{\text{cm}^3}{\text{mol}}$	<u> </u>	$\frac{\frac{2}{g^2}}{\text{mol}^2 \text{ bar}}$
0 10 25 30 40 50	600 600 600 600 600 600	.972473 .974133 .976579 .978056 .979687 .983379 .987606	1.379E+00 1.479E+00 1.594E+00 1.657E+00 1.724E+00 1.873E+00 2.043E+00	1.668E+01 1.780E+01 1.858E+01 1.888E+01 1.912E+01 1.947E+01 1.967E+01	2.150E-05 1.548E-05 1.135E-05 9.756E-06 8.406E-06 6.279E-06 4.750E-06	-3.26E-06 -2.25E-06 -1.56E-06 -1.29E-06 -1.07E-06 -7.19E-07 -4.71E-07
50	600	.987606	2.043E+00	1.970E+01	4.300E-06	-3.32E-07
60	600	.992334	2.235E+00	1.974E+01	3.328E-06	-2.00E-07
70	600	.997542	2.453E+00	1.964E+01	2.704E-06	-1.22E-07
80	600	1.003214	2.699E+00	1.941E+01	2.344E-06	-7.97E-08
90	600	1.009341	2.978E+00	1.906E+01	2.186E-06	-6.02E-09
100	600	1.015916	3.293E+00	1.858E+01	2.183E-06	-5.46E-08
110	600	1.022937	3.649E+00	1.798E+01	2.297E-06	-5.59E-08
120	600	1.030405	4.052E+00	1.725E+01	2.496E-06	-5.87E-08
130	600	1.038326	4.509E+00	1.639E+01	2.753E-06	-5.87E-08
140	600	1.046708	5.027E+00	1.540E+01	3.043E-06	-5.23E-08
150	600	1.055564	5.615E+00	1.426E+01	3.341E-06	-3.65E-08
160	600	1.064911	6.284E+00	1.298E+01	3.623E-06	-8.63E-09
170	600	1.074770	7.046E+00	1.155E+01	3.853E-06	3.36E-08
180	600	1.085167	7.917E+00	9.942E+00	4.036E+06	9.24E-08
190	600	1.096132	8.913E+00	8.158E+00	4.110E-06	1.70E-07
200	600	1.107700	1.006E+01	6.180E+00	4.053E-06	2.69E-07
210	600	1.119913	1.137E+01	3.989E+00	3.825E-06	3.91E-07
220	600	1.132819	1.289E+01	1.564E+00	3.379E-06	5.38E-07
230	600	1146474	1.465E+01	-1.117E+00	2.660E-06	7.15E-07
240	600	1.160941	1.669E+01	-4.085E+00	1.600E-06	9.24E-07
250	600	1.176293	1.908E+01	-7.373E+00	1.148E-07	1.17E-06
260 270 280 290 300	600 600 600 600	1.192615 1.210005 1.228578 1.248465 1.269825	2'.189E+01 2.521E+01 2.917E+01 3.391E+01 3.967E+01	-1.102E+01 -1.508E+01 -1.961E+01 -2.468E+01 -3.037E+01	-1.904E-06 -4.592E-06 -8.131E+06 -1.276E-05 -1.881E-05	1.45E-06 1.79E-06 2.18E-06 2.63E-06 3.17E-06

Parameters for Calculation of the Apparent Molal Volume

Т	Р	V W	D-H Slope	\overline{v}_2°	β <mark>(</mark> 0)	С ^ф	•
°C	bar	<u>cm³</u> g	$\frac{\mathrm{cm}^3}{\mathrm{mol}}$	cm ³ mol	<u>g</u> mol bar	$\frac{g^2}{mol^2 bar}$	ŝ
0	800	.964329	1.341E+00 1	.759E+01	1.997E-05	-3.26E-06	
10	800	.966373	1.431E+00 1	.853E+01	1.450E-05	-2.25E-06	
20	800	.969059	1.535E+00 1	.920E+01	1.069E-05	-1.56E-06	
25	800	.970616	1.593E+00 1	.946E+01	9.198E-06	-1.29E-06	
30	800	.972306	1.655E+00 1	.967E+01	7.926E-06	-1.07E-06	
40	800	.976061	1.792E+00 1	.999E+01	5.905E-06	-7.19E-07	
50	800	.980288	1.948E+00 2	.016E+01	4.436E-06	-4.71E-07	
50	800	.980288	1.948E+00 2	.020E+01	3.964E-06	-3.32E-07	
60	800	.984963	2.125E+00 2	.024E+01	3.062E-06	-2.00E-07	
70	800	.990070	2.324E+00 2	.015E+01	2.474E-06	-1.22E-07	
80	800	.995597	2.549E+00 1	.995E+01	2.121E-06	-7.97E-08	
90	800	1.001536	2.803E+00 1	.964E+01	1.946E-06	-6.02E-03	
100	800	1.007881	3.088E+00 1	.922E+01	1.905E-06	-5.46E-08	
110	800	1.014629	3.409E+00 1	.870E+01	1.965E-06	-5.59E-08	
120	800	1.021781	3.770E+00 1	.806E+01	2.098E-06	-5.87E-08	
130	800	1.029340	4.176E+00 1	.731E+01	2.279E-06	-5.87E-08	
140	800	1.037312	4.634E+00 1	.645E+01	2.488E-06	-5.23E-08	
150	800	1.045706	5.150E+00 1	.546E+01	2.705E-06	-3.65E-08	
160 170 180 190 200	800 800 800 800 800	1.054535 1.063813 1.073560 1.083798 1.094554	5.732E+00 1 6.390E+00 1 7.134E+00 1 7.976E+00 1 8.932E+00 8	.435E+01 .311E+01 .173E+01 .020E+01 .510E+00	2.910E-06 3.084E-06 3.206E-06 3.254E-06 3.203E-06	-8.63E-09 3.36E-08 9.24E-08 1.70E-07 2.69E-07	
210	800	1.105857	1.002E+01 6	.647E+00	3.023E-06	3.91E-07	
220	800	1.117742	1.125E+01 4	.599E+00	2.682E-06	5.38E-07	
230	800	1.130248	1.267E+01 2	.351E+00	2.139E-06	7.15E-07	
240	800	1.143419	1.428E+01 -1	.131E-01	1.345E-06	9.24E-07	
250	800	1.157306	1.613E+01 -2	.812E+00	2.390E-07	1.17E-06	
260	800	1.171965	1.827E+01 -5	.763E+00	-1.255E-06	1.45E-06	e*
270	800	1.187460	2.073E+01 -8	.986E+00	-3.235E-06	1.79E-06	
280	800	1.203864	2.359E+01 -1	.250E+01	-5.829E-06	2.18E-06	
290	800	1.221257	2.692E+01 -1	.632E+01	-9.211E-06	2.63E-06	
300	800	1.239733	3.082E+01 -2	.044E+01	-1.361E-05	3.17E-06	

Parameters for Calculation of the Apparent Molal Volume

Т	P	v w	D-H Slope	\bar{v}_2°	β <mark>(0)</mark> γ	$C^{\phi}_{\mathbf{v}}$
°C	bar	$\frac{cm^3}{g}$	$\frac{\text{cm}^3}{\text{mol}}$	$\frac{\mathrm{cm}^3}{\mathrm{mol}}$	g mol bar	$\frac{g^2}{mol^2 bar}$
0	1000	.956683	1.307E+00	1.840E+01	1.869E-05	-3.26E-06
10	1000	.959040	1.386E+00	1.917E+01	1.372E-05	-2.25E-06
20	1000	.961926	1.480E+00	1.974E+01	1.019E-05	-1.56E-06
25	1000	.963552	1.533E+00	1.997E+01	8.792E-06	-1.29E-06
30	1000	.965293	1.590E+00	2.016E+01	7.590E-06	-1.07E-06
40	1000	.969102	1.716E+00	2.044E+01	5.658E-06	-7.19E-07
50	1000	.973330	1.860E+00	2.061E+01	4.235E-06	-4.71E-07
50	1000	.973330	1.860E+00	2.065E+01	3.698E-06	-3.32E-07
60	1000	.977959	2.022E+00	2.069E+01	2.845E-06	-2.00E-07
70	1000	.982978	2.206E+00	2.063E+01	2.265E-06	-1.22E-07
80	1000	.988378	2.412E+00	2.047E+01	1.884E-06	-7.97E-08
90	1000	.994152	2.643E+00	2.021E+01	1.651E-05	-6.02E-09
100	1000	1.000295	2.902E+00	1.987E+01	1.526E-06	-5.46E-08
110	1000	1.006805	3.192E+00	1.943E+01	1.480E-06	-5.59E-08
120	1000	1.013681	3.517E+00	1.890E+01	1.486E-06	-5.87E-08
130	1000	1.020925	3.881E+00	1.827E+01	1.525E-06	-5.87E-08
140	1000	1.028541	4.288E+00	1.755E+01	1.579E-06	-5.23E-08
150	1000	1.036535	4.743E+00	1.674E+01	1.631E-06	-3.65E-08
160	1000	1.044917	5.254E+00	1.581E+01	1.667E-06	-8.63E-09
170	1000	1.053699	5.827E+00	1.478E+01	1.670E-06	3.36E-08
180	1000	1.062894	6.469E+00	1.364E+01	1.627E-06	9.24E-08
190	1000	1.072519	7.190E+00	1.237E+01	1.519E-06	1.70E-07
200	1000	1.082595	7.999E+00	-1.097E+01	1.329E-06	2.69E-07
210	1000	1.093143	8.910E+00	9.435E+00	1.036E-06	3.91E-07
220	1000	1.104190	9.935E+00	7.751E+00	6.171E-07	5.38E-07
230	1000	1.115764	1.109E+01	5.910E+00	4.313E-08	7.15E-07
240	1000	1.127898	1.239E+01	3.899E+00	-7.197E-07	9.24E-07
250	1000	1.140627	1.387E+01	1.709E+00	-1.713E-06	1.17E-06
260 270 280 290 300	1000 1000 1000 1000	1.153991 1.168034 1.182806 1.198361 1.214758	1.553E+01 1.743E+01 1.957E+01 2.202E+01 2.482E+01	-6.714E-01 -3.251E+00 -6.037E+00 -9.027E+00 -1.221E+01	-2.991E-06 -4.620E-06 -6.688E-06 -9.315E-06 -1.266E-05	1.45E-06 1.79E-06 2.18E-06 2.63E-06 3.17E-06

¥ 41

ŋ

A GROOM

Parameters for Calculation of the Expansivity^a

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250 260	210 220 230 240	160 170 180 190 200	110 120 130 140 150	50 60 70 80 90 100	0 10 20 25 30 40 50	(°C)	T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- μ̈́Λ	19 23 28 33	6 8 10 13 16	1 2 3 4 5	1 1 1 1 1	1 1 1 1 1 1	(bar)	P
$ \frac{w}{T} \sum_{p} \frac{D-H}{Slope} \left(\frac{3\overline{v}}{2} \right)_{p} \left(\frac{3\overline{v}}{9T} \right)_{p} \left(\frac{3\beta \binom{0}{v}}{9T} \right)_{p} \left(\frac{3C^{\phi}}{9T} \right)_{p} \left(\frac{3C^{\phi}}{9T} \right)_{p} \right) $ $ \frac{3}{gK} \frac{cm}{m01 K} \frac{cm}{m01 K} \frac{cm}{m01 K} \frac{g}{m01 bar K} \frac{g}{m01^{2} bar K} \right)_{p} $ $ \frac{22}{m01^{2} bar K} \left(\frac{3\overline{v}}{9T} \right)_{p} \left(\frac{3\overline{v}}{9T} \right)_{p} \left(\frac{3\overline{v}}{9T} \right)_{p} \right) $ $ \frac{22}{7F} \sum_{p} \frac{2}{1} \frac{g}{m01 K} \frac{g}{m01 K} \frac{g}{m01 bar K} \frac{g}{m01^{2} bar K} \right)_{p} $ $ \frac{22}{1} \sum_{p} \frac{g}{m01 K} \frac{g}{m01 K} \frac{g}{m01 bar K} \frac{g}{m01^{2} bar K} $ $ \frac{g}{m01^{2} bar K} $ $ \frac{g}{m01^{2} bar K} \frac{g}{m01^{2} bar K} \frac{g}{m01^{2} bar K} $ $ \frac{g}{m01^{2} bar K} \frac{g}{m01^{2} $	2 4	1.72	1.19 1.28 1.31 1.41 1.59	8.45 9.09 9.75 1.04 1.11	4.62 5.31 5.95 6.58 7.20 7.82	-8.02 8.74 2.09 2.60 3.06 3.89 4.62	<u>c</u> 1	$\left(\frac{\partial v}{\partial v}\right)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47F -	20E - 55E - 30E - 22E -	98E - 93E - 76E - 79E - 93E -	52E - 93E - 58E - 15E - 19E -	27E - 10E - 59E - 38E - 07E - 26E -	22E - 17E - 94E - 92E - 54E - 90E - 27E -	gK	$\left(\frac{w}{T}\right)_{P}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03	03 03 03 03	03 03 03 03 03	04 04 03 03	04 04 04 04 04 04	05 05 04 04 04 04 04		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2 3 4 5	1 1 1 2	56789	223344	1 1 1 1 2 2	- 1	:
$\frac{1}{e} \qquad \left(\frac{\partial \bar{v}_{2}}{\partial T}\right)_{p} \qquad \left(\frac{\partial \beta_{v}}{\partial T}\right)_{p} \qquad \left(\frac{\partial c_{v}}{\partial T}\right)_{p} \qquad \left(\frac{\partial c_{v}}{\partial T}\right)_{p} \\ \frac{1}{e} \qquad \frac{cm^{3}}{mol \ K} \qquad \frac{g}{mol \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{cm^{3}}{mol \ K} \qquad \frac{g}{mol^{2} \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{1}{e} \qquad \frac{cm^{3}}{mol \ K} \qquad \frac{g}{mol^{2} \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{1}{e} \qquad \frac{cm^{3}}{mol^{2} \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{1}{e} \qquad \frac{1}{e} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{1}{e} \qquad \frac{1}{e} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{1}{e} \qquad \frac{1}{e} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \qquad \frac{g^{2}}{mol^{2} \ bar \ K} \\ \frac{1}{e} \qquad \frac{1}{e} \qquad \frac{g^{2}}{e^{2} \ c^{2} \ c^{2$.57E	. 79E . 40E . 19E . 22E	. 15E . 36E . 61E . 92E . 31E	37E 22E 22E 40E 82E	. 34E . 68E . 07E . 52E . 04E . 66E	. 37E . 43E . 59E . 68E . 79E . 05E . 34E	<u>cm</u> ³ mol	D-H Slop
$ \begin{pmatrix} \frac{3\overline{v}_{2}}{3T} \\ \frac{2}{9T} $	-01	-01 -01 -01 -01	-01 -01 -01 -01 -01	-02 -02 -02 -02 -02	-02 -02 -02 -02 -02 -02	-02 -02 -02 -02 -02 -02 -02 -02	K	e
$ \begin{pmatrix} \frac{\partial \overline{v}}{2} \\ \frac$	∴-7	-3 -4 -5 -6	-1 -2 -2 -2 -3	-8 -1 -1 -1 -1	1 -5 -1 -3 -5 -6	2 1 9 7 6 3 1	:	. (* 12
$\frac{2}{2} \int_{P} \left(\frac{2}{2} \int_{V}^{(0)} \frac{1}{2} \int_{P}^{(0)} \frac{2}{2} \int_{P}^{(0)} \frac{2}{2}$.73E	. 86E . 51E . 32E . 37E	. 93E . 20E . 52E . 89E . 33E	. 72E . 05E . 25E . 45E . 68E	. 85E . 92E . 85E . 5 7E . 27E . 98E	. 21E . 44E . 57E . 72E . 13E . 49E . 32E	_cm mol	$\left(\frac{\partial \overline{v}}{\partial T}\right)$
$\begin{pmatrix} \frac{\partial \beta}{\partial T} \\ \frac{\partial \beta}{\partial T} \end{pmatrix}_{p} \begin{pmatrix} \frac{\partial c}{\partial T} \\ \frac{\partial c}{\partial T} \end{pmatrix}_{p} \begin{pmatrix} \frac{\partial c}{\partial T} \\ \frac{\partial c}{\partial T} \end{pmatrix}_{p} \\ \frac{g}{mol \ bar \ K} \\ \frac{g}{mol^{2} \ bar \$	-01	-01 -01 -01	-01 -01 -01 -01 -01	-02 -01 -01 -01 -01	-02 -04 -02 -02 -02 -02	-01 -02 -02 -02 -02 -02 -02	} K	$\frac{1}{2}$
$\frac{\left(\frac{\partial \beta}{\partial T}\right)_{p}}{\left(\frac{\partial \beta}{\partial T}\right)_{p}} \qquad \left(\frac{\partial C_{v}^{\Phi}}{\partial T}\right)_{p}} \frac{\left(\frac{\partial C_{v}^{\Phi}}{\partial T}\right)_{p}}{mol^{2} \text{ bar } K} \frac{g^{2}}{mol^{2} \text{ bar } K} \frac{g^{2}}{mol^{2} \text{ bar } K}$ $\frac{9.79E-07}{6.34E-07} \qquad \frac{1.23E-07}{8.22E-08}$ $\frac{4.31E-07}{5.76E-08} \qquad \frac{5.76E-08}{3.60E-07} \qquad \frac{4.86E-08}{4.31E-07} \qquad \frac{2.95E-08}{2.12E-07}$ $\frac{2.95E-08}{2.12E-07} \qquad \frac{2.95E-08}{2.92E-09}$ $\frac{4.57E-08}{2.92E-09} \qquad \frac{2.92E-09}{1.13E-10}$ $\frac{8.51E-10}{7.29E-09} \qquad \frac{2.69E-10}{1.07E-09}$ $\frac{9.56E-09}{1.11E-09} \qquad \frac{3.46E-09}{2.69E-10}$ $\frac{9.56E-09}{1.12E-08} \qquad \frac{5.72E-09}{5.02E-09}$ $\frac{9.56E-09}{1.07E-09} \qquad \frac{3.46E-09}{1.07E-09}$ $\frac{9.56E-09}{1.07E-08} \qquad \frac{8.77E-08}{2.92E-09}$ $\frac{1.52E-07}{1.09E-07} \qquad \frac{1.34E-08}{1.09E-07} \qquad \frac{6.2E-08}{1.09E-07}$ $\frac{1.52E-07}{1.29E-08} \qquad \frac{6.79E-08}{2.71E-07} \qquad \frac{6.2E-08}{1.62E-08}$		-	- 				m	N Star
$\frac{\partial \beta}{\partial T} \begin{pmatrix} 0 \\ v \\ \partial T \end{pmatrix}_{p} \begin{pmatrix} 2 \\ v \\ \partial T \end{pmatrix}_{p} \begin{pmatrix} 2 \\ v \\ \partial T \end{pmatrix}_{p} \\ \begin{pmatrix} 2 \\ v \\ \partial T \end{pmatrix}_{p} \\ mol^{2} bar K \\ mol^{2} bar K \\ \hline mol^{2$	4	1.2.2.3.	-9. -2. -4. -7. -1.	8. 7. 9. 7. 1.	1. -1. -7. -4. -2.	9643321	101	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \partial C \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \end{array} \\ \end{array} \\$	51Ē	52E 05E 71E 52E	56E 52E 63E 38E 09E	5 1E 0 9E 2 3E 2 9E 1 1E	57E 09E 31E 57E 49E 69E	79E 34E 31E 60E 01E 12E 48E	g bai	θ <mark>ν</mark> 3 τ
$\begin{pmatrix} \frac{\partial C^{\phi}}{\sqrt{\partial T}} \\ \frac{\partial C^{\phi}}{\sqrt{\partial T}} \\ \frac{2}{9} \\ $	-01	-0 -0 -0 -0	-01 -01 -01 -01 -01	-1(-0' -0' -0'	-0 -0 -0 -0 -0	-0 -0 -0 -0 -0 -0 -0	c K)))
$\begin{pmatrix} \frac{\partial C_{v}^{\varphi}}{\partial T} \\ \frac{\partial C_{v}^{\varphi}}{\partial T} \end{pmatrix}_{p}$ $\frac{2}{mol^{2} \text{ bar K}}$ 1.23E-07 8.22E-08 5.76E-08 4.86E-08 4.12E-08 2.95E-08 2.95E-08 2.06E-08 1.01E-08 5.79E-09 1.12E-09 1.12E-09 1.12E-09 1.12E-09 1.13E-10 -2.85E-10 -2.02E-10 2.69E-10 1.07E-09 2.14E-09 3.46E-09 5.02E-09 6.79E-09 8.77E-09 8.77E-09 1.10E-08 1.34E-08 1.62E-08 1.92E-08 2.66E-08 2.6	7	7 7: 7	7 3 3 7) 9 9 9 -	7		-	P
$\frac{\partial C^{\phi}}{\partial T} \Big)_{p}$ $\frac{2}{\partial T} \Big)_{p}$ $\frac{2}{$	-2.	1 1 1 2	3. 5. 6. 8. 1.	-2 -2 2 1	1 1 5 2 1	1 8 5 4 2 2	mc	(
) P 2 bar K -07 -08 -08 -08 -08 -08 -08 -09 -09 -09 -09 -09 -09 -09 -09	64E	34E 62E 92E 26E	46E 02E 79E 77E 10E	85E 02E 69E 07E 14E	66E 01E 79E 92E 12E 13E	23E 22E 76E 86E 12E 95E 06E	g _1 ²	$\frac{2c^{\phi}}{2T}$
	-08	-08 -08 -08	-09 -09 -09 -09 -09	-10 -10 -10 -09 -09	-08 -08 -09 -09 -09 -10	-07 -08 -08 -08 -08 -08	2 bar) P
				Aria 1039 1038 1038 1038 1038			K	•
		(**)	•••		۰, ۱			,

42

Parameters for Calculation of the Expansivity^a

•

T	P	$\left(\frac{\partial \mathbf{v}_{\mathbf{w}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$	D-H Slope	$\left(\frac{\partial \overline{v}_2^{\circ}}{\partial T}\right)_{\rm P}$	$\begin{pmatrix} \frac{\partial \beta^{(0)}}{v} \\ \frac{\partial T}{\partial T} \end{pmatrix}_{P}$	$\left(\frac{\partial C_{\mathbf{v}}^{\phi}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$
(°C)	(bar)	$\frac{\mathrm{cm}^3}{\mathrm{gK}}$	$\frac{\text{cm}^3}{\text{mol } K}$	$\frac{\text{cm}^3}{\text{mol } K}$	g mol bar K	$\frac{g^2}{mol^2 \text{ bar K}}$
0	200	-2.807E-06	1.21E-02	1.89E-01	-8.93E-07	1.23E-07
10	200	1.326E-04	1.30E-02	1.26E-01	-5.83E-07	8.22E-08
20	200	2.350E-04	1.45E-02	8.47E-02	-4.00E-07	5.76E-08
25	200	2.785E-04	1.55E-02	6.89E-02	-3.35E-07	4.86E-08
30	200	3.185E-04	1.65E-02	5.52E-02	-2.82E-07	4.12E-08
40	200	3.909E-04	1.88E-02	3.22E-02	-2.00E-07	2.95E-08
50	200	4.564E-04	2.14E-02	1.30E-02	-1.40E-07	2.06E-08
50	200	4.564E-04	2.14E-02	1.57E-02	-1.42E-07	1.66E-08
60	200	5.175E-04	2.44E-02	-1.88E-03	-9.63E-08	1.01E-08
70	200	5.756E-04	2.79E-02	-1.83E-02	-6.16E-08	5.79E-09
80	200	6.320E-04	3.18E-02	-3.40E-02	-3.51E-08	2.92E-09
90	200	6.875E-04	3.63E-02	-4.95E-02	-1.48E-08	1.12E-09
100	200	7.426E-04	4.16E-02	-6.50E-02	5.06E-10	1.13E-10
110	200	7.982E-04	4.76E-02	-8.07E-02	1.15E-08	-2.85E-10
120	200	8.547E-04	5.47E-02	-9.70E-02	1.87E-08	-2.02E-10
130	200	9.128E-04	6.29E-02	-1.14E-01	2.23E-08	2.69E-10
140	200	9.732E-04	7.26E-02	-1.32E-01	2.24E-08	1.07E-09
150	200	1.037E-03	8.40E-02	-1.51E-01	1.90E-08	2.14E-09
160	200	1.104E-03	9.76E-02	-1.72E-01	1.17E-08	3.46E-09
170	200	1.175E-03	1.14E-01	-1.95E-01	3.28E-10	5.02E-09
180	200	1.253E-03	1.33E-01	-2.20E-01	-1.57E-08	6.79E-09
190	200	1.337E-03	1.57E-01	-2.49E-01	-3.70E-08	8.77E-09
200	200	1.429E-03	1.86E-01	-2.83E-01	-6.45E-08	1.10E-08
210	200	1.531E-03	2.21E-01	-3.21E-01	-9.92E-08	1.34E-08
220	200	1.645E-03	2.64E-01	-3.67E-01	-1.43E-07	1.62E-08
230	200	1.773E-03	3.22E-01	-4.23E-01	-1.97E-07	1.92E-08
240	200	1.919E-03	3.94E-01	-4.93E-01	-2.64E-07	2.26E-08
250	200	2.087E-03	4.87E-01	-5.81E-01	-3.49E-07	2.64E-08
260	200	2.284E-03	6.11E-01	-6.97E-01	-4.54E-07	3.08E-08
270	200	2.516E-03	7.80E-01	-8.54E-01	-5.87E-07	3.59E-08
280	200	2.796E-03	1.01E+00	-1.07E+00	-7.56E-07	4.19E-08
290	200	3.141E-03	1.35E+00	-1.39E+00	-9.75E-07	4.92E-08
300	200	3.578E-03	1.86E+00	-1.87E+00	-1.26E-06	5.82E-08

Parameters for Calculation of the Expansivity^a

T	Р	$\left(\frac{\partial \mathbf{v}_{\mathbf{w}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$	D-H Slope	$\left(\frac{\partial \overline{v}_{2}^{\circ}}{\partial T}\right)_{P}$	$\left(\frac{\partial \beta_{\mathbf{v}}^{(0)}}{\partial \mathbf{T}}\right)_{\mathbf{p}}$	$\left(\frac{\partial C_{v}^{\varphi}}{T}\right)_{p}$
(°C)	(bar)	<u>cm³ gK</u>	<u>cm³</u> mol K	<u>cm³</u> mol K	g mol bar K	$\frac{g^2}{mol^2 \text{ bar K}}$
0	400	6.392E-05	1.07E-02	1.60E-01	-8.11E-07	1.23E-07
10	400	1.727E-04	1.18E-02	1.09E-01	-5.36E-07	8.22E-08
20	400	2.583E-04	1.33E-02	7.44E-02	-3.72E-07	5.76E-08
25	400	2.955E-04	1.42E-02	6.11E-02	-3.13E-07	4.86E-08
30	400	3.302E-04	1.52E-02	4.94E-02	-2.65E-07	4.12E-08
40	400	3.936E-04	1.73E-02	2.95E-02	-1.89E-07	2.95E-08
50	400	4.517E-04	1.96E-02	1.26E-02	-1.34E-07	2.06E-08
50	400	4.517E-04	1.96E-02	1.32E-02	-1.29E-07	1.66E-08
60	400	5.063E-04	2.23E-02	-2.74E-03	-8.60E-08	1.01E-08
70	400	5.586E-04	2.54E-02	-1.76E-02	-5.32E-08	5.79E-09
80	400	6.094E-04	2.88E-02	-3.19E-02	-2.82E-08	2.92E-09
90	400	6.593E-04	3.27E-02	-4.59E-02	-8.88E-09	1.12E-09
100	400	7.088E-04	3.72E-02	-5.99E-02	5.80E-09	1.13E-10
110	400	7.584E-04	4.24E-02	-7.40E-02	1.66E-08	-2.85E-10
120	400	8.086E-04	4.83E-02	-8.85E-02	2.41E-08	-2.02E-10
130	400	8.598E-04	5.51E-02	-1.03E-01	2.86E-08	2.69E-10
140	400	9.126E-04	6.30E-02	-1.19E-01	3.00E-08	1.07E-09
150	400	9.675E-04	7.23E-02	-1.36E-01	2.86E-08	2.14E-09
160	400	1.025E-03	8.30E-02	-1.53E-01	2.40E-08	3.46E-09
170	400	1.086E-03	9.57E-02	-1.73E-01	1.62E-08	5.02E-09
180	400	1.150E-03	1.11E-01	-1.93E-01	4.69E-09	6.79E-09
190	400	1.219E-03	1.28E-01	-2.16E-01	-1.09E-08	8.77E-09
200	400	1.294E-03	1.50E-01	-2.42E-01	-3.14E-08	1.10E-05
210	400	1.375E-03	1.75E-01	-2.70E-01	-5.75E-08	1.34E-08
220	400	1.464E-03	2.06E-01	-3.03E-01	-9.03E-08	1.62E-08
230	400	1.561E-03	2.43E-01	-3.40E-01	-1.31E-07	1.92E-08
240	400	1.670E-03	2.90E-01	-3.84E-01	-1.83E-07	2.26E-08
250	400	1.790E-03	3.48E-01	-4.36E-01	-2.47E-07	2.64E-08
260	400	1.926E-03	4.22E-01	-4.99E-01	-3.27E-07	3.08E-08
270	400	2.079E-03	5.16E-01	-5.77E-01	-4.28E-07	3.59E-08
280	400	2.255E-03	6.40E-01	-6.76E-01	-5.57E-07	4.19E-08
290	400	2.458E-03	8.05E-01	-8.05E-01	-7.25E-07	4.92E-08
300	400	2.695E-03	1.03E+00	-9.79E-01	-9.44E-07	5.82E-08

,_{∂β}(0) ∂v w ЭŪ D-H Т Ρ 9L Slope ЭT ЭT <u>cm</u>³ cm³ 3 2 cm (°C) (bar) g g mol² gK mol K mol K mol bar K bar K 1.34E-01 1.23E-07 0 600 9.52E-03 -7.34E-07 1.211E-04 -4.92E-07 8.22E-08 1.07E-02 10 2.079E-04 9.29E-02 600 5.76E-08 6.50E-02 5.39E-02 -3.46E-07 20 600 2.793E-04 1.22E-02 -2.93E-07 4.86E-08 25 600 3.111E-04 1.31E-02 4.40E-02 2.69E-02 4.12E-08 -2.49E-07 30 1.39E-02 600 3.410E-04 -1.80E-07 2.95E-08 1.59E-02 3.966E-04 40 600 -1.28E-07 2.06E-08 50 1.80E-02 1.19E-02 4.482E-04 600 1.66E-08 -1.18E-07 50 600 4.482E-04 1.12E-02 1.80E-02 -7.82E-08 1.01E-08 60 600 4.971E-04 2.05E-02 -3.02E-03 5.79E-09 -4.80E-08 70 5.442E-04 2.32E-02 -1.63E-02 600 -2.50E-08 -7.34E-09 6.12E-09 2.92E-09 -2.91E-02 5.901E-04 80 600 2.62E-02 1.12E-09 -4.16E-02 90 2.96E-02 600 6.352E-04 1.13E - 106.798E-04 3.35E-02 -5.41E-02 100 600 1.62E-08 -2.85E-10 3.79E-02 110 600 7.244E-04 -6.66E-02 -2.02E-10 2.33E-08 7.693E-04 4.29E-02 -7.94E-02 120 600 8.150E-04 -9.25E-02 2.77E-08 2.69E-10 4.86E-02 130 600 2.98E-08 1.07E-09 8.617E-04 5.51E-02 -1.06E-01 140 600 2.94E-08 2.14E-09 9.098E-04 6.27E-02 -1.21E-01 150 600 3.46E-09 2.66E-08 160 600 9.599E-04 7.13E-02 -1.36E-01 8.14E-02 9.30E-02 1.07E-01 5.02E-09 2.11E-08 -1.52E-01 170 600 1.012E-03 1.29E-08 6.79E-09 -1.69E-01 600 1.068E-03 180 1.47E-09 8.77E-09 -1.88E-01 1.126E-03 190 600 -1.36E-08 1.10E-08 1.22E-01 -2.08E-01 200 600 1.188E-03 -3.29E-08 1.41E-01 -2.30E-01 1.34E-08 1.255E-03 210 600 -2.55E-01 -5.72E-08 -8.77E-08 1.327E-03 1.62E - 08600 220 1.63E-01 1.92E-08 1.89E-01 -2.82E-01 1.405E-03 230 600 -1.26E-07 -3.12E-01 2.26E-08 600 1.490E-03 2.21E-01 240 -1.73E-07 2.64E-08 1.582E-03 2.59E-01 -3.46E-01 250 600 -2.33E-07 -3.08E-07 3.08E-08 -3.85E-01 1.684E-03 3.05E-01 260 -600 1.796E-03 3.61E-01 -4:28E-01 3.59E-08 -600 270 4.19E-08 1.921E-03 -4.04E-07 600 4.32E-01 -4.78E-01 280 4.92E-08 -5.37E-01 -5.28E-07 2.060E-03 5.21E-01 290 600 -6.90E-07 5.82E-08 -6.04E-01 600 2.215E-03 6.35E-01 300

Parameters for Calculation of the Expansivity^a

Parameters for Calculation of the Expansivity^a

T	Р	$\left(\frac{\partial v}{w}}{\partial T}\right)_{p}$	$\begin{array}{c} D-H \\ Slope \end{array} \begin{pmatrix} \frac{\partial \overline{V}_{2}^{\circ}}{\partial T} \end{pmatrix}_{P} & \begin{pmatrix} \frac{\partial \beta_{v}^{(0)}}{\partial T} \end{pmatrix}_{P} \end{array}$	$\left(\frac{\partial C_{\mathbf{v}}^{\varphi}}{\partial \mathtt{T}}\right)_{\mathbf{P}}$
(°C)	(bar)	$\frac{cm^3}{gK}$	$\frac{cm^3}{mol \ K} \qquad \frac{cm^3}{mol \ K} \qquad \frac{g}{mol \ bar \ K}$	g ² nol ² bar K
0	800	1.689E-04	8.34E-03 1.10E-01 -6.63E-07	1 23E -07
10	800	2.381E-04	9.67E-03 7.87E-02 -4.51E-07	8 22E -08
20	800	2.978E-04	1.12E-02 5.65E+02 -3.22E+07	5 76E -08
25	800	3.249E-04	1.20E-02 4.74E-02 -2.75E-07	4 86E -08
30	800	3.508E-04	1.28E-02 3.91E-02 -2.35E-07	4 12E -08
40	800	3.995E-04	1.46E-02 2.44E-02 -1.72E-07	2 95E -08
50	800	4.454E-04	1.66E-02 1.12E-02 -1.24E-07	2 06E -08
50	800	4.454E-04	1.66E-02 9.84E-03 -1.09E-07 1.88E-02 -2.60E-03 -7.29E-08 2.12E-02 -1.43E-02 -4.59E-08 2.39E-02 -2.55E-02 -2.56E-08 2.69E-02 -3.64E-02 -1.02E-08 3.02E-02 -4.73E-02 1.48E-09	1.66E-08
60	800	4.893E-04		1.01E-08
70	800	5.319E-04		5.79E-09
80	800	5.734E-04		2.92E-09
90	800	6.142E-04		1.12E-09
100	800	6.547E-04		1.13E-10
110	800	6.950E-04	3.40E-02 -5.82E-02 1.01E-08 -	-2.85E-10
120	800	7.355E-04	3.83E-02 -6.92E-02 1.61E-08 -	-2.02E-10
130	800	7.764E-04	4.31E-02 -8.06E-02 1.99E-08	2.69E-10
140	800	8.181E-04	4.86E-02 -9.23E-02 2.16E-08	1.07E-09
150	800	8.609E-04	5.48E-02 -1.05E-01 2.14E-08	2.14E-09
160	800	9.050E-04	6.18E-02-1.17E-011.93E-086.99E+02-1.31E-011.52E-087.91E-02-1.45E-018.89E-098.96E-02-1.61E-012.66E-101.02E-01-1.77E-01-1.10E-08	3.46E-09
170	800	9.509E-04		5.02E-09
180	800	9.989E-04		6.79E-09
190	800	1.049E-03		8.77E-09
200	800	1.102E-03		1.10E-08
210	800	1.159E-03	1.16E-01 -1.95E-01 -2.54E-08 1.32E-01 -2.15E-01 -4.35E-08 1.51E-01 -2.35E-01 -6.60E-08 1.73E-01 -2.58E-01 -9.39E-08 1.99E-01 -2.82E-01 -1.29E-07	1.34E-08
220	800	1.219E-03		1.62E-08
230	800	1.283E-03		1.92E-08
240	800	1.352E-03		2.26E-08
250	800	1.426E-03		2.64E-08
260	800	1.507E-03	2.29E-01 -3.08E-01 -1.72E-07	3.08E-08
270	800	1.594E-03	2.65E-01 -3.37E-01 -2.26E-07	3.59E-08
280	800	1.688E-03	3.08E-01 -3.66E-01 -2.95E-07	4.19E-08
290	800	1.792E-03	3.60E-01 -3.97E-01 -3.85E-07	4.92E-08
300	800	1.905E-03	4.23E-01 -4.28E+01 -5.02E-07	5.82E-08

Parameters for Calculation of the Expansivity^a

2

5

۰

.

Т	P	$\left(\frac{\mathbf{w}_{\mathbf{w}}}{16}\right)_{\mathbf{P}}$	D-H Slope	$\left(\frac{\partial \vec{v}_2^{\circ}}{\partial T}\right)_{P}$	$\left(\frac{\partial \beta_{\mathbf{v}}^{(0)}}{\partial T}\right)_{\mathbf{p}}$	$\left(\frac{\partial C_{\mathbf{v}}^{\Phi}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$
(°C)	(bar)	<u>cm</u> gK	$\frac{\text{cm}^3}{\text{mol } K}$	<u>cm³</u> mol K	<u>g</u> mol bar K	$\frac{g^2}{mol^2 bar K}$
0	1000	2.072E-04	7.18E-03	8.92E-02	-5.96E-07	1.23E-07
10	1000	2.631E-04	8.66E-03	6.62E-02	-4.14E-07	8.22E-08
20	1000	3.134E-04	1.02E-02	4.89E-02	-3.01E-07	5.76E-08
25	1000	3.368E-04	1.10E-02	4.16E-02	-2.59E-07	4.86E-08
30	1000	3.593E-04	1.18E-02	3.48E-02	-2.23E-07	4.12E-08
40	1000	4.022E-04	1.35E-02	2.22E-02	-1.66E-07	2.95E-08
50	1000	4.431E-04	1.53E-02	1.05E-02	-1.20E-07	2.06E-08
50 60 70 80 90 100	1000 1000 1000 1000 1000	4.431E-04 4.826E-04 5.211E-04 5.588E-04 5.959E-04 6.327E-04	1.53E-02 1.73E-02 1.94E-02 2.18E-02 2.45E-02 2.74E-02	9.21E-03 -1.38E-03 -1.13E-02 -2.08E-02 -3.01E-02 -3.93E-02	-1.02E-07 -7.02E-08 -4.70E-08 -2.99E-08 -1.73E-08 -8.14E-09	1.66E-08 1.01E-08 5.79E-09 2.92E-09 1.12E-09 1.13E-10
110	1000	6.693E-04	3.07E-02	-4.84E-02	-1.66E-09	-2.85E-10
120	1000	7.059E-04	3.43E-02	-5.77E-02	2.58E-09	-2.02E-10
130	1000	7.429E-04	3.84E-02	-6.71E-02	4.92E-09	2.69E-10
140	1000	7.804E-04	4.31E-02	-7.69E-02	5.57E-09	1.07E-09
150	1000	8.187E-04	4.82E-02	-8.70E-02	4.66E-09	2.14E-09
160	1000	8.580E-04	5.40E-02	-9.76E-02	2.22E-09	3.46E-09
170	1000	8.986E-04	6.06E-02	-1.09E-01	-1.73E-09	5.02E-09
180	1000	9.407E-04	6.80E-02	-1.21E-01	-7.29E-09	6.79E-09
190	1000	9.847E-04	7.63E-02	-1.33E-01	-1.46E-08	8.77E-09
200	1000	1.031E-03	8.58E-02	-1.46E-01	-2.38E-08	1.10E-08
210	1000	1.079E-03	9.65E-02	-1.61E-01	-3.52E-08	1.34E-08
220	1000	1.131E-03	1.09E-01	-1.76E-01	-4.91E-08	1.62E-08
230	1000	1.185E-03	1.23E-01	-1.92E-01	-6.62E-08	1.92E-08
240	1000	1.242E-03	1.38E-01	-2.10E-01	-8.70E-08	2.26E-08
250	1000	1.304E-03	1.57E-01	-2.28E-01	-1.13E-07	2.64E-08
260	1000	1.370E-03	1.77E-01	-2.48E-01	-1.44E-07	3.08E-08
270	1000	1.440E-03	2.01E-01	-2.68E-01	-1.83E-07	3.59E-08
280	1000	1.515E-03	2.29E-01	-2.89E-01	-2.32E-07	4.19E-08
290	1000	1.597E-03	2.61E-01	-3.09E-01	-2.95E-07	4.92E-08
300	1000	1.684E-03	2.99E-01	-3.28E-01	-3.78E-07	5.82E-08

Parameters for Calculation of the Compressibility

Т	P	$\left(\frac{w^{vc}}{w}\right)_{T}$	D-H Slope	$\left(\frac{\partial \bar{v}_2^\circ}{\partial P}\right)_{\rm T}$	$\left(\frac{\frac{\partial \beta_{\mathbf{v}}^{(0)}}{\mathbf{v}}}{\frac{\partial \mathbf{P}}{\partial \mathbf{P}}}\right)_{\mathrm{T}}$
°C	bar	cm g bar	 mol bar	 mol bar	 mol bar ²
0 10 20 25 30 40 50	1 1 1 1 1	-5.101E-05 -4.777E-05 -4.593E-05 -4.535E-05 -4.496E-05 -4.462E-05 -4.477E-05	-2.01E-04 -2.81E-04 -3.51E-04 -3.88E-04 -4.25E-04 -5.08E-04 -6.04E-04	6.63E-03 5.34E-03 4.58E-03 4.34E-03 4.15E-03 3.93E-03 3.87E-03	-1.17E-08 -8.27E-09 -6.18E-09 -5.46E-09 -4.89E-09 -4.07E-09 -3.54E-09
50 60 70 80 90 100	1 1 1 1 1	-4.477E-05 -4.533E-05 -4.627E-05 -4.757E-05 -4.921E-05 -5.122E-05	-6.04E-04 -7.19E-04 -8.55E-04 -1.02E-03 -1.22E-03 -1.47E-03	3.70E-03 3.59E-03 3.56E-03 3.60E-03 3.71E-03 3.91E-03	-2.92E-09 -2.18E-09 -1.50E-09 -8.65E-10 -2.44E-10 3.82E-10
110	1	-5.361E-05	-1.77E-03	4.19E-03	1.03E-09
120	2	-5.641E-05	-2.14E-03	4.58E-03	1.74E-09
130	3	-5.966E-05	-2.60E-03	5.08E-03	2.52E-09
140	4	-6.343E-05	-3.17E-03	5.73E-03	3.41E-09
150	5	-6.777E-05	-3.88E-03	6.54E-03	4.44E-09
160	6	-7.279E-05	-4.78E-03	7.58E-03	5.66E-09
170	8	-7.860E-05	-5.93E-03	8.89E-03	7.09E-09
180	10	-8.535E-05	-7.38E-03	1.06E-02	8.79E-09
190	13	-9.320E-05	-9.25E-03	1.27E-02	1.08E-08
200	16	-1.024E-04	-1.17E-02	1.55E-02	1.33E-08
210	19	-1.133E-04	-1.49E-02	1.91E-02	1.62E-08
220	23	-1.262E-04	-1.91E-02	2.39E-02	1.97E-08
230	28	-1.418E-04	-2.47E-02	3.04E-02	2.38E-08
240	33	-1.607E-04	-3.23E-02	3.92E-02	2.89E-08
250	40	-1.839E-04	-4.27E-02	5.13E-02	3.49E-08
260	47	-2.130E-04	-5.72E-02	6.84E-02	4.22E-08
270	55	-2.499E-04	-7.78E-02	9.27E-02	5.10E-08
280	64	-2.980E-04	-1.08E-01	1.28E-01	6.17E-08
290	74	-3.622E-04	-1.52E-01	1.81E-01	7.49E-08
300	86	-4.507E-04	-2.18E-01	2.61E-01	9.12E-08

Parameters for Calculation of the Compressibility

Т	Р	$\begin{pmatrix} \frac{\partial \mathbf{v}_{\mathbf{w}}}{\mathbf{w}} \end{pmatrix}_{\mathrm{T}}$	D - H Slope	$\left(\frac{\partial \overline{v}_2^\circ}{\partial P}\right)_T$	$\left(\frac{\frac{\partial \beta_{\mathbf{v}}^{(0)}}{\mathbf{v}}}{\frac{\partial \mathbf{P}}{\partial \mathbf{P}}}\right)_{\mathrm{T}}$
°C	bar	$\frac{cm^3}{g bar}$	$\frac{\text{cm}^3}{\text{mol bar}}$	$\frac{\text{cm}^3}{\text{mol bar}}$	g mol bar ²
0	200	-4.764E-05	-2.15E-04	5.98E-03	-1.06E-08
10	200	-4.484E-05	-2.81E-04	4.2.E-03	-7.30E-09
20	200	-4.320E-05	-3.42E-04	4.10E-03	-5.37E-09
25	200	-4.267E-05	-3.75E-04	3.87E-03	-4.70E-09
30	200	-4.230E-05	-4.08E-04	3.69E-03	-4.18E-09
40	200	-4.195E-05	-4.82E-04	3.48E-03	-3.44E-09
50	200	-4.204E-05	-5.69E-04	3.40E-03	-2.98E-09
50	200	-4.204E-05	-5.69E-04	3.29E-03	-2.57E-09
60	200	-4.248E-05	-6.71E-04	3.20E-03	-1.94E-09
70	200	-4.325E-05	-7.92E-04	3.18E-03	-1.40E-09
80	200	-4.433E-05	-9.37E-04	3.24E-03	-9.35E-10
90	200	-4.571E-05	-1.11E-03	3.37E-03	-5.16E-10
100	200	-4.740E-05	-1.33E-03	3.57E-03	-1.22E-10
110	200	-4.939E-05	-1.58E-03	3.86E-03	2.69E-10
120	200	-5.173E-05	-1.90E-03	4.23E-03	6.81E-10
130	200	-5.443E-05	-2.28E-03	4.70E-03	1.14E-09
140	200	-5.754E-05	-2.76E-03	5.29E-03	1.67E-09
150	200	-6.110E-05	-3.35E-03	6.01E-03	2.30E-09
160	200	-6.517E-05	-4.08E-03	6.90E-03	3.08E-09
170	200	-6.984E-05	-4.99E-03	7.98E-03	4.04E-09
180	200	-7.520E-05	-6.14E-03	9.32E-03	5.23E-09
190	200	-8.137E-05	-7.59E-03	1.10E-02	6.71E-09
200	200	-8.851E-05	-9.46E-03	1.31E-02	8.54E-09
210	200	-9.681E-05	-1.19E-02	1.57E-02	1.08E-08
220	200	-1.065E-04	-1.50E-02	1.91E-02	1.36E-08
230	200	-1.180E-04	-1.91E-02	2.36E-02	1.71E-08
240	200	-1.317E-04	-2.46E-02	2.95E-02	2.13E-08
250	200	-1.482E-04	-3.21E-02	3.76E-02	2.66E-08
260	200	-1.684E-04	-4.24E-02	4.88E-02	3.31E-08
270	200	-1.935E-04	-5.69E-02	6.46E-02	4.11E-08
280	200	-2.253E-04	-7.79E-02	8.78E-02	5.10E-08
290	200	-2.665E-04	-1.09E-01	1.23E-01	6.34E-08
300	200	-3.217E-04	-1.57E-01	1.77E-01	7.91E-08

Т	Р	$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$	D-H Slope	$\left(\frac{\partial \overline{v}_{2}^{\circ}}{\partial P}\right)_{T}$	$\left(\frac{\partial \beta_{v}^{(0)}}{P}\right)_{T}$
°C	bar	<u>cm³</u> g bar	<u>cm</u> ³ mol bar	$\frac{\text{cm}^3}{\text{mol bar}}$	mol bar ²
0	400	-4.469E-05	-2.11E-04	5.39E-03	-9.38E-09
10	400	-4.226E-05	-2.70E-04	4.31E-03	-6.34E-09
20	400	-4.079E-05	-3.26E-04	3.67E-03	-4.54E-09
25	400	-4.031E-05	-3.55E-04	3.45E-03	-3.94E-09
30	400	-3.997E-05	-3.86E-04	3.29E-03	-3.47E-09
40	400	-3.962E-05	-4.53E-04	3.08E-03	-2.81E-09
50	400	-3.965E-05	-5.31E-04	3.01E-03	-2.42E-09
50 60 70 80 90 100	400 400 400 400 400	-3.965E-05 -4.001E-05 -4.065E-05 -4.157E-05 -4.274E-05 -4.417E-05	-5.31E-04 -6.22E-04 -7.30E-04 -8.58E-04 -1.01E-03 -1.20E-03	2.94E-03 2.87E-03 2.88E-03 2.97E-03 3.12E-03 3.36E-03	-2.22E-09 -1.69E-09 -1.30E-09 -1.01E-09 -7.89E-10 -6.28E-10
110	400	-4.586E-05	-1.42E-03	3.67E-03	-5.02E-10
120	400	-4.784E-05	-1.68E-03	4.06E-03	-3.88E-10
130	400	-5.011E-05	-2.01E-03	4.54E-03	-2.65E-10
140	400	-5.270E-05	-2.40E-03	5.12E-03	-1.08E-10
150	400	-5.565E-05	-2.88E-03	5.81E-03	1.11E-10
160	400	-5.899E-05	-3.47E-03	6.64E-03	4.24E-10
170	400	-6.278E-05	-4.19E-03	7.61E-03	8.66E-10
180	400	-6.708E-05	-5.09E-03	8.77E-03	1.48E-09
190	400	-7.195E-05	-6.20E-03	1.01E-02	2.31E-09
200	400	-7.750E-05	-7.60E-03	1.18E-02	3.42E-09
210	400	-8.383E-05	-9.35E-03	1.38E-02	4.88E-09
220	400	-9.108E-05	-1.16E-02	1.62E-02	6.77E-09
230	400	-9.944E-05	-1.44E-02	1.93E-02	9.20E-09
240	400	-1.091E-04	-1.81E-02	2.31E-02	1.23E-08
250	400	-1.204E-04	-2.29E-02	2.80E-02	1.62E-08
260	400	-1.336E-04	-2.93E-02	3.44E-02	2.11E-08
270	400	-1.493E-04	-3.78E-02	4.29E-02	2.74E-08
280	400	-1.681E-04	-4.94E-02	5.44E-02	3.52E-08
290	400	-1.907E-04	-6.56E-02	7.05E-02	4.52E-08
300	400	-2.185F-04	-8.86E-02	9.35E-02	5.78E-08

Parameters for Calculation of the Compressibility

.

