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ABSTRACT OF THE DISSERTATION

Compile-time Optimization of a Scientific Library through
Domain-Specific Source-to-Source Translation

by

Alden King

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Scott B. Baden, Chair

In recent years, scientific exploration has become more reliant upon comput-

ers. Certain scientific frontiers, such as the study of fluid dynamics, are difficult and

costly to study empirically, as measurement devices interfere with what they are

measuring. By using computers to simulate known low-level physical interactions,

scientists can reproduce higher-level phenomena than they can through physical

experiments, and at a much lower cost. With the growth of high-performance

computing, computer simulations are able to generate enormous amounts of data.

Analyzing large-scale scientific data is expensive both in terms of compu-

tational power and time, and in terms of programming effort. For some fields,

such as Computational Fluid Dynamics (CFD), scientists are still searching for

xiv



mathematical models to explain observations. Such models are part of the scien-

tific inquiry and so are continually under development. As a consequence, data

analysis in these fields is largely ad hoc. Many different queries are asked of the

data, queries which are not known ahead of time. Current libraries do a poor job

optimizing the execution of such ad hoc queries.

In this thesis we introduce Saaz , a C++ library for analyzing turbulent

flow. While Saaz makes analysis codes easier to write, maintain, and share, it

significantly harms performance. Compared to plain C++ (C++ with no user-

defined abstractions), Saaz code can perform as poorly as 97 times slower. To

address these issues we present Tettnang , a source-to-source translator which uses

semantic knowledge of the Saaz library to track the data schemas being used. Saaz

library calls are then re-written at the call-site to remove the abstraction overheads

of the library. After being optimized by Tettnang, ad hoc queries written in Saaz

perform comparably to the plain C++ implementation. Of the queries we tested,

the slowest was 17% slower than the plain C++ implementation, while the fastest

was 16% faster.

Our success with Tettnang demonstrates the power and effectiveness of

custom translation in creating an Embedded Domain-Specific Language (EDSL)

from an application library. The EDSL technique allows powerful transformations

that are not available through existing techniques such as Expression Templates

[Vel96] [VJ02], or existing library annotation systems such as Broadway [GL00].
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Chapter 1

Introduction

In recent years, scientific exploration has become more reliant upon comput-

ers. Certain scientific frontiers, such as the study of quantum dynamics or fluids,

are difficult and costly to study empirically, as measurement devices interfere with

what they are measuring. By using computers to simulate known low-level physical

interactions, scientists can reproduce higher-level phenomena. For example, quan-

tum and atomic interactions, which are well-founded on quantum mechanics, can

be used to simulate the actions of a nuclear reactor. By studying these higher-level

phenomena under different conditions, scientists can develop higher-level models.

In computational science, high-level physical models are built through com-

putational analysis of large amounts of data. This data can come either from em-

pirical measurements (such as at the Large Hadron Collider), or from computer

simulations. Analyzing large-scale scientific data is expensive both in terms of

computational power and time, and in terms of programming effort. Even an

inexpensive computation, performed trillions of times, can be expensive. Some

analyses simply need to repeat a few different computations many, many times;

given efficient implementations of each computation, these can be straight-forward

to program. Other analyses require more programming resources. These include

analyses that need to explore different computational operations and their effec-

tiveness in describing the higher-level phenomena scientists seek. Because the

operations being computed change over the course of analysis, we refer to them as

ad hoc queries. Significant programming effort is spent maintaining analysis tools

1
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that use ad hoc computations.

Large-scale data analysis requires complex analysis tools. A typical ap-

proach for managing software complexity is modularity, typically through the use

of libraries. Libraries, however, are not traditionally well suited to support ad

hoc, user-defined operations. Typically, efficient scientific libraries (e.g. BLAS

[DCHH88b] or LAPACK [ABD+90]) provide highly-optimized implementations of

a few operations. However, it is difficult to encapsulate an optimized implemen-

tation for a computation which has not yet been decided. The support of ad hoc

queries prevents a library from optimizing computation, forcing it instead to focus

on data-structures and data-access.

Computational Fluid Dynamics (CFD) is one area of computational science

in which ad hoc queries are especially important. In this thesis we look at the study

of turbulence within CFD. We have developed Saaz , a C++ scientific library for

the analysis of turbulent flow data. Saaz supports ad hoc queries by providing an

abstraction of the data schema used by turbulence simulators. The abstraction of

data schema reduces the maintenance burden of turbulence analysis codes, letting

a single analysis code be used with different simulators and simulation conditions.

This encourages interoperability and the sharing of tools.

Modern languages offer objects as a means of encapsulating data and re-

lated operations within a single data-structure. Unfortunately, the object-oriented

capabilities of languages such as C++ segment operations in a way that makes

optimizations difficult for the compiler. Compared to language-primitive data-

types, traditional compilers do a poor job generating efficient code for user-defined

(or library-defined) data-structures. While a library providing convenient data-

structures may succeed in reducing the cost of programming, it often does so at

the cost of a decrease in performance. Compared to analysis written in plain

C++ (C++ with no user-defined abstractions), Saaz codes exhibit a significant

performance penalty (9-97 times slowdown).

In our case, general-purpose compilers are unable to optimize code written

against the abstractions of Saaz. In this thesis we categorize the overheads and

performance penalties introduced by libraries in general, and Saaz in particular.
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We introduce Tettnang , a source-to-source translator that addresses these over-

heads in the Saaz library. Similarly to how compilers like GNU’s gcc are able to

optimize calls to common library functions such as memcpy or malloc, Tettnang

incorporates semantic knowledge of its input. Tettnang uses built-in knowledge of

Saaz to identify and track data schema. Through a series of localized transforma-

tions, Tettnang uses this information about data schema to rewrite Saaz queries

to use cheaper, lower-level primitives. The general-purpose compiler running on

Tettnang’s output is able to optimize these lower-level primitives to achieve per-

formance comparable to that of plain C++.

Dissertation Contributions

• We have developed Saaz, a C++ library for analysis of CFD data. Saaz

abstracts data schemas, simplifying queries and making them more interop-

erable across simulators and groups.

• We have identified three categories of library overheads: Encapsulation, Iso-

lation, and Generalization. We give a small toy example of these overheads

before demonstrating them in an example computation that utilizes the Saaz

library.

• We have built the Tettnang translator to address the identified overheads in

the Saaz library. By utilizing knowledge of the semantics of the Saaz library,

Tettnang can gather information which had previously been isolated from

general-purpose compilers. Tettnang eliminates Saaz overheads that stem

from Encapsulation, Isolation, and Generalization.

• We have demonstrated Tettnang’s effectiveness in greatly reducing the over-

heads of the Saaz library in real queries. Performance with Tettnang-pro-

cessed code is at least 83% of the performance of implementations written in

plain C++, and sometimes even exceeds plain C++ performance.

• We have developed a means of extending primitive data-types (particularly

arrays) to support new operations and behavior with little to no performance
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costs.

• Finally, we discuss future directions and extensions to Tettnang and the

techniques it uses.

Dissertation Outline

Chapter 2 provides motivation and background for this thesis. It describes

the physics of the turbulent flows analysis we perform with Saaz, as well as

properties of the analysis.

Chapter 3 delves into Saaz itself. It begins with background on the types

of analysis CFD performs and what a library for turbulent flow analysis

will have to support. It continues with a description of the primitives in

Saaz, before introducing example queries. Saaz supports ad hoc queries;

abstractions of data schema increase the interoperability of queries written

with Saaz.

Chapter 4 covers the overheads that exist in object-oriented libraries, classi-

fying them as Encapsulation, Isolation, or Generalization. It finishes with

some example techniques which have been developed to address some of

these overheads in libraries at large.

Chapter 5 introduces Tettnang. Tettnang utilizes type-refinement to track the

data schema of Saaz objects. Support for various schema contributes to

various overheads introduced by Saaz. We describe the different modules

within Tettnang and demonstrate their transformations.

Chapter 6 presents results achieved by Tettnang. We look at how Saaz queries

without Tettnang’s transformations suffer a significant slowdown compared

to their implementation in plain C++. We show how the various transfor-

mations performed by Tettnang positively impact performance.

Chapter 7 discusses the limitations of Tettnang, future directions, and con-

cludes the dissertation.



Chapter 2

Motivation and Background

Computational Fluid Dynamics (CFD) studies fluid dynamics using com-

puter simulations. By using Direct Numerical Simulation (DNS), a CFD method-

ology, scientists can simulate fluid flows by solving the low-level Navier-Stokes

equations. Computer simulations are able to take exact “measurements” of the

entire flow field. Conversely, physical studies require inserting probes or sensors to

measure fluid flows. Probes and sensors, however, are limited: they can take few

measurements and interfere with the flows they are measuring. The completeness

of the measurements available in computer simulations reduce the need for param-

eter tuning and eliminate the potential for bias in probe-placement. By analyzing

the measurements taken from these flow fields, scientists can construct high-level

models of fluid behaviors. High-level models describe not how small bodies of fluid

move and interact, but how general trends influence large-scale behavior.

2.1 Questions in Computational Fluid Dynamics

One interesting high-level fluid behavior is that of vortical structures. Such

structures are ubiquitous in fluid flows, particularly in turbulent flows, such as in an

internal combustion engine, or around a submarine. Formally defining turbulence

is not trivial, but several features are universal in turbulent flows. Turbulence

is dissipative, meaning that significant amounts of kinetic energy are converted

continuously into internal energy. Therefore, turbulent flows tend to decay rather

5
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rapidly when no energy source is present. Turbulent flows are also highly non-

linear, resulting in flow that appears random and is highly sensitive to initial

conditions. Turbulence, however, is not truly random and has statistics that are

highly reproducible when appropriate averaging (ensemble, spatial, or temporal)

is implemented. Efficient mixing is another feature of turbulent flows. For exam-

ple, efficient mixing of momentum leads to increased drag on solid bodies such as

airplane wings. The adverse health effects of tail-pipe emissions on pedestrians

are minimized through efficient dispersion of particulates. Turbulence is three-

dimensional with velocity and vorticity fluctuations of comparable magnitude in

all three directions [TL72].

Turbulence is affected by variations in density (e.g. stratification, where

mean density varies in space). Stratification can modify vertical motion and mixing

significantly. In the ocean, stratification results from gradients of temperature and

salinity. The atmosphere is also a stratified system, where density variations result

primarily from temperature and water-vapor gradients. When stratification is such

that density is a function of elevation alone, with lighter fluid positioned above

heavier fluid, then stratification acts to stabilize turbulence, in turn inhibiting

vertical motion. If stratification differs from this base state then energy can be

extracted from the density field, providing an energy source for turbulent mixing

and internal wave emission.

Coherent vortical structures play an important roll in geophysical flows,

such as those in the ocean. Oceanic flow with scales much larger than those at

which energy is dissipated and much smaller than geostrophic scales are poorly

understood. These scales are influenced by stable stratification and moderate

effects of the Earth’s rotation [RL08]. Ocean models require better mathematical

descriptions of physical processes to become an accurate predictive tool.

It is our objective to provide better mathematical descriptions of physical

processes, in particular, the roll vortical structures play in environmental mixing

and transport. We are currently assisting the investigation of barotropic instabil-

ities, which are a particular class of shear instabilities in stratified flow. These

barotropic instabilities are known to form coherent vortical structures. To under-
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(a): Configuration of the temporally evolving shear
layer.

(b): Simulation data for u (the velocity in
the x direction) in the yz plane.

Figure 2.1: In (a), two streams of fluid are shown, one moving in the positive x direction
and the other in the negative x direction. The streams are separated by a y mid-plane.
Stratification (mean density variation) is in the z direction, which is shown by the constant
density gradient, dρ/dz.

stand these structures, we examine how they differ from the surrounding flow field.

By comparing different physical quantities within and without these structures, we

can better understand the part these structures play in the environment.

The turbulent flow we are helping to investigate (Figure 2.1) is that of a

temporally evolving shear layer, representing two streams with velocity difference

∆U oriented horizontally, subjected to uniform vertical stratification. The stream-

wise (x) and vertical (z) directions are assumed to be infinite and homogeneous,

and are thus appropriate directions over which to perform statistical averaging.

We apply fluctuations of various sizes to the flow velocities in the region between

the two streams to accelerate the transition to turbulence.

2.2 Simulations of Turbulent Flow

The approach we use to simulate turbulent flow is called Direct Numerical

Simulation (DNS). DNS consists of solving the Navier-Stokes and density equations

for incompressible flow (Figure 2.2). Simulations consist of an outer loop which

marches through time, solving the equations each time step to update flow variables

for the next. While DNS is not tractable for many engineering problems (due to

the wide range of spatial and temporal scales that must be resolved) its lack of
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ρ
(
∂~u
∂t

+ ~u · ∇~u
)

= −∇p+ ρ~g − 2~Ω× ~u+ ν∇2~u

(a): The Navier-Stokes Equations.

∂ρ
∂t

+ ~u · ∇ρ = κ∇2ρ

(b): The Density Equation.

Figure 2.2: The Navier-Stokes and Density equations. ~u is the vector-valued velocity,
with components u, v, and w. ρ is the fluid density. p is pressure. ~g is the gravity vector.
~Ω is rotation. κ is diffusivity.

empiricism has made it a successful research tool.

By simulating low-level physics, DNS eliminates the dependence on empir-

ical models. Empirical models often have many degrees of freedom that must be

resolved via tuning, and thus become intractable.

The Navier-Stokes equations are solved using a pseudospectral method with

colocated fourth-order compact differencing computation of derivatives in the in-

homogeneous direction and spectral collocation in the homogeneous directions.

Conservation of mass is enforced using a projection method, which is solved using

a parallel Thomas algorithm. The pressure solve reduces to a tridiagonal system

of equations which is also solved using a parallel Thomas algorithm. Density ad-

vances in time via an advection-diffusion equation (Figure 2.2b). Time marching

is accomplished using a low storage third order mixed Runge-Kutta Williamson

scheme with viscous terms treated implicitly [Bew10].

Different simulations are required to examine and explore a particular mod-

el. Each simulation may have different physical parameters , where quantities such

as the Reynolds Number , compressibility , rotation, or stratification vary. Varying

these physical parameters may lead to the use of different configuration parameters

in the simulation’s configuration. Configuration parameters reflect implementation

choices by the particular program that runs the simulation. This includes, for

example, the mapping of physical coordinates to Cartesian indices of an array, and

the layout of that array in memory.

2.3 Turbulent Flow Analysis

To develop new turbulence models, we must extract information about

physical behavior from the data generated by our simulations. Unfortunately,
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without a model to guide us, the way in which physical quantities relate to physi-

cal behavior is unknown. We must experiment not only with different simulations

and configurations, but also with our analyses.

Analysis consists of executing a number of queries over data generated by

a simulation. These queries compute different physical quantities. Ultimately,

we analyze data from a number of different timesteps of a number of different

simulations.

The normal scientific process guides our analysis: we develop hypothe-

ses about (i.e. models of) observed behavior, use this to measure (by computing

physical quantities), and then refine our hypothesis. Our model gives us an idea

of which simulations and configurations might be interesting, letting us generate

large amounts of data. Our model also tells us what kind of physical quantities in

this data might be interesting. Once computed, these quantities help us refine our

model. We then repeat the process.

2.4 Comp. Fluid Dynamics Analysis Software

The most common approach to analyzing CFD data is to use application-

specific tools. These tools are often constructed purely for the specific case at

hand with little care regarding their future use or maintainability. This state

of affairs inhibits the dissemination and sharing of ideas and tools. While there

are some commercial systems available, most are for well-established engineering

applications and take short-cuts that are not physically accurate, making them

inappropriate for scientific discovery. There is a need for software which can be

customized to support both the specific case at hand as well as future cases as

simulators and query choices change and new models are developed. Our Saaz

software makes it easier to write interoperable, sharable code for CFD analysis.



Chapter 3

Saaz

In this chapter we will present Saaz. Saaz is an array-class library for C++

designed for post-processing Computational Fluid Dynamics (CFD) data, that is,

the data generated by CFD simulations. We will present a description of design

considerations for Saaz and the problems it aims to tackle. The primitives in Saaz

will be discussed briefly before presenting examples of Saaz code. More details

regarding the implementation of Saaz can be found in Appendix A, with a more

complete set of examples in Appendix C. Extensions to Saaz appear in Appendix

B.

3.1 Target Problem

Saaz is designed to aid in the analysis of large datasets generated from

CFD simulations. Particularly, the data-discovery codes which assist in the de-

velopment of new physical models. Saaz presents an abstraction of arrays. While

the computations we address are from CFD, Saaz includes no physical concepts

directly. Arrays are indexed at Cartesian coordinates, but there is no notion of

distance outside of the index space. All physical context and restrictions (such as

the Reynold’s number) are imposed upon computations by the programmer, not

by Saaz. This should make Saaz useful for domains outside of CFD, but we do not

address that use in this thesis.

10
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3.1.1 Maintenance

One of the difficulties in CFD analysis is the dependence between simulation

and analysis. Analysis codes are tailored to simulators, which are in turn tailored

to the specific fluid conditions being explored. It is difficult to avoid the coupling

of problem and simulator because of the wide variety of conditions and flows that

could be explored; tailoring a simulator to the subject at hand makes sense.

The necessity of coupling simulator and analysis tool, however, is less clear.

Developing new physical models requires exploring the efficacy of different analyses.

The analyses can change dramatically over the use of one simulator, and are often

similar if not identical to the analyses performed over different simulators. If we

can decouple the simulator and analysis tool, we can reduce the code-maintenance

burden on the scientist.

Maintaining an analysis tool requires attention to several issues as condi-

tions change:

1. Physical and problem-specific assumptions change. If the data changes phys-

ical characteristics, code which relies on some of those characteristics may

need to be rewritten.

2. Performance Robustness (hardware portability with performance). If the

underlying hardware is changed and has different performance trade-offs,

then a tool may need to be rewritten to avoid slowdown and take advantage

of the changes.

3. Storage schema changes. A new simulator may have a different native format

for storing and managing data. Tools which are unable to accommodate a

different way of organizing data must be recoded for each new organization.

4. Analysis itself changes. When exploring what analyses are informative, some

queries or computations will naturally become less interesting while others

become more interesting. Tools which are flexible in accommodating changes

to data analysis algorithms will require fewer changes.
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The ability to maintain an analysis tool across these changes will be of great help

to the CFD community [Moi10]. Most physical assumptions are simple enough to

be factored out into variables, and so recoding is trivial or nonexistent. Hardware

changes usually affect optimizations such as cache blocking which require tuning

to optimize. There has been much work already in this area, and so Saaz does not

address it. Presently, most analysis tools are tightly coupled to a simulator via its

storage schema. New analyses are added and removed ad hoc as needed: reimple-

mented for each tool and its simulator’s specific storage schema. By decoupling a

storage schema and analysis, Saaz reduces the need to reimplement these tools.

Physical Assumptions Physical assumptions might include the Reynolds num-

ber, the mapping between Cartesian coordinates and the index space (coordinate

mapping), compressibility vs. incompressibility in the simulation, the effects of

stratification, the effects of planetary rotation, or even which physical values (ve-

locity, density, pressure, etc.) are simulated. Generally these assumptions are

frequently able to be parameterized into a few variables. Most queries that rely

on these assumptions only rely on them to the extent that they require them as

inputs. The structure of a query is not usually dependent upon these assumptions.

For example, the mapping of a coordinate system can parameterize a query by

specifying which axes are inhomogeneous and which axes a loop covers, but it will

not normally affect how many loops are used.

Performance Robustness Changes in hardware can greatly affect the perfor-

mance (though generally not correctness) of scientific applications. Such changes

include changes in the memory hierarchy (cache size, main memory size, use of

flash, etc.), memory bandwidth, and computational power relative to memory ac-

cesses. Increased data sizes, whether for higher physical or temporal resolution, of-

ten necessitate an upgrade in hardware. Code-generators such as Spiral [PMJ+05]

or FFTW [FJ05] make it easy to port an algorithm implementation to a new hard-

ware system. These systems rely on an understanding of the sensitivity of the

computation to certain hardware parameters. If, for example, cache sizes change,

a loop nest can be blocked differently to avoid false sharing and take advantage of
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the cache.

Unfortunately, the effect of hardware changes on arbitrary, ad hoc, com-

putations is still an open area of research [OTCS09] [OSMC10] [WSO+09]. It is

difficult to find the optimal tuning parameters for specific hardware changes. Saaz

does not attempt to tackle this problem, instead it addresses the remaining two

rewrite conditions.

Storage Schema Analysis tools must be compatible with the storage schema

used by the simulators with which they interact. Factors such as the physical

properties being explored, or the techniques to do so, may affect the optimal way

for a simulator to format data in memory. In some cases a particular axis ordering

or data layout (such as row-major) may be preferable. Just like a simulator may

have an ideal data arrangement, so too may an analysis tool. We would prefer to

have this ideal data arrangement depend on the operations being performed, and

not on the way the tool is written. By abstracting the organization of data away

from the analysis tool, we can elide these details and make it easier to write more

interoperable code.

When a significant amount of computation must be performed over sim-

ulator-generated data, it may be cost-effective to reorganize it (such as with a

transpose) before analysis. These transformations, however, may be expensive

both in terms of time and memory usage. It may not be reasonable, or even

necessary to reorganize the data. The primitives in Saaz are designed to make it

simple to express computations in such a way as to be robust to changes in data

organization. In particular, computations using a Saaz array need not know if the

array is stored in memory using a row-major or a column-major layout.

Saaz arrays include metadata that is maintained when the array is stored

on disk. A single array type can hold arrays of differing layouts, and will choose the

appropriate one based on how each instance is created. Forcing users to maintain

metadata themselves (e.g. array layout) can be distracting. When metadata is

incorporated into a query’s implementation, it can become confusing and a source

of errors, especially as code is maintained, updated, or ported. Abstracting how

data is organized isolates metadata from computations. This lets a program be
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written without being concerned with data layout, allowing code written with

Saaz to run over different datasets. Thus, Saaz programs are robust to changes in

storage schema.

Analyses Many existing tools and libraries provide fixed sets of primitive compu-

tations. These tools are effective because they restrict operations to a few specific

instances which are highly tuned. This can yield high performance, but it also

restricts flexibility.

In circumstances where analyses are changing more frequently than the li-

brary itself, the library will be unable to adapt to new analyses directly. Analyses

are expressed as code, not as data, and are therefore harder for a library to ma-

nipulate. When a new query needs to be computed, code must be rewritten and

recompiled. In the scientific realm, particularly the exploratory parts of CFD,

analyses change quickly as new venues of possible causes and correlations are ex-

plored. This makes the use of a few specific, but highly-tuned implementations

ineffective.

Instead of providing a set of fixed queries (possibly parameterized by data),

Saaz makes it easy to express new queries. We refer to these queries as ad hoc

because they are not known prior to analysis and change as scientists refine their

models. An interface which is natural to domain scientists is important in this

regard. Domain scientists don’t want to talk to computer scientists every time

they want to compute something new, especially if they do not do so already.

Many domain scientists make use of Fortran and Matlab for these sorts of new

computations. The Saaz interface uses similar concepts. Queries are expressed

procedurally via imperative computations.

3.1.2 Kinds of Abstractions

In terms of abstractions, libraries and languages are not significantly differ-

ent. Both can have abstractions which encourage or discourage compatibility with

different systems. The primary difference is that libraries are embedded in an exist-

ing language. By operating within an existing language, libraries enjoy a greater
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opportunity for compatibility with both old and new systems. This encourages

adoption.

A library may sometimes be referred to as an Embedded Domain-Specific

Language (EDSL). In this case, either the language’s compiler or another compiler

is able to treat operations on a library as language primitives. This affords op-

portunities for optimization of the library which may not be available to a more

general-purpose compiler. Certain functions in the C standard library, for exam-

ple, are treated as built-ins by some compilers (such as memcopy by GNU’s gcc).

The semantics of these functions are known by the compiler and calls to them may

be rewritten using an optimized, more-efficient implementation.

Software libraries offer a convenient way of managing program complexity

as data analysis becomes increasingly complicated and expensive. Libraries of-

fer the programmer modularity: a few experts are able to provide an optimized

implementation for many different users. What abstractions a library offers can

vary significantly depending on the library’s purpose. Some uses are amenable to

declarative abstractions, others merely abstractions of algorithms or specific oper-

ations, and still others permit only the slimmest of data abstractions. Figure 3.1

shows different levels of abstraction.

Declarative Ideally all libraries would be able to operate at the highest levels of

abstraction, offering a declarative interface. At the declarative level, users provide

a high-level schema for data organization. Users may then merely declare what

they want but not how to get it (e.g. SQL SELECT). At this level, the library

can automatically arrange data in a way optimized for the retrieval patterns and

computations users require. Operations presented to the user have certain high-

level mathematical properties of which the library is aware (e.g. identity values,

composability, associativity, etc.). By incorporating rules about these properties,

the library can pick the best implementation of a specific query (computation) over

data as well as the best way to organize data for that query. Libraries presenting

declarative-level abstractions can thus achieve very high performance.

SQL databases have been successful because the relational model for orga-

nizing data works very well for a large class of problems. Not all problems are
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Figure 3.1: Differing levels of abstraction. Internal nodes represent an abstraction
category. Leaf nodes are examples of libraries or languages within that category.

amenable to declarative abstractions, however. Compatibility with other systems

or storage constraints may require a lower-level schema than that which a declara-

tive interface uses, preventing it from re-arranging data. Furthermore, even if data

can be reorganized, sometimes the computations to be performed over the data

are not expensive enough to justify the cost of reorganizing the data. The most

effective way to organize data tends to be very problem-specific.

The Sloan Digital Sky Server [GST+02] is one of the few projects in the

scientific community which has successfully and effectively used a SQL database

to analyze data. The Relational Model [Cod70] used by SQL is not well suited

to handling intensive computations involving arrays as it cannot preserve memory

locality in tightly-bound loop nests. The direct, bi-directional mapping between

an array’s indices and memory location preserve locality much better. Figure 3.2

illustrates storage of an array inside a relational database and a regular imperative

language. One way of storing an array relationally is shown in Figure 3.2a: all

the values may be stored adjacent in memory. Unfortunately, the mapping from

the indices is far away, and so accessing adjacent values requires non-local access.

Alternatively, Figure 3.2b organizes all the values in adjacent tuples in memory.
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Tables:

Id X

...
...

Id Y

...
...

Id Z

...
...

Id Value

...
...

M
E
M

(Id1, X1) (Id2, X2) . . . (Id1, Y1) (Id2, Y2) . . . (Id1, Z1) (Id2, Z2) . . . (Id1, Value1) (Id2, Value2) . . .

