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Abstract

ESSAYS IN ECONOMIC POLICY AND CLIMATE CHANGE

by

Teng Liu

In this dissertation, I study the financial impact of climate change through bank lend-

ing, sovereign default risks, and household consumption behavior. With intensifying

climate change risks, financial institutions minimize potential losses by lending less to

borrowers with higher vulnerability to such risks. These borrowers include not only

businesses, but also national governments. Chapters 1 and 3 illustrate the credit con-

traction and financial distress that borrowers may experience. In particular, certain

sovereign borrowers’ difficulty in accessing funding is exacerbated by their inability to

effectively adjust revenue and expenditure. While the results documenting the effects

of climate change are about the financial sector, the impact may spill over into other

parts of the economy as well. Chapter 2 results show that when sovereign default risks

rise, there is likely household consumption loss. Chapters 2 and 3 together suggest that

when climate change increases sovereign default risks, there are important implications

for household behavior as well.

The agricultural sector is particularly susceptible to the impact of climate

change. In Chapter 1, I investigate how vulnerability to climate change affects U.S.

farms’ credit access, and demonstrates that such impact is unequally distributed across

farms. I first construct a theoretical framework of bank lending to farms faced with

xi



climate risks, and the model helps discipline ensuing empirical analyses that use novel

panel datasets at county and at bank levels. I find that higher exposure to climate

change, measured by temperature anomaly, reduces bank lending to farms. Such impact

is persistent, nonlinear, and heterogeneous. Small and medium farms almost always ex-

perience loss of loan access. In comparison, large farms see less severe credit contraction,

and in some cases may even see improvement in funding. While small banks continue to

lend to small farms, their limited market share cannot compensate for the reduction of

lending from medium and large banks. These results suggest that factors such as farm

size and bank type can amplify the financial impact of climate change.

In Chapter 2, I uncover how sovereign debt default risks spill over into house-

hold consumption behavior through the fiscal channel. Existing studies have sparsely

documented the consumption implications of sovereign default. During sovereign finan-

cial distress, a government typically conducts fiscal adjustment in areas such as pension

and food assistance. Thus for households who benefit from public transfers, the adjust-

ment of public expenditures matter for their consumption behavior. Using micro-level

data of the National Survey of Household Income and Expenditure (ENIGH) of Mex-

ico, I measure household consumption changes resulting from fiscal adjustment and from

sovereign risks. The analyses consist of state-level and household-level estimates, and

provide nuanced views of the default-consumption link by exploiting micro variables

such as household income distribution, wealth, and socio-demographic characteristics.

Both the state-level and household-level results suggest that in many cases, the link

between default risk and household consumption is negative and significant, especially

xii



through the adjustment of pension expenditure.

Responding to climate change poses increasingly high fiscal costs. In Chapter

3, I examine how climate change affects sovereign default risks and fiscal policy through

a set of empirical results and a stylized model. Using panel data of 135 countries over

1995-2018, I first show that 1 percentage increase of vulnerability to climate risks can

increase sovereign default probability by around 5 percentage points, and such default

risks may differ by fiscal conditions. More specifically, fiscal conditions refer to whether

and how a government can conduct tax and expenditure adjustment to respond to

aggregate shocks. The stylized model of sovereign default also shows that the risks

of climate change raise default probability. Moreover, if a government has high fiscal

rigidity, it also raises the default probability, thus potentially amplifying the costs of

climate risks. Such results point to the importance of structural reform to reduce a

government’s debt vulnerability resulting from climate change.
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Chapter 1

Save the Farms: Nonlinear Impact of

Climate Change on Banks’ Agricultural

Lending

1.1 Introduction

The acceleration of climate change in the United States has materialized as

increasing frequency and severity of extreme weather conditions, especially since year

2010.1 Such weather extremes and disasters contribute to economic losses: the National

Oceanic and Atmospheric Administration (NOAA) estimate that since 1980, the U.S.

has experienced large-scale climate disasters with loss of over $1.875 trillion, and over

48% of which occurred during 2010-2020.2 The agricultural sector is especially vulnera-

1U.S. Climate Extremes Index (CEI)
2Billion-Dollar Weather and Climate Disasters
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ble to the risks of climate change and disasters, and the issue has received considerable

academic and policy attention. For instance, Walthall et al. (2012) assess that increas-

ing temperature and extreme precipitation can reduce U.S. farms’ crop productivity.