Parameters for Calculation of the Compressibility

Т	Р	$\left(\frac{\partial \mathbf{v}_{\mathbf{w}}}{\partial \mathbf{P}}\right)_{\mathrm{T}}$	D-H Slope	$\left(\frac{\partial \overline{v}_{2}^{\circ}}{\partial P}\right)_{\mathrm{T}}$	$\left(\frac{\partial \beta_{\mathbf{v}}^{(0)}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$
°C	bar	<u>cm³</u> g bar	 mol bar	<u>cm</u> ³ mol bar	g mol bar ²
0 10 20 25 30 40 50	600 600 600 600 600 600	-4.200E-05 -3.991E-05 -3.862E-05 -3.819E-05 -3.787E-05 -3.755E-05 -3.755E-05	-1.97E-04 -2.53E-04 -3.06E-04 -3.33E-04 -3.62E-04 -4.23E-04 -4.94E-04	4.83E-03 3.86E-03 3.27E-03 3.07E-03 2.92E-03 2.73E-03 2.66E-03	-8.20E-09 -5.37E-09 -3.72E-09 -3.17E-09 -2.75E-09 -2.18E-09 -1.85E-09
50 60 70 80 90 100	600 600 600 600 600	-3.755E-05 -3.784E-05 -3.838E-05 -3.916E-05 -4.017E-05 -4.140E-05	-4.94E-04 -5.76E-04 -6.72E-04 -7.85E-04 -9.19E-04 -1.08E-03	2.65E-03 2.61E-03 2.65E-03 2.77E-03 2.97E-03 3.24E-03	-1.86E-09 -1.45E-09 -1.20E-09 -1.08E-09 -1.06E-09 -1.13E-09
110 120 130 140 150	600 600 600 600	-4.286E-05 -4.456E-05 -4.650E-05 -4.871E-05 -5.120E-05	-1.27E-03 -1.50E-03 -1.77E-03 -2.10E-03 -2.49E-03	3.59E-03 4.03E-03 4.55E-03 5.17E-03 5.88E-03	-1.27E-09 -1.46E-09 -1.67E-09 -1.88E-09 -2.08E-09
160 170 180 190 200	600 600 600 600	-5.401E-05 -5.716E-05 -6.070E-05 -6.468E-05 -6.915E-05	-2.97E-03 -3.55E-03 -4.26E-03 -5.12E-03 -6.18E-03	6.71E-03 7.67E-03 8.77E-03 1.00E-02 1.15E-02	-2.23E-09 -2.31E-09 -2.27E-09 -2.08E-09 -1.69E-09
210 220 230 240 250	600 600 600 600 600	-7.418E-05 -7.986E-05 -8.628E-05 -9.358E-05 -1.019E-04	-7.49E-03 -9.12E-03 -1.11E-02 -1.37E-02 -1.69E-02	1.32E-02 1.52E-02 1.75E-02 2.03E-02 2.36E-02	-1.04E-09 -6.61E-11 1.33E-09 3.24E-09 5.81E-09
260 270 280 290 300	600 600 600 600 600	-1.114E-04 -1.224E-04 -1.351E-04 -1.498E-04 -1.671E-04	-2.10E-02 -2.63E-02 -3.32E-02 -4.22E-02 -5.43E-02	2.77E-02 3.28E-02 3.91E-02 4.73E-02 5.80E-02	9.21E-09 1.36E-08 1.94E-08 2.69E-08 3.66E-08

51

.....

• •

ιÌ

Parameters for Calculation of the Compressibility

					a sa
T	P	$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$	D-H Slope	$\left(\frac{\partial \overline{v}_{2}^{\circ}}{\partial P}\right)_{T}$	$\left(\frac{\partial \beta_{v}^{(0)}}{\partial P}\right)_{T}$
°C	bar	<u>cm</u> g bar	<u>cm</u> mol bar	$\frac{\text{cm}^3}{\text{mol bar}}$	g mol bar ²
0	800	-3.946E-05	-1.80E-04	4.30E-03	-7.02E-09
10	800	-3.772E-05	-2.34E-04	3.43E-03	-4.40E-09
20	800	-3.661E-05	-2.85E-04	2.90E-03	-2.90E-09
25	800	-3.624E-05	-3.10E-04	2.72E-03	-2.41E-09
30	800	-3.596E-05	-3.37E-04	2.59E-03	-2.04E-09
40	800	-3.567E-05	-3.94E-04	2.42E-03	-1.55E-09
50	800	-3.566E-05	-4.58E-04	2.35E-03	-1.29E-09
50	800	-3.566E-05	-4.58E-04	2.39E-03	-1.50E-09
60	800	-3.591E-05	-5.32E-04	2.38E-03	-1.21E-09
70	800	-3.637E-05	-6.17E-04	2.47E-03	-1.10E-09
80	800	-3.705E-05	-7.18E-04	2.63E-03	-1.15E-09
90	800	-3.793E-05	-8.36E-04	2.88E-03	-1.34E-09
100	800	-3.900E-05	-9.75E-04	3.21E-03	-1.64E-09
110	800	-4.028E-05	-1.14E-03	3.62E-03	-2.04E-09
120	800	-4.175E-05	-1.33E-03	4.11E-03	-2.53E-09
130	800	-4.343E-05	-1.57E-03	4.70E-03	-3.07E-09
140	800	-4.534E-05	-1.84E-03	5.37E-03	-3.66E-09
150	800	-4.748E-05	-2.17E-03	6.15E-03	-4.27E-09
160	800	-4.988E-05	-2.56E-03	7.04E-03	-4.89E-09
170	800	-5.255E-05	-3.03E-03	8.05E-03	-5.48E-09
180	800	-5.554E-05	-3.60E-03	9.18E-03	-6.02E-09
190	800	-5.886E-05	-4.28E-03	1.05E-02	-6.48E-09
200	800	-6.256E-05	-5.10E-03	1.19E-02	-6.81E-09
210	800	-6.668E-05	-6.10E-03	1.35E-02	-6.97E-09
220	800	-7.128E-05	-7.31E-03	1.53E-02	-6.91E-09
230	800	-7.642E-05	-8.79E-03	1.74E-02	-6.54E-09
240	800	-8.217E-05	-1.06E-02	1.97E-02	-5.80E-09
250	800	-8.863E-05	-1.28E-02	2.24E-02	-4.57E-09
260	800	-9.590E-05	-1.56E-02	2.54E-02	-2.72E-09
270	800	-1.041E-04	-1.91E-02	2.90E-02	-6.86E-11
280	800	-1.134E-04	-2.34E-02	3.31E-02	3.61E-09
290	800	-1.240E-04	-2.89E-02	3.79E-02	8.62E-09
300	800	-1.360E-04	-3.59E-02	4.37E-02	1.54E-08

52

11.

Parameters for Calculation of the Compressibility

Т	Р	$\left(\frac{\partial \mathbf{v}_{\mathbf{w}}}{\partial \mathbf{P}}\right)_{\mathrm{T}}$	D-H Slope	$\left(\frac{\partial \vec{v}_{2}^{\circ}}{\partial P}\right)_{T}$	$\left(\frac{\partial \beta_{v}^{(0)}}{\partial P}\right)_{T}$
°C	bar	<u>cm</u> ³ g bar	$\frac{\text{cm}^3}{\text{mol bar}}$	$\frac{\text{cm}^3}{\text{mol bar}}$	g mol bar ²
0	1000	-3.701E-05	-1.63E-04	3.78E-03	-5.85E-09
10	1000	-3.563E-05	-2.15E-04	3.02E-03	-3.43E-09
20	1000	-3.473E-05	-2.64E-04	2.56E-03	-2.08E-09
25	1000	-3.442E-05	-2.88E-04	2.40E-03	-1.65E-09
30	1000	-3.419E-05	-3.13E-04	2.28E-03	-1.33E-09
40	1000	-3.394E-05	-3.65E-04	2.14E-03	-9.22E-10
50	1000	-3.394E-05	-4.24E-04	2.07E-03	-7.22E-10
50	1000	-3.394E-05	-4.24E-04	2.16E-03	-1.15E-09
60	1000	-3.416E-05	-4.91E-04	2.20E-03	-9.62E-10
70	1000	-3.457E-05	-5.68E-04	2.33E-03	-9.95E-10
80	1000	-3.517E-05	-6.57E-04	2.54E-03	-1.22E-09
90	1000	-3.594E-05	-7.62E-04	2.84E-03	-1.61E-09
100	1000	-3.689E-05	-8.84E-04	3.23E-03	-2.15E-09
110	1000	-3.801E-05	-1.03E-03	3.71E-03	-2.81E-09
120	1000	-3.931E-05	-1.19E-03	4.28E-03	-3.59E-09
130	1000	-4.078E-05	-1.39E-03	4.95E-03	-4.47E-09
140	1000	-4.245E-05	-1.63E-03	5.71E-03	-5.44E-09
150	1000	-4.431E-05	-1.90E-03	6.59E-03	-6.47E-09
160	1000	-4.639E-05	-2.23E-03	7.57E-03	-7.55E-09
170	1000	-4.870E-05	-2.61E-03	8.67E-03	-8.66E-09
180	1000	-5.125E-05	-3.07E-03	9.90E-03	-9.77E-09
190	1000	-5.408E-05	-3.61E-03	1.13E-02	-1.09E-08
200	1000	-5.721E-05	-4.26E-03	1.28E-02	-1.19E-08
210	1000	-6.066E-05	-5.03E-03	1.45E-02	-1.29E-08
220	1000	-6.448E-05	-5.95E-03	1.63E-02	-1.37E-08
230	1000	-6.871E-05	-7.06E-03	1.83E-02	-1.44E-08
240	1000	-7.340E-05	-8.39E-03	2.06E-02	-1.48E-08
250	1000	-7.859E-05	-1.00E-02	2.31E-02	-1.50E-08
260	1000	-8.437E-05	-1.19E-02	2.58E-02	-1.46E-08
270	1000	-9.080E-05	-1.43E-02	2.88E-02	-1.38E-08
280	1000	-9.797E-05	-1.72E-02	3.22E-02	-1.22E-08
290	1000	-1.060E-04	-2.07E-02	3.58E-02	-9.65E-09
300	1000	-1.150E-04	-2.51E-02	3.98E-02	-5.85E-09

Tal	Ь1	Le	7
_	_	_	•

Specific Volumes	of	Aqueous	Sodium	Chloride	Solutions	(cm)	g	1)	
------------------	----	---------	--------	----------	-----------	------	---	------------	--

		opecific	, 0 1 ame e								
TEMP (°C)	PRESS (BAR)	. 1000	. 2500	.5000	. 7500	MOLALITY - 1.0000	2.0000	3.0000	4.0000	5.0000	
0 10 20 25 30 40 50	1 1 1 1 1 1	.995732 .995998 .997620 .998834 1.000279 1.003796 1.008064	.989259 .989781 .991564 .992832 .994319 .997883 1.002161	.978889 .979804 .981833 .983185 .984735 .988374 .992668	.968991 .970256 .972505 .973932 .975539 .979243 .983551	959525 961101 963544 965038 966694 970455 974772	.925426 .927905 .930909 .932590 .934382 .938287 .942603	.896292 .899262 .902565 .904339 .906194 .910145 .914411	.870996 .874201 .877643 .879457 .881334 .885276 .889473	.848646 851958 .855469 .857301 .859185 .863108 .867241	
50 60 70 80 90 100	1 1 1 1 1	1.0081 1.0130 1.0186 1.0249 1.0317 1.0391	1.0022 1.0071 1.0127 1.0188 1.0256 1.0329	.9927 .9976 1.0031 1.0092 1.0157 1.0228	.9836 .9885 .9939 .9999 1.0063 1.0133	9748- 9797- 9851 9909 9972 1.0040	.9427 .9474 .9526 .9581 .9640 .9703	.9145 .9191 .9240 .9293 .9348 .9406	.8895 .8940 .8987 .9037 .9089 .9144	.8673 .8716 .8762 .8809 .8858 .8910	
110 120 130 140 150	1 2 3 4 5	1.0471 1.0557 1.0649 1.0748 1.0854	1.0407 1.0491 1.0582 1.0678 1.0781	1.0305 1.0386 1.0474 1.0567 1.0666	1.0207 1.0286 1.0371 1.0461 1.0556	1.0113 1.0190 1.0272 1.0359 1.0452	.9769 .9839 .9912 .9990 1.0072	.9468 .9532 .9599 .9670 .9744	.9201 .9261 .9323 .9388 .9 ²⁵⁶	.8964 .9020 .9078 .9139 .9202	
160 170 180 190 200	6 8 10 13 16	1.0966 1.1087 1.1215 1.1353 1.1500	1.0891 1.1008 1.1133 1.1266 1.1409	1.0771 1.0884 1.1003 1.1131 1.1268	1.0658 1.0766 1.0881 1.1004 1.1134	1.0550 1.0654 1.0765 1.0883 1.1008	1.0159 1.0250 1.0347 1.0449 1.0558	.9821 .9903 .9989 1.0079 1.0175	.9527 .9601 .9678 .9759 .9844	9267 9335 9406 9479 9556	
210 220 230 240 250	19 23 28 33 40	1.1658 1.1828 1.2011 1.2209 1.2425	1.1562 1.1727 1.1904 1.2095 1.2303	1.1413 1.1570 1.1738 1.1920 1.2116	1.1274 1.1424 1.1584 1.1587 1.1757 1.1944	1.1142 1.1286 1.1440 1.1605 1.1783	1.0673 1.0796 1.0927 1.1068 1.1218	1.0276 1.0382 1.0496 1.0616 1.0744	.9933 1.0027 1.0125 1.0229 1.0338	.9635 .9718 .9804 .9893 .9986	
260 270 280	47 55 64 74	1.2661 1.2920 1.3206	1.2529 1.2777 1.3050	1.2330 1.2562 1.2817	1.2146 1.2366 1.2606	1.1976 1.2184 1.2411 1.2657	1.1379 1.1552 1.1739	1.0881 1.1027 1.1182 1.1347	1.0454 1.0575 1.0704	1.0082 1.0182 1.0286 1.0394	

T	abl	e	/

Specific Volumes of Aqueous Sodium Chloride Solutions (cm³ g⁻¹)

TEMP	PRESS					MOLALITY -				
(°C)	(BAR)	. 1000	. 2500	.5000	. 7500	1.0000	2.0000	3.0000	4.0000	5.0000
0 10 20 25	200 200 200 200	.986107 .986943 .988895 .990212	.979894 .980946 .983034 .984397	.969937 .971317 .973613 .975047	.960426 .962097 .964577 .96675	.951324 .953251 .955893 .957446	.918469 .921123 .924219 .925922	. 898408	. 874105	. 852393
40 50	200 200 200	.995310	.989990 .989570 .993820	.976653 .980336 .984597	.971464 .975734	.962921 .967196	.927724 .931614 .935872	.900255 .904167 .908366	.879856 .883982	.854257 .858128 .862192
50 60 70 80 90	200 200 200 200 200	.9996 1.0044 1.0098 1.0158 1.0224	.9938 .9987 1.0041 1.0100 1.0164	.9846 .9894 .9947 1.0006 1.0068	. 9758 . 9805 . 9858 . 9915 . 9977	.9672 .9720 .9772 .9828 .9888	.9359 .9405 .9455 .9508 .9565	.9084 .9129 .9177 .9227 .9280	.8840 .8884 .8929 .8977 .9027	.8622 .8664 .8708 .8754 .8802
100	200	1.0294	1.0233	1.0136	1.0043	. 9953	. 9624	. 9335	. 9080	. 8852
120 130 140 150	200 200 200 200 200	1.0370 1.0452 1.0539 1.0631 1.0730	1.0308 1.0388 1.0473 1.0563 1.0660	1.0209 1.0286 1.0368 1.0455 1.0548	1.0113 1.0188 1.0268 1.0353 1.0442	1.0022 1.0095 1.0172 1.0254 1.0341	.9753 .9823 .9896 .9973	.9394 .9455 .9518 .9585 .9655	.9134 .9191 .9250 .9312 .9376	.8903 .8957 .9013 .9071 .9131
160 170 180 190 200	200 200 200 200 200	1.0835 1.0947 1.1066 1.1192 1.1327	1.0762 1.0871 1.0987 1.1110 1.1241	1.0647 1.0751 1.0862 1.0980 1.1105	1.0537 1.0637 1.0744 1.0857 1.0978	1.0432 1.0529 1.0632 1.0741 1.0857	1.0054 1.0139 1.0229 1.0324 1.0425	.9728 .9804 .9885 .9969 1.0058	. 9443 . 9513 . 9586 . 9663 . 9743	. 9194 . 9259 . 9326 . 9397 . 9470
210 220 230 240 250	200 200 200 200 200	1.1472 1.1627 1.1794 1.1973 1.2168	1.1381 1.1531 1.1693 1.1867 1.2055	1.1239 1.1383 1.1536 1.1702 1.1880	1.1106 1.1243 1.1390 1.1548 1.1719	1.0980 1.1112 1.1253 1.1404 1.1567	1.0531 1.0645 1.0766 1.0896 1.1035	1.0152 1.0251 1.0357 1.0470 1.0590	.9827 .9915 1.0008 1.0107 1.0211	.9547 .9626 .9709 .9796 .9887
260 270 280 290 300	200 200 200 200 200	1.2380 1.2613 1.2869 1.3154 1.3476	1.2259 1.2483 1.2729 1.3001 1.3307	1.2074 1.2286 1.2517 1.2773 1.3057	1.1904 1.2105 1.2325 1.2566 1.2833	1.1744 1.1936 1.2146 1.2375 1.2628	1.1185 1.1348 1.1524 1.1716 1.1925	1.0719 1.0858 1.1008 1.1170 1.1345	1.0322 1.0441 1.0567 1.0702 1.0846	.9981 1.0081 1.0185 1.0295 1.0410

۰.

4

55

	· ·	.			-				·		
	TEMP (°C)	PRESS (BAR)	. 1000	. 2500	. 5000	. 7500	OLALITY 1.0000	2.0000	3.0000	4.0000	5.0000
I	010	400 400	.977044 .978376	.971070 .972581	.961490 .963271	. 952335 . 954353	.943568	.911854		• ;	•
	20 25 30	400 400 400 400	.980625 .982037 .983622 .987267	.974942 .976394 .978008 981686	.965806 .967316 .968974 972702	.957038 .958601 .960297 964068	.948608 .950215 .951944,2.7 955750	.917820 .919544 .921355 925234	.892715 .894554 898430	.868956 .870797 874641	.847668 .849512 .853332
	50	400	. 991498	.985919	. 976942	.968310	. 95 9 992	. 929443	902569	.878700	.857327
	50 60 70 80	400 400 400 400	. 9915 . 9963 1.0016 1.0074	.9859 .9907 .9959 1.0016	.9770 .9817 .9869 .9925	.9683 .9730 .9781 .9837	.9600 .9647 .9697 .9752	.9295 .9340 .9388 .9439	. 9026 . 9070 . 9116 . 9165	.8787 .8829 .8874 .8920	.8574 .8615 .8658 .8702
	90 100	400 400	1.0136 1.0204	1.0078	.9985 1.0050	.9896 .9959	.9810 .9872	.9494 .9551	.9216 .9269	.8969 .9019	.8748 .8796
	110 120 130 140 150	400 400 400 400 400	1.0276 1.0353 1.0436 1.0523 1.0615	1.0216 1.0291 1.0372 1.0457 1.0547	1.0119 1.0192 1.0270 1.0352 1.0439	1.0026 1.0098 1.0173 1.0252 1.0336	.9937 1.0006 1.0080 1.0157 1.0238	.9611 .9674 .9740 .9809 .9881	. 9325 . 9383 . 9443 . 9506 . 9572	.9071 .9126 .9182 .9241 .9302	.8846 .8897 .8951 .9006 .9064
. •	160 170 180 190 200	400 400 400 400 400	1.0713 1.0816 1.0926 1.1042 1.1165	1.0643 1.0743 1.0850 1.0963 1.1082	1.0531 1.0628 1.0730 1.0838 1.0953	1.0425 1.0518 1.0617 1.0720 1.0830	1.0323 1.0413 1.0508 1.0608 1.0714	.9957 1.0036 1.0119 1.0207 1.0299	.9641 .9712 .9787 .9865 .9947	.9365 .9431 .9499 .9571 .9645	.9123 .9185 .9249 .9315 .9384
	210 220 230 240 250	400 400 400 400 400	1.1296 1.1434 1.1582 1.1740 1.1908	1.1209 1.1344 1.1487 1.1640 1.1803	1.1074 1.1202 1.1339 1.1485 1.1640	1.0946 1.1070 1.1201 1.1340 1.1489	1.0826 1.0944 1.1070 1.1203 1.1346	1.0396 1.0498 1.0607 1.0722 1.0845	1.0033 1.0123 1.0218 1.0319 1.0426	.9723 .9804 .9889 .9979 1.0073	.9456 .9531 .9608 .9689 .9773
	260 270 280 290 300	400 400 400 400 400	1.2089 1.2284 1.2494 1.2723 1.2972	1.1978 1.2166 1.2369 1.2590 1.2830	1.1807 1.1986 1.2179 1.2388 1.2616	1.1648 1.1819 1.2004 1.2204 1.2421	1.1499 1.1663 1.1840 1.2032 1.2240	1.0976 1.1117 1.1269 1.1433 1.1612	1.0541 1.0663 1.0794 1.0935 1.1089	1.0173 1.0279 1.0392 1.0512 1.0642	.9861 .9953 1.0050 1.0151 1.0257

Specific Volumes of Aqueous Sodium Chloride Solutions (cm³ g⁻¹)

Ta	Ь1	e	7

Specific Volumes of Aqueous Sodium Chloride Solutions (cm 3 g $^{-1}$)

TEMP	PRESS					MOLALITY -				
(°C)	(BAR)	. 1000	. 2500	.5000	. 7500	1.0000	2.0000	3.0000	4.0000	5.0000
0 10 20 25 30	600 600 600 600	.968527 .970289 .972800 .974299 .975946	.962771 .964678 .967282 .968812 .970483	.953537 .955661 .958405 .959983 .961690	.944706 .947019 .949884 .951504 .953240	.936244 .938718 .941687 .943341 .945103	.905577 .908479 .911717 .913457 .915277	. 887267 889098	. 864024 865 848	. 843145 844970
40	600	.979655	.974217	. 965462	.957045	. 948933	.919146	.892942	.869647	.848740
50	600	.983879	.978442	. 969688		. 953151	.923312	.897026	.873642	.852668
50	600	.9839	.9784	.9697	.9613	. 95 32	.9233	.8970	.8736	.8527
60	600	.9886	.9831	.9743	.9659	. 95 77	.9278	.9013	.8778	.8567
70	600	.9938	.9883	.9794	.9709	. 9627	.9325	.9058	.8821	.8609
80	600	.9994	.9938	.9849	.9763	. 9680	.9375	.9106	.8867	.8653
90	600	1.0055	.9998	.9907	.9820	. 9736	.9427	.9155	.8913	.8697
100	600	1.0119	1.0062	.9970	.9881	. 9795	.9482	.9207	.8962	.8744
110	600	1.0189	1.0130	1.0036	.9945	.9858	.9540	. 9260	. 9013	.8792
120	600	1.0262	1.0202	1.0106	1.0013	.9925	.9600	. 9316	. 9065	.8841
130	600	1.0340	1.0279	1.0180	1.0085	.9994	.9663	. 9374	. 9119	.8893
140	600	1.0423	1.0359	1.0258	1.0161	1.0068	.9729	. 9434	. 9175	.8946
150	600	1.0510	1.0444	1.0340	1.0240	1.0145	.9798	. 9497	. 9233	.9001
160	600	1.0602	1.0534	1.0426	1.0323	1.0225	.9869	. 9562	. 9294	.9058
170	600	1.0699	1.0628	1.0517	1.0411	1.0310	.9944	. 9630	. 9356	.9117
180	600	1.0801	1.0728	1.0612	1.0503	1.0398	1.0022	. 9700	. 9421	.9177
190	600	1.0908	1.0832	1.0713	1.0599	1.0492	1.0104	. 9773	. 9488	.9241
200	600	1.1021	1.0943	1.0818	1.0701	1.0589	1.0189	. 9850	. 9558	.9306
210	600	1.1141	1.1059	1.0930	1.0808	1.0692	1.0279	.9929	. 9630	. 9374
220	600	1.1267	1.1182	1.1047	1.0920	1.0800	1.0373	1.0013	. 9706	. 9444
230	600	1.1401	1.1311	1.1171	1.1039	1.0914	1.0472	1.0100	. 9785	. 9517
240	600	1.1542	1.1448	1.1302	1.1165	1.1035	1.0576	1.0192	. 9867	. 9592
250	600	1.1692	1.1594	1.1441	1.1298	1.1163	1.0686	1.0289	. 9954	. 9671
260 270 280 290 300	600 600 600 600	1.1852 1.2021 1.2203 1.2397 1.2605	1.1748 1.1913 1.2088 1.2276 1.2478	1.1588 1.1745 1.1913 1.2092 1.2285	1.1439 1.1589 1.1750 1.1922 1.2107	1.1298 1.1443 1.1597 1.1763 1.1941	1.0803 1.0928 1.1061 1.1204 1.1359	1.0391 1.0500 1.0616 1.0740 1.0875	1.0044 1.0140 1.0241 1.0349 1.0465	.9753 .9838 .9927 1.0020 1.0118

57

:#

;**a**.

	-	_
'l'o b		- 1

										•
TEMP	PRESS					MOLALITY -				
(°C)	(BAR)	. 1000	. 2500	.5000	. 7500	1.0000	2.0000	3.0000	4.0000	5.0000
0	800	. 960519	954961	. 946041	. 937506	. 929323	. 899616			
10	800	.962645	. 957201	.948451	.940061	. 932000	.902598			
20	800	. 965 383	. 960014	.951375	.943079	. 935097	. 905884			
25	800	.966958	.961614	. 95 301 3	.944750	.936793	.907639	.882050	.859300	.838822
30	800	. 968661	. 96 3 3 3 6	.954762	.946522	. 938584	. 909464	.883872	.861107	.840628
50	800	.976651	. 971342	.962792	. 954567 . 954567	.942436 .946634	.913324	.887686	.864862	.844349
50	800	.9767	.9713	.9628	. 9546	. 9466	. 9175	. 8917	. 8688	. 8482
60	800	. 9813	.9760	.9674	. 95 9 1	. 9512	. 9218	. 8959	.8729	. 8522
10	800	. 9864	. 9810	. 9/24	. 9640	. 9560	. 9265	. 9004	.8771	. 8563
90	800	. 77[7	0022	. 7///	. 7073	. 7012	. 7313	. 9050	. 8816	.8606
100	800	1 0040	9984	9894	9808	9724	.7307 Quig	9149	9909	.0047
		1.0010	. / /01		. 7000	. //24			.0707	.0072
110	800	1.0107	1.0050	. 9958	. 9870	. 9785	. 9474	. 9201	. 8958	. 8741
120	800	1.0177	1.0119	1.0025	. 9935	. 9849	. 9532	. 9255	. 9009	.8789
130	800	1.0252	1.0192	1.0096	1.0004	. 9916	. 95 9 3	9311	. 9061	. 8839
150	800	1.0330	1.0207	1.0170	1.0076	. 9986	. 707 / 4	. 9369	. 9115	.8890
170	000		1.0370	1.0277	1.0192	1.0000	. 7123	. 7727	. 7171	.8743
160	800	1.0500	1.0435	1.0330	1.0231	1.0136	. 9791	. 9492	. 9229	. 8997
170	800	1.0591	1.0524	1.0416	1.0314	1.0216	. 9862	. 9556	. 9289	. 9054
180	800	1.0687	1.0617	1.0506	1.0401	1.0300	. 9937	.9623	.9351	.9112
200	800	1.0/8/	1.0/15	1.0600	1.0492	1.0388	1.0014	. 9693	.9415	.9172
200	800	1.0073	1.0010	1.0077	1,0787	1.04/7	1.0044	. 7/67	. 9481	9234
210	800	1.1004	1.0926	1.0802	1.0686	1.0575	1.0178	. 9840	. 9550	. 9298
220	800	1.1120	1.1039	1.0911	1.0790	1.0676	1.0266	.9919	. 9621	. 9365
230	-800	1.1243	1.1158	1.1025	1.0900	1.0781	1.0358	1.0000	. 9695	. 9434
240	800	1.1371	1.1283	1.1145	1.1015	1.0892	1.0454	1.0085	.9772	. 9505
250	800	1.1507	1.1415	1.1271	1.1136	1.1008	1.0555	1.0174	. 9852	.9579
260	800	1.1651	1.1554	1.1404	1.1264	1.1131	1.0661	1.0267	. 9935	9655
270	800	1.1802	1.1701	1.1545	1.1399	1.1261	1.0773	1.0366	1.0023	. 9735
280	800	1.1962	1.1857	1.1694	1.1541	1.1398	1.0892	1.0470	1.0115	. 9817
290	800	1.2132	1.2022	1.1852	1.1693	1.1544	1.1019	1.0580	1.0212	. 9904
300	800	1,2313	1.2197	1.2020	1.1855	1.1700	1.1155	1.0699	1.0315	. 9994
	- 1	21 M &					r			

Specific Volumes of Aqueous Sodium Chloride Solutions (cm 3 g $^{-1}$)

*

Table /	Та	Ъ1	.e	7
---------	----	----	----	---

•

4

14

(*C) (BAR) .1000 .2500 .5000 .7500 .1.0000 2.0000 3.0000 4.0000 5.000 0 1000 .952997 .947618 .938982 .930716 .922786 .893956 10 1000 .955914 .95112 .94469 .926417 .900307 25 1000 .959944 .95112 .94469 .92642 .92817 .900307 25 1000 .959944 .95455 .94165 .94116 .922742 .903900 .87866.3 .85657 .8344 00 1000 .965775 .964584 .95622 .948174 .94049 .91184 .886630 .864156 .8439 50 1000 .9744 .9562 .9482 .9404 .91184 .886630 .86416 .8439 50 1000 .9744 .9567 .9447 .9208 .8952 .8724 .852 60 1000 .9955 .9951 .9757 .94	TEMP	PRESS					MOLALITY -				
0 1000 .952997 .947618 .939882 .930716 .922786 .893956 10 1000 .955416 .950125 .941619 .933460 .925617 .900307 25 1000 .959984 .954771 .946379 .938314 .930547 .902071 .877050 .854776 .8344 40 1000 .965552 .960367 .952015 .9419116 .932362 .900750 .864264 .860279 .8401 50 1000 .969775 .9644584 .956222 .948174 .940412 .911844 .886630 .864156 .8439 50 1000 .9698 .9646 .95622 .948174 .940412 .911844 .886630 .864156 .8439 50 1000 .9698 .9646 .9562 .9427 .9449 .91162 .8908 .8642 .8479 70 1000 .9744 .9740 .9627 .9747 .9205 .8972 .8724 <	(°C)	(BAR)	. 1000	. 2500	.5000	. 7500	1.0000	2.0000	3.0000	4.0000	5.0000
10 1000 .955416 .950125 .941619 .933600 .922817 .900307 25 1000 .959844 .954771 .946379 .933614 .932362 .90300 .877050 .854776 .8344 40 1000 .965525 .960367 .952315 .943379 .932322 .907750 .882646 .860279 .8403 50 1000 .965552 .960367 .956222 .948174 .940412 .9118444 .886630 .864156 .8433 50 1000 .969775 .964584 .956222 .948174 .940412 .9118444 .886630 .864156 .8433 50 1000 .9744 .9692 .9608 .9527 .9447 .9149 .9162 .8068 .8642 .8476 50 1000 .9744 .9657 .9577 .9447 .9208 .8552 .8724 .8522 .8724 .8524 .8472 .8724 .8524 .8724 .8522 .8724 .8522 .8724 .8522 .8724 .8522 .8724 .852	0	1000	. 952997	. 947618	. 938982	. 930716	. 922786	. 893956			
20 1000 .958344 .953112 .944630 .938314 .900307 .877050 .854776 .8346 30 1000 .961734 .956532 .9403165 .940116 .932342 .903900 .878863 .856567 .8344 40 1000 .965752 .964384 .956222 .948174 .940412 .911844 .886630 .864156 .8346 50 1000 .969775 .964584 .95622 .948174 .940412 .911844 .886630 .864156 .8433 50 1000 .969775 .96458 .95672 .9447 .9404 .9119 .8846 .8641 .8433 50 1000 .9744 .9657 .9575 .9447 .9208 .8952 .8724 .8520 80 1000 .9965 .9911 .9823 .9739 .9657 .9358 .9094 .8859 .8648 100 10001 .0030 .9774 .9885 .9779	10	1000	. 955416	. 950125	. 941619	. 933460	.925617	. 896986			
25 1000 .959784 .954771 .946379 .938314 .930547 .902071 .877650 .874776 .8344 40 1000 .965552 .960367 .952015 .941379 .936232 .907750 .8872644 .8662779 .8401 50 1000 .969775 .964584 .956222 .948174 .940412 .911844 .886630 .864156 .8433 50 1000 .969775 .964584 .9562 .9422 .94044 .9119 .8866 .8641 .8433 60 1000 .9744 .9646 .9562 .9427 .94044 .9119 .8866 .8641 .8433 70 1000 .9744 .9642 .9461 .9255 .8970 .8682 .8477 800 1000 .9905 .9951 .9744 .9627 .9547 .9208 .8952 .8724 .8501 900 1000 .9905 .9951 .9749 .9716 .9413 .9145 .8907 .8648 100 1.0004 .0024	20	1000	. 958344	. 95 31 12	.944690	. 936602	. 928817	. 900307			
30 1000 .961734 .956536 .948165 .941374 .936232 .903900 .878863 .85657 .860279 .8401 50 1000 .965755 .964584 .956222 .948174 .940412 .911844 .882646 .860279 .8401 50 1000 .9659775 .9644584 .956222 .948174 .940412 .911844 .882646 .86027 .8439 50 1000 .9744 .9657 .9469 .9527 .9449 .9162 .8908 .8642 .8479 70 1000 .9744 .9757 .9575 .9447 .9208 .8952 .8724 .8520 80 1000 .9845 .9744 .9709 .9627 .9447 .9205 .8997 .8164 .8561 100 1000 .9035 .9911 .9823 .9739 .9517 .9358 .9034 .8857 .8744 100 10001 .0030 .9974 .9865 .9779 .9716 .9413 .9145 .8907 .8694	25	1000	. 95 9 9 8 4	.954771	.946379	.938314	. 930547	.902071	.877050	.854776	.834697
40 1000 .965552 .960367 .952015 .94379 .936232 .90750 .880246 .860279 .8401 50 1000 .969775 .964584 .956222 .948174 .940412 .911844 .886630 .864156 .8433 50 1000 .969775 .964584 .9562 .9482 .9404 .9119 .8866 .8641 .8433 60 1000 .9744 .9692 .9667 .9575 .94497 .9208 .8952 .8724 .8520 80 1000 .9744 .9744 .9619 .9617 .9306 .9045 .8913 .86641 100 .9005 .9813 .7744 .9627 .9547 .9255 .8997 .8768 .8561 90 1000 .9005 .9813 .7744 .9687 .9716 .9413 .9145 .8907 .8649 110 1000 1.0030 .9774 .9885 .9799 .9716 .9413 .9145 .8907 .8649 120 10000 1.0243 <td>30</td> <td>1000</td> <td>.961734</td> <td>. 95 65 36</td> <td>.948165</td> <td>.940116</td> <td>.932362</td> <td>. 903900</td> <td>.878863</td> <td>.856567</td> <td>.836484</td>	30	1000	.961734	. 95 65 36	.948165	.940116	.932362	. 903900	.878863	.856567	.836484
50 1000 .969775 .964584 .956222 .948174 .940412 .911844 .886630 .864156 .8433 50 1000 .9744 .9652 .9482 .9404 .9119 .8866 .8641 .8435 60 1000 .9744 .9657 .9449 .9208 .8952 .8724 .8526 80 1000 .9847 .9744 .9709 .9627 .9449 .9208 .8952 .8724 .8526 90 1000 .99447 .9744 .9709 .9657 .9358 .9097 .8768 .8561 100 1000 .9965 .9911 .9823 .9739 .9657 .9358 .9094 .8859 .8644 120 1000 1.0041 .9950 .9862 .9779 .9716 .9413 .9145 .8907 .8644 120 1000 1.0244 1.018 .0018 .9929 .9483 .9529 .2253 .9008	40	1000	. 965552	. 960367	. 952015	.943979	. 936232	.907750	.882646	.860279	, 840170
50 1000 9698 9646 9562 9482 9404 9119 8866 8641 8435 60 1000 9744 9692 9608 9527 9449 9162 8908 8662 8479 80 1000 9794 9741 9657 9575 9497 9208 8952 8774 8520 80 1000 9847 9744 9681 9764 9255 8997 8768 8561 90 1000 9965 9911 9823 9739 9657 9358 9034 8859 8649 100 1000 1.0030 9974 9885 97799 9716 9413 9145 8907 8644 120 1000 1.0031 10974 9885 9779 9716 9413 9145 8997 8744 120 1000 1.0041 10979 9843 9529 9253 9008 8785 140 </td <td>50</td> <td>1000</td> <td>. 707/17</td> <td>. 904284</td> <td>. 956222</td> <td>.948174</td> <td>. 940412</td> <td>. 91 1844</td> <td>.886630</td> <td>.804120</td> <td></td>	50	1000	. 707/17	. 904284	. 956222	.948174	. 940412	. 91 1844	.886630	.804120	
60 1000 9744 9692 9608 9527 94497 9208 8952 8724 8522 80 1000 9847 9744 9709 9627 9547 9255 8997 8724 8520 90 1000 9905 9851 9744 9681 9667 9358 9094 8859 8648 100 1000 9965 9911 9823 9739 9657 9358 9094 8859 8649 110 1000 100398 10044 9950 9862 9776 9413 9145 8907 8649 120 1000 1.0039 10044 9950 9862 9778 9470 9198 8957 8744 130 1000 1.0244 1.0111 1.0018 9929 9843 9529 9253 9008 8788 140 1000 1.0243 1.0147 1.0055 9721 9429 9171 8942 150 1000 1.0323 1.0243 1.0147 1.0055 9721 <td>50</td> <td>1000</td> <td>. 9698</td> <td>. 9646</td> <td>. 9562</td> <td>. 9482</td> <td>. 9404</td> <td>. 9119</td> <td>. 8866</td> <td>. 8641</td> <td>. 8439</td>	50	1000	. 9698	. 9646	. 9562	. 9482	. 9404	. 9119	. 8866	. 8641	. 8439
70 1000 .9794 .9741 .9657 .9497 .9208 .8952 .8724 .8520 90 1000 .9905 .9851 .9764 .9687 .9255 .8997 .8768 .8561 90 1000 .9905 .9851 .9764 .9681 .9667 .9306 .9045 .8813 .8604 100 1000 .9965 .9911 .9823 .9739 .9657 .9358 .9094 .8859 .8648 110 1000 1.0030 .9974 .9885 .9799 .9716 .9413 .9145 .8907 .8694 120 1000 1.0041 .9950 .9862 .9778 .9470 .9148 .8957 .8741 130 1000 1.0164 1.0018 .9229 .9253 .9008 .8781 140 1000 1.0244 1.018 .9024 .9655 .9368 .9115 .8885 150 1000 1.0492 1.0427 1.0324 1.0226 1.0132 .9770 .9429 .9171	60	1000	. 9744	. 96 92	. 9608	. 9527	. 9449	. 9162	. 8908	.8682	.8479
80 1000 .9847 .9794 .9709 .9627 .9547 .9255 .8997 .8768 .8561 90 1000 .9905 .9911 .9823 .9739 .9657 .9366 .9045 .8813 .8604 110 1000 .9905 .9911 .9823 .9739 .9657 .9358 .9045 .8813 .8604 120 1000 1.0030 .9974 .9885 .9799 .9716 .9413 .9145 .8907 .8648 120 1000 1.0098 1.0041 .9950 .9862 .9778 .9470 .9188 .8957 .8649 130 1000 1.0164 1.0111 1.0018 .929 .9843 .9529 .9253 .9008 .8789 140 1000 1.0244 1.0164 1.0071 .9982 .9655 .9368 .91171 .8942 170 1000 1.0492 1.0427 1.0324 1.0226 1.0132	70	1000	. 9794	. 9741	.9657	. 9575	. 9497	. 9208	. 8952	.8724	. 8520
90 1000 .9965 .9911 .9623 .9739 .9657 .9358 .9094 .8859 .8644 110 1000 .9965 .9911 .9823 .9739 .9657 .9358 .9094 .8859 .8644 110 1000 1.0030 .9774 .9885 .9799 .9716 .9413 .9145 .8907 .8644 120 1000 1.0098 1.0041 .9950 .9862 .9778 .9470 .9145 .8907 .86494 130 1000 1.0169 1.0011 .9018 .9729 .9443 .9529 .9253 .9008 .8749 140 1000 1.02244 1.0165 1.0090 .9929 .9443 .9529 .9358 .9115 .8889 150 1000 1.02241 1.0164 1.0071 .9982 .9655 .9368 .9111 .8942 160 1000 1.0492 1.0427 1.0324 1.0226 1.0132 .9790 .9492 .9229 .8942 170 1000 1.0	80	1000	. 9847	.9794	. 9709	.9627	. 9547	. 9255	.8997	.8768	.8561
100 1000 .9965 .9911 .9823 .9739 .9657 .9358 .9094 .8859 .8648 110 1000 1.0030 .9974 .9885 .9799 .9716 .9413 .9145 .8907 .8694 120 1000 1.0098 1.0041 .9950 .9862 .9778 .9470 .9198 .8957 .8741 130 1000 1.0169 1.0111 1.0018 .9929 .9843 .9529 .9253 .9008 .8789 140 1000 1.0244 1.0185 1.0090 .9999 .9911 .9591 .9310 .9061 .8833 150 1000 1.0323 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8889 160 1000 1.0406 1.0343 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8942 170 1000 1.0466 1.0324 1.0226 1.0132 .9790 .9429 .9229 .8996 180 10001 1.0677 <	90	1000	. 9905	. 9851	. 9764	. 9681	. 9601	. 9306	. 9045	.8813	.8604
110 1000 1.0030 9974 9885 9799 9716 9413 9145 8907 8694 120 1000 1.0169 1.0111 1.0018 9929 9843 9529 9253 9008 8785 140 1000 1.0244 1.01165 1.0090 9999 9911 9510 9310 9061 8785 150 1000 1.0244 1.0165 1.0071 9982 9655 9310 9061 8889 150 1000 1.0406 1.0343 1.0243 1.0147 1.0055 9721 9429 9171 8942 160 1000 1.0446 1.0343 1.0243 1.0147 1.0055 9721 9429 9171 8942 170 1000 1.04427 1.0324 1.0243 1.0147 1.0055 9721 9429 9171 8942 180 1000 1.0427 1.0324 1.0226 1.0132 9790 9442 9229 9952 190 1000 1.0677 1.0608 1.04991<	100	1000	. 9965	.9911	.9823	.9739	. 9657	.9358	.9094	.8859	.8648
120 1000 1.0098 1.0041 .9950 .9862 .9778 .9470 .9198 .8957 .8741 130 1000 1.0169 1.0111 1.0018 .9929 .9843 .9529 .9253 .9008 .8789 140 1000 1.0244 1.0165 1.0090 .9999 .9911 .9511 .9310 .9061 .8838 150 1000 1.0242 1.0164 1.0071 .9982 .9655 .9368 .9115 .8889 160 1.000 1.0406 1.0343 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8942 170 1000 1.0492 1.0427 1.0324 1.0226 1.0132 .9790 .9492 .9229 .89957 180 1000 1.0677 1.0608 1.0419 1.0395 1.0224 .9655 .9461 .9566 .9289 .9052 200 1000 1.0677 1.0608 1.0499 1.0335 1.0226 .9383 1.0012 .9693 .9414 .9169	110	1000	1.0030	. 9974	. 9885	. 9799	. 9716	.9413	. 9145	. 8907	. 8694
130 1000 1.0169 1.0111 1.0018 .9929 .9843 .9529 .9253 .9008 .6778 140 1000 1.0244 1.0185 1.0090 .9999 .9911 .9591 .9310 .9061 .8838 150 1000 1.0323 1.0262 1.0164 1.0071 .9982 .9655 .9368 .9115 .8889 160 1000 1.0406 1.0343 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8942 170 1000 1.0492 1.0427 1.0324 1.0226 1.0132 .9790 .9429 .929 .929 .8942 180 1000 1.0582 1.0516 1.0410 1.0309 1.0212 .9861 .9556 .9289 .9052 190 1000 1.0677 1.0608 1.0499 1.0395 1.0226 .9765 .9480 .9230 .9114 .9169 200 1000 1.0880 1.0608 1.0692 .9765 .9480 .9230 .9414 .9169 <t< td=""><td>120</td><td>1000</td><td>1.0098</td><td>1.0041</td><td>. 9950</td><td>.9862</td><td>.9778</td><td>.9470</td><td>.9198</td><td>. 8957</td><td>.8741</td></t<>	120	1000	1.0098	1.0041	. 9950	.9862	.9778	.9470	.9198	. 8957	.8741
140 1000 1.0244 1.0185 1.0090 .9999 .9911 .9591 .9310 .9061 .8833 150 1000 1.0323 1.0262 1.0164 1.0071 .9982 .9655 .9368 .9115 .8889 160 1000 1.0406 1.0343 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8942 170 1000 1.0492 1.0427 1.03243 1.0147 1.0055 .9721 .9429 .9171 .8942 180 1000 1.0582 1.0516 1.0410 1.0309 1.0212 .9861 .9556 .9289 .9052 190 1000 1.0677 1.0608 1.0499 1.0395 1.0226 .9735 .9623 .9350 .9110 200 1000 1.0880 1.0894 1.0579 1.0473 1.0092 .9765 .9480 .9230 220 1000 1.0888 1.0912 1.0791 1.0677 1.0668 1.0176 .9339 .9548 .9294 230 10	130	1000	1.0169	1.0111	1.0018	. 9929	. 9843	. 9529	. 9253	. 9008	. 8789
150 1000 1.0323 1.0262 1.0164 1.0071 .9982 .9655 .9368 .9115 .8889 160 1000 1.0406 1.0343 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8942 170 1000 1.0492 1.0427 1.0324 1.0226 1.0132 .9790 .9492 .9229 .8996 180 1000 1.0582 1.0516 1.0410 1.0309 1.0212 .9861 .9556 .9289 .9052 190 1000 1.0677 1.0608 1.0499 1.0395 1.0226 .9461 .9556 .9289 .9052 200 1000 1.0677 1.0608 1.0499 1.0395 1.0226 .9461 .9556 .9289 .9052 200 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 210 1000 1.0886 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 230 1	140	1000	1.0244	1.0185	1.0090	. 9999	. 9 911	. 95 9 1	. 9310	. 9061	.8838
160 1000 1.0406 1.0343 1.0243 1.0147 1.0055 .9721 .9429 .9171 .8942 170 1000 1.0492 1.0427 1.0324 1.0226 1.0132 .9790 .9492 .9229 .89942 180 1000 1.0582 1.0516 1.0410 1.0309 1.0212 .9861 .9556 .9289 .9052 190 1000 1.0677 1.0608 1.0499 1.0395 1.0296 .9935 .9623 .9350 .9110 200 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 210 1000 1.0880 1.0806 1.06897 1.0579 1.0473 1.0092 .9765 .9480 .9230 220 1000 1.0988 1.0912 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 240 1000 1.1022 1.0897 1.0779 1.0667 1.0262 .9916 .9691 .9427 250	150	1000	1.0323	1,.0262	1.0164	1.0071	. 9982	. 9 655	.9368	. 9115	.8889
170 1000 1.0492 1.0427 1.0224 1.0226 1.0132 9790 9492 9229 8996 180 1000 1.0582 1.0516 1.0410 1.0309 1.0212 9861 9556 9289 9052 190 1000 1.0677 1.0608 1.0499 1.0395 1.0226 .9935 .9623 .9350 .9110 200 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 210 1000 1.0880 1.0806 1.0689 1.0579 1.0473 1.0092 .9765 .9480 .9230 220 1000 1.0988 1.0912 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 230 1000 1.1221 1.1138 1.1008 1.0877 1.0568 1.0176 .9339 .9414 .9169 240 1000 1.1221 1.1387 1.0791 1.0677 1.0353 .9997 .9691 .9427 250 1000<	160	1000	1 0406	1 0343	1 0243	1 0147	1 0055	9721	9429	9171	.8942
180 1000 1.0582 1.0516 1.0410 1.0309 1.0212 .9861 .9556 .9289 .9052 190 1000 1.0677 1.0608 1.0499 1.0395 1.0296 .9935 .9623 .9350 .9110 200 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 220 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 220 1000 1.0988 1.0912 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 230 1000 1.1102 1.1022 1.0897 1.0779 1.0667 1.0262 .9916 .9618 .9359 240 1000 1.1221 1.1138 1.1008 1.0886 1.0770 1.0353 .9997 .9691 .9427 250 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568	170	1000	1 0492	1 0427	1.0324	1.0226	1.0132	9790	9492	.9229	.8996
190 1000 1.0677 1.0608 1.0499 1.0395 1.0296 .9935 .9623 .9350 .9110 200 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 210 1000 1.0880 1.0806 1.0689 1.0579 1.0473 1.0092 .9765 .9480 .9230 220 1000 1.0988 1.0912 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 230 1000 1.1102 1.1022 1.0897 1.0779 1.0667 1.0262 .9916 .9618 .9359 240 1000 1.1221 1.1138 1.1008 1.0886 1.0770 1.0353 .9997 .9691 .9427 250 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.1614 1.1521 1.1375 1.1239 1.1110 1.0649 1.0258 .9926 .9643	180	1000	1.0582	1.0516	1.0410	1.0309	1.0212	. 9861	.9556	.9289	.9052
200 1000 1.0776 1.0705 1.0592 1.0485 1.0383 1.0012 .9693 .9414 .9169 210 1000 1.0880 1.0806 1.0689 1.0579 1.0473 1.0092 .9765 .9480 .9230 220 1000 1.0988 1.0912 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 230 1000 1.1102 1.1022 1.0897 1.0779 1.0667 1.0262 .9916 .9618 .9359 240 1000 1.1221 1.1138 1.1008 1.0886 1.0770 1.0353 .9997 .9691 .9427 250 1000 1.1345 1.1260 1.1125 1.0998 1.0878 1.0447 1.0080 .9766 .9496 260 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.1614 1.1521 1.1375 1.1239 1.1101 1.0649 1.0258 .9926 .9643 <tr< td=""><td>190</td><td>1000</td><td>1.0677</td><td>1.0608</td><td>1.0499</td><td>1.0395</td><td>1.0296</td><td>.9935</td><td>.9623</td><td>. 9350</td><td>.9110</td></tr<>	190	1000	1.0677	1.0608	1.0499	1.0395	1.0296	.9935	.9623	. 9350	.9110
210 1000 1.0880 1.0806 1.0689 1.0579 1.0473 1.0092 .9765 .9480 .9230 220 1000 1.0988 1.0912 1.0791 1.0677 1.0568 1.0176 .9339 .9548 .9294 230 1000 1.1102 1.1022 1.0897 1.0779 1.0667 1.0262 .9916 .9618 .9359 240 1000 1.1221 1.1138 1.1008 1.0886 1.0770 1.0353 .9997 .9691 .9427 250 1000 1.1345 1.1260 1.1125 1.0998 1.0878 1.0447 1.0080 .9766 .9496 260 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.6144 1.1521 1.1375 1.1239 1.110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.661 1.1510 1.369 1.1235 1.0757 1.0354 1.0011 .9726	200	1000	1.0776	1.0705	1.0592	1.0485	1.0383	1.0012	.9693	. 9414	.9169
210 1.000 1.000 1.0000	210	1000	1 0880	1 0804	1 0689	1 0579	1 0473	1 0092	9765	9480	9230
230 1000 1.10712 1.0877 1.0677 1.0667 1.0262 .9916 .9618 .9359 240 1000 1.1221 1.1138 1.1008 1.0886 1.0770 1.0353 .9997 .9691 .9427 250 1000 1.1345 1.1260 1.1125 1.0998 1.0878 1.0447 1.0080 .9766 .9496 260 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.1614 1.1521 1.1375 1.1239 1.1110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.1661 1.1510 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 290 1000 1.1911 1.1810 1.1652 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 290 1000 1.1911 1.1810 1.1652 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 290	220	1000	1 0988	1 0912	1 0791	1 0677	1 0568	1 0176	9339	9548	9294
240 1000 1.1221 1.1138 1.0008 1.0886 1.0770 1.0353 .9997 .9691 .9427 250 1000 1.1345 1.1260 1.1125 1.0998 1.0878 1.0447 1.0080 .9766 .9496 260 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.1614 1.1521 1.1375 1.1239 1.1110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.1661 1.1510 1.1369 1.1235 1.0757 1.0354 1.0011 .9760 290 1000 1.1911 1.1810 1.1652 1.1369 1.1235 1.0757 1.0354 1.0011 .9760 300 1090 1.2071 1.1802 1.1650 1.1366 1.0871 1.0454 1.0099 .9884	230	1000	1 1102	1 1022	1 0897	1 0779	1 0667	1.0262	9916	9618	9359
250 1000 1.1245 1.1260 1.1125 1.0998 1.0878 1.0447 1.0080 .9766 .9496 260 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.1614 1.1521 1.1375 1.1239 1.1110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.1661 1.1510 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 290 1000 1.1758 1.1661 1.1525 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 300 1000 1.1911 1.1810 1.1652 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 300 1000 1.2071 1.1802 1.1650 1.1366 1.0871 1.0560 1.0192 .9884	240	1000	1 1221	1 1138	1 1008	1.0886	1.0770	1.0353	. 9997	9691	.9427
260 1000 1.1476 1.1387 1.1247 1.1116 1.0991 1.0545 1.0167 .9844 .9568 270 1000 1.1614 1.1521 1.1375 1.1239 1.1110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.1661 1.1510 1.1369 1.1235 1.0757 1.0354 1.0011 .9720 290 1000 1.1911 1.1810 1.1652 1.1505 1.1366 1.0871 1.0454 1.0099 .9801 300 1000 1.2071 1.1802 1.1650 1.1506 1.0993 1.0560 1.0192 .9884	250	1000	1.1345	1.1260	1.1125	1.0998	1.0878	1.0447	1.0080	.9766	.9496
270 1000 1.1614 1.1521 1.1375 1.1239 1.1110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.1661 1.1510 1.1239 1.1110 1.0649 1.0258 .9926 .9643 280 1000 1.1758 1.1661 1.1510 1.1369 1.1235 1.0757 1.0354 1.0011 .9726 290 1000 1.1911 1.1810 1.1652 1.1505 1.1366 1.0871 1.0454 1.0099 .9801 300 1090 1.2071 1.1966 1.1802 1.1650 1.1506 1.0993 1.0560 1.0192 .9884	260	1000	1 1476	1 1387	1 1247	1 1116	1 0991	1 0545	1 0167	9844	9568
280 1000 1.1758 1.1661 1.1510 1.1369 1.1235 1.0757 1.0354 1.0011 .9720 290 1000 1.1911 1.1810 1.1652 1.1505 1.1366 1.0871 1.0454 1.0099 .9801 300 1090 1.2071 1.1966 1.1802 1.1650 1.1506 1.0993 1.0560 1.0192 .9884	270	1000	1 1614	1.1521	1 1375	1.1239	1.1110	1.0649	1.0258	.9926	9643
290 1000 1.1911 1.1810 1.1652 1.1505 1.1366 1.0871 1.0454 1.0099 .9801 300 1090 1.2071 1.1966 1.1802 1.1650 1.1506 1.0993 1.0560 1.0192 .9884	280	1000	1 1758	1.1661	1.1510	1.1369	1.1235	1.0757	1.0354	1.0011	9720
300 1000 1.2071 1.1966 1.1802 1.1650 1.1506 1.0993 1.0560 1.0192 .9884	290	1000	1,1911	1.1810	1.1652	1.1505	1.1366	1.0871	1.0454	1.0099	.9801
	300	1000	1.2071	1.1966	1.1802	1.1650	1.1506	1.0993	1.0560	1.0192	. 9884

Specific Volumes of Aqueous Sodium Chloride Solutions (cm 3 g $^{-1}$)
.