(a): One way of storing array data in a relational model. Separate tables hold coordinate information and values.
Each table is stored as a list of rows.

Table:

Id X Y Z Value

...
...

...
...

...

M
E
M

(Id1,X1,Y1,Z1,Value1) (Id2,X2,Y2,Z2,Value2) . . .

stride=5

(b): Another way of storing array data in a relational model. A single table holds coordinate information and
data.

X Y Z Value 1 . . .

M
E
M

(Xmin,Ymin,Zmin,Xmax,Ymax,Zmax) . . . (Value1) (Value2) . . .

stride=1

(c): Regular arrays hold bounds information, then all values adjacent in memory.

Figure 3.2: Different ways of storing data can cause poor locality in the relational model
as in (a) and (b), compared to the imperative model used by (c).

Using this method, the index records in between values are not needed for compu-

tation, merely for retrieving the values, and they take up space in the cache. Using

non-relational storage of raw array data (Figure 3.2c), values are stored next to

each other, and can often be retrieved from the cache. Because of CFD’s heavy

reliance upon large arrays of data, relational databases have failed to gain general

acceptance in the CFD community [LPW+08].

Imperative In cases where operations and data cannot be constrained to a for-

mal logic, a declarative approach may be inappropriate. By allowing the user to

specify how to perform computations, as well as which computations to perform,

more general problems and considerations may be addressed. Unfortunately, this

leaves fewer opportunities for the system to optimize executions and data retrievals.
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Algorithmic An important application design pattern is to glue together a fixed

set of high-level operations. In these cases, abstractions at the algorithmic level

may be ideal. By devoting efforts to a few specific operations, a few efficient imple-

mentations can significantly increase performance of a large number of programs.

The scientific realm is especially sympathetic to this approach. In scientific

analyses, operations largely appear as a consequence of mathematical properties

or explanations, and as such do not specify an implementation. Which implemen-

tation is optimal will depend heavily on data properties and organization. For ex-

ample, matrix-matrix multiply is a high-level operation which can be implemented

in many different ways. Considerations affecting performance include: what kind

of data (sparse vs. dense), the layout of data (row-major vs. column-major),

and the properties of the data (e.g. triangular or diagonal matrices). Libraries

such as BLAS [DCHH88b] and LAPACK [ABD+90] provide many different imple-

mentations for certain algorithms. By specifying how their data is organized and

particular data properties, users of these libraries can benefit from tuned imple-

mentations. Because there are relatively few ways that data can be organized, it

is feasible to tailor each of the important high-level algorithms to the data.

Ad Hoc In domains that explore the efficacy of different models or computations

(such as CFD), however, it is not possible to provide an efficient implementation

of a few high-level algorithms. Construction of a new physical model requires con-

stantly re-examining and changing what is being computed. A high-level primitive

which performs a specific canned operation is not useful here. Rather, exploration

requires a continuous ad hoc re-construction of operations. As a consequence, only

the simplest of primitives for accessing data, and not operating on data, are used.

The subjects of optimization are limited to data access, not algorithms.1

In CFD, for example, it is not known what physical properties (such as

vorticity) can best define a physical phenomena (such as a vortex). Different

physical properties must be computed and their efficacy for elucidation of dynamics

1 In some cases, an implementation of a known algorithm may be identified from uses of
primitives, and may then be optimized according to the semantics of the known algorithm (such
as replacing it with a more efficient implementation). Identifying these known algorithms is
difficult, fragile, and not the subject of this thesis.
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evaluated. These properties must be evaluated and deemed effective over different

experimental conditions, such as the Reynolds Number , compressibility , rotation,

or stratification conditions. As new experiments are performed, the problem’s data

configurations often change. Low-level details relating to data organization may

not be relevant to the properties being explored, but they affect the implementation

of a computation. Using a library to abstract these details about data organization

lets the user focus on the exploration of the data properties.

Because Saaz is designed to help develop novel physical models, it can-

not manage the implementation of specific algorithms. Instead, it supports the

expression of ad hoc computations and abstracts the organization of data.

Interestingly, during the course of developing Saaz, we found it useful to

introduce an algorithmic library on top of it. Saaz only abstracts data, thereby

allowing ad hoc queries. This abstraction, however, is too low-level for some uses

who perform only a few common analysis operations. These users prefer a smaller

API and built-in operations. There are a few operations common to several queries

which can be implemented in Saaz and packaged. To that end, we developed the

Cascade front-end to Saaz. Cascade simplifies the implementation of particular

queries compared to regular Saaz. Many queries, however, cannot be efficiently

expressed in Cascade. Dissipation, for example, cannot be easily computed with

Cascade’s primitives. For these more complicated queries, and for queries which

do not fit Cascade’s pre-defined operations, Saaz itself must be used. Cascade is

discussed in more depth in Appendix B.2.

3.1.3 Data Organization

Saaz abstracts data schemas for regular grids. In CFD, simulation data is

usually organized in one of three different ways:

1. Regular Grids

2. Irregular Meshes

3. Adaptively Refined Meshes (AMR)
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Regular Grids operate on a dense multidimensional array of data where each co-

ordinate in space is represented by a specific index point in a domain. While the

physical space is not necessarily uniform, the grid over it uses a domain with a

uniform index space. Data is arranged regularly in memory using a closed (re-

versible) formula. Regular Grids also allow the use of implicit indices: the location

in memory is a function of an index’s value. Regular grids, however use a single

resolution, and thus do not allow very much flexibility in how precise a space is

handled.

Irregular Meshes cover a particular volume or surface of interest such as an

airplane wing. Their irregularity allows them to be very fine-grained at small scales

such as edges or where behavior of great interest is expected. Irregular meshes are

usually stored as a list of triangles, and thus do not preserve locality as well as

dense arrays.

While iterating over an irregular mesh can be just as convenient as iterating

over a regular grid, it is much more difficult to access values at specific locations.

Even when triangles are organized hierarchically, operating on values which are

adjacent in physical space is expensive because they are not adjacent in memory

and must be found. Certain operations require accessing values by physical coor-

dinates. Planar averages, for example, require accessing all the values in a plane.

Differential operators require accessing values from adjacent physical coordinates.

Depending on the particular analysis needs and the tools available, an irregular

mesh may be less appropriate than a regular grid. Care must be taken with the

conversion, since if the conversion is too coarse accuracy may suffer, but if it is too

fine, it will require much more storage space (and thus compute time).

Adaptive Mesh Refinement (AMR) [BC89] tries to offer the best of both reg-

ular grids and irregular meshes. AMR uses a set of hierarchically-ordered grids at

varying resolutions. Each grid is represented densely. In this way, storage require-

ments are reduced while ensuring important or small components can be exam-

ined at high resolution, and large components can use more coarse approximations.

Data can still be accessed by physical coordinate, although some interpolation may

be required.
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Saaz supports only regular grids. Although constructing an adaptive mesh

would be possible, it is not natively supported, and would require extensions to

domains and arrays, though the Saaz computational interface would not be altered.

In cases where data is stored in an irregular mesh, it would have to be rearranged

as one or more regular grids before Saaz can use it. However, because Saaz arrays

maintain their own opaque mapping between physical coordinates and memory

location, Saaz is free to implement different storage types. In the future, adaptive

meshes may be implemented natively behind an array’s indexing operation.

Saaz hides details specific to a simulation’s data schema. For example,

arrays in Saaz are indexed in such a way that their memory layout is transparent,

that is, the mapping from a point in index space to a memory location is opaque.

The mapping from physical space to index space is handled in a preamble, freeing

the rest of the code from being aware of its specifics. Other configuration details

are also able to be moved into the preamble. By using these kinds of abstractions,

Saaz allows the user to express ever-changing computations while also making it

easy to change simulations and schemas. It becomes easy to compute different

physical quantities with code that is more interoperable across different physical

experiments, parameters, and tests. Saaz’s abstractions facilitate the construction

of new physical models.

3.2 Saaz Primitives

As scientists continually refine their physical models they add, remove, or

otherwise change the queries they use for analysis. This precludes a solution which

focusses on a few high-performing computations.2 To support the ad hoc nature

of scientific exploration, Saaz simplifies the authoring of new queries instead of

canned operations. Saaz abstracts data schemas and uses an imperative model for

computational queries. This type of programming is familiar to domain scientists.

In this section we will present the primitive types in Saaz, as well as a

2 There is a higher-level interface to Saaz called Cascade, which is discussed in more detail
in Appendix B.2. Cascade abstracts some high-level operations which are common in CFD, but
because it is not ad hoc, it is very inflexible, and not for general use.
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1 Domain3 dmn(x_lo ,y_lo ,z_lo , x_hi ,y_hi ,z_hi);
2 Domain1 pencil = dmn.Collapse(Y_AXIS);

Figure 3.3: The Collapse operation for a domain selects a subspace according to the
axes specified. If Y AXIS is 1, pencil will cover the points (y lo : y hi).

few operations. These types are: Points, Domains, and Arrays. The operations

are: Iterators for traversing domains, Predicates for restricting computations, and

Aggregators to summarize data.

3.2.1 Points

Point objects in this thesis will generally be named p or q. The point’s

value along a specific axis will be denoted p.axis , e.g. p.x.

Points represent an element of Zn and are used to index n-dimensional ar-

rays. They are elements of n-dimensional domains (Section 3.2.2, below). The use

of points allows the user to write dimension-independent array-accesses: instead of

listing a coordinate along each dimension, a single object contains each coordinate.

3.2.2 Domains

Domain objects in this thesis will generally be named domain or dmn.

Domains in Saaz represent a rectilinear subset of Zn. Domains are bound

by two n-dimensional points lo and hi (Figure 3.5a). They contain all values within

the Cartesian-product of n integer ranges: (x lo : x hi) × ... × (z lo : z hi). We

call the bounds in a particular dimension the extents . Axes are numbered starting

from zero.

A lower-dimensional subspace of a domain may be extracted by using the

Collapse method, which returns a hyper-plane (Figure 3.3). For example, a three-

dimensional domain over (x lo : x hi) × (y lo : y hi) × (z lo : z hi) can be

collapsed to the y axis, to isolate two domains: one over (y lo : y hi) and one over

(x lo : x hi)× (z lo : z hi).

The extents of a domain dmn can be accessed via the Min and Max functions:

dmn.Min(0) returns the first coordinate of the smallest point in the domain. For
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some computations, such as those that work with neighbors, an interior domain

is necessary. This is created using the Inset method. For example, for dmn over

(x lo : x hi) × (y lo : y hi) × (z lo : z hi), dmn.Inset(1) will create a domain

over (x lo+ 1 : x hi− 1)× (y lo+ 1 : y hi− 1)× (z lo+ 1 : z hi− 1).

3.2.3 Arrays

Array objects in this thesis will generally be named A, B, or C, when

referring to an array in general; arrays in the context of CFD include the three

different components of velocity: u, v, and w.

An array is a mapping from the points of a domain to a value: Zn → R.

That is, they hold a value corresponding to each point in a particular domain.

Each array has a domain as an index set. Arrays may only be defined over dense

domains. The domain of an array A can be retrieved via the Domain member call:

A.Domain().

We refer to arrays over a single dimension as vectors . Scalars (such as a

single integer) can be thought of as arrays over zero dimensions.

Arrays are indexed with multidimensional points rather than tuples (i.e.

A[p] instead of A[i,j,k]). This capability was pioneered in the Fidil program-

ming language [HC88] and later employed in the KeLP system [Fin98] [FBK98]

and the Titanium programming language [YSP+98]. Unlike many languages and li-

braries, which treat array-layout (whether an array is row-major or column-major)

as a convention, Saaz allows the user to specify the layout as a property of each

array instance. When a language chooses a particular layout, it simplifies the com-

putations which must be done to index an array, but sacrifices compatibility. Saaz

abstracts the organization of data from the indexing operation, making such code

robust to changes in data schema.

3.2.4 Iterators

Iterators in this thesis are generally named i, j, or k, depending on which

axis (or axes) they are covering (such as ik for the x and z axes). i will also
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1 for (Iterator i = A.Domain ().begin (); !i.end(); ++i)
2 {
3 A[i] = B[i];
4 }

Figure 3.4: Copying an array.

sometimes be used for an iterator over an unspecified number of dimensions.

To access arrays which are defined over a domain, we iterate over that

domain. Iterator objects perform this task, taking on the value of all points within

a domain. Figure 3.4 shows how to copy array B into array A. Because iterators

are multidimensional and cover points along several axes, they allow a user to write

a single for-loop that traverses a multidimensional index space instead of writing

individual for-loops over each dimension. This allows the user to write dimension-

independent code. The order in which iterators cover points is not set, although

the order in which dimensions are covered can be forced. When not forcing a

particular order, Saaz may choose a particular order to improve some aspect of

performance such as locality.

Iterators can also cover subspaces of a domain. For example, an iterator

can traverse a line existing in three-space by traveling along the leading point of

planes in a three-dimensional domain. In this way, iterator j can cover just the y

axis of a three-dimensional domain, dmn over (x lo : x hi)× (y lo : y hi)× (z lo :

z hi). In this case, the iterator will traverse the points between (x lo, y lo, z lo)

to (x lo, y hi, z lo). To obtain the one-dimensional point, the iterator must first

be collapsed. j.Collapse() will yield one-dimensional points between (y lo) and

(y hi). When an iterator does not cover all the axes of a domain, it provides

access to the remaining points of the domain using the Slice method. j.Slice()

will provide the part of dmn which exists perpendicular to the axis traversed by the

iterator j. In this case that is (x lo : x hi) × (z lo : z hi). See Figure 3.5. The

corresponding 3-dimensional point, p, in the original domain can be obtained by

promoting the iterators from the subdomains: j.Promote(ik). In the case where

the iteration space is sparse (due to Predication, Section 3.2.5, below), j.Slice()

might change for each value of j.
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lo

hi

(a): The Domain dmn.

1 for(Iterator1 j = dmn.begin (1);
!j.end(); ++j)

2 {
3 Point1 q = j.Collapse ();
4 for(Iterator2 ik = j.Slice ().

begin(); !ik.end();++ik)
5 {
6 Point3 p = j.Promote(ik);
7 /* ... */
8 }
9 }

(b): Traversing dmn with two
iterators, j, and ik.

ik

j.Slice()

j

(c): The spaces covered by j and
ik.

Figure 3.5: Two-loop iteration.

3.2.5 Predicates

A predicate in Saaz constrains execution to a particular subset of a domain

for arbitrary conditions. Predicate objects must be able to specify for each point

whether or not execution should occur for that point. Because Saaz does not

presently support sparse arrays, not executing the loop body for some points will

result in dense arrays having default values. Predicates allow Saaz to use user-

defined criteria to constrain computation. CFD researchers can deduce properties

of coherent structures by isolating them from the rest of the flow.

Saaz does not support sparse domains directly. Instead, predicates are

used to specify sparse iteration spaces and affect only the iterator. Saaz does not

currently support sparse arrays.

3.2.6 Aggregators

Aggregators are built on top of the other Saaz primitives. Aggregators are

objects which perform a generalized reduction operation, taking arrays of n dimen-

sions and producing arrays of m dimensions, where 0 ≤ m < n. The reductions

supported by Saaz are different from those of other systems such as Matlab which

reduce arrays by aggregating along a single axis. Figure 3.6 illustrates a common

reduction operation which reduces along two axes: the planar average.

Aggregator objects execute reductions by implementing six functions, each

corresponding to different parts of a loop nest. These functions are: Initialize,

PreProcess, Process, PostProcess, Finalize, and Return. Figure 3.7 shows the
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ik

j P
N

(a)

1 for (Iterator1 j = dmn.begin(YAXIS);
!j.end(); ++j)

2 {
3 Point1 q = j.Collapse ();
4 avg[q] = 0;
5 for (Iterator2 ik = j.Slice().begin();

!ik.end(); ++ik)
6 {
7 Point3 p = j.Promote(ik);
8 avg[q] += arr[p];
9 }

10 avg[q] /= j.Slice().Size();
11 }

(b)

Figure 3.6: A reduction to compute the average value in a plane with N=j.Slice().Size()

elements.

1 DomainM collapsed = dom.Collapse(agg ->GetOutputDimensions ());
2 agg ->Initialize(collapsed);
3 for (IteratorM i = dom.begin(agg ->GetOutputDimensions ()); !i.end(); ++i)
4 {
5 PointM q = i.Collapse ();
6 agg ->PreProcess(q);
7 for (IteratorL j = i.Slice().begin (); !j.end(); ++j)
8 {
9 PointL p = i.Promote(j);

10 agg ->Process(q, p);
11 }
12 agg ->PostProcess(q);
13 }
14 agg ->Finalize ();
15 return agg ->Return ();

Figure 3.7: Aggregator objects implement six functions which are called at various points
of a loop nest. In this example, the aggregator object, agg reduces the N -dimensional
domain, dom, to M dimensions, where 0 ≤M < N and L = N −M . GetOutputDimensions

returns a list of the dimensions along which the aggregator should reduce, that is, the M
dimensions which the outer-loop should cover.

call-sites of these functions within a loop nest. The order in which an aggregator

covers points of a domain is not defined, so ordering assumptions should not be

present in these function bodies. This allows Saaz the ability to select an order

for the iterations for performance or other reasons. Saaz may even parallelize the

computation.

3.3 Examples

Saaz factors out configuration parameters (i.e. the data schema) so they do

not liter the expression of a query. By avoiding problem-specific assumptions and

configuration details, Saaz makes query implementations more interoperable across
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Figure 3.8: A shear layer. Fluid flows in the positive and the negative x directions, with
an interface at the y midplane. u, v, and w are the components of the velocity along the x,
y, and z axes, respectively. ρ (density) decreases as z increases. Gravity (~g) acts against
the z axis, while rotation (Ω) acts clockwise around the z axis.

simulators. Configurations specify how a physical problem maps onto program data

structures. Certain individual configuration details can be used to parameterize

code. By moving configuration details out of queries, the queries can be used by

different groups over data that comes from different simulators.

To introduce Saaz’s interface, we will present a number of representative

queries. We choose these queries because they are physically meaningful, and

demonstrate a number of useful properties of the Saaz library. The particular

problem being explored is the turbulent and coherent structures which arise in

shear layers. Here, two bodies of water are streaming past each other at different

relative velocities. At the interface, these different relative velocities introduce

rotating flow and thus coherent structures form. This process is illustrated in

Figure 3.8.

3.3.1 Query Syntax

Our datasets consist of uniform arrays of field variables as generated by

a turbulent-flow simulator. We look at five primitive variables, although others

can be added. u, v, and w represent the x, y, and z components of vector-valued

velocity, respectively. ρ represents density, and p represents pressure. From these
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primitive variables we derive other quantities by executing user-defined queries.

The most basic query is the planar average. The planar average performs

the appropriate averaging to reduce the seeming randomness of turbulent flows.

For 3D data, the planar average returns a 1D array containing the average of all

the points of the corresponding planes in the 3D input array. The planes are

perpendicular to the inhomogeneous axis (usually y, see Figure 2.1 and Section

2.1). In this thesis we do not use any axis other than y and an abuse of notation

will mean the y axis when one is not mentioned. The planar average of array u

along the y axis is represented by 〈u〉y.
A normalized version of the primitive variables is required by many queries.

Normalization measures deviations from the average by subtracting from each el-

ement, the average value of the points in the plane perpendicular to the inhomo-

geneous axis. The normalized value of array u is represented by u′. The value at

point p is calculated by u′[p] ← u[p] − 〈u〉y [p.y] for an inhomogeneous direction

along the y axis.

For those queries which involve derivatives, we compute derivatives using

finite-difference approximations implemented as second-order stencil operations in

physical space. Derivatives are represented using the standard ∂
∂x

(u) or ∂u
∂x

.

Finally (for now), some queries involve correlations. A correlation is the

planar-average of a point-wise product, for example: 〈uv〉y. We use adjacency

to indicate point-wise multiplication. uv means u[p] ∗ v[p] for all points p in the

domain.

The remainder of this section will give example queries involving planar

averages, correlations, and derivative correlations.

3.3.2 Planar Average

The planar average query (see Figure 3.6) forms the basis of a number

of other queries. Because the planar average can be implemented with a simple

Saaz reduction (perhaps by a Saaz aggregator), it is useful in demonstrating the

common control-flow structure of reductions.

Certain problems exhibit characteristics of uniform physics. For example,
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the surface parallel to and above an infinite plane should be uniform. These ideal-

ized problems simplify considerations to allow exploration of specific effects. In our

fluid dynamic problems, there are two dimensions which exhibit uniformity for all

flow variables: the streamwise direction (x), and the vertical (z). The y direction

is inhomogeneous because it crosses the boundary between the two flowing fluids.

For these problems we normalize queries with respect to the mean in these two

homogeneous directions. This lets us see how the query changes with respect to

the inhomogeneous direction.

The planar average is used in queries that require normalized field variables.

In mathematical notation (not in code), normalized arrays are denoted with a tick:

v′, and defined such that:

v′[p.y] = v[p] - v avg[p.y]

where v_avg is the planar average of v.

Figure 3.9 shows how the planar average would be implemented in plain

C++ and in Saaz, respectively. In the main body of this thesis we have taken

some liberties with typenames to ease clarity (see Appendix C for additional code

examples). By comparing these two code examples, we can see how the abstractions

in Saaz come into play.

The plain C++ implementation (Figure 3.9a) is littered with problem-

specific assumptions and configuration parameters/data-schema details. To make

matters worse, this implementation has certain implicit assumptions which limit

performance, interoperability, or both.

1. The coordinates x, y, z are mapped to dimensions 0, 1, 2 of the arrays (Lines

a.7, a.8, a.11, a.13, a.15-17, and a.22).

2. The inhomogeneous dimension (the dimension along which the planar aver-

age is taken) is the y dimension (Lines a.7, a.8, a.11, a.13, and a.22)

3. Array bounds can have an arbitrary origin, as in Fortran (Lines a.7, a.8, a.10,

a.11, a.13, a.15-17, a.18, a.21, and a.22).

4. The arrays store data in row-major order (Lines a.15-17).
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1 double* PlanarAverage(double* arr ,
2 int x_min , int x_max , int y_min ,
3 int y_max , int z_min , int z_max)
4 {
5 int i,j,k;
6 unsigned long long idx;
7 double* avg = new double[y_max -y_min +1];
8 for (j = y_min; j < y_max + 1; ++j)
9 {

10 avg[j-y_min] = 0;
11 for (i = x_min; i < x_max + 1; ++i)
12 {
13 for (k = z_min; k < z_max + 1; ++k)
14 {
15 idx = (k-z_min) + ((j-y_min) +
16 (i-x_min) * (y_max -y_min +1))
17 * (z_max -z_min +1);
18 avg[j-y_min] += arr[idx];
19 }
20 }
21 avg[j-y_min] /=
22 (z_max -z_min +1)*(x_max -x_min +1);
23 }
24 return avg;
25 }

(a): Plain C++.

1 Array1 PlanarAverage(Array3 arr ,
2 unsigned int Y_AXIS)
3 {
4 Domain3 dmn = arr.Domain ();
5 Array1 avg(dmn.Collapse(Y_AXIS));
6 for (Iterator1 j = dmn.begin(Y_AXIS);
7 !j.end(); ++j)
8 {
9 Point1 q = j.Collapse ();

10 avg[q] = 0;
11 for (Iterator2 ik = j.Slice().begin();
12 !ik.end(); ++ik)
13 {
14 Point3 p = j.Promote(ik);
15 avg[q] += arr[p];
16 }
17 avg[q] /= j.Slice().Size();
18 }
19 return avg;
20 }

(b): Saaz.

Figure 3.9: Planar Average implementations. In the plain C++ case, three-dimensional
arrays are stored as single-dimensional C-style arrays because we wish to accommodate
column-major layouts without changing data-types, and multidimensional C-style arrays
are row-major.

5. The highest performance for the inner loop is attained when iterating in the

z dimension, and then the x dimension (Lines a.13 and a.11).

The loops that processes the data are nested to reflect the axis labeling convention,

and to improve re-use in cache. These implicit assumptions inhibit interoperability.

This is problematic when queries need to be run under a different data schema.

The highest cost of different schemas comes not from the increased duration

of queries (though, this is definitely a cost), rather, it comes from the need to

rewrite analysis codes. It is this maintenance burden caused by the integration

of problem-specific assumptions and data schema parameters throughout queries

that is the real cost. For example, if our data source takes a different convention

for coordinate axes (say x = 2, y = 0, and z = 1), the loops will have to be

rewritten, the allocation size changed, the array linearization arithmetic changed,

and the size calculations changed. If we don’t do this, we would have to perform

an expensive coordinate transformation prior to calling the routine, reorganizing

the data in memory to ensure the planar average was taken across the correct axis

and to avoid unfavorable memory access strides.
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Re-implementing queries for different configurations is time-consuming and

prone to error. Saaz’s goal is to abstract away built-in assumptions about a data

schema so that queries can be interoperable across different schemas and domain

scientists can remain focused on the science of their application. In other words,

Saaz does not remove these assumptions, but rather removes the responsibility

from the user’s consideration (Figure 3.9b). Instead of playing a tacit part in the

implementation the user must write, these assumptions are hidden in parameters or

in the data objects. This makes the salient features of the query, the mathematical

operations, more clear.

1. The coordinate mapping from x, y, z to axes 0, 1, 2 is specified using either

the axis name or a basis point (basis vector) (Lines b.5 and b.6).

2. The inhomogeneous dimension is factored out as the Y_AXIS variable (Lines

b.5 and b.6).

3. The bounds are an attribute of an array’s domain object, which can report

its size or the length along a given axis (Line b.17).

4. Layout is an array attribute. As a consequence, the arrays in a query may

have identical layouts, but may also have differing layouts (Line b.15).

5. The domain object, rather than the programmer, determines the order taken

by the inner loop iteration (Line b.11).

This code is interoperable across different array layouts as well as different coor-

dinate mappings. Except for the coordinate mapping from x, y, z to axes 0, 1, 2

and the choice of inhomogeneous dimension, all the other configuration details are

encoded in the way the array, arr, is constructed. When we load a Saaz array

from disk, all the configuration details (i.e. the schema) come with it, and are not

set via user code. This makes Saaz code much simpler to write and much more

interoperable across simulators and groups, and even versions of simulators, thus

facilitating the sharing of code and data.
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3.3.3 Point-wise Correlations

Correlations are the continuous sum (i.e. definite integral) of point-wise

products of n-dimensional fields. In our case, this integration is represented by

the planar average of the point-wise product of two arrays. Point-wise correlations

are calculated by, for every point, multiplying the corresponding values of the two

arrays. In our 3-dimensional cases, the array which holds this product is reduced

via a planar average to a 1-dimensional array.3

Note that we need not compute the product and then reduce it, but can do

both together. The vw-Correlation, for example, can be computed by modifying

the Planar Average query. We can replace Line 15 from Figure 3.9b with
14 avg[q] = vn[p] * wn[p]

vn and wn are the normalized values of the v and w arrays, respectively. Again, vn

is not necessarily instantiated, but could be computed inline as v[p] - v_avg[q].