9

Expansivities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} \times 10^3 \text{ K}$

TEMP	PRESS					1 TV			
(°C)	(BAR)	.100	. 250	.500	.750	1.000	2.000	3.000	4.000
0 10 20 25 30 40 50	1 1 1 1 1	058 .102 .218 .267 .311 .389 .458	026 .123 .232 .278 .320 .394 .460	. 024 . 156 . 254 . 296 . 334 . 402 . 464	.069 .186 .274 .312 .347 .410 .467	.110 .213 .292 .327 .359 .417 .470	. 237 . 297 . 349 . 373 . 395 . 438 . 479	. 313 . 349 . 384 . 401 . 418 . 451 . 484	. 355 . 380 . 406 . 420 . 433 . 460 . 486
50 60 70 80 90 100	1 1 1 1 1	. 46 . 52 . 58 . 64 . 69 . 74	.46 .52 .58 .63 .68 .73	.47 .52 .58 .63 .67 .72	. 47 . 52 . 57 . 62 . 67 . 71	.47 .52 .57 .61 .66 .70	.49 .52 .56 .60 .63 .66	.49 .52 .55 .58 .61 .64	. 49 . 52 . 54 . 56 . 59 . 61
110	1	.80	. 78	.77	. 75	. 74	. 70	.66	- 64
120	2	.85	. 84	.82	. 80	. 78	. 73	.69	- 66
130	3	.90	. 89	.86	. 85	. 83	. 77	.72	- 69
140	4	.96	. 94	.91	. 89	. 87	. 80	.75	- 71
150	5	1.01	. 99	.97	. 94	. 92	. 84	.78	- 74
160	6	1.07	1.05	1.02	.99	.97	.88	. 82	.77
170	8	1.13	1.11	1.08	1.05	1.02	.93	. 86	.80
180	10	1.20	1.18	1.14	1.11	1.08	.98	. 90	.83
190	13	1.27	1.25	1.21	1.17	1.14	1.03	. 94	.86
200	16	1.35	1.32	1.28	1.24	1.20	1.08	. 99	.90
210	19	1.44	1.41	1.36	1.32	1.28	1.15	1.04	.94
220	23	1.54	1.50	1.45	1.40	1.36	1.21	1.09	.99
230	28	1.65	1.60	1.54	1.49	1.45	1.29	1.15	1.03
240	33	1.77	1.72	1.65	1.60	1.55	1.37	1.22	1.09
250	40	1.91	1.85	1.78	1.71	1.66	1.46	1.30	1.14
260	47	2.07	2.01	1.92	1.85	1.78	1.56	1.38	1.20
270	55	2.27	2.19	2.08	2.00	1.92	1.67	1.46	1.26
280	64	2.50	2.40	2.27	2.17	2.08	1.79	1.55	1.33
290	74	2.78	2.66	2.50	2.36	2.25	1.91	1.64	1.39
300	86	3.13	2.97	2.76	2.59	2.45	2.02	1.71	1.44

 $\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} \times 10^3 K$ Expansivities of Sodium Chloride Solutions:

TEMP (°C)

PRESS (BAR)

. 100	. 250	.500	- MOLAL ,750	ITY 1.000	2.000	3.000
.016	. 044	∼.086 .193	. 125	. 159	. 264	1.
.245 .287 .325	. 257 . 297 . 333	.276 .312 .346	. 294 . 326 . 357	. 309 . 339 . 367	. 358 . 379 . 399	.403
. 394 . 456	.399 .458	.406 .461	.413	.419 .466	.438 .474	.449
. 46	. 46	. 46	. 47	.47	.48	. 48
.57	.56	.56	.56	.51 .55 .59	.51 .54 .58	.53
.66 .71	.66 .70	.65 .69	.64 .68	.63 .67	.61 .64	.58 .61

50	200	.46	.46	.46	.47	.47	. 48	.48	.48
60	200	.51	.51	.51	.51	.51	. 51	.51	.50
70	200	.57	.56	.56	.56	.55	. 54	.53	.53
80	200	.62	.61	.60	.60	.59	. 58	.56	.55
90	200	.66	.66	.65	.64	.63	. 61	.58	.57
100	200	.71	.70	.69	.68	.67	. 64	.61	.59
110	200	. 76	.75	. 73	.72	. 71	.67	.63	.61
120	200	. 81	.79	. 78	.76	. 74	.70	.66	.63
130	200	. 85	.84	. 82	.80	. 78	.73	.68	.65
140	200	. 90	.88	. 86	.84	. 82	.76	.71	.68
150	200	. 95	.93	. 91	.88	. 86	.79	.74	.70
160	200	1.00	.98	.95	.93	.90	. 83	. 77	.72
170	200	1.05	1.03	1.00	.97	.95	. 86	. 80	.75
180	200	1.11	1.09	1.05	1.02	.99	. 90	. 83	.78
190	200	1.17	1.14	1.11	1.08	1.05	. 95	. 87	.81
200	200	1.23	1.21	1.17	1.13	1.10	. 99	. 91	.84
210	200	1.30	1.27	1.23	1.19	1.16	1.04	.95	.88
220	200	1.38	1.35	1.30	1.26	1.23	1.10	1.00	.91
230	200	1.47	1.43	1.38	1.34	1.30	1.16	1.05	.96
240	200	1.56	1.52	1.47	1.42	1.38	1.23	1.11	1.00
250	200	1.67	1.63	1.57	1.51	1.47	1.31	1.18	1.05
260	200	1.79	1.74	1.67	1.62	1.57	1.40	1.25	1.11
270	200	1.93	1.88	1.80	1.74	1.68	1.49	1.33	1.17
280	200	2.10	2.03	1.94	1.87	1.80	1.60	1.42	1.24
290	200	2.30	2.21	2.11	2.02	1.94	1.71	1.51	1.31
300	200	2.54	2.43	2.30	2.19	2.10	1.82	1.60	1.37

60

4.000

.419 .431 .456 .480

· .

.

Expansivities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} \times 10^3 \text{ K}$

TEMP	PRESS				- MOLAL	TTV			
(3°)	(BAR)	.100	. 250	.500	. 750	1.000	2.000	3.000	4.000
0 20 25 30 40 50	400 400 400 400 400 400	. 081 . 187 . 270 . 306 . 339 . 400 . 455	. 105 . 202 . 280 . 314 . 346 . 404 . 456	. 140 . 227 . 297 . 328 . 357 . 410 . 459	.172 .248 .312 .340 .367 .416 .462	.201 .268 .325 .351 .376 .422 .464	. 285 . 326 . 366 . 384 . 403 . 437 . 470	. 404 . 419 . 446 . 473	. 418 . 429 . 452 . 474
50 60 70 80 90 100	400 400 400 400 400	. 45 . 51 . 55 . 60 . 64 . 69	.46 .50 .55 .59 .64 .68	.46 .50 .55 .59 .63 .67	.46 .50 .54 .58 .62 .65	.46 .50 .54 .58 .61 .65	.47 .50 .53 .56 .59 .61	.47 .50 .52 .54 .57 .59	.47 .49 .51 .53 .55 .57
110 120 130 140 150	400 400 400 400 400	. 73 . 77 . 81 . 85 . 90	.72 .76 .80 .84 .88	.70 .74 .78 .82 .86	.69 .73 .76 .80 .83	.68 .71 .75 .78 .81	. 64 . 67 . 69 . 72 . 75	.61 .63 .65 .68 .70	.59 .61 .63 .65 .67
160 170 180 190 200	400 400 400 400	.94 .98 1.03 1.08 1.13	.92 .97 1.01 1.06 1.11	.90 .94 .98 1.03 1.07	.87 .91 .95 1.00 1.04	.85 .89 .93 .97 1.01	. 78 . 81 . 84 . 88 . 92	. 73 . 75 . 78 . 81 . 84	. 69 . 71 . 74 . 76 . 79
210 220 230 240 250	400 400 400 400 400	1.19 1.25 1.32 1.39 1.47	1.16 1.22 1.29 1.36 1.43	1.13 1.18 1.24 1.31 1.38	1.09 1.15 1.21 1.27 1.34	1.06 1.11 1.17 1.23 1.30	.96 1.00 1.05 1.11 1.17	.88 .92 .96 1.01 1.06	. 82 . 85 . 88 . 92 . 96
260 270 280 290 300	400 400 400 400 400	1.55 1.65 1.75 1.87 2.01	1.51 1.61 1.71 1.82 1.96	1.46 1.55 1.65 1.76 1.88	1.42 1.50 1.60 1.71 1.83	1.38 1.46 1.55 1.66 1.78	1.24 1.31 1.40 1.50 1.61	1.12 1.19 1.26 1.35 1.45	1.01 1.06 1.12 1.19 1.27

Expansivities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} \times 10^3 \text{ K}$

			TV	MOLAL				PRESS	TERP
4.000	3.000	2.000	1.000	.750	.500	. 250	. 100	(BAR)	(°C)
. 416 . 427 . 448 . 468	. 406 . 419 . 444 . 468	. 302 . 338 . 373 . 390 . 406 . 437 . 467	. 236 . 291 . 340 . 362 . 384 . 424 . 462	.213 .275 .328 .353 .376 .420 .460	. 187 . 256 . 316 . 342 . 368 . 415 . 458	. 157 . 236 . 301 . 331 . 358 . 409 . 456	.138 .223 .323 .352 .406 .455	600 600 600 600 600 600	0 10 20 25 30 40 50
.47 .48 .50 .52 .54	.47 .49 .51 .53 .55 .57	.47 .49 .52 .55 .57 .59	.46 .50 .53 .56 .59 .63	.46 .50 .53 .57 .60 .63	.46 .50 .54 .57 .61 .64	. 46 . 50 . 54 . 58 . 62 . 66	.45 .50 .54 .62 .66	600 600 600 600 600	50 60 70 80 90 100
.57	.59	.62	.66	.67	. 68	. 69	. 70	600	110
.59	.61	.64	.69	.70	. 71	. 73	. 74	600	120
.60	.63	.67	.72	.73	. 75	. 76	. 78	600	130
.62	.65	.69	.75	.76	. 78	. 80	. 81	600	140
.64	.67	.72	.78	.79	. 81	. 84	. 85	600	150
.66	.69	.74	.81	. 83	.85	.87	.89	600	160
.68	.72	.77	.84	. 86	.88	.91	.93	600	170
.70	.74	.80	.87	. 90	.92	.95	.97	600	180
.72	.76	.83	.91	. 93	.96	.99	1.01	600	190
.74	.79	.86	.95	. 97	1.00	1.03	1.06	600	200
.77	.82	.89	.99	1.01	1.05	1.08	1.10	600	210
.80	.85	.93	1.03	1.06	1.09	1.13	1.15	600	220
.82	.89	.97	1.07	1.11	1.14	1.18	1.20	600	230
.85	.92	1.01	1.12	1.16	1.19	1.23	1.26	600	240
.89	.97	1.06	1.18	1.21	1.25	1.29	1.32	600	250
.93	1.01	1.12	1.24	1.27	1.31	1.36	1.39	600	260
.97	1.07	1.18	1.30	1.34	1.38	1.43	1.46	600	270
1.02	1.13	1.25	1.38	1.41	1.45	1.50	1.53	600	280
1.08	1.20	1.33	1.46	1.50	1.54	1.58	1.62	600	290
1.15	1.29	1.42	1.55	1.59	1.63	1.68	1.71	600	300

Expansivities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} \times 10^3 \text{ K}$

ç

¥

1

TEMP	PRESS					TV			
(°C)	(BAR)	. 100	. 250	.500	.750	1.000	2.000	3.000	4.000
0 10 20 25 30 40 50	800 800 800 800 800 800 800	. 186 . 254 . 313 . 339 . 364 . 411 . 455	.202 .265 .320 .346 .370 .414 .456	. 226 . 282 . 332 . 356 . 378 . 419 . 458	. 246 . 297 . 343 . 365 . 385 . 424 . 460	. 265 . 310 . 353 . 372 . 391 . 427 . 461	. 315 . 347 . 379 . 395 . 409 . 438 . 464	.407 .419 .442 .464	. 415 . 425 . 445 . 463
50 60 70 80 90 100	800 800 800 800 800 800	. 45 . 50 . 54 . 57 . 61 . 64	.46 .50 .53 .57 .60 .64	.46 .49 .53 .56 .60 .63	.46 .49 .53 .56 .59 .62	.46 .49 .52 .55 .58 .61	.46 .49 .51 .54 .56	.48 .52 .52 .56	.46 .48 .50 .51 .53 .54
110	800	. 68	.67	.66	.65	.64	.60	.58	.56
120	800	. 71	.70	.69	.68	.66	.63	.60	.57
130	800	. 75	.74	.72	.70	.69	.65	.61	.59
140	800	. 78	.77	.75	.73	.72	.67	.63	.60
150	800	. 81	.80	.78	.76	.75	.69	.65	.62
160	800	. 85	- 83	. 81	. 79	.77	.71	.67	.64
170	800	. 88	- 87	. 84	. 82	.80	.74	.69	.65
180	800	. 92	- 90	. 88	. 85	.83	.76	.71	.67
190	800	. 95	- 94	. 91	. 88	.86	.79	.73	.69
200	800	. 99	- 97	. 94	. 92	.89	.81	.75	.71
210	800	1.03	1.01	.98	.95	.93	.84	.78	.73
220	800	1.07	1.05	1.02	.99	.96	.87	.80	.75
230	800	1.12	1.09	1.06	1.03	1.00	.91	.83	.78
240	800	1.16	1.14	1.10	1.07	1.04	.94	.86	.80
250	800	1.21	1.19	1.15	1.12	1.09	.98	.90	.83
260	800	1.26	1.24	1.20	1.16	1.13	1.02	.93	.86
270	800	1.32	1.29	1.25	1.22	1.18	1.07	.98	.89
280	800	1.38	1.35	1.31	1.27	1.24	1.13	1.02	.93
290	800	1.44	1.41	1.37	1.34	1.31	1.19	1.08	.98
300	800	1.51	1.48	1.44	1.41	1.38	1.26	1.15	1.03

Table 8

Expansivities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_{P,m} \times 10^3 \text{ K}$

TEMP	PRESS	MOLALITY			· ,47
	(DAR)		.000		
0 10 20 25 30 40 50	1000 1000 1000 1000 1000 1000 1000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 414 . 423 . 441 . 458		×
50 60 70 80 90 100	1000 1000 1000 1000 1000 1000	.46 .46 .46 .46 .46 .46 .46 .49 .49 .49 .49 .49 .49 .49 .53 .53 .52 .52 .51 .50 .56 .56 .55 .55 .53 .52 .60 .59 .58 .57 .55 .53 .63 .62 .61 .61 .60 .57 .55	.46 .48 .49 .51 .52 .53	en Stat Linna En Stat Linna Linna	
110 120 130 140 150	1000 1000 1000 1000 1000	.66 .65 .64 .63 .62 .59 .57 .69 .68 .67 .66 .65 .61 .59 .72 .71 .70 .69 .67 .63 .60 .75 .74 .73 .71 .70 .65 .62 .78 .77 .75 .74 .73 .74 .72 .67 .64	.55 .56 .58 .59 .61		
160 170 180 190 200	1000 1000 1000 1000 1000	.81 .80 .78 .76 .75 .70 .65 .84 .83 .81 .79 .77 .72 .67 .87 .86 .84 .82 .80 .74 .69 .91 .89 .87 .85 .83 .76 .71 .94 .92 .90 .88 .85 .78 .73	. 62 . 64 . 65 . 67 . 69	م م م غ م م	
210 220 230 240 250	1000 1000 1000 1000 1000	.97 .96 .93 .91 .88 .81 .75 N 1.01 .99 .96 .94 .91 .83 .77 1.05 1.03 1.00 .97 .95 .86 .79 1.09 1.06 1.03 1.01 .98 .89 .82 1.13 1.10 1.07 1.04 1.02 .92 .85	.70 .72 .74 .76 .79	() () () () () () () () () () () () () (و
260 270 280 290 300	1000 1000 1000 1000 1000	1.17 1.15 1.11 1.08 1.05 .96 .87 1.21 1.19 1.16 1.12 1.10 .99 .91 1.26 1.24 1.20 1.17 1.14 1.03 .94 1.31 1.29 1.25 1.22 1.19 1.08 .98 1.37 1.34 1.31 1.28 1.25 1.14 1.03	. 81 . 84 . 87 . 90 . 94		1.

Compressibilities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial P}\right)_{T,m} \times 10^4$ bar

TEMP	PRESS			*****	M	ΛΙ ΔΙ Τ Τ Υ				
(°C)	(BAR)	. 100	. 250	.500	. 750	1.000	2.000	3.000	4.000	5.000
0 10 20 25 30 40 50	1 1 1 1 1	.503 .472 .453 .447 .443 .438 .438	. 492 . 463 . 446 . 440 . 436 . 432 . 431	. 475 . 449 . 433 . 428 . 425 . 421 . 421	. 459 . 436 . 422 . 417 . 414 . 411 . 411	. 443 . 423 . 411 . 407 . 404 . 401 . 402	. 389 . 377 . 371 . 369 . 367 . 367 . 369	. 346 . 341 . 338 . 337 . 337 . 338 . 340	. 315 . 313 . 313 . 313 . 313 . 313 . 315 . 317	. 294 . 294 . 294 . 294 . 294 . 294 . 296 . 299
50		. 44	. 43	. 42	. 41	. 40	. 37	. 34	. 32	. 30
60		. 44	. 44	. 43	. 42	. 41	. 38	. 35	. 32	. 30
70		. 45	. 44	. 43	. 42	. 42	. 38	. 36	. 33	. 31
80		. 46	. 45	. 44	. 43	. 43	. 39	. 37	. 34	. 32
90		. 47	. 47	. 46	. 45	. 44	. 41	. 38	. 35	. 33
100		. 49	. 48	. 47	. 46	. 45	. 42	. 39	. 37	. 34
110	1	.51	.50	.49	.48	.47	. 44	.41	. 38	. 35
120	2	.53	.52	.51	.50	.49	. 46	.43	. 39	. 36
130	3	.55	.55	.54	.53	.52	. 48	.44	. 41	. 38
140	4	.58	.57	.56	.55	.54	. 50	.47	. 43	. 39
150	5	.62	.61	.60	.58	.57	. 53	.49	. 45	. 41
160	6	. 65	. 65	.63	.62	.61	.56	.52	.47	. 42
170	8	. 70	. 69	.67	.66	.65	.60	.55	.50	. 44
180	10	. 75	. 74	.72	.71	.69	.64	.58	.52	. 46
190	13	. 81	. 80	.78	.76	.74	.68	.62	.55	. 48
200	16	. 87	. 86	.84	.82	.80	.73	.66	.59	. 50
210	19	.95	.94	.91	.89	.87	.79	.71	.63	.53
220	23	1.05	1.03	1.00	.97	.95	.86	.77	.67	.56
230	28	1.15	1.13	1.10	1.07	1.04	.93	.83	.71	.58
240	33	1.28	1.25	1.21	1.18	1.14	1.02	.89	.76	.61
250	40	1.44	1.40	1.35	1.30	1.26	1.11	.97	.82	.64
260	47	1.63	1.58	1.52	1.46	1.41	1.23	1.06	.88	.68
270	55	1.87	1.81	1.72	1.65	1.58	1.35	1.15	.94	.71
280	64	2.17	2:09	1.97	1.87	1.79	1.50	1.25	1.01	.75
290	74	2.56	2.45	2.29	2.16	2.04	1.67	1.37	1.08	.79
300	86	3.08	2.92	2.71	2.53	2.37	1.87	1.49	1.15	.82

 $\frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_{T,m}$

 $\times 10^4$ bar

Compressibilities of Sodium Chloride Solutions:

-			• • • • • •		4. ₁			• • •		
(°C)	PRESS (BAR)	. 100	. 250	.500	.750	DLALITY 1.000	2.000	3.000	4.000	5.000
0 20 25 30 40 50	200 200 200 200 200 200 200	. 474 . 447 . 430 . 425 . 420 . 416 . 415	.465 .439 .423 .418 .414 .410 .409	.449 .426 .412 .407 .404 .400 .400	434 414 401 397 394 391 391	. 420 . 402 . 391 . 388 . 385 . 382 . 383	. 370 360 355 353 352 351 . 352	324 324 325 .327	301 301 . 303 . 305	. 283 . 284 . 286 . 288
50	200	. 41	. 41	. 40	. 39	. 38	. 35	. 33	. 31	. 29
60	200	. 42	. 41	. 40	. 40	. 39	. 36	. 33	. 31	. 29
70	200	. 42	. 42	. 41	. 40	. 39	. 36	. 34	. 32	. 30
80	200	. 43	. 43	. 42	. 41	. 40	. 37	. 35	. 33	. 31
90	200	. 44	. 44	. 43	. 42	. 41	. 38	. 36	. 33	. 31
100	200	. 45	. 45	. 44	. 43	. 42	. 40	. 37	. 34	. 32
110	200	.47	.46	. 46	. 45	. 44	. 41	.38	. 36	33
120	200	.49	.48	. 47	. 46	. 46	. 42	.40	. 37	34
130	200	.51	.50	. 49	. 48	. 48	. 44	.41	. 38	36
140	200	.53	.53	. 52	. 51	. 50	. 46	.43	. 40	37
150	200	.56	.55	. 54	. 53	. 52	. 48	.45	. 42	38
160 170 180 190 200	200 200 200 200 200 200	.59 .63 .67 .71 .77	.58 .62 .66 .70 .76	.57 .61 .64 .69 .74	.56 .59 .63 .67 .72	.55 .58 .62 .66 .70	.51 .54 .57 .61 .65	.47 .50 .52 .56 .59	. 43 . 46 . 48 . 50 . 53	- 40 - 41 - 43 - 45 - 47
210	200	.83	.81	.79	.77	.76	.69	. 63	.56	. 49
220	200	.90	.88	.86	.84	.82	.75	. 67	.60	. 52
230	200	.98	.96	.93	.91	.89	.80	. 72	.64	. 54
240	200	1.07	1.05	1.02	.99	.97	.87	. 78	.68	. 57
250	200	1.19	1.16	1.12	1.09	1.06	.95	. 84	.73	. 60
260	200	1.32	1.29	1.24	1.20	1.16	1.03	.91	. 78	.63
270	200	1.49	1.44	1.38	1.33	1.29	1.13	.99	. 84	.67
280	200	1.69	1.63	1.55	1.49	1.43	1.24	1.07	. 90	.70
290	200	1.94	1.87	1.76	1.68	1.60	1.36	1.16	. 96	.73
300	200	2.27	2.17	2.02	1.90	1.80	1.48	1.24	1. 01	.73

66

. ,

Compressibilities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial P}\right)_{T,m} \ge 10^4$ bar

TEMP	PRESS											
(°C)	(BAR)	.100	. 250	.500	. 750	1.000	2.000	3.000	4.000	5.000		
0 20 25 30 40 50	400 400 400 400 400 400	. 449 . 425 . 410 . 405 . 401 . 396 . 395	. 440 . 418 . 404 . 399 . 395 . 391 . 390	. 426 . 406 . 393 . 389 . 386 . 382 . 381	.412 .395 .383 .380 .377 .374 .373	. 399 . 384 . 374 . 371 . 368 . 366 . 365	. 353 . 345 . 340 . 339 . 337 . 337 . 338	. 312 . 312 . 312 . 314	. 290 . 290 . 292 . 294	. 273 . 273 . 275 . 278		
50	400	. 39	. 39	. 38	. 37	. 37	. 34	. 31	. 29	. 28		
60	400	. 40	. 39	. 38	. 38	. 37	. 34	. 32	. 30	. 28		
70	400	. 40	. 40	. 39	. 38	. 37	. 35	. 32	. 30	. 29		
80	400	. 41	. 40	. 39	. 39	. 38	. 35	. 33	. 31	. 29		
90	400	. 42	. 41	. 40	. 40	. 39	. 36	. 34	. 32	. 30		
100	400	. 43	. 42	. 41	. 41	. 40	. 37	. 35	. 33	. 31		
110	400	. 44	. 43	.43	. 42	. 41	. 38	. 36	. 33	. 32		
120	400	. 46	. 45	.44	. 43	. 42	. 39	. 37	. 35	. 32		
130	400	. 47	. 47	.46	. 45	. 44	. 41	. 38	. 36	. 34		
140	400	. 49	. 49	.48	. 47	. 46	. 42	. 40	. 37	. 35		
150	400	. 52	. 51	.50	. 49	. 48	. 44	. 41	. 38	. 36		
160	400	.54	.53	.52	.51	.50	. 46	. 43	. 40	. 37		
170	400	.57	.56	.55	.54	.52	. 48	. 45	. 42	. 39		
180	400	.60	.59	.58	.57	.55	. 51	. 47	. 44	. 40		
190	400	.64	.63	.61	.60	.59	. 54	. 49	. 46	. 42		
200	400	.68	.67	.65	.64	.62	. 57	. 52	. 48	. 44		
210	400	. 73	.71	.70	.68	. 66	.60	.55	.50	. 46		
220	400	. 78	.77	.74	.72	. 71	.64	.59	.53	. 48		
230	400	. 84	.82	.80	.78	. 76	.69	.63	.56	. 50		
240	400	. 91	.89	.86	.84	. 82	.74	.67	.60	. 52		
250	400	. 99	.96	.93	.91	. 88	.80	.72	.64	. 55		
260	400	1.08	1.05	1.02	.99	.96	.86	.77	.68	.58		
270	400	1.18	1.15	1.11	1.07	1.04	.94	.83	.73	.61		
280	400	1.30	1.27	1.22	1.18	1.14	1.02	.90	.78	.64		
290	400	1.45	1.40	1.34	1.29	1.25	1.11	.98	.84	.68		
300	400	1.62	1.56	1.49	1.42	1.37	1.20	1.05	.90	.71		

Compressibilities	of Sodium	Chloride	Solutions:	$\frac{1}{v} \left(\frac{\partial v}{\partial P}\right)_{T}$	$x 10^4$ bar	iter an
•				T.m		, .

TEMP	PRESS	*****		*******	M						
(0°)	(BAR)	.100	. 250	.500	. 750	1.000	2.000	3.000	4.000	5.000	. •
0 10 20 25 30 40 50	600 600 600 600 600 600	. 426 . 405 . 391 . 387 . 383 . 378 . 377	.418 .398 .386 .381 .378 .373 .372	. 405 . 387 . 376 . 372 . 369 . 365 . 364	. 392 . 377 . 367 . 364 . 361 . 358 . 357	. 380 . 367 . 358 . 355 . 353 . 350 . 350	. 338 . 331 . 327 . 326 . 325 . 324 . 324	. 300 . 300 . 301 . 302	. 279 . 280 . 281 . 283	. 262 . 263 . 265 . 267	
50 60 70 80 90 100	600 600 600 600 600	. 38 . 38 . 38 . 39 . 39 . 39 . 40	. 37 . 37 . 38 . 38 . 39 . 39 . 40	. 36 . 37. . 37 . 37 . 37 . 38 . 39	. 36 . 36 . 36 . 37 . 37 . 38	. 35 . 35 . 36 . 36 . 37 . 38	. 32 . 33 . 33 . 34 . 34 . 34 . 35	. 30 . 31 . 31 . 31 . 32 . 33	. 28 . 29 . 29 . 30 . 30 . 31	. 27 . 27 . 28 . 28 . 29	- 2√:‡
110 120 130 140 150	600 600 600 600	. 42 . 43 . 44 . 46 . 48	. 41 . 42 . 44 . 45 . 47	. 40 . 41 . 43 . 44 . 46	. 39 . 40 . 42 . 43 . 45	. 39 . 40 . 41 . 42 . 44	. 36 . 37 . 38 . 39 . 40	. 33 . 34 . 35 . 36 . 38	. 31 . 32 . 33 . 34 . 35	. 30 . 31 . 31 . 32 . 34	
160 170 180 190 200	600 600 600 600 600	.50 .52 .55 .58 .61	. 49 . 52 . 54 . 57 . 60	.48 .50 .53 .55 .58	. 47 . 49 .51 .54 .57	. 46 . 48 . 50 . 52 . 55	. 42 . 44 . 45 . 48 . 50	. 39 . 40 . 42 . 44 . 46	. 37 . 38 . 39 . 41 . 43	. 35 . 36 . 37 . 39 . 40	
210 220 230 240 250	600 600 600 600 600	. 65 . 69 . 74 . 79 . 85	. 64 . 68 . 72 . 77 . 83	.62 .66 .70 .75 .80	.60 .64 .68 .72 .78	.58 .62 .66 .70 .75	.53 .56 .59 .63 .67	. 48 . 51 . 54 . 57 . 61	. 45 . 47 . 50 . 52 . 56	. 42 . 44 . 46 . 48 . 50	
260 270 280 290 300	600 600 600 600 600	.92 .99 1.08 1.17 1.28	.89 .97 1.05 1.14 1.25	.86 .93 1.01 1.10 1.20	.83 .90 .97 1.06 1.15	.81 .87 .94 1.03 1.12	.72 .78 .85 .92 1.00	. 65 . 70 . 76 . 82 . 90	.59 .63 .68 .73 .78	.53 .56 .58 .62 .65	

Com	pressibi	lities o	f Sodiı	ım Chlo	ride So	olutions	$s: \frac{1}{v}$ ($\left(\frac{\partial \mathbf{v}}{\partial \mathbf{P}}\right)_{\mathrm{T,m}}$	x 10 ⁴	bar
TEMP (°C)	PRESS (BAR)	. 100	. 250	.500	.750	DLALITY 1.000	2.000	3.000	4.000	5.000
0 20 25 30 40 50	800 800 800 800 800 800 800	. 404 . 386 . 374 . 370 . 367 . 362 . 361	. 397 . 380 . 369 . 365 . 362 . 358 . 356	. 384 . 370 . 360 . 357 . 354 . 350 . 349	. 373 . 360 . 352 . 349 . 346 . 343 . 343	. 362 . 351 . 344 . 341 . 339 . 337 . 336	. 323 . 318 . 315 . 313 . 313 . 312 . 312 . 312	. 289 . 289 . 290 . 291	. 269 . 269 . 271 . 273	. 252 . 252 . 254 . 257
50 60 70 80 90 100	800 800 800 800 800 800	. 36 . 36 . 36 . 37 . 38 . 38	. 36 . 36 . 36 . 36 . 37 . 38	. 35 . 35 . 35 . 36 . 36 . 37	. 34 . 34 . 35 . 35 . 36 . 36	. 34 . 34 . 34 . 34 . 35 . 36	. 31 . 31 . 32 . 32 . 32 . 33	. 29 . 29 . 30 . 30 . 30 . 31	. 27 . 27 . 28 . 28 . 28 . 28 . 29	. 26 . 26 . 27 . 27 . 27 . 27
110	800	. 39	. 39	. 38	. 37	. 36	. 34	. 31	. 29	. 28
120	800	. 40	. 40	. 39	. 38	. 37	. 34	. 32	. 30	. 29
130	800	. 42	. 41	. 40	. 39	. 38	. 35	. 33	. 31	. 29
140	800	. 43	. 42	. 41	. 40	. 39	. 36	. 33	. 31	. 30
150	800	. 45	. 44	. 43	. 42	. 40	. 37	. 34	. 32	. 31
160	800	.47	. 46	.44	. 43	. 42	. 38	. 35	. 33	. 32
170	800	.49	. 48	.46	. 45	. 43	. 39	. 36	. 34	. 33
180	800	.51	. 50	.48	. 47	. 45	. 40	. 37	. 35	. 34
190	800	.53	. 52	.50	. 49	. 47	. 42	. 39	. 37	. 36
200	600	.56	. 55	.53	. 51	. 49	. 44	. 40	. 38	. 37
210	800	.59	.58	.55	.53	.52	.46	. 42	. 39	. 38
220	800	.63	.61	.58	.56	.54	.48	. 44	. 41	. 40
230	800	.66	.64	.62	.59	.57	.50	. 46	. 43	. 42
240	800	.70	.68	.66	.63	.61	.53	. 48	. 45	. 44
250	800	.75	.73	.70	.67	.64	.57	. 51	. 48	. 46
260	800	.80	.78	. 74	.71	.69	. 60	.54	.50	. 48
270	800	.86	.83	. 80	.76	.74	. 65	.58	.53	. 50
280	800	.92	.89	. 85	.82	.79	. 70	.62	.57	. 53
290	800	.99	.96	. 92	.88	.85	. 75	.68	.61	. 55
300	800	1.07	1.04	. 99	.96	.92	. 82	.74	.66	. 59

Compressibilities of Sodium Chloride Solutions: $\frac{1}{v} \left(\frac{\partial v}{\partial P}\right)_{T,m} \times 10^4$ bar

TEMP	PAFSS				MO	VTT IA I				
(3°)	(BAR)	. 100	. 250	.500	. 750	1.000	2.000	3.000	4.000	5.000
0 10 20 25 30 40 50	1000 1000 1000 1000 1000 1000 1000	. 382 . 368 . 358 . 354 . 351 . 351 . 347 . 346	. 375 . 362 . 353 . 349 . 347 . 343 . 342	. 365 . 353 . 345 . 342 . 340 . 337 . 336	. 354 . 344 . 337 . 335 . 333 . 330 . 329	. 344 . 336 . 330 . 328 . 326 . 324 . 323	. 308 . 305 . 303 . 302 . 301 . 301 . 301	. 279 . 279 . 280 . 281	. 259 . 259 . 261 . 263	. 241 . 242 . 244 . 244
50 60 70 80 90 100	1000 1000 1000 1000 1000 1000	. 35 . 35 . 35 . 35 . 35 . 36 . 37	. 34 . 34 . 34 . 35 . 35 . 36	. 34 . 34 . 34 . 34 . 35 . 35	. 33 . 33 . 33 . 33 . 34 . 34 . 34	. 32 . 32 . 33 . 33 . 33 . 34	. 30 . 30 . 30 . 30 . 31 . 31	. 28 . 28 . 28 . 28 . 29 . 29 . 29	.26 .26 .27 .27 .27 .27	. 25 . 25 . 25 . 25 . 25 . 26
110 120 130 140 150	1000 1000 1000 1000 1000	. 37 . 38 . 39 . 41 . 42	. 37 . 38 . 39 . 40 . 41	. 36 . 37 . 38 . 39 . 40	. 35 . 36 . 37 . 37 . 39	. 34 . 35 . 36 . 36 . 36 . 37	. 31 . 32 . 32 . 33 . 33	. 29 . 30 . 30 . 30 . 31	. 27 . 28 . 28 . 29 . 29	. 26 . 27 . 27 . 28 . 29
160 170 180 190 200	1000 1000 1000 1000 1000	.44 .45 .47 .49 .52	. 43 . 44 . 46 . 48 . 50	. 41 . 43 . 44 . 46 . 48	. 40 . 41 . 42 . 44 . 46	. 38 . 40 . 41 . 42 . 44	. 34 . 35 . 36 . 37 . 38	. 31 . 32 . 33 . 34 . 34	. 30 . 31 . 31 . 32 . 33	. 30 . 31 . 31 . 33 . 34
210 220 230 240 250	1000 1000 1000 1000 1000	.54 .57 .60 .63 .67	.53 .55 .58 .61 .65	.50 .52 .55 .58 .61	.48 .50 .52 .55 .58	.46 .48 .50 .52 .55	. 39 . 41 . 42 . 44 . 46	. 36 . 37 . 38 . 40 . 41	- 34 - 35 - 37 - 38 - 40	- 35 - 36 - 38 - 39 - 41
260 270 280 290 300)5	1000 1000 1000 1000 1000	.71 .76 .81 .86 .92	.69 .73 .77 .83 .89	.65 .69 .73 .78 .84	.61 .65 .69 .74 .79	.58 .62 .66 .70 .76	.49 .52 .55 .59 .64	.44 .46 .49 .53 .57	. 42 . 44 . 46 . 49 . 53	. 43 . 44 . 47 . 49 . 52

The relative enthalpy is related to the excess Gibbs energy of the solution by the equation

$$L = G^{EX} - T \left(\frac{\partial G^{EX}}{\partial T} \right)_{P,m} = -T^2 \left(\frac{\partial G^{EX}/T}{\partial T} \right)_{P,m}$$
(27)

The apparent molal enthalpy is defined as

$$\phi \mathbf{L} = \frac{\mathbf{L}}{\mathbf{n}_2} \quad \text{and} \quad \mathbf{n}_2 \quad \mathbf{n}_3 \quad \mathbf{n}_4 \quad \mathbf$$

The parametric form of the equation for the apparent molal enthalpy is,⁶

$$bL = v |z_{m}z_{x}| \frac{A_{H}}{2b} \ln(1+bI^{1/2})$$

$$- vRT^{2}m \left(\frac{2v_{m}v_{x}}{v}\right) \left(\frac{\partial \beta_{MX}^{(0)}}{\partial T}\right)_{P,m}$$

$$- \frac{2vRT^{2}m}{\alpha^{2}I} \left(1 - (1+\alpha I^{1/2})e^{-\alpha I^{1/2}}\right) \left(\frac{2v_{m}v_{x}}{v}\right) \left(\frac{\partial \beta_{MX}^{(1)}}{\partial T}\right)_{P,m}$$

$$- \frac{v}{2}RT^{2}m^{2} \left(\frac{2(v_{m}v_{x})^{3/2}}{v}\right) \left(\frac{\partial C_{MX}^{\phi}}{\partial T}\right)_{P,m},$$
(29)

where A_{H} is the Debye-Hückel enthalpy slope given in paper VII.⁵

The experimental determination of the enthalpy of an electrolyte solution is made through heat of dilution or heat of solution measurements. The molar heat of dilution $\Delta \bar{H}_D$ is the heat change per mole measured when a solution at concentration m_1 is diluted to concentration m_2 , and it is related to the apparent molal enthalpies at m_2 and m_1 by

 $\Delta \overline{H}_{D} = \phi L(m_{2}) - \phi L(m_{1}).$

The molar heat of solution, $\Delta \overline{H}_{s}$, is the heat change measured when one mole of salt is dissolved in enough water to form a solution of

(30)

concentration m. It is related to the apparent molal enthalpy by

$$\Delta \bar{H}_{s} = \Delta \bar{H}_{s}^{*} + \phi L, \qquad (31)$$

where $\Delta \tilde{H}_{s}^{\circ}$ is the heat of solution at infinite dilution. The apparent molal heat capacity is defined as the difference between the heat capacity of the solution and the heat capacity of pure water contained in the solution, per mole of salt,

$$\phi C_{p} = \frac{C_{p} - n_{1} \bar{C}_{p_{1}}}{n_{2}} .$$
 (32)

The apparent molal heat capacity is related to the apparent molal enthalpy by

$$\phi C_{p} = \overline{C}_{p_{2}}^{\circ} + \left(\frac{\partial \phi L}{\partial T}\right)_{P,m}$$
(33)

where \overline{C}_{p_2} is the partial molal heat capacity of the solute at infinite dilution. Combining Equation (33) and the temperature derivative of Equation (29) yields

$$\phi C_{p} = \overline{C}_{p2}^{\circ} + \nu |z_{m} z_{x}| \frac{A_{J}}{2b} \ln(1+bI^{1/2})$$

$$- \nu RT^{2} m \left(\frac{2\nu_{m} \nu_{x}}{\nu}\right) \left[\left(\frac{\partial^{2} \beta_{MX}^{(0)}}{\partial T^{2}}\right)_{P,m} + \frac{2}{T} \left(\frac{\partial \beta_{MX}^{(0)}}{\partial T}\right)_{P,m} \right]$$

$$- \frac{2\nu RT^{2} m}{\alpha^{2}I} \left(1 - (1+\alpha I^{1/2})e^{-\alpha I^{1/2}}\right) \left(\frac{2\nu_{m} \nu_{x}}{\nu}\right) \left[\left(\frac{\partial^{2} \beta_{MX}^{(1)}}{\partial T^{2}}\right)_{P,m} + \frac{2}{T} \left(\frac{\partial \beta_{MX}^{(1)}}{\partial T}\right)_{P,m} \right]$$

$$- \frac{\nu}{2} RT^{2} m^{2} \left(\frac{2(\nu_{m} \nu_{x})^{3/2}}{\nu}\right) \left[\left(\frac{\partial^{2} C_{MX}}{\partial T^{2}}\right)_{P,m} + \frac{2}{T} \left(\frac{\partial C_{MX}^{\varphi}}{\partial T}\right)_{P,m} \right],$$

$$(34)$$

where ${\rm A}_{\rm J}$ is the Debye-Hückel slope for the heat capacity given in paper XII. 5

Finally, the pressure dependence of the activity and thermal properties can be found by taking the derivatives of Equations (5), (6), (29), and (34) with respect to pressure. Equations are given below for the change in these properties in going from an initial pressure P_1 to a final pressure P_2 .

$$\phi(P_{2}) - \phi(P_{1}) = -|z_{m}z_{x}| \cdot (A_{\phi}(\hat{P}_{2}) - A_{\phi}(P_{1}) \frac{1^{1/2}}{1 + b 1^{1/2}} + \int_{P_{1}}^{P_{2}} \{m\beta_{v}^{(0)} + m\beta_{v}^{(1)} e^{-\alpha 1^{1/2}} + m^{2}c_{v}^{\phi}\} dP$$
(35)

1 / 1

$$\ln \gamma_{\pm}(P_{2}) - \ln \gamma_{\pm}(P_{1}) = -|z_{m}z_{x}| (A_{\phi}(P_{2}) - A_{\phi}(P_{1})) \left(\frac{I^{1/2}}{1 + I^{1/2}} + \frac{2}{b} \ln(1 + bI^{1/2})\right) + \int_{P_{1}}^{P_{2}} \left\{ 2m\beta_{v}^{(0)} + \frac{2m\beta_{v}^{(1)}}{\alpha^{2}I} (1 - (1 + \alpha I^{1/2} - \frac{\alpha^{2}I}{2})e^{-\alpha I^{1/2}}) + \frac{3}{2}m^{2} C_{v}^{\phi} \right\} dP$$
(36)

$$\phi L(P_2) - \phi L(P_1) = v |z_m z_x| \frac{1}{2b} (A_H(P_2) - A_H(P_1)) \ln(1 + bI^{1/2})$$

$$-\int_{P_{1}}^{P_{2}} \left\{ \nu RT^{2} m \left(\frac{\partial \beta_{v}^{(0)}}{\partial T} \right)_{P,m} + \frac{2 \nu RT^{2} m}{\alpha^{2} I} \left(\frac{\beta_{v}^{(1)}}{\partial T} \right)_{P,m} (1 - (1 + \alpha I^{1/2}) e^{-\alpha I^{1/2}}) \right\}$$

$$+ \frac{\nu RT^{2} m^{2}}{2} \left(\frac{\partial C_{v}^{\phi}}{\partial T} \right)_{P,m} dP$$

$$(37)$$

$$\Phi C_{p}(P_{2}) - \Phi C_{p}(P_{1}) = \nu \left| z_{m} z_{x} \right| \frac{1}{2b} (A_{J}(P_{2}) - A_{J}(P_{1})) \ln(1 + b I^{1/2}) - \int_{P_{1}}^{P_{2}} \left\{ \nu_{R} T^{2} m \left[\left(\frac{\partial^{2} \beta^{(0)}}{\partial T^{2}} \right)_{P,m} + \frac{2}{T} \left(\frac{\partial \beta^{(0)}}{\partial T} \right)_{P,m} \right] \right\}$$

$$(38)$$

$$(38)$$

$$+ \frac{2\nu_{RT}^{2}m}{\alpha^{2}I} \left[\left(\frac{\partial^{2}\beta_{v}^{(1)}}{\partial T^{2}} \right)_{P,m} + \frac{2}{T} \left(\frac{\partial\beta_{v}^{(1)}}{\partial T} \right)_{P,m} \right] (1 - (1 + \alpha I^{1/2})e^{-\alpha I^{1/2}}) + \frac{\nu_{RT}^{2}m^{2}}{2} \left[\left(\frac{\partial^{2}C_{v}^{\phi}}{\partial T^{2}} \right)_{P,m} + \frac{2}{T} \left(\frac{\partial C_{v}^{\phi}}{\partial T} \right)_{P,m} \right] + T \left(\frac{\partial^{2}\overline{v}_{2}^{\circ}}{\partial T^{2}} \right)_{P} \right] dP.$$
(38)

To determine the pressure dependence of heat of solution data, the change in $\Delta \overline{H}_{s}^{\circ}$ with pressure is also needed. The heat of solution at infinite dilution is related to the partial molal enthalpy of the solute at infinite dilution, \overline{H}_{2}° , and the molal enthalpy of the solid salt, $\overline{H}(s)$, by the equation

$$\Delta \overline{H}_{s}^{\circ} = \overline{H}_{2}^{\circ} - \overline{H}(s).$$
(39)

The change with pressure is

$$\left(\frac{\partial \Delta \overline{H}_{s}}{\partial P}\right)_{T} = \overline{v}_{2}^{\circ} - T \left(\frac{\partial \overline{v}_{2}}{\partial T}\right)_{P} - \left\{\overline{v}(s) + T \left(\frac{\partial \overline{v}(s)}{\partial T}\right)_{P}\right\}, \quad (40)$$

where \overline{V}_2° is the partial molal volume of the solute at infinite dilution and $\overline{V}(s)$ is the molal volume of the pure salt in the solid phase. Since the temperature and pressure dependences of the volume of the solid are small, the integral of the term in brackets can be approximated as

$$\int_{P_{1}}^{2} \left\{ \overline{v}(s) + T\left(\frac{\partial \overline{v}(s)}{\partial T}\right)_{P} \right\} d\overline{P} \approx \overline{v}(s)_{298K} (P_{2} - P_{1}).$$

This approximation is accurate to $.04J \text{ mol}^{-1} \text{ bar}^{-1}$, so it is sufficient in comparison to the larger uncertainty in the pressure dependence of $\overline{\text{H}}_2^{\circ}$. The pressure dependence of $\Delta \overline{\text{H}}_s^{\circ}$ now reduces to,

$$\Delta \bar{H}_{s}^{\circ}(P_{2}) - \Delta \bar{H}_{s}^{\circ}(P_{1}) = \int_{P_{1}}^{P_{2}} \left\{ \bar{\nabla}_{2}^{\circ} - T \left(\frac{\partial \bar{\nabla}_{2}^{\circ}}{\partial T} \right)_{P} \right\} dP - \bar{\nabla}(s) \left(P_{2} - P_{1} \right), \quad (41)$$

with $\bar{V}(s) = 26.994 \text{ cm}^3 \text{ mol}^{-1} \text{ at } 25^{\circ}\text{C}.\frac{40}{3}$

2. Estimation of Uncertainties

The error accumulated in a pressure correction is difficult to determine because of the multiple operations needed to obtain the final value. The pressure dependence of an osmotic or activity coefficient is known most accurately, since only terms describing the specific volume of the NaCl solution as a function of pressure are required for the calculation. An estimated error of 10% in the pressure correction results in an uncertainty of $\pm.009$ in the osmotic coefficient at 300°C and 1000 bar. For comparison, the experimental uncertainty in the measured osmotic coefficient at saturation pressure is $\pm.005$.

The uncertainty in a pressure correction for enthalpy and heat capacity data will be larger, since these corrections require information on the first and second temperature derivatives of the volume of the NaCl solution. The minimum uncertainty in a pressure correction can be estimated by comparing values obtained from the low temperature fit and the overall fit in the region of overlap. Minimum uncertainties are $\pm 20 \text{ J} \text{ mol}^{-1}$ for the apparent molal enthalpy and $\pm 2 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$ for the apparent molal heat capacity. At high temperatures, recent enthalpy and heat capacity data reported at elevated pressures can be used to assess the uncertainty in the pressure corrections. Busey⁴¹ lists enthalpy of dilution data at 66 to 105 bar and 400 bar. Comparison of the low pressure data corrected up to 177 bar and the high pressure data adjusted down to 177 bar shows that the corrected values are in agreement

approximately within the scatter of the measured enthalpies. The heat capacity data of Tanner and Lamb⁴² at 1 bar and of Likke and Bromley⁴³ at saturation pressures can be corrected to 177 bar for comparison with the data of Smith-Magowan and Wood. Again, the differences between the high pressure data and the data adjusted to 177 bar are comparable to the observed scatter in the measured heat capacities. An estimated error of 20% for the pressure correction gives an uncertainty in the correction to 200 bar of the same magnitude as the experimental uncertainty in the measured enthalpies and heat capacities. Thus this value has been chosen as the estimated uncertainty in the pressure corrections for these quantities. The percent uncertainty should remain fairly constant for corrections over larger pressure intervals, so that the absolute error in a pressure adjustment from saturation pressure to 1000 bar will be four or five times as large as the uncertainty in a correction from saturation pressure to 200 bar. Table 10 lists the estimated percent uncertainties in the pressure adjustments, along with the range of experimental uncertainties for existing activity, enthalpy, and heat capacity data.

3. Explanation of Tables

The pressure dependences of the osmotic and activity coefficients, the heat of solution, and the apparent molal enthalpy and heat capacity are given in Tables 11-15. Values are listed as the change in a thermodynamic property due to a pressure change from the saturation pressure of pure water to 200, 400, 600, or 1000 bar. Thus the table values can be added directly to experimental data along the saturation curve to obtain the corresponding high pressure values. Of course, other pressure adjustments, for example, from 200 bar to 400 bar, can be obtained by

	·	<u>S</u>		
Property	Pressure Dependence	Correction t 200 bar	0	Experimental Data ^c
ф	10%	.002	(300°C)	.005
lnγ ₊	10%	.002	(50°C)	.002
△Ħ _D	20% ^a	20 J mol^{-1}	(25°C)	4 J/mol
- -		30 J mol^{-1}	(100°C)	20 J/mol ^d
		250 J mol^{-1}	(200°C)	65 J/mol ^d
		1,500 J mol ⁻¹	(300°C)	1,000 J/mol ^d
∆Ĥs	20% ^a	20 J mol^{-1}	(25°C)	16 J/mo1
-		60 J mol^{-1}	(100°C)	100 J/mol
		400 J mol ⁻¹	(200°C)	160 J/mol
φC	20% ^b	$2 \text{ J K}^{-1} \text{ mol}^{-1}$	(25°C)	1 J K ⁻¹ mol ⁻¹
r		$4 \text{ J K}^{-1} \text{ mol}^{-1}$	(200°C)	$4 J K^{-1} mol^{-1}$
		50 $J K^{-1} mol^{-1}$	(300°C)	

Pressure Dependence of Thermodynamic Properties

^a Uncertainty is 20% or 20 J mol⁻¹, whichever is greater.
^b Uncertainty is 20% or 2 J K⁻¹ mol⁻¹, whichever is greater.
^c Values from Table III of Reference 45, unless otherwise noted.
^d Values from a least squares fit of data from Reference 41.

taking the difference of two table values.

Above 25°C, pressure corrections calculated from the low temperature fit and the overall fit are in good agreement compared to the 10% or 20% estimated uncertainty. Thus for simplicity, all values listed in Tables 11-15 were calculated using only the overall fit (Parameter Set II).

Conclusion

Accurate calculation of the volumetric properties of sodium chloride solutions over a wide range of concentration, temperature, and pressure is possible with the equations presented above. Recent improvements in the data base, including the high temperature data of Hilbert and high concentration data at 20 bar, have been used. Special attention has been paid to the behavior of the expansivity and compressibility values derived from the volumetric fit. Because the temperature and pressure dependences of the volumetric fit have been carefully controlled, calculation of the pressure dependence of activity, enthalpy, and heat capacity data is possible. The change in these properties due to a pressure change from saturation pressure to 200 bar generally can be calculated with an uncertainty comparable to the experimental uncertainty in direct measurements of these quantities. This important property of the volumetric fit will allow it to be combined with a temperature dependent tabulation of activity data to form a complete equation of state for sodium chloride solutions.

Pres	sure 1	Depende	nce of	the Act	ivity	Coeffic	ient:	$1n\gamma \pm (P_2$) - lny	± ^{(P} 1)
TEMP	P1	P2				MOL	ALITY -			
(-0)	(BAR)	(BAH)	. 100	. 250	.500	. 150	1.000	2.000	3.000	4.000
0 10 20 25 30 40	1 1 1 1 1	200 200 200 200 200 200	.004 .003 .003 .003 .003 .003	.006 .005 .005 .005 .005	.010 .008 .008 .007 .007 .007	.013 .011 .010 .009 .009 .009	.015 .013 .011 .011 .010 .010	.024 .020 .017 .016 .015 .014	.020 .019 .017	. 023 . 021 . 020
50	1	200	.003	. 005	.007	.008	.010	.013	.016	.018
60	1	200	.004	.005	.007	.009	.010	.013	.016	.018
70	1	200	.004	.006	.008	.009	.010	.013	.016	.018
80	1	200	.004	.006	.008	.009	.011	.014	.016	.018
90	1	200	.005	.007	.009	.010	.011	.015	.017	.019
100	1	200	.005	.007	.009	.011	.012	.016	.018	.020
110	1	200	.005	.008	.010	.012	.013	.017	.019	.022
120	2	200	.006	.008	.011	.013	.014	.018	.021	.023
130	3	200	.006	.009	.012	.014	.015	.020	.023	.025
140	4	200	.007	.010	.013	.015	.017	.022	.025	.028
150	5	200	.008	.011	.014	.017	.019	.024	.027	.030
160	6	200	.008	.012	.016	.018	.020	.026	.030	.033
170	8	200	.009	.013	.018	.020	.022	.029	.033	.036
180	10	200	.010	.015	.019	.022	.025	.031	.036	.040
190	13	200	.011	.016	.021	.025	.027	.034	.039	.043
200	16	200	.013	.018	.024	.027	.030	.037	.043	.047
210	19	200	.014	. 020	.026	.030	.033	. 041	.047	.051
220	23	200	.016	. 022	.029	.033	.036	. 045	.050	.055
230	28	200	.017	. 025	.032	.036	.040	. 049	.055	.060
240	33	200	.019	. 028	.035	.040	.044	. 053	.059	.064
250	40	200	.022	. 031	.039	.045	.048	. 058	.064	.069
260	47	200	.024	.035	.044	.049	. 054	.064	.070	.074
270	55	200	.027	.039	.049	.055	. 059	.070	.076	.080
280	64	200	.031	.043	.054	.061	. 066	.077	.083	.087
290	74	200	.035	.049	.061	.068	. 074	.085	.091	.095
300	86	200	.039	.055	.068	.077	. 083	.095	.101	.104

.

		-						' <u>+</u> `	21	' <u>+</u> ``1'
TEMP (°C)	P1 (BAR)	P2 (BAR)	. 100	. 250	.500	MOL .750	ALITY - 1.000	2.000	3.000	4.000
0 10 20 25 30 40 50	1 1 1 1 1 1	400 400 400 400 400 400	.007 .007 .006 .006 .006 .007 .007	.012 .011 .010 .010 .010 .010 .010	.019 .016 .015 .014 .014 .014 .014	.024 .021 .019 .018 .017 .017 .017	.030 .025 .022 .021 .020 .019 .019	.047 .038 .033 .031 .029 .027 .026	.038 .036 .033 .031	. 043 . 041 . 038 . 035
60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400	.007	.011	.014	.017	.019	.025	.030	.034
70		400	.008	.011	.015	.017	.019	.026	.030	.034
80		400	.008	.012	.016	.018	.020	.027	.031	.035
90		400	.009	.013	.017	.020	.022	.028	.033	.037
100		400	.009	.014	.018	.021	.023	.030	.035	.039
110	1	400	.010	.015	.020	. 023	.025	.033	.038	.042
120	2	400	.011	.016	.021	. 025	.028	.035	.041	.046
130	3	400	.012	.018	.023	. 027	.030	.039	.045	.050
140	4	400	.013	.020	.026	. 030	.033	.042	.049	.055
150	5	400	.015	.022	.028	. 033	.036	.046	.054	.060
160	6	400	.016	. 024	.031	. 036	.040	.051	.059	.066
170	8	400	.018	. 026	.034	. 040	.044	.056	.065	.072
180	10	400	.020	. 029	.038	. 044	.048	.062	.071	.079
190	13	400	.022	. 032	.042	. 048	.053	.068	.078	.087
200	16	400	.025	. 036	.046	. 053	.059	.074	.085	.095
210	19	400	. 028	.040	.051	.059	.065	.082	.094	.103
220	23	400	. 031	.044	.057	.065	.072	.090	.102	.113
230	28	400	. 035	.050	.064	.073	.080	.099	.112	.123
240	33	400	. 039	.056	.071	.081	.089	.109	.122	.133
250	40	400	. 044	.063	.080	.091	.099	.121	.134	.145
260	47	400	.050	.071	.090	. 102	.111	.134	. 148	.159
270	55	400	.057	.081	.102	. 116	.125	.149	. 163	.174
280	64	400	.066	.093	.117	. 132	.142	.168	. 182	.192
290	74	400	.076	.107	.135	. 151	.163	.190	. 204	.214
300	86	400	.089	.125	.157	. 176	.189	.218	. 232	.241

Pressure Dependence of the Activity Coefficient: $\ln\gamma_{+}(P_{2}) - \ln\gamma_{+}(P_{1})$

Pressure	Dependence	of	the	Activity	Coefficient:	$\ln\gamma_+(P_2)$	$-\ln\gamma_+(\mathbf{F})$	<u>'</u> 1)
						-	_	

TEMP	P1	P2				MOI				
(00)	(BAR)	(BAR)	. 100	. 250	.500	.750	1.000	2.000	3.000	4.000
0 20 25 30 40 50	1 1 1 1 1 1	600 600 600 600 600 600	.010 .010 .009 .009 .009 .010 .010	.018 .016 .015 .015 .015 .015 .015	.027 .024 .022 .021 .021 .020 .020	.036 .030 .027 .026 .025 .024 .024	.043 .036 .032 .030 .029 .028 .027	.067 .055 .047 .044 .042 .039 .037	.055 .052 .048 .045	.063 .059 .054 .051
60 70 80 90 100	1 1 1 1	600 600 600 600 600	.010 .011 .012 .013 .014	.015 .016 .017 .019 .020	.021 .022 .023 .024 .026	.024 .025 .027 .028 .031	.028 .028 .030 .032 .034	.037 .038 .039 .041 .044	.044 .044 .046 .048 .051	.050 .050 .051 .054 .057
110	1	600	.015	.022	.028	.033	.037	.047	.055	.061
120	2	600	.016	.024	.031	.036	.040	.051	.060	.066
130	3	600	.018	.026	.034	.039	.044	.056	.065	.073
140	4	600	.019	.028	.037	.043	.048	.061	.071	.079
150	5	600	.021	.031	.040	.047	.052	.067	.078	.087
160	6	600	.024	.034	. 045	.052	.058	.074	.086	.096
170	8	600	.026	.038	. 049	.057	.063	.081	.094	.105
180	10	600	.029	.042	. 054	.063	.070	.089	.103	.115
190	13	600	.032	.046	. 060	.069	.077	.098	.113	.126
200	16	600	.035	.051	. 066	.076	.085	.108	.124	.138
210	19	600	.039	.057	.073	.085	.093	.118	. 136	. 151
220	23	600	.044	.063	.081	.094	.103	.130	. 149	. 165
230	28	600	.049	.071	.091	.104	.115	.143	. 163	. 179
240	33	600	.055	.079	.101	.116	.127	.157	. 178	. 196
250	40	600	.063	.089	.114	.130	.142	.174	. 195	. 213
260	47	600	.071	. 101	.128	. 146	. 159	. 192	. 214	. 233
270	55	600	.081	. 115	.145	. 164	. 179	. 214	. 237	. 254
280	64	600	.093	. 131	.165	. 187	. 202	. 240	. 262	. 280
290	74	600	.107	. 151	.190	. 214	. 231	. 271	. 293	. 310
300	86	600	.125	. 176	.220	. 247	. 266	. 308	. 330	. 346

Pressure Dependence of the Activity Coefficient: $\ln\gamma_{\pm}(P_2) - \ln\gamma_{\pm}(P_1)$

TEMP (°C)	P1 (BAR)	P2 (BAR)	. 100	. 250	.500	MOL .750	ALITY - 1.000	2.000	3.000	4.000
0 10 20 25 30 40 50	1 1 1 1 1 1	1000 1000 1000 1000 1000 1000	.016 .015 .015 .015 .015 .015 .015	. 028 . 025 . 024 . 023 . 023 . 023 . 024	. 043 . 038 . 035 . 033 . 033 . 032 . 032	.056 .048 .043 .041 .040 .038 .038	.067 .057 .051 .048 .046 .044 .043	.104 .086 .075 .069 .066 .061 .059	.085 .081 .074 .070	. 096 . 091 . 084 . 080
60 70 80 90 100	1 1 1 1	1000 1000 1000 1000 1000	.017 .018 .019 .020 .022	. 025 . 026 . 027 . 029 . 031	. 033 . 034 . 036 . 038 . 041	.039 .040 .042 .045 .048	.043 .045 .047 .050 .053	.058 .059 .061 .064 .068	.069 .069 .071 .075 .080	.078 .078 .080 .084 .089
110	1	1000	. 023	.034	.044	. 051	.057	.074	.085	.095
120	2	1000	. 025	.037	.048	. 056	.062	.080	.092	.103
130	3	1000	. 027	.040	.052	. 061	.067	.087	.101	.112
140	4	1000	. 030	.044	.057	. 066	.074	.095	.110	.122
150	5	1000	. 033	.048	.062	. 072	.080	.103	.120	.134
160	6	1000	.036	.052	. 068	.079	.088	.113	. 132	. 147
170	8	1000	.039	.057	. 075	.087	.096	.124	. 144	. 161
180	10	1000	.043	.063	. 082	.095	.106	.136	. 158	. 176
190	13	1000	.048	.069	. 090	.105	.116	.149	. 172	. 193
200	16	1000	.053	.077	. 099	.115	.128	.163	. 188	. 210
210	19	1000	.059	.085	. 110	. 127	. 140	.178	. 206	.230
220	23	1000	.065	.094	. 121	. 140	. 154	.195	. 225	.250
230	28	1000	.073	.104	. 134	. 155	. 170	.214	. 245	.272
240	33	1000	.081	.116	. 149	. 171	. 188	.235	. 268	.296
250	40	1000	.091	.130	. 166	. 190	. 209	.258	. 292	.322
260	47	1000	. 103	.146	.186	. 212	. 232	. 284	. 320	.350
270	55	1000	. 116	.165	.209	. 237	. 259	. 313	. 350	.382
280	64	1000	. 132	.187	.236	. 267	. 290	. 348	. 385	.417
290	74	1000	. 151	.213	.268	. 303	. 328	. 388	. 425	.456
300	86	1000	. 175	.245	.307	. 346	. 373	. 436	. 473	.503

Pressure Dependence of the Osmotic Coefficient: $\phi(P_2) - \phi(P_1)$

TEMO		80	•	· ·		-					
(°C)	(BAR)	(BAR)	. 100	. 250	.500	MULI .750	1.000	2.000	3.000	4.000	y
0 10 20 25 30 40 50	1 1 1 1 1 1	200 200 200 200 200 200 200	.001 .001 .001 .001 .001 .001 .001	. 002 . 002 . 002 . 002 . 002 . 002 . 002 . 002	.004 .003 .003 .002 .002 .002 .002	.005 .004 .003 .003 .003 .003 .003	.006 .005 .004 .004 .003 .003 .003	.010 .007 .006 .005 .005 .005	.007 .006 .006 .005	. 008 . 007 . 006 . 006	
60 70 80 90 100	1 1 1 1 1	200 200 200 200 200 200	.001 .001 .001 .001 .001	.002 .002 .002 .002 .002 .002	.002 .002 .002 .002 .002 .003	.003 .003 .003 .003 .003	.003 .003 .003 .003 .003	.004 .004 .004 .004 .004	.005 .005 .005 .005 .005	. 005 . 005 . 005 . 005 . 005	
110 120 130 140 150	1 2 3 4 5	200 200 200 200 200	.002 .002 .002 .002 .002	.002 .002 .003 .003 .003	.003 .003 .003 .004 .004	. 003 . 004 . 004 . 004 . 005	. 004 . 004 . 004 . 005 . 005	.005 .005 .005 .006 .006	.005 .006 .006 .007 .007	.006 .006 .007 .007 .008	` , *
160 170 180 190 200	6 8 10 13 16	200 200 200 200 200	.003 .003 .003 .003 .004	. 004 . 004 . 004 . 005 . 005	.004 .005 .005 .006 .006	. 005 . 006 . 006 . 007 . 007	.006 .006 .007 .007 .008	.007 .008 .008 .009 .009	.008 .009 .009 .010 .011	.009 .010 .010 .011 .012	
210 220 230 240 250	19 23 28 33 40	200 200 200 200 200 200	.004 .005 .005 .006 .006	.006 .006 .007 .008 .009	.007 .008 .009 .009 .010	.008 .009 .009 .010 .011	.009 .009 .010 .011 .012	.010 .011 .012 .012 .013	.011 .012 .013 .013 .014	.012 .013 .014 .014 .014	
260 270 280 290 300	47 55 64 74 86	200 200 200 200 200	.007 .008 .009 .010 .011	.010 .011 .012 .013 .015	.011 .013 .014 .016 .017	.012 .014 .015 .017 .018	.013 .014 .015 .017 .019	.014 .015 .016 .017 .018	.014 .015 .015 .016 .017	.015 .015 .015 .015 .015	4

۰.

· Table 12

.

3

.

Pressure Dependence of the Osmotic Coefficient: $\phi(P_2) - \phi(P_1)$

TEMP	P 1	P2				MOI	ALTTY -			
(°C)	(BAR)	(BAR)	.100	. 250	.500	. 750	1.000	2.000	3.000	4.000
0 10 20 25 30 40 50	1 1 1 1 1 1	400 400 400 400 400 400	.002 .002 .002 .002 .002 .002 .002	.004 .004 .003 .003 .003 .003 .003	.007 .006 .005 .005 .005 .004 .004	.010 .008 .007 .006 .006 .005 .005	.012 .009 .008 .007 .007 .006 .006	.018 .014 .012 .011 .010 .009 .008	.013 .012 .011 .010	.015 .014 .012 .011
60 70 80 90 100	1 1 1 1	400 400 400 400 400	.002 .002 .002 .003 .003	.003 .003 .004 .004 .004	. 004 . 004 . 004 . 005 . 005	. 005 . 005 . 005 . 005 . 006	.006 .006 .006 .006 .006	.008 .007 .007 .008 .008	.009 .009 .009 .009 .009 .010	.010 .010 .010 .010 .010 .011
110	1	400	.003	.004	.006	.006	.007	.009	.010	.011
120	2	400	.003	.005	.006	.007	.008	.010	.011	.012
130	3	400	.004	.005	.007	.008	.008	.010	.012	.013
140	4	400	.004	.006	.007	.008	.009	.011	.013	.015
150	5	400	.004	.006	.008	.009	.010	.012	.014	.016
160	6	400	.005	.007	.009	.010	.011	.014	.016	.018
170	8	400	.005	.008	.010	.011	.012	.015	.017	.019
180	10	400	.006	.008	.011	.012	.013	.016	.019	.021
190	13	400	.007	.009	.012	.013	.014	.018	.020	.023
200	16	400	.007	.010	.013	.014	.016	.019	.022	.024
210	19	400	.008	.011	.014	.016	.017	.021	.024	.026
220	23	400	.009	.013	.016	.017	.019	.022	.025	.028
230	28	400	.010	.014	.017	.019	.021	.024	.027	.029
240	33	400	.012	.016	.019	.021	.022	.026	.028	.031
250	40	400	.013	.018	.021	.023	.025	.028	.030	.032
260	47	400	.015	.020	.024	.026	.027	.030	.031	.033
270	55	400	.017	.023	.027	.029	.030	.032	.033	.034
280	64	400	.019	.026	.030	.032	.034	.035	.035	.035
290	74	400	.022	.030	.035	.037	.038	.038	.037	.036
300	86	400	.026	.034	.040	.042	.043	.042	.040	.037

Pressure Dependence of the Osmotic Coefficient: $\phi(P_2) - \phi(P_1)$

TEMP	D 1	82			· ·		A1 7			
(°C)	(BAR)	(BAR)	. 100	. 250	.500	. 750	1.000	2.000	3.000	4.000
0 10 25 30 40 50	1 1 1 1 1 1	600 600 600 600 600 600	.004 .003 .003 .003 .003 .003 .003	. 006 . 005 . 005 . 005 . 005 . 005	.010 .009 .008 .007 .007 .006 .006	.014 .011 .010 .009 .008 .008 .007	.017 .014 .011 .010 .010 .009 .008	.026 .021 .017 .016 .014 .013 .012	.019 .018 .015 .014	.021 .020 .017 .016
60 70 80 90 100	1 1 1 1	600 600 600 600 600	.003 .003 .004 .004 .004	.005 .005 .005 .005 .005	.006 .006 .007 .007 .007	.007 .007 .008 .008 .009	.008 .008 .008 .009 .009	.011 .011 .011 .011 .011	.013 .013 .013 .013 .014	.015 .014 .014 .015 .016
110	1	600	.005	.006	.008	.009	.010	.013	.015	.017
120	2	600	.005	.007	.009	.010	.011	.014	.016	.018
130	3	600	.005	.008	.010	.011	.012	.015	.018	.020
140	4	600	.006	.008	.010	.012	.013	.017	.019	.022
150	5	600	.006	.009	.011	.013	.014	.018	.021	.024
160	6	600	.007	.010	.013	.014	.016	.020	.023	.026
170	8	600	.008	.011	.014	.016	.017	.022	.025	.028
180	10	600	.009	.012	.015	.017	.019	.024	.028	.031
190	13	600	.010	.013	.017	.019	.021	.026	.030	.034
200	16	600	.011	.015	.018	.021	.023	.028	.033	.037
210	19	600	.012	.016	. 020	. 023	.025	.031	.035	.039
220	23	600	.013	.018	. 022	. 025	.027	.033	.038	.042
230	28	600	.015	.020	. 025	. 028	.030	.036	.040	.045
240	33	600	.017	.022	. 027	. 030	.033	.038	.043	.047
250	40	600	.019	.025	. 030	. 034	.036	.041	.045	.049
260	47	600	.021	.028	.034	.037	.039	.044	.048	.051
270	55	600	.024	.032	.038	.041	.043	.047	.050	.053
280	64	600	.027	.036	.043	.046	.048	.051	.053	.055
290	74	600	.032	.042	.049	.052	.054	.056	.055	.056
300	86	600	.037	.048	.056	.060	.054	.061	.059	.057

Pressure Dependence of the Osmotic Coefficient: $\phi(P_2) - \phi(P_1)$

TEMP	P1	P2				MOL	ALITY -			
(*C)	(BAR)	(BAR)	.100	.,250	.500	.750	1.000	2.000	3.000	4.000
0 10 20 25 30 40 50	1 1 1 1 1	1000 1000 1000 1000 1000 1000 1000	. 006 . 005 . 005 . 005 . 005 . 005 . 005	.010 .009 .008 .008 .007 .007	.016 .014 .012 .011 .011 .010 .010	.022 .018 .015 .014 .013 .012 .012	.026 .021 .018 .016 .015 .014 .013	.040 .032 .026 .024 .022 .020 .018	. 029 . 027 . 024 . 022	. 031 . 029 . 027 . 024
60 70 80 90 100	1 1 1 1	1000 1000 1000 1000 1000	.005 .005 .006 .006 .007	.007 .008 .008 .009 .009	.010 .010 .010 .011 .012	.011 .011 .012 .012 .013	.013 .013 .013 .014 .015	.017 .017 .017 .018 .019	.020 .020 .020 .021 .022	.023 .022 .022 .023 .023
110 120 130 140 150	1 2 3 4 5	1000 1000 1000 1000 1000	.007 .008 .008 .009 .010	.010 .011 .012 .013 .014	.013 .014 .015 .016 .018	.014 .016 .017 .018 .020	.016 .017 .019 .020 .022	.020 .022 .023 .026 .028	.023 .025 .027 .030 .032	.026 .028 .030 .033 .036
160 170 180 190 200	6 8 10 13 16	1000 1000 1000 1000 1000	.011 .012 .013 .014 .016	.015 .017 .018 .020 .022	.019 .021 .023 .025 .028	.022 .024 .026 .029 .031	.024 .026 .029 .032 .034	.031 .033 .036 .040 .043	.036 .039 .042 .046 .050	.040 .044 .048 .052 .057
210 220 230 240 250	19 23 28 33 40	1000 1000 1000 1000 1000	.018 .020 .022 .024 .027	.024 .027 .030 .033 .037	.030 .033 .037 .041 .045	.034 .038 .041 .045 .050	.038 .041 .045 .049 .053	.047 .050 .054 .058 .062	.054 .058 .062 .066 .070	.061 .066 .070 .075 .079
260 270 280 290 300	47 55 64 74 86	1000 1000 1000 1000 1000	.031 .034 .039 .045 .051	.041 .046 .052 .059 .068	.050 .055 .062 .070 .079	.055 .060 .067 .075 .084	.058 .064 .070 .078 .087	.067 .072 .077 .082 .089	.074 .078 .082 .086 .090	.083 .086 .089 .091 .093
	*.							;		
e he	100 - 14 14 4			•		·		• -	4 - 14 - 4	

.

Pressure Dependence of the Heat of Solution: $\frac{\Delta \overline{H}_s}{RT}$ (P₂) - $\frac{\Delta \overline{H}_s}{RT}$ (P₁)

	ч.		Ē	· · · · ·		."					
TEMP (°C)	P1 (BAR)	P2 (BAR)	$\frac{1}{RT}$. 001	. 005	.010	MOLA . 020	LITY	. 040	. 050	. 100
25 30 40 50	1 1 1	200 200 200 200	-4.2E-02 -8.6E-03 4.7E-02 9.4E-02	-2.6E-01 -2.2E-01 -1.6E-01 -1.0E-01	-2.6E-01 -2.2E-01 -1.6E-01 -1.1E-01						
60 70 80 90 100	1 1 1 1 1	200 200 200 200 200 200	1.3E-01 1.7E-01 2.0E-01 2.4E-01 2.7E-01	-5.9E-02 -1.7E-02 2.2E-02 6.0E-02 9.6E-02	-6.0E-02 -1.9E-02 2.0E-02 5.7E-02 9.3E-02	-6.1E-02 -2.0E-02 1.9E-02 5.5E-02 9.1E-02	-6.3E-02 -2.2E-02 1.6E-02 5.3E-02 8.8E-02	-6.4E-02 -2.3E-02 1.5E-02 5.1E-02 8.6E-02	-6.4E-02 -2.4E-02 1.4E-02 4.9E-02 8.4E-02	-6.5E-02 -2.5E-02 1.3E-02 4.8E-02 8.3E-02	-6.7E-02 -2.8E-02 8.9E-03 4.4E-02 7.7E-02
110 120 130 140 150	1 2 3 4 5	200 200 200 200 200 200	3.0E-01 3.3E-01 3.7E-01 4.0E-01 4.4E-01	1.3E-01 1.7E-01 2.0E-01 2.4E-01 2.8E-01	1.3E-01 1.6E-01 2.0E-01 2.4E-01 2.8E-01	1.3E-01 1.6E-01 2.0E-01 2.3E-01 2.7E-01	1 2E-01 1.6E-01 1.9E-01 2.3E-01 2.7E-01	1.2E-01 1.5E-01 1.9E-01 2.2E-01 2.6E-01	1.2E-01 1.5E-01 1.9E-01 2.2E-01 2.6E-01	1.2E-01 1.5E-01 1.8E-01 2.2E-01 2.5E-01	1.1E-01 1.4E-01 1.7E-01 2.1E-01 2.4E-01
160 170 180 190 200	6 8 10 13 16	200 200 200 200 200 200	4.8E-01 5.2E-01 5.7E-01 6.2E-01 6.8E-01	3.3E-01 3.7E-01 4.2E-01 4.8E-01 5.4E-01	3.2E-01 3.6E-01 4.1E-01 4.7E-01 5.3E-01	3.1E-01 3.6E-01 4.1E-01 4.6E-01 5.2E-01	3.1E-01 3.5E-01 4.0E-01 4.5E-01 5.0E-01	3.0E-01 3.4E-01 3.9E-01 4.4E-01 4.9E-01	3.0E-01 3.4E-01 3.8E-01 4.3E-01 4.9E-01	2.9E-01 3.3E-01 3.8E-01 4.2E-01 4.8E-01	2.8E-01 3.2E-01 3.6E-01 4.0E-01 4.5E-03
210 220 230 240 250	19 23 28 33 40	200 200 200 200 200 200	7.5E-01 8.3E-01 9.4E-01 1.1E+00 1.2E+00	6.2E-01 7.0E-01 8.0E-01 9.3E-01 1.1E+00	6.0E-01 6.8E-01 7.8E-01 9.0E-01 1.0E+00	5.9E-01 6.7E-01 7.6E-01 8.8E-01 1.0E+00	5.7E-01 6.5E-01 7.4E-01 8.5E-01 9.8E-01	5.6E-01 6.3E-01 7.2E-01 8.3E-01 9.6E-01	5.5E-01 6.2E-01 7.1E-01 8.1E-01 9.4E-01	5.4E-01 6.1E-01 6.9E-01 8.0E-01 9.2E-01	5.1E-01 5.7E-01 6.5E-01 7.4E-01 8.6E-01
260 270 280 290 300	47 55 64 74 86	200 200 200 200 200	1.4E+00 1.7E+00 2.0E+00 2.4E+00 3.0E+00	1.3E+00 1.5E+00 1.8E+00 2.3E+00 2.9E+00	1.2E+00 1.5E+00 1.8E+00 2.2E+00 2.8E+00	1.2E+00 1.4E+00 1.7E+00 2.1E+00 2.7E+00	1.2E+00 1.4E+00 1.7E+00 2.0E+00 2.6E+00	1.1E+00 1.3E+00 1.6E+00 2.0E+00 2.5E+00	1.1E+00 1.3E+00 1.6E+00 1.9E+00 2.4E+00	1.1E+00 1.3E+00 1.5E+00 1.9E+00 2.4E+00	I.0E+00 1.2E+00 1.4E+00 1.7E+00 2.2E+00

Tab	le	13

. 14

ţŦ.

Table 13 Pressure Dependence of the Heat of Solution: $\frac{\Delta \bar{H}_s}{RT} (P_2) - \frac{\Delta \bar{H}_s}{RT} (P_1)$ \bar{H}_2°

.

TEMP	P 1	P 2	"2				·				
(00)	(BAR)	(BAR)	- RT	. 001	. 005	. 010	. 020	.030	. 040	. 050	.100
25 30 40 50	1 1 1 1 1	400 400 400 400	-5.8E-02 5.1E-03 1.1E-01 2.0E-01	-4.9E-01 -4.2E-01 -3.0E-01 -2.0E-01	-4.9E-01 -4.2E-01 -3.0E-01 -2.0E-01	-4.9E-01 -4.2E-01 -3.0E-01 -2.0E-01	-4.9E-01 -4.2E-01 -3.0E-01 -2.0E-01	-4.9E-01 -4.2E-01 -3.0E+01 -2.1E-01	-4.9E-01 -4.2E-01 -3.1E-01 -2.1E-01	-4.9E-01 -4.2E-01 -3.1E-01 -2.1E-01	-4.9E-01 -4.2E-01 -3.1E-01 -2.1E-01
60 70 80 90 100	1 1 1 1	400 400 400 400	2.8E-01 3.5E-01 4.1E-01 4.7E-01 5.3E-01	-1.1E-01 -3.0E-02 4.5E-02 1.2E-01 1.9E-01	-1.1E-01 -3.3E-02 4.1E-02 1.1E-01 1.8E-01	-1.2E-01 -3.6E-02 3.8E-02 1.1E-01 1.8E-01	-1.2E-01 -3.9E-02 3.4E-02 1.0E-01 1.7E-01	-1.2E-01 -4.2E-02 3.1E-02 1.0E-01 1.7E-01	-1.2E-01 -4.3E-02 2.9E-02 9.7E-02 1.6E-01	-1.2E-01 -4.5E-02 2.7E-02 9.5E-02 1.6E-01	-1.3E-01 -5.1E-02 1.9E-02 8.6E-02 1.5E-01
110 120 130 140 150	1 2 3 4 5	400 400 400 400 400	5.9E-01 6.5E-01 7.2E-01 7.8E-01 8.5E-01	2 . 5E -01 3 . 2E -01 3 . 9E -01 4 . 7E -01 5 . 4E -01	2 . 5E -01 3 . 2E -01 3 . 8E -01 4 . 6E -01 5 . 3E -01	2.4E-01 3.1E-01 3.8E-01 4.5E-01 5.2E-01	2 . 4E ~01 3 . 0E -01 3 . 7E ~01 4 . 4E -01 5 . 1E -01	2.3E-01 3.0E-01 3.6E-01 4.3E-01 5.0E-01	2.3E-01 2.9E-01 3.6E-01 4.3E-01 4.9E-01	2.2E-01 2.9E-01 3.5E-01 4.2E-01 4.9E-01	2 . 1E -01 2 . 7E -01 3 . 4E -01 4 . 0E -01 4 . 7E -01
160 170 180 190 200	6 8 10 13 16	400 400 400 400	9.3E-01 1.0E+00 1.1E+00 1.2E+00 1.3E+00	6.2E-01 7.1E-01 8.1E-01 9.2E-01 1.0E+00	6.1E-01 7.0E-01 7.9E-01 8.9E-01 1.0E+00	6.0E-01 6.8E-01 7.8E-01 8.8E-01 9.9E-01	5.9E-01 6.7E-01 7.6E-01 8.6E-01 9.7E-01	5.8E~01 6.6E-01 7.4E-01 8.4E-01 9.5E-01	5.7E-01 6.5E-01 7.3E-01 8.3E-01 9.3E-01	5.6E-01 6.4E-01 7.2E-01 8.1E-01 9.2E-01	5.3E-01 6.1E-01 6.9E-01 7.7E-01 8.7E-01
210 220 230 240 250	19 23 28 33 40	400 400 400 400 400	1.5E+00 1.6E+00 1.8E+00 2.1E+00 2.3E+00	1.2E+00 1.3E+00 1.5E+00 1.8E+00 2.1E+00	1.1E+00 1.3E+00 1.5E+00 1.7E+00 2.0E+00	1.1E+00 1.3E+00 1.5E+00 1.7E+00 2.0E+00	1.1E+00 1.2E+00 1.4E+00 1.6E+00 1.9E+00	1.1E+00 1.2E+00 1.4E+00 1.6E+00 1.8E+00	1 . 1E+00 1 . 2E+00 1 . 4E+00 1 . 6E+00 1 . 8E+00	1 . 0E +00 1 . 2E +00 1 . 3E +00 1 . 5E +00 1 . 8E +00	9.8E-01 1.1E+00 1.2E+00 1.4E+00 1.6E+00
260 270 280 290 300	47 55 64 74 86	400 400 400 400	2.7E+00 3.2E+00 3.9E+00 4.8E+00 6.0E+00	2.4E+00 2.9E+00 3.6E+00 4.4E+00 5.7E+00	2.4E+00 2.8E+00 3.4E+00 4.3E+00 5.5E+00	2.3E+00 2.7E+00 3.3E+00 4.2E+00 5.3E+00	2.2E+00 2.6E+00 3.2E+00 4.0E+00 5.1E+00	2.2E+00 2.6E+00 3.1E+00 3.9E+00 4.9E+00	2.1E+00 2.5E+00 3.0E+00 3.8E+00 4.8E+00	2.1E+00 2.5E+00 3.0E+00 3.7E+00 4.7E+00	1.9E+00 2.3E+00 2.7E+00 3.4E+00 4.3E+00

Table	13
-------	----

Pressure Dependence of the Heat of Solution: $\frac{\Delta \overline{H}_s}{RT} (P_2) - \frac{\Delta \overline{H}_s}{RT} (P_1)$

:	-		Ē			· · · ·		•			
(C)	P1 (BAR) (P2 BAR)	$\frac{1}{RT}$.001	. 005	. 010	MOLA . 020	LITY	. 040	. 050	. 100
25 30 40 50	1 1 1	600 600 600 600	-5.0E-02 4.0E-02 1.9E-01 3.1E-01	-7.0E-01 -6.0E-01 -4.3E-01 -2.8E-01	-7.0E-01 -6.0E-01 -4.3E-01 -2.9E-01	-7.0E-01 -6.0E-01 -4.3E-01 -2.9E-01	-7.0E-01 -6.0E-01 -4.3E-01 -2.9E-01	-7.0E-01 -6.0E-01 -4.3E-01 -2.9E-01	-7.0E-01 -6.0E-01 -4.4E-01 -2.9E-01	-7.0E-01 -6.0E-01 -4.4E-01 -3.0E-01	-7.0E-01 -6.0E-01 -4.4E-01 -3.0E-01
60 70 80 90 100	1 1 1 1	600 600 600 600 600	4.2E-01 5.2E-01 6.1E-01 7.0E-01 7.9E-01	-1.6E-01 -4.1E-02 6.6E-02 1.7E-01 2.7E-01	-1.6E-01 -4.6E-02 6.0E-02 1.6E-01 2.6E-01	-1.6E-01 -4.9E-02 5.6E-02 1.6E-01 2.5E-01	-1.7E-01 -5.4E-02 5.0E-02 1.5E-01 2.5E-01	-1.7E-01 -5.7E-02 4.6E-02 1.4E-01 2.4E-01	-1.7E-01 -6.0E-02 4.3E-02 1.4E-01 2.4E-01	-1.7E-01 -6.3E-02 4.0E-02 1.4E-01 2.3E-01	-1.8E-^1 -7.1E-02 3.0E-02 1.2E-01 2.2E-01
110	1	600	8.7E-01	3.6E-01	3.6E-01	3.5E-01	2 4E - 01	3.3E-01	3.3E-01	3.2E-01	3.1E-01
120	2	600	9.6E-01	4.6E-01	4.5E-01	4.4E-01	4 3E - 01	4.3E-01	4.2E-01	4.1E-01	3.9E-01
130	3	600	1.0E+00	5.6E-01	5.5E-01	5.4E-01	5 3E - 01	5.2E-01	5.1E-01	5.1E-01	4.8E-01
140	4	600	1.1E+00	6.7E-01	6.5E-01	6.4E-01	6 3E - 01	6.2E-01	6.1E-01	6.0E-01	5.7E-01
150	5	600	1.2E+00	7.7E-01	7.6E-01	7.5E-01	7 3E - 01	7.2E-01	7.1E-01	7.0E-01	6.7E-01
160	6	600	1.3E+00	8.9E-01	8.7E-01	8.5E-01	8.4E-01	8.2E-01	8.1E-01	8.0E-01	7.6E-01
170	8	600	1.5E+00	1.0E+00	9.9E-01	9.7E-01	9.5E-01	9.3E-01	9.2E-01	9.1E-01	8.7E-01
180	10	600	1.6E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.0E+00	1.0E+00	9.8E-01
190	13	600	1.7E+00	1.3E+00	1.3E+00	1.2E+00	1.2E+00	1.2E+00	1.2E+00	1.2E+00	1.1E+00
200	16	600	1.9E+00	1.5E+00	1.4E+00	1.4E+00	1.4E+00	1.3E+00	1.3E+00	1.3E+00	1.2E+00
210	19	600	2.1E+00	1 . 7E +00	1.6E+00	1.6E+00	1.5E+00	1.5E+00	1.5E+00	1.5E+00	1.4E+00
220	23	600	2.3E+00	1 . 9E +00	1.8E+00	1.8E+00	1.7E+00	1.7E+00	1.7E+00	1.4E+00	1.5E+00
230	28	600	2.5E+00	2 . 1E +00	2.1E+00	2.0E+00	2.0E+00	1.9E+00	1.9E+00	1.8E+00	1.7E+00
240	33	600	2.9E+00	2 . 4E +00	2.4E+00	2.3E+00	2.2E+00	2.2E+00	2.1E+00	2.1E+00	2.0E+00
250	40	600	3.2E+00	2 . 8E +00	2.7E+00	2.7E+00	2.6E+00	2.5E+00	2.5E+00	2.4E+00	2.2E+00
260	47	600	3.7E+00	3.3E+00	3.2E+00	3.1E+00	3.0E+00	2.9E+00	2.8E+00	2.8E+00	2.6E+00
270	55	600	4.3E+00	3.9E+00	3.7E+00	3.7E+00	3.5E+00	3.4E+00	3.3E+00	3.3E+00	3.0E+00
280	64	600	5.1E+00	4.7E+00	4.5E+00	4.4E+00	4.2E+00	4.1E+00	4.0E+00	3.9E+00	3.6E+00
290	74	600	6.2E+00	5.7E+00	5.5E+00	5.4E+00	5.1E+00	5.0E+00	4.9E+00	4.8E+00	4.4E+00
300	86	600	7.7E+00	7.2E+00	6.9E+00	6.7E+00	6.4E+00	6.2E+00	6.1E+00	5.9E+00	5.4E+00

A)

88

ı)

ar .

ų,

Pressure Dependence of the Heat of Solution: $\frac{\Delta \bar{H}_s}{RT}$ (P₂) - $\frac{\Delta \bar{H}_s}{RT}$ (P₁)

ŞaÇ

1. • 2.6

			Ħ	7	. * 		.•				
(°C)	(BAR)	P2 (BAR)	$\frac{2}{RT}$.001	. 005	. 010	.020	.031	. 040	. 050	. 100
25	1	1000	3.4E-02	-1.0E+00	-1.0E+00	-1.0E+00	-1.0F+00	-1.05+00	-1.02+00	-1.0E+00	-1.0E+00
30		1000	1.6E-01	-8.9E-01	-9.0E-01	-9.0E-01	-9.0E-01	-9.01-01	-9.0E-01	-9.0E-01	-9.0E-01
40		1000	3.8E-01	-6.4E-01	-6.5E-01	-6.5E-01	-6.5E-01	-6.55-01	-6.6E-01	-6.6E-01	-6.6E-01
50		1000	5.7E-01	-4.3E-01	-4.3E-01	-4.4E-01	-4.4E-01	-4.45-01	-7.5E-01	-4.5E-01	-4.5E-01
60 70 80 90 100	1 1 2 1 2 1 2 1	1000 1000 1000 1000 1000	7.3E-01 8.7E-01 1.0E+00 1.1E+00 1.3E+00	-2.4E-01 -6.5E-02 9.5E-02 2.5E-01 4.0E-01	-2.4E-01 -7.3E-02 8.6E-02 2.4E-01 3.8E-01	-2.5E-01 -7.8E-02 8.0E-02 2.3E-01 3.8E-01	-2.5E-01 -8.5E-02 7.2E-02 2.2E-01 3.6E-01	-2.65-01 -9.05-02 6.55-02 2.15-01 3.55-01	-2.6E-01 -9.4E-02 6.0E-02 2.1E-01 3.5E-01	-2.6E-01 -9.8E-02 5.6E-02 2.0E-01 3.4E-01	-2.7E-01 -1.1E-01 4.0E-02 1.8E-01 3.2E-01
110	1	1000	1.4E+00	5.4E-01	5.3E-01	5.2E-01	5 0E-01	4.9E-01	4.9E-01	4.8E-01	4.5E-01
120	2	1000	1.5E+00	6.9E-01	6.7E-01	6.6E-01	6.4E-01	6.3E-01	6.2E-01	6.1E-01	5.8E-01
130	3	1000	1.6E+00	8.3E-01	8.2E-01	8.0E-01	7.8E-01	7.7E-01	7.6E-01	7.5E-01	7.2E-01
140	4	1000	1.8E+00	9.9E-01	9.6E-01	9.5E-01	9.3E-01	9.1E-01	9.0E+01	8.9E-01	8.5E-01
150	5	1000	1.9E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.0E+00	1.0E+03	9.8E-01
160	6	1000	2.1E+00	1.3E+00	1.3E+00	1.3E+00	1.2E+00	1.2E+00	1.2E+00	1.2E+00	1.1E+00
170	8	1000	2.2E+00	1.5E+00	1.5E+00	1.4E+00	1.4E+00	1.4E+00	1.4E+00	1.3E+00	1.3E+00
180	10	1000	2.4E+00	1.7E+00	1.6E+00	1.6E+00	1.6E+00	1.5E+00	1.5E+00	1.5E+00	1.4E+00
190	13	1000	2.6E+00	1.9E+00	1.8E+00	1.8E+00	1.8E+00	1.7E+00	1.7E+00	1.7E+00	1.6E+00
200	16	1000	2.8E+00	2.1E+00	2.1E+00	2.0E+00	2.0E+00	1.9E+00	1.9E+00	1.9E+00	1.8E+00
210	19	1000	3.1E+00	2.4E+00	2.3E+00	2.3E+00	2.2E+00	2.2E+00	2.1E+00	2.1E+00	2.0E + .0
220	23	1000	3.4E+00	2.7E+00	2.6E+00	2.6E+00	2.5E+00	2.4E+00	2.4E+00	2.4E+00	2.2E +)0
230	28	1000	3.7E+00	3.0E+00	2.9E+00	2.9E+00	2.8E+00	2.7E+00	2.7E+00	2.6E+00	2.5E +00
240	33	1000	4.1E+00	3.4E+00	3.3E+00	3.2E+00	3.1E+00	3.1E+00	3.0E+00	3.0E+00	2.8E +00
250	40	1000	4.6E+00	3.9E+00	3.8E+00	3.7E+00	3.6E+00	3.5E+00	3.4E+00	3.3E+00	3.1E +00
260	47	1000	5.2E+00	4.5E+00	4.3E+00	4.2E+00	4 . 1E +00	4.0E+00	3.9E+00	3.8E+00	3.5E+00
270	55	1000	5.9E+00	5.2E+00	5.0E+00	4.9E+00	4 . 7E +00	4.6E+00	4.5E+00	4.4E+00	4.1E+00
280	64	1000	6.8E+00	6.1E+00	5.9E+00	5.7E+00	5 . 5E +00	5.3E+00	5.2E+00	5.1E+00	4.7E+00
290	74	1000	8.0E+00	7.3E+00	7.0E+00	6.8E+00	6 . 5E +00	6.3E+00	6.2E+00	6.0E+00	5.6E+00
300	86	1000	9.7E+00	8.9E+00	8.5E+00	8.3E+00	7 . 9E +00	7.7E+00	7.5E+00	7.3E+00	6.7E+00

Table	14
-------	----

Pressure Dependence of the Apparent Molal Enthalpy: $\frac{\phi_L}{RT}(P_2) - \frac{\phi_L}{RT}(P_1)$

			•	- •					6
TEMP (°C)	P1 (BAR)	P2 (BAR)	. 100	. 250	.500	.750 1.000	2.000	3.000	4.000
25	1	200	-2.2E-03	1.1E-03	8.3E-03	1.6E-02 2.4E-02	5.3E-02	7.8E-02	9.8E-02
30	1.5	200	-3.4E-03	-1.3E-03	4.2E-03	1.0E-02 1.7E-02	4.1E-02	6.3E-02	8.0E-02
40	1.5	200	-5.6E-03	-5.6E-03	-2.9E-03	6.4E-04 4.6E-03	2.1E-02	3.6E-02	4.8E-02
50	1.5	200	-7.9E-03	-9.5E-03	-9.3E-03	-7.8E-03 -5.8E-03	4.0E-03	1.4E-02	2.3E-02
60	1	200	-1.0E-02	-1.3E-02	-1.5E-02	-1.6E-02 -1.5E-02	-1.1E-02	-5.4E-03	-9.0E-05
70	1	200	-1.3E-02	-1.7E-02	-2.1E-02	-2.3E-02 -2.4E-02	-2.5E-02	-2.3E-02	-2.1E-02
80	1	200	-1.5E-02	-2.2E-02	-2.7E-02	-3.1E-02 -3.3E-02	-3.8E-02	-4.0E-02	-4.1E-02
90	1	200	-1.8E-02	-2.6E-02	-3.4E-02	-3.9E-02 -4.2E-02	-5.1E-02	-5.7E-02	-6.0E-02
100	1	200	-2.1E-02	-3.1E-02	-4.1E-02	-4.7E-02 -5.2E-02	-6.5E-02	-7.3E-02	-7.9E-02
110	1	200	-2.5E-02	-3.7E-02	-4.8E-02	-5.6E-02 -6.2E-02	-7.9E-02	-9.0E-02	-9.9E-02
120	2	200	-2.9E-02	-4.3E-02	-5.7E-02	-6.6E-02 -7.4E-02	-9.4E-02	-1.1E-01	-1.2E-01
130	3	200	-3.4E-02	-5.0E-02	-6.6E-02	-7.8E-02 -8.6E-02	-1.1E-01	-1.3E-01	-1.4E-01
140	4	200	-4.0E-02	-5.9E-02	-7.7E-02	-9.0E-02 -1.0E-01	-1.3E-01	-1.5E-01	-1.6E-01
150	5	200	-4.7E-02	-6.9E-02	-9.0E-02	-1.0E-01 -1.2E-01	-1.5E-01	-1.7E-01	-1.9E-01
160	6	200	-5.5E-02	-8.0E-02	-1.0E-01	-1.2E-01 -1.3E-01	-1.7E-01	-1.9E-01	-2.1E-01
170	8	200	-6.4E-02	-9.3E-02	-1.2E-01	-1.4E-01 -1.6E-01	-2.0E-01	-2.2E-01	-2.4E-01
180	10	200	-7.5E-02	-1.1E-01	-1.4E-01	-1.6E-01 -1.8E-01	-2.2E-01	-2.5E-01	-2.8E-01
190	13	200	-8.8E-02	-1.3E-01	-1.7E-01	-1.9E-01 -2.1E-01	-2.6E-01	-2.9E-01	-3.1E-01
200	16	200	-1.0E-01	-1.5E-01	-1.9E-01	-2.2E-01 -2.4E-01	-3.0E-01	-3.3E-01	-3.6E-01
210	19	200	-1.2E-01	-1.8E-01	-2.3E-01	-2.6E-01 -2.9E-01	-3.5E-01	-3.8E-01	-4.1E-01
220	23	200	-1.5E-01	-2.1E-01	-2.7E-01	-3.1E-01 -3.4E-01	-4.1E-01	-4.5E-01	-4.7E-01
230	28	200	-1.8E-01	-2.5E-01	-3.2E-01	-3.7E-01 -4.0E-01	-4.8E-01	-5.2E-01	-5.5E-01
240	33	200	-2.1E-01	-3.0E-01	-3.9E-01	-4.4E-01 -4.8E-01	-5.7E-01	-6.2E-01	-6.4E-01
250	40	200	-2.6E-01	-3.7E-01	-4.7E-01	-5.3E-01 -5.8E-01	-6.8E-01	-7.4E-01	-7.6E-01
260	47	200	-3.1E-01	-4.5E-01~	-5:7E-01	-6.5E-01.0 -7.0E-01	-8.3E-01	-8:9E-01	-9.2E-01
270	55	200	-3.8E-01	-5.5E-01	-7.0E-01	-8.0E-01 -8.6E-01	-1.0E+00	-1.1E+00	-1.1E+00
280	64	200	-4.8E-01	-6.8E-01	-8.7E-01	-9.9E-01 -1.1E+00	+1.3E+00	-1.4E+00	-1.4E+00
290	74	200	-6.0E-01	-8.6E-01	-1.1E+00	-1.2E+00 -1.4E+00	-1.6E+00	-1.7E+00	-1.8E+00
300	86	200	-7.6E-01	-1.1E+00	-1.4E+00	-1.6E+00 -1.7E+00	-2.1E+00	-2.2E+00	-2.3E+00

 \sim

- .