One of the interesting characteristics of the correlation queries is that they either

reuse an array’s value (auto-correlations) or they access values for the same point

in two different arrays (cross-correlations). This can have effects on caching and

computational overheads.

3.3.4 Derivative Correlations

Derivative correlations are correlations that involve a derivative as one of

their components. In Saaz, these are implemented as finite difference calcula-

tions via stencil operations. In our examples we use a second-order approximation

(O(h2)). See Figure 3.10.

A good example of a query which makes use of derivative correlations is

dissipation. Dissipation measures the loss of energy, and is thus important for

understanding turbulent systems [TL72]. Regions with more dissipation tend to

have stronger turbulence. Dissipation has three sub-queries, each of which are

3 In Matlab notation, for example, for 3-dimensional arrays A and B defined over a domain
D, the correlation along axis 1 will produce a 1D array (vector), C. size(C) == size(D, 1), and
∀ i ∈ D(1) . C(i) = mean(A(:, i, :) ∗B(:, i, :)). Where A(:, i, :) ∗B(:, i, :) is the point-wise product
of the i planes of A and B.
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1 Array1 YZDissipation(Array3 v, Array3 w,
2 Array1 v_avg , Array1 w_avg ,
3 unsigned int Y_AXIS , Point3 PY, Point3 PZ,
4 double dz, double dy)
5 {
6 Domain3 dom = v.Domain ().Inset (1);
7 Array1 yzdiss(v.Domain ().Collapse(Y_AXIS));
8 double tmp1 ,tmp2 ,cur;
9 for (Iterator1 j = dom.begin(Y_AXIS); !j.end(); ++j)

10 {
11 Point1 q = j.Collapse ();
12 yzdiss[q] = 0;
13 for (Iterator2 ik = j.Slice().begin(); !ik.end() ++ik)
14 {
15 Point3 p = j.Promote(ik);
16 tmp1 = (((v[p + PZ] - v_avg[q]) -
17 (v[p - PZ] - v_avg[q])) / dz);
18 tmp2 = (((w[p + PY] - w_avg[q+1]) -
19 (w[p - PY] - w_avg[q-1])) / dy);
20 cur = tmp1*tmp1 + tmp2*tmp2;
21 cur /= 4.0;
22 yzdiss[q] += cur;
23 }
24 yzdiss[q] /= j.Slice ().Size();
25 }
26 return yzdiss;
27 }

Figure 3.10: A Saaz implementation of the yz-Dissipation query. Inset selects the
interior of a domain, with padding of the specified width (Line 6). Collapse of a domain
selects a subdomain along a domain’s axis (Line 7). Collapse of an iterator demotes
it to the 1-dimensional point on the line it is traversing (Line 11). Slice selects the
domain perpendicular to an iterator which traverses another subdomain (Line 13). Promote

combines 1-dimensional and 2-dimensional points to produce a 3-dimensional point (Line
15).

interesting in their own right. Figure 3.10 shows how yz-Dissipation (named for

the velocity components which it uses, v and w) is implemented in Saaz.4

The yz-Dissipation query differs from the vw-Correlation primarily in its

use of adjacent points. This requires that it use the interior domain: it pads

the iteration space to stay within bounds. The points ~Z and ~Y are unit-vectors,

added or subtracted according to vector-addition and vector-subtraction. At each

iteration, we do not access values at point p, but rather values at p ± ~Z and

p ± ~Y (as well as points in the one-dimensional averages at q and q ± 1). Which

dimensions these are is factored out of the actual query through the parameters

Y_AXIS, PZ, and PY. Thus, p+ ~Z (p + PZ) for p = (p1, p2, p3) may be (p1, p2, p3 + 1)

for ~Z = (0, 0, 1), or it could be (p1 + 1, p2, p3) for ~Z = (1, 0, 0). This allows the

query to be valid for schemas that differ in their coordinate mappings.

4This is actually a component of pseudo-dissipation, which is a common approximation of the
full dissipation.
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This code is compact and intuitive. We can readily see which data-points

are being accessed and what computation is being performed on them. In the

case of a plain C++ implementation, the code is much more complicated. Saaz

supports arithmetic on point-valued objects, so expressing offsets from a given

point is straight-forward. In plain C++, however, the arithmetic must be included.

As before, we do not use multidimensional C-arrays because we want to be able

to support column-major layouts. The arithmetic to linearize points can make the

code much harder to read, especially with complicated expressions involving many

different point locations.

One approach which is conventionally used to mitigate this clutter is to

define macros (or inline functions) which perform the linearization operation. p+ ~Z

can then be written as OFFSET(i,j,k+1) (for p = (i, j, k)). The use of macros in

this fashion will introduce many redundant computations between linearization

operations. It can be expected that the compiler will be able to eliminate these in

a plain C++ implementation. This approach, while it may hide the linearization

computations, does not hide the mapping of coordinates to axes. If ~Z were to

change from (0, 0, 1) to (1, 0, 0), then all of the macro arguments would need to be

updated.

3.3.5 Eduction Criteria

When running physical experiments, scientists use an inert dye so that

the flow can be visualized. As the flow moves the dye around, visual inspection

can identify vortical structures. Figure 3.11a shows this for a zig-zag instability.

Computational simulations can simulate dye, although keeping track of it can take

non-trivial amounts (20%) of additional space in memory. Unfortunately, it is

often not clear where the dye should be placed to begin with. The experiment

or simulation may have to be re-run several times to find good locations. When

examining a different region or property of the flow, the dye needs to be moved to

a new location, possibly over several attempts. Instead of looking at a flow that

includes some dye, simulations can use an eduction criterion to computationally

define the regions of interest.
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(a): A zig-zag instability [BC00]. This
flow has lots of dissipation but still has
coherent structures.

(b): λ2 for a flow over a cylinder [HJ11].

Figure 3.11: Interesting components of fluid flow.

Eduction criteria are functions which attempt to quantify the location of

rather qualitative phenomena. In our case, we focus on “vortices”. Several criteria

have been used, including Q [HWM88], ∆ [CPC90], Lagrangian Coherent Struc-

tures (LCS) [HY00], and λ2(Lambda 2) [JH95]. LCS is the most expensive, and

provides more detail than is necessary to identify vortical structures. λ2 identifies

vortical structures well, but is still expensive, involving not just many floating-

point operations (141), but also several trigonometric operations and square-roots

(8). The visualization of these eduction criteria is useful in visualizing vortices.

Instead of watching the dye evolve, vortices can be identified immediately. For

example, Figure 3.11b shows λ2 resulting from the flow over a cylinder. Figure

3.12 shows λ2 resulting from flow over the landing gear of an airplane.. Because

the eduction criteria is computationally defined it can also be used to isolate com-

putations. By thresholding one of these criteria, we can conditionally compute

other queries. This lets scientists examine how vortical regions are different from

the rest of the flow. This approach will help build a new model of flows dominated

by coherent vortices.
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Figure 3.12: λ2 computed around the landing gear of a Gulfstream airplane [dAJH12].



Chapter 4

Library Overheads

As discussed in Section 3.1.2, there are different levels at which languages

and libraries build abstractions (reproduced in Figure 4.1). One is the abstraction

of algorithms (the Algorithmic level of abstraction). Libraries of this sort provide

highly tuned implementations of particular algorithms, such as matrix-matrix mul-

tiply. Such libraries may provide these implementations via a number of different

functions and leave it up to the user to select the optimal one. Alternatively, they

may provide a single function that, perhaps automatically or with some user guid-

ance, is able to select the optimal implementation. For problems that perform only

a few known computations and when these computations are expensive relative to

data access, algorithmic libraries work well.

Sometimes, however, a set of fixed algorithms is inappropriate. When users

need support for a variety of computations, and these computations are not known

a priori, there are not yet algorithms for which an optimized implementation can

be developed. Libraries supporting unknown, ad hoc computations provide ab-

stractions for something other than computation, frequently data-organization.

Languages provide some primitive data-structures, but most applications

interact with data in a more complicated way. One particularly common data-

structure is the array. Arrays are collections of data, all of the same type. Different

languages provide different abstractions of arrays. Fortran, for example, supports

multidimensional arrays, while C and C++ support only single-dimensional arrays

(they are just contiguous memory regions; multidimensional arrays in C and C++

37
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Declarative
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Algorithmic

BLAS LAPACK

Ad Hoc

Saaz Languages

C Fortran Matlab

Figure 4.1: Differing levels of abstraction. Internal nodes represent an abstraction
category. Leaf nodes are examples of libraries or languages within that category.

are a kludge).

Languages vary in what kinds of dynamic properties they allow for arrays.

Fortran and Matlab support multidimensional arrays that can dynamically change

their extents (size and shape). C arrays can dynamically change their size through

realloc, although doing so is fragile and often ineffective. The Saaz library is

an array-class library for C++. Its primary abstraction is the multidimensional

array. Saaz provides the ability not for arrays to change their extents, but to have

different layouts: to be either row-major or column-major, a capability not present

in Fortran, Matlab, or C/C++.

The choice of abstractions is largely determined by the application require-

ments. SQL for example, targets business data which conforms to the relational

data-model. The properties of the relational calculus provide many opportunities

to reorganize queries and data. As a result, SQL can provide a high-level ab-

straction of both data and computation. Although SQL is a language, it is made

available to conventional languages through library support. SQL-bridge libraries

achieve the same performance benefits as the SQLlanguage directly because they

merely forward requests to the same SQL execution engine. Recent work has added



39

support for SQL to existing languages [MEW08] [TTS+08].

The kinds of and depth of abstractions which a language or library pro-

vides can significantly affect its performance. SQL is able to deliver very strong

performance because it operates within a constrained computational model that is

amenable to optimizing performance by reorganizing data and computations. SQL

queries are declarative, and thus do not specify a particular order of operations.

In fact, few SQL queries are executed without being rearranged. Because SQL ex-

ecution engines understand all of the semantics of their high-level language, they

are able to provide a very efficient implementation.

Imperative languages, on the other hand, are more general-purpose. While

the compiler may know a language’s semantics, the language’s generality may pro-

hibit heavy optimizations. Maintaining support for general computations requires

forgoing the ability to perform certain optimizations. Algorithmic libraries address

certain computations by providing highly-optimized implementations. General-

purpose languages are not so lucky. While compilers can do some analysis to fit

some computations into certain patterns, this usually requires very simple or no

user-defined data-structures. Datasets with dynamic attributes generally require

data-structures and methods of data-access that obfuscate the computations. The

myriad fine-grained functions which control or modify these data-structures are

easily confused with functions that perform the computations that are sine qua

non for the program. It becomes difficult for the compiler to disambiguate which

code is working to retrieve data and which is doing meaningful computations. The

complexity of library interfaces in modern object-oriented languages makes it diffi-

cult, if not impossible, for compilers to optimize general computations which make

heavy use of a library. Compilers operate at the level of a language, not a library.

One solution is to enable compilers to reason about libraries and computations

which use them, in effect, turning the library into an Embeded Domain-Specific

Language.

When general-purpose compilers are discussed we will be referencing In-

tel’s icc and ifort (version 12.0) and GNU’s g++ and gfortran compilers (version

4.7). We use the term general-purpose to mean compilers that are designed for a
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particular imperative language, but without specific knowledge of a library which

is implemented in that language. Domain-specific compiler, on the other hand,

refers to a compiler which has been granted special knowledge about a particular

domain (of information), and so is able to draw on more information than just

a language’s specification. In the case of a library with a tuned domain-specific

compiler, the pair may be called an Embedded Domain-Specific Language (EDSL)

[Hud96] [MHS05]. Our source-to-source translator, Tettnang, which we introduce

in Chapter 5 is a domain-specific compiler incorporating knowledge of the Saaz

library. Tettnang treats Saaz arrays as a primitive data-type in a domain-specific

language embedded in C++.

4.1 Overhead Categories

Before presenting solutions to library overhead, we first want to understand

the kind of overheads that a library can introduce: overheads are from more than

just function calls. We first present these overheads in the context of a toy program,

and then the Saaz library. More generally, these overheads are typical of object-

oriented libraries. For example, TooN [Ros] is an object-oriented numerical library

that uses LAPACK and BLAS as backends and also suffers from these overheads.

Analysis tools at the Large Hadron Collider [FJHL08] also exhibit the kinds of

overheads which we document in this chapter.

In order for domain scientists to develop scientific models, they must be

able to explore the efficacy of different physical quantities/statistics. These statis-

tics are not known a priori, and as a consequence, old ones are discarded and new

ones are attempted continually. To support these ad hoc queries, Saaz’s interface

abstracts only data-structures, but not algorithms. In plain C++, the code is

littered with details about the data schema such as the coordinate system and

the in-memory (or on-disk) layout of arrays. Saaz allows the programmer to fac-

tor out the data schema as configuration settings, rendering the expressions of

computational queries much more interoperable than plain C++.

Configuration details are factored out through the use of class layers. These
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class layers introduce three categories of overhead which move the performance of

Saaz far away from that of plain C++. Encapsulation of code and data introduces

duplicate metadata and indirection overhead. Isolation of concerns restricts the

compiler’s ability to perform optimizations (e.g. vectorization, common subexpres-

sion elimination). Generalizations introduce superfluous computations and control

flow changes.

The remainder of this section will describe these categories of overhead in

more detail. Figure 4.2 provides an example program, which deals with people

living in houses in a typical object-oriented way. We will use this example to illus-

trate the overhead categories and how general-purpose compilers respond to them.

In this example, Person objects are associated with House objects. Multiple people

may point to the same House, or no house at all. Handling these circumstances

introduces overheads that fall within our categories.

4.1.1 Encapsulation

Encapsulation manages complexity by hiding data in objects and structures

and hiding code in functions and methods. It is considered good practice to not

make object data directly accessible, but rather to use accessor methods (e.g.

Line 20). These methods can check invariants and arguments, or log accesses for

debugging purposes. They also add function-call overhead, as well as overhead from

consistency checks such as assert statements. These methods are typically short

and usually something a compiler can inline. Even when the use of an accessor

method can be avoided, there are overheads from accessing object datamembers

directly. An extra addition operation is required to generate the memory offset

from the object pointer.1

We refer to data which is needed to control computations or behavior, but

is not at the essence of the program, as metadata. Metadata in Saaz, for example,

1Although the exact consequences are architecture or compiler dependent, our tests with Intel
and GNU compilers on an x86-64 processor revealed that both compilers incurred the additional
add overhead when dealing with objects on the heap. With later versions of g++, the results
were less consistent. There are times in which g++-4.7 is able to avoid this overhead by storing
a read-only datamember in a register.
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1 #include <iostream >
2 #include <string >
3 class House
4 {
5 public:
6 House (const std:: string& number_ , const std:: string& street_)
7 : number(number_), street(street_)
8 { }
9 const std:: string GetAddress () const

10 { return number + " " + street; }
11 private:
12 std:: string number , street;
13 };
14 class Person
15 {
16 public:
17 Person(const std:: string& first_ , const std:: string& last_ , House* home_ = NULL)
18 : first(first_), last(last_), home(home_)
19 { }
20 const std:: string& GetFirst () const
21 { return first; }
22 const House* GetHome () const
23 { return home; }
24 const std:: string GetAddress () const
25 {
26 if (home)
27 return home ->GetAddress ();
28 else
29 return "Unknown Address ";
30 }
31 private:
32 std:: string first , last;
33 House* home;
34 };
35 int main()
36 {
37 House lakefront ("221 B", "Baker Street ");
38 Person lyra("Lyra", "Silvertongue", &lakefront);
39 Person will(" William", "Parry", &lakefront);
40

41 std::cout << lyra.GetFirst () << " lives at " << lyra.GetAddress () << std::endl;
42 std::cout << will.GetFirst () << " lives at " << will.GetAddress () << std::endl;
43 };

Figure 4.2: An example of many library overheads.

controls how arrays are formatted in memory or on disk, but is separate from

the actual data in the array. Encapsulating code into objects frequently requires

duplicating metadata or accessing it with another level of indirection. Metadata

must be duplicated when each object instance needs access to descriptive state

independent of other instances. When separate instances store metadata in a

common object, they access it through indirection. Furthermore, there may be

duplication of work when multiple objects use the shared object for the same task.

Example

The program in Figure 4.2 creates two people, lyra and will, and gives

them a lakefront house to live in. The GetFirst accessor method retrieves the first
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name for a person, and incurs overhead in the function call and the retrieval of the

name. GetHome incurs similar overhead. Each person maintains duplicate metadata

by storing home in a datamember. This duplication is application-specific, but

the library does not predict how it will be used, and each object stores what

ends up being the same pointer. This is typical overhead associated with data

encapsulation.

Encapsulation of code has additional overhead. The GetAddress method

computes the concatenation of the number and street components of the house.

Because each person lives at the same house, they end up having the same address,

but because the GetAddress method is specific to each person, this address has to

be computed twice.

Compiler Response

When common code gets moved into functions or methods, function call

overhead is introduced. Most modern general-purpose compilers are able to inline

such operations (GetFirst and GetHome). The Intel and GNU C++ compilers, for

instance, are able to perform this optimization under a wide variety of conditions.

4.1.2 Isolation

One of the primary goals of encapsulation is separating different subsys-

tems. This separation frees the programmer from being concerned with the details

of implementation, but also thwarts compiler analysis. Saaz, for example, hides

from the programmer array-layout and thus how data is retrieved. While the

programmer can access this information, he does not need to know it to author

queries.

The features which separate a user from implementation details can also

prevent the general-purpose compiler from performing optimizations. Encapsu-

lation of operations into objects requires repeated operations and their requisite

metadata to be moved into object methods and members (e.g. lakefront is moved

into Person::home). Object methods are isolated, operating only on their partic-

ular object instance (e.g. Person::GetAddress). When multiple objects share the
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same metadata, calling certain methods on each object can be redundant.

When multiple objects require identical metadata, the compiler cannot rea-

son about their common values, and thus cannot perform optimizations such as

common sub-expression elimination. To do so would require something like Global

Value Numbering (GVN) [AWZ88], which tracks many of the values and equiva-

lences in the program. While some modern compilers such as GNU’s g++ include

GVN, applying it to datamembers requires it to work across object constructors

and methods. Tests indicate g++’s reasoning to be insufficient when dealing with

datamembers. When indexing a Saaz array, the array’s bounds are used to lin-

earize the point into a memory offset. The array’s bounds are specified as param-

eters to the array constructor. Multiple arrays with the same bounds individually

store these in their respective datamembers (or store a pointer to it in different

datamembers). Identifying that two arrays have identical bounds and thus, when

indexed, share subexpressions requires significant compiler analysis. Because of

the required inter-procedural analysis, general-purpose compilers are unable in the

general case (or common case) to make the determination that the arrays have

identical bounds. In the case of plain C++, arrays are not self-describing, and so

the variables which hold their bounds are usually shared among arrays, and thus

it is easier for a general-purpose compiler to identify common subexpressions.

Example

In our example, both lyra and will live at the same house. While it is

Encapsulation overhead which causes their GetAddress methods to duplicate work,

it is the Isolation of GetAddress that prevents the compiler from optimizing it. In

order to identify that lyra.GetAddress() and will.GetAddress() return the same

value, the compiler must know that both lyra and will store the same object in

their home datamember. This requires tracking that value through the object’s

constructor and into its datamember. This sort of alias analysis can be expensive.

In this case, both Intel and GNU compilers failed to use this analysis to save a

call.



45

Compiler Response

Inlining can expose some computations within object methods to be similar

(e.g. the null-check for the home datamember on Line 26, or the concatenation of

strings in GetAddress on Line 10). However, since each object contains its own copy

of the metadata (or its own pointer to the metadata), the computations will appear

to be over different data. It takes significant alias and pointer analysis to identify

that these computations are over the same data and do indeed share common

subexpressions. This sort of analysis is not solvable in the general case, and general-

purpose compilers cannot know a priori in which situations it is beneficial, let alone

possible. As a consequence, general-purpose compilers elect to not perform this

analysis. In our example, persons hold metadata in their house datamember.

The Intel and GNU compilers do not recognize that lyra.house holds the same

value as will.house, and thus cannot see that the two calls to GetAddress yield

the same result. These compilers generate code that duplicates the work. If a

compiler had domain-specific knowledge, it could know in which situations common

subexpressions would arise, and not need to perform the analysis.

Indeed, it is this ability to know a priori where certain optimization oppor-

tunities lie that allows domain-specific compilers to overcome Isolation overheads.

By incorporating information about how a library works (its semantics), a com-

piler can avoid having to follow use chains throughout the program. By avoiding

this expensive (and often untenable) analysis, domain-specific compilers can better

track object metadata and identify which computations are being performed and

if they are redundant.

4.1.3 Generalization

Generalizations support code reusability and interoperability, thus facilitat-

ing sharing of software and tools. When designing a library, the designers strive to

enable it to accommodate problems similar to, yet different from, the ones avail-

able at design time. Plain C++ implementations will typically specialize code to

the particular circumstances of the problem at hand, while libraries must function

for other problems where these implicit assumptions do not hold.
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Few programs use all the features of the libraries they invoke. These fea-

tures are not useless, they are merely superfluous in some particular instances.

Nonetheless, they can have costs. Overheads occur in the form of new control flow

to decide between features or generalized arithmetic operations (such as multiply-

ing by a value that happens to be one or adding what happens to be zero).

Example

Our example supports two possibilities which we do not exercise. First,

persons are allowed to live in different houses, yet both lyra and will live at

the lakefront house. Second, persons are allowed to live at no house. If people

live at no house, then the GetAddress method returns “Unknown Address”. In this

program, this branch is not taken, but to identify this, the compiler needs to know

the value of the home datamember, or at least that it is non-null.

Compiler Response

Overheads from Generality can be especially hard for general-purpose com-

pilers to identify. Identifying them usually requires non-local knowledge with which

general-purpose compilers have trouble. Operations for a particular circumstance

may not be strictly necessary for a given use of the library, but the determining

factors can be data-dependent, preventing compilers from reasoning about them.

General-purpose compilers use branch prediction and code profiling to gain some

application-specific knowledge about which code-paths a program is using. This

can allow code to be implemented to support general operations but with a lower

cost. Domain-specific compilers do not need runtime support to get this infor-

mation. By incorporating knowledge of how code-paths are related to each other

and to other parameters, domain-specific compilers can identify the important

code-paths and optimize for them.

Oftentimes, however, instead of implementing a general solution with un-

used code-paths or operations, the user will specialize their code to the particular

problem at hand. This is a major contributing factor to the need to constantly

recode analysis tools. Problem sizes, for example, may be constrained to a power
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of two. When these constraints need to be changed, entire modules or programs

will need to be rewritten.

Software systems such as operating systems use the C-macro preprocessor

for conditional compilation (#if). This practice can be effective, allowing code for

different circumstances to be interleaved with general-purpose code. Conditional-

compilation, however, can be messy and hinder the readability of code. Further-

more, it requires recompilation, often with significant configuration changes, thus

restricting the flexibility of programs. If the compilation conditions are not inde-

pendent, a single program can have a combinatoric explosion of compilation paths,

complicating testing and code readability.

4.2 CFD Examples

We have presented three categories of overhead: Encapsulation, Isolation,

and Generalization. These overheads were introduced with a toy example. In

this section, we look at how our plain C++ and Saaz examples from Section 3.3

contribute overhead. In particular, we will focus on two queries, the simpler Planar

Average query (Figure 4.3), and the more complicated yz-Dissipation query (Figure

4.5). Code blocks for plain C++ are colored identically to comparable code blocks

in Saaz.

The declaration of the Saaz array in Figure 4.3b Line 7 (b.7), incurs Encap-

sulation overhead as the domain object (dmn) must be collapsed (Section 3.2.2) to

get the subdomain along a particular axis (in this case, the y axis). This performs

the simple arithmetic that is done with stack-local variables at Line a.7 in the plain

C++ version. The Collapse call exhibits Encapsulation overhead as it hides the

member accesses and encapsulations behind function calls.

Similar Encapsulation overhead occurs in the loops starting on Lines b.9

and b.14 that use iterator objects to cover the points within their respective 1-

dimensional and 2-dimensional domains. The use of these objects also prevents the

compiler from understanding exactly how the loop operates: where it starts, where

it ends, and how it advances. This lack of clarity introduces Isolation overheads,
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1 double* PlanarAverage(double* arr ,
2 int x_min , int x_max , int y_min , int y_max ,
3 int z_min , int z_max)
4 {
5 int i,j,k;
6 unsigned long long idx , planesize;
7 double* avg = new double[y_max - y_min + 1];
8 planesize = (z_max -z_min +1) * (x_max -x_min +1);
9 for (j = y_min; j < y_max + 1; ++j)

10 {
11

12

13 avg[j-y_min] = 0;
14 for (i = x_min; i < x_max + 1; ++i)
15 {
16 for (k = z_min; k < z_max + 1; ++k)
17 {
18 idx = (k - z_min) + ((j - y_min) +
19 \ (i - x_min) * (y_max - y_min +1))
20 \ * (z_max - z_min +1);
21 avg[j-y_min] += arr[idx];
22 }
23 }
24 avg[j-y_min] /= planesize;
25 }
26 return avg;
27 }

(a): Plain C++

1 Array1 PlanarAverage(
2 Array3 arr ,
3 unsigned int Y_AXIS)
4 {
5

6 Domain3 dmn = arr.Domain ();
7 Array1 avg(dmn.Collapse(Y_AXIS));
8

9 for(Iterator1 j = dmn.begin(Y_AXIS);
10 \ !j.end(); ++j)
11 {
12 Point1 q = j.Collapse ();
13 avg[q] = 0;
14 for(Iterator2 ik=j.Slice().begin ();
15 \ !ik.end(); ++ik)
16 {
17

18 Point3 p = j.Promote(ik);
19

20

21 avg[q] += arr[p];
22 }
23

24 avg[q] /= j.Slice().Size();
25 }
26 return avg;
27 }

(b): Saaz

Figure 4.3: The Planar Average query.

Table 4.1: Overheads from Saaz abstractions in the Planar Average and yz-Dissipation
queries.