			•										Φ		Φ-		':	
		Pre	essur	e Depe	nden	ce of	the	Appar	ent l	Molal	Entl	n al py:	T RT	(P ₂)	$-\frac{T}{RT}$	(P ₁)		
					· · ·													
TEMP (°C)	P1 (BAR	P2)	.100		250		.500		MOL	ALITY	000		000				
		•	- -		-			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		•		•		5.		•	
25 30		400) - (- (3.9E-03 5.3E-03	2 _2	5E-03 1E-03	· 1 8	.7E-02 .6E-03	3.	2E-02	4.	7E-02 3E-02	1.	0E-01 0E-02	1.5	E-01 E-01	1.	9E-01 5E-01
-40 50	1	400) —]) —]	1.1E-02 1.5E-02	∵ 	0E-02 8E-02	-5 -1	.4E-03 .8E-02	1. -1.	6E -03 5E -02	9. -1.	2E-03	4. 7.	0E-02 5E-03	6.9	E-02 E-02	9.	2E - 02 2E - 02
		•			· • • ·	•												
60 70	1	400	-	1.9E-02 2.4E-02	-2 -3	6E-02 3E-02	-2	.9E-02 .1E-02	-3. -4.	0E-02 4E-02	-2. -4.	.9E-02 .7E-02	-2. -4.	1E-02 8E-02	-1.1 -4.6	E-02 E-02	-1. -4.	9E - 03 2E - 02
90	. 1	400	-	2.9E-02 3.4E-02	-4	1E-02 0E-02	-5	. 2E -02 . 4E -02	-5. -7.	9E-02 4E-02	-6. -8.	4E-02	-7. -9.	4E -02 9E -02	-7.8 -1.1	E-02 E-01	-8.0	0E -02 2E -01
100	ا	. 400		1. IE-02	-5.	9E-02	-1	./E-02	-9.	0E-02	-9.	. 9E - 02	-1.	3E-01	-1.4	E-01	-1.9	5E-01
110	1	400		+.8E-02	-7	0E-02	-9 -1	. 2E - 02	-1.	1E-01	-1	2E-01	-1.	5E-01	-1.7	E-01	-1. -2	9E-01
130	3	400		5.5E-02	-9 -1	5E-02	-1	. 3E-01	-1. -1. -1	5E-01	-1. -1.	6E-01	-2. -2.	1E-01	-2.4	E-01 E-01	-2.	7E-01
150	5	400	- (9.8E-02	-i	3E-01	-1	.7Ē-01	-2.	0E-01	-2	2E-01	-2.	8E-01	-3.3	Ĕ-01 ·	-3.9	6E-01
160	6	400) –1	I.0E-01	-1.	5E-01	-2	.0E-01	-2.	3E-01	-2	.5E-01	-3.	2E - 01	-3.7	E-01	-4.	1E-01
170 180	8 10	400)	.2E-01	-1 -2	7E-01 0E-01	-2	. 3E -01 . 7E -01	-2.	6E-01 1E-01	-2 -3	.9E-01 .4E-01	-3. -4.	7E -01 3E -01	-4.2 -4.8	E-01 E-01	-4. -5.	7E -01 3E -01
190 200	13	400		.6E-01	-2 -2	4E-01 8E-01	-3	. 1E -01 . 6E -01	-3. -4.	6E -01 2E -01	-3.	.9E-01 .6E-01	-4. -5.	9E-01 7E-01	-5.5 -6.3	E-01 E-01	-6. -6.	0E - 01 8E - 01
					-					~ ~ ~	-						-	05 01
220	23	400	-2	2.3E-01 2.7E-01	-3.	3E -01		. 3E -01	-4. -5.	8E-01	-6.	.4E-01	-6. -7.	7E-01	-7.3	E-01 E-01	-9.	0E-01
230 240	33	400	-4	1.0E-01	-5.	7E-01	-0 -7	. 1E -01 . 3E -01	-8. -8.	3E-01	-9	.0E-01	-1.	1E+00	-1.2	E+00 E+00	-1.	2E+00
270	70	400		.02-01	-0.	7E - UI	-0	. OE -V I	-1.		-1.	16 400	-1.	JETUV	-1,. 4	L + V V	-1.	7E + V V
260	47 55	400	5 -1	.9E-01	-8. -1	5E-01	-1 -1	.1E+00	-1. -1	2E+00 5E+00	-1. -1	3E+00	-1. -1	6E+00 9E+00	-1.7	E+00 F+00	~1. -2	8E +00 2E +00
280	64 74	400	-9 -1	2E+00	-1. -1	3E+00 7E+00	-i -2	.7E+00 2E+00	-1.	9E+00 5E+00	-2.	1E+00 7E+00	-2. -3	4E+00 1E+00	-2.6	E+00 E+00	-2. -3.	7E+00 4E+00
200	96	400	-1	AE+00	-2	2E+00	-2	85+00	- 7	2F+00	-3	5E+00	-4	1E+00	-4 4	Ē+00	-4	5F+00

 $\frac{\Phi_L}{RT}$ (P₂) Pressure Dependence of the Apparent Molal Enthalpy:

TEMP **P**1 P2 -- MOLALITY ----(°C) (BAR) (BAR) .100 . 250 .500 . 750 1.000 2.000 4.000 3.000 25 30 4.2E-03 -2.6E-03 -1.5E-02 2.5E-02 1.3E-02 600 -5.4E-03 4.7E-02 6.9E-02 1.5E-01 2.2E-01 2.7E-01 -8.8E-03 -1.5E-02 600 3.0E-02 4.8E-02 1.2E-01 1.7E-01 2.2E-01 40 600 1 -7.3E-03 2.7E-03 1.4E-02 5.8E-02 9.8E-02 1.3E-01 50 600 -2.1E-02 -2.6E-02 -2.5E-02 -2.1E-02 -1.6E-02 1.1E-02 3.6E-02 5.8E-02 60 600 -2.8E-02 -3.4E-02 -4.2E-02 -6.7E-02 -3.1E-02 -6.9E-02 -1.1E-01 -3.7E-02 -4.2E-02 -4.3E-02 -1.7E-02 -4.6E-03 -5.8E-02 -7.5E-02 70 -4.7E-02 -6.6E-02 600 -6.4E-02 -6.2E-02 80 600 -4.1E-02 -5.9E-02 -1.2E-01 -9.1E-02 -8.4E-02 -1.1E-01 90 -4.9E-02 600 -7.1E-02 -9.2E-02 1 -1.1E-01 -1.2E-01 -1.4E-01 -1.6E-01 -1.7E-01 100 1 600 -5.8E-02 -8.4E-02 -1.1E-01 -1.3E-01 -1.4E-01 -1.8E-01 -2.0E-01 -2.2E-01 -6.7E-02 -7.8E-02 -9.1E-02 -1.1E-01 -9.9E-02 -1.2E-01 -1.3E-01 -1.6E-01 -1.3E-01 -1.5E-01 -1.8E-01 -2.2E-01 -2.6E-01 -3.0E-01 -3.5E-01 110 600 -2.8E-01 1 -1.5E-01 -1.7E-01 -2.5E-01 -2.0E-01 -2.3E-01 -2.7E-01 23 120 -3.0E-01 600 -1.8E-01 -3.3E-01 130 600 -2.1E-01 -3.5E-01 -3.9E-01 -4.0E-01 -4.5E-01 140 4 600 -2.1E-01 -2.4E-01 . -4.6E-01 -5.1E-01 -1.2E-01 5 150 600 -1.8E-01 -2.4E-01 -2.8E-01 -3.1E-01 -4.0E-01 600 -2.1E-01 -2.4E-01 -3.6E-01 -5.9E-01 160 -1.4E-01 -2.7E-01 -3.2E-01 -4.6E-01 -5.3E-01 6 170 8 e 600 -1.7E-01 -3.2E-01 -3.7E-01 -4.1E-01 -5.2E-01 -6.0E-01 -6.6E-01 10 -2.8E-01 -3.7E-01 -4.3E-01 -4.7E-01 -6.0E-01 -6.8E-01 -7.5E-01 600 -1.9E-01 180 13 16 -3.3E-01 -2.3E-01 -5.5E-01 -8.5E-01 190 . ÷600 -4.3E-01 -5.0E-01 -6.8E-01 -7.8E-01 600 -2.7E-01 -3.9E-01 -5.0E-01 -5.8E-01 -6.3E-01 -7.9E-01 -8.8E-01 -9.6E-01 200 -6.7E-01 -7.4E-01 -9.1E-0130 -1.0E+00 -1.1E+00 210 19 <600 -3.1E-01 -4.5E-01 -5.9E-01 -5.4E-01 -6.4E-01 -7.7E-01 -9.3E-01 220 23 600 -3.7E-01 --6.9E-01 -7.9E-01 -8.7E-01 -1-1E+00--4.4E-01 -5.3E-01 -6.5E-01 -1.4E+00 230 28 -8.2E-01 -9.4E-01 -1.0E+00 -1.2E+00 -1.4E+00 600 -9.8E-01 -1.2E+00 -1.5E+00 -1.6E+00 -1.7E+00 -1.1E+00 240 33 600 -1.9E+00 -1.3E+00 -1.5E+00 -1.7E+00 -2.0E+00 600 -1.2E+00 250 40 7 -1.6E+00 -1.8E+00 -2.1E+00 -2.2E+00 -2.3E+00 260 270 47 600 -7.9E-01 -1.1E+00 -1.4E+00 -2.2E+00 -2.6E+00 -3.2E+00 -2.7E+00 -2.8E+00 -2.0E+00 55 600 -9.8E-01 -1.4E+00 -1.8E+00 ~3.5E+00 64 -1.2E+00 -2.5E+00 -2.7E+00 -3.4E+00 -1.7E+00 -2.2E+00 280 600 -4.4E+00 -4.0E+00 -4.3E+00 -1.6E+00 -2.2E+00 -2.8E+00 -3.2E+00 -3.5E+00 290 74 600 -5.6E+00

-4.1E+00

-3.7E+00

-2.9E+00

-4.5E+00

-5.2E+00

92

-5.7E+00

300

86

600

-2.0E+00

Pressure Dependence of the Apparent Molal Enthalpy: $\frac{\phi_L}{RT}$ (P₂) - $\frac{\phi_L}{RT}$ (P₁)

2. ×

TEMP	P1	P2		MOLALITY									
(°C)	(BAR)	(BAR)	.100	.250	.500	. 750	1.000	2.000	3.000	4.000			
25 30 40 50	1 1 1	1000 1000 1000 1000	-7.4E-03 -1.3E-02 -2.3E-02 -3.2E-02	7.8E-03 -2.8E-03 -2.2E-02 -3.9E-02	4.0E-02 2.2E-02 -1.0E-02 -3.8E-02	7.4E-02 4.8E-02 5.3E-03 -3.1E-02	1.1E-01 7.6E-02 2.2E-02 -2.3E-02	2.3E-01 1.8E-01 9.0E-02 1.7E-02	3.3E-01 2.6E-01 1.5E-01 5.4E-02	4.1E-01 3.3E-01 1.9E-01 8.6E-02			
60 70 80 90 100	1 1 1 1	1000 1000 1000 1000 1000	-4.2E-02 -5.1E-02 -6.2E-02 -7.3E-02 -8.6E-02	-5.5E-02 -7.1E-02 -8.8E-02 -1.1E-01 -1.3E-01	-6.3E-02 -8.7E-02 -1.1E-01 -1.4E-01 -1.6E-01	-6.4E-02 -9.6E-02 -1.3E-01 -1.6E-01 -1.9E-01	-6.3E-02 -1.0E-01 -1.4E-01 -1.7E-01 -2.1E-01	-4.7E-02 -1.0E-01 -1.6E-01 -2.1E-01 -2.7E-01	-2.7E-02 -1.0E-01 -1.7E-01 -2.4E-01 -3.0E-01	-8.9E-03 -9.5E-02 -1.8E-01 -2.5E-01 -3.3E-01			
110	1	1000	-1.0E-01	-1.5E-01	-1.9E-01	-2.3E-01	-2.5E-01	-3.2E-01	-3.7E-01	-4.1E-01			
120	2	1000	-1.2E-01	-1.7E-01	-2.3E-01	-2.6E-01	-2.9E-01	-3.8E-01	-4.4E-01	-4.9E-01			
130	3	1000	-1.3E-01	-2.0E-01	-2.6E-01	-3.1E-01	-3.4E-01	-4.4E-01	-5.2E-01	-5.7E-01			
140	4	1000	-1.5E-01	-2.3E-01	-3.0E-01	-3.5E-01	-3.9E-01	-5.1E-01	-5.9E-01	-6.6E-01			
150	5	1000	-1.8E-01	-2.6E-01	-3.5E-01	-4.1E-01	-4.5E-01	-5.8E-01	-6.8F-01	-7.6E-01			
160	6	1000	-2.1E-01	-3.0E-01	-4.0E-01	-4.6E-01	-5.2E-01	-6.7E-01	-7.7E-01	-8.6E-01			
170	8	1000	-2.4E-01	-3.5E-01	-4.6E-01	-5.3E-01	-5.9E-01	-7.6E-01	-8.7E-01	-9.7E-01			
180	10	1000	-2.8E-01	-4.0E-01	-5.3E-01	-6.1E-01	-6.8E-01	-8.6E-01	-9.9E-01	-1.1E+00			
190	13	1000	-3.2E-01	-4.7E-01	-6.1E-01	-7.0E-01	-7.8E-01	-9.8E-01	-1.1E+00	-1.2E+00			
200	16	1000	-3.7E-01	-5.4E-01	-7.0E-01	-8.1E-01	-9.0E-01	-1.1E+00	-1.3E+00	-1.4E+00			
210	19	1000	-4.4E-01	-6.3E-01	-8.2E-01	-9.4E-01	-1.0E+00	-1.3E+00	~1.4E+00	-1.6E+00			
220	23	1000	-5.1E-01	-7.4E-01	-9.6E-01	-1.1E+00	-1.2E+00	-1.5E+00	-1.6E+00	-1.8E+00			
230	28	1000	-6.1E-01	-8.7E-01	-1.1E+00	-1.3E+00	-1.4E+00	-1.7E+00	-1.9E+00	-2.0E+00			
240	33	1000	-7.2E-01	-1.0E+00	-1.3E+00	-1.5E+00	-1.6E+00	-2.0E+00	-2.2E+00	-2.3E+00			
250	40	1000	-8.6E-01	-1.2E+00	-1.6E+00	-1.8E+00	-2.0E+00	-2.3E+00	-2.5E+00	-2.7E+00			
260	47	1000	-1.0E+00	-1.5E+00	-1.9E+00	-2.2E+00	-2.3E+00	-2.8E+00	-3.0E+00	-3.1E+00			
270	55	1000	-1.3E+00	-1.8E+00	-2.3E+00	-2.6E+00	-2.8E+00	-3.3E+00	-3.5E+00	-3.7E+00			
280	64	1000	-1.6E+00	-2.2E+00	-2.8E+00	-3.2E+00	-3.5E+00	-4.0E+00	-4.3E+00	-4.4E+00			
290	74	1000	-2.0E+00	-2.8E+00	-3.5E+00	-4.0E+00	-4.3E+00	-5.0E+00	-5.3E+00	-5.4E+00			
300	86	1000	-2.5E+00	-3.5E+00	-4.5E+00	-5.1E+00	-5.5E+00	-6.3E+00	-6.7E+00	-6.8E+00			
Pressure Dependence of the Apparent Molal Heat Capacity: $\frac{{}^{\phi}C}{R}(P_2) - \frac{{}^{\phi}C}{R}(P_1)$

			ō°								
TEMP (°C)	P1 (BAR)	P2 (BAR)	^p 2 R	. 100	. 250	.500	. 750 MOLA	LITY 1.000	2.000	3.000	4.000
25	1	200	2.1E+00	2.0E+00	1.9E+00	1.8E+00	1.7E+00	1.6E+00	1.4E+00	1.1E+00	9.9E-01
30	1	200	1.9E+00	1.8E+00	1.7E+00	1.7E+00	1.6E+00	1.5E+00	1.2E+00	1.0E+00	9.1E-01
40	1	200	1.6E+00	1.6E+00	1.5E+00	1.4E+00	1.3E+00	1.3E+00	1.1E+00	9.1E-01	8.0E-01
50	1	200	1.5E+00	1.4E+00	1.3E+00	1.3E+00	1.2E+00	1.2E+00	9.8E-01	8.4E-01	7.3E-01
60 70 80 90 100		200 200 200 200 200	1.4E+00 1.4E+00 1.4E+00 1.4E+00 1.5E+00	1.3E+00 1.3E+00 1.3E+00 1.3E+00 1.3E+00 1.3E+00	1.3E+00 1.2E+00 1.2E+00 1.2E+00 1.2E+00 1.2E+00	1.2E+00 1.1E+00 1.1E+00 1.1E+00 1.1E+00 1.1E+00	1.1E+00 1.1E+00 1.1E+00 1.1E+00 1.1E+00 1.1E+00	1.1E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00	9.2E-01 8.9E-01 8.7E-01 8.7E-01 8.8E-01	7.9E-01 7.6E-01 7.5E-01 7.5E-01 7.6E-01	6.9E-01 6.6E-01 6.5E-01 6.5E-01 6.6E-01
110 120 130 140 150	1 2 3 4 5	200 200 200 200 200	1.5E+00 1.6E+00 1.8E+00 1.9E+00 2.2E+00	1.4E+00 1.4E+00 1.5E+00 1.6E+00 1.8E+00	1.3E+00 1.3E+00 1.4E+00 1.5E+00 1.6E+00	1.2E+00 1.2E+00 1.3E+00 1.4E+00 1.5E+00	1 1E+00 1 2E+00 1 2E+00 1 3E+00 1 3E+00 1 4E+00	1.1E+00 1.1E+00 1.1E+00 1.2E+00 1.3E+00	9.0E-01 9.3E-01 9.7E-01 1.0E+00 1.1E+00	7.8E-01 8.0E-01 8.4E-01 8.9E-01 9.5E-01	6.7E-01 7.0E-01 7.4E-01 7.9E-01 8.5E-01
160	6	200	2.4E+00	2.0E+00	1.8E+00	1.6E+00	1.5E+00	1.4E+00	1.2E+00	1.0E+00	9.3E-01
170	8	200	2.8E+00	2.2E+00	2.0E+00	1.8E+00	1.6E+00	1.5E+00	1.3E+00	1.1E+00	1.0E+00
180	10	200	3.2E+00	2.5E+00	2.2E+00	2.0E+00	1.8E+00	1.7E+00	1.4E+00	1.2E+00	1.1E+00
190	13	200	3.7E+00	2.9E+00	2.5E+00	2.2E+00	2.0E+00	1.9E+00	1.5E+00	1.4E+00	1.3E+00
200	16	200	4.4E+00	3.4E+00	2.9E+00	2.5E+00	2.3E+00	2.1E+00	1.7E+00	1.5E+00	1.5E+00
210	19	200	5.3E+00	4.0E+00	3.4E+00	3.0E+00	2.6E+00	2.4E+00	2.0E+00	1.8E+00	1.7E+00
220	23	200	6.5E+00	4.8E+00	4.1E+00	3.5E+00	3.1E+00	2.9E+00	2.3E+00	2.0E+00	1.9E+00
230	28	200	8.0E+00	6.0E+00	5.1E+00	4.3E+00	3.8E+00	3.4E+00	2.7E+00	2.4E+00	2.3E+00
240	33	200	1.0E+01	7.5E+00	6.4E+00	5.3E+00	4.7E+00	4.2E+00	3.3E+00	2.9E+00	2.7E+00
250	40	200	1.3E+01	9.7E+00	8.2E+00	6.8E+00	6.0E+00	5.4E+00	4.0E+00	3.5E+00	3.3E+00
260	47	200	1.7E+01	1.3E+01	1.1E+01	8.9E+00	7.8E+00	6.9E+00	5.1E+00	4.4E+00	4.0E+00
270	55	200	2.3E+01	1.7E+01	1.4E+01	1.2E+01	1.0E+01	9.3E+00	6.7E+00	5.6E+00	5.0E+00
280	64	200	3.2E+01	2.4E+01	2.0E+01	1.6E+01	1.4E+01	1.3E+01	9.1E+00	7.3E+00	6.3E+00
290	74	200	4.5E+01	3.3E+01	2.8E+01	2.3E+01	2.0E+01	1.8E+01	1.3E+01	9.9E+00	8.3E+00
300	. 86	200	6.6E+01	4.9E+01	4.1E+01	3.4E+01	3.0E+01	2.6E+01	1.8E+01	1.4E+01	1.1E+01

Та	ь	1	е	1	5

ÌP.

Pressure Dependence of the Apparent Molal Heat Capacity: $\frac{{}^{\phi}C}{R}(P_2) - \frac{{}^{\phi}C}{R}(P_1)$

		P2 (BAR)	៑៝៓								
TEMP (°C)	P1 (BAR)		$\frac{P_2}{R}$. 100	. 250	. 500	. 750	LITY 1.000	2.000	3.000	4.000
25	1	400	4.0E+00	3.8E+00	3.7E+00	3.5E+00	3.3E+00	3.1E+00	2.5E+00	2.1E+00	1.8E+00
30	1	400	3.6E+00	3.4E+00	3.3E+00	3.1E+00	3.0E+00	2.8E+00	2.3E+00	2.0E+00	1.7E+00
40	1	400	3.1E+00	3.0E+00	2.9E+00	2.7E+00	2.6E+00	2.4E+00	2.0E+00	1.7E+00	1.5E+00
50	1	400	2.8E+00	2.7E+00	2.6E+00	2.4E+00	2.3E+00	2.2E+00	1.9E+00	1.6E+00	1.4E+00
60 70 80 90 100	1 1 1 1	400 400 400 400 400 400	2.7E+00 2.6E+00 2.6E+00 2.7E+00 2.8E+00	2.5E+00 2.4E+00 2.4E+00 2.4E+00 2.4E+00 2.5E+00	2.4E+00 2.3E+00 2.3E+00 2.3E+00 2.4E+00	2.3E+00 2.2E+00 2.2E+00 2.2E+00 2.2E+00 2.2E+00	2.2E+00 2.1E+00 2.1E+00 2.1E+00 2.1E+00 2.1E+00	2.1E+00 2.0E+00 2.0E+00 2.0E+00 2.0E+00 2.0E+00	1.8E+00 1.7E+00 1.7E+00 1.7E+00 1.7E+00 1.7E+00	1.5E+00 1.5E+00 1.4E+00 1.4E+00 1.4E+00 1.4E+00	1.3E+00 1.3E+00 1.2E+00 1.2E+00 1.2E+00 1.2E+00
110	1	400	2.9E+00	2.6E+00	2.4E+00	2.3E+00	2 . 1E +00	2.0E+00	1.7E+00	1.5E+00	1.3E+00
120	2	400	3.1E+00	2.7E+00	2.5E+00	2.3E+00	2 . 2E +00	2.1E+00	1.8E+00	1.5E+00	1.3E+00
130	3	400	3.4E+00	2.9E+00	2.7E+00	2.5E+00	2 . 3E +00	2.2E+00	1.8E+00	1.6E+00	1.4E+00
140	4	400	3.7E+00	3.1E+00	2.9E+00	2.6E+00	2 . 4E +00	2.3E+00	1.9E+00	1.7E+00	1.5E+00
150	5	400	4.0E+00	3.4E+00	3.1E+00	2.8E+00	2 . 6E +00	2.4E+00	2.1E+00	1.8E+00	1.6E+00
160	6	400	4.5E+00	3.7E+00	3.3E+00	3.0E+00	2.8E+00	2.6E+00	2.2E+00	1.9E+00	1.7E+00
170	8	400	5.1E+00	4.1E+00	3.7E+00	3.3E+00	3.0E+00	2.8E+00	2.4E+00	2.1E+00	1.9E+00
180	10	400	5.8E+00	4.6E+00	4.1E+00	3.6E+00	3.3E+00	3.1E+00	2.6E+00	2.3E+00	2.1E+00
190	13	400	6.7E+00	5.3E+00	4.6E+00	4.0E+00	3.7E+00	3.4E+00	2.8E+00	2.5E+00	2.3E+00
200	16	400	7.9E+00	6.1E+00	5.3E+00	4.6E+00	4.1E+00	3.8E+00	3.1E+00	2.8E+00	2.7E+00
210	19	400	9.4E+00	7.1E+00	6.2E+00	5.3E+00	4.7E+00	4.4E+00	3.5E+00	3.2E+00	3.0E+00
220	23	400	1.1E+01	8.5E+00	7.3E+00	6.2E+00	5.5E+00	5.1E+00	4.1E+00	3.7E+00	3.5E+00
230	28	400	1.4E+01	1.0E+01	8.8E+00	7.4E+00	6.6E+00	6.0E+00	4.7E+00	4.2E+00	4.1E+00
240	33	400	1.8E+01	1.3E+01	1.1E+01	9.1E+00	8.0E+00	7.2E+00	5.6E+00	5.0E+00	4.8E+00
250	40	400	2.3E+01	1.7E+01	1.4E+01	1.1E+01	1.0E+01	9.0E+00	6.8E+00	6.0E+00	5.7E+00
260	47	400	3.0E+01	2.2E+01	1.8E+01	1.5E+01	1.3E+01	1.1E+01	8.5E+00	7.4E+00	6.9E+00
270	55	400	4.0E+01	2.9E+01	2.4E+01	2.0E+01	1.7E+01	1.5E+01	1.1E+01	9.3E+00	8.6E+00
280	64	400	5.5E+01	4.0E+01	3.3E+01	2.7E+01	2.3E+01	2.1E+01	1.5E+01	1.2E+01	1.1E+01
290	74	400	7.9E+01	5.7E+01	4.7E+01	3.9E+01	3.3E+01	2.9E+01	2.0E+01	1.6E+01	1.4E+01
300	86	400	1.2E+02	8.4E+01	7.0E+01	5.7E+01	4.9E+01	4.3E+01	2.9E+01	2.3E+01	1.9E+01

95

42

-

Pressure Dependence of the Apparent Molal Heat Capacity: $\frac{\phi_C}{R}(P_2) - \frac{\phi_C}{R}(P_1)$

			Ē								
TEMP (°C)	P1 (BAR)	P2 (BAR)	$\frac{p_2}{R}$. 100	. 250	.500		LITY 1.000	2.000	3.000	4.000
25 30 40 50	1 1 1	600 600 600 600	5.6E+00 5.1E+00 4.4E+00 4.1E+00	5.4E+00 4.9E+00 4.2E+00 3.8E+00	5.2E+00 4.7E+00 4.1E+00 3.7E+00	4.9E+00 4.5E+00 3.8E+00 3.5E+00	4.6E+00 4.2E+00 3.6E+00 3.3E+00	4.4E+00 4.0E+00 3.5E+00 3.2E+00	3.6E+00 3.3E+00 2.9E+00 2.6E+00	3.0E+00 2.7E+00 2.4E+00 2.2E+00	2.6E+00 2.4E+00 2.1E+00 2.0E+00
60 70 80 90 100	1 1 1 1	600 600 600 600 600	3.9E+00 3.8E+00 3.8E+00 3.8E+00 4.0E+00	3.6E+00 3.5E+00 3.5E+00 3.5E+00 3.6E+00	3.5E+00 3.3E+00 3.3E+00 3.3E+00 3.4E+00	3.3E+00 3.2E+00 3.1E+00 3.1E+00 3.2E+00	3.1E+00 3.0E+00 3.0E+00 2.9E+00 3.0E+00	3.0E+00 2.9E+00 2.8E+00 2.8E+00 2.8E+00 2.8E+00	2.5E+00 2.4E+00 2.4E+00 2.4E+00 2.4E+00 2.4E+00	2.1E+00 2.1E+00 2.0E+00 2.0E+00 2.1E+00	1.9E+00 1.8E+00 1.8E+00 1.8E+00 1.8E+00 1.8E+00
110	1	600	4.2E+00	3.7E+00	3.5E+00	3.2E+00	3 1E+00	2.9E+00	2.5E+00	2.1E+00	1.8E+00
120	2	600	4.4E+00	3.9E+00	3.6E+00	3.3E+00	3.2E+00	3.0E+00	2.5E+00	2.2E+00	1.9E+00
130	3	600	4.8E+00	4.1E+00	3.8E+00	3.5E+00	3.3E+00	3.1E+00	2.6E+00	2.3E+00	2.0E+00
140	4	600	5.2E+00	4.4E+00	4.0E+00	3.7E+00	3.5E+00	3.3E+00	2.8E+00	2.4E+00	2.1E+00
150	5	600	5.7E+00	4.7E+00	4.3E+00	3.9E+00	3.7E+00	3.5E+00	2.9E+00	2.5E+00	2.2E+00
160	6	600	6.3E+00	5.2E+00	4.7E+00	4.2E+00	3.9E+00	3.7E+00	3.1E+00	2.7E+00	2.4E+00
170	8	600	7.0E+00	5.7E+00	5.1E+00	4.6E+00	4.2E+00	4.0E+00	3.3E+00	2.9E+00	2.6E+00
180	10	600	8.0E+00	6.4E+00	5.7E+00	5.0E+00	4.6E+00	4.3E+00	3.6E+00	3.2E+00	2.9E+00
190	13	600	9.1E+00	7.2E+00	6.3E+00	5.6E+00	5.1E+00	4.7E+00	3.9E+00	3.5E+00	3.2E+00
200	16	600	1.1E+01	8.2E+00	7.2E+110	6.2E+00	5.6E+00	5.2E+00	4.3E+00	3.9E+00	3.6E+00
210	19	600	1.3E+01	9.5E+00	8.2E+00	7,1E+00	6.4E+00	5.9E+00	4.8E+00	4.3E+00	4.1E+00
220	23	600	1.5E+01	1.1E+01	9.6E+00	8,2E+00	7.3E+00	6.7E+00	5.4E+00	4.9E+00	4.6E+00
230	28	600	1.8E+01	1.3E+01	1.1E+01	9,6E+00	8.5E+00	7.8E+00	6.2E+00	5.6E+00	5.3E+00
240	33	600	2.3E+01	1.6E+01	1.4E+01	1,2E+01	1.0E+01	9.2E+00	7.2E+00	6.4E+00	6.2E+00
250	40	600	2.8E+01	2.1E+01	1.7E+01	1,4E+01	1.2E+01	1.1E+01	8.5E+00	7.6E+00	7.3E+00
260	47	600	3.7E+01	2.6E+01	2.2E+01	1.8E+01	1.5E+01	1.4E+01	1.0E+01	9.1E+00	8.7E+00
270	55	600	4.9E+01	3.5E+01	2.9E+01	2.3E+01	2.0E+01	1.8E+01	1.3E+01	1.1E+01	1.1E+01
280	64	600	6.6E+01	4.7E+01	3.9E+01	3.1E+01	2.7E+01	2.4E+01	1.7E+01	1.4E+01	1.3E+01
290	74	600	9.2E+01	6.5E+01	5.4E+01	4.4E+01	3.7E+01	3.2E+01	2.2E+01	1.8E+01	1.7E+01
300	86	600	1.3E+02	9.5E+01	7.8E+01	6.3E+01	5.4E+01	4.7E+01	3.2E+01	2.5E+01	2.2E+01

Table 15

		Table 15	
Pressure	Dependence of the	Apparent Molal Heat Capacity:	$\frac{{}^{\phi}C}{\frac{p}{R}} (P_2) - \frac{{}^{\phi}C}{\frac{p}{R}} (P_1)$
	Ē		

TEMP	P1	P2	C Po	******			MOLA	1 TTV			
°C)	(BAR)	(BAR)	$\frac{2}{R}$. 100	. 250	.500	. 750	1.000	2.000	3,000	4.000
25	1	1000	8.3E+00	8.0E+00	7.6E+00	7.2E+00	6.8E+00	6.4E+00	5.1E+00	4.2E+00	3.6E+00
40	i	1000	1.6E+00	7.3E+00	7.0E+00	6.5E+00	6.2E+00	5.8E+00	4.7E+00	3.9E+00	3.4E+00
50	įİ	1000	6.1E+00	5.7E+00	5.5E+00	5.2E+00	9.4E+00 4.9E+00	4.7E+00	4.2E+00 3.9E+00	3.3E+00	2.9E+00
60	1	1000	5.8E+00	5.4E+00	5.2E+00	4.9E+00	4.6E+00	4.4E+00	3.7E+00	3.2E+00	2.8E+00
10	1	1000	5.7E+00	5.3E+00	5.0E+00	4.7E+00	4.5E+00	4.3E+00	3.6E+00	3.1E+00	2.7E+00
90	i	1000	5 7E+00	5 2E+00	7.7E+00 5 0E+00	4.7E+00 4 7E+00	4.4E+00 4.4E+00	4.2E+00 4.2E+00	3.6E+00 3.6E+00	3,1E+00 3 1F+00	2.75+00
100	i	1000	5.9E+00	5.3E+00	5.0E+00	4.7E+00	4.5E+00	4.3E+00	3.6E+00	3.1E+00	2.7E+00
110	1	1009	6.2E+00	5.5E+00	5.2E+00	4.8E+00	4.6E+00	4.3E+00	3.7E+00	3.2E+00	2.7E+00
120	2	1000	6.5E+00	5.8E+00	5.4E+00	5.0E+00	4.7E+00	4.5E+00	3.8E+00	3.3E+00	2.8E+00
140	3	1000	7.5E+00	6.1E+00 6.5E+00	6 0E+00	5.2E+00	5 1E+00	4 9F + 00	3.7E+00 4 1E+00	3.5E+00	3 1F+00
150	5	1000	8.2E+00	6.9E+00	6.4E+00	5.8E+00	5.4E+00	5.1E+00	4.3E+00	3.7E+00	3.3E+00
160	6	1000	9.0E+00	7.5E+00	6.8E+00	6.2E+00	5.8E+00	5.4E+00	4.6E+00	4.0E+00	3.5E+00
170	. 8	1000	1.0E+01	8.2E+00	7.4E+00	6.7E+00	6.2E+00	5.8E+00	4.9E+00	4.3E+00	3.8E+00
190	13	1000	1 3E+01	7.1E+00	9 0E+00	7.2E+00 7.9E+00	7.3E+00	6.8E+00	5.6E+00	5.0E+00	4.5E+00
200	16	1000	1.5E+01	1.1E+01	1.0E+01	8.7E+00	8.0E+00	7.4E+00	6.1E+00	5.5E+00	5.0E+00
210	19	1000	1.7E+01	1.3E+01	1.1E+01	9.8E+00	8.8E+00	8.2E+00	6.7E+00	6.0E+00	5.6E+00
220	23	1000	2.0E+01	1.5E+01	1.3E+01	1.1E+01	9.9E+00	9.1E+00	7.4E+00	6.7E+00	6.3E+00
230; 240	20	1000	2.4E+U1	1.7E+VI 2 1F+01	1.75+01	1.52+01	1.35+01	1.25+01	9.4F+00	8.5E+00	8.25+00
50	40	1000	3.5E+01	2.5E+01	2.1E+01	1.7E+01	1.5E+01	1.4E+01	1.1E+01	9.7E+00	9.5E+00
260	47	1000	4.4E+01	3.1E+01	2.6E+01	2.1E+01	1.8E+01	1.6E+01	1.3E+01	1.1E+01	1.1E+01
270	55	1000	5.7E+01	4.0E+01	3.3E+01	2.7E+01	2.3E+01	2.0E+01	1.5E+01	1.3E+01	1.3E+01
280	04 74	1000	1 0E+02	7.1E+01		4.6F+01	2.7E+01	3.4E+01	2.4E+01	2.0E+01	1.9E-01
200	86	1000	1.4F+02	1 OF+02	8.1E+01	6.4E+01	5.4E+01	4.7E+01	3.2E+01	2.6E+01	2.4E+0

References

1.	J. L. Haas, Jr., Am. J. Sci. <u>269</u> , 489 (1970).
2.	R. W. Potter, III and D. L. Brown, U. S. G. S. Bulletin 1421-C (1977).
3.	H. Ozbek, S. L. Phillips, and J. A. Fair (1978). To be published.
4.	K. S. Pitzer, J. Phys. Chem. <u>77</u> , 268 (1973).
5.	D. J. Bradley and K. S. Pitzer, J. Phys. Chem. <u>83</u> , 1599 (1979).
6.	L. F. Silvester and K. S. Pitzer, J. Phys. Chem. <u>81</u> , 1822 (1977).
7.	"Handbook of Physical Constants", F. Birch, Ed., Geological Society of America (1942).
8.	R. W. Potter, III, D. R. Shaw, and J. L. Haas, Jr., U. S. G. S. Bulletin 1417 (1975).
9.	F. J. Millero, J. Phys. Chem. <u>74</u> , 356 (1970).
10.	F. J. Millero, E. V. Hoff, and L. Kahn, J. Soln. Chem. <u>4</u> , 309 (1972).
11.,	F. Vaslow, J. Phys. Chem. <u>73</u> , 3745 (1969).
12.	F. Vaslow, J. Phys. Chem. <u>70</u> , 2286 (1966) and ORNL Report TM-1438 (1965).
13.	G. Perron, J. Fortier, and J. E. Desnoyers, J. Chem. Thermo. 7, 1177 (1975).
14.	R. E. Gibson and O. H. Loeffler, Annals. NY. Acad. Sci., <u>51</u> , 727 (1949).
15.	C. T. Chen, R. T. Emmet, and F. J. Millero, J. Chem. Eng. Data, <u>22</u> , 201 (1977).
16.	G. Dessauges, N. Miljevic, and W. A. Van Hook, J. Phys. Chem. <u>84</u> , 2587 (1980).
17.	C-T. A. Chen, J. H. Chen, and F. J. Millero, J. Chem. Eng. Data, <u>25</u> , 307 (1980).
18.	"International Critical Tables", McGraw-Hill, New York (1928) Vol 3.
19.	A. J. Ellis, J. Chem. Soc. A, 1579 (1966).
20.	This Dissertation, Chapter 2.
21.	I. Kh. Khaibullin and N. M. Borisov, Teplofiz. Vysokikh Temperatur, 4, 518 (1966).

- 22. B. M. Fabuss, A. Korosi, and A. K. M. Shamsul Hug, J. Chem. Eng. Data, 11, 325 (1966).
- 23. A. Korosi and B. M. Fabuss, J. Chem. Eng. Data, 13, 548 (1968).
- 24. R. Hilbert, Ph.D. Dissertation, University of Karlsruhe, Karlsruhe, West Germany (1979).
- V. I. Zarembo and M. K. Federov, Zhurnal Prikladnai Khimii, <u>48</u>, 1949 (1975).
- I. Tanishita, K. Watanabe, J. Kijima, H. Ishii, K. Oguchi, and M. Uematsu, J. Chem. Thermo, 8, 1 (1976).
- 27. R. A. Fine and F. J. Millero, J. Chem. Phys. 59, 5529 (1973).
- 28. A. A. Yayanos, J. Chem. Phys. 64, 429 (1976).
- 29. G. S. Kell and E. Whalley, J. Chem. Phys. 62, 3496 (1975).
- G. S. Kell, G. E. McLaurin, and E. Whalley, Proc. R. Soc. Lond. A., <u>360</u>, 389 (1978).
- 31. G. S. Kell, J. Chem. Eng. Data, 15, 119 (1970).
- 32. W. D. Wilson, J. Acoust. Soc. Am. 31, 1067 (1959).
- V. A. Del Grosso and C. W. Mader, J. Acoust. Soc. Am. <u>52</u>, 1442 (1972).
- 34. J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, "Steam Tables", John Wiley and Sons, Inc., New York (1969 and 1978).
- 35. J. Juza, Cesk. Akad. Ued. Rada. Tech. Ved., <u>1</u>, 76 (1966). E. Schmidt, "Properties of Water and Steam in SI Units", p. 174, Springer-Verlag, Berlin (1969).
- 36. National Engineering Laboratory, "Steam Tables 1964", H.M.S.O. Edinburgh (1964).
- 37. L. Haar, J. Gallagher, and G. S. Kell, Contributions to the 9th International Conference on the Properties of Steam, Munich (1979).
- 38. H. Kanno and C. A. Angell, J. Chem. Phys., 70, 4008 (1979).
- 39. H. M. Rowe, Jr., and J. C. S. Chou, J. Chem. Eng. Data, <u>15</u>, 61 (1970).
- 40. "Handbook of Chemistry and Physics", 45th ed., R. C. Weast, Ed., The Chemical Rubber Co., Cleveland, OH (1965).

- 41. R. H. Busey, personal communication.
- 42. J. E. Tanner and F. W. Lamb, J. Soln. Chem. 7, 303 (1978).
- 43. S. Likke and L. A. Bromley, J. Chem. Eng. Data, <u>18</u>, 189 (1977).
- 44. D. Smith-Magowan and R. H. Wood, submitted to J. Chem. Thermo.
- 45. L. F. Silvester and K. S. Pitzer, Lawrence Berkeley Laboratory Report # 4456 (1976).

Chapter 2

MEASUREMENT OF THE DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS FROM 75°C TO 200°C AT 20 BAR

Introduction

Few precise determinations of the volumetric properties of electrolyte solutions are available above 100°C. Sodium chloride solutions have been most extensively studied, but even in this case reliable volumetric data near the saturation pressure are scarce. Density data for sodium chloride solutions at 20 bar, which were necessary to complete the description of volumetric properties contained in Chapter 1, are presented in this chapter.

Additional density data at low pressures were required for two reasons. First, we were especially interested in determining the pressure dependence of high temperature activity, enthalpy, and heat capacity data, most of which are taken at saturation pressure. Since the volumetric properties of aqueous solutions vary most rapidly near the saturation pressure, precise data in this region are important in calculations of pressure dependence.

Secondly, the three available sets of density data for sodium chloride solutions at high temperatures and low pressures were either incomplete or inconsistent. The saturation pressure data of Khaibullin and Borisov¹ differ from other data by as much as 1%. The data of Fabuss, Korosi, and Hug² are uncertain because of the unknown effect of air contained in their dilatometer. Only the data of Ellis³ are sufficiently precise for calculations of the pressure dependence of thermal properties. Unfortunately, Ellis' data cover only the low concentration region. Thus additional density data at high concentrations were needed.

Experimental

1. Description of Apparatus

Densities of sodium chloride solutions from 75° to 200°C, at a constant pressure of 20 bars, were determined using a high pressure dilatometer. The dilatometer is similar to that used by Ellis,³ in which changes in the volume of a solution are measured as a function of temperature. The apparatus is illustrated in Figure 1.

A pressure vessel, constructed of corrosion resistant Haynes^R Alloy No. 625, contains approximately 9 cm³ of salt solution. The pressure vessel is connected to a mercury reservoir by .062 inch outside diameter, .007 inch inside diameter, stainless steel capillary tubing. The mercury reservoir, which is made of a coil of .125 inch outside diameter stainless steel tubing, is in turn connected to a glass capillary column. The entire system is pressurized with a high pressure nitrogen gas cylinder.

To avoid possible hysteresis in the volume of the sample cell when the system is pressurized and depressurized, a double bomb system is used. It is illustrated in Figure 2. The sample cell is welded to a thick top cap, so that it is permanently sealed except for the inlet and outlet ports. A thick outer bomb surrounds the sample bomb and is sealed using an annealed copper gasket. The inner and outer vessels are connected on the gas side of the apparatus, so that both can be slowly pressurized at the same time. Thus there is never a pressure difference between the inner and outer vessels.

The high pressure glass to metal seals, used to connect the glass capillary to the stainless steel tubing system, also are of interest. They are constructed of standard swagelock fittings (1/8 inch tubing to

Figure 1. Schematic diagram of the high pressure dilatometer.

High Pressure Dilatometer

Water Bath, 30 °C

High Temperature Bath, 25-300℃

XBL812-5163

XBL 812-5164

- A Aqueous solution
- B Inner vessel
- C Outer vessel
- D Copper seal
- E Swage type tubing connector
- F Cone
- G Platinum resistance thermometer
- H Thermal mass

1/4 inch MNPT) which have been drilled out to provide a loose fit for the glass tubing. The glass is simply glued into the fittings with epoxy (G. C. Electronics). Precision bore glass tubing, 1.6 mm internal diameter, is carefully annealed before use. The combination of glass tubing and epoxy seal can contain 1 kbar pressure. For safety, the glass tubing is always surrounded by a plexiglass pressure shield.

Temperature control is achieved using two separate systems. The mercury reservoir and most of the capillary connecting tube are thermostated at 30° C with a well stirred water bath and circulation pump. The temperature of the water bath fluctuates by less than .01 K. The sample cell is surrounded by a large aluminum block and is placed in a high temperature fluidized bath. Temperature control of the fluidized bath is good only to a few tenths of a degree, so the aluminum block serves as a heat sink to reduce temperature fluctuations. With the aluminum block, the temperature of the sample cell is stable to \pm .01 K over a period of 30 minutes.

2. Method

The solution density was determined by measuring the change in the volume of the solution as the temperature was raised. To begin a measurement, solution of known molality was prepared with freshly degassed water which had been distilled and passed through a Millipore Q filter system (final resistivity was greater than 18 megaohm). Baker reagent grade NaCl was used without further purification. The salt was dried overnight at 200°C and cooled under vacuum before being weighed.

The procedure used to fill the sample cell without introducing any air bubbles was somewhat complicated. The cell was filled and emptied by syringe a minimum of five times to eliminate contamination by any old

solution still in the cell. As the final slug of solution was placed in the sample cell, a fine needle was used to stir the solution in the inlet hole and dislodge any air bubbles trapped in the narrow opening. A syringe containing 10 ml of the solution was then attached to the inlet fitting and the solution was forced through the sample cell and the connecting tube, then out an opening at the mercury solution interface. A Swagelock cap used to close this opening was tightened while pressure was applied by the syringe. The syringe was removed and the inlet fitting was topped off with a few drops of solution. As the inlet cap was tightened, solution was forced out through the cracks, displacing any remaining air. Finally the apparatus was pressurized. Any air bubbles in the system could be detected immediately by a large displacement in the level of the mercury column.

The sample cell was then placed in the fluidized bath and the solution was allowed to come to equilibrium at room temperature. The pressure of the system and the level of the mercury column were monitored overnight to check for leakage. The temperature of the sample was increased in 25 K increments, and the height of the mercury column was measured to \pm .01 mm at each step using a Wilde cathatometer. The temperature of the sample cell was determined to \pm .005 K using a 25 Ω , calibrated platinum resistance thermometer and G-2 Mueller bridge. A bourdon tube pressure gauge (Ashcroft Digiguge Model 7781), calibrated with a Ruska Deadweight Tester, was used to determine the pressure of the system to \pm .1 bar. The temperature of the water bath and the room temperature were measured with mercury-in-glass thermometers.

3. Derivation of Equations

The change in the height of the mercury column can be related to the density of the solution as follows. Let T be the experimental temperature, T_R the reference temperature, and T_B the water bath temperature, in degrees Celcius. The density of the solution at the experimental temperature, ρ_T , is equal to the mass of solution in the cell divided by the volume of the cell,

$$\rho_{\rm T} = \frac{g_{\rm T}}{V_{\rm T}} \,. \tag{1}$$

The mass of solution in the sample cell at temperature T is equal to the mass in the cell at the reference temperature T_R , less the amount that has expanded from the cell. The mass of solution expanded is equal to

$$\Delta h A \rho_{T_B}$$
, (2)

where Δh is the total change in the height of the mercury column between temperatures T_R and T, A is the cross-sectional area of the mercury column, and ρ_{T_B} is the density of the solution at the temperature of the water bath. Thus the density of the solution is given by

$$\rho_{\mathrm{T}} = \frac{1}{\mathrm{V}_{\mathrm{T}}} \left[\rho_{\mathrm{T}_{\mathrm{R}}} \, \mathrm{V}_{\mathrm{T}_{\mathrm{R}}} - \Delta h A \rho_{\mathrm{T}_{\mathrm{B}}} \right]. \tag{3}$$

Assume that the temperature dependence of the volume of the sample cell is

$$V_{\rm T} = V_{\rm B} e^{\alpha T}, \qquad (4)$$

where V_B is the volume of the cell at 0°C and α is the unknown expansivity of the cell. Substituting Equation (4) into Equation (3) one obtains

$$\rho_{T} = \rho_{T_{R}} e^{-\alpha (T-T_{R})} - \left(\frac{A}{V_{B}}\right) \Delta h \rho_{T_{B}} e^{-\alpha T}.$$

Expansion of the exponential yields

$$\rho_{T} = \rho_{T_{R}} [1 - \alpha (T - T_{R})] - \left(\frac{A}{V_{B}}\right) \Delta h \rho_{T_{B}} [1 - \alpha T]$$

or

$$\rho_{\rm T} = \rho_{\rm T_R} - \left(\frac{A}{V_B}\right) \Delta h \rho_{\rm T_B} + \alpha \rho_{\rm T_R} (T_R - T) + \alpha \left(\frac{A}{V_B}\right) T \Delta h \rho_{\rm T_B}.$$
(5)

This is the final equation relating the density of the solution to the observed change in the height of the mercury column.

Equation (5) contains two unknowns, the expansivity of the sample cell (α) and the ratio of the cross sectional area of the column to the volume of the cell at 0°C, $\left(\frac{A}{V_B}\right)$. These are determined in a calibration run using pure water. The values of Δ h observed with pure water and the known values of the density of water are used in a nonlinear least squares regression to determine $\left(\frac{A}{V_B}\right)$ and α . Calculation of solution densities from Equation (5) requires knowledge of the solution densities at the reference and water bath temperatures and the experimental pressure.

4. Corrections to the Raw Data

In any experiment a certain number of experimental variables can not be held exactly constant. Therefore small corrections to the raw data are necessary to bring all the data points to the same baseline. In experiments using the high pressure dilatometer, the change in height of the mercury column is observed as a function of sample temperature, and this should be the only experimental variable. Thus small corrections have been made to the observed column height to account for variations in water bath temperature, room temperature, hydrostatic head, and system pressure. To evaluate the effect of each of these variables,

it is helpful to note that a change of .01 mm in the column height corresponds to a change of 2 x 10^{-6} g/cm³ in the derived density of the solution.

The change in the mercury column height due to temperature drift in the water bath was measured experimentally, at 20 bar system pressure, as .0093 mm height per .01°C shift in bath temperature. The change in height due to a change in room temperature from 23°C was estimated as

$$\Delta h = h(1.5 \times 10^{-4}) (t - 23^{\circ}C)$$

where h is the total height of the mercury column and t is the room temperature in degrees Celcius. The factor 1.5×10^{-4} is derived from the difference in expansion of glass and mercury. The maximum shift in room temperature was 3 K, and the maximum column height was 800 mm, so this correction was always less than .36 mm.

As the mercury rises in the column, it exerts an increasing hydrostatic pressure on the salt solution. By measuring the height of the column above the sample cell, the pressure increase, ΔP , due to hydrostatic head was found to be $\Delta P = .28 + \frac{h}{750.06}$ bar. The applied pressure also is not quite constant since gas must be bled off as the temperature of the sample is raised. Relating these changes in system pressure to changes in the mercury column height complicates analysis of the density data. The change in column height due to a pressure change of about 2 bar was measured directly at 23°C, with pure water in the sample cell, as .22 mm per bar. This value for the compressibility of the system was used to correct both calibration and solution data at the reference temperature. Because the correction was made in this way, each experimental density determination was at a slightly different pressure. The

change in system pressure during one run was about one bar, so even uncorrected data would be in error by less than 50 ppm.

One further correction for the variable mass of solution in the connecting tube was found to be negligible up to 200°C. The unthermostated length of the capillary connecting tube is 40 cm, but half of this length is in the fluidized bath. Thus a sharp gradient from the experimental temperature to the water bath temperature occurs in about 20 cm of the tubing, which has a volume of .005 cm³. Correction of Equation (2) for the difference in the mass of solution in this portion of the tube at temperatures T and T_R , $m_T - m_{T_R}$, yields the following form of Equation (5):

$$\rho_{\mathrm{T}} = \rho_{\mathrm{T}_{\mathrm{R}}} - \left(\frac{\mathrm{A}}{\mathrm{V}_{\mathrm{B}}}\right) \Delta h \rho_{\mathrm{T}_{\mathrm{B}}} + \frac{m_{\mathrm{T}}^{-m} \mathrm{T}_{\mathrm{R}}}{\mathrm{A}} + \alpha \rho_{\mathrm{T}_{\mathrm{R}}} (\mathrm{T}_{\mathrm{R}} - \mathrm{T}) + \alpha \left(\frac{\mathrm{A}}{\mathrm{V}_{\mathrm{B}}}\right) \Delta h \rho_{\mathrm{T}_{\mathrm{B}}} + \frac{m_{\mathrm{T}}^{-m} \mathrm{T}_{\mathrm{R}}}{\mathrm{A}}$$
(6)

The difference in $\frac{{}^{m}T^{-m}T_{R}}{V_{B}}$ for pure water and a 4.4 m solution is found to be only 6 x 10⁻⁶ g/cm³ at T = 200°C. Thus a correction for the mass of solution in the connecting tube is not necessary.

Results

The experimental values for the height of the mercury column were first corrected for changes in water bath temperature, room temperature, hydrostatic head, and applied pressure. The series of values for column height as a function of temperature for each separate solution or calibration run were fit to an equation of the form

$$h = a + bv_w + cv_w T + dT + eT^2$$

using a standard, linear least squares regression. Here v_w is the volume of pure water at temperature T. By examining the regression, any

CALIBRATION RUN WITH PURE WATER

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 52.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
51.70	19.7	. 98806	15.762	. 98793	. 99648
64.35	19.7	. 98173	18.290	. 98793	. 99649
86.90	19.8	.96826	23.751	. 98793	.99649
97.98	20.0	.96072	26.824	. 98794	. 99650
108.89	19.9	. 95273	30.112	. 98794	. 99649
125.79	20.0	. 93932	35.631	.98794	. 99650
142.74	20.0	. 92461	41.729	.98794	. 99650
159.84	20.1	. 90849	48.445	. 98794	. 99650
176.46	20.2	.89153	55.544	. 98795	. 99651
176.52	20.2	. 89146	55.580	.98795	. 99651
176.48	20.2	.89151	55.559	.98795	. 99651
199.61	20.4	. 86558	66.481	. 98796	. 99651
199.68	20.4	. 86549	66.516	. 98796	.99651
		•			

PREDICTED REFERENCE COLUMN HEIGHT IS 15.815 CM.

113

÷ .

CALIBRATION	RUN	WITH	PURE	WATER
-------------	-----	------	------	-------

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN Height (CM)	DENSITY AT REFERENCE TEMP: OF 25,00 C	DENSITY AT WATER BATH TEMP. OF 30:00 C	•
20.91	19.6	. 99888	13.909	. 99790	.99648	
20.94	19.6	.99888	13.911	. 99790	. 99648	
76.11	19.8	.97503	23.299	. 99791	. 99649	• •
76.04	19.8	. 97507	23.288	. 99791	. 99649	1
150.54	20.1	.91742	47.027	.99792	. 99650	÷
150.58	20.1	.91739	47.043	.99792	. 99650	
176.53	20.2	.89146	57.882	. 99793	. 99651	
176.53	20.2	.89147	57.881	. 99793	. 99651	
176.55	20.2	. 89144	57.895	. 99793	. 99651	
176.58	20.2	.89141	57.897	. 99793	. 99651	
200.09	20.3	.86500	69.018	. 99793	. 99651	
200.16	20.3	.86492	69.052	.99793	. 99651	
200.24	20.3	.86483	69.090	. 99793	. 99651	
200.15	20.3	.86493	69.049	. 99793	. 99651	ʻ .
200.18	20.3	.86490	69.063	. 99793	. 99651	

PREDICTED REFERENCE COLUMN HEIGHT IS 14.268 CM.

Table l

CALIBRATION RUN WITH PURE WATER

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 52.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
50.07	19.5	. 98880	11.899	. 98792	. 99648
75.67	19.9	. 975 31	17.332	.98794	.99649
100.19	19.5	. 95 9 1 2	23.924	. 98792	.99647
125.72	19.8	. 93937	32.019	. 98793	. 99649
150.67	20.0	.91729	41.173	.98794	.99650
175.40	20.1	. 89265	51.451	. 98795	.99650
200.61	20.4	.86439	63.355	. 98796	. 99652

PREDICTED REFERENCE COLUMN HEIGHT IS 12.251 CM.

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 25.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C	• • •
22.59	19.6	. 99850	12.602	. 99790	. 99648	
49.98	19.6	. 98885	16.300	. 99790	. 99648	
75.41	19.8	. 97545	21.695	.99791	.99649	3
99.52	19.9	. 95962	28.148	.99791	.99649	
125.88	20.0	. 93924	36.532	. 99791	.99650	
150.16	20.1	.91778	45.431	. 99792	. 99650	
177.39	20.2	. 89055	56.802	. 99793	. 99651	
200.66	20.4	.86433	67.849	.99793	. 99652	

CALIBRATION RUN WITH PURE WATER

PREDICTED REFERENCE COLUMN HEIGHT IS 12.818 CM.

ţ,

. .

.:**:**:

CALIBRATION RUN WITH PURE WATER

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 25.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
22.73	19.7	. 99847	12.620	. 99790	. 99649
50.30	19.6	. 98871	16.361	. 99790	. 99648
50.46	19.6	. 98863	16.390	. 99790	. 99648
75.34	19.8	. 97550	21.670	. 99791	. 99649
100.49	19.9	. 95892	28.426	. 99791	. 99649
125.90	20.0	. 93923	36.537	.99791	.99650
150.34	20.2	. 91762	45.501	. 99792	. 99651
175.99	20.2	. 89204	56.206	. 99793	. 99651
199.99	20.4	.86512	67.523	. 99793	. 99652
200.04	20.4	.86506	67.541	.99793	. 99652

PREDICTED REFERENCE COLUMN HEIGHT IS 12.823 CM.

Car and

CALIBRATION RUN WITH PURE WATER

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 52.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C	
51.07	19.4	. 98835	11.810	. 98792	. 99647	
75.71	19.6	. 97527	17.047	.98793	. 99648	
99.97	20.0	. 95 931	23.572	. 98794	. 99650	
125.63	19.9	. 93945	31.754	. 98794	. 99649	
150.24	20.0	. 91770	40.785	.98794	. 99650	J.
175.26	20.2	. 89280	51.191	. 98795	. 99651	•
199.99	20.2	.86512	62.833	. 98795	. 99651	۰ ۲

· ¢

. 5

1.

PREDICTED REFERENCE COLUMN HEIGHT IS 11.978 CM.

NACL SOLUTION DENSITIES NACL MOLALITY = .0530

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 25.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
23.15	19.7	1.00055	13.326	1.00008	. 99865
23.16	19.7	1.00055	13.326	1.00008	. 99865
50.57	19.6	.99073	17.099	1.00008	. 99864
76.38	19.8	.97703	22.584	1.00009	. 99865
100.52	19.9	.96107	29.076	1.00010	.99866
126.06	19.9	.94129	37.201	1.00009	. 99866
151.76	20.0	.91857	46.612	1.00010	.99866
177.52	20.2	. 89284	57.346	1.00011	.99867
201.07	20.5	.86639	68.446	1.00012	. 99868
201.13	20.5	.86632	68.475	1.00012	. 99868

PREDICTED REFERENCE COLUMN HEIGHT IS 13.497 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/C

.

Ta	Ъ	1	е	2

NACL SOLUTION DENSITIES

NACL MOLALITY = .2719

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 30.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
29.45	19.6	1.00757	13.441	1.00740	1.00740
50.40	19.7	. 99944	16.567	1.00740	1.00740
75.43	19.8	. 98609	21.859	1.00741	1.00741
100.43	19.9	. 96964	28.485	1.00741	1.00741
126.57	20.0	. 94961	36.638	1.00742	1.00742
150.70	20.0	. 92855	45.279	1.00742	1.00742
175.75	20.1	.90418	55.339	1.00742	1.00742
201.03	20.5	. 87653	66.828	1.00744	1.00744

. .

PREDICTED REFERENCE COLUMN HEIGHT IS 13.504 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/ C

NACL SOLUTION DENSITIES NACL MOLALITY = .5571

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 25.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
22.71	19.6	1.02082	11.006	1.02014	1.01852
50.53	19.7	1.01010	15.074	1.02015	1.01852
75.34	19.7	. 99676	20.300	1.02015	1.01852
100.29	19.8	. 98049	26.777	1.02015	1.01853
126.83	19.9	. 96049	34.819	1.02016	1.01853
151.26	20.0	. 93953	43.313	1.02016	1.01853
125.64	19.9	.96124	34.519	1.02016	1.01853
150.04	20.0	. 94046	42.935	1.02016	1.01853
176.06	20.2	.91567	53.049	1.02017	1.01854
199.27	20.4	.89105	63.147	1.02018	1.01855
199.45	20.4	. 89086	63.224	1.02018	1.01855

PREDICTED REFERENCE COLUMN HEIGHT IS 11.254 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/C

NACL SOLUTION DENSITIES

NACL MOLALITY = .9775

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 30.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
29.42	19.7	1.03464	13.225	1.03442	1.03442
50.28	19.8	1.02570	16.596	1.03443	1.03443
75.24	19.8	1.01219	21.805	1.03442	1.03442
100.50	19.9	.99579	28.223	1.03443	1.03443
126.00	19.9	.97687	35.699	1.03443	1.03443
150.67	20.1	. 95634	43.874	1.03444	1.03444
176.64	20.3	.93226	53.530	1.03444	1.03444
201.36	20.5	. 90701	63.709	1.03445	1.03445

PREDICTED REFERENCE COLUMN HEIGHT IS 13.304 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/ C

NACL SOLUTION DENSITIES

NACL MOLALITY = 1.0360

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 25.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
24.84	19.6	1.03843	11.971	1.03837	1.03659
50.45	19.6	1.02776	15.970	1.03837	1.03658
75.84	19.7	1.01392	21.303	1.03838	1.03659
100.32	19.8	. 99802	27.511	1.03838	1.03659
125.71	19.9	.97915	34.954	1.03839	1.03660
125.65	19.9	.97918	34.938	1.03839	1.03660
125.74	20.0	.97914	34.957	1.03839	1.03660
151.00	20.1	. 95807	43.328	1.03839	1.03661
176.69	20.2	. 93428	52.843	1.03840	1.03661
200.47	20.3	. 90992	62.644	1.03840	1.03662
200.49	20.3	. 90990	62.651	1.03840	1.03662
200.37	20.3	.91001	62.607	1.03840	1.03662
200.37	20.3	.91002	62.604	1.03840	1.03662

PREDICTED REFERENCE COLUMN HEIGHT IS 11.991 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/ C

NACL SOLUTION DENSITIES NACL MOLALITY = 3.0610

· 5 -

. .

			the second s		5 S
TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 50.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
51.63	19.6	1.09537	15.913	1.09623	1.10620
75.99	19.7	1.08144	20.933	1.09624	1.10620
101.20	19.8	1.06525	26.827	1.09624	1.10620
126.51	19.9	1.04729	33.422	1.09624	1.10620
150.79	20.0	1.02849	40.373	1.09625	1.10621
176.90	20.1	1.00655	48.535	09625	1.10621
176.86	20.1	1.00659	48.520	1.09625	1.10621
199.73	20.3	. 98583	56.285	1.09626	1.10622
199.84	20.3	. 98569	56.339	1.09626	1.10622

· , •

PREDICTED REFERENCE COLUMN HEIGHT IS 15.603 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM

ALPHA = .380903E-04/ C

and the second
Table 2

NACL SOLUTION DENSITIES NACL MOLALITY = 3.2428

TEMP. (°C)	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 30.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
29.16	19.6	1.11237	17.309	1.11198	1.11198
49.86	19.8	1.10204	20.963	1.11198	1.11198
75.29	19.8	1.08748	26.177	1.11198	1.11198
99.97	19.9	1.07160	31.929	1.11199	1.11199
125.79	20.1	1.05326	38.626	1.11199	1.11199
150.36	20.1	1.03415	45.651	1.11199	1.11199
175.65	20.2	1.01294	53.498	1.11200	1.11200
200.45	20.2	. 99038	61.887	1.11200	1.11200

PREDICTED REFERENCE COLUMN HEIGHT IS 17:445 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/C

NACL SOLUTION DENSITIES

NACL MOLALITY = 4.3933

TEMP.	PRESS. (BAR)	DENSITY (GM/CC)	COLUMN HEIGHT (CM)	DENSITY AT REFERENCE TEMP. OF 30.00 C	DENSITY AT WATER BATH TEMP. OF 30.00 C
29.09	19.7	1.14750	14.690	1.14702	1.14702
50.37	19.7	1.13618	18.579	1.14702	1.14702
76.02	19.7	1.12134	23.728	1.14702	1.14702
75.94	19.7	1.12139	23.711	1.14702	1.14702
100.19	20.0	1.10582	29.165	1.14703	1.14703
126.44	20.0	1.08755	35.611	1.14703	1.14703
126.38	20.0	1.08757	35.602	1.14703	1.14703
150.59	20.0	1.06941	42.052	1.14703	1.14703
175.87	20.1	1.04908	49.314	1.14704	1.14704
200.43	20.3	1.02791	56.916	1.14704	1.14704

PREDICTED REFERENCE COLUMN HEIGHT IS 14.853 CM. CALIBRATION CONSTANTS ARE (A/VB) = .233259E-02/CM ALPHA = .380903E-04/ C points deviating by more than three times the standard deviation of fit could be discarded. The regression also was used to determine the column height at the desired reference temperature.

The data in this form are presented in Tables 1 and 2. The calibration data are listed in Table 1, along with values for the density of pure water given by Haar, Gallagher and Kell.⁴ Table 2 lists the solution data and the assumed values of the density of the solution at the reference and water bath temperatures. The latter values were determined from the low temperature fit described in Chapter 1. These two tables provide all the information necessary to calculate solution densities from the experimental observations. The information is recorded here so that anyone desiring to recalculate the solution densities (with improved values for the density of water, for example) can do so with ease.

From this point, calculations involving calibration data and solution data were performed separately. All calibration data and the known values for the density of pure water were used in a non-linear least squares regression to determine the two unknowns in Equation (5). The values for the unknowns and the regression statistics are given in Table 3. The value obtained for the expansivity of the sample bomb (38 x 10^{-6} K⁻¹) is in good agreement with the expansivity of similar Hastelloy^R alloys⁷ (36 x 10^{-6} K⁻¹).

Table 3

Least Squares Values of
$$\frac{A}{V_B}$$
 and α
A/V_B = .233259 x 10⁻²/cm ± .10 x 10⁻⁵/cm
 α = .380903 x 10⁻⁴ K⁻¹ ± .37 x 10⁻⁶ K⁻¹

Overall standard deviation of fit for all calibration data is 40 ppm in the density values for pure water.

The solution data, the calculated values for solution densities at the reference and water bath temperatures, and the values of $\left(\frac{A}{V_B}\right)$ and α were then combined to calculate the high temperature solution densities. Since these densities were at odd temperatures and pressures, they were further smoothed to yield densities at rounded temperatures and 20 bar. First the densities were corrected to 20 bar using the compressibility data of Rowe and Chou.⁵ Even considering the difference in compressibilities calculated from the Rowe and Chou data and from the volumetric fit (Chapter 1), the maximum error in this correction is 2 x 10^{-6} g/cm³.

The constant pressure data were then fit at constant molality to an equation of the form

$$\rho_{\rm T} = a + b\rho_{\rm w} + c(T-25) + d(T-25)^2 + e\rho_{\rm w}(T-25)$$

where T is the temperature in degrees Celcius and $\rho_{_{\bf W}}$ is the density of water at T and 20.3 bar.

Densities at rounded temperatures calculated from the regression equation are listed in Table 4. The maximum error introduced in correcting the data to rounded temperatures is 2×10^{-5} g/cm³.

Discussion

The expected precision of the density data can be estimated by calculating the effect of the uncertainty in the calibration constants. Assuming this uncertainty is twice the standard deviation listed in Table 3, the precision in the solution densities can be no better than $\pm 8 \times 10^{-5}$ g/cm³ at 100°C and $\pm 2.5 \times 10^{-4}$ g/cm³ at 200°C.

The actual precision in the density data can be estimated by examining the data as a function of molality at constant temperature and

Least Squares Fit of NaCl Density Data

	$T = 75^{\circ}$		$T = 100^{\circ}C$		$T = 125^{\circ}C$	
	density		density		density	
molality	(g/cm ³)	∆ ^a	(g/cm ³)	∆ ^a	(g/cm ³)	∆ ^a
.0530	.97782	0	.96141	0	.94216	1
.2719	.98633	-7	.96995	-2	.95085	5
.5571	.99695	1	.98068	0	.96184	2
.9775	1.01230	0	.99615	-7	.97764	-13
1.0360	1.01439	-1	.99821	-5	.97970	-6
3.0610	1.08202	-1	1.06604	-5	1.04839	-12
3.2428	1.08764	1	1.07156	7	1.05382	15
4.3933	1.12190	0	1.10594	-1	1.08859	-2
.1 ^b	.97961	7	.96314	17	.94397	15
.2	.98348	7	.96708	12	.94801	9
.5	.99489	-2	.97853	5	.95970	2
1.0	1.01316	1	.99691	3	.97832	8
Standard Deviation		4	<i>c.</i>	8		10

.
	$T = 150^{\circ}C$		T = 17	5°C	$T = 200^{\circ}C$	
molality	density (g/cm ³)	∆ ^a	density (g/cm ³)	Δ ^a	density	∆ ^a
.0530	.92021	0	.89549	0	.86767	7
.2719	.92920	-15	.90494	7	.87774	24
.5571	.94055	5	.91676	6	.89024	28
.9975	.95689	0	.93388	-40	.90847	-47
1.0360	.95894	-27	.93592	-16	.91042	0
3.0610	1.02912	-18	1.00820	-27	.98556	-40
3.2428	1.03446	27	1.01348	39	.99081	50
4.3933	1.06986	-4	1.04976	-6	1.02831	-6
.1 ^b	.92197	29	.89730	39	.86995	7
.2	.92607	33	.90160	44	.87449	24
.5	.93813	24	.91428	27	.88800	3
1.0	.95747	7	.93438	8	.90898	6
Standard Deviation		23		31		33

Table 4 (continued)

^a $\Delta = [\rho(calculated) - \rho(experimental)] \times 10^5 g/cm^3$. ^b Data of Ellis.³ .

pressure. The results of a least squares regression of the rounded density data as a function of molality only, using Equation (12) of Chapter 1, are listed in Table 4. The data of Ellis are included in the regression in order to compare the two sets of density values. Examination of the magnitudes of the residuals listed in Table 4 shows that they increase systematically with temperature. This trend is illustrated in Figure 3, where the residuals at a few molalities are plotted against temperature.

An increase in the uncertainties with temperature is the trend predicted above, but the scatter in the data at 200°C is twice as large as predicted. The most probable source of this error is the presence of air that dissolved in the salt solution during filling of the sample cell. The maximum effect of dissolved air can be estimated by assuming that the solubility of air in the solution is the same as that in pure water (.017 cm³ air/cm³ H₂O at 1 atm and 25°C) and that the solubility at 200°C and 20 bar is negligible. In this case .01 cm³ of air would be present in the sample cell at 200°C and 20 bar, resulting in a systematic density error of about 3×10^{-4} g/cm³. On this basis, a conservative value for the uncertainty in the data at 200°C would be \pm 400 ppm, in closer agreement with the observed variation in the data. Within these limits, the present data are in agreement with those of Ellis.³

Conclusions

The densities of sodium chloride solutions at 20 bar, from .05 m to 4.5 m and 75°C to 200°C, have been measured using a high pressure dilatometer. The precision of the data decreases from $\pm 2 \times 10^{-4}$ g/cm³ at 100°C to $\pm 5 \times 10^{-4}$ g/cm³ at 200°C. This uncertainty is an order of

Figure 3. Density residuals as a function of temperature. Plotted values represent the difference of experimental densities and smoothed values obtained from a least squares regression of the density data as a function of molality only.

1. J.

XBL 812-5169

magnitude larger than that quoted by Ellis,³ but it is a factor of four better than that given by Hilbert.⁶ The data greatly extend the concentration range covered by Ellis,³ and thus fill an important void in the sodium chloride data base.

References

- I. Kh. Khaibullin and W. M. Borisov, Teplofiz. Vysokikh Temperatur, 4, 518 (1966).
- B. M. Fabuss, A. Korosi, and A. K. M. Shamsul Hug, J. Chem. Eng. Data, <u>11</u>, 325 (1966).
- 3. A. J. Ellis, J. Chem. Soc. A, 1579 (1966).
- 4. L. Haar, J. Gallagher, and G. S. Kell, Contributions to the 9th International Conference on the Properties of Steam, Munich (1979).
- 5. A. M. Rowe, Jr. and J. C. S. Chou, J. Chem. Eng. Data, 15, 61 (1970).
- 6. R. Hilbert, Doctoral Dissertation, University of Karlsruhe, Karlsruhe, West Germany (1979).
- 7. "Hastelloy C-276", Stellite Division, Cabot Corporation, Kokomo, Indiana, 1973.

Chapter 3

MEASUREMENT OF THE HEAT CAPACITY OF AQUEOUS SODIUM SULFATE SOLUTIONS FROM 30°C to 200°C

Introduction

A major part of the effort to build a model for natural brines must be to obtain basic thermodynamic data for electrolyte solutions over a wide range of temperature and pressure. Heat capacity measurements are ideal for this purpose, since the data can be integrated to yield enthalpy and activity information. The purpose of this chapter is to show that the method of flow calorimetry, developed by Picker, Leduc, Philip, and Desnoyers¹ for use at room temperature, can be adapted for use at high temperatures and pressures.

Flow calorimetry has many features which make it ideal for use at high temperature. Since the experimental fluid flows through the calorimeter, it is possible to keep the calorimeter temperature constant while changing samples. Fluid flowing through the calorimeter can also be kept at constant pressure, allowing measurements along isobars rather than along the saturated vapor pressure curve. The capability to extend measurements to high pressures is limited only by the fluid pump and the back pressure regulation system. The fast response and high sensitivity which make flow calorimetry powerful at room temperature also are advantageous at high temperatures.

To show that flow microcalorimetry can be used at high temperatures, a prototype calorimeter has been constructed and tested from 30°C to 200°C and 1 bar to 200 bar. Aqueous solutions of sodium sulfate were chosen as the experimental fluid because sodium sulfate is a major component of natural brines. Solutions containing chloride ions were avoided because of the possibility of chloride ion stress-corrosion cracking in the stainless steel tubing used to construct the prototype calorimeter.

The heat capacity measurements obtained with the high temperature calorimeter are five times more precise than those in the literature.² In addition, osmotic coefficients obtained by integrating the heat capacity data are in good agreement with existing data.

Experimental

1. Description of Apparatus

The high temperature, flow calorimeter is an adaptation of the design originally used by Picker, <u>et al.</u>¹ The calorimeter, illustrated in Figure 1, is constructed of small, thin walled tubing (.059 inch outside diameter by .009 in wall stainless steel for the prototype). Solution flows through the tubing and past a heater where it is heated ~3 K. The heater is made of 1 m of "Thermocoax"^R insulated nichrome heating wire (Amperes Electronics) which has a resistance of 50 Ωm^{-1} and is wound around the tubing to form a helix about 5 cm long. The heated solution then flows through a 2 cm long spiral in the tubing, which surrounds a temperature sensor. Both the inconel clad heating wire and the tubing for good thermal contact. The temperature sensor is a four lead, 1000 Ω platinum resistance thermometer (Rosemount #146MA) which is cemented into the well with high temperature ceramic cement. A second, identical loop serves as the reference side of the calorimeter.

Figure 1. High Temperature Flow Calorimeter.

- A. Stainless steel jacket
- B. Copper cylinder
- C. Vacuum
- D. Heater

ţ

- E. Temperature sensor
- F. Supporting tube containing electrical leads and vacuum connection

e ta de la companya d La companya de la comp

XBL 812-5165

The calorimeter is supported on and surrounded by a large copper cylinder, which serves both as thermal mass and adiabatic shield. The copper cylinder is contained in a stainless steel vacuum jacket. The pressure inside the calorimeter is held below 20 μ with a vacuum pump and monitored with a thermocouple gauge.

The whole assembly is heated in a fluidized bath, which is controlled with an iron-constantan thermocouple sensor and Electromax III controller (Leeds and Northrup) to about \pm .1 K. The large thermal mass of the copper cylinder provides temperature stability of better than .01 K during the course of a measurement. Because both sides of the calorimeter are equally affected by temperature fluctuations, the temperature difference between reference and working sides is stable to .0005 K. This temperature difference is measured directly using a calibrated, G-2 Mueller bridge with a microvolt amplifier (Leeds and Northrup) and recorder serving as the galvanometer. The temperature of the copper cylinder is measured using a calibrated, 25 Ω platinum resistance thermometer (Burns Engineering) and the Mueller bridge. The cylinder temperature is monitored during a run using a Wheatstone bridge (Leeds and Northrup), a second microvolt amplifier, and a recorder.

The flow system for the calorimeter is shown in Figure 2. Freshly degassed water is drawn from the reservoir, through a cooling loop, and into a reciprocating, double piston pump (Altex Model 100). This pump was chosen because it has an electronic feedback system which monitors the flow rate and adjusts the piston speed to level out flow rate pulses. The water is pumped through 2 m of thermostating tubing in the fluidized bath, through 45 cm of tubing in thermal contact with the copper cylinder, and then through the reference side of the calorimeter. The water then (a) provide the second s second se Second se Second sec

en en estre estre estre de la company de

Figure 2. Flow sýstem for the high temperature calorimeter.

and a **start** as a start of a start of a start of a start of the start of the start of a start of a start of the The growth start of the start of t Autor of the start of th

141

 \mathbf{U}

exits the fluidized bath and passes through 2 m of tubing thermostated at 25°C. At this point a high pressure solution injection valve (Altex Model 905) is used to direct the water either through the working side of the calorimeter or into a coil of tubing containing 15 ml of sample solution thermostated at 25°C. The water displaces an equal volume of sample, which is then fed through the working side of the calorimeter. Finally, the water or solution leaves the high pressure flow system through a back pressure regulator (Grove Model S-91xw). The system pressure is monitored to ± 1 bar with a pressure transducer calibrated against a Bourdon tube pressure gauge (Ashcroft Digigauge Model 7.781).

The solutions used in this study were prepared from Baker reagent grade anhydrous sodium sulfate, which was dried overnight at 180°C and cooled in a vacuum desiccator. All solutions were prepared by weight, and all weights were corrected for air buoyancy. At room temperature (22°C) sodium sulfate solutions are saturated at 1.56 molal. Since supersaturated solutions of sodium sulfate are relatively stable, a few attempts were made to load the solution coil with samples at high concentrations. These attempts were not entirely successful, and the few data points reported above 1.5 m should be used with caution.

The electronic circuit design for the calorimeter heaters is shown in Figure 3. The heaters are powered by a 5 volt, regulated power supply, and the voltage drop across the heaters is measured with a calibrated, $5\frac{1}{2}$ place digital voltmeter (System Donner Model 7205). The current through the heaters is determined by measuring the potential drop across 30 Ω standard resistors in series with each heater. The power to one heater can be reduced by increasing the series resistance of the circuit with a decade resistance box (Leeds and Northrup). All

Figure 3. Circuit diagram for calorimeter heaters.

XBL 812-5161

heater leads from the calorimeter to its supporting block are 30 gauge gold wire. The heater power leads are silver soldered to the heater wire, and the potential leads are connected halfway between the heater and the calorimeter support.

2. Derivation of Equations

When water is flowing through both sides of the calorimeter, the power in the heaters can be adjusted to equalize the temperature rise in both sides. The temperature rise in the working side is given by

$$T = \frac{\frac{P - L}{w}}{f_{w} c_{p_{w}}}$$
(1)

where p_w is the total power dissipated by the heater, L is the power loss, f_w is the mass flow rate of the water, and c_p_w is the specific heat capacity of pure water. When a sample solution is flowing through the working side, the heater power can again be adjusted so that the temperature rise of the solution matches the unchanged temperature rise of water in the reference side. In this case

$$T = \frac{P_s - L}{f_s c_{p_s}}$$
(2)

where the power input, flow rate, and heat capacity are those of the sample solution. The power loss in the working side of the calorimeter is assumed to depend only on the temperature rise. Then the ratio of the heat capacity of the solution to that of pure water is given directly by

$$\frac{c_{p_{s}}}{c_{p_{w}}} = \left(\frac{f_{w}}{f_{s}}\right) \left(\frac{P_{s}-L}{P_{w}-L}\right) . \tag{3}$$

This formula can be further reduced by noting that the water displaces an equal volume of solution at 25°C, if we assume that the volume effects of the small amount of mixing at the water/solution interface are negligible. In this case,

w s where
$$\rho_{s}$$
 and ρ_{w} are the densities of the solution and water at 25°C.

 $\frac{f}{\rho} = \frac{f}{\rho}$

The final equation for the heat capacity ratio is

$$\frac{c_{p_{s}}}{c_{p_{w}}} = \left(\frac{P_{s}^{-L}}{P_{w}^{-L}}\right) \left(\frac{\rho_{w}}{\rho_{s}}\right)_{25°C}$$
(5)

where the density ratio is taken at 25°C and the system pressure.

3. Determination of Power Loss

To determine the heat capacity ratio given in Equation (5), it is necessary to measure both the total power input to the calorimeter heater and the amount of that power lost through conduction, convection, and radiation. The use of a calibrated, platinum resistance thermometer as the temperature sensor is an advantage in this regard, since the temperature rise in the working side of the calorimeter, due to a given amount of power in the heater, can be measured directly. In practice, the temperature rise is measured with water flowing through the working side of the calorimeter, and the mass flow rate of water is determined by weighing the water discharged from the calorimeter in a given time interval. Application of Equation (1) yields the value of the power loss. 146

(4)

Determination of the power loss was repeated between every two or three heat capacity measurements. The average power loss for a 3 K temperature rise, as a function of the calorimeter temperature, is shown in Figure 4. The power loss increases rapidly with calorimeter temperature, showing the importance of its accurate determination.

4. Dependence of Heat Capacity on Flow Rate

In testing the operation of the calorimeter at high temperatures, it is important to show that the heat capacity determination does not depend on flow rate. For this reason, a series of preliminary measurements on 2.0 m NaCl solutions, at varying flow rates, were taken at 77°C. The results, given in Table 1, show that the experimental ratio, $\frac{P_s-L}{P_w-L}$, does not change when the flow rate is varied by $\pm 25\%$.

Table 1

Dependence of Heat Capacity on Flow Rate (2.0026 m NaCl, 76.76°C, 1 bar)

Flow Rate (g/min)	P -L S P -L W
.547	.9575
.742	.9574
.952	.9575

5. Error Analysis

The precision of a heat capacity determination depends on the precision in the measurement of the total power, the power loss on the working side of the calorimeter, and the temperature difference between the reference and working sides. The uncertainty in the measurement of the total power with the digital voltmeter is negligible. Uncertainty Figure 4. Power loss from calorimeter heater.

XBL812-5170

in the power loss, resulting from uncertainties of \pm .01 K in the temperature rise and of \pm .001 g/min in the flow rate, can be estimated from Equation (1). Assuming an average total power of .185 J, temperature rise of 3 K, flow rate of .8 g min⁻¹, and heat capacity of 4.25 g⁻¹ K⁻¹, the power loss is

L = P - (T ± .01)
$$\left(\frac{f_w + .001}{60}\right) c_{p_w} = .017 \pm .001 J.$$

Because the experimental ratio is never smaller than .97, the uncertainty of \pm .001 J in the power loss results in a maximum uncertainty of \pm .00015 J in the experimental ratio,

$$\frac{\frac{P_s-L}{s}}{\frac{P_v-L}{w}}$$
.

The temperatures of the two sides of the calorimeter are matched to within \pm .001 K. From Equations (1) and (2), the resulting uncertainty in the experimental ratio is

$$\frac{P_{s}-L}{P_{w}-L} \pm .001 \frac{f_{s} c_{p}}{P_{w}-L} \approx \frac{P_{s}-L}{P_{w}-L} \pm .00035.$$

The total uncertainty in the experimental ratio is \pm .0005, and this is roughly equivalent to \pm .002 J g⁻¹ K⁻¹ in the value of the specific heat capacity.

Possible sources of systematic error include error in the determination of the temperature of the calorimeter and of the thermostating bath for the solution exchange column, error in the voltage readings from the digital voltmeter, and error in determining the molalities of the solutions. These possible systematic errors have been minimized by frequent calibration of all thermometers, the Mueller Bridge, the digital voltmeter, and the balance used to prepare the solutions.

Results

1. Heat Capacity Measurements

The results of heat capacity measurements of sodium sulfate solutions from 30°C to 200°C are given in Table 2. The direct experimental ratio,

$$\frac{\frac{P_{s}-L}{s}}{\frac{P_{w}-L}{w}} = \left(\frac{\frac{c_{p_{s}}}{c_{p_{w}}}}{\frac{c_{p_{s}}}{c_{p_{w}}}}\right) \left(\frac{\frac{\rho_{s}}{\rho_{w}}}{\frac{\rho_{s}}{w}}\right),$$

is listed in the second column so that the heat capacity of the solution can be recomputed to reflect any future changes in the accepted values of the heat capacity of water or the densities of sodium sulfate solutions. The values listed for the heat capacity of water below 95°C were taken from Stimson,³ while those above 95°C were taken from the steam tables of Haar, Gallagher, and Kell.⁴

Density data for sodium sulfate solutions at 25° C, given in the literature,⁵⁻⁷ were fit as a function of molality, m, using an equation specific for the 2-1 charge type of sodium sulfate,

$$\phi V = \bar{V}_{2}^{\circ} + \frac{3A_{v}}{1.2} \ln(1+1.2 \ I^{\frac{1}{2}}) + 4RTm \ \beta_{v}^{(0)} + \frac{2RTm}{I} (1-(1+2I^{\frac{1}{2}}) \ e^{-2I^{\frac{1}{2}}}) \ \beta_{v}^{(1)} + \sqrt{2} \ RTm^{2} \ C_{v}^{\phi},$$
(6)

where ϕV is the apparent molal volume, I is the ionic strength, R is the gas constant, T is the temperature in kelvins, A_v is the Debye Hückel slope, and \overline{V}_2° is the apparent molal volume at infinite dilution. The

Table 2

Na₂SO₄ Heat Capacity Data

 $T = 304.62 \text{ K} (31.47^{\circ}\text{C})$

molality $\begin{pmatrix} c_{p_{s}} \\ c_{p_{w}} \end{pmatrix}_{T} \begin{pmatrix} \rho_{s} \\ \rho_{w} \end{pmatrix}_{25^{\circ}C} \rho_{s}^{(25^{\circ}C)(g/cm^{3})} c_{p_{s}}^{(Jg^{-1}K^{-1})} \rho_{c}^{(Jmol^{-1}K^{-1})}$

	P = 1.01 bar	P = 1.01 bar	P = 1.01 bar	P = 1.01 bar
0	1.0000	.997047	4.1780	. –
.0528	.9978	1.0038	4.1408	-116.
.0528	.9977	1.0038	4.1403	-126.
.0995	.9960	1.0097	4.1092	-108.
.2491	.9917	1.0279	4.0188	- 68.3
.4986	.9884	1.0572	3.8946	- 15.2
.7486	.9878	1.0853	3.7913	22.0 ,
.9995	.9891	1.1125	3.7036	51.4
1.9407	.9939	1.2060	3.4329	103.7

 $T = 324.00 \text{ K} (50.85^{\circ}\text{C})$

molality $\begin{pmatrix} c_{p_s} \\ c_{p_w} \end{pmatrix}_{T} \begin{pmatrix} \rho_s \\ \rho_w \end{pmatrix}_{25^{\circ}C} \rho_s (25^{\circ}C) (g/cm^3) c_{p_s} (Jg^{-1}K^{-1}) \rho_c (Jmol^{-1}K^{-1})$

	P = 1.01 bar	P = 1.01 bar	P = 1.01 bar	P = 1.01 bar
0	1.0000	.997047	4.1807	-
.0500	.9980	1.0034	4.1457	-111.
.1092	.9966	1.0109	4.1095	- 68.3
.2832	.9935	1.0320	4.0128	- 22.9
.2832	.9937	1.0320	4.0137	- 19.6
.4995	.9911	1.0573	3.9073	7.6
.4995	.9916	1.0573	3.9093	11.9
.7487	.9910	1.0854	3.8058	39.8
1.0089	.9921	1.1135	3.7139	64.8
1.4430	.9967	1.1581	3.5873	98.3
2.0394	1.0064	1.2152	3.4522	133.1

Table 2 (continued)

 $T = 349.18 \text{ K} (76.03^{\circ}\text{C})$

molality	$ \begin{pmatrix} c_{\mathbf{p}_{\mathbf{s}}} \\ c_{\mathbf{p}_{\mathbf{w}}} \end{pmatrix}_{\mathrm{T}} \begin{pmatrix} \rho_{\mathbf{s}} \\ \rho_{\mathbf{w}} \end{pmatrix}_{25^{\circ}\mathrm{C}} $	ρ _s (25°C)(g/cm ³)	c _{ps} (Jg ⁻¹ K ⁻¹)	$\phi_{C_p(Jmol^{-1}K^{-1})}$
	P = 1.01 bar	P = 1.01 bar	P = 1.01 bar	P = 1.01 bar
0	1.0000	.997047	4.1932	-
.0500	.9984	1.0034	4.1600	- 73.
.1092	.9970	1.0109	4.1233	- 54.
.2832	.9944	1.0320	4.0285	- 9.4
.4995	.9927	1.0573	3.9254	21.4
.7487	.9920	1.0854	3.8211	45.8
1.0089	.9929	1.1135	3.7280	68.4
1.4430	.9974	1.1581	3.6006	100.8
2.0394	.9947	1.2152	3.4222	108.0

T = 413.90 K (140.75°C)

molality	$ \begin{pmatrix} c_{p_{s}} \\ c_{p_{w}} \end{pmatrix}_{T} \begin{pmatrix} \rho_{s} \\ \rho_{w} \end{pmatrix}_{25^{\circ}C} $	ρ _s (25°C)(g/cm ³)	c _p (Jg ⁻¹ K ⁻¹)	[¢] C _p (Jmo1 ⁻¹ K ⁻¹)
----------	---	---	--	---

	P = 5 bar	P = 3.69 bar	P = 3.69 bar	P = 3.69 bar
0	1.0000	.997047	4.2901	-
.0528	.9976	1.0038	4.2510	-137.
.0995	.9961	1,0097	4.2200	-105.
.2491	.9922	1.0279	4.1288	- 61.1
.4986	.9874	1.0572	3.9950	- 24.4
.7486	.9850	1.0853	3.8820	6.3
.9995	.9834	1.1125	3.7810	27.7
1.9407	.9841	1.2060	3.4903	83.6
2.6294	.9936	1.2673	3.3537	120.2

Table 2 (continued)

$$T = 450.41 \text{ K} (177.26^{\circ}\text{C})$$

molality
$$\begin{pmatrix} c_{p_s} \\ c_{p_w} \end{pmatrix}_T \begin{pmatrix} \rho_s \\ \rho_w \end{pmatrix}_{25^{\circ}C} \rho_s (25^{\circ}C) (gm/cm^3) c_{p_s} (Jg^{-1}K^{-1}) \phi_{C_p} (Jmol^{-1}K^{-1}) \rho_s (Jg^{-1}K^{-1}) \rho_s (Jg^{-1}K$$

 $T = 474.68 \text{ K} (201.53^{\circ}\text{C})$

 $\begin{pmatrix} c_{p_{s}} \\ c_{p_{w}} \end{pmatrix}_{T} \begin{pmatrix} \rho_{s} \\ \rho_{w} \end{pmatrix}_{25^{\circ}C} \rho_{s}^{(25^{\circ}C)(gm/cm^{3})} c_{p_{s}}^{(Jg^{-1}K^{-1})} \rho_{c}^{\phi} C_{p}^{(Jmol^{-1}K^{-1})}$ molality P = 17 bar P = 16.04 barP = 16.04 bar P = 16.04 bar 0 1.0000 .997047 4.4966 .0528 .9952 1.0038 4.4449 -348. .0995 .9922 1.0097 4.4056 -289. .2491 .9848 1.0279 4.2953 -198.

 $T = 323.81 \text{ K} (50.66^{\circ}\text{C})$

molality	$ \begin{pmatrix} c_{\mathbf{p}_{\mathbf{s}}} \\ \frac{c_{\mathbf{p}_{\mathbf{s}}}}{c_{\mathbf{p}_{\mathbf{w}}}} \end{pmatrix}_{\mathrm{T}} \begin{pmatrix} \rho_{\mathbf{s}} \\ \rho_{\mathbf{w}} \end{pmatrix}_{25^{\circ}\mathrm{C}} $	ρ _s (25°C)(g/cm ³)	c _p (Jg ⁻¹ K ⁻¹)	$\phi_{p}(\text{Jmol}^{-1}\text{K}^{-1})$
	P = 207.2 bar	P = 200 bar	P = 200 bar	P = 200 bar
0	1.0000	1.0059	4.1379	-
.0528	.9985	1.0120	4.1044	- 51.
.0528	.9985	1.0126	4.1044	- 51.
.0995	.9975	1.0184	4.0769	- 34.
.0995	.9973	1.0184	4.0761	- 42.
.2491	.9948	1.0362	3.9960	- 2.0
.2491	.9946	1.0362	3.9952	- 5.4
.4986	.9929	1.0650	3.8805	34.9
.7486	.9931	1.0928	3.7826	62.7
.9995	.9946	1.1196	3.6976	84.7
1.9407	.9907	1.2121	3.4020	104.0
2.6294	.9756	-	-	-

$T = 414.20 \text{ K} (131.05^{\circ}\text{C})$

molality	$ \begin{pmatrix} c_{\mathbf{p}_{\mathbf{s}}} \\ \overline{c_{\mathbf{p}_{\mathbf{w}}}} \end{pmatrix}_{\mathrm{T}} \begin{pmatrix} \rho_{\mathbf{s}} \\ \overline{\rho_{\mathbf{w}}} \end{pmatrix}_{25^{\circ}\mathrm{C}} $	ρ _s (25°C)(g/cm ³)	c _p (Jg ⁻¹ K ⁻¹)	$\phi_{p}(\text{Jmol}^{-1}\text{K}^{-1})$
	P = 199.2 bar	P = 200 bar	P = 200 bar	P = 200 bar
0	1.0000	1.0059	4.2363	-
.0528	.9978	1.0126	4.1991	-108.
.0995	.9963	1.0184	4.1689	- 85.
.2491	.9927	1.0362	4.0824	- 38.0
.4986	.9889	1.0650	3.9568	1.5
.7486	.9866	1.0928	3.8472	26.7
.9995	.9855	1.1196	3.7509	47.1
1.9407	.9869	1.2121	3.4696	97.8
2.6294	.9913	-	-	-

apparent molal volume is related to the density of the solution, ρ_s , by

$$\phi V = 1/m \left(\frac{1000 + mM}{\rho_{s}} - \frac{1000}{\rho_{w}} \right)$$
(7)

where M is the molecular weight of sodium sulfate. Values of the fit parameters, \bar{v}_2° , $\beta_v^{(0)}$, $\beta_v^{(1)}$, and C_v^{ϕ} , as well as values of the various constants in Equation (6) are listed in Table 3. The standard deviation of fit for the density data was 5 x 10^{-5} g/cm³. The density values at 1.01 bar, listed in Table 2, were calculated from this fit.

The data obtained above 100°C and near the saturated vapor pressure

were treated assuming that the ratio $\frac{c_{p_s}}{c_{p_w}}$ does not change over the small interval between the experimental pressure and the saturation pressure of pure water. In addition, the error in using $\left(\frac{\rho_s}{\rho_w}\right)$ at 1.01 bar rather than at the saturation pressure is less than 2 x 10⁻⁴ and results in an error in the specific heat capacity of less than 6 x 10⁻⁴ $Jg^{-1} K^{-1}$.

Table 3

Fit Parameters for Na_2SO_4 Density Data

$$\overline{v}_{2}^{\circ} = 10.8589 \text{ cm}^{3} \text{ mol}^{-1}$$

$$\beta_{v}^{(0)} = 6.25266 \text{ x } 10^{-5} \text{ g mol}^{-1} \text{ bar}^{-1}$$

$$\beta_{v}^{(1)} = -1.10496 \text{ x } 10^{-5} \text{ g mol}^{-1} \text{ bar}^{-1}$$

$$C_{v}^{\phi} = 2.98866 \text{ x } 10^{-5} \text{ g}^{2} \text{ mol}^{-2} \text{ bar}^{-1}$$

$$T = 298.15 \text{ K}$$

$$R = 83.1440 \text{ cm}^{3} \text{ bar mol}^{-1} \text{ K}^{-1}$$

$$A = 2.8017 \text{ cm}^{3} \text{ mol}^{-1}$$

Calculation of heat capacities from the high pressure data was more complicated. Chen, Emmet, and Millero⁹ have reported density data for sodium sulfate solutions at high pressures, but the concentration range extends only to .33 molal. The only high concentration data available are values of the bulk compressibility from 1 to 1000 bar reported by Gibson.¹⁰ An estimation of the bulk compressibility to 200 bar, as a percentage of the bulk compressibility to 1000 bar, is shown in Figure 5, where the data of Millero have been used to determine the points below .33 molal. The values of ρ_s listed in Table 2 have been calculated using the estimate of bulk compressibility to 200 bar and the known values of ρ_s at 1.01 bar, and they are thought to be in error by less than $+ 2 \times 10^{-4} \text{ g/cm}^3$.

2. Comparison with Literature Data

Likke and Bromley² have published the only comprehensive study of the heat capacities of sodium sulfate solutions at high temperatures. Their data are compared with that of the present study in Figure 6, where the error bars shown for the 180°C data were calculated using the uncertainty of \pm .01 Jg⁻¹ K⁻¹ (in the specific heat capacity) given by Likke and Bromley. The two sets of data are in agreement well within the stated uncertainty. However, the greater precision of the present measurements is evident at the lower concentrations.

No literature data on sodium sulfate heat capacities are available at pressures greater than the saturated vapor pressure. However, the behavior of the high pressure data obtained in this study seems entirely reasonable. The 200 bar data at 50°C and 140°C are compared with low pressure data in Figures 7 and 8. The pressure dependence of the apparent molal heat capacity of Na_2SO_4 at 50°C is twice as large as that reported by Smith-Magowan and Wood¹¹ for NaC1.

Figure 5. Estimation of bulk compressibility of Na₂SO₄ solutions. Low concentration points were calculated from the data of Chen, Emmet, and Millero.⁹

159

•

Figure 6. Comparison of apparent molal heat capacity values obtained in this study with those published by Likke and Bromley.²

XBL 812-5215

Figure 7. Comparison of apparent molal heat capacities at 1 bar and 200 bar, at 50°C.

1 68 11

١,

Figure 8. Comparison of apparent molal heat capacities at 4 bar and 200 bar, at 140°C.

Calculations

1. Review of Equations

Heat capacity data are of major importance because they can be integrated to obtain activity properties. To calculate high temperature activity properties, the heat capacity data must be fit to a temperature dependent equation, and the fitting equation must be integrated twice using enthalpy and activity data to evaluate the integration constants. The system of equations chosen to complete this calculation for sodium sulfate solutions was developed by Pitzer and co-workers¹²⁻¹⁵ and was found to describe successfully the properties of sodium chloride solutions at high temperatures.^{16,17} The basic equations for the apparent molal heat capacity, ${}^{\phi}C_{p}$, the apparent molal enthalpy, ${}^{\phi}L$, and the activity and osmotic coefficients, ϕ and γ_{\pm} , have been derived in Chapter 1 of this thesis. The specific equations for the 2-1 charge type of sodium sulfate are summarized below.

$${}^{\phi}C_{p} = \overline{C_{p}}_{2}^{\circ} + \frac{3A_{J}}{1.2} \ln(1+1.2I^{\frac{1}{2}}) - 4RT^{2}m \beta_{T}^{(0)}$$

$$- \frac{2RT^{2}m}{I} (1 - (1+2I^{\frac{1}{2}}) e^{-2I^{\frac{1}{2}}}) \beta_{T}^{(1)} - \sqrt{2} RT^{2}m^{2} C_{T}^{\phi}$$
(8)

with

$$\beta_{T}^{(0)} = \left(\frac{\partial^{2} \beta^{(0)}}{\partial T^{2}}\right)_{P,m} + \frac{2}{T} \left(\frac{\partial \beta^{(0)}}{\partial T}\right)_{P,m}$$
$$\beta_{T}^{(1)} = \left(\frac{\partial^{2} \beta^{(1)}}{\partial T^{2}}\right)_{P,m} + \frac{2}{T} \left(\frac{\partial \beta^{(1)}}{\partial T}\right)_{P,m}$$
$$C_{T}^{\phi} = \left(\frac{\partial^{2} C^{\phi}}{\partial T^{2}}\right)_{P,m} + \frac{2}{T} \left(\frac{\partial C^{\phi}}{\partial T}\right)_{P,m}$$

$${}^{\phi}L = \frac{3A_{H}}{1.2} \ln(1+1.2t^{\frac{1}{2}}) - 4Rt^{2}m \beta_{T}^{(0)}$$

$$- \frac{2RT^{2}m}{I} (1 - (1 + 2t^{\frac{1}{2}}) e^{-2t^{\frac{1}{2}}}) \beta_{T}^{(1)} - \sqrt{2} RT^{2}m^{2} C_{T}^{\phi} \qquad (9)$$

$$\beta_{T}^{(0)} = \left(\frac{\partial\beta^{(0)}}{\partial T}\right)_{P,m}$$

$$\beta_{T}^{(1)} = \left(\frac{\partial\beta^{(1)}}{\partial T}\right)_{P,m}$$

$$c_{T}^{\phi} = \left(\frac{\partial c^{\phi}}{\partial T}\right)_{P,m}$$

$$\phi = 1 - 2A_{\phi} \frac{t^{\frac{1}{2}}}{1 + 1.2t^{\frac{1}{2}}} + \frac{4}{3}m\beta^{(0)} + \frac{4}{3}m\beta^{(1)} e^{-2t^{\frac{1}{2}}} + \frac{4\sqrt{2}}{3}c^{\phi} \qquad (10)$$

with

$$\phi = 1 - 2A_{\phi} \frac{I^{\frac{1}{2}}}{1 + 1.2I^{\frac{1}{2}}} + \frac{4}{3} m\beta^{(0)} + \frac{4}{3} m\beta^{(1)} e^{-2I^{\frac{1}{2}}} + \frac{4\sqrt{2}}{3} C^{\phi}$$
(10)

$$\ln \gamma_{\pm} = -2A_{\phi} \left(\frac{I^{\frac{1}{2}}}{1+1.2I^{\frac{1}{2}}} + \frac{2}{1.2} \ln(1+1.2I^{\frac{1}{2}}) \right) + \frac{8}{3} m\beta^{(0)}$$
(11)
+ $\frac{2}{3} \frac{m}{I} (1-(1+2I^{\frac{1}{2}}-2I) e^{-2I^{\frac{1}{2}}}) \beta^{(1)} + 2\sqrt{2} m^{2} C^{\phi}$

Here, $\beta^{(0)}$, $\beta^{(1)}$, and C^{ϕ} are the fitting parameters whose temperature dependence will be determined from the heat capacity data. A_{I} , A_{H} , and A_{ϕ} are the Debye-Hückel slopes for the heat capacity, enthalpy, and activity reported by Bradley and Pitzer.¹⁸ $\overline{C_{p_2}}^{\circ}$ is the apparent molal heat capacity at infinite dilution.