Encapsulation Isolation Generalization
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Abstracted Axis Mapping (Y_AXIS) X
Multiple Array Layouts X X
Point Arithmetic X
Multiple Arrays X X

preventing the compiler from vectorizing or parallelizing the loops. Furthermore,

the iterator introduces Encapsulation overheads not just from the function calls

which are its conditional and increment operations, but also inside them as it

accesses domain bounds through the dmn and j.Slice() domain objects.

Collapse (Line b.12, Section 3.2.4) converts the iterator from the 3-dimen-

sional point along the leading edge of the domain into a 1-dimensional point. Its

overheads fit primarily into the Encapsulation category.

Promote (Line b.18, Section 3.2.4) combines the 1-dimensional and 2-di-

mensional points from j and ik to form a 3-dimensional point. These overheads

fit primarily into the Generalization category. It is because of the particular di-
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idx

p linearize

Figure 4.4: The linearization operation converts a 3-dimensional point (p) to a linear
offset in memory (idx).

mensions over which j (and thus ik) iterate that this operation must be able to

recombine them in a particular fashion.

The indexing of the array (Line b.21) requires that the point p be converted

from a multidimensional point-valued object into a linear offset in memory. This

linearization operation (Figure 4.4) is different for each different layout. Picking

the right computation for a particular layout can be expensive. The plain C++

implementation performs the linearization inline (Lines a.18-20), and is able to

access the bounds directly instead of querying the domain object (which would

incur Encapsulation overheads). Because of Generalization overheads in Saaz (the

layout is not known), the Saaz implementation cannot be inlined, and thus neither

can the accesses to domain bounds.

Finally, Line b.24 divides the running sum by the number of points in the

domain. In the plain C++ version, this can be factored out of the loop (Line a.8),

but in the Saaz version, it is dependent upon the iterator variable, j, and so cannot

be factored out.

Table 4.1 shows how Saaz features impose different overheads. Many of

these overheads are illustrated by our Planar Average query, but some require a

more complicated query such as yz-Dissipation (Figure 4.5). The yz-Dissipation

query has the same form as the Planar Average query, with two main differences:

it uses multiple arrays, and it computes derivatives using finite differences.

Derivatives in Saaz are usually expressed as a finite difference calculation,

using adjacent points. Point arithmetic in Saaz makes accessing neighboring (in-

cluding adjacent) points simple; it is relatively cheap on its own (just a call to the

overloaded operator+ function, which can be inlined). However, when multiple dif-
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1 double* YZDissipation(double* v, double* w,
2 double* v_avg , double* w_avg ,
3 int x_min , int x_max , int y_min , int y_max ,
4 int z_min , int z_max ,
5 double dz, double dy)
6 {
7

8 double* yzdiss =
9 new double[y_max - y_min + 1];

10 yzdiss [0] = 0;
11 yzdiss[y_max -y_min] = 0;
12 double tmp1 ,tmp2 ,cur;
13 unsigned long long offset_pz , offset_mz;
14 unsigned long long offset_py , offset_my;
15 unsigned long long planesize;
16 planesize = (z_max -z_min -1) * (x_max -x_min -1);
17 for (int j = y_min + 1; j < y_max; ++j)
18 {
19

20

21 yzdiss[j-y_min] = 0;
22 for (int i = x_min + 1; i < x_max; ++i)
23 {
24 for (int k = z_min + 1; k < z_max; ++k)
25 {
26 offset_pz =
27 \ (k+1 - z_min) + ((j - y_min) +
28 \ (i - x_min) * (y_max - y_min +1))
29 \ * (z_max - z_min + 1);
30 offset_mz =
31 \ (k -1 - z_min) + ((j - y_min) +
32 \ (i - x_min) * (y_max - y_min +1))
33 \ * (z_max - z_min + 1);
34 offset_py =
35 \ (k - z_min) + ((j+1 - y_min) +
36 \ (i - x_min) * (y_max - y_min +1))
37 \ * (z_max - z_min + 1);
38 offset_my =
39 \ (k - z_min) + ((j-1 - y_min) +
40 \ (i - x_min) * (y_max - y_min +1))
41 \ * (z_max - z_min + 1);
42 tmp1 = (((v[offset_pz]-v_avg[j-y_min]) -
43 (v[offset_mz]-v_avg[j-y_min]))/dz);
44 tmp2 =(((w[offset_py]-w_avg[j-y_min +1]) -
45 (w[offset_my]-w_avg[j-y_min -1]))/dy);
46 cur = tmp1*tmp1 + tmp2*tmp2;
47 cur /= 4.0;
48 yzdiss[j-y_min] += cur;
49 }
50 }
51 yzdiss[j-y_min] /= planesize;
52 }
53 return yzdiss;
54 }

(a): Plain C++

1 Array1 YZDissipation(Array3 v,Array3 w,
2 Array1 v_avg , Array1 w_avg ,
3 unsigned int Y_AXIS ,
4 Point3 PY, Point3 PZ,
5 double dz, double dy)
6 {
7 Domain3 dom = v.Domain ().Inset (1);
8 Array1 yzdiss(
9 \ v.Domain ().Collapse(Y_AXIS));

10

11

12 double tmp1 ,tmp2 ,cur;
13

14

15

16

17 for (Iterator1 j = dom.begin(Y_AXIS);
18 \ !j.end(); ++j)
19 {
20 Point1 q = j.Collapse ();
21 yzdiss[q] = 0;
22 for(Iterator2 ik=j.Slice().begin ();
23 \ !ik.end(); ++ik)
24 {
25 Point3 p = j.Promote(ik);
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 tmp1 =(((v[p + PZ] - v_avg[q]) -
43 (v[p - PZ] - v_avg[q])) / dz);
44 tmp2 =(((w[p + PY] - w_avg[q+1]) -
45 (w[p - PY] - w_avg[q-1]))/dy);
46 cur = tmp1*tmp1 + tmp2*tmp2;
47 cur /= 4.0;
48 yzdiss[q] += cur;
49 }
50

51 yzdiss[q] /= j.Slice().Size();
52 }
53 return yzdiss;
54 }

(b): Saaz

Figure 4.5: The yz-Dissipation query.

ferent points are accessed, each individual point must be linearized. These are the

calculations in Figure 4.5, Lines a.27-41. Using different arrays makes the matter

even worse: if they have different layouts or domains, then this linearization must

be done separately for each layout/domain/point combination.

While Saaz makes queries simpler, more compact, and more interoperable,

it also introduces lots of overheads. We quantify the costs of these overheads in
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Chapter 6, after mitigating them in Chapter 5.

4.3 Related Work

We have placed library overheads into three categories: Encapsulation, Iso-

lation, and Generalization. While library overheads are not always placed into

our categories, many individual overheads expressed by these categories have been

identified before and have motivated attempts to reduce or eliminate them. In

this section we show how two existing techniques are not effective in treating the

compiler optimization issues present in Saaz.

4.3.1 Templates

A well-known approach to address many concerns about library overheads

lies in the use of templates. Expression Templates [Vel96] [VJ02] make use of

compile-time computations and inlining to minimize the overheads associated with

function composition, Encapsulation of operations, and function pointers. Tem-

plates are a powerful tool and can address a significant portion of these overheads,

particularly those from Encapsulation. There are several reasons we avoid them:

(1) templates are poor tools for optimizing across objects, (2) they require compile-

time values, and (3) they have poor error message support.

4.3.1.1 Optimizing Across Objects

Templates are not helpful in optimizing across objects: they cannot elimi-

nate duplicate metadata, resolve aliases, or optimize call sequences. Consider the

overheads in Figure 4.5, which makes use of multiple array objects, in particular, v

and w. Under most circumstances, these arrays will hold duplicate metadata (their

domains).

Most general-purpose compilers can inline small functions, such as those

accessing the bounds of domain objects; template-based libraries rely heavily on

this inlining capability. However, templates cannot keep track of the fact that the

domain objects used by different array objects are identical. Domain objects are
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pointers, and thus runtime values. Pointers (except for function pointers) cannot

be used as template arguments: Array<dmn> is invalid. The bounds of the domains

could be used as template parameters, but then they must be compile-time con-

stants, and not runtime values as required for data that lives on disk. Domain

bounds cannot be used as template arguments: Array<x lo, x hi> is not accept-

able. If the domains are not known to be identical, then the common operations

cannot be eliminated. Furthermore, the duplicated metadata remains. The Ex-

pression Templates paradigm can be a good solution for function composition, but

it is not very good for optimizing across sequences of calls. This makes Expres-

sion Templates inappropriate for addressing the Isolation overheads which cause

redundant computations.

Saaz’s support for multiple array layouts adds significant overhead to array-

indexing operations. Each array must linearize the multidimensional point used

as an index. Multiple indexing operations will frequently share many common

subexpressions, but because of Isolation overheads, these are not identified by a

general-purpose compiler. These common subexpressions are a frequent occurrence

in structured grid problems, since they frequently access multiple arrays at identical

or nearby locations. For example, in Figure 4.5a, computations are shared between

Lines 27, 31, 35, and 39, and between Lines 28, 32, 36, and 40, and from one line

to the next (reproduced below).

25 offset_pz =
26 (k+1 - z_min) + ((j - y_min) +
27 (i - x_min) * (y_max - y_min +1))
28 * (z_max - z_min + 1);
29 offset_mz =
30 (k -1 - z_min) + ((j - y_min) +
31 (i - x_min) * (y_max - y_min +1))
32 * (z_max - z_min + 1);
33 offset_py =
34 (k - z_min) + ((j+1 - y_min) +
35 (i - x_min) * (y_max - y_min +1))
36 * (z_max - z_min + 1);
37 offset_my =
38 (k - z_min) + ((j-1 - y_min) +
39 (i - x_min) * (y_max - y_min +1))
40 * (z_max - z_min + 1);

To optimize these calculations with templates, the templates would have to be able

to recognize when arrays with the same layout and defined over the same domain

are indexed at similar locations. Unfortunately, template support for reasoning

about objects is tenuous at best; templates are better at optimizing expression
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trees than accesses to data.

If layout were fixed (or even a template argument) then templates might be

able to identify common index expressions, but they would have to symbolically

reason about the point being passed as an argument. A fixed layout would help

a compiler inline the linearization calculation. The compiler could then optimize

the common subexpressions within the linearization calculations. However, once

inlined, these calculations would still be using their original object’s datamembers.

Even if these datamembers hold common metadata, a general-purpose compiler

is unable, for example, to identify as common the expressions stemming from the

indexing’s linearization calculations in Figure 4.5b Lines 42-45, reproduced below.2

41 tmp1 =(((v[p + PZ] - v_avg[j]) -
42 (v[p - PZ] - v_avg[j])) / dz);
43 tmp2 =(((w[p + PY] - w_avg[j+1]) -
44 (w[p - PY] - w_avg[j-1]))/dy);

Templates still will not help significantly.

More complex expressions are even harder. Templates cannot recognize the

common index expressions that arise in complicated operations, such as those of

v and w in Figure 4.5 (Lines b.42-45: p+PZ, p-PZ, p+PY, and p-PY).3 These index

expressions share the point p and index arrays which share a domain and layout.

Therefore, the linearizations of these index expressions have common subexpres-

sions. If the yz-Dissipation calculation (Figure 4.5) is converted into an expression

tree (such as with Expression Templates), it will be at least five levels deep and

involve at least eleven different operations. Even if all 115 = 161, 051 were enumer-

ated (via a code-generator, perhaps), the compiler would be slowed to the point of

uselessness. Enumerating all the template patterns to match and optimize these

indexing expressions (via specialization) is unfeasible.

Templates operate on expressions, not objects. It is possible to extend

the scope of templates by converting statements to expressions. Overloading the

comma operator (operator,) and replacing statement-terminators with commas

will convert statements into expressions, and a template implementation will be

able to handle them. Overloading the comma operator, however, significantly

2Our tests showed that even for relatively simple examples, both GNU and Intel’s compilers
failed to identify the data as common, and thus did not eliminate common subexpressions.

3Technically, templates are Turing-complete, so these are practical, not theoretical limits.
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changes the semantics of the C++ language, raising interoperability issues. Com-

mas are sequence points : they define a strict ordering of operations. When the

operator is overloaded, however, the comma is no longer a sequence point: both

sides become mere function arguments, and as such, are evaluated in an undefined

order [Dew03]. For example, for integers i and j, incrementing and then selecting

it will ensure the increment happens first.
1 int i = 1;
2 ( ++i, i ); // result = 2
3 int j = 1;
4 ( j++, j ); // result = 2

Consider an Object which holds an integer and forwards the increment operators

on itself to that datamember. If we overload the comma operator, the increment

and non-increment are treated as function arguments to the comma operator and

evaluated in an undefined order.
1 class Object
2 {
3 public:
4 Object(int data_) : data(data_) { }
5 Object& operator ++() // prefix
6 { ++data; return *this; }
7 Object operator ++( int) // postfix
8 { Object tmp = *this; ++* this; return tmp; }
9 Object& operator ,( Object& other)

10 { return other; }
11 private:
12 int data;
13 };
14

15 Object A(1);
16 ( ++A, A ); // result = 2
17 Object B(1)
18 ( B++, B ); // result = 1

This can lead to different behavior between the overloaded version and the non-

overloaded version.

boost::phoenix [dGMH] is an interesting case. The Phoenix library imple-

ments a lazy version of C++ from within C++, making heavy use of templates,

inlining, and overloading of the comma operator. By using lazy evaluation, large

expressions can be built which make use of multiple objects in multiple ways, and

transformations can be done using template evaluation operators. Unfortunately,

coding in this style is exceedingly complicated. Since the capability is imple-

mented in C++, the C++ compiler gives error messages not for the embedded

version of C++ the programmer is thinking of, but the C++ language in which it

is embedded. These errors are difficult to understand, even for a seasoned C++

programmer. It would be very difficult both to write a library in this style and to
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use it.

4.3.1.2 Compile-Time Values

We must distinguish between compile-time values and runtime parameters.

Certain parts of C++ require a compile-time value. These include template pa-

rameters and array sizes (e.g. sz in char foo[sz]).4 Because Saaz is intended to

analyze data coming from disk, array layout is a configuration parameter deter-

mined at runtime when the file is loaded. While it would be possible to specify

layout as a template argument, doing so would commit layout to being a compile-

time value. Such a constraint does not meet Saaz’s design requirements.

Compile-time values are not the only ones which can be determined at

compile-time. Under certain conditions runtime parameters can also be identified.

Where runtime conditions can be identified, a compiler, unlike templates, is able

to use that information to perform optimizations. For example, the new[] operator

takes an integer that can be a constant:
1 const int sz = 512;
2 char* buffer = new char[sz];}.

In this case, the size of buffer is a runtime parameter, but can be identified at

compile-time. If it can be determined that the pointer is not leaked, a compiler

could make the allocation on the stack instead of the heap. Templates cannot

perform evaluations based on runtime conditions.

Compile-time optimization (by a customized compiler or templates) can-

not be based on runtime conditions which cannot be identified (without checks).

Where a property cannot be verified, the compiler has three options: the compiler

could either do nothing; the compiler could ensure it’s assumption is met, perhaps

by inserting conversion code; or the compiler could specialize the code and put

a conditional test to determine which path to take. A conditional test for the

constant-size array might look like, for example:
1 int sz = ... ;
2 if (sz == 512)
3 { /* allocate on stack*/ }
4 else
5 { char* buffer = new char[sz]; }

4Array sizes are allowed to be variable after C99 or when using extensions such as Variable
Length Arrays (VLA).
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We could utilize different types for configuration parameters (e.g. array

layout as row-major or column-major) determined at runtime (such as from a

file) vs. compile-time. We could then optimize where we can for compile-time

parameters that are known, while also retaining flexibility when they are not.

Doing so, however, would require implementing multiple variants of the library.

Preserving efficient interoperability between different configurations would lead

to a combinatoric explosion for different configuration sets, not all of which are

presently known. This would make Saaz very difficult to maintain and extend for

different configurations.

4.3.1.3 Error Messages

Template error messages are complicated and require experience to under-

stand. This is a very sensitive point for our users. While other systems can depend

upon having experienced programmers who have a good grasp of templates, we

cannot. Saaz is targeted to computational scientists, many of whom have only rudi-

mentary programming experience gained informally in Matlab and Fortran. Even

experienced programmers can have difficulty understanding how templates are ex-

panded on demand, and how this causes error messages to be context-dependent

(see Appendix D).

4.3.2 Virtual Function Calls

Virtual functions came into use with the introduction of object-oriented

programming [DMN68]. While function pointers existed before, they had not

been used so readily or commonly, and were not part of such an ubiquitous de-

sign pattern. Both virtual function calls and calls through function pointers have

overheads associated with indirection; how expensive they are can vary. Both also

introduce significant Isolation overheads, preventing the compiler from knowing

what code is going to execute.

There are limitations on a compiler’s ability to inline functions. Functions

that are in a different compilation unit cannot be inlined. Virtual methods or

function pointers are determined at run time and thus cannot always be inlined.
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While a human programmer may be able to identify which function body would be

used, general-purpose compilers do not have the heuristics or the domain-specific

knowledge available to discover which function is being called.

The cost of virtual function calls is a well-known problem, and there has

been some work in eliminating or reducing the overhead. Calder and Grunwald

[CG94] examine a dynamic profiling technique to identify the targets of virtual

function calls. Bacon and Sweeney [BS96] look at the ability of three static anal-

ysis techniques to identify virtual function calls: Unique Name, Class Hierarchy

Analysis, and Rapid Type Analysis (RTA). The most effective static technique

is RTA. RTA identifies which types are actually instantiated and resolves virtual

function calls where there is no ambiguity. This approach is inapplicable to Saaz,

which uses a function pointer instead of a virtual function, although Saaz could be

rewritten to support it.

Saaz does not use virtual function calls because function pointers are cheap-

er. RTA’s principles would, however, still be applicable. RTA, however, is still

limited in the overheads it can address. RTA can identify virtual function calls

but cannot, for example, eliminate redundant subexpressions which use different

datamembers.

Consider the case in Figure 4.6. RTA performs analysis of source code and

tracks which types are actually instantiated. In this case, only Child1 ever gets

instantiated. RTA can see that Child1 is the only subclass of Base which ever

gets instantiated. Thus, all calls to DoWork will be to Child1::DoWork, and can be

called without using the virtual function table. If, however, kid2 were assigned

a new Child2() (Line 19), then it would be unclear to RTA as to what function

DoWork referred.

RTA relies upon identifying what objects are created. If objects with het-

erogeneous subtypes are created, then RTA is not able to resolve virtual function

calls. In particular, if arrays of different layouts have been created in the program,

RTA would not be able to optimize the layout calls at all. This will prevent it

from optimizing something like: A(x,y) = B(x,y) + C(x,y) when A and B have

the same layout, but C does not. Even A(x,y) = B(x,y) would not be able to be
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1 struct Base
2 {
3 virtual void DoWork () = 0;
4 };
5

6 struct Child1 : public Base
7 {
8 virtual void DoWork () { return 1; }
9 };

10

11 struct Child2 : public Base
12 {
13 virtual void DoWork () { return 2; }
14 };
15

16 int main()
17 {
18 Base* kid1 = new Child1 ();
19 Base* kid2 = new Child1 ();
20 Factory.Recruit(kid1 , kid2);
21 kid1 ->DoWork ();
22 kid2 ->DoWork ();
23 return 0;
24 }

Figure 4.6: An example of RTA at work.

optimized.



Chapter 5

Tettnang

To some degree, all libraries will exhibit overheads in our three categories:

Encapsulation, Isolation, and Generalization. Saaz is no exception. Saaz brings

to C++ true multidimensional arrays which can have differing layouts. The dy-

namism required for different layouts dramatically decreases performance, both

through Generalization overheads, and through Isolation overheads (stemming

from the compiler’s inability to optimize dynamic code).

There have been several strategies for dealing with library overheads. Some

approaches are more general than others. Expression Templates [Vel96] [VJ02],

for example, are a programming methodology which makes use of existing com-

piler abilities, particularly C++ templates and inlining, to generate efficient code.

Rapid Type Analysis (RTA) examines which subtypes are present in a program,

eliminating virtual function calls where there is only one which could be called.

Telescoping Languages [KBC+05] analyze libraries and generate a compiler to op-

timize them, focussing primarily on statically-typing dynamically-typed languages.

Broadway [GL00] provides pragmas which can be used to annotate libraries and

specify transformations which can be applied to code which uses those libraries.

These strategies, while they may be useful for certain kinds of overheads,

are incapable of addressing all the overheads introduced by libraries such as Saaz

(see Section 5.4). The incompleteness of these generalized tools suggests a different

approach. Instead of building a general tool, we first work to understand and cater

to a specific case.

59
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Input Source Tettnang Output Source $CC Executable

Saaz
#include #include

Figure 5.1: The workflow for Tettnang.

Instead of developing a general way of addressing library overheads (such

as library annotation) we tailor our translator, Tettnang, to a particular library,

building information about Saaz and its semantics into the Tettnang translator.

We think it important to see how fully a specialized implementation can address

such overheads. We want to fully understand specific cases before we generalize.

Had we generalized too early, then we may have confused limitations on a library’s

ability to be analyzed with limitations of the technique or of the translator imple-

mentation. Because we have control over both the library (Saaz) and the translator

(Tettnang), we can tailor each to the other. This should enable us to achieve the

maximum possible performance this technique can provide.

The overheads we are addressing come from specific uses of language fa-

cilities. To address these overheads we have developed Tettnang as a source-to-

source translator. Compared to machine operations, source-code uses higher-level

language primitives, making available a greater understanding of the user-level

operations being performed. Tettnang works with a representation of the users’s

source-code instead of a lower-level intermediate or machine language. This lets it

address the overheads at the source1.

By generating source-code we simplify verification of the translator’s output

and its differences from plain C++, that is, C++ with no user-defined abstractions.

Source-code generation also avoids the nuances of assembly-code generation, which

can have a significant impact on performance.

To identify overheads, we examine the differences between queries written

in Saaz and those written in plain C++. These comparisons provide us with

overheads to target. Because we are performing source-to-source translation, we

have an easy map from our observations to the transformations we want to support.

1Haha!
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By applying new transformations incrementally, we move the two implementations

closer and closer.

Following a discussion of the framework (Rose) we used to build our trans-

lator, we will present a high-level view of how we use type-refinements to manage

identified configuration parameters, as well as how those refinements are concep-

tually identified. We will then delve into the internals of Tettnang. Finally, we

conclude with a discussion of related work.

5.1 The Rose Compiler Framework

Rose [QMPS02] is an open-source source-to-source translation framework

developed and maintained at Lawrence Livermore National Laboratory. Rose pro-

vides a number of analysis tools and operates on multiple source languages in-

cluding C, C++, Fortran, and x86 Assembly. Support for Python is currently in

development. Rose is released under a BSD license.

The framework uses the C++ parser from the Edison Design Group (EDG).

Source code is parsed and stored in an intermediate representation (IR) called Sage

III. The IR is a (mostly) language-independent representation of source-code and

formed into an Abstract Syntax Tree (AST). All transformations and rewrites are

performed on the AST. Sage III has 782 nodes to represent different source-code

concepts (280 of which are for assembly instructions). The Rose backend traverses

the AST and outputs a new source-file containing original comments and con-

trol structure. This generated source-file can then be run through a conventional

backend compiler (such as Intel’s icc or GNU’s g++).

Rose provides many analysis tools on its own, including loop unrolling, loop

normalization, def-use analysis, and constant propagation. For the most part, we

do not make use of these tools. Rose’s built-in inlining tool was modified slightly

to support some of the needs for handling the Cascade (Appendix B.2) interface to

Saaz. By inlining Cascade’s wrappers, we do not need to include their semantics

in Tettnang.

There are other compiler frameworks for code-analysis. Low Level Virtual
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Machine (LLVM) [LA04] is an open-source compiler framework. LLVM, however,

is designed for binary optimization and provides code at a very low-level IR, out-

putting binary object code. The Rose AST is very close to the source-code, letting

us target library-specific overheads more easily. Our goal is to generate source-code

similar to plain C++.

5.2 Tracking Configurations

Queries written with Saaz hide the data schema by factoring it out of query

implementations and into configuration parameters behind Saaz’s interface. This

introduces overheads. As a result, code written with Saaz is more general and

more interoperable than code written in plain C++ or Fortran. Because it is

the ability to work with multiple data schemas that introduces the overhead we

are trying to eliminate, Tettnang must identify the schema by identifying the

values of the configuration parameters. Once the parameter values are identified,

Tettnang can examine each query’s implementation and replace those parts which

use Saaz’s generality with a version tailored to the specific data schema. Thus,

Tettnang transforms general query implementations by specializing them, moving

their implementations and performance closer and closer to plain C++.

Saaz configuration parameters are stored as immutable properties of ob-

jects. As a result of not needing to determine which and how object properties are

modified, Tettnang can perform a simplified side-effect analysis. Because Tettnang

has semantic knowledge about how Saaz objects are constructed, it can extract

configuration details from parameters to object constructors. Alternatively, when

Saaz array objects are loaded from disk, Tettnang could open the files and check

their data schema. Inserting a call to verify these settings would let Tettnang

ensure that these configurations are accurate at runtime.

The plain C++ implementations serve as a baseline for assessing the ef-

fectiveness of Tettnang. Domain-scientists are, in general, not experienced with

aggressive optimization techniques. We feel it is valid to compare to these unopti-

mized implementations because even if domain-scientists did heavily optimize their
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1 for (int i = 0; i < i_max; ++i)
2 {
3 for (int j = 0; j < j_max; ++j)
4 {
5 int idx = i * j_max + j;
6 A[idx] = B[idx]
7 }
8 }

(a): Before optimizations.

1 #pragma omp parallel for
2 for (int iblock = 0; iblock < i_max; iblock +=

I_BLOCK_SIZE)
3 {
4 for (int jblock = 0; jblock < j_max; jblock +=

J_BLOCK_SIZE)
5 {
6 int ilim = std::min(iblock+I_BLOCK_SIZE ,i_max);
7 int jlim = std::min(jblock+J_BLOCK_SIZE ,j_max);
8 for (int i = iblock; i < ilim; ++i)
9 {

10 #pragma vector always
11 for (int j = jblock; j < jlim; ++j)
12 {
13 A[i][j] = B[i][j]
14 }
15 }
16 }
17 }

(b): After optimizations.