Use of Equation (8) to describe the sodium sulfate heat capacities as a function of temperature requires one approximation. The definitions of $\beta_{m^2}^{(0)}$ and the other parameters require temperature derivatives at constant pressure. However, the heat capacity data have been taken along the saturated vapor pressure curve, so that above 100°C the required first derivative of $\beta^{(0)}$ is

$$\left(\frac{\partial \beta^{(0)}}{\partial T}\right)_{sat} = \left(\frac{\partial \beta^{(0)}}{\partial T}\right)_{P} + \left(\frac{\partial \beta^{(0)}}{\partial P}\right)_{T} \left(\frac{\partial P}{\partial T}\right)_{sat}.$$
 (12)

Extensive volumetric data at high temperatures and pressures are required to evaluate the second term in Equation 12. In this study, the second term has been assumed to be negligibly small. This assumption is probably reasonable below 200°C, but it could lead to significant error at higher temperatures.

2. Temperature Dependence of the Heat Capacity

The experimental heat capacity data were first fit to Equation (8) at constant temperature to evaluate $\overline{C_{p_2}}^{\circ}$. These values of $\overline{C_{p_2}}^{\circ}$ were $p_2^{p_2}$ combined with those reported by Gardner, Jekel, and Cobble¹⁹ in a least squares fitting routine to determine their temperature dependence. The two sets of $\overline{C_{p_2}}^{\circ}$ values and the smooth curve given by the fitting equation,

$$\overline{C_{p_2}}^{\circ} = U_1 + U_2 T + U_3 T^2 + \frac{U_4}{(T - 263)}, \qquad (13)$$

are shown in Figure 9. The coefficients of Equation (13) are given in Table 4. The values of $\overline{C_p^o}$ were fixed by this equation for the rest of the calculations.

Values of ${}^{\phi}C_{p} - \overline{C_{p}}{}^{\circ}_{2}$ at all temperatures, including literature data at 25°C, ¹⁹⁻²⁰ were then fit simultaneously in a linear least squares routine to determine the optimum temperature dependent equations for $\beta_{T^{2}}^{(0)}$, $\beta_{T^{2}}^{(1)}$, and $C_{T^{2}}^{\phi}$. The equations are listed below, while the parameters, U, are given in Table 4:

$${}_{T}^{3}{}_{T}^{(0)}(T) = 6U_{5} + \frac{2U_{6}}{T} + \frac{U_{7}}{T^{2}} + \frac{526U_{8}}{T(T-263)^{3}}$$
(14)

$$\beta_{T^{2}}^{(1)}(T) = 6U_{9} + \frac{2U_{10}}{T} + \frac{U_{11}}{T^{2}} + \frac{526U_{12}}{T(T-263)^{3}} + \frac{1360U_{13}}{T(680-T)^{3}}$$
(15)

Figure 9. Comparison of values of the apparent molal heat capacity at infinite dilution. The solid line represents values obtained from the parameters listed in Table 4. Squares represent the data of Gardner, Jekel, and Cobble, ¹⁹ and dots represent values obtained in this study.

XBL 812-5174

$$C_{T}^{\phi}(T) = \frac{2U_{14}}{T} + \frac{526U_{15}}{T(T-263)^3} .$$
 (16)

The factors $(T-263)^{-3}$ and $(680-T)^{-3}$ were chosen for convenience as factors which vary rapidly at low and high temperatures, respectively. The values of 263 and 680 have no theoretical significance.

The temperature dependent equations reproduce the heat capacity data below 1 molal to $\pm 2 \times 10^{-3} \text{ Jg}^{-1} \text{ K}^{-1}$ which is in good agreement with the estimated precision of the data. Between 1 and 1.5 molal, the fit reproduces the data to $\pm 3 \times 10^{-3} \text{ Jg}^{-1} \text{ K}^{-1}$. Only data below 1.5 molal were included in the least squares fitting routine, so calculation of heat capacity values from Equations (8) and (14)-(16) should be limited to concentrations below that value.

3. Prediction of the Enthalpy, Activity, and Osmotic Coefficient

To obtain predicted values of the apparent molal enthalpy, osmotic coefficient, and mean activity coefficient, Equations (14)-(16) must be integrated as a function of temperature. The temperature dependent equations for the apparent molal enthalpy are given below:

$$\beta_{T}^{(0)}(T) = \left(\frac{T_{r}}{T}\right)^{2} \beta_{T}^{(0)}(T_{r}) + 1/T^{2} \int_{T_{r}}^{T} T^{2} \beta_{T}^{(0)}(T) dT$$

$$= \frac{T_{r}}{T}^{2} \beta_{T}^{(0)}(T_{r}) + 2U_{5}\left(T - \frac{T_{r}}{T^{2}}\right) + U_{6}\left(1 - \frac{T_{r}}{T^{2}}\right) + U_{7}\left(\frac{1}{T} - \frac{T_{r}}{T^{2}}\right)$$

$$= U_{8}\left(\frac{1}{(T-263)^{2}} - \frac{T_{r}}{T^{2}(T_{r}-263)^{2}}\right)$$
(17)

$$\beta_{\rm T}^{(1)}({\rm T}) = \left(\frac{{\rm T}_{\rm r}}{{\rm T}}\right)^2 \beta_{\rm T}^{(1)}({\rm T}_{\rm r}) + 2{\rm U}_9 \left({\rm T} - \frac{{\rm T}_{\rm r}^3}{{\rm T}^2}\right) + {\rm U}_{10} \left(1 - \frac{{\rm T}_{\rm r}^2}{{\rm T}^2}\right) + {\rm U}_{11} \left(\frac{1}{{\rm T}} - \frac{{\rm T}_{\rm r}}{{\rm T}^2}\right) - {\rm U}_{12} \left(\frac{1}{({\rm T} - 263)^2} - \frac{{\rm T}_{\rm r}^2}{{\rm T}^2({\rm T} {\rm r} - 263)^2}\right) + {\rm U}_{13} \left(\frac{1}{(680 - {\rm T})^2} - \frac{{\rm T}_{\rm r}^2}{{\rm T}^2(680 - {\rm T}_{\rm r})^2}\right)^{(18)} - {\rm U}_{12} \left(\frac{1}{{\rm T}} - \frac{{\rm T}_{\rm r}}{{\rm T}}\right)^2 {\rm C}_{\rm T}^{\phi}({\rm T}_{\rm r}) + {\rm U}_{14} \left(1 - \frac{{\rm T}_{\rm r}^2}{{\rm T}^2}\right) - {\rm U}_{15} \left(\frac{1}{({\rm T} - 263)^2} - \frac{{\rm T}_{\rm r}^2}{{\rm T}^2({\rm T}_{\rm r} - 263)^2}\right)$$
(19)

For convenience, the reference temperature, T_r , has been set at 298.15 K. The three integration constants $\beta_T^{(0)}(T_r)$, $\beta_T^{(1)}(T_r)$, and $C_T^{\phi}(T_r)$, can be evaluated by fitting literature data, available at 25°C, ²¹⁻²³ with Equation (9). The values of the integration constants are listed in Table 4. They differ slightly from the values determined previously by Silvester and Pitzer²⁴ only because the value of the Debye-Hückel slope, A_H , has been improved.¹⁸

Prediction of the temperature dependence of the osmotic and activity coefficients requires one more integration, and the resulting equations are listed below:

$$\beta^{(0)}(T) = \beta^{(0)}(T_{r}) + \int_{T_{r}}^{T} \beta_{T}^{(0)}(T) dT$$

$$= \beta^{(0)}(T_{r}) + \beta_{T}^{(0)}(T_{r}) \left(T_{r} - \frac{T_{r}^{2}}{T}\right) + U_{5} \left(T^{2} + \frac{2T_{r}^{3}}{T} - 3T_{r}^{2}\right)$$

$$+ U_{6}(T + \frac{T_{r}^{2}}{T} - 2T_{r}) + U_{7}(\ln(T/T_{r}) + \frac{T_{r}}{T} - 1)$$

$$+ U_{8} \left(\frac{1}{(T-263)} + \frac{263T - T_{r}^{2}}{T(T_{r}-263)^{2}}\right)$$
(20)

Table 4

Values of the Fitting Parameters for the Heat Capacity of Na_2SO_4 as a Function of Temperature

Integration Constants at $T_r = 298.15$ K:

$$\beta^{(0)}(T_r) = .01958 \qquad \beta_T^{(0)}(T_r) = .002349$$

$$\beta^{(1)}(T_r) = 1.113 \qquad \beta_T^{(1)}(T_r) = .005958$$

$$C^{\phi}(T_r) = .0057 \qquad C^{\phi}_T(T_r) = -.000479$$

Parameters for
$$\overline{C_{p_2}}^{\circ}$$

 $U_1 = -990.405$
 $U_2 = 6.79636$

$$U_3 = -.0117779$$

 $U_4 = -6518.67$

Parameters for Equations (14)-(16):

Fit of Heat Capacity Data Alone

$$U_5 = -6.50891 \times 10^{-6}$$

 $U_6 = 2.26427 \times 10^{-2}$
 $U_7 = -1.12595 \times 10^1$
 $U_8 = -8.80379 \times 10^{-1}$
 $U_9 = -3.62922 \times 10^{-4}$
 $U_{11} = -2.19053 \times 10^2$
 $U_{12} = 6.29678 \times 10^{-1}$
 $U_{13} = 1.4908 \times 10^3$
 $U_{15} = 4.74519 \times 10^{-1}$
Fit of Heat Capacity and
Osmotic Coefficient Data
 $U_5 = -1.47668 \times 10^{-5}$
 $U_6 = 4.06323 \times 10^{-5}$
 $U_6 = 4.06323 \times 10^{-2}$
 $U_7 = -1.86055 \times 10^1$
 $U_7 = -1.86055 \times 10^1$
 $U_8 = -5.50520 \times 10^{-1}$
 $U_9 = -2.86519 \times 10^{-1}$
 $U_{11} = -1.53799 \times 10^2$
 $U_{12} = -9.26819 \times 10^{-1}$
 $U_{13} = 1.46060 \times 10^3$
 $U_{14} = 8.95033 \times 10^{-5}$
 $U_{15} = 3.16960 \times 10^{-1}$

$$\beta^{(1)}(T) = \beta^{(1)}(T_{r}) + \beta^{(1)}_{T}(T_{r}) \left(T_{r} - \frac{T_{r}^{2}}{T}\right) + U_{9} \left(T^{2} + \frac{2T_{r}^{3}}{T} - 3T_{r}^{2}\right) + U_{10}(T + \frac{T_{r}^{2}}{T} - 2T_{r} + U_{11}(\ln(T/T_{r}) + \frac{T_{r}}{T} - 1)$$
(21)
$$+ U_{12} \left(\frac{1}{(T - 263)} + \frac{263T - T_{r}^{2}}{T(T_{r} - 263)^{2}}\right) + U_{13} \left(\frac{1}{(680 - T)} + \frac{T_{r}^{2} - 680T}{T(680 - T_{r})^{2}}\right) C^{\phi}(T) = C^{\phi}(T_{r}) + C_{T}^{\phi}(T_{r}) \left(T_{r} - \frac{T_{r}^{2}}{T}\right) + U_{14} \left(T + \frac{T_{r}^{2}}{T} - 2T_{r}\right) + U_{15} \left(\frac{1}{(T - 263)} + \frac{263T - T_{r}^{2}}{T(T_{r} - 263)^{2}}\right).$$
(22)

The values of the integration constants $\beta^{(0)}(T_r)$, $\beta^{(1)}(T_r)$, and $C^{\phi}(T_r)$ at 25°C have been evaluated previously from isopiestic data.^{13,15}

4. Comparison with Literature Data

Osmotic coefficients over a range of concentrations and temperatures have been calculated using Equations (10) and (20)-(22). The values obtained from this fit of the heat capacity data alone are compared with literature data²⁶⁻³¹ from 45° C to 120° C in Figure 10, where the osmotic coefficients predicted from this fit are shown by the solid line at low concentrations progressing to the dashed line at high concentrations. Below 100°C, the agreement of data and prediction is excellent, even to concentrations above the 1.5 molal range of the fitting equation. Since the parameters chosen as the integration constants reproduce the osmotic coefficient to high concentrations, this agreement above 1.5 m, at low temperatures, is not too surprising.

Above 100°C, the predicted values trail off at 1.5 m. The reason for this behavior is straightforward. The three fitting parameters of

Figure 10. Comparison of predicted values of the osmotic coefficient with Literature Data. Osmotic coefficients have been calculated from published isopiestic ratios²⁶⁻³⁰ referenced to NaCl solutions using the tabulated values of ϕ_{NaCl} given by Pitzer, <u>et al</u>.¹⁷

XBL 812-5175

Equation (10) are each important at different concentration ranges. $\beta_{T}^{(0)}$ and $\beta_{T}^{(1)}$ both account for the effects of short range forces between ions two at a time as well as for longer range forces due to various electrostatic effects. $\beta_{T}^{(1)}$ is most important at low concentrations because of its exponentially decaying dependence on the ionic strength, while $\beta_{T}^{(0)}$ is important over a wide range of concentration. $C_{T}^{\phi}_{T}^{2}$ describes interactions of ions three at a time, and is most important at high concentrations because of its m² concentration dependence. $C_{T}^{\phi}_{T}^{2}$ can not be determined well from the heat capacity measurements, because of the limited concentration range of the data. For this reason, the temperature dependence of C^{ϕ} is not quite correct, and the differences between predicted values of the osmotic coefficient and literature data become larger the higher the temperature.

This situation could be improved by using heat capacity data at higher concentrations in the fitting routine. However, it is very difficult to obtain higher concentration data with the present technique because of the limited solubility of sodium sulfate at room temperature. Another way to improve the fitting equation is to include the osmotic coefficient data in the least squares fitting routine, and redetermine the fit parameters U_5 through U_{15} . This second method has been adopted, and the solid lines in Figure 10 show the osmotic coefficient values calculated from the combined fit of heat capacity and osmotic coefficient data. The temperature parameters determined from the combined fit are listed in the second column of Table 4.

Below 120°C, the combined fit reproduces the osmotic coefficient data to \pm 2%, up to concentrations of 2.5 molal. The uncertainty in calculated values of the apparent molal enthalpy is also estimated to be less than 2% at concentrations up to 2.0 m. However, above 120°C use of Equations (8)-(22) to calculate the various thermodynamic properties should still be limited to concentrations below 1.5 m, because only the heat capacity data have been used to determine the fit parameters in this region. In addition, some difficulty was encountered in reproducing the heat capacity data near 1.5 m, and this difficulty was not resolved by adding the osmotic coefficient data to the fitting routine. For this reason, the equations presented here should be used to calculate heat capacities only below 1.5 m.

Additional comparisons of thermodynamic properties calculated with the fitting equations and literature data are shown in Figures 11-13. High temperature values of the osmotic coefficient are in substantial agreement with the data of Liu and Lindsay,³² as illustrated in Figure 11. Figure 12 shows that the predicted values of the apparent molal enthalpy are in general agreement with the data of Snipes, Manly, and Ensor³³ between 40°C and 80°C, although the difference between calculated and experimental values is in some cases as large as 8% of the calculated value. At high temperatures, predictions of the apparent molal enthalpy are in good agreement with values reported by Mayrath³⁴ at low concentrations. At concentrations between .5 m and 1.0 m, the values of Mayrath³⁴ are substantially smaller than those obtained in the present study, as shown in Figure 13.

Some literature sources contained data that were not totally consistent with the heat capacity and osmotic coefficient data chosen for this study. High temperature osmotic coefficients obtained from the isopiestic data of Soldano and co-workers $^{35-36}$ are substantially larger than those predicted from the fit of the heat capacity data. Heat of dilution data at 50°C reported by Gritsus, Akhumov, and Zhilina³⁷ also

XBL 812-5216

Figure 12. Comparison of values of the apparent molal enthalpy. Solid lines represent values predicted from the combined fit of heat capacity and osmotic coefficient data. Points are the data of Snipes, Manly, and Ensor.³³

1.1

ì

1.

÷,

XBL 812-5190

Figure 13. Comparison of apparent molal enthalpies at high temperatures. Solid lines represent values predicted from the combined fit of heat capacity and osmotic coefficient data. Points are the values reported by Mayrath.³⁴

XBL 812-5191

are not in agreement with the predicted values. Harned and Hecker³⁸ have reported values for the activity coefficient of sodium chloride from 0°C to 40°C, based on emf measurements. The temperature dependence of the activity coefficient from 25°C to 40°C is in reasonable agreement with that obtained in this study, although the Harned and Hecker values for the activity coefficient at 25°C differ from those used in this study. Osmotic coefficients calculated from the vapor pressure difference measurements of Fabuss and Korosi³⁹ behave erratically at low concentrations, indicating that the precision of the measurements is not sufficient to provide a test of the osmotic coefficient predictions.

Calculated values of the activity and osmotic coefficients, the apparent molal enthalpy, the apparent molal heat capacity, and the specific heat capacity are given in Tables 5-9. The concentration dependence of the mean activity coefficient, at various temperatures, is shown in Figure 14.

The temperature dependences of the parameters, as determined from the combined fit, are shown in Figures 15-17. While the magnitudes of $\beta^{(0)}$, $\beta^{(1)}$, and C^{ϕ} for Na₂SO₄ are smaller than those for NaCl,^{16,17} the temperature dependences of the parameters for the two salts are similar. If substantial ion-pairing were occurring at high temperatures, one would expect $\beta^{(1)}$, and to a lesser extent $\beta^{(0)}$, to become smaller with increasing temperature. For Na₂SO₄, only C^{ϕ} shows this behavior, indicating that triple ion interactions are increasing with increasing temperature. Apparently, the electrostatic effects of the decrease in the dielectric constant of water with increasing temperature are well accounted for in the Debye-Hückel term. The remaining short range

Table 5

MEAN ACTIVITY COEFFICIENT OF AQUEOUS SODIUM SULFATE SOLUTIONS

T	P	D-H					M		V	_*~~~				
(°C)	(BAR)	SLOPE	.050	.100	. 250	.500	. 750	1.00	1.25	1.50	1.75	2.00	2.25	2.50
25. 30. 40. 50.	1.0 1.0 1.0 1.0	3.91E-01 3.95E-01 4.02E-01 4.10E-01	.536 .535 .531 .526	.454 .453 .450 .446	. 348 . 349 . 347 . 344	.273 .274 .275 .273	.232 .234 .236 .236	.206 .209 .212 .212	. 188 . 191 . 194 . 195	.175 .178 .182 .183	.165 .168 .172 .174	. 158 . 161 . 165 . 16 <u>6</u>	. 152 . 155 . 159 . 160	. 148 . 151 . 155 . 156
60. 70. 80. 90. 100.	1.0 1.0 1.0 1.0 1.0	4.19E-01 4.28E-01 4.38E-01 4.49E-01 4.61E-01	.520 .513 .505 .496 .487	. 440 . 433 . 424 . 416 . 406	. 339 . 333 . 325 . 316 . 307	.269 .264 .258 .250 .241	.233 .229 .223 .215 .207	. 210 . 206 . 200 . 194 . 186	. 194 . 190 . 185 . 179 . 171	. 182 . 178 . 173 . 167 . 160	.172 .169 .164 .158 .151	. 165 . 162 . 157 . 151 . 144	. 159 . 156 . 151 . 145 . 138	. 154 . 151 . 146 . 139 . 132
110. 120. 130. 140. 150.	1.4 2.0 2.7 3.6 4.8	4.73E-01 4.86E-01 4.99E-01 5.14E-01 5.30E-01	.477 .467 .456 .445 .433	. 396 . 385 . 373 . 361 . 349	. 297 . 286 . 275 . 263 . 251	.232 .221 .211 .200 .189	.198 .189 .179 .169 .159	. 178 . 169 . 159 . 149 . 140	. 163 . 154 . 145 . 136 . 127	. 152 . 144 . 135 . 126 . 117	.143 .135	.136 .128	. 130 . 122	.124 .116
160. 170. 180. 190. 200.	6.2 7.9 10.0 12.5 15.5	5.46E-01 5.63E-01 5.82E-01 6.02E-01 6.23E-01	. 421 . 408 . 395 . 382 . 369	. 336 . 323 . 310 . 297 . 284	.239 .226 .214 .202 .190	. 178 . 167 . 156 . 145 . 134	.148 .138 .128 .118 .108	. 130 . 120 . 111 . 102 . 093	. 117 . 108 . 099 . 091 . 082	. 108 . 099 . 090 . 082 . 074				

Table 6

•

.

2 a A

. ---

.

 $\left(\right)$

OSMOTIC COEFFICIENT OF AQUEOUS SODIUM SULFATE SOLUTIONS

T	P	D-H					M		Y					
(°C)	(BAR)	SLOPE	.050	. 100	. 250	.500	. 750	1.00	1.25	1.50	1.75	2.00	2.25	2.50
25.	1.0	3.91E-01	. 829	. 794	. 740	. 692	.662	.643	.632	. 627	. 627	.631	.638	. 648
30.	1.0	3.95E-01	.828	. 794	.743	.696	.668	.651	. 641	.636	.636	.639	.646	.654
40.	1.0	4.02E-01	. 827	. 794	. 745	.702	.677	.662	.654	.650	.650	.653	.658	.664
50.	1.0	4.10E-01	. 825	. 792	. 745	. 705	.682	.669	.662	.659	.659	.661	.665	.669
60.	1.0	4.19E-01	. 822	. 789	. 743	. 705	. 684	.672	. 665	. 663	. 663	.664	.667	.670
70.	1.0	4.28E-01	. 81.9	. 786	.740	.703	.683	.671	. 666	.663	.663	.663	.665	.666
80.	1.0	4.38E-01	.815	. 781	.735	.699	.679	.668	.663	.660	. 659	.659	. 659	.659
90.	1.0	4.49E-01	.810	.776	.730	.693	.674	.663	. 657	. 654	.653	.652	.651	.649
100.	1.0	4.61E-01	. 805	.770	.723	.686	.667	.656	.650	.647	.644	.643	.640	.636
110.	1.4	4.73F-01	. 799	. 763	. 715	.677	.658	.647	. 641	.637	.634	.631	.627	.622
120.	2.0	4.86E-01	.793	. 756	. 706	.667	.648	.637	.630	.626	.622	.618	.613	.607
130.	2.7	4.99E-01	.786	. 747	. 696	.656	.636	.625	.618	.613				
140.	3.6	5.14E-01	.779	.739	.685	.644	.623	.612	.604	.599				
150.	4.8	5.30E-01	.771	. 729	.673	.631	.610	.597	.589	.583				
160.	6.2	5.46E-01	. 763	. 719	.660	.617	.595	.582	.573	.567	,			
170.	7.9	5.63E-01	.754	708	.647	.602	.579	.565	.556	.549				
180.	10.0	5.82E-01	. 745	. 697	.633	.586	.561	.547	.538	.530				
190.	12.5	6.02E-01	. 735	. 685	.618	.569	.543	.528	.518	.510				
200.	15.5	6.23E-01	. 725	.673	.602	.551	.524	.508	. 497	. 489				

APPARENT MOLAL ENTHALPY OF AQUEOUS SODIUM SULFATE SOLUTIONS (KJOULE/MOL)

т	ρ	D-H											مد جد مد مد خر مد
(°Č)	(BAR)	SLOPE	. 001	. 005	.010	. 050	. 100	. 250	.500	. 750	1.000	1.250	1.500
25.	1.0	1.98E+03	. 29	.57	.73	1.01	. 94	. 35	80	-1.89	-2.89	-3.79	-4.60
30.	1.0	2.15E+03	. 32	. 64	. 82	1.24	1.28	. 90	. 01	88	-1.72	-2.50	-3.19
40.	1.0	2.512+03	. 38	.11	1.02	1.69	1.93	1.94	1.51	. 96	.40	- 13	61
50.	1.0	2.902+03	. 47	. 92	1.22	2.15	2.57	2.96	2.93	2.69	2.39	2.09	1.81
60.	1.0	3.33E+03	.52	1.07	1.44	2.63	3.24	3.98	4 34	4.39	4.33	4.24	4.14
70.	1.0	3.80E+03	.59	1.24	1.68	3.14	3.94	5.04	5.77	6.10	6.26	6.37	6.44
80.	1.0	4.31E+03	.67	1.42	1.93	3.68	4.68	6.14	7.25	7.84	8.23	8.51	8.75
90.	1.0	4.86E+03	. 76	1.62	2.20	4.26	5.47	7.31	8.79	7.65	10.25	10.71	11.10
100.	1.0	5.47E+03	. 86	1.83	2.50	4.88	6.31	8.55	10.42	11.54	12.34	12.98	13.53
110.	1.4.	6.14E+03	97	2 07	2 83	5 56	7 23	9 87	12 14	13 53	14.54	15.35	16.04
120.	2.0	6.87F+03	1.09	2.32	3.18	6.29	8.21	11.29	13.97	15.64	16.86	17.84	18.67
130.	2.7	7.68E+03	1.22	2.60	3.57	7.09	9.27	12.81	15.92	17.87	19.31	20.47	21.45
140.	3.6	8.56E+03	1.36	2.91	3.99	7.95	10.42	14.44	18.00	20.25	21.92	23.25	24.38
150.	4.8	9.54E+03	1.51	3.24	4.45	8.88	11.66	16.19	20.22	22.78	24.68	26.20	27.48
160.	6.2	1.96E+04	1.68	3.61	4.96	9 90	12.99	18.05	22.58	25.47	27.62	29.34	30.78
170.	7.9	1.18E+04	1.88	4.02	5.51	10.99	14.42	20.05	25.09	28.33	30.73	32.66	34.28
180.	10.0	1.32E+04	2.09	4,47	6.13	12.18	15.96	22.16	27.75	31.34	34.02	36.18	37.99
190.	12.5	1.47E+04	2.32	4.97	6.80	13.46	17.60	24.40	30.54	34.51	37.49	39.89	41.90
200.	15.5	1.64E+04	2.59	5.52	7.54	14.85	19.37	26.75	33.46	37.83	41.12	43.78	46.03

Table 7

Table 8

0

۲.

APPARENT MOLAL HEAT CAPACITY OF AQUEOUS SODIUM SULFATE SOLUTIONS (JOULE/ MOL DEG)

د. .

		ະ									
(°Ċ)	(BAR)	SLOPE	[°] 2	. 050	. 100	. 250	TIULALII .500	. 750	1.000	1.250	1.500
25.	1.0	3.28E+01	-196.5	-150.1	-127.9	-81.5	-27.5	13.7	47.0	74.4	96.8
40.	1.0	3.75E+01	-147.0	-129.6 -101.9	-109.1 -82.9	-45.1	-18.5	10.0	47.2	80.2	100.7
50.	1.0	4.09E+01	-132.5	-85.8	-67.1	-31.0	8.5	38.2	63.0	84.6	103.7
60.	1.0	4.46E+01	-126.3	-77.2	-58.3	-22.7	15.3	43.4	66.6	86.7	104.6
70.	1.0	4.87E+01	-126.4	-74.2	-54.7	-18.7	18.7	45.8	67.9	86.9	103.6
80. 90	1.0	5.32E+01	-131.5	-/5.5 _90 µ	-55.1	-18.2	19.2	45.8 43 9	61.2 64 9	87.J 82.4	97 6
100.	1.0	6.37E+01	-153.5	-88.4	-65.5	-25.4	13.6	40.3	61.1	78.3	93.0
110.	1.4	6.99E+01	-169.7	-99.2	-74.9	-32.6	7.9	35.1	56.0	73.1	87.6
120.	2.0	7.68E+01	-189.0	-112.6	-86.6	-42.0	. 2	28.3	49.6	66.9	81.3
130.	2.7	8.46E+01	-211.2	-128.3	-100.7	-53.5	-9.3	19.9	41.9	57.6	14.3
150.	3.6 4.8	1.03E+02	-236.3	-146.4	-135.3	-82.7	-34.0	-2.0	22.1	41.4	57.3
160.	6.2	1.15E+02	-294.6	-188.7	-155.7	-100.6	-49.5	-15.8	9.7	30.1	47.1
170.	7.9	1.29E+02	-327.7	-212.8	-178.1	-120.8	-67.4	-31.8	-4.7	17.2	35.5
180.	10.0	1.44E+02	-363.4	-238.6	-202.5	-143.3	-87.9	-50.3	-21.4	-15 0	6 9
200	12.5	1.03E+02	-442 5	-294.9	-256.8	-100.4	-111.3	-96.5	-63.1	-35.0	-10.7
200.		I TOOL OF			2/010						

Tab	le	9
-----	----	---

SPECIFIC HEAT CAPACITY OF AQUEOUS SODIUM SULFATE SOLUTIONS (JOULE/G DEG)

T	Р	П_ Н	CP				MOLA	I TTV			
(°Č)	(BAR)	SLOPE	WATER	. 050	. 100	. 250	.500	.750	1.000	1.250	1.500
25. 30. 40. 50.	1.0 1.0 1.0	3.28E+01 3.43E+01 3.75E+01 4.09E+01	4.179 4.178 4.178 4.180	4.142 4.142 4.144 4.144	4.108 4.109 4.112 4.115	4.016 4.019 4.024	3.889 3.893 3.900	3.786 3.789 3.796	3.701 3.702 3.708	3.628 3.628 3.633	3.565 3.564 3.569 3.574
			. 100			4.050	5.707	3.004	5,710	3.040	5.574
70. 80. 90. 100.	1.0 1.0 1.0 1.0	4.46E+01 4.87E+01 5.32E+01 5.82E+01 6.37E+01	4.184 4.189 4.196 4.205 4.217	4.151 4.156 4.163 4.171 4.183	4.120 4.125 4.132 4.140 4.152	4.035 4.041 4.048 4.056 4.066	3.914 3.920 3.927 3.934 3.944	3.811 3.817 3.823 3.830 3.838	3.722 3.728 3.733 3.739 3.746	3.645 3.650 3.654 3.658 3.664	3.579 3.582 3.584 3.587 3.591
110. 120. 130. 140. 150.	1.4 2.0 2.7 3.6 4.8	6.99E+01 7.68E+01 8.46E+01 9.34E+01 1.03E+02	4.232 4.249 4.268 4.288 4.312	4.197 4.213 4.231 4.251 4.273	4.165 4.181 4.198 4.217 4.238	4.079 4.093 4.108 4.125 4.144	3.955 3.967 3.980 3.994 4.010	3.848 3.859 3.870 3.882 3.895	3.755 3.764 3.773 3.784 3.795	3.671 3.679 3.687 3.696 3.706	3.597 3.603 3.610 3.617 3.625
160. 170. 180. 190. 200.	6.2 7.9 10.0 12.5 15.5	1.15E+02 1.29E+02 1.44E+02 1.63E+02 1.86E+02	4.339 4.369 4.403 4.443 4.489	4.299 4.327 4.360 4.399 4.443	4.262 4.290 4.322 4.358 4.401	4.165 4.190 4.218 4.250 4.288	4.028 4.048 4.070 4.097 4.127	3.910 3.927 3.945 3.967 3.991	3.807 3.821 3.837 3.855 3.875	3.716 3.728 3.742 3.757 3.775	3.635 3.645 3.657 2.671 3.687

....

XBL 812-5176

.

Figure 16. Temperature dependence of the fitting parameters $\beta^{(1)}$, $\beta_T^{(1)}$, and $\beta_T^{(1)}$.

X 8 L 812 - 5182A

Figure 17. Temperature dependence of the fitting parameters C^{ϕ} , C_{T}^{ϕ} , and $C_{T}^{\phi}^{2}$.

í

z -

interactions between Na⁺ and SO₄⁼ ions, described by $\beta^{(0)}$ and $\beta^{(1)}$, decrease with increasing temperature.

Conclusions

The quality of the heat capacity data obtained in this study and their agreement with literature data indicate that flow calorimetry is a valuable technique for high temperature studies. Indeed, the precision of the present data is five times better than that quoted for the high temperature data in the literature.² The successful prediction of osmotic coefficients from a temperature dependent fit of the heat capacity data shows that heat capacity measurements can be used to obtain activity properties of electrolyte solutions at high temperatures.

One drawback to the use of flow calorimetry at high pressures should be mentioned. Reduction of the flow measurements to obtain specific heat capacities requires density data at room temperature and the system pressure. High pressure volumetric data, even at room temperature, are available for only a few electrolyte solutions over a very limited concentration range. In addition, integration of high pressure heat capacity data to obtain activity properties requires enthalpy and activity data at the same pressure to evaluate the integration constants. These are most easily öbtained using density and expansivity data, as a function of pressure, to adjust activity and enthalpy data at one bar to the higher pressure. Thus a full treatment of flow calorimetry data requires volumetric properties, as a function of pressure, over a small temperature range. It is hoped that current interest in high pressure flow calorimetry will encourage further work in the determination of these important volumetric properties.

References

· •

1.	P. Picker, PA. Leduc, P. R. Philip, J. E. Desnoyers, J. Chem. Thermo. <u>3</u> , 631 (1971).
2.	S. Likke and L. A. Bromley, J. Chem. Eng. Data, <u>18</u> , 189 (1973).
3.	H. F. Stimson, Am. J. Phys. <u>23</u> , 622 (1955).
4.	L. Haar, J. Gallagher, and G. S. Kell, Proceedings of the Inter- national Association for the Properties of Steam, September (1979).
5.	I. V. Olofosson, E. C. Jekel, and J. W. Cobble, J. Phys. Chem. <u>73</u> , 2017 (1969).
6.	G. Perron, J. E. Desnoyers, F. J. Millero, Can. J. Chem. <u>53</u> , 1134 (1975).
7.	R. E. Gibson, J. Phys. Chem. <u>31</u> , 496 (1927).
8.	CT. A. Chen, J. H. Chen, and F. J. Millero, J. Chem. Eng. Data, <u>25</u> , 307 (1980).
9.	CT. Chen, R. T. Emmet, and F. J. Millero, J. Chem. Eng. Data, <u>22</u> , 201 (1977).
10.	R. E. Gibson, J. Am. Chem. Soc. <u>56</u> , 4 (1933).
11.	D. Smith-Magowan and R. H. Wood, submitted to J. Chem. Thermo.
12.	K. S. Pitzer, J. Phys. Chem. <u>77</u> , 268 (1973).
13.	K. S. Pitzer and G. Mayorga, J. Phys. Chem. <u>77</u> , 2300 (1973).
14.	K. S. Pitzer and G. Mayorga, J. Soln. Chem. <u>3</u> , 539 (1974).
15.	K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. <u>96</u> , 5701 (1974).
16.	L. F. Silvester and K. S. Pitzer, J. Phys. Chem. <u>8</u> , 1882 (1977).
17.	K. S. Pitzer, D. J. Bradley, P. S. Z. Rogers, and J. C. Peiper, Lawrence Berkeley Laboratory Report No. 8973 (1979).
18.	D. J. Bradley and K. S. Pitzer, J. Phys. Chem. <u>83</u> , 1599 (1979).
19.	W. L. Gardner, E. C. Jekel, and J. W. Cobble, J. Phys. Chem. <u>73</u> , 2017 (1969).
20.	M. Randall and F. D. Rossini, J. Am. Chem. Soc. <u>51</u> , 323 (1929).

· ..

·:;•

. I:

21. W. E. Wallace and A. L. Robinson, J. Am. Chem. Soc. <u>63</u> , 958 (1941).
22. E. Lange and H. Streeck, Z. Phys. Chem. Abt. <u>157</u> , 1 (1931).
23. P. T. Thompson, D. E. Smith, R. H. Wood, J. Chem. Eng. Data, <u>19</u> , 386 (1974).
24. L. F. Silvester and K. S. Pitzer, J. Soln. Chem. <u>7</u> , 327 (1978).
25. C. J. Downes and K. S. Pitzer, J. Soln. Chem. <u>5</u> , 389 (1976).
26. K. L. Hellams, C. S. Patterson, B. H. Prentice, III, and M. J. Taylor, J. Chem. Eng. Data, <u>4</u> , 323 (1965).
27. W. T. Humphries, C. F. Kohrt, and C. S. Patterson, J. Chem. Eng. Data, <u>13</u> , 327 (1968).
28. J. T. Moore, W. T. Humphries, and C. S. Patterson, J. Chem. Eng. Data, <u>17</u> , 180 (1972).
29. C. S. Patterson, L. O. Gilpatrick, and B. A. Soldano, J. Chem. Soc. 2730 (1960).
30. B. A. Soldano and C. S. Patterson, J. Chem. Soc. 937 (1962).
31. Gy. Jakli, T. C. Chan, and W. A. Van Hook, J. Soln. Chem. <u>4</u> , 71 (1975).
32. C-T Liu and W. T. Lindsay, Office of Saline Water Research and Development Progress Report No. 722, Int-OSW-RDPR-71-722 (1971).
33. H. P. Snipes, C. Manly, and D. D. Ensor, J. Chem. Eng. Data, <u>20</u> , 287 (1975).
34. J. E. Mayrath, Ph.D. Thesis, University of Delaware, Newark, DE (1980).
35. B. A. Soldano and M. Meek, J. Chem. Soc. 4424 (1963).
36. B. A. Soldano and P. B. Bien, J. Chem. Soc.(A), 1825 (1966).
37. B. V. Gritsus, E. I. Akhumov, and L. P. Zhilina, Zh. Prikl. Khim., <u>44</u> , 186 (1971).
38. H. S. Harned and J. C. Hecker, J. Chem. Soc. <u>56</u> , 650 (1934).
39. B. M. Fabuss and A. Korosi, Desalination, $\underline{1}$, 139 (1966).
Chapter 4

SOLUBILITY OF CALCIUM, STRONTIUM, AND BARIUM SULFATES IN SALINE WATERS

Introduction

Many problems in geochemistry and oceanography involve the prediction of mineral solubility in natural brines and seawater. Successful solubility predictions depend on accurate calculation of the activities of ions in these solutions. At least one component of a sparingly soluble salt will necessarily be a minor constituent of a mixed solution. Therefore any model of solution properties used for solubility prediction must describe the activities of minor as well as major constituents.

A number of different models¹⁻⁴ have been proposed to calculate activity coefficients, and they are generally successful in predicting the activities of the major components of a mixed electrolyte solution. However, many models fail to predict the activities of minor constituents. The model for electrolyte solution properties developed by Pitzer⁵⁻⁹ has been used successfully to predict the osmotic coefficient of mixed solutions.⁸ In addition, Whitfield¹⁰ has shown that the activity coefficients of the major components in seawater, predicted using Pitzer's equations, are in reasonable agreement with experimental values. However, recent attempts to use this model to predict mineral solubility in seawater have had mixed results. In this chapter, recent data on the solubility of gypsum in common and noncommon ion solutions and in natural seawater have been used to further test the effectiveness of Pitzer's model for solubility prediction.

Literature Review

Two separate studies have concluded that the system of equations developed by Pitzer and Kim⁸ to describe mixed electrolyte solutions is not successful in predicting the solubility of $CaSO_4 \cdot 2H_2O$ (gypsum) in seawater. Whitfield¹⁰ found that gypsum solubility in seawater, calculated using the equations of Pitzer and Kim, was 15% lower than the experimental solubility of Marshall and Slusher.¹¹ Assuming that the discrepancy was due to $CaSO_4^{\circ}$ ion pair formation, he proposed a hybrid approach in which the mean activity coefficient of $CaSO_4$ was calculated through an ion-association equilibrium. His ion-association approach provided a moderate improvement in the solubility calculation at the ionic strength of natural seawater (~.7 m). Culberson, Latham, and Bates¹² measured the solubility of gypsum and celestite (SrSO₄) in synthetic seawater. They found that the solubility predicted using the equations of Pitzer and Kim was 25% lower than their experimental results for CaSO₄ $\cdot 2H_2O$, and 18% lower for SrSO₄.

Recently, however, Harvie and Weare¹³ have successfully reproduced mineral solubility, including gypsum solubility, in a system of the and the second state of th major components of natural waters. They used the mixture equations of gebeneter en al al marener man a subservitar a mere al gar reen gar a Pitzer and Kim, with the addition of terms derived by Pitzer' which and the second secon and the state of the state of the account for the effects of unsymmetrical mixing. These additional terms are obtained from a purely theoretical treatment of the electrostatic The sector of th effects of mixing ions of different charge but of the same sign, and and the second and the second and the second and the second second second second second second second second s they require no empirical adjustment. Harvie and Weare's results inin the second dicate that the effects of the terms for unsymmetrical mixing are very important in predicting activity behavior in complex mixtures.

To complete their prediction of gypsum solubility in mixed electro-

lyte solutions, Harvie and Weare used parameters for pure CaSO₄ which ารถึงแห่งรูงการพระว่า การณณีแหน่งการถึง ว่าตัวตั้ง มีชีพระพร are strictly valid only to an ionic strength of .06 m, since the ST 1 3 SHORE SHOW STOLEN AND STOLEN STOLEN STOLEN 1 696 osmotic coefficient data used to determine the parameters extend only หรือเสียน และ ว่าของสุดที่สุดไป หุกไปไปไป ได้มีแม่มาสามมาต่างค่ to the solubility limit of gypsum at .015 m. However, because they . Senn evaluated mixture parameters for CaSO₄ using high concentration data, use of the approximate parameters for pure CaSO₄ should be adequate. Unfortunately, Harvie and Weare used an incorrect parameter for pure crome gree is analyzable is the molt of the plane of the states. 1 2 37 Na₂SO₄, resulting in an inconsistency within their equations. They also and a construction of the second s used a solubility product for gypsum which is not in agreement with their en la companya de la value for the mean activity coefficient of CaSO, at saturation in pure While the effects of these inconsistencies are probably small water. all a specie was a set (see a set was a set but he take the grades and in comparison to the accuracy of Harvie and Weare's treatment, they can an out offer the search be important for more precise applications. 1.5 - 1**10**000000 - 410

Since Harvie and Weare completed their solubility prediction work, an alate a constitute a stati 1. SHOLTEND. extensive new data on the solubility of gypsum in mixed solutions of 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -Na₂SO₄, CaCl₂, and NaCl have become available.¹⁴ These data can be used · 179 C V V 34 V 17 to refine the parameters for pure CaSO4 and it's mixtures. In view of inter o the the high precision of the new data and of the inconsistencies in the a Classic de las des 90 d ليرد في المعني المعالية الم previous treatments, it seems profitable to re-examine the solubility . * prediction of gypsum in mixed electrolyte solutions. In addition, new しったわたく ちゃち э.

¹ The solubility product given by Harvie and Weare¹³ is 2.35 x 10^{-5} . The known solubility of gypsum in pure water is .01518 ± .00005 m,¹⁴ and the activity coefficient at that concentration calculated from the parameters they used for CaSO₄ is .332. At that concentration the activity of water is greater than .999, so that the solubility product can be calculated as

 $K_{sp} = m^2 \gamma_{\pm}^2 a_w^2 = 2.53 \times 10^{-5} c_{\pm}^{200} a_{\pm}^{200} c_{\pm}^{200} c_{\pm}^{2$

Thus the two values of the solubility product differ by 7%.

data on gypsum solubility in natural seawater, seawater with added MgCl₂, agricultural drainage water, and their concentrates also is available.¹⁵ These data provide an excellent test of gypsum solubility in complex, natural systems. Finally the data of Culberson <u>et al.</u>,¹² Templeton,¹⁶ and Davis and Collins¹⁷ can be used to test solubility prediction for SrSO₄ and BaSO₄, based on parameter estimation using CaSO₄ as a model.

Equations

The equations developed by Pitzer and Kim⁸ to describe mixed solutions require information on the properties of the pure salts making up the mixture and on the behavior of common ion mixtures. Complete derivations of the mixture equations have been given by Pitzer and Kim and Pitzer.^{9,18} Therefore only the final equations for the osmotic coefficient and for the mean activity coefficient of a salt in a mixture are listed below:

$$\phi - 1 = \left(\sum_{i} m_{i}\right)^{-1} 2If^{\phi} + 2\sum_{c} \sum_{a} m_{c}m_{a} B_{ca}^{\phi} + \frac{(\Sigma mz)}{(z_{c}z_{a})} C_{ca}^{\phi} + \sum_{c} \sum_{c} m_{c}m_{c}, [\theta_{cc}, \pm I\theta_{cc}, \pm \sum_{a} m_{a}\psi cc'a] + \sum_{c} \sum_{c} m_{a}m_{a}, [\theta_{aa}, \pm I\theta_{aa}, \pm \sum_{c} m_{c}\psi caa,]$$

$$In\gamma_{MX} = |z_{M}z_{X}|f^{\gamma} + (2\nu_{M}/\nu) \sum_{a} m_{a}[B_{Ma} + (\Sigma mz) C_{Ma} + (\nu_{X}/\nu_{M})\theta_{Xa}] + (2\nu_{X}/\nu)$$
(1)

$$\sum_{\mathbf{c}} m_{\mathbf{c}} [B_{\mathbf{c}X} + (\Sigma mz) C_{\mathbf{c}X} + (v_{\mathbf{M}}/v_{\mathbf{X}}) \theta_{\mathbf{Mc}}] + \sum_{\mathbf{c}} \sum_{\mathbf{a}} m_{\mathbf{c}} m_{\mathbf{a}} \{ |z_{\mathbf{M}}^{\mathbf{z}} z_{\mathbf{X}}| B_{\mathbf{c}a}' + c_{\mathbf{A}}^{\mathbf{z}} \}$$

 $v^{-1}[2v_M z_M c_a + v_M \psi M c_a + v_X \psi c_a X] + 1/2 \sum_{c} \sum_{c} m_c m_c [(v_X / v) \psi_{cc} X + v_M \psi M c_a + v_X \psi c_a X]$

$$|z_{M}z_{X}|\theta_{cc},'] + 1/2 \sum_{a a'} \sum_{a a'} m_{a}m_{a}, [(v_{M}/v)\psi_{Maa'} + |z_{M}z_{X}|\theta_{aa'}'] = 0$$

The activity of water, a , can be calculated from the usual relationship

$$\ln a_{w} = -\sum_{i} v_{i} m_{i} \frac{1}{1000} \phi^{3}$$
(3)

and the second second and the Alexandra (Second Second Second Second Second Second Second Second Second Second

where M_1^{His} the molecular weight of pure water. The water subscription that

Here v_M and v_X are the numbers of ions M and X in the neutral salt and $v = v_M + v_X$. The charges on the ions, in electronic units, are z_M and z_X . The summations are over all cations, c and c', and all anions, a and a'. The ionic strength is

$$I = 1/2 \sum_{i}^{2} m_{i} z_{i}^{2}$$

and

$$\Sigma mz$$
) = $\sum_{c} m_{c} z_{c} = \sum_{a} m_{a} |z_{a}|$.

1945 C. M. C. L. L.

÷...

1701

The Debye-Hückel terms for the osmotic and activity coefficient are given by

$$f^{\phi} = -A_{\phi} \frac{I^{\frac{1}{2}}}{1+1.2I^{\frac{1}{2}}}$$
(4)

$$f^{\gamma} = -A_{\phi} \frac{I^{\frac{1}{2}}}{1+1.2I^{\frac{1}{2}}} + \frac{2}{1.2} \ln(1+1.2I^{\frac{1}{2}})$$
(5)

where the Debye-Hückel slope at 25°C is $A_{\phi} = .392$.

The terms B_{MX}^{ϕ} , B_{MX} , B_{MX}^{\prime} , and C_{MX}^{\prime} are combinations of the parameters for the neutral salt, MX.

$$B_{MX}^{\phi} = \beta_{MX}^{(0)} + \beta_{MX}^{(1)} \exp(-\alpha_1 I^{\frac{1}{2}}) + \beta_{MX}^{(2)} \exp(-\alpha_2 I^{\frac{1}{2}})$$
(6)

$$B_{MX} = \beta_{MX}^{(0)} + \frac{2\beta_{MX}^{(1)}}{\alpha_1^2 I} \left[1 - (1 + \alpha_1 I^{\frac{1}{2}}) \exp(-\alpha_1 I^{\frac{1}{2}})\right]$$
(7)

+
$$\frac{2\beta_{MX}^{(2)}}{\alpha_2^2 I}$$
 [1-(1+ $\alpha_2 I^{\frac{1}{2}}$) exp(- $\alpha_2 I^{\frac{1}{2}}$)]

$$B'_{MX} = \frac{2\beta_{MX}^{(1)}}{\alpha_1^2 I^2} \left[-1 + (1 + \alpha_1 I^{\frac{1}{2}} + \frac{1}{2}\alpha_1^2 I) \exp(-\alpha_1 I^{\frac{1}{2}}) \right]$$
(8)

+
$$\frac{2\beta_{MX}^{(2)}}{\alpha_2^2 I^2} \left[-1 + (1 + \alpha_2 I^{\frac{1}{2}} + \frac{1}{2} \alpha_2^2 I) \exp(-\alpha_2 I^{\frac{1}{2}}) \right]$$

$$C_{MX} = \frac{C_{MX}^{\phi}}{2 |z_M z_X|^{\frac{1}{2}}} .$$
 (9)

For most electrolytes the parameter $\beta_{MX}^{(2)}$ is not needed, and α_1 is assigned the value 2.0. For high valence type electrolytes, including 2-2 electrolytes, the parameter $\beta_{MX}^{(2)}$ is required. For 2-2 electrolytes, $\alpha_1 = 1.4$ and $\alpha_2 = 12.0$.

The additional terms θ_{ij} , θ'_{ij} , and ψ_{ijk} occur only in mixtures of electrolytes. They account for binary interactions of unlike ions, i and j, of the same sign and for ternary interactions of two unlike ions of the same sign with an ion, k, of opposite sign. The binary mixture parameter, θ_{ij} , is composed of two terms,

$$\theta_{ij} = S_{\theta_{ij}} + E_{\theta_{ij}}(I).$$
(10)

The first term, ${}^{S}_{\theta}_{ij}$, is a constant which accounts for the effects of short range interactions. It is the only adjustable parameter in

a state of the second state

Equation (10). The second term, ${}^{E}\theta_{ij}(I)$, accounts for the purely electrostatic effects of unsymmetrical mixing. When the ions i and j are of the same charge, ${}^{E}\theta_{ij}(I)$ is zero. When the charges of ions i and j are different, ${}^{E}\theta_{ij}(I)$ depends on the total ionic strength and the charges z_i and z_j . The term $\theta'_{ij} = \frac{\partial \theta_{ij}}{\partial I}$ contains contributions only from ${}^{E}\theta_{ij}(I)$, because ${}^{S}\theta_{ij}$ is assumed to be independent of ionic strength. Values of ${}^{E}\theta_{ij}(I)$ and $\theta'_{ij}(I)$ can be calculated from equations or tables given by Pitzer.⁹ The termary term, ψ_{ijk} , is an adjustable parameter and is considered to be independent of concentration.

Equations (1) and (2) contain a large number of parameters. However, all of the parameters except the ${}^{S}\theta_{ij}$ and ψ_{ijk} are usually evaluated from data on single electrolytes. These parameters are then fixed for the calculation of the properties of a mixture. The mixture parameters ${}^{S}\theta_{ij}$ and ψ_{ijk} are most easily evaluated from data on ternary, common ion mixtures. They are then fixed for the calculation of the properties of a more complex mixture.

Calculations

The example of a sparingly soluble salt presents a special case for the determination of fitting parameters. If one is interested in the activity properties of a fairly insoluble salt in a mixture of moderate ionic strength, the contributions of the parameters for the pure, insoluble electrolyte will be very small. Thus the pure electrolyte terms can be estimated from knowledge of the parameters of similar electrolytes. The mixture parameters θ and ψ can then be evaluated from solubility data, preferably in common ion solutions. Of course, the effect of a sparingly soluble salt on the osmotic coefficient of the solution or on the activity coefficient of a major component of the mixture will generally be small.

However, the solubility of $CaSO_{1} \cdot 2H_{2}O$ at 25°C is large enough that accurate parameters for pure $CaSO_{\Lambda}$ are desirable. Recently Briggs¹⁴ has obtained extensive data on the solubility of gypsum in common ion solutions of $CaCl_2$ and Na_2SO_4 , as well as in more complex solutions of NaCl, CaCl₂ + NaCl, and Na₂SO₄ + NaCl. These data can be used to evaluate both the parameters for pure CaSO4 and the mixture parameters, ${}^{\psi}$ Ca,Na,SO₄ and ${}^{\psi}$ Ca,Cl,SO₄. The binary mixture parameters ${}^{S}_{\theta}$ Ca.Na and ${}^{S}_{\theta}$ are already known from analysis of other data. 9,20

The form of the equation used to obtain $CaSO_{\Delta}$ parameters from the solubility data can be derived as follows. The expression for the solubility product of CaSO, ·2H₂O is

$$K_{sp} = \gamma_{\pm}^{2} m_{Ca} m_{SO_{4}} a_{w}^{2}$$
(11)

where γ_{+} is the mean activity coefficient of CaSO₄, m_{Ca} and m_{SO₄} are the molalities of calcium and sodium ions, and $a_{_{\rm U}}$ is the activity of water in the solution. The experimentally determined quantity is ${}^{m}Ca {}^{m}SO_{4} {}^{w}$, where a is included because it can be well determined using estimates of the CaSO₄ parameters. The activity coefficient is

Constant in

$$\ln \gamma_{\pm} = \ln \gamma_{\pm}^{*} + R_{1}(m_{Ca}, m_{SO_{4}}, I) \beta_{CaSO_{4}}^{(1)} + R_{2}(m_{Ca}, m_{SO_{4}}, I) \beta_{CaSO_{4}}^{(2)}$$

$$+ \frac{1}{2} m_{Na}(m_{Ca} + m_{SO_{4}}) \psi_{Ca,Na,SO_{4}} + \frac{1}{2} m_{C1}(m_{Ca} + m_{SO_{4}}) \psi_{Ca,C1,SO_{4}}^{(1)}$$
(12)

where $\ln \gamma_+$ is the contribution to the activity coefficient calculated I from Equation (2) with the unknown parameters $\beta_{CaSO_4}^{(1)}$, $\beta_{CaSO_4}^{(2)}$, $\psi_{Ca,Na,SO_4}^{(2)}$, and $\psi_{Ca,C1,SO_{l_1}}$ set to zero. In this case, since four parameters and the

solubility product have to be determined, the value of the parameter $\beta_{CaSO_{4}}^{(0)}$ was fixed at .2. Because the concentration of CaSO_{4} is never very high, the $C_{CaSO_{4}}^{\phi}$ parameter is not needed and has been set to zero. The two terms R_{1} and R_{2} are the ionic strength dependent coefficients of $\beta_{CaSO_{4}}^{(1)}$ and $\beta_{CaSO_{4}}^{(2)}$, $R_{n} = \frac{2\beta^{(n)}}{\alpha_{n}^{2}I} \{(m_{Ca}+m_{SO_{4}})[1-(1+\alpha_{n}I^{\frac{1}{2}}) \exp(-\alpha_{n}I^{\frac{1}{2}})] + \frac{4m_{Ca}m_{SO_{4}}}{I} [-1+(1+\alpha_{n}I^{\frac{1}{2}}+\frac{1}{2}\alpha_{n}^{2}I) \exp(-\alpha_{n}I^{\frac{1}{2}})]\}^{\frac{1}{2}}$ (13)

where n = 1 or 2. The final form of the fitting equation is obtained by taking the natural logarithm of Equation (11) and substituting Equation (12),

$$\ln(m_{Ca}m_{SO_{4}}w^{2}) + 2\ln\gamma_{\pm}^{*} = \ln K_{Sp} - 2R_{1}\beta_{CaSO_{4}}^{(1)} - 2R_{2}\beta_{CaSO_{4}}^{(2)}$$

$$- m_{Na}(m_{Ca}^{+}m_{SO_{4}})\psi_{Ca,Na,SO_{4}} - m_{C1}(m_{Ca}^{+}m_{SO_{4}})\psi_{Ca,C1,SO_{4}}$$
(14)

All of the terms on the left side of the equation are known, and the right side is linear in all of the unknown parameters. Thus this equation can be used with any standard, linear least squares routine to determine the five unknown parameters simultaneously from solubility data. One final iteration, using the new values of the parameters to calculate a_w , insures that the equations are internally consistent. It is important to determine simultaneously the values of the solubility product and the CaSO₄ parameters, in order to maintain internal consistency between the solubility product, the known solubility of gypsum in pure water, and the activity coefficient calculated with the CaSO₄ parameters.

Results

The results of a least squares fit of Briggs' solubility data, using Equation (14), are given in Table 1. The low concentration, electromotive force data of Lilley and Briggs¹⁹ also were included in the fit, since these data describe the activity properties of CaSO₄ at concentrations below gypsum solubility. The experimental activity coefficients listed in Table 1 are calculated from the solubility data and the value of the solubility product obtained with the least squares fit. The agreement between calculated and experimental values is very good, showing that Pitzer's specific interaction equations are successful in describing the activity properties of a minor component in mixed solutions.

The values of the parameters obtained with the least squares fit, as well as the parameters for the other salts in the mixtures, are given in Tables 2 and 3. The parameters $\beta_{CaSO_4}^{(1)}$ and $\beta_{CaSO_4}^{(2)}$ are similar to the parameters for other 2-2 electrolytes. The mixture parameters ψ_{Ca,Na,SO_4} and $\psi_{Ca,C1,SO_4}$ are very different from those obtained by Harvie and Weare¹³ (-.067 vs -.023 for ψ_{Ca,Na,SO_4} and -.027 vs 0 for $\psi_{Ca,C1,SO_4}$). The two sets are not strictly comparable however, because Harvie and Weare used the old value of .020 for θ_{C1,SO_4} , while the improved value of .030 determined by Downes and Pitzer²⁰ was used in this study. The value of -.027 for $\psi_{Ca,C1,SO_4}$ is similar to that of -.020 for $\psi_{Mg,C1,SO_4}$. The parameter ψ_{Ca,Na,SO_4} is more negative than most ternary mixture parameters, indicating large, triplet interactions between Ca⁺⁺, Na⁺, and SO₄⁼ ions. The value of the gypsum solubility product determined in the least squares fit is 2.615 x 10⁻⁵, in good agreement with the value of 2.63 x 10⁻⁵ obtained by Lilley and Briggs¹⁹ from an analysis of their

	Ta	b	1	е	1
--	----	---	---	---	---

Least Squares Fit of Gypsum Solubility Data^a

,		mola	ality ——	<u> </u>		γ Exp.	
Ionic Strength	Ca ⁺⁺	so ₄ =	Nat	C1 ⁻	Water Activity	'± _{CaS04}	۵b
.06272 .06568 .06977 .07611 .09194 .11614 .16284 .24837 .35070 .52314 .95359 1.39953 2.76801 4.19427 6.22156	.01603 .01721 .01880 .02116 .02679 .03517 .05104 .07978 .11403 .17165 .31528 .46402 .92066 1.39658 2.07297	.01463 .01406 .01338 .01264 .01156 .01062 .00973 .00974 .00861 .00819 .00777 .00745 .00604 .00455 .00267		.00280 .00630 .01083 .01702 .03045 .04910 .08263 .14147 .21084 .32693 .61501 .91314 1.82924 2.78406 4.14060	1.000 1.000 .999 .999 .999 .999 .998 .997 .995 .995 .978 .951 .915 .854	. 334 . 329 . 323 . 313 . 291 . 265 . 230 . 191 . 164 . 137 . 105 . 089 . 072 . 070 . 081	$ \begin{array}{r} -0 \\ 0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -1 \\ -2 \\ -2 \\ -3 \\ -2 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $
. 06560 . 06554 . 07057 . 07058 . 07737 . 09183 . 09184 . 12040 . 12055 . 15303 . 15242 . 21025 . 33475 . 33475 . 33477 . 50569 . 50564 . 79588 . 30661 1. 30658 2. 16298 2. 16298 2. 16298 3. 48199 3. 48200 5. 14737 5. 14746	.01428 .01427 .01353 .01292 .01290 .01200 .01200 .01109 .01113 .01078 .01022 .01022 .01022 .01022 .01024 .01024 .01024 .01023 .01083 .01081 .01201 .01201 .01201 .01385 .01383 .01616 .01796	.01711 .01709 .01901 .01901 .02151 .02149 .02661 .02661 .03644 .03648 .04742 .04742 .04742 .04742 .04742 .04742 .046668 .06668 .10824 .10825 .16515 .16514 .26167 .43153 .43153 .71638 .71636 1.15528 1.15528 1.15528 1.70981	.00565 .01096 .01096 .01718 .02922 .02922 .05069 .05069 .07327 .11292 .11292 .19642 .30982 .30982 .50171 .50171 .83904 .83904 1.40506 1.40506 2.27825 2.27825 3.38376	•	1.000 1.000 .999 .999 .999 .999 .999 .99	. 327 . 328 . 319 . 307 . 307 . 286 . 255 . 254 . 255 . 254 . 227 . 229 . 196 . 156 . 125 . 125 . 125 . 125 . 125 . 125 . 097 . 072 . 072 . 053 . 039 . 031 . 031	1 d 0 0 0 1 0 0 0 -1 - 0 0 -1 - 0 0 -1 - 0 0 -1 - 0 0 - 0 - 1 - 0 0 - 0 - 0 1 - 0 0 - 0 - 0 1 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Table 1 (continued)

		mola	ality			Exp.	
Ionic Strength	Ca ⁺⁺	so ₄ =	Na ⁺	c1 ⁻	Water Activity	'±CaSO4	$\Delta^{\mathbf{b}}$
.06869 .06871 .07322 .07310 .08855 .08856 .09879 .09870 .12583 .12593 .12593 .15106 .15100 .18463 .18581 .25489 .25492 .30596 .30596 .30596 .30596 .30596 .30596 .30596 .30596 .30905 .45939 .45937 .22744 .22744 1.20695 1.20690 1.72444 1.72412 2.23744 2.23751 2.76017 3.24316 4.21813 4.21810 5.67902 5.67876	. 01576 . 01576 . 01576 . 01609 . 01606 . 01708 . 01708 . 01768 . 01768 . 01765 . 01916 . 02040 . 02165 . 02195 . 02195 . 02195 . 02195 . 024774 . 02651 . 02944 . 02651 . 02944 . 02944 . 02944 . 02651 . 03119 . 03299 . 035812 . 035812 . 04533 . 05608 . 055088 . 055088 . 055088 . 055168 . 056168 . 05	$\begin{array}{c} .01576\\ .01576\\ .01576\\ .01609\\ .01608\\ .01708\\ .01708\\ .01768\\ .01765\\ .01913\\ .01916\\ .02040\\ .02165\\ .02195\\ .02195\\ .02195\\ .02195\\ .02195\\ .02195\\ .021473\\ .02474\\ .02474\\ .02474\\ .02944\\ .02944\\ .02944\\ .02944\\ .02944\\ .02944\\ .03111\\ .031293\\ .03586\\ .03570\\ .03814\\ .04533\\ .05098\\ .055098\\ .055098\\ .055099\\ .05614\\ .055099\\ .05614\\ .055099\\ .056144\\ .055168\\ .055168\\ .055168\\ .055168\\ .05$.00565 .00585 .00887 .02022 .02809 .02809 .02809 .04929 .04929 .04929 .06940 .09803 .09803 .155598 .15598 .20000 .28129 .28129 .33494 .339575 .50359 .61088 .6108888 .6108888 .6108888 .6108888 .6108888 .610888 .61088888 .6108888 .6108888 .61088888 .6108888 .610888 .61088	.00565 .00887 .00887 .02022 .02022 .02809 .049929 .049929 .04929 .04940 .09803 .09803 .09803 .15598 .15598 .20000 .28129 .33494 .3395759 .50358 .6108887 .510888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .6108888 .610888888 .6108888 .610888 .610888888 .6108888 .6108888 .6108888 .6	. 999 . 998 . 9988 . 99888 . 9988 . 9988 . 9988 . 99888 . 99888 . 99888 . 99888 . 99888 . 99888 . 99888 . 998888 . 99888 . 998888 . 998888 . 998888 . 998888 . 998888 . 998888 . 9988888 . 998888888 . 998888888 . 998888888888	. 325 . 325 . 318 . 319 . 300 . 290 . 267 . 251 . 237 . 234 . 208 . 267 . 251 . 237 . 234 . 208 . 209 . 268 . 267 . 251 . 237 . 234 . 208 . 209 . 268 . 267 . 251 . 234 . 208 . 209 . 266 . 267 . 251 . 234 . 208 . 194 . 175 . 1666 . 1586 . 117 . 1255 . 117 . 1255 . 117 . 100 . 100	e -00-00000011211111221221212121111111111

Table 1 (continued)

	<u></u>	mol	ality ——			Exp.	
Ionic Strength	Ca ⁺⁺	so ₄ =	Na ⁺	c1 ⁻	Water Activity	'±CaSO4	Δ ^b
.07617 .08936 .11146 .14644 .19764 .31295 .43749 .65766 .90096 1.59233 2.72107 4.18414 6.14444	.01851 .02138 .02623 .03393 .04524 .07079 .09843 .14731 .20134 .35489 .60555 .93046 1.36586	.01426 .01374 .01310 .01246 .01183 .01183 .01082 .01038 .01007 .00912 .00752 .00539 .00308	.00637 .01147 .01968 .03219 .05010 .08939 .13139 .20536 .28686 .51856 .89689 1.38736 2.04379	.01487 .02676 .04592 .07512 .11691 .20861 .30661 .47922 .66942 1.21009 2.09297 3.23752 4.76933	.999 .999 .998 .998 .997 .994 .991 .981 .981 .965 .935 .890 .819	.315 .299 .276 .249 .222 .183 .158 .133 .116 .093 .081 .096	-0 ^f -0 -0 -1 -0 0 1 1 1 0 -4
.09442 .11521 .16575 .23349 .33807 .52691 .74709 .89183 1.45762 2.52698 3.93600 6.10765	.02063 .02402 .03232 .04347 .06078 .09209 .12866 .15272 .24672 .42431 .65832 1.01925	.01469 .01444 .01407 .01366 .01327 .01280 .01239 .01219 .01126 .00930 .00672 .00356	.01783 .02872 .05474 .08941 .14248 .23783 .34873 .42150 .70622 1.24474 1.95433 3.04635	.02972 .04786 .09124 .14904 .23748 .39643 .58127 .70256 1.17714 2.07476 3.25752 5.07772	.999 .998 .997 .995 .993 .988 .983 .979 .964 .983 .887 .803	.294 .275 .241 .211 .181 .151 .130 .121 .101 .087 .087 .106	-0 ^g -0 1 1 1 1 1 1 1 -3
.09096 .11822 .15591 .21976 .32167 .51639 .67484 .94668 1.51944 2.50520 3.95729 4.0544	.01831 .02100 .02458 .03035 .03932 .05595 .06926 .09187 .13901 .21937 .33749 .50449	.01609 .01671 .01736 .01803 .01872 .01928 .01941 .01929 .01829 .01539 .01076	.01993 .03852 .06481 .11068 .18499 .32927 .44766 .65179 1.08412 1.83171 2.93407 4.52452	.02437 .04710 .07925 .13533 .22619 .40261 .54736 .79696 1.32557 2.23966 3.58759 5.53219	.999 .998 .997 .995 .993 .987 .982 .975 .957 .924 .870 .781	. 298 . 274 . 248 . 220 . 190 . 158 . 142 . 125 . 106 . 095 . 098 . 122	-0 ^h 0 1 1 1 2 2 2 2 3

Table 1 (continued)

		mola	ality ——			Exp.	
Ionic Strength	Ca ⁺⁺	so ₄ =	Na ⁺	c1 ⁻	Water Activity	-CaSO ₄	Δb
. 34749 . 34751 .51827 .51818 .99351 .99356 1.48346 1.48344 1.94651 1.94645 3.01098 3.01100 5.04641 5.04627	.01220 .01220 .01217 .01259 .01260 .01302 .01302 .01331 .01329 .01341 .01342 .01342 .01212 .01209	.07858 .07858 .11653 .11650 .22218 .22219 .33110 .33110 .43403 .43402 .67059 .67060 1.12276 1.12273	.23232 .23232 .36516 .73356 1.11330 1.11330 1.47255 1.47255 2.30015 2.30015 3.88727 3.88727	.09957 .09957 .15650 .31439 .31439 .31439 .47713 .47713 .63110 .63110 .98579 .98579 1.66599 1.66599	.994 .990 .990 .981 .981 .981 .972 .972 .972 .964 .943 .943 .943 .901	. 166 . 166 . 137 . 137 . 099 . 080 . 080 . 080 . 070 . 070 . 057 . 057 . 049 . 049	0 ¹ 0 0 1 1 1 1 1 1 1 0 0
.35603 .35597 .52300 .52297 1.01908 1.01903 1.48217 1.48225 1.96506 1.96501 2.97909 2.97916 5.04057 5.04053	.01418 .01416 .01416 .01415 .01432 .01431 .01435 .01437 .01425 .01423 .01350 .01350 .01064 .01063	.06406 .06405 .09188 .09188 .17461 .25181 .25183 .33226 .33224 .50100 .50102 .84364 .84363	.24944 .24944 .38865 .38865 .80151 .80151 1.18730 1.18730 1.59006 2.43766 2.43766 4.16503 4.16503	. 14966 . 14966 . 23319 . 23319 . 48091 . 48091 . 71238 . 71238 . 95404 1. 46260 1. 46260 2. 49903 2. 49903	.993 .993 .989 .978 .978 .978 .967 .967 .956 .956 .956 .932 .878 .878	. 171 . 171 . 143 . 143 . 105 . 105 . 088 . 088 . 078 . 078 . 067 . 061 . 062	j 1 1 1 1 2 2 2 2 2 1 1
.35465 .35461 .53435 .53436 1.01296 1.01305 1.47752 1.47753 1.97426 1.97427 2.96791 2.96794 5.03934 5.03952	.01727 .01726 .01757 .01757 .01773 .01775 .01746 .01747 .01688 .01689 .01506 .01506 .01506 .01025 .01030	.04900 .04899 .06914 .12241 .12243 .17388 .17389 .22876 .33816 .33817 .56566 .56571	.25382 .25382 .41251 .41251 .83738 .83738 1.25125 1.25125 1.69486 1.69486 2.58459 2.58459 4.44292 4.44292	. 19036 . 19036 . 30937 . 62802 . 62801 . 93841 1.27111 1.27111 1.93839 1.93838 3.33210 3.33209	.992 .987 .987 .987 .975 .975 .963 .963 .949 .949 .949 .921 .854 .854	.177 .177 .149 .149 .113 .113 .096 .096 .087 .087 .078 .078 .079 .078	1 ^k 222222222222222222222222222222222222
.06072 .03992 .02399 .01334 .00801 .00801 .00444 .00263	.01518 .00998 .00600 .00334 .00200 .00111 .00066	.01518 .00998 .00600 .00334 .00200 .00111 .00066				. 338 . 388 . 454 . 535 . 609 . 681 . 751	-1 ^l 3 9. 14 14 21 11

^a Gypsum solubility product is 2.615 x 10^{-5} at 25°C. ^b $\Delta = [\gamma_{\pm} (calc) - \gamma_{\pm} (exp)] x 10^{3}$. ^c CaCl₂ solutions. ^d Na₂SO₄ solutions. ^e NaCl solutions. ^f CaCl₂ + NaCl, m_{CaCl₂}/m_{NaCl} = .66. ^g CaCl₂ + NaCl, m_{CaCl₂}/m_{NaCl} = .33. ^h CaCl₂ + NaCl, m_{CaCl₂}/m_{NaCl} = .11. ⁱ Na₂SO₄ + NaCl, m_{Na₂SO₄}/m_{NaCl} = .66. ^j Na₂SO₄ + NaCl, m_{Na₂SO₄}/m_{NaCl} = .33. ^k Na₂SO₄ + NaCl, m_{Na₂SO₄}/m_{NaCl} = .17. ^l Electromotive force data.

Та	b1	e	2
	~ -		

Salt	_β (0)	β ⁽¹⁾	_β (2)	c [¢]
Na2SO4	.019575	1.1130		.00570
NaC1	.07650	.2664		.00127
NaBr	.09730	.2791		.00116
NaNO3	.00680	.1783		00072
K ₂ SO ₄	.04995	.7792		0.
KC1	.04835	.2122		00084
KBr	.05690	.2212		00180
KNO3	08160	.0494		.00660
MgS04	.22100	3.3430	-37.23	.02500
MgC12	.35235	1.6815		.00519
MgBr ₂	.43270	1.7530		.00312
$Mg(NO_3)_2$.36710	1.5850		02062
CaSO ₄ c ²	.20000	3.1973	-54.24	0.
CaCl ₂	.31590	1.6140		00034
CaBr ₂	.38160	1.6130		00257
$Ca(NO_3)_2$.21080	1.4090		02014
SrSO ₄ d	.20000	3.1973	-54.24	0.
SrCl ₂ ^b	.29180	1.5603		00446
SrBr ₂	.33110	1.7120		.00123
$Sr(NO_3)_2$.13460	1.3800		01992
BaSO4d	.20000	3.1973	-54.24	0.
BaCl ₂	.26280	1.4963		01938
BaBr ₂	.31455	1.5698		01596
$Ba(NO_3)_2$	03230	.8025		0.

Parameters for Pure Electrolytes at 25°C

^a Values of the parameters are taken from Reference 8 unless otherwise noted.

^b Parameters from Reference 12.

^C Parameters evaluated in this study.

 $^{\rm d}$ Parameters estimated from ${\rm CaSO}_4.$

~

Table 3

Mixed Electrolyte Parameters at 25°C

(For Use With the Higher Order Electrostatic Terms) a

i	jj	K	S _θ ij	ψ _{ijk}
Na	K	so ₄	012	010 ^b
		C1		0018
		Br	s - 5	0022
		NO3		0012
Na	Mg	so	.07 ^b	023 ^b
		Cl		010 ^b
	· ·	NO3	:	· _
Na	Ca	so4	.07 ^b	067 ^e
(Sr,	(Sr,Ba)	C1		007 ^b
		Br		(007)
		NO3		
K	Mg	so,	0.0 ^d	048 ^d
		C1		022 ^d
		Br		(022)
		NO3		-
К	Ca	so,	.032 ^b	· _
	(Sr,Ba)	ci		025 ^b
		Br		(025)
		NO3		-
Mg	Ca	so ₄	.010	.02 ^e
	(Sr,Ba)	C1		0.0
		Br		(0.0)
		NO3		-

^a Values of the parameters are taken from Reference 8 unless otherwise noted.

^b Parameters from Reference 9.

Table 3 (continued)

ļ

C1 Br NO ₃	Na K Mg Ca(Sr,Ba) Na K Mg Ca(Sr,Ba) Na	.03 ^c (.03)	$0.0^{c}005^{c}020^{c}027^{e}$ $(0.0) (005) (020) (029)$
Br NO ₃	K Mg Ca(Sr,Ba) Na K Mg Ca(Sr,Ba) Na	(.03)	005 ^c 020 ^c 027 ^e (0.0) (005) (020) (029)
Br NO ₃	Mg Ca(Sr,Ba) Na K Mg Ca(Sr,Ba) Na	(.03)	020 ^c 027 ^e (0.0) (005) (020) (029)
Br NO ₃	Ca(Sr,Ba) Na K Mg Ca(Sr,Ba) Na	(.03)	027 ^e (0.0) (005) (020) (029)
Br NO ₃	Na K Mg Ca(Sr,Ba) Na	(.03)	(0.0) (005) (020) (029)
Br NO ₃	Na K Mg Ca(Sr,Ba) Na	(.03)	(0.0) (005) (020) (029)
NO ₃	K Mg Ca(Sr,Ba) Na	.062 ^e	(005) (020) (029)
NO ₃	Mg Ca(Sr,Ba) Na	.062 ^e	(020) (029)
NO3	Ca(Sr,Ba) Na	.062 ^e	(029)
NO ₃	Na	.062 ^e	
C			-
	K	· .	-
	Mg	۰. ۲	-
	Ca(Sr,Ba)		0.0 ^e
		·	а. С
Br	Na	0.0	0.0
	К		0.0
	Mg	:	
	Ca(Sr,Ba)	•	- .
NO ₃	Na	.016	006
C	К		006
	Mg		0.0
	Ca(Sr,Ba)	ina (° antoni ing C	017
. · · · · · ·		lagter i se	e sa atro
NO ₃	Na	(.016)	(006)
₩. • · · <u>.</u>	K	ಂಕ೯೦೦ಕರ್ಷ ಕರ್ಷಕೊಂಡಿಯಿಂದ	(006)
۰.	Mg		(0.0)
	Ca(Sr,Ba)		(017)
: '		and the second	1 . ·
	Br NO ₃ NO ₃ arameters fro	Br Na K Mg Ca(Sr,Ba) NO ₃ Na K Mg Ca(Sr,Ba) NO ₃ Na K Mg Ca(Sr,Ba) NO ₃ Na K Mg Ca(Sr,Ba)	Br Na 0.0 K Mg Ca(Sr,Ba) NO ₃ Na .016 K Mg Ca(Sr,Ba) NO ₃ Na (.016) K Mg Ca(Sr,Ba) arameters from Reference 20.

^e Parameters evaluated in this study.

electromotive force data. This value is over 10% larger than that used by Harvie and Weare.¹³

Two previous studies by Whitfield¹⁰ and by Culberson, Latham, and Bates¹² have concluded that Pitzer's equations are not successful in predicting gypsum solubility. However, neither study used the term ${}^{E}\theta_{ij}$, which accounts for the purely electrostatic effects of unsymmetrical mixing.

Using the treatment presented in Paper IV,⁸ which does not include ${}^{E}_{\theta_{ii}}$, it is not possible to fit simultaneously all of Brigg's solubility data. It is possible to determine parameters $\beta_{CaSO_4}^{(1)}$, $\beta_{CaSO_4}^{(2)}$, $\beta_{CaSO_4}^{(2)}$, $\psi^{\star}_{Ca,Na,SO_4}$, and $\psi^{\star}_{Ca,C1,SO_4}$ from only the common-ion solubility data. (Here the symbol ψ^* is used to differentiate the mixture parameters determined without ${}^{E}\theta_{ij}$, since they will not be the same as those evaluated when ${}^{E}\theta_{i,i}$ is included.) When these parameters are used to predict gypsum solubility in NaCl solutions, the predicted solubilities are systematically low. The calculated activity coefficients are compared to those derived from knowledge of the gypsum solubility constant and the experimental solubilities in Figure 1. The predicted activity coefficients are about 20% high at NaCl concentrations above .5 molal. This is the same type of behavior found in the two previous The problem can be completely overcome by using the full, studies. unsymmetrical mixing equations derived in Paper V.⁹

Prediction of Gypsum Solubility in Seawater

The prediction of gypsum solubility in seawater and natural brines of widely varying composition provides a final test of the effectiveness of Pitzer's equations. To complete these calculations, the unknown

Figure 1. Mean activity coefficient of $CaSO_4$ in solutions of NaCl saturated with gypsum. The solid line represents values calculated without ${}^{\rm E}\theta$. Points are from the solubility data of Briggs.¹⁴

parameters ψ_{Mg,Ca,SO_4} and ψ_{Ca,SO_4,NO_3} have been determined from an analysis of gypsum solubility in the appropriate common ion solutions. Although Harvie and Weare¹³ have previously given a value for ψ_{Mg,Ca,SO_4} , they used a gypsum solubility product and CaSO₄ parameters which differ from those determined in this study. Thus, to retain internal consistency, the values of these parameters have been redetermined.

The equation used to determine the mixture parameters is

$$\frac{1}{m_{k}} (\ln\gamma_{+} - \ln\gamma_{+}^{*}) = \frac{1}{2} (m_{Ca} + m_{SO_{4}}) \psi_{k}, Ca, SO_{4} + \frac{S_{\theta}}{jk}$$
(15)

where k represents Mg^{++} or NO_3^{-} . For mixtures of $CaSO_4$ and $MgSO_4$, S_{θ}_{jk} represents $S_{\theta}_{Mg,Ca}$. In mixtures of $CaSO_4$ and $Ca(NO_3)_2$, S_{θ}_{jk} is $S_{\theta}_{NO_3}$, SO_4 . Again, γ_{\pm}^{*} is the activity coefficient calculated from Equation (2) with only the unknown mixture parameters set to zero. The experimental value $ln\gamma_{\pm}$ is determined from the solubility data and the known value of the solubility product.

The values of ${}^{S_{\theta}}SO_4, NO_3$ and ${}^{\psi}Ca, SO_4, NO_3$ were determined as the intercept and slope of a graph of

 $\frac{1}{m_{NO_3}} \quad (\ln\gamma_{\pm} - \ln\gamma_{\pm})$

versus $\frac{1}{2} (m_{Ca} + m_{SO_4})$. The value of ${}^{S_{\theta}}_{Mg,Ca}$ has already been determined from osmotic coefficient data for the system $MgCl_2 - CaCl_2$. Therefore only ψ_{Ca,Mg,SO_4} was determined from data on the solubility of $CaSO_4 \cdot 2H_2O$ in $MgSO_4$. Included in Table 3 are the values of the three parameters determined in this manner.

Extensive data on gypsum solubility in natural seawater, agricultural drainage water, and their concentrates have recently been published

by Adler, Glater, and McCutchan, 15 The concentrations of the various ions, which they give in terms of weight and concentration factors, have been converted to molalities using density data tabulated in the same publication. In some cases the solutions did not satisfy electroneutrality conditions, and the concentration of Na⁺ or Cl⁻ was increased arbitrarily to achieve charge balance. Parameters for single electrolytes and the mixture parameters used in the calculations are listed in Tables 2 and 3. In many cases the mixture parameters are unknown. Those enclosed in parentheses have been estimated from knowledge of the parameters of similar salts, and others have been set to zero. Parameters for mixtures containing K⁺ and Mg⁺⁺ have been taken from Harvie and Weare.¹³

The predicted values of calcium and sulfate concentrations and the mean activity coefficient of CaSO₄ are compared with the experimental values in Tables 4 and 5. The predicted activity coefficient is in very good agreement with the experimental value even at very high concentrations and high levels of magnesium augmentation.

Culberson, Latham, and Bates¹² have measured the solubility of gypsum in synthetic seawater, and their data also have been used to test gypsum solubility predictions. The composition of their synthetic seawater at 35% salinity is listed in Table 6. Their measured gypsum solubilities in normal, slightly concentrated, and slightly diluted seawater of varying magnesium concentrations are compared with predicted values in Table 7. Again, the agreement of the predicted and measured solubilities is excellent.

Other measurements of gypsum solubility in seawater dilutents and concentrates up to an ionic strength of 4 m have been compiled by

2 C 🛃 🖉 🖓 🖓

					— molali	ty					
Ionic Strength	Water Activity	Na ⁺	. к ⁺	Mg ⁺⁺	c1 ⁻	Experin Ca ⁺⁺	so ₄	Calcul Ca ⁺⁺	so ₄	Exp. ^Y ±Ca	Calc. ^{SO} 4
.8057	. 981	.4852	.0100	.0553	.5674	.0319	.0510	.0314	.0505	.129	. 131
1.5152	. 961	.9808	.0202	.1118	1.1470	.0359	.0745	.0351	.0737	.103	. 105
2.2267	. 940	1.4887	.0307	.1697	1.7410	.0362	.0948	.0350	.0936	.093	. 095
2.5829	. 928	1.7455	.0360	.1989	2.0412	.0353	.1044	.0339	.1030	.091	. 093
2.9435	. 916	2.0068	.0414	.2287	2.3468	.0343	.1137	.0324	.1118	.089	. 093
.8980	.979	.4859	. 0103	.0830	.6240	.0333	.0524	.0334	.0525	. 125	. 125
1.6986	.958	.9849	. 0209	.1682	1.2648	.0369	.0756	.0374	.0761	. 101	. 100
2.4999	.934	1.4959	. 0317	.2555	1.9211	.0378	.0966	.0367	.0955	. 091	. 092
2.9068	.920	1.7582	. 0373	.3003	2.2579	.0373	.1064	.0353	.1044	. 088	. 091
3.3145	.907	2.0222	. 0429	.3454	2.5969	.0373	.1138	.0334	.1129	. 090	. 092
.9887 1.8758 2.7696 3.2219 3.6793	.978 .954 .927 .913 .897	. 4857 . 9851 1.5003 1.7639 2.0316	0103 0209 0318 0374 0431	.1107 .2245 .3420 .4020 .4630	.6791 1.3774 2.0977 2.4663 2.8406	.0368 .0411 .0410 .0401 .0376	3 .0560 .0800 .1003 .1098 .1179	.0353 .0393 .0380 .0362 .0338	.0545 .0782 .0973 .1059 .1141	.115 .093 .086 .084 .086	. 119 . 097 . 091 . 091 . 092
1.0791	.977	. 4860	0103	.1384	.7347	.0377	.0569	.0371	.0563	.113	.115
2.0531	.951	. 9863	.0209	.2809	1.4911	.0417	.0807	.0410	.0800	.093	.094
3.0348	.921	1.5031	.0319	.4281	2.2724	.0407	.1000	.0391	.0984	.087	.090
3.5322	.905	1.7679	.0375	.5034	2.6725	.0392	.1090	.0367	.1065	.086	.090
4.0357	.887	2.0368	.0432	.5800	3.0791	.0370	.1174	.0338	.1142	.087	.093
1.1696	. 975	.4863	.0103	.1662	.7906	.0394	.0586	.0388	.0580	.109	. 111
2.2284	. 947	.9866	.0209	.3372	1.6039	.0430	.0820	.0426	.0816	.091	. 092
3.2941	. 915	1.5029	.0318	.5136	2.4433	.0414	.1008	.0398	.0992	.087	. 089
3.8397	. 896	1.7699	.0375	.6049	2.8775	.0396	.1094	.0370	.1068	.087	. 091
4.3897	. 877	2.0399	.0432	.6972	3.3164	.0367	.1173	.0336	.1142	.087	. 094

Gypsum Solubility in Natural Seawater at 25°C^a

^a Data of Adler, Glater, and McCutchan.¹⁵

۰.

in the second second

•			2005 2007 2007 2007 2007 2007 2007 2007		 					
•		0 0 0 15 11 11 11 11 11 11 11 11 11 11 11 11	Gypsum	Solubil:	Lty in A	Table 5 gricultural	Drainage Water	at 25°C ^a		
Ionic Strength	Water Activity	ha.*	к+	Mg ⁺⁺	()), ;;;; ;;;;	molality - NO ₃ -	Experimental Ca ⁺⁺ SO ₄ ⁼	Calculated Ca^{++} $SO_4^{=}$	38 . 	Sxp. Calc. ^γ + -CaSO ₄
. 1617 .2167 .2729 .3298 .3866 .4451	. 998 . 997 . 996 . 996 . 995 . 995	.0601 .0902 .1205 .1509 .1813 .2124	.0002 .0002 .0003 .0004 .0005 .0005	.0082 .0123 .0164 .0206 .0247 .0290	.0187 .0281 .0375 .0470 .0564 .0661	.0013 .0020 .0026 .0033 .0039 .0046	.0120 .0403 .0115 .0540 .0114 .0682 .0114 .0825 .0113 .0967 .0115 .1115	.0121 .0405 .0117 .0542 .0115 .0683 .0114 .0825 .0113 .0967 .0113 .1113		1.15 233, .231 205, .203 184, .183 167, .167 156, .155 144, .145
. 1883 . 3228 . 4586 . 5274 . 5967 . 6656	. 998 . 996 . 994 . 993 . 992 . 991	.0639 .1280 .1922 .2246 .2572 .2895	. 0002 . 0003 . 0005 . 0005 . 0006 . 0007	.0165 .0331 .0496 .0580 .0664 .0748	.0270 .0541 .0812 .0949 .1087 .1223	.0013 .0026 .0039 .0046 .0052 .0059	0127 .0410 0121 .0688 0121 .0972 0121 .1115 0122 .1261 .0122 .1404	.0131 .0414 :0127 .0694 .0126 .0977 .0126 .1120 .0126 .1265 .0126 .1408	•	225 .220 178 .173 150 .147 140 .137 131 .129 125 .123

. . .

^a Data of Adler, Glater, and McCutchan.¹⁵

ł,

71

A CONTRACTOR OF A CONTRACTOR

Table 6

Composition of Synthetic Seawater

Species	<u>Molality</u>	Comments
Na ⁺	.48523	
к+	.01058	
Mg ⁺⁺	.05518	
Ca ⁺⁺	.01068	
Sr ⁺⁺	.00009	
C1 ⁻	.56824	Cl replaced HCO3
Br ·	.00094	Br + F concentration
co	.02927	

		molal	concentra	ation				
Ionic Strength	Mg ⁺⁺	Ca ⁺⁺	so ₄ =	^Y +CaS0 ₄	Ca ⁺⁺	so ₄ =	^Y ±CaS04	
		experimental ^a			calculated			
.5562	.00	.05075	.02253	.153	.05028	.02206	.156	
.7228	.01742	.04854	.02928	.138	.04806	.02880	.140	
.9397	.03930	.04646	.03809	.125	.04595	.03758	.126	
					·			
a Date	a of Culture			12	• • • • • • • • • • • • • • • • • • •			

Gypsum Solubility in Seawater at 25°C

Table 7

^a Data of Culberson, Latham, and Bates.¹²

67

ę

Marshall and Slusher.¹¹ Although the values are tabulated at 30°C, they can be used for comparison because the solubility of gypsum changes very little over the 25-30°C range. The solubilities also were not all measured in seawaters of exactly the same composition. However, the compositions are similar enough to make a rough quantitative comparison. Water has been removed or added to the seawater composition given in Table 6 in order to calculate the predicted gypsum solubilities over a large ionic strength range. The predicted solubility values are compared with the various measurements in Figure 2. Again, agreement of predicted and measured gypsum solubilities is very good even at ionic strengths above 4 molal. These results indicate that the system of mixture equations developed by Pitzer can be used to predict the activity properties of even minor components in a complex mixture.

Prediction of Strontium and Barium Sulfate Solubility

The parameters obtained for calcium sulfate can be used to predict the solubility of celestite and barite in mixed solutions. Although the solubilities of strontium and barium sulfates are much lower than that of gypsum, the activity coefficients of these 2-2 electrolytes should be similar to those of $CaSO_4$. Comparison of the predicted solubilities with experimental results provides a test of the use of approximate parameters in mineral solubility predictions. Accurate prediction of the solubility of celestite and barite in seawater is of interest because of the importance of these sulfates in mineral formation. Mixed strontium and barium sulfate scales deposited from oil well field waters also are a common problem in petroleum production.

Figure 2. Gypsum solubility in seawater. The solid line represents solubilities predicted using Pitzer's equations and the CaSO₄ parameters determined in this study. Points are from data reported by Marshall and Slusher;¹¹ Culberson, Latham, and Bates;¹² and Adler, Glater, and McCutchan.¹⁵

- 5

i.

z .

12.4

Solubility products for $SrSO_4$ and $BaSO_4$, which are consistent with the approximate values of the activity coefficients, can be calculated as follows. For $SrSO_4$, the solubility in pure water determined by Culberson, <u>et al.</u>¹² is $6.44 \pm .01 \times 10^{-4}$ molal. At that concentration, the activity coefficient of $SrSO_4$, calculated using the CaSO₄ parameters, is .765. The solubility product is

$$\mathring{K}_{SrSO_4} = \gamma_{+SrSO_4}^2 \stackrel{m_{Sr}}{=} m_{SO_4} = 2.43 \times 10^{-7}.$$

For $BaSO_4$, the solubility in pure water given by Templeton¹⁶ is 1.08 x 10^{-5} m. The activity coefficient of $BaSO_4$ at that concentration, approximated using the $CaSO_4$ parameters, is .970. The solubility product is

$$\mathring{K}_{BaSO_4}^{\circ} = \gamma_{+BaSO_4}^2 \stackrel{m_{Ba}}{=} \stackrel{m_{SO_4}}{=} 1.10 \times 10^{-10}$$

To maintain internal consistency, it is important to use solubility products determined in this manner. Use of a different solubility product will result in an inconsistency between the assumed values of the activity coefficient and the known solubility in pure water.

The solubility of $SrSO_4$ in NaCl solutions has been measured by Lucchesi and Whitney,²¹ Davis and Collins,¹⁷ Strübel,²² and Culberson, Latham, and Bates.¹² Their experimental values are compared with the predicted solubilities in Figure 3. The predicted value is in good agreement with the recent determination of Culberson, <u>et al</u>. at .7 m NaCl. The measurements of Davis and Collins are high compared to this value. Overall, the predicted solubilities in NaCl solutions are in reasonable agreement with the experimental determinations to an ionic strength of at least 1.5 m. The predicted solubilities of $SrSO_4$ in Figure 3. SrSO₄ solubility in solutions of NaCl and MgCl₂. Solid lines represent solubilities predicted using CaSO₄ parameters to approximate SrSO₄ behavior. Points represent data of Davis and Collins;¹⁷ Culberson, Latham, and Bates;¹² Lucchesi and Whitney;²¹ and Strübel.²²

solutions of $MgCl_2$ also are in good agreement with the data. Celestite solubility in seawaters of varying magnesium and calcium concentrations are compared with the measurements of Culberson <u>et al</u>.¹² in Table 8. The predicted values are slightly higher than the measured solubilities in all cases. However, the maximum difference in predicted and experimental values is less than 3.5%. These results indicate that prediction of SrSO₄ solubility in high NaCl content brines and seawaters will be reasonably accurate to ionic strengths of 1 molal.

The solubility of BaSO, in NaCl solutions has been measured by Neuman,²³ Templeton,¹⁶ Strübel,²⁴ and Davis and Collins.¹⁷ Predicted and measured values of barite solubility are compared in Figure 4. Again, the predicted solubilities are in good agreement with the data of Davis and Collins up to .5 m NaCl, but are below the measured values at higher NaCl concentrations. The calculated solubilities of $BaSO_4$ in solutions of MgCl₂ are close to the experimental values up to an ionic strength of 1.5 molal. Since this behavior is analogous to that of SrSO,, one would expect the predicted barite solubility in 35% salinity seawater to be within 5% of the true value. However, the predicted concentration of Ba⁺⁺ at saturation is 2.09 x 10^{-7} m, while the solubility measured at 20°C by Burton, Marshall, and Phillips²⁵ is 3.5 x 10^{-7} m barium. One possible reason for this discrepancy is the large dependence of barite solubility on particle size. Lemarchands²⁶ has found that the apparent solubility of barite can increase by a factor of three as the particle size is reduced. The predicted activity coefficient of BaSO4, .134, is 16% higher than the value calculated by Hanor, 27 and 14% lower than that given by Whitfield.¹⁰

Table 8	
---------	--

Celestite Solubility in Seawater at 25°C

	molal concentration							
Seawater	Mg ⁺⁺	Ca ⁺⁺	Sr ⁺⁺ x10 ³	so ₄ =	^Y +-CaS0 ₄	Sr ⁺⁺ x10 ³	so ₄ =	^Y + -CaSO ₄
			experimental ^a			C		
1	.06598	0.0	.414	.029679	.141	.426	.029691	.139
2	.05519	.01076	.416	.029682	.140	.429	.029695	.138
3	.03801	.02795	.423	.029689	.139	.434	.029700	.137
4	.02099	.04497	.422	.029689	.139	.434	.029706	.136
·		<u> </u>			······			

^a Data of Culberson, Latham, and Bates.¹²

€?

ŋ

236

Q

Figure 4. BaSO₄ solubility in solutions of NaCl and MgCl₂. Solid lines represent solubilities predicted using CaSO₄ parameters to approximate BaSO₄ behavior. Points represent data of Davis and Collins,¹⁷ Templeton,¹⁶ and Strübel.²⁴

<u>,</u>

, · · · ·

11

Another interesting aspect of barite solubility prediction is the formation of a mixed BaSO4-SrSO4 solid solution. Precipitation of a barite containing strontium would be expected to lower the solubility of barium sulfate because of the lower activity of BaSO, in the solid solution. Hanor 27 has discussed in detail the estimation of $BaSO_4$ and SrSO4 activities in a non-ideal solid solution, so that in principle one could calculate the effect of a solid solution on solubility. Unfortunately, the situation is further complicated by an experimental determination 28 of BaSO₄ and SrSO₄, in 1 m NaCl, in equilibrium with a natural barite containing 8.5% SrSO₄. The activities of SrSO₄ and BaSO₄ in this solid solution can be calculated from the solubility products and the predicted solution activities. The activity of solid $SrSO_{1}$, .024, is in good agreement with the value of .017 obtained from Harnor's treatment. However, the activity of solid $BaSO_{L}$ is close to 1, not .87 as predicted by Hanor. Either the predicted activity coefficient of ${\rm BaSO}_4$ in solution is 10% too high, or the solid activity predicted by Hanor is too low. Certainly further experimental studies of BaSO, and ${\rm SrSO}_4$ solutions in equilibrium with well characterized, mixed solids are needed before barite solubility in natural systems can be accurately predicted.

Conclusion

The system of equations developed by Pitzer has previously been shown to reproduce the activity of water and the activity properties of major components in mixed solutions.^{8,10} This study has shown that Pitzer's specific interaction model also can reproduce the properties of minor components in a complex mixture. In addition, a method of

determining electrolyte parameters from solubility data has been described. Parameter estimation using information on similar electrolytes also was shown to be successful for sparingly soluble salts.

The agreement between experimentally determined activity coefficients and those calculated in this chapter indicates that Pitzer's model can be used to predict accurately the properties of electrolytes in natural brines and seawater. The importance of a predictive model lies in its ability to calculate activity properties in solutions over a wide range of composition and concentration not studied experimentally. As an example of this use of Pitzer's model, the calculated activity coefficients of eighteen salts in seawater are listed as a function of ionic strength in Table 9.

The effectiveness of this model in describing solubility behavior at 25°C is encouraging. Future work will involve extension of the model to high temperatures, since many hydrothermal, geochemical, and industrial problems require solubility prediction in this regime. A large body of data is available on the solubilities of minerals in various solutions at high temperatures. However, new data on the high temperature, solution activities of the major components of natural brines (NaCl, NaSO₄, KCl, K₂SO₄, MgCl₂) and on the properties of their common ion mixtures will be required.

Ionic Strength	. 05	. 10	. 30	.50	. 72	1.00	1.50	2.00
φ	. 928	. 914	.900	. 899	. 904	. 913	. 935	. 961
Na ₂ SO ₄	.641	.563	.441	.388	.352	.323	.290	.270
NaCl	.820	.777	.708	.680	.663	.654	.651	.659
NaBr	.822	.780	.714	.689	.676	.670	.675	.691
K ₂ SO ₄	.637	.557	.430	.373	. 333	.300	.262	.237
KC1	.817	.772	.695	.660	.637	.620	.603	.597
KBr	.819	.774	.700	.669	.649	.635	.625	.626
MgSO4	.417	. 327	.212	.172	. 148	.131	.115	.108
MgCl2	.669	.602	.509	.477	. 461	.454	.461	.481
MgBr2	.670	.605	.515	.485	. 473	.470	.484	.513
CaSO ₄	.412	. 322	.206	. 166	.142	.124	.107	.098
CaCl ₂	.664	.596	.500	. 465	.447	.437	.438	.451
CaBr ₂	.665	.599	.505	. 474	.458	.452	.460	.481
SrSO ₄	.411	. 320	. 204	. 163	.138	. 120	. 102	.092
SrCl ₂	.663	. 594	. 496	. 460	.440	: 428	. 425	.434
SrBr ₂	.664	. 597	. 501	. 468	.451	. 443	. 446	.463
BaSO4	.410	. 318	. 201	. 159	. 134	. 115	. 096	.085
BaCl ₂	.661	.592	. 491	. 453	. 431	. 416	. 408	.412
BaBr ₂	.663	.594	. 496	. 461	. 442	. 431	. 428	.439
			•	and the				

Table	9	
· · · ·	11.1	

Predicted Activity Coefficients in Seawater

^a Seawater composition given in Table 6 with $[Sr^{++}] = 8.95 \times 10^{-5}$ m and $[Ba^{++}] = 1.37 \times 10^{-7}$ m. Other concentrations were obtained by adding or removing water.

References

1.	P. J. Reilly, R. H. Wood, and R. A. Robinson, J. Phys. Chem. <u>75</u> , 1305 (1971).
2.	M. Whitfield, Mar. Chem. <u>1</u> , 251 (1973).
3.	R. M. Garrels and M. E. Thompson, Am. J. Sci. <u>260</u> , 57 (1962).
4.	G. Scatchard, R. M. Rush, and J. S. Johnson, J. Phys. Chem. <u>74</u> , 3786 (1970).
5.	K. S. Pitzer, J. Phys. Chem. <u>77</u> , 268 (1973)
6.	K. S. Pitzer and G. Mayorga, J. Phys. Chem. <u>77</u> , 2300 (1973).
7.	K. S. Pitzer and G. Mayorga, J. Soln. Chem. <u>3</u> , 539 (1974).
8.	K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. <u>96</u> , 5701 (1974).
9.	K. S. Pitzer, J. Soln. Chem. <u>4</u> , 249 (1975).
10.	M. Whitfield, Mar. Chem. <u>3</u> , 197 (1975).
11.	W. L. Marshall and R. Slusher, J. Chem. Eng. Data, <u>13</u> , 83 (1968).
12.	C. H. Culberson, G. Latham, and R. G. Bates, J. Phys. Chem. <u>82</u> , 2693 (1978).
13.	C. E. Harvie and J. H. Weare, Geochim. Cosmochim. Acta, <u>44</u> , 981 (1980).
14.	C. C. Briggs, Ph.D. Thesis, University of Sheffield, Sheffield, England (1978).
15.	M. S. Adler, J. Glater, and J. W. McCutchan, J. Chem. Eng. Data, <u>24</u> , 187 (1979).
16.	C. C. Templeton, J. Chem. Eng. Data, <u>5</u> , 514 (1960).
17.	J. W. Davis and A. G. Collins, Environmental Sci. and Tech. <u>5</u> , 1039 (1971).
18.	K. S. Pitzer, "Theory: Ion Interaction Approach", in "Activity Coefficients in Electrolyte Solutions", R. M. Pytkowicz, Ed., CRC Press, Boca Raton, Florida (1979).
19,	T. H. Lilley and C. C. Briggs, Proc. Roy. Soc. Lond., A <u>349</u> , 355 (1976).
20.	C. J. Downes and K. S. Pitzer, J. Soln. Chem. <u>5</u> , 389 (1976).

21.	P. J. Lucchesi and E. D. Whitney, J. Appl. Chem. <u>12</u> , 277 (1962).
22.	G. Strübel, Neues. Jahrb. Mineral. Monatsh. 99 (1966).
23.	E. W. Neuman, J. Am. Chem. Soc. <u>55</u> , 879 (1933).
24.	G. Strübel, Neues. Jahrb. Mineral. Monatsh. 223 (1967).
25.	J. D. Burton, N. J. Marshall, and A. J. Phillips, Nature, 217, 834 (1968).
26.	M. Lemarchands, C. R. Acad. Sci. Paris, <u>187</u> , 601 (1928).
27.	J. S. Hanor, Geochim. Cosmochim. Acta, <u>33</u> , 894 (1969).
28.	H. Gundlach, D. Stoppel, and G. Strübel, Neues. Jahrb. Mineral. Ahb. <u>116</u> , 321 (1972).