Figure 5.2: Example of expert transformations including blocking-for-cache, paralleliza-
tion via OpenMP, and vectorization.

code, many optimization techniques that an expert could apply to the code are or-

thogonal to the transformations that Tettnang performs. Blocking loops for cache,

for example, can significantly increase the effectiveness of the cache, but does not

decrease library overheads. Other orthogonal optimizations include paralleliza-

tion, vectorization, and loop skewing. Figure 5.2 shows how the addition of two

arrays may be optimized within plain C++. While Tettnang’s analysis may make

transformations such as blocking-for-cache easier to implement, these transforma-

tions can be applied after those performed by Tettnang, or even implemented by

Saaz itself. Since Saaz iterators cover their iteration space in an undefined order,

to improve performance Saaz could transparently change the order in which the

iteration space is covered. We consider these sorts of optimizing transformations

outside of the scope of this thesis, but a possible venue for future work.

5.2.1 Type Refinements

Dependent types [ML85] enhance the expressiveness of type systems by

annotating types with a predicate (that is, dependent types refine the type system’s

types). Instead of a variable being restricted to merely holding integer values, for

example, it can be said to be holding only integer values between 1 and 99. A

dependent type system represents this restriction with a refinement of the types
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of variables. This idea can be expressed for a variable i by the following type:

i : {v of int : 1 ≤ v ∧ v ≤ 99}

The predicate above can assist bounds checking for array indexing, constant propa-

gation, or elimination of conditionals. Liquid Types [RKJ08] infers these predicates

with minimal annotations to OCaml [KRJ10] and C [RBKJ12] programs.

We use a similar idea. Tettnang keeps track of configuration parameters

through a series of simple type-refinements on Saaz objects. Unlike other refined-

types, these type-refinements do not express predicates over what values an ex-

pression can take, but rather express properties of the expression that relate to

configuration parameters and data schema. Instead of logical predicates, we track

and maintain a listing of particular properties of variables; instead of performing

safety-checks, we optimize code through specialization.

Saaz guarantees that the configuration parameters of an object are im-

mutable, meaning that Tettnang usually identifies them when an object is first

constructed. Configuration parameters may also be identified when a file is loaded

from disk or when it is assigned to. Configuration immutability also grants Tet-

tnang the flexibility to identify configuration parameters later in the program, and

then use them before the point of identification. Immutability enables Tettnang

to avoid performing significant interprocedural analysis to identify and track how

properties change. While such analysis is a practical matter and not fundamental,

in practice immutability makes a significant difference. Designers of libraries other

than Saaz should keep in mind the effect of mutability in stifling analysis. While

making all data items immutable may be untenable, there are many circumstances

in which mutability of certain object parameters and properties is not required

(as is the case with Saaz). Indeed, mutability of object parameters may only be

required for a few programs or a few objects out of many.2

Our full refinement-type grammar can be found in Figure 5.3. We spec-

ify base types before the colons: Array, Domain, Iterator, and Aggregator.

Array variables have type array type, domain variables have type domain type,

2Some languages, such as OCaml, only support mutability reluctantly and many programs in
OCaml don’t make use of it at all.
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iterator variables have type iterator type, and aggregator variables have type

aggregator type. Unknown, RowMaj, and ColMaj are terminals representing an ar-

ray’s layout. The terminal domain var is a reference to an in-scope object (that is,

an object with a lifetime at least that of the array variable) with type domain type,

possibly the array variable’s member variable, which holds the array’s domain. The

terminal new var is a reference to an in-scope variable (with a lifetime matching

that of the domain) created by Tettnang. This variable will be constant, and

as a translator-generated variable, is never assigned to or aliased. The terminal

array var is a reference to an in-scope object with type array type. Array objects

are tracked so equivalences between arrays can be maintained and additional ar-

ray objects can have their types refined. The non-terminal bounds is an n-tuple of

integer constants or URT, where n is the number of dimensions in the domain, and

the terminal URT represents an unknown (runtime) value which is the default for

domain bounds. The non-terminal dimensions for iterators is a tuple which maps

the coordinates of an iterator back to the original coordinates of the domain it is

iterating over. This is important for the operation of point promotion. The non-

terminal array list is an m-tuple of arrays which correspond to member variables

of the aggregator objects.

We call two refined types equivalent if all their terminals are equivalent and

terminal variables refer to the same object.

5.2.2 Identifying Configurations

Saaz sets layout and domain information in array constructors. Some lan-

guages, such as Fortran 95, allow array objects to change their bounds (size). They

consider layout a language convention rather than an object attribute. As a conse-

quence of a fixed layout, the compiler can optimize linearization calculations. Saaz

allows layouts to be established at runtime. Array layout and domain are run-

time static quantities (the equivalent of const data-members). Since domains are

constant, and cannot change from one part of the program to another, Tettnang

can avoid a lot of side-effect and dataflow analysis. Tettnang’s refined types can

reference immutable objects such as domains and immutable properties such as
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array type ::= {Array : array refinement}

array refinement ::= layout=layout ∧ domain=domain var

layout ::= Unknown|RowMaj|ColMaj

domain type ::= {Domain : domain refinement}

domain refinement ::= lwb=bounds ∧ upb=bounds

bounds ::= (bound, ..., bound)

bound ::= Int|new var

Int ::= int|URT

iterator type ::= {Iterator : domain=domain var ∧ iterator refinement}

iterator refinement ::= mapping=dimensions

dimensions ::= (Int, ..., Int)

aggregator type ::= {Aggregator : array list}

array list ::= (array var, ..., array var)

Figure 5.3: Our refinement types keep track of configuration parameters.

array layout. In addition to the point being indexed, the linearization calculation

requires two pieces of information, both of which are part of an array’s refined

type: the array’s domain, and the array’s layout.

Tettnang is able to use the arguments passed to an object’s constructor to

refine the object’s type. To illustrate, we add constructors to our yz-Dissipation

example from Figure 4.5. This modified code is shown in Figure 5.4. The inte-

gers from the constructor of the domain dmn are copied into the refinement-type’s

bounds lwb and upb. We say that two domains are conforming (and runtime equiv-

alent) if they have equivalent refined types (that is, the upper and lower bounds

are equivalent, respectively) where the bounds contain no URTs. The domain ob-

ject itself, dmn, is referenced in the types of v and w. The refined type of dmn can

then be retrieved, for example, to perform a conformity check on the domains. We

say that two arrays are conforming if they have the same base type, the domain

parts of their refined types are known and conforming, and the layout parts of

their refined types match and are not Unknown. If Tettnang is unable to identify

the domain from an array’s constructor, the array’s member variable holding it is

used instead.

If Y AXIS is a constant with a value of 1, then Tettnang is able to make
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1 Domain3 dmn(x_lo ,y_lo ,z_lo , x_hi ,y_hi ,z_hi);
2 Array3 v(dmn , Layout :: RowMaj);
3 Array3 w(dmn , Layout :: RowMaj);
4 Array1 v_avg , w_avg;
5 const unsigned int Y_AXIS =1;
6 /* ... */
7 Array1 yzdiss(dmn.Collapse(Y_AXIS));
8 double cur;
9 for (Iterator1 j = dmn.begin(Y_AXIS); !j.end(); ++j)

10 {
11 Point1 q = j.Collapse ();
12 yzdiss[q] = 0;
13 for (Iterator2 ik = j.Slice().begin(); !ik.end(); ++ik)
14 {
15 Point3 p = j.Promote(ik);
16 cur = (((v[p + PZ] - v_avg[q]) -
17 (v[p - PZ] - v_avg[q])) / dz);
18 cur += (((w[p + PY] - w_avg[q+1]) -
19 (w[p - PY] - w_avg[q-1])) / dy);
20 cur *= cur;
21 cur /= 4.0;
22 yzdiss[q] += cur;
23 }
24 yzdiss[q] /= j.Slice ().Size();
25 }

Figure 5.4: Our example of yz-Dissipation, with the addition of array declarations.

the following type refinements to Figure 5.4, where the variables at left have the

refined types to the right of the colon:

v : {Array : layout = RowMaj ∧ domain = dmn} (5.1)

w : {Array : layout = RowMaj ∧ domain = dmn} (5.2)

dmn :

{
Domain :

lwb = (x lo,y lo,z lo) ∧
upb = (x hi,y hi,z hi)

}
(5.3)

j : {Iterator : domain = dmn ∧ mapping = (1)} (5.4)

ik : {Iterator : domain = dmn ∧ mapping = (0,2)} (5.5)

These refined types contain information about the program’s data schema. Tet-

tnang can now identify the dimensions and values traversed by Saaz iterators, how

they form points, how the arrays are organized in memory, and thus how to index

arrays. With this information, Tettnang can perform its transformations.

5.3 Implementation

Tettnang is organized into nine stages. The first and last are controlled by

Rose: parsing the input file into an AST, and unparsing the modified AST to the

output source file. The intermediate Tettnang modules preprocess code (Cascade

and Type-Refinement), perform optimizing transformations (For-Loops, Indexing,
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Figure 5.5: Tettnang’s organization.

Local Cache), and normalize code (Consolidate, Cleanup). The staging of these

parts is illustrated in Figure 5.5.

Except for the Type-Refinement module, which always runs, each module is

enabled via command-line flags for optimization which are passed to the Tettnang

translator. These flags are shown in Table 5.1. Except for the dependence upon the

analysis provided by the Type-Refinement module, all modules are independent,

and perform only local transformations.

Table 5.1: Flags passed to the Tettnang translator enable certain optimizations.

Flag Module Optimization
--saaz:cascade Cascade Handling the Cascade frontend to Saaz
--saaz:Orescope Rescope Use variables from outer scopes
--saaz:Ofor For-Loop Transform iterator for-loops into integer for-loops
--saaz:Opromote For-Loop Optimize point promotion
--saaz:Ocollapse For-Loop Optimize collapsing iterators to lower dimensions
--saaz:Oopenmp For-Loop Insert pragmas for OpenMP parallelization
--saaz:Oindex Indexing Consolidate array linearization operations
--saaz:Ooffset Indexing Inline array linearization calculations
--saaz:Ocachelocal Local Cache Introduce new variables to the stack
--saaz:Oreducevars Cleanup Remove unused variables
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5.3.1 The Cascade and Rescope Modules

Appendix B.2 introduces the Cascade frontend to Saaz. Cascade provides

an interface to Saaz that renames some types and abstracts some operations that

are common in CFD. Saaz is designed to support ad hoc queries, so presenting a

restricted interface such as Cascade is somewhat anathema to Saaz’s design goals.

However, by compartmentalizing such an interface outside of Saaz, we do not

change Saaz’s core. We also allow users to ease their introduction to Saaz’s more

advanced features.

Tettnang starts with a module to handle Cascade’s abstractions of Saaz. We

did not want to cater Tettnang extensively to every frontend. Inside the Cascade

module, no additional information is collected. Instead, the module overcomes

Encapsulation overheads by inlining certain functions from the Cascade library,

in particular, the correlation methods, and aggregators (including user-defined

aggregators). Outside of the Cascade module, Cascade’s has only a minimal effect

on the Tracking module.

The inlining functionality is a slightly modified version of the inline op-

eration from Rose. One complication of inlining is that it introduces additional

copies of variables. The inline operation saves function arguments into new vari-

ables which it then uses in place of the function’s parameters. The use of new

variables for these parameters can introduce many new names for the same object.

As a consequence, the Rescope module replaces array aliases from local scopes with

the original aliases from more global scopes. The Cleanup module removes these

(and other) unused variables.

5.3.2 The Type-Refinement Module

After eliminating the syntactic sugar from the frontends to Saaz (i.e. Cas-

cade), Tettnang can perform type-refinement. Tettnang must refine the types of

Saaz objects for use by later optimization passes. The Type-Refinement module

traverses the user’s source code, looking for declarations and assignments of Saaz

objects. This module tracks the following entities:
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Predicates so their use can be handled, and their use by iterators inlined;

Domains so their bounds can be identified in addition to their use in constructing

arrays;

Arrays so their domain and layout can be identified in addition to their use in

aggregators;

Aggregators so their use of arrays can be optimized;

Iterators so their Collapse and Promote operations can be rewritten;

Points so they can be eliminated as composite objects and have integers used

instead;

Aside from refining the types of all the variables with Saaz types, we also keep track

of variable assignments. When one variables is assigned to another, the receiver’s

type get updated, and a mapping is maintained between the variables. This also

allows Copy Propagation [Muc97, p. 356], where some variables are replaced by

their values (or other variables from an outer scope). Using variables from an

outer scope makes it simple for the Cleanup module to eliminate local-variables

from inner scopes when a more visible variable from an outer scope is available.

5.3.3 The For-Loop Module

The For-Loop module converts for-loops over Saaz iterators to for-loops over

integers (See Section 3.2.4). The result is to enable a general-purpose compiler to

understand what the loop is doing and to either parallelize or vectorize it, thus

overcoming Isolation overheads. To do so, Tettnang matches for-loops that:

1. Declare a Saaz iterator to start at a domain’s beginning: Iterator i =

dmn.begin();

2. Are conditioned solely on the termination of that iteration: i != dmn.end();

or !i.end();

3. Increment the iterator: ++i or i++



71

If the iterator covers particular dimensions, then those are retrieved from the

refined type of the iterator:

i = dmn.begin(X AXIS, Z AXIS)

Both the domain and the dimensions traversed had been inserted by the Type-

Refinement module:

i : {Iterator : domain=dmn ∧ mapping=(X AXIS,Z AXIS)}

When multiple dimensions are traversed, the iterator’s loop is replaced by

nested for-loops over integers. Instead of using:
1 for (Iterator3 i = dmn.begin (1,0,2); !i.end(); ++i)
2 {
3 /*...*/
4 }

We get triply-nested loops:
1 for (Saaz:: coord_t _i1_ = dmn.Min(1); _i1_ != dmn.Max (1) + 1; ++_i1_)
2 {
3 for (Saaz:: coord_t _i2_ = dmn.Min(0); _i2_ != dmn.Max (0) + 1; ++_i2_)
4 {
5 for (Saaz:: coord_t _i3_ = dmn.Min(2); _i3_ != dmn.Max (2) + 1; ++_i3_)
6 {
7 Iterator3 i = Saaz:: Mk_Iterator(dmn ,1,0,2,_i1_ ,_i2_ ,_i3_);
8 /*...*/
9 }

10 }
11 }

Note here that we still have the iterator, i (Line 7). It is important to preserve

this object because it may be used inside the loop body for other tasks (such as

indexing an array). Subsequent passes may be able to eliminate the iterator (the

Cleanup module).

More complicated loops may include a predicate, or use nested Saaz itera-

tors. The former is used for conditional queries (such as those restricted to inside or

outside a flow structure such as a vortex core), the later for planar-average-based

queries and aggregations (Section 3.3). Figure 5.6 shows an example. Because

nested Saaz loops tend to make certain calls, the For-Loop module also handles

optimizations for (different optimizations are colored as in Figure 5.6):

1. Collapsing iterators: extracting the correct m-dimensional point from an

iterator which traverses m dimensions of an n-dimensional domain. Compare

Figure 5.6, Line a.6 with Line b.6.
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1

2 for (Iterator1 j = dmn.begin (1);
3 \ !j.end(); ++j)
4 {
5

6 Point1 pj = j.Collapse ();
7

8

for (Iterator2 ik = j.Slice().begin();
9 \ !ik.end(); ++ik)

10 {
11

12

13

14

15

16 Point3 p = j.Promote(ik);
17 /*...*/
18

19 }
20 }

(a): Loops over Saaz Iterators.

1 #omp parallel for
2 for (int _i1_ = dmn.Min(1);
3 \ _i1_ != dmn.Max (1) + 1; ++_i1_)
4 {
5 Iterator1 j =Mk_Iterator(dmn ,1,_i1_);
6 Point1 pj(_i1_);
7 Domain2 slice = j.Slice ();
8 for(int _i2_ = slice.Min(0);
9 \ _i2_ != slice.Max(0) + 1; ++_i2_)

10 {
11 for(int _i3_ = slice.Min(1);
12 \ _i3_!=slice.Max(2) + 1; ++_i3_)
13 {
14 Iterator2 ik = Mk_Iterator(
15 \ dmn ,0,1,_i2_ ,_i3_);
16 Point3 p(_i2_ , _i1_ , _i3_);
17 /*...*/
18 }
19 }
20 }

(b): Loops over integers.

Figure 5.6: Eliminating Saaz iterators from nested loops. Corresponding parts are marked
similarly.

2. Caching the Slice domain on the stack and replacing references with the

new variable (Section 3.2.4, Figure 3.5c). The slice domain is stored in slice

(Figure 5.6, Line b.7).

3. Combining points without using the Promote method of the iterator (Promote

uses a virtual function call) (Section 3.2.4). This transformation rewrites

Figure 5.6, Line a.16 as Line b.16.

4. Parallelize loops by inserting OpenMP directives at the top of the loops on

Figure 5.6, Line b.1.

5.3.4 The Indexing Module

The Indexing module optimizes array indexing. Arrays in Saaz are not

required to have a particular layout for their storage in memory. By supporting

both row-major and column-major layouts, each Saaz array is compatible both in

storage and in cache-benefits with arrays either from C or Fortran and Matlab.

The layout of an array is specified by a constructor parameter. Tettnang

records this layout as a refinement to the type of the array variable. The Indexing

module traverses the input program and finds all of the places in which a Saaz
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array is indexed, and records the array and the indexing expression. Recall that

two arrays are conforming if they have the same layout and their domains are

conforming. Arrays conform at least to themselves, and to as many as all arrays

in the program. When multiple conforming arrays are indexed in the same way,

the linearization component of the array accesses can be consolidated. In this way,

the overheads of index calculation will be incurred only once. For example, given

refinement as in Equation 5.1 and Equation 5.2:

v : {Array : layout = RowMaj ∧ domain = dmn}

w : {Array : layout = RowMaj ∧ domain = dmn}

consider a loop which copies an array, thus indexing both the source and destination

arrays at the same point:
1 for (Iterator3 i = dmn.begin (); !i.end(); ++i)
2 {
3

4 v[i] = w[i];
5 }

Without using the refined types we can only extract the indexing calculations to

the data access (Elements) and the linearization operation (LinearIdx).

3

4 v.Elements(v.LinearIdx(i)) = w.Elements(w.LinearIdx(i));

However, since the refined types show that v and w are conforming, we know that

the LinearIdx operation will behave the same for identical points. The points here

are certainly identical, so the LinearIdx operation need only be performed once.
3 unsigned long long offset = v.LinearIdx(i);
4 v.Elements(offset) = w.Elements(offset);

The Indexing module will always consolidate linearization operations.

When we know the layout of an array, we know not just the semantics of the

call to linearize a point (LinearIdx), but the implementation. Thus, we can inline

calls to LinearIdx (option --Ooffset). A general-purpose compiler cannot perform

this inlining because it does not have the greater context (i.e. the data schema,

the storage layout of the arrays) at the call site.3 General-purpose compilers do

not have the same kind of semantic knowledge of a library that Tettnang does. In

our example above, the RowMaj array v can have its LinearIdx call rewritten:

3As before, we tested GNU’s g++ compiler, version 4.7, and Intel’s icc, version 12.0.
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3 unsigned long long offset = (i.z-dmn.Min (2)) + ((i.y-dmn.Min (1)) +
(i.x-dmn.Min(0)) * (dmn.Max(1)-dmn.Min (1)+1)) * (dmn.Max(2)-dmn.Min (2)+1);

Note that if the type of v was

v : {Array : layout=RowMaj ∧ domain=v.Domain()}

then v.Domain() would be used instead of dmn, but the accesses to v[p] and w[p]

could not have been consolidated, as v and w would have different domains and

thus non-conforming types.

This optimization replaces a function-pointer call with an expression se-

mantically equivalent to the corresponding function, eliminating Generalization

overheads. It also overcomes Isolation overheads, enabling the compiler to per-

form many other optimizations. For example, instead of querying the domain ob-

ject with dmn.Min(2), we can access the member variable directly as in dmn.z_min.

Common sub-expressions can be eliminated. Some expressions (such as dmn.Max(2)

- dmn.Min(2) + 1) can even be lifted out of the loop.

Finally, the Indexing module can optimize indexing at static offsets (also en-

abled by option --Ooffset). For example, if multiple arrays share a common index

expression (even if they differ by a few grid points), their linearization operations

can still be shared.
1 Point3 PY(0,1,0);
2 for (Iterator3 i = dmn.begin (); !i.end(); ++i)
3 {
4

5

6 v[i] = w[i+PY];
7 }

In this case, we can first linearize the offset, then tweak it slightly, like so:
1 Point3 PY(0,1,0);
2 for (Iterator3 i = dmn.begin (); !i.end(); ++i)
3 {
4 unsigned long long offset = (i.z-dmn.Min (2)) + ((i.y-dmn.Min (1)) +

(i.x-dmn.Min(0)) * (dmn.Max(1)-dmn.Min (1)+1)) * (dmn.Max(2)-dmn.Min (2)+1);
5 unsigned long long offset_yp1 = offset + (dmn.Max(2) - dmn.Min (2) + 1);
6 v.Elements(offset) = w.Elements(offset_yp1);
7 }

We have now effectively consolidated the linearization calculations, even for non-

identical points. This method of handling offsets is used no matter how large the

offset. The resulting code may not be the most efficient way of calculating multiple

offsets for every stencil (for example, a 9-point stencil in a plane), but it is superior

to calculating an offset for each point individually.
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offset expression ::= point expression [ (+|-) point expression ]∗

point expression ::= point var | point product | unit point

point product ::= constant

| constant * point expression

| point expression * constant

constant ::= int | double

Figure 5.7: Offset-expression grammar.

The expressions supported as offsets are linear combinations of points using

only: addition, subtraction, multiplication, and negation. Two types of expressions

are supported: offset expression, with the restriction that only one point var

variable is allowed (Figure 5.7); and unit point, which is a terminal for a variable

of type point with special properties. A unit point has a unit value for one of

the axes and has zeros for the others, thus (0, 1, 0) is a unit point for the y axis.

At the moment, unit points are evaluated according to their name: an ‘I’ or an

‘X’ in the name indicates (1, 0, 0) (respectively, ‘J’/‘Y’ for (0, 1, 0) or ‘K’/‘Z’ for

(0, 0, 1)). In the future we hope to track and identify these points.

5.3.5 The Local-Cache Module

We have not previously mentioned the refined-type for the Saaz domain,

dmn. There are two important cases, with one enabling much better optimizations.

The basic, non-fully-refined type for dmn could be

{Domain : lwb = (URT,URT,URT) ∧ upb = (URT,URT,URT)}

In this case, the best optimization which can be done for dmn.Min(0) would be to

replace it with dmn.x_min. This is the sort of inlining a general-purpose compiler

can perform. Still, accessing the desired value from the heap requires an extra

level of indirection: accessing first dmn, and then the member x_min.

However, we can do better if dmn does have a fully refined type, say, that

of Equation 5.3:

dmn : {Domain : lwb = (x lo,y lo,z lo) ∧ upb = (x hi,y hi,z hi)}



76

The member access dmn.Min(0) can be replaced with the actual constructor pa-

rameter x lo (assuming x lo is not written in the interim, which it seldom is).

The rewritten access is faster as it is on the stack and does not require an extra

level of indirection. Furthermore, it is likely to be on the same cache line as other

frequently-used values.

When the Type-Refinement module encounters domain constructors, it fills

in the type refinement to be similar to Equation 5.3. However, in real applications,

domains are often not created, but instead come from arrays which are loaded from

files on disk. In these cases, the type of dmn will not be fully refined. The purpose

of the Local-Cache module is to make dmn fully-refined. This is done through the

introduction of new, stack-local variables. New variables are introduced after the

assignment to the domain, either from a call to load an array from disk, when an

array is created (for its domain member-variables), or when a domain is created

from a constructor.
1 Array3 arr;
2 OpenArray (" myarray.sa3", arr);
3 Domain3 dmn = arr.Domain ();

At this point our refined types are:

arr : {Array : layout = Unknown ∧ domain = dmn} (5.6)

dmn : {Domain : lwb = (URT,URT,URT) ∧ upb = (URT,URT,URT)} (5.7)

By introducing new variables for the values of dmn:
4 int x lo = dmn.x_min; // or dmn.Min(0)
5 int y lo = dmn.y_min;
6 int z lo = dmn.z_min;
7 int x hi = dmn.x_max;
8 int y hi = dmn.y_max;
9 int z hi = dmn.z_max;

We can now update our refined types to:

arr : {Array : layout = Unknown ∧ domain = dmn} (5.8)

dmn : {Domain : lwb = (x lo,y lo,z lo) ∧ upb = (x hi,y hi,z hi)} (5.9)

We can now proceed to replace function calls to getters (data-member-accessor

functions) with not just member accesses, but values from the stack: dmn.Min(0)

becomes dmn.x lo.
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5.3.6 The Cleanup Module

Finally, the Cleanup module removes declarations for variables which are

never referenced, saving setup time and reducing the memory footprint. While

only a small amount of memory is saved, it occupies space in the cache. The

duplicated variable space introduced by the inlining of Cascade and aggregator

operations is thereby recovered. In addition, we may cache variables optimistically

in the Local-Cache module without paying for them if they don’t get used.

The Saaz iterators which the For-Loop module moved out of the for-loops

were still created using calls to Mk_Iterator. As the other modules have replaced

calls to Collapse and Promote, and the domain is covered by integers instead of

iterators, the iterators are no longer necessary. The Cleanup module therefore

removes the iterators and the Mk_Iterator calls.

5.4 Related Work

Specialization of code has been explored in the past. Dynamic compilation

[CN96] inserts checks and branches at runtime to choose appropriate specialization

paths. Value profiling does so at compile-time based on statistical observations

of past program values [CFE99]. Aigner and Hölzle [AH96] use value profiling

to remove virtual function calls. Tettnang’s code generation does not require a

retrospective record of past executions.

Calder [CG94] and Bacon [BS96] look at the ability of three static anal-

ysis techniques to identify virtual function calls. The most effective technique

presented in the two papers is Rapid Type Analysis (RTA). RTA identifies which

types are actually instantiated and resolves virtual function calls where there is no

ambiguity. Because RTA looks at the existence of objects, it is unable to provide

any optimizations for array layout in the case of the existence of heterogeneous

layouts, even when a query uses only arrays with homogeneous layouts.

Figure 5.8 gives an example of a case which could not be handled by RTA,

but can be by Tettnang. Arrays A, B, and C are all defined over the same domain,

but array C has a different layout than A and B. The first loop, starting at Line
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1 Domain3 dmn;
2 Array3 A = Array3 :: Create(dmn , Layouts :: RowMajor);
3 Array3 B = Array3 :: Create(dmn , Layouts :: RowMajor);
4 Array3 C = Array3 :: Create(dmn , Layouts :: ColMajor);
5 for (Iterator i = dmn.begin(); !i.end(); ++i)
6 {
7 A[i] = B[i];
8 }
9 /* ... */

10 for (Iterator i = dmn.begin(); !i.end(); ++i)
11 {
12 C[i] = A[i] + k*B[i];
13 }

Figure 5.8: RTA is unable to optimize the indexing operations in these loops.

7, uses just arrays A and B. The indexing operations in the first loop use a row-

major layout. RTA looks at which objects are instantiated. Because both row-

major and column-major objects are created, RTA cannot disambiguate between

any given use. If C had been row-major, then the indexing operations could

be all identified as row-major. Tettnang is able to optimize indexing operations

in both the loop which uses homogeneous layouts (Line 7) and that which uses

heterogeneous layouts (Line 12).

RTA is only able to work with virtual function calls, but Saaz uses function

pointers. Saaz could be recoded to use virtual function calls, but RTA would still

be insufficient. Tettnang uses detailed refinement types that allow it to not just

inline, but consolidate and optimize index linearization operations. RTA cannot

optimize across objects as Tettnang can; at best, RTA would be able to inline lin-

earization operations. RTA would be unable to consolidate the index calculations

because each calculation would be using a different domain variable (even though

the domain variables may reference the same domain object).

In contrast to many other systems that focus on optimizing transforma-

tions, Tettnang focuses largely on removing library overheads. A library that

similarly addressed such overheads was the A++/P++ library by Parsons and

Quinlan [PQ94]. In previous work [QSYS06] [QSVY06], Quinlan et al. use an

earlier version of the Rose framework to perform transformations. Unlike Tet-

tnang, which has access to built-in information, these translators use annotations

to identify certain library constructs and transform code at the algorithmic level,

targeting higher-level operations than Tettnang, primarily converting whole-array
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operations into nested loops and fusing loops. A more modern approach to avoiding

the temporaries caused by whole-array operations is that of Expression Templates

[Vel96] [VJ02]. In any case, the conversion of whole-array operations is not rel-

evant to Saaz, which uses looping constructs instead of whole-array operations.

Tettnang does not address loop transformations such as blocking, skewing, fusion,

and fission [WL91]. The information Tettnang gathers would make such trans-

formations straightforward, but such transformations are orthogonal to those of

Tettnang. Many Tettnang transformations would still be applicable after these

loop transformations, so we leave them to future work.

Telescoping languages [KBC+05] analyze libraries and construct a compiler

to optimize them. The optimizations see most of their gains from adding static-

types to dynamically-typed languages such as Matlab. The closest to our work is

the Broadway compiler [GL00], which seeks to address a wide variety of domains

and levels of abstraction through library annotation. As with Tettnang, inlining

and rewrite transformations are library-specific, since trade-offs can be signifi-

cant. Such optimizations can be conditioned on object properties established and

modified through dataflow analysis. Broadway does not address call-sequences or

accesses to object members; it only optimizes function calls. This makes it useful

for Encapsulation overheads, but inappropriate for addressing many Isolation over-

heads. In contrast to Tettnang, Broadway cannot consolidate offset computations

across multiple arrays, build some offsets from others, or build a cache of local

variables on the stack. Such contextual and inter-expression optimizations provide

a significant portion of Tettnang’s performance improvements.

The power of Tettnang lies is its ability to resolve, at compile time, certain

control flow decisions that drastically impact performance. Expression Templates

[Vel96] [VJ02] have been able to address composition through aggressive inlining

of template methods, most notably in the Boost::Phoenix library [dGMH]. In

particular, the physics library OpenFoam [JJvT07] uses heavily-templated C++

to write CFD simulators. uBLAS [WK+] provides the functionality of BLAS

[DCHH88a] using Expression Templates. uBLAS uses the type system to encode

storage schema such as layout and sparsity. Optimizations within uBLAS are lim-
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ited to the elimination of temporaries and some virtual function calls related to

layout.

Template metaprogramming, however, remains a poor tool for addressing

call-sequences or annotating objects with state. Template-based libraries are typ-

ically harder to write, harder to use, and much harder to debug than conventional

libraries. Template error messages which are legalistically accurate may not pro-

vide information in a way that a domain scientist can understand (see Appendix

D for a more thorough analysis). There are some promising techniques to improve

error messages [LFGC07], but these are not widely implemented.4 We consider

our technique more intuitive and more user-friendly for domain scientists.

The TaskGraph library [Rus06] builds an execution graph at runtime which

describes the computation. The library then generates plain C++ source code to

execute it, compiles that source code, links in the generated binary, and executes

the computation. This method of delayed evaluation incurs the overhead of gener-

ating the code and running a compiler, although caching of the generated source

code or binary can mitigate this cost. Tettnang uses a pre-processing pass of the

source code and acts as an additional compiler in the tool chain, but incurs no

runtime overhead. TaskGraph explores four optimization methods: code caching,

loop fusion, array contraction, and runtime liveness evaluation. The first and sec-

ond are not relevant to Saaz or its translator, Tettnang. Array contraction and

runtime liveness evaluation are complementary optimizations not addressed by

Tettnang. Because Saaz uses loops instead of whole-array operations, the users

tend to perform array contraction on their own. We leave liveness evaluation up

to users.

There has been some work in delayed evaluation libraries such as Dryad

[IBY+07] and FlumeJava [CCPA+10] which can handle not just nested calls, but

also sequences of adjacent (not nested) calls. Such libraries address algorithmic

optimizations in the context of distributed computing. Tettnang operates on much

lower-level abstractions, and so its optimizations are complementary.

Many of the approaches we have discussed in this chapter perform optimiza-

4The Clang compiler has slightly better error messages, but they are still obtuse.
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tions which Tettnang does not. They may optimize code structure or arrangement,

such as the appearance of temporary arrays, nested calls, extra loops, or the or-

dering of loops. Such optimizations could be performed by Tettnang as they are

purely complimentary to those Tettnang does perform, and could be a target for

future work. The closest in spirit to Tettnang is the Broadway compiler. Broad-

way, like Tettnang, addresses the overheads of libraries, but Broadway is only able

to optimize function call-sites. Tettnang, on the other hand, specializes itself to

one library, and is able to perform much more thorough optimizations. A custom

translator is able to perform domain-specific translation and optimize libraries

in ways these other approaches cannot. One day, we may find a general trans-

lator which can perform similar optimizations, but for now, the domain-specific

approach looks promising.



Chapter 6

Queries and Results

In this chapter we explore the performance implications of overheads intro-

duced by Saaz. Compiler- and library-writers would like to know which overhead

categories are most expensive. Unfortunately, many implementation decisions ac-

tually cause overheads in more than one of our categories (particularly in Encap-

sulation); thus, identifying the performance implications of individual categories

is difficult. Instead, we look at the performance implications of Saaz’s individual

design decisions.

We measure the performance impact of design decisions by looking at the

effectiveness of various transformations performed by Tettnang. Each transforma-

tion corresponds roughly to a single abstraction employed by Saaz. Because Saaz’s

abstractions are used to varying degrees in different queries, we measure the cost

of each abstraction across different queries.

At the heart of Saaz is its support for multiple array layouts. This support

hides several configuration details, and is thus quite expensive. One transformation

which targets one of its overheads provides our most significant performance gains

by inlining the offset calculations. To identify exactly what parts of Saaz’s support

for multiple array layouts were the most expensive, we look at a microbenchmark.

This microbenchmark identifies the performance of intermediate levels of abstrac-

tion between Saaz’s implementation of array indexing and that of plain C++.

Finally, we compare the performance of our queries when compiled with three dif-

ferent compilers: g++ versions 4.2 and 4.7 and icc version 12.0. We chose these

82
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compilers because Rose requires g++ version 4.2, 4.7 is the latest version of g++,

and version 12 is the latest version of icc, another popular compiler for scientific

codes.

Experimental Setup Our experiments look at the performance of several quer-

ies. These queries are implemented several ways: in Saaz, in C++ using a C-

style 3D array, and in C++ using a linear array. Scientific codes use both, and

their performance characteristics can vary depending on the computation, memory

stride, and compiler. In very specific cases, general-purpose compilers are able to

optimize simple uses of C-style 3D arrays. Linear arrays, on the other hand,

can be used for either row-major or column-major layouts, and can therefore be

compatible with either C or Fortran arrays. The C++ codes using linear arrays

index each array with the appropriate row-major or column-major linearization

calculation (implemented via macros). The result is duplicate computations in the

source code, but these are optimized away by the general-purpose compiler, which

recognizes them as duplicate expressions. Internally, Saaz uses linear arrays to

store data.

Tettnang uses flags to control which transformations it performs. Because

each transformation targets a specific abstraction used by Saaz, we can account for

the performance implications of individual Saaz abstractions. We incrementally

apply Tettnang transformations to our Saaz implementation.

Test results are the fastest of a minimum of six runs on a dual-socket ma-

chine with 2 Xeon E5-2670 (Sandy-Bridge extended) 8-core CPUs (16 cores total)

running at 2.6 GHz with 192GB of 1600MHz DDR3 RAM and a single 2TB 7200

RPM hard disk. All tests use a single core. Programs were compiled using gcc

v4.7 and command line options -O2.

6.1 Queries

We selected eight queries (Table 6.1) in three sets to illustrate different

performance trade-offs. Our first set (Figure 6.1) consists of four point-wise cor-

relations (Section 3.3.3) and three derivative-correlations (Section 3.3.4). The
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Table 6.1: Sample queries and their implementation. Note the difference in stride between
the dissipation queries: some strides are along the x dimension (unit stride), others along
y or z (stride > 1). u avg, v avg, and w avg represent the planar average of the primitive
variables u, v, and w, taken along the y axis. All queries include a planar average. The
formulas show the result computed by the query for all points p in the domain of the arrays,
before the final planar average is taken. p.x, p.y, and p.z select the components of point p
along the x, y, or z axes, respectively.

Description Operation Pseudo-code
UV Cross-Correlation 〈u′v′〉y uv[p] := (u[p]− u avg[p.y]) ∗ (v[p]− v avg[p.y])
Turbulent Transport x 〈u′u′v′〉y uuv[p] := (u[p]− u avg[p.y])2 ∗ (v[p]− v avg[p.y])
Turbulent Transport y 〈v′v′v′〉y vvv[p] := (v[p]− v avg[p.y])3

Turbulent Transport z 〈w′w′v′〉y wwv[p] := (w[p]− w avg[p.y])2 ∗ (v[p]− v avg[p.y])

xz-Dissipation 〈s13s13〉y
xzdiss[p] := 0.25 ∗ (

((w[p+ ~X]− w avg[p.y])− (w[p− ~X]− w avg[p.y]))2

+((u[p+ ~Z]− u avg[p.y])− (u[p− ~Z]− u avg[p.y]))2)

yz-Dissipation 〈s23s23〉y
yzdiss[p] := 0.25 ∗ (((w[p+ ~Y ]−
w avg[p.y + 1])− (w[p− ~Y ]− w avg[p.y − 1]))2+
((v[p+ ~Z]− v avg[p.y])− (v[p− ~Z]− v avg[p.y]))2)

zz-Dissipation 〈s33s33〉y
zzdiss[p] := 0.25 ∗ ( 2 ∗ ((w[p+ ~Z]− w avg[p.y])−

(w[p− ~Z]− w avg[p.y]))2)

second is our eduction criteria, λ2 (Section 3.3.5). Our final set (Figure 6.3) is the

predicated execution of the first set. By thresholding λ2, we identify about 2.6%

of the domain as part of coherent structures.

Input arrays u, v, and w contain 1536×768×768 double-precision floating-

point numbers and are laid out in column-major order (note that our previous

discussions in Sections 3.3, 4.2, and 5.2 used row-major ordering as an example,

but this distinction should not be relevant here).

We apply the transformations discussed in Section 5.3 incrementally, mov-

ing performance of the Saaz implementation closer and closer to a plain C++

implementation. As the code is transformed to use fewer and fewer of Saaz’s

abstractions, the penalties of those abstractions are eliminated, significantly im-

proving performance. Without Tettnang, the Saaz implementation runs an average

of 65 times slower than a plain C++ implementation. With Tettnang’s transfor-

mations, the transformed Saaz implementation performs an average of 64 times

better than the original Saaz code. Some transformed queries even perform 16%

better than the best plain C++ implementation, but each does no worse than 83%

of the plain C++ implementation.
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(b): Final transformations and target C++ imple-
mentations.

Figure 6.1: Performance of the various unconditional queries with incrementally more of
Tettnang’s transformations applied. The first bar in (a) is unmodified Saaz. The final two
bars in (b) are our C++ implementations. Note the difference in scales between the two
graphs. Inlining offset calculations was the most effective transformation, resulting in 1

20
the duration, or a 20 times increase in performance.

6.1.1 Transformations

Our first transformation converts for-loops over iterators to nested for-loops

over integers. By itself, it does not substantially improve performance. In fact,

as Figures 6.1a and 6.3a show, it can significantly decrease performance. This

is because, by itself, this transformation does change the loops, but it also must

reconstruct the iterator object itself, since other operations require it (Figure 6.2

Lines 3 and 12). Note that this reconstruction is generated by Tettnang, and

need never be written by a user. Reconstructing the iterator adds overhead. This

transformation does remove function-call overhead from Encapsulation, but most

importantly, Isolation and Generalization overheads. This provides more oppor-

tunities for later transformations which do improve performance. In fact, as later
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1 for (int y = dom.y_min; y != dom.y_max + 1; ++y)
2 {
3 Iterator1 i = Mk_Iterator(dom ,1U,y);
4 Point1 q = i.Collapse ();
5 Point1 q(y);
6 /* ... */
7 Domain2 dom2 = i.Slice ();
8 for (int x = dom2.y_min; x != dom2.y_max + 1; ++x)
9 {

10 for (int z = dom2.x_min; z != dom2.x_max + 1; ++z)
11 {
12 Iterator j = Mk_Iterator(dom2 , 1,0, x,z);
13 Point3 p = i.Promote(j);
14 Point3 p(x,y,z);
15 /* ... */
16 }
17 }
18 /* ... */
19 }

Figure 6.2: Converting for-loops over iterators to for-loops over integers requires that the
iterators be reconstructed (Lines 3 and 12) so they can be used in subsequent computations
(Lines 4, 7, and 13). When Tettnang knows which axes are being traversed by the iterators,
it can rewrite the Collapse and Promote operations on them. Thus Tettnang rewrites Line
4 to Line 5 and Line 13 to Line 14. Because the inner-loop’s iterator, j is not used in
subsequent operations (q and p are used for indexing), it can be removed (Line 12).

transformations avoid the need to use the iterator object, it can be removed.

Our second and third transformations inline the point promotion and point

collapsing operations. These operations do not have the most expensive overheads,

but we do want to address all overheads. For all but our λ2 query, the innermost

(2D) iterator is used only in the promotion of the outer (1D) iterator (Figure 6.2

Line 13). When we inline the point-promotion operation, we no longer need the

innermost iterator, and can avoid creating it. This eliminates most of the overhead

which was introduced as a side-effect of transforming the for-loops over iterators.

See Figure 6.2.

Our fourth transformation is similar to partial redundancy elimination

[MR79]. Consolidation of linearization calculations reduces the number of calls

to LinearIdx. Three out of four of our point-wise correlations use two arrays in-

dexed at the same point. For the unconditioned queries, consolidation cuts running

time nearly in half (Figure 6.1a). The remaining correlation, Turbulent Transport

y, only accesses a single array, so there is no redundancy to eliminate: the only

improvement it gets is from saving a function call. After the linearization cal-

culations have been consolidated, the running times between the four point-wise

correlation queries are nearly identical. Furthermore, the conditioned queries for
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each query implementation have relatively uniform running times (Figure 6.3).

From this we can infer that the overwhelming cost of these operations stems from

the linearization calls.

Our derivative correlation queries do not benefit from the consolidation of

linearization operations because they are stencil operations: they do not reuse a

single point, but instead access adjacent points in three dimensions. These points

share a common index with offsets of the form p± (a, b, c). Stencil operations are

addressed by a second indexing optimization: inlining the linearization calculations

(recall Section 5.3.4). As the difference in axes between the two graphs in each

of Figures 6.1 and 6.3 shows, inlining the linearization calculation significantly

increases performance. Performance for our queries (except for λ2) increases by

twenty times. λ2 does not improve as much because its mathematical operations

consume a much higher proportion of its runtime than the overheads introduced by

Saaz. Because the inlining of linearization calculations provides such a dramatic

shift in performance, Figure 6.5 in Section 6.2 examines this improvement at a

finer granularity.

Tettnang’s final transformation is the local-variable cache. This transfor-

mation uses stack-local variables to hold copies of data from the heap. By accessing

variables on the stack instead of variables on the heap, the compiler is more likely

to place the variables into registers. As we can see, this transformation provides

little improvement for g++ version 4.7. The greater effect of this transformation

for other compilers is explored in Section 6.3.

6.1.2 Query Comparisons

Comparing our three sets of queries offers some insight as to the cost of Saaz

overheads. The non-conditioned, point-wise correlation queries spend much of their

time accessing memory. They perform few floating-point operations (3 FLOPS

in the innermost loop), and so the cost of indexing is significant. When these

queries are masked via our eduction criteria (λ2), they spend significantly more

time on indexing and accessing memory. The consolidation of indices and inlining

of point-promotion and point-collapsing is insignificant when the vast majority of
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(b): Final transformations and target C++ imple-
mentations.

Figure 6.3: Performance of the various conditioned queries with incrementally more of
Tettnang’s transformations applied. The first bar in (a) is unmodified Saaz. The final two
bars in (b) are our C++ implementations. Note the difference in scales between the two
graphs. Again, inlining offset calculations was the most effective transformation, resulting
in 1

20 the duration, or a 20 times increase in performance.

points do not perform these operations. The local-variable cache is more helpful in

the conditioned operations because the conditioned queries spend relatively more

time on the linearization calculation than retrieval or computation using the input

arrays.

When executed conditionally, the derivative correlations behave very sim-

ilarly to the point-wise correlations. This is because the vast majority of time is

spent indexing and thresholding the λ2 array. This cost overwhelms the extra com-

putation which is performed by the derivative correlations. In both unconditional

and conditional derivative correlation sets, there are slight performance variations

between the xz-, yz-, and zz- Dissipation queries. This is because the different

derivative directions cause a difference in stride. Furthermore, zz-Dissipation only

accesses one array.

Internally, each Saaz array uses a linear C-style array to store its data.

There are two differences between the query’s implementations, as fully-trans-

formed by Tettnang, and the query’s plain C++ implementation with a linear
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Figure 6.4: The overhead penalties after all of Tettnang’s transformations for all, and
three representative queries. 100% corresponds to no overhead, compared to the faster
of our two C++ implementations for that particular query. Secondary, lighter bars are
conditional queries.

array. The first is relatively minor: array data is accessed through a data-member

pointer of the Saaz array object (A.data vs. A data). The second is more sig-

nificant: linearization calculations are consolidated. The plain C++ linear array

implementation performs indexing via macros which expand to the linearization

calculation. For the point-wise correlation queries, the compiler is able to rec-

ognize common subexpressions between these linearization operations, which are

evaluated at the same point. For the derivative correlation queries, however, the

case is different. While the compiler may recognize some common subexpressions,

Tettnang does more than eliminate these subexpressions. Tettnang optimizes sten-

cil calculations by calculating offsets from the center point as deviations from its

linearized value. This gives Tettnang an opportunity to improve performance over

the plain C++ implementation which uses linear arrays. Indeed, the conditioned

queries achieve higher performance than their plain C++ counterparts. See Figure

6.4.

For unconditioned point-wise queries, the plain C++ version using C-style

3D arrays is 12%-25% faster than the one using linear arrays (Figure 6.1b). C-

style 3D arrays include more accessible semantic information which the general-

purpose compiler is able to use to optimize simple patterns. When the loops have

a conditional check, however, these built-in patterns cannot be matched, and so
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the general-purpose compiler cannot optimize them. These patterns are built-in

and typically vary across compiler versions. For the conditional case, the C-style

3D arrays perform 11% more poorly than the linear arrays.

6.1.3 Summary

Tettnang is able to significantly reduce the overheads of Saaz. Saaz queries

are almost completely rewritten, eliminating the vast majority of overheads, and

even offering better performance than plain C++ implementations. In fact, most

of the queries translated by Tettnang perform better than their plain C++ counter-

parts. In all cases, the Tettnang-translated queries perform better than the plain

C++ version which uses linear arrays (the same format used by Saaz). Because

the general-purpose compiler is able to optimize the use of C-style 3D arrays under

special circumstances, our unconditional point-wise correlations perform slightly

worse by comparison. Still, these are our worse-performing queries, and they still

achieve at least 83% of this optimized performance. This represents an 80-fold

improvement over plain Saaz.

The point-wise correlation queries use either one or two arrays (of u, v, and

w), all indexed at corresponding (identical) points (e.g. u[p] * v[p]). Consolidat-

ing indices is thus a very important optimization for these queries. The derivative

correlation queries are dissipation components and access adjacent points in a sten-

cil operation (e.g. v[p+PZ] - v[p-PZ]) to compute a finite-difference derivative.

Different memory behavior can be seen here, as different dimensions will each ex-

hibit a different stride. As discussed previously (Section 5.2), the type refinements

that Tettnang uses to track data schema allow Tettnang to inline the offset calcu-

lations. This information is also used to combine the linearization computations

of stencils, and construct each as an offset from another. The transformation

which inlines the linearization computations improves performance between 3 and

64 times across the queries.

Tettnang is able to achieve this dramatic improvement by using semantic

knowledge of Saaz. By understanding the semantics of Saaz objects, Tettnang

is able to track key properties and use that information at call-sites. Tettnang’s
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Figure 6.5: Performance of intermediate stages in the inlining of an indexing operation.

refined types track data schemas, allowing Tettnang to, in essence, inline through

a function pointer. Tettnang does not have to prove that the function pointer does

not change. Because array data schema are immutable, Tettnang knows that the

function pointer cannot change.

Tettnang’s translation renders performance competitive with hand coding,

demonstrating the power of treating the Saaz abstractions as primitives in an

Embedded Domain-Specific Language. Tettnang translates Saaz code to improve

performance to as much as 84 times faster than the original Saaz implementation

and 16% faster than the fastest plain C++ implementation.

6.2 Microbenchmarks

We showed in Section 6.1 that the most expensive operation in our queries

was the linearization of multidimensional points. When Tettnang can determine

an array’s layout, it rewrites indexing operations, replacing the function pointer

that linearizes a point with an equivalent, but less costly expression. To exam-

ine exactly where all the overhead from this operation originates, we measured the

overhead of several alternate implementations of the indexing operation. These im-

plementations are progressively more specialized, incorporating increasingly more

of the problem’s data schema.
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The most expensive abstraction in Saaz is that of hiding array layouts. It

is possible that Saaz would have much higher performance and not need Tettnang

were Saaz to fix the layout of arrays and not support both row-major and column-

major arrays. To investigate, we also compare the performance of two alternative

Saaz implementations where array layout is fixed. In both of these alternative

Saaz implementations, all arrays are row-major, so their indexing operations do not

require a function pointer to perform linearization. In the first version, the indexing

operator (operator[]) is the same as normal Saaz, only it calls a statically-defined

function to perform the linearization calculation (Elements(RowMajor_3(p)) for

point p). In the second version, the indexing operator inlines the data access

and inlines the row-major computation. The body of this function is the same as

that generated by Tettnang before the local-variable cache transformation and is

the same as Inlined f. If the compiler were to inline both the Elements and the

RowMajor_3 calls in the first version’s indexing operator, it would be identical to

the indexing operator of the second version.

To put these timings in perspective, we also compare performance to our two

plain C++ implementations, one using a C-style 3D array, the other using a linear

C-style array. The performance of the code after all transformations have been

applied is greater than the alternative Saaz implementations (and comparable to

the plain C++ implementations). Our experiments have enabled us to isolate the

effect of supporting multiple array layouts, enabling us to show that this important

interoperability feature does not give rise to all the overheads of the indexing

operations of Saaz.

Our experiment measures the overhead of a loop over all the points in a

512 × 512 × 5121 array of double-precision floating-point numbers. The duration

of this loop is subtracted from the durations of each rewritten loop. This resulting

time is divided by the number of elements, to give the cost of the different imple-

mentations. The loop body indexes the array at the current point, and assigns a

value to it:

1Note that this is a different size than our previous experiments in Section 6.1. This should
not be concerning because our timings here are the times for a single loop iteration, and all
accesses have unit-stride.
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1 Domain3 dmn(0, 0, 0, 512, 512, 512);
2 Array3 arr(dmn , Layouts :: RowMajor);
3 double count = 0;
4 for(Iterator3 p = dmn.begin(); p != dmn.end(); ++p)
5 {
6

7 arr[p] = count ++;
8 }

Each intermediate transformation will rewrite the indexing operation (arr[p]) to

further specialize it.

LinearIdx inlines the bracket-operator (operator[]) function call, breaking

out the calls to Elements and LinearIdx. Our loop body is now:
6 unsigned long long idx = a.LinearIdx(i);
7 a.Elements(idx) = count ++;

Saaz::RowMajor calls the row-major linearizing function directly, instead

of using the LinearIdx function pointer. From here on, idx remains an unsigned

long long and each fragment includes a.Elements(idx) = count++;, but we omit

it from our code examples for the sake of clarity.
6 idx = Saaz:: RowMajor(i, dom.Min(), dom.Max());

Local RowMajor moves the row-major linearization function into the global

namespace. These functions are identical, but have different names. Since the

remaining functions exist in the global namespace, this is an intermediate step.
6 idx = :: RowMajor(i, dom.Min(), dom.Max());

RowMajor B3 specializes the RowMajor function to three dimensions. The

generic RowMajor function is a function template which can handle an arbitrary

number of dimensions. RowMajor_B3 keeps bounds-checks present in the previous

implementations and returns the result of the linearization expression.
6 idx = RowMajor_B3(dom , i);

RowMajor 3 is the same as RowMajor B3, but does not perform bounds-

checking.
6 idx = RowMajor_3(dom , i);

Inlined inlines RowMajor 3, replacing the function call with its return ex-

pression. This removes the cost of a function call. As we can see, at this point,

performance is better than that of both the fixed-layout versions. The general-

purpose compiler does not inline the function call here, and Tettnang does.
6 idx = (i.z-dom.Min (2)) + ((i.y-dom.Min (1)) + (i.x-dom.Min(0)) *

(dom.Max(2)-dom.Min (2)+1)) * (dom.Max(1)-dom.Min (1)+1);
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Inlined f Inlines the function calls to access the data-members of the do-

main directly, replacing dom.Min(0) with dom.x min. Because performance is more

or less identical to the previous version, we suspect the domain member access

functions were already being inlined by the compiler.
6 idx = (i.z-dom.z_min) + ((i.y-dom.y_min) + (i.x-dom.x_min) *

(dom.y_max - dom.y_min + 1)) * (dom.z_max - dom.z_min + 1);

Local uses a local variable instead of accessing the bounds from the domain.

This is as far as Tettnang can usually optimize.
6 idx = (i.z-x_min) + ((i.y-y_min) + (i.x-x_min) *

(y_max - y_min + 1)) * (z_max - z_min + 1);

Local 0 removes the subtractions where the domain’s minimum bounds are

zero. Note that Tettnang is able to determine this only when it sees calls to the

domain constructor, and not when the domain is loaded from disk as part of an

array.
6 idx = i.z + (i.y + i.x * (y_max + 1)) * (z_max + 1);

The most expensive part of indexing is the function pointer. Because Tet-

tnang can identify what this function pointer may resolve to, it is able to recover

from this expense. This information also lets Tettnang inline the function. Extra

information lets it optimize even more, although the fact that a domain’s lower-

bounds are zero is typically very hard to establish. While the function pointer is

the most expensive component of linearizing a point, even after eliminating the

function pointer, we can still improve performance further by replacing it with the

equivalent expression and using stack-local variables. How much this will improve

will depend on the ability of the compiler to allocate registers. In this test of g++

version 4.7, performance improved by 0.63 ns per access.

6.3 Compiler Comparison

Our previous results were obtained with code generated by the GNU C++

compiler, g++. g++, however, is not the only compiler used by the scientific com-

puting community. Intel’s icc plays a significant role as well. Figure 6.6 shows all

our previous benchmarks as compiled with three different compilers: g++ versions

4.2.4 (g++-4.2) and 4.7.1 (g++-4.7), and icc version 12.0.2 (icc-12.0).
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While the Intel compiler performs similarly to GNU for the plain C++ tests

(C-style 3D Arrays and Linear C Arrays), it does much worse for the Tettnang-

translated Saaz code (an average of 36% worse). The only exception is the λ2

(“Lambda2”) query. The Intel compiler is strongly tuned for Intel processors,

which we use in our tests. For strongly arithmetic codes, such as λ2, icc is able to

generate highly-tuned assembly, making heavy use of instruction pipelining.

For most of the queries, icc seems to perform the same or worse with C-

style 3D arrays than it does with linear arrays. There are two explanations for this:

either icc does not have the types of pattern-recognition for multidimensional C-

style arrays which are present in g++, or icc is able to better optimize linear arrays.

Because queries implemented with linear arrays perform similarly whether com-

piled with g++ or icc, we suspect that icc lacks the pattern-recognition necessary

to optimize the uses of 3D arrays which appear in our queries.

We include g++-4.2 because its performance differs greatly from g++-4.7 for

the local-variable cache transformation. g++-4.7 has almost identical performance

before and after the local-variable cache transformation, while this transformation

will, on average, almost double the performance of g++-4.2. We believe this is

because g++-4.7, which is a more current compiler, is able to more effectively

allocate registers. The local-variable cache transformation is meant to encourage

the compiler to put data from the heap into registers. While the improvements to

g++ have made this transformation unnecessary for it, the transformation is still

helpful for g++-4.2 as well as the latest version of the Intel compiler, which sees

similar improvements to g++-4.2.
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Chapter 7

Conclusion

7.1 Limitations and Future Work

In this section, we present limitations of the ideas and implementations of

Tettnang and Saaz. We propose extensions to address these limitations, as well as

future directions.

There are certain characteristics of CFD codes that simplify the design

of Tettnang. Operational masks for conditional execution are made more clear

through the use of Saaz predicates. By moving the masking operations into the

library, their semantics are made more clear to Tettnang.

Currently Tettnang does not give diagnostic warnings or domain-specific

error messages, but gathers enough information that it could provide some useful

feedback to the user. For example, Tettnang gathers information about both array

sizes and loop behavior. Often this is enough information to perform compile-

time bounds checking of loops and array accesses. We leave as future work the

incorporation of translator-time error messages for loop bounds which will lead to

accesses outside array domains.

Saaz allows users to specify the data schema for arrays. This capability is

needed to support interoperability of analysis tools with different simulators. This

flexibility, however, has inherent costs. When data schema cannot be identified,

or when arrays are loaded from disk, more extreme measures must be taken to

determine object properties. Figure 7.1 shows some possibilities. We could add
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1 /* run with option
2 * --tettnang:assume -arrays -rowmajor */
3 int main()
4 {
5 Array3 arr;
6 OpenArray ("array.sa3", arr);
7 /* Tasks */
8 }

(i): Tettnang could be passed command-line op-
tions containing layout information.

1 int main()
2 {
3 Array3 arr;
4 OpenArray ("array.sa3", arr);
5 #pragma array arr has layout row−major
6 /* Tasks */
7 }

(ii): Tettnang could read pragmas to get infor-
mation about layout.

1 int main()
2 {
3 Array3 arr;
4 OpenArray ("array.sa3", arr);
5 assert(arr.Layout ()== Layouts :: RowMajor);
6 /* Tasks , optimized by Tettnang */
7 }

(a): Tettnang could insert an assertion of its
assumptions.

1 int main()
2 {
3 Array3 arr;
4 OpenArray ("array.sa3", arr);
5 if (arr.Layout ()== Layouts :: RowMajor)
6 {
7 /* Tasks , optimized by Tettnang */
8 }
9 else

10 {
11 /* Tasks , as before */
12 }
13 }

(b): Tettnang could branch if its assumption is
correct, or keep the unmodified, original Saaz
code.

1 int main()
2 {
3 Array3 arr;
4 OpenArray ("array.sa3", arr);
5 if (arr.Layout () != Layouts :: RowMajor)
6 {
7 Transpose(arr , Layouts :: RowMajor);
8 }
9 /* Tasks , optimized by Tettnang */

10 }

(c): Tettnang could guarantee its assumption is
correct by performing the transpose if it is not.

Figure 7.1: Possible ways of telling Tettnang that an array is row-major (i, ii), and
methods of handling not knowing (a, b, c).

flags (Figure 7.1i) or pragmas (Figure 7.1ii) to Tettnang to enable the programmer

to make assertions about array properties, for example. Another possibility would

be to have Tettnang insert verification checks into the code it specializes. These

checks could: abort the code upon failure (Figure 7.1a), run a different (perhaps

unmodified) version of the code (Figure 7.1b), or transform the data into the

form for which Tettnang has specialized the code (Figure 7.1c). We leave these

extensions as future work.

In cases where arrays are passed as arguments, well-established techniques

such as interprocedural analysis and value tracking can be used. The properties
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relevant to data schema (an array’s layout and domain) are immutable properties.

This simplifies inter-procedural analysis: the properties need not be tracked, but

identified only once. Tettnang currently does not perform any interprocedural

analysis. Instead, it inlines certain functions and makes use of built-in knowledge

of Saaz functions. Aggregator functions are inlined to simplify analysis, but values

passed into other functions are not used in the analysis of function bodies. Such

interprocedural analysis exists in other systems, and including it in Tettnang would

make Tettnang more effective in practice. Such analysis does not detract from

the effectiveness of Tettnang’s transformations in its absence. Tettnang and Saaz

together form an Embedded Domain-Specific Language that extends the primitive

data-types of its host language. They extend arrays to support new operations

(multidimensional arrays with row-major and column-major indexing) with little

to no performance costs.

We would also like to extend Saaz to support other kinds of storage or-

ganization. While the interface presented to Saaz queries is unlikely to change,

support for a technique such as Adaptive Mesh Refinement (AMR) would require

changes to both Saaz and Tettnang. Support for sparse domains, and potentially

sparse arrays would also be useful. Where user-codes iterate over domains and ac-

cess domain size (such as in planar averages), such a change could be transparent.

We would also like to support different kind of linearization operations beyond

different layouts. For example, support for periodic boundary conditions would

require that some points outside of an array’s domain can be mapped into it. This

would require that Tettnang incorporate more layout types than just row-major

and column-major.

One particular area that could be improved is the handling of unit points

(Section 5.3.4). Unit points are used in point-valued expressions to access nearby

points. For example, A[p + PI] accesses the value at A[p.x+1,p.y,p.z]. At

the moment, Tettnang assumes that the point PI is (1, 0, 0), based on its name.

Tettnang could incorporate some analysis to verify that this is the case, or at least

a runtime check to ensure that it is.

Perhaps the biggest limitation of Tettnang is that it is specialized to Saaz
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alone. The techniques employed by Tettnang address overheads from all three of

the categories that we identified (Encapsulation, Isolation, and Generalization).

We have demonstrated that these overheads appear in Saaz in various forms, but

we have not given examples from other libraries. Future work would examine how

overheads from our categories appear in other libraries and how they might be

overcome using the techniques that we have introduced in Tettnang. A good place

to start may be numerics libraries such as TooN [Ros] or analytics libraries such

as PAT from the Large Hadron Collider [FJHL08], each of which appears to also

exhibit these overheads. Perhaps a limited set of annotations (along the lines of

Broadway [GL00]) could be added to a library to communicate what information

to track (or how to do so). A schema might be able to describe transformations

based on this information. In this way, Tettnang could be extended to handle more

libraries in a more general fashion.

The development of a general-purpose description of overheads (or possible

optimizations) may make it possible to perform the sorts of optimizations Tettnang

does, but at a lower-level than that of source code. If we can use lower-level infor-

mation, then perhaps a system such as LLVM [LA04], which includes significant

analytical capabilities, could be used to optimize code even further.

7.2 Conclusion

We have introduced the Saaz library to address difficulties faced by CFD

scientists. Saaz uses an array-based data-model to abstract data organization.

This allows analysis codes to be more interoperable, thus reducing the time and

effort necessary to construct new models and physical understanding.

Like most libraries, however, Saaz introduces overheads. We have classified

these overheads into three categories: Encapsulation, Isolation, and Generalization.

Object-oriented languages are especially prone to Isolation overheads, requiring so-

phisticated static reasoning to identify runtime behavior. Isolation overheads may

stem from Generalized operations and, in turn increase Encapsulation overheads.

Saaz supports ad hoc queries, and as a consequence, is only able to provide abstrac-
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tions of data. We have shown how the overheads Saaz introduces are significant,

and presented a technique to remove them.

We address the overheads in Saaz with a customized compiler. The incor-

poration of library semantics into the compiler’s reasoning allows it to gain more

knowledge about a program and thereby address the overheads that the library

had introduced. Our compiler analyzes codes written with the Saaz library. By

understanding the data schema Saaz is abstracting, Tettnang is able to transform

general Saaz calls into specialized plain C++ implementations.

A series of type-refinements are made to track these schemas of Saaz array

objects. Various modules in Tettnang are then able to apply individual localized

transformations that could not have been performed by a general-purpose com-

piler. Saaz’s use of immutable data-members to manage data schemas greatly

simplifies Tettnang’s analysis. Future libraries and languages could benefit from

using immutability more frequently, perhaps as a default. As we have shown with

Saaz and Tettnang, a few immutable properties can convey enough information to

allow a domain-specific compiler to reason about object behavior. This reasoning

can lead to the execution of significant optimizations.

Previous efforts to tackle library overheads have been unable to overcome

all the types of overheads that a library such as Saaz introduces. These prior efforts

have been general-purpose and not domain-specific. In the future it may be possible

to provide a generalized framework that would allow, for any sufficiently-annotated

library, the sort of optimizations that Tettnang performs. Before committing to

a generalized form, however, it would be prudent to investigate the effectiveness

of our specialized approach in other domains. For now, we have shown how a

domain-specific translator (Tettnang) can optimize the Saaz scientific library to not

just overcome library overheads, but in some cases actually improve performance

relative to plain C++ implementations.

Arrays are an important datatype in the scientific computing community.

There is great potential in the ability to extend array types to support new op-

erations and behavior. We have shown how to efficiently incorporate support for

disparate existing behaviors (row-major and column-major layouts). This paves
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the way for incorporating new behaviors, such as boundary conditions, into array

types.



Appendix A

Saaz Implementation

We have previously presented a summary of the Saaz classes and interface

(Chapter 3). Up until now, we have used simplified type names to make examples

more concise (e.g. Domain3 instead of Domain<3>). This chapter delves into a more

detailed explanation of Saaz classes without this simplification. Appendix C uses

the exact Saaz syntax introduced here.

All datatypes live in the Saaz namespace. We break the types in Saaz

into two groups. The first basic datatypes are simple types and objects that hold

data, but don’t have meaningful members besides accessors. Second, are the Saaz

classes. These hold more complex data and influence control flow.

A.1 Basic Datatypes

coord t

typedef int coord_t;

Whenever Saaz needs to use a datatype which represents a member of an

index space, it uses coord t. That is, domains are cross-products of ranges which

are of type coord t. This is currently a typedef to an int, but could just as easily

be a float if it becomes necessary to change the coordinate system in the future.

Index linearization operations would of course need to make sure they arrived at

appropriate integer locations in memory.

103
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dims t

typedef unsigned int dims_t;

Whenever Saaz needs to use a datatype which represents a dimension it

uses a dims t. Axes in Saaz are numbered starting with 0.

Point

template <dims_t num_dims >
class Point;

Points in Saaz are simple structures which are passed by value. For dimen-

sions 1, 2, and 3, the components are of type coord t and are named x, y, and

z. These components are union’d with an array, so they can be accessed using a

numerical offset, as well as lower-dimensional points. For example Point<2> is

declared as follows:
1 template < >
2 class Point <2>
3 {
4 public:
5 union
6 {
7 struct
8 {
9 union

10 {
11 coord_t x;
12 Point <1> X;
13 };
14 coord_t y;
15 };
16 coord_t lst [2];
17 };
18 };

The use of lst makes it easy to access a component of a point given a par-

ticular axis. For example, given a point p, p.lst[1] will select the y component of

p and be equivalent to p.y. This makes it easier to do coordinate transformations:

p.lst[Y_AXIS] can logically represent p.y, even if Y_AXIS doesn’t happen to map

to 1 in this particular case.

As a consequence of the union-structure of points, they cannot have direct

constructors. Instead, Point objects are constructed with a call to the overloaded

P functions, which creates a point with as many dimensions as it has arguments.

Pointers
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template <typename Destination >
struct Ptr;

Ptr is a pointer wrapper for the Saaz classes: Domain and Array. Because

domains and arrays live on the heap, they are handled primarily through point-

ers. Regular C-style pointers already have a defined definition of the operator[]

method which cannot be overridden. To support indexing of arrays using the

operator[] method, we use a specialized Ptr class to forward all functions to the

underlying Array object. As a consequence, instead of using Array or Domain ob-

jects directly, users must use
Ptr < Array <Domain <num_dims >, Element_t > >

and
Ptr < Domain <num_dims > >

These forwarding function increase Encapsulation overhead, and makes alias anal-

ysis much harder for the compiler, increasing Isolation overheads. Our analyses

regarding compiler abilities used simplified examples which did not have this ad-

ditional complexity, but used plain C pointers with Saaz arrays or other objects

(i.e. Array<Domain_t, Element_t>*, Person*).

The Ptr class is intended to be specialized. We use manual partial-instan-

tiation within the Saaz library for all the necessary classes.

A.2 Classes

Domains

template <dims_t num_dims >
class Domain;

Domains use a factory method called Create to obtain a new Domain object

(stored in a Ptr to a Domain object). The rank of a domain is available via its

class’s static value NumDims.

Domain objects are immutable. Unlike other systems such as Matlab and

Fortran, domains in Saaz do not support the reshape operation. A domain’s

extents are immutable and as specified by parameters to the Create call which

constructs it.
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Arrays

template <typename Domain_t , typename Element_t >
class Array;

Unlike many languages and libraries, which treat array-layout as a con-

vention, Saaz allows arrays to have either a row-major or a column-major layout.

When languages like Matlab and Fortran choose the column-major order layout,

they eliminate a check and simplify the computations which must be done to in-

dex an array. In Saaz, array layout is immutable; once an array is constructed, its

layout never changes. An array’s domain is also immutable, preventing its index

set from changing.

The template arguments to an array specify what type of domain the array

is defined over (Domain_t), as well as what type of data it will store (Element_t).

The only requirement for the element type is that it be default- and copy-construct-

able. Because arrays take a domain as an argument, they could, in the future, be

defined over sparse domains without changing their syntax.

Arrays use a factory method called Create to obtain a new Array object

(stored in a Ptr to an Array object). An array’s domain type, storage element type,

and number of dimensions are available in the Domain_t, Element_t, and NumDims

static members of the Array type.

Iterators

template <dims_t total_dims >
template <dims_t out_dims >
class Domain <total_dims >:: Iterator <out_dims >;

Iterators are member types of the domains they iterate over, but they all

implement the same concept, which is similar to that of std::iterator. See Figure

A.1. The iterator must define its type as Self_t (Line 3), and the type of the

domain over which it is iterating as Domain_t (Line 4). Since iterators may iterate

over fewer dimensions than the domain which called begin (which we will call the

embedding domain), they keep track of what points they can cover. Base is the

point in the embedding domain that the point is covering (Line 5). The iterator

may be collapsed (Line 10) to obtain a point for the axes being covered (a point in
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1 concept Iterator <dims_t out_dims , typename EmbeddingDomain >
2 {
3 typename Self_t; // the type of the iterator
4 typename Domain_t; // domain being traversed , an EmbeddingDomain ::Slice <out_dims >
5 typename Base; // the base point , a Point <EmbeddingDomain ::NumDims >
6 typename Promoted_t; // the result of a call to Promote , a Point <EmbeddingDomain ::

NumDims >
7 typename Slice_t; // the domain not covered: EmbeddingDomain ::Slice <EmbeddingDomain ::

NumDims - out_dims >;
8

9 Domain_t ::Ptr_t Dom(); // the domain object being traversed
10 Point <out_dims > Collapse (); // convert to a point which can index a Domain_t
11

12 Slice_t :: Ptr_t Slice (); // returns the domain perpendicular to this iterator ’s traversal
at the point covered by the iterator

13 Promoted_t Promote(Point <EmbeddingDomain :: NumDims - out_dims > p); // combine the point p
with this one to obtain a point which can index an array allocated over a domain of
type EmbeddingDomain. this handles all the concerns with iterating along different
axes.

14

15 Self_t& operator ++(); // prefix increment
16 Self_t operator ++( int); // postfix increment
17 bool end(); // true if the iterator is at the end of the domain. equivalent to operator

==( embedding_domain.end())
18 };

Figure A.1: The Iterator concept.

Domain_t). Promoted_t (Line 6) is the point type that is the result of the Promote

operation (Line 13), and it is a point in the embedding domain. The domain being

traversed is of type Domain_t (Line 4) and may be retrieved using the Dom function

(Line 9). The remainder of the embedding domain is of type Slice_t (Line 7) and

is accessible using the Slice function (Line 12). The increment operators (Lines

15 and 16) advance the iterator. The end function (Line 17) returns true if the

iterator is at the end of the domain it is covering. !i.end() should return the same

value as i != dmn.end(〈axes〉), where dmn is the embedding domain which created

the iterator via i = dmn.begin(〈axes〉).

Predicates

template <dims_t num_dims >
struct Predicate;

Predicates in Saaz live in the Predicate sub-namespace of the Saaz names-

pace. All predicates must derive from the Thunk class (Figure A.2). The basic

criteria is that it be able to take a Point object and return true if computation

should be evaluated at that point, and false otherwise. All domains are predicates,

passing all points within their bounds.

There is a special predicate, OptimizedEverywhere (Figure A.3). All func-

tions and classes in Saaz which take a predicate specialize an implementation for
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1 namespace Predicate
2 {
3 template < dims_t num_dims >
4 struct Thunk
5 {
6 static const dims_t NumDims = num_dims;
7 virtual ~Thunk() { }
8 virtual bool operator ()(Point <num_dims > p) const = 0;
9 };

10 }

Figure A.2: The Thunk base class.

1 namespace Predicate
2 {
3 template < dims_t num_dims >
4 struct OptimizedEverywhere : public Thunk <num_dims >
5 {
6 bool operator ()(Point <num_dims > p) const
7 { assert(false); return true; } // this should never actually be called
8 };
9 }

Figure A.3: The OptimizedEverywhere predicate.

this type. This specialized implementation will not have the overhead of check-

ing the predicate. In this way, code can be written to handle predicates without

worrying about extra overhead in the case where the predicate is always true.

Saaz also provides several built-in predicates for simple operators:

1. Everywhere : true

2. Nowhere : false

3. Mask : arr[p] != 0

4. LessThan : arr[p] < threshold

5. GreaterThan : arr[p] > threshold

6. LessThanOrEqualTo : arr[p] <= threshold

7. GreaterThanOrEqualTo : arr[p] >= threshold

8. Equals : arr[p] == threshold

9. NotEquals : arr[p] != threshold
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The conditionals compare a threshold value (passed to the predicate’s constructor)

to the value at the specified point (p) of an array (arr) which is also passed to the

predicate’s constructor.

Reductions

template <dims_t total_dims , typename element_t ,
typename OutDomain_t , typename out_element_t >

struct Aggregator;

Reductions in Saaz are implemented by subclasses of the Aggregator class.

Reductions can run in parallel if they subclass the ParallelAggregator class.

Both the Aggregator and ParallelAggregator class are class templates, but we

omit their rather long template declarations here for clarity1. An aggregator’s

OutputDimensions specify which axes show up in the result array, the data in the

remaining dimensions is reduced to a single out_element_t.

Aggregator objects implement (override) six member functions, correspond-

ing to different parts of the loop nest. These functions are: Initialize, PreProcess,

Process, PostProcess, Finalize, and Return. Figure A.4 illustrates how an ag-

gregator object (agg) implements a reduction. Line 2 constructs the domain to

be output by using the collapse method of the input domain, dom. Effectively,

the extents matching the specified axes of the input domain are copied to a new

domain. Line 3 provides the aggregator’s initialization routine with the output

domain. This lets the aggregator construct an array to hold the result, as well

as any intermediate arrays. The aggregator is responsible for destroying this do-

main object, and can do so here. Once the aggregator has initialized, the outer

loop (Line 4) covers the dimensions to which the reduction collapses the original

domain (dom.begin(agg->GetOutputDimensions()) will cover the same points as

collapsed.begin()). Line 6 takes the subdomain in the dimensions perpendicular

to those covered by the outer iterator, i.

Because iterators in Saaz are embeded in the domain over which they iter-

ate, they must be reduced in rank if they are to index the domain they traverse. In

1See files saaz/aggregator.hxx and saaz/aggregator.inl in the Saaz distribution.
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1 typedef Domain <total_dims >::Slice <total_dims -OutDomain_t ::NumDims >:: Type Slice_t;
2 Ptr < OutDomain_t > collapsed = dom.Collapse(agg ->GetOutputDimensions ());
3 agg ->Initialize(collapsed);
4 for (Domain_t ::Iterator <OutDomain_t ::NumDim > i = dom.begin(agg ->GetOutputDimensions ());

!i.end(); ++i)
5 {
6 Ptr <Slice_t > slice = i.Slice();
7 Point <out_dims > pi = i.Collapse ();
8

9 agg ->PreProcess( pi ); // convert i to a Point <out_dims > instead of Point <total_dims >
and initialize this aggregation ’s counter to it

10

11 for (Slice_t ::Iterator <OutDomain_t ::NumDims > j = slice.begin (); !j.end(); ++j)
12 {
13 agg ->Process( pi, i.Promote(j) );
14 }
15

16 agg ->PostProcess( pi );
17 }
18 agg ->Finalize ();
19 return agg ->Return ();

Figure A.4: The steps involved in performing a reduction, using the aggregation object
agg over the input domain dom.

our case, i is a point in total_dims-dimensional space. To convert it to the output

domain (OutDomain_t::NumDims-dimensional space), we must Collapse it (Line 7,

discussion in Section 3.2.4).

Line 9 lets the aggregator handle setup for the inner loop. For example,

an averaging reduction might use this opportunity to initialize the sum counter to

zero. The loop at Line 11 traverses the original domain’s remaining dimensions.

The Process call at Line 13 performs the majority of the work. It is here that the

most expensive operations of a reduction can be performed. The Process function

is passed a point in the output domain (pi), and a point in the input domain

(i.Promote(j)). This point-promotion is necessary to combine the points which

are traversing the disjoint subdomains into a point in the original domain (see

discussion from Section 3.2.4).

The exit of the inner loop is handled at Line 16 in the PostProcess method

(this allows the average aggregator to divide by the number of points covered).

Finalize (Line 18) performs any cleanup the aggregator needs, such as freeing

temporary arrays. Return (Line 19) provides the result of the aggregator.



Appendix B

Saaz Extensions

The basic Saaz library provides some useful primitives for a wide range of

computational tasks. There are still, however, some cases in which it is useful to

extend the basic Saaz library.

B.1 Fortran Support

Saaz uses mmap to ensure fast disk-load times and accesses for arrays. mmap

allows a program to treat a region of disk as a region of memory. The operating

system maps the appropriate memory region from the file cache to provide direct

access to this data. Writes to memory are reflected in changes on disk, and reads

from memory access data from disk. Saaz uses its own file format to make this

process easier.

Because many CFD simulators are implemented in Fortran, we have ensured

that there is a method of saving and loading data from these files into programs

which are written in Fortran. Saaz provides a Fortran interface to saving and

loading files. The fortransave family of functions lets Fortran-allocated arrays be

saved in the Saaz file format.

Loading Saaz-formatted files is more complicated. The simplest way is for

the file to be read directly into a Fortran array. Unfortunately, this can take a long

time and additional memory to buffer the input file.

Ideally we could just point a fortran array to the data which has been

111
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1 interface
2 subroutine saazopen3d(dest , mx , my, mz, filename)
3 implicit none
4 real*8, pointer ,dimension (:,:,:) :: dest
5 integer mx , my , mz
6 character filename *(*)
7 end subroutine saazopen3d
8 subroutine saazreassign(dest , src)
9 implicit none

10 real*8, pointer ,dimension (:,:,:) :: dest , src
11 end subroutine saazreassign
12 subroutine saazforcefree(arr)
13 implicit none
14 real*8, dimension (:,:,:) :: arr
15 end subroutine saazforcefree
16 end interface

Figure B.1: The interface declaration. Note that some arrays are passed as a pointer.
This ensures that they are passed as a void**, thus allowing the C++ routine to change
the destination of the Fortran variable.

mmaped by C++. Unfortunately, while Fortran arrays are opaque pointers, their

indexing is handled by another data-structure created by the compiler to hold the

array’s extents. The user has no access to this data-structure, but it is necessary

to map the multidimensional indices of Fortran arrays to a linear offset in memory

(this is the process of linearization). Because this data-structure is generated by

the Fortran compiler, and used only by code that the Fortran compiler generates,

it is not available externally. This means a C++ function cannot access or create

this data structure on its own.

Instead, by using Fortran pointers, we are able to trick the Fortran compiler

into creating the extent table data-structure for us. Because we need pointers,

this technique requires at least Fortran 90. The basic technique is to use C++

to perform tasks which the Fortran compiler is unaware of. By violating the

assumptions made by the Fortran compiler, we can manipulate its data structures

as we see fit. Figure B.1 shows the Fortran interface for these C++ functions. It

is necessary to provide the interface explicitly because the implicit interface will

not use the necessary pointer variables.

Figure B.2 shows the steps necessary for a Fortran program to mmap a Saaz

array file. This requires three variables: two pointers (read_array, and use_array),

and an allocatable Fortran target array (indexing_dummy). Figure B.3 shows the

manipulation of these pointers. The first step is on Line 5. This is a call to a C++

function which will mmap the file “double.sa3” into the read_array variable. Note



113

1 real*8,target ,allocatable ,dimension (:,:,:) :: indexing_dummy
2 real*8,pointer :: read_array (:,:,:)
3 real*8,pointer :: use_array (:,:,:)
4 integer mx ,my,mz
5 call saazopen3d(read_array , mx, my, mz , ’double.sa3 ’)
6 allocate (indexing_dummy (1:mx, 1:my, 1:mz))
7 use_array => indexing_dummy
8 call saazreassign(use_array , read_array)
9 call saazforcefree(indexing_dummy)

Figure B.2: The steps necessary to mmap Saaz arrays into Fortran programs.

that the Fortran variable has not been initialized. Because the variable is passed

by address, the C++ function is able to reassign what that variable points to. In a

similar fashion, it also returns the bounds of the array: mx, my, and mz. The regular

fortran array, indexing_dummy, is allocated on Line 6 to have the same dimensions

as the array which has been loaded.

At this point, there are now two full arrays which have been allocated in

memory. indexing_dummy has been allocated by Fortran, and, depending on the

compiler, may or may not have been initialized. If it has not been initialized, then

it might not be occupying physical memory. Because the read_array array has

been mapped, but has not been read (outside of the first page), the pages for the

array have not been faulted into memory yet, and it takes up minimal physical

space (although it still has a virtual address space allocated to it).

Line 7 tells Fortran that the use_array variable will point to the data in

the indexing_dummy array. At this point, Fortran associates the extent map and

linearization parameters that were set for indexing_dummy to be the ones to use

for use_array. Now use_array can be indexed properly, but it still doesn’t point

to the right data, so it should not be actually indexed yet. To assign the data, we

use saazreassign to assign the use_array pointer the value of read_array. At this

point, read_array can be reused to load another array.

Finally, because indexing_dummy is taking up memory, we use saazforcefree

(Line 9) to release that memory (using the C++ function, free). This is somewhat

dangerous, because it depends on the Fortran allocate using the corresponding

malloc. At the time of this writing, our process works with both the Intel and

GNU Fortran compilers (ifort 12.0 and gfortran 4.7).

Subsequent arrays can be loaded using the same read_array. If these new
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5
saazopen3d(read array, ’double.sa3’)

read array

double.sa3

(Line 5)
C++ is able to assign
the value-pointer of
read array, but does
not have access to For-
tran’s extent table.

read array

double.sa3

6
allocate (indexing dummy(mx, my, mz))

indexing dummy

1:mx
1:my

1:mz

(Line 6)
We create Fortran’s ex-
tent table by allocating
indexing dummy.

read array

double.sa3
indexing dummy

1:mx
1:my

1:mz

7
use array => indexing dummy

use array

(Line 7)
The array we want to
use is then assigned to
indexing dummy, telling
Fortran that they have
the same extent table.

read array

double.sa3
indexing dummy

1:mx
1:my

1:mz

use array

8
saazreassign(use array, read array)

(Line 8)
C++ is then able
to redirect the value
pointer of use array to
point to the mmaped
file.

read array

double.sa3
indexing dummy

1:mx
1:my

1:mz

use array

9
saazforcefree(indexing dummy)

(Line 9)
Finally, we use C++
to free the mem-
ory allocated for
indexing dummy. We can
now reuse read array.
indexing dummy may
never be used again, or
deallocated in Fortran.

Figure B.3: The internal pointers manipulated in Figure B.2, to which the line num-
bers refer. Solid arrows are pointers, while dashed arrows are maps the Fortran compiler
maintains to the extent tables for each array.
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arrays have the same extents, then indexing_dummy can be used, but it must not be

reallocated. Because the Fortran compiler thinks use_array and indexing_dummy

refer to the same memory locations, they share an extent table. Deallocating

indexing_dummy will corrupt use_array.

B.2 Cascade

Not all domain scientists are completely comfortable with C++. In an

effort to make Saaz more user-friendly for non-expert programmers, we have built

the Cascade library on top of Saaz. Cascade renames some data-types and wraps

certain operations which are common in CFD. Because it supports only a few

canned operations, Cascade is less flexible than Saaz. Nonetheless, it is useful

under certain circumstances.

Saaz uses a schema for arrays and domains that makes use of template

parameters for properties like rank (number of dimensions). Cascade introduces

separate types for common array types using a full type name instead of a template.

For example, a 3-dimensional array of floats is Array_f3, a 1-dimensional array of

doubles is Array_d1. This is accomplished by making subclasses that forward all

their functions on to the normal Saaz datatypes.1 This makes types easier to work

with for those not familiar with templates.

We also use macro wrappers to make it easier to define computations over

arrays. The MakeFunction macro takes a function name, a name for a point-valued

variable, and the body which is to execute at every point in a domain. Combined

with a Foreach function template (similar to std::foreach), this makes it easy to

write new queries and hide boilerplate. An example is given in Figure B.4. Recall

that u is the velocity in the x direction, um is the planar average of u. The cfg object

wraps a number of common assumptions, such as which axis is the inhomogeneous

one, and what the coordinate mapping may be. Note that this example uses the

LessThan predicate to operate on points p in the domain of lambda2 only where

lambda2[p] < threshold.

1These subclasses are actually subclasses of the Ptr pointers to the Saaz types. They do not
introduce new forwarding, but use that of the Ptr type from which they inherit.
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1 MakeFunction(
2 ComputeUU , p,
3 {
4 double un = (u[p] - um[p.lst[cfg.INHOMOGENEOUS_DIM ]]);
5 uu[p] = un*un;
6 }
7 );
8 ...
9 CFD_Foreach(cfg , lambda2.Domain (), ComputeUU (), LessThan_d3(lambda2 , threshold));

Figure B.4: An example of using MakeFunction to compute the self-correlation of the
velocity in the x direction. The operation is restricted to locations inside vortices: places
where lambda2 is less than threshold.

1 MakePlanarAverage_d(
2 ComputeYZDiss , j, p,
3 Square( ((v[p + cfg.PK] - vm[j ]) - (v[p - cfg.PK] - vm[i ])) / (2* cfg.dz) ) +
4 Square( ((w[p + cfg.PJ] - wm[j+1]) - (w[p - cfg.PJ] - wm[i-1])) / (2* cfg.dy) )
5 );
6 ...
7 CFD_Aggregate(cfg , inset , ComputeYZDiss ());

Figure B.5: An example of using MakePlanarAverage to compute the yz-Dissipation.
Square is a simple function which squares it’s argument.

The MakePlanarAverage macro family makes it easy to write a particular

common type of reduction: the planar average. Many queries which operate on

the full 3-dimensional domain are reduced to a single dimension. The macros allow

the user to specify which parameters (if any) the aggregator takes as well as the

expression to compute for the Process function, which gets averaged over each

plane. An example is given in Figure B.5

B.3 Saaz Utilities

Over the course of working with Saaz it has been useful to construct several

utility programs.

1. convert is perhaps the most useful. This program gives information about

any Saaz array files, such as their rank, dimensions, and layout. It can

also convert Saaz array files into an ascii format suitable for importation

into Matlab or gnuplot. Finally, it can copy a subregion of an array file

into another array file. The subregion can be specified by coordiantes or by

another array file and a threshold value.
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2. diff compares two arrays and reports at what points their values differ, using

a range for floating-point values.

3. expand and reduce change the size of an array, either linearly interpolating

values or dropping values. This is useful to run quick sanity-checks against

real data-sets that are smaller or larger than an existing one.



Appendix C

Extended Examples

In this appendix we present extended examples. We present multiple im-

plementations of the planar average query (Section 3.3.2), as well as our eduction

criteria, λ2(Section 3.3.5). Figure C.1 shows how the planar average would be

implemented in Fortran. Note that the inner loop covers the z dimension and

then the x dimension because Fortran arrays are column-major. The C examples

iterate over the x dimension and then the z dimension because they store arrays

in a row-major order. Figures C.2 and C.3 implement the planar average in plain

C++, using no additional user-defined abstractions. The first uses C-style 3D

arrays, the second uses linear arrays. Both use a row-major layout, although, if

the linearization operation were altered in Figure C.2 Lines 15-17, it could use a

column-major layout.

Our next set of planar average implementations are performed in Saaz.

Figure C.4 shows the code structure which is used in our results from Chapter

6. This code matches the exact syntax in Saaz as presented in Appendix A.

The heavy use of template arguments motivated the development of the Cascade

frontend. Figure C.5 demonstrates how the types used in Cascade simplify the

type names.

Figure C.6 demonstrates how Saaz’s built-in averaging-aggregator can be

used to perform the planar average. Figure C.7 shows the use of the Cascade’s

built-in planar-average-calculating function. The CFD_Config type holds configu-

ration parameters relating to the data schema, in particular the mapping from

118
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1 function PlanarAverage(arr , x_min , x_max ,
2 & y_min , y_max , z_min , z_max)
3 integer x_min , x_max
4 integer y_min , y_max
5 integer z_min , z_max
6 real*8 dimension arr(x_min:x_max ,
7 & y_min:y_max , z_min:z_max)
8 integer i,j,k
9 real*8 avg(y_min:y_max)

10 do j=y_min ,y_max
11 avg(j) = 0
12 do k=z_min ,z_max; do i=x_min ,x_max
13 avg(j) = avg(j) + arr(i,k,j)
14 end do; end do
15 avg(j) = avg(j) / dble((x_max -x_min +1)
16 & * (z_max -z_min +1))
17 end do
18 return avg
19 end function

Figure C.1: Planar Average, implemented in Fortran.

1 double* PlanarAverage(double* arr ,
2 int x_min , int x_max , int y_min ,
3 int y_max , int z_min , int z_max)
4 {
5 int i,j,k;
6 unsigned long long idx;
7 double* avg = new double[y_max -y_min +1];
8 for (j = y_min; j < y_max + 1; ++j)
9 {

10 avg[j] = 0;
11 for (i = x_min; i < x_max + 1; ++i)
12 {
13 for (k = z_min; k < z_max + 1; ++k)
14 {
15 idx = (k-z_min) + ((j-y_min) +
16 (i-x_min) * (y_max -y_min +1))
17 * (z_max -z_min +1);
18 avg[j] += arr[idx];
19 }
20 }
21 avg[j] /= (z_max -z_min +1)*(x_max -x_min +1);
22 }
23 return avg;
24 }

Figure C.2: Planar Average, implemented in C, using linear arrays.
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1 double *** Make3DArray(int x_len , int y_len , int z_len)
2 {
3 uint8_t* raw = new uint8_t[sizeof(double **) * x_len + sizeof(double *) * (y_len * x_len)

+ sizeof(double) * (z_len * y_len * x_len)];
4 double *** arr1 = (double ***) raw;
5 raw += x_len * sizeof(double **);
6 for (int i = 0; i < x_len; ++i)
7 {
8 arr1[i] = (double **)(raw + (i * y_len) * sizeof(double *));
9 }

10 raw += x_len * y_len * sizeof(double *);
11 elem_t ** arr2 = (elem_t **)raw;
12 for (int i = 0; i < x_len; ++i)
13 {
14 for (int j = 0; j < y_len; ++j)
15 {
16 arr1[i][j] = (double *)(raw + ((i*y_len*z_len + j*z_len) * sizeof(double *)));
17 }
18 }
19 }
20

21 double* PlanarAverage(double *** arr)
22 {
23 int i,j,k;
24 unsigned long long idx;
25 double* avg = new double[y_max -y_min +1];
26 for (j = 0; j < y_max - y_min + 1; ++j)
27 {
28 avg[j] = 0;
29 for (i = 0; i < x_max - x_min + 1; ++i)
30 {
31 for (k = 0; k < z_max - z_min + 1; ++k)
32 {
33 avg[j] += arr[i][j][k];
34 }
35 }
36 avg[j] /= (z_max -z_min +1)*(x_max -x_min +1);
37 }
38 return avg;
39 }

Figure C.3: Planar Average, implemented in C, using C-style 3D arrays. We also include
the helper function, Make3DArray, which allocates a contiguous memory region and fills in
the C-pointers so it can be accessed with three indexing operations.

1 using namsepace Saaz;
2

3 Array <Domain <1>, double >:: Ptr_t
4 PlanarAverage(Array <Domain <3>, double >:: Ptr_t arr , dims_t Y_AXIS)
5 {
6 Domain <3>:: Ptr_t dom = arr.Domain ();
7 Domain <1>:: Ptr_t outdom = dom.Collapse(Y_AXIS);
8 Array <Domain <1>, double >:: Ptr_t avg = Array <Domain <1>, double >:: Create(outdom , true);
9 for (Domain <3>:: Iterator <1> j = dom.begin(Y_AXIS); !j.end(); ++j)

10 {
11 Point <1> pj = j.Collapse ();
12 avg[pj] = 0;
13 for (Domain <2>:: Iterator <2> ik = j.Slice().begin(); !ik.end(); ++ik)
14 {
15 Point <3> ijk = j.Promote(ik);
16 avg[pj] += arr[ijk];
17 }
18 avg[pj] /= j.Slice ().Size();
19 }
20 return avg;
21 }

Figure C.4: Planar Average, implemented in Saaz, using a loop nest.
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1 using namsepace Saaz;
2

3 Array_d1 PlanarAverage(Array_d3 arr , dims_t Y_AXIS)
4 {
5 Domain_3 dom = arr.Domain ();
6 Domain_1 outdom = dom.Collapse(Y_AXIS);
7 Array_d1 avg(outdom);
8 for (Domain_3 :: Iterator_1 j = dom.begin(Y_AXIS); !j.end(); ++j)
9 {

10 Point_1 pj = j.Collapse ();
11 avg[pj] = 0;
12 for (Domain_2 :: Iterator ik = j.Slice().begin(); !ik.end(); ++ik)
13 {
14 Point <3> ijk = j.Promote(ik);
15 avg[pj] += arr[ijp];
16 }
17 avg[pj] /= j.Slice ().Size();
18 }
19 return avg;
20 }

Figure C.5: Planar Average, implemented in Saaz, using Cascade types.

1 using namsepace Saaz;
2

3 Array <Domain <1>, double >:: Ptr_t
4 PlanarAverage(Array <Domain <3>, double >:: Ptr_t arr , dims_t Y_AXIS)
5 {
6 Aggregator_Avg < 3, double , Domain <1> > averager;
7 averager.SetOutputDims(Y_AXIS);
8 averager.Apply(arr);
9 return averager.Return ();

10 }

Figure C.6: Planar Average, implemented in Saaz, using an aggregator object.

coordinates to dimensions.. Normally this would be passed to a function, but we

construct it here to show how it relates to the Y_AXIS variable which a Saaz im-

plementation uses to keep track of the inhomogeneous y dimension. cfg.SetDims

sets up the making from coordinates to dimensions.

Figures C.8 and C.9 contain the code for our eduction criteria, λ2(see Sec-

tion 3.3.5). This example uses 3D C-style arrays. In our results from Chapter 6,

λ2 is thresholded to include approximately 2.6% of the domain.
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1 using namsepace Saaz;
2

3 Array <Domain <1>, double >:: Ptr_t
4 PlanarAverage(Array <Domain <3>, double >:: Ptr_t arr , dims_t Y_AXIS)
5 {
6 CFD_Config cfg;
7 switch (Y_AXIS)
8 {
9 case 0: cfg.SetDims(CFD_Config ::J, CFD_Config ::I, CFD_Config ::K); break;

10 case 1: cfg.SetDims(CFD_Config ::I, CFD_Config ::J, CFD_Config ::K); break;
11 case 2: cfg.SetDims(CFD_Config ::I, CFD_Config ::K, CFD_Config ::J); break;
12 }
13 cfg.SetInhomogeneous(CFD_Config ::J);
14 return CFD_PlanarAverage_d3(cfg , arr);
15 }

Figure C.7: Planar Average, implemented in Saaz, using Cascade’s planar average support.

1 double *** Lambda2(double *** u, double *** v, double *** w,
2 int x_min , int x_max , int y_min , int y_max ,
3 int z_min , int z_max , double dx , double dy , double dz)
4 {
5 static const double pi = 3.141592653;
6 double *** lambda2 = Make3DArray <double >(x_min ,x_max ,y_min , y_max ,z_min ,z_max);
7 for (int i = x_min +1; i < x_max; ++i)
8 for (int j = y_min +1; j < y_max; ++j)
9 for (int k = z_min +1; k < z_max; ++k)

10 {
11 double s11 , s12 , s13 , s22 , s23 , s33; // diagonal
12 double o12 , o13 , o23; // off -diagonal
13 s11 = (u[i+1][j ][k ] - u[i-1][j ][k ]) / (2*dx);
14 s22 = (v[i ][j+1][k ] - v[i ][j-1][k ]) / (2*dy);
15 s33 = (w[i ][j ][k+1] - w[i ][j ][k-1]) / (2*dz);
16 s12 = .5 * ( (u[i ][j+1][k ] - u[i ][j-1][k ]) / (2.0 * dy) +
17 (v[i+1][j ][k ] - v[i-1][j ][k ]) / (2.0 * dx) );
18 s13 = .5 * ( (u[i ][j ][k+1] - u[i ][j ][k-1]) / (2.0 * dz) +
19 (w[i+1][j ][k ] - w[i-1][j ][k ]) / (2.0 * dx) );
20 s23 = .5 * ( (v[i ][j ][k+1] - v[i ][j ][k-1]) / (2.0 * dz) +
21 (w[i ][j+1][k ] - w[i ][j-1][k ]) / (2.0 * dy) );
22 o12 = .5 * ( (u[i ][j+1][k ] - u[i ][j-1][k ]) / (2.0 * dy) -
23 (v[i+1][j ][k ] - v[i-1][j ][k ]) / (2.0 * dx) );
24 o13 = .5 * ( (u[i ][j ][k+1] - u[i ][j ][k-1]) / (2.0 * dz) -
25 (w[i+1][j ][k ] - w[i-1][j ][k ]) / (2.0 * dx) );
26 o23 = .5 * ( (v[i ][j ][k+1] - v[i ][j ][k-1]) / (2.0 * dz) -
27 (w[i ][j+1][k ] - w[i ][j-1][k ]) / (2.0 * dy) );
28

29 double a11 , a12 , a13 , a22 , a23 , a33;
30 a11 = s11*s11 + s12*s12 + s13*s13 -
31 o12*o12 - o13*o13;
32 a12 = s11 * s12 + s12 * s22 + s13 * s23 -
33 o13 * o23;
34 a13 = s11 * s13 + s12 * s23 + s13 * s33 + //yes , this is a +
35 o12 * o23;
36 a22 = s12*s12 + s22*s22 + s23*s23 -
37 o12*o12 - o23*o23;
38 a23 = s12 * s13 + s22 * s23 + s23 * s33 -
39 o12 * o13;
40 a33 = s13*s13 + s23*s23 + s33*s33 -
41 o13*o13 - o23*o23;
42

43 // Continued on next page

Figure C.8: The first part of λ2, implemented using C-style 3D arrays.
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44 // Continued from previous page
45

46 double B, C, D;
47 B = -(a11 + a22 + a33);
48 C = -(a12*a12 + a13*a13 + a23*a23 - a11 * a22 - a11 * a33 - a22 * a33);
49 D = -(2.0 * a12 * a13 * a23 - a11 * a23*a23 - a22 * a13*a13 - a33 * a12*a12 +

a11 * a22 * a33);
50

51 double q, r;
52 q = (3.0 * C - B*B) / 9.0;
53 r = (9.0 * C * B - 27 * D - 2.0 * B*B*B) / 54.0;
54 double theta;
55 theta = acos( r / sqrt( -q*q*q ) ); // q is always < 0
56

57 double eigen_1 , eigen_2 , eigen_3;
58 eigen_1 = 2 * sqrt( -q ) * cos(theta / 3.0) - B / 3.0;
59 eigen_2 = 2 * sqrt( -q ) * cos((theta + 2.0 * pi) / 3.0) - B / 3.0;
60 eigen_3 = 2 * sqrt( -q ) * cos((theta + 4.0 * pi) / 3.0) - B / 3.0;
61

62 if (eigen_1 <= eigen_2 && eigen_2 <= eigen_3)
63 lambda2[i][j][k] = eigen_2;
64 else if (eigen_3 <= eigen_2 && eigen_2 <= eigen_1)
65 lambda2[i][j][k] = eigen_2;
66 else if (eigen_1 <= eigen_3 && eigen_3 <= eigen_2)
67 lambda2[i][j][k] = eigen_3;
68 else if (eigen_2 <= eigen_3 && eigen_3 <= eigen_1)
69 lambda2[i][j][k] = eigen_3;
70 else if (eigen_2 <= eigen_1 && eigen_1 <= eigen_3)
71 lambda2[i][j][k] = eigen_1;
72 else if (eigen_3 <= eigen_1 && eigen_1 <= eigen_2)
73 lambda2[i][j][k] = eigen_1;
74 else
75 assert(false);
76 }
77 return lambda2;
78 }

Figure C.9: The second part of λ2, implemented using C-style 3D arrays.



Appendix D

Template Errors

A simple example of two expression template errors. (Figure D.1) shows

the code for a simple system of expression templates. (Figure D.2) shows the error-

messages that result when the user makes the mistake of adding arr instead of one

to x on Line 39. Because templates are expanded on-demand, the compiler reports

an error on Line 39 but not on Line 38, where the templates are not expanded. This

type of context-dependent error can be confusing. The error in (Figure D.3) occurs

when removing the parentheses around the Variable() constructor on Line 35.

This is an especially obscure error, as parentheses are usually just for precedence

and it is counter-intuitive to think that the parentheses would cause the x variable

to not be an Expression containing a Variable, but rather a function pointer which

took a function pointer which returned a Variable object. Neither of these errors

are nearly helpful enough for inexperienced users who would rather be told “you

used arr instead of one”, or “trust me, you need parentheses around Variable()”.
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1 #include <vector >
2 #include <algorithm >
3 struct Variable {
4 double operator () (double v) { return v; }
5 };
6 struct Constant {
7 double c;
8 Constant (double d) : c (d) { }
9 double operator () (double) { return c; }

10 };
11 template <typename E> struct Expression {
12 E expr;
13 Expression (E e) : expr(e) { }
14 double operator () (double d) { return expr(d); }
15 };
16 template <typename L, typename R, typename OP>
17 struct BinaryExpression {
18 L l; R r;
19 BinaryExpression (L l_ , R r_) : l (l_), r (r_) { }
20 double operator () (double d)
21 { return OP::apply (l(d), r(d)); }
22 };
23 struct Add {
24 static double apply(double l, double r)
25 { return l + r; }
26 };
27 template <typename L, typename R>
28 Expression < BinaryExpression <L, R, Add > >
29 operator +(L l, R r) {
30 typedef BinaryExpression <L, R, Add > Expr;
31 return Expression <Expr >(Expr(l, r));
32 }
33 int main() {
34 Expression <Constant > one(Constant (1));
35 Expression <Variable > x(( Variable ()));
36 std::vector <double > arr;
37 arr.push_back (10); arr.push_back (20);
38 arr + x;
39 std:: for_each(arr.begin(), arr.end(), arr + x);
40 }

Figure D.1: add-error.cxx

1 add -error.cxx: In member function ‘double BinaryExpression <L, R, OP >:: operator ()(double) [
with L = std::vector <double , std::allocator <double > >, R = Expression <Variable >, OP =
Add]’:

2 add -error.cxx :14: instantiated from ‘double Expression <E>:: operator ()(double) [with E =
BinaryExpression <std::vector <double , std::allocator <double > >, Expression <Variable >,
Add >]’

3 /usr/include/c++/4.2.1/ bits/stl_algo.h:159: instantiated from ‘_Function std:: for_each(
_InputIterator , _InputIterator , _Function) [with _InputIterator = __gnu_cxx ::
__normal_iterator <double*, std::vector <double , std::allocator <double > > >, _Function =
Expression <BinaryExpression <std::vector <double , std::allocator <double > >, Expression <

Variable >, Add > >]’
4 add -error.cxx :39: instantiated from here
5 add -error.cxx :21: error: no match for call to ‘(std::vector <double , std::allocator <double >

>) (double &)’

Figure D.2: The g++ error message caused by Figure D.1, Line 39 of main.
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1 add -error.cxx: In member function ‘double BinaryExpression <L, R, OP >:: operator ()(double) [
with L = std::vector <double , std::allocator <double > >, R = Expression <Variable > (*)(
Variable (*)()), OP = Add]’:

2 add -error.cxx :14: instantiated from ‘double Expression <E>:: operator ()(double) [with E =
BinaryExpression <std::vector <double , std::allocator <double > >, Expression <Variable >
(*)(Variable (*)()), Add >]’

3 /usr/include/c++/4.2.1/ bits/stl_algo.h:159: instantiated from ‘_Function std:: for_each(
_InputIterator , _InputIterator , _Function) [with _InputIterator = __gnu_cxx ::
__normal_iterator <double*, std::vector <double , std::allocator <double > > >, _Function =
Expression <BinaryExpression <std::vector <double , std::allocator <double > >, Expression <

Variable > (*)(Variable (*)()), Add > >]’
4 add -error.cxx :39: instantiated from here
5 add -error.cxx :21: error: no match for call to ‘(std::vector <double , std::allocator <double >

>) (double &)’
6 add -error.cxx :21: error: cannot convert ‘double ’ to ‘Variable (*)()’ in argument passing

Figure D.3: The g++ error message caused by removing the parentheses around
Variable() in Figure D.1, Line 35.
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