Despite increasing understandings of the economic implications of climate change, not

enough attention has focused on the role of financial institutions in this context, par-

ticularly with respect to the U.S. agricultural sector.

At the same time, commercial banks play a nontrivial role in financing farms’

production and operations, accounting for around 40% of total U.S. farm debt as of

2020.3 Yet U.S. farms seem to be facing increasing financial challenges since 2015, as

demonstrated by the growing shares of non-performing loans.4 A number of studies

examine the effect of natural disasters on general bank lending, such as Ivanov et al.

(2020), Koetter et al. (2020), Garbarino & Guin (2021), Schüwer et al. (2018), Petkov

(2019), Brei et al. (2019), and Cortés & Strahan (2017).5 Yet few of these studies

specifically focus on bank loans to the U.S. agricultural sector.

My chapter contributes to the literature by examining how farms’ credit access

is affected by their exposure to climate change and disasters. Compared with companies

in other sectors, farms absorb the financial impact of climate change more directly:

farms that have crop or livestock failures due to climate change will experience revenue

loss, thus are likely to default on their bank loans. It is also generally not feasible for

3See this article by Willingham (2021)
4See Figure 1.14 in the Appendix
5In particular, Ivanov et al. (2020) is similar in that they examine how banking networks amplify

the effect of natural disasters. Two key differences with my chapter: 1). Ivanov et al. (2020) use the
restricted access Shared National Credit data, focusing on syndicated loans. 2). Their paper does not
explicitly measure the vulnerability to climate change

2
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farms to relocate. At the same time, understanding whether the agricultural sector has

adequate financing is important to build a resilient food system in response to climate

change.6 To the best of my knowledge, this chapter is one of the first studies that detect

the impact of climate change vulnerability on agricultural lending, and the results pay

careful attention to the distribution of such effects. More specifically, the analyses reveal

that the impact varies by farm size, income area, agricultural region, and bank size.

In order to help answer the research question, I first construct a two-period

model of bank lending to farms. The framework provides qualitative predictions on

the directions of impact of climate risks, and guides the interpretation of results in the

empirical section. In this simple, stylized economy, the farm seeks a loan from the

bank, in anticipation of larger financing needs due to climate change. When evaluating

whether to provide a loan, the bank assesses the farm’s expected payoff, taking into

account factors such as the farm’s productivity. If assuming that a larger farm has

higher productivity, the model predicts that the bank is more likely to lend to the

larger farm than small farm, even if their exposure to climate change is identical.

To uncover differences in farms’ credit access empirically, I focus on exploiting

county-level and bank-level variations. The key variable in this chapter is banks’ lending

to farms, which is measured using data from the Community Reinvestment Act (CRA)

housed at the Federal Financial Institutions Examination Council (FFIEC). While a

6Answering the credit access question is important, as it lays the foundation for further understanding
U.S. farms’ climate resilience: after a climate-related disaster, it is possible that farms in U.S. counties
with more bank lending recover faster than counties with less bank financing, and they may also adapt
better to climate change. Thus there may be systematic differences in counties’ adaptability to climate
risks, which can partly be explained by bank lending.

3



few papers like Bord et al. (2021) have used such data to examine questions related to

local banking, CRA agricultural lending is a novel dataset to use for questions related to

climate change. It is publicly available, and offers geographic and temporal variations

that are necessary to identify the effects of climate change. Then the bank lending data

are merged with measures of climate change vulnerability. The main measurement in

this chapter is the county-specific temperature anomaly, typically used in the scientific

literature to proxy for climate change.

Following existing studies such as Burke et al. (2015), I use nonlinear econo-

metric specifications to estimate the effects of climate change on bank lending to farms.

The analysis differentiates between lending to large farms and that to smaller farms, as

these groups may be fundamentally different in their production structure and financial

capabilities. The results from Section 1.4.2 at the county-level confirm the predictions

from the conceptual framework: given the same county-specific temperature anomaly, it

is more likely for smaller farms to be denied loans than large farms. While such overall

patterns are statistically significant for all U.S. counties, there is also a range of regional

heterogeneity. For example, the divergent effects on small and large are most clearly

seen in northern states such as the Dakotas and southern states such as Mississippi

and Louisiana. Additionally, farms located in Census-designated middle income areas

experience the impact most significantly, compared with those in lower and high income

areas.

Further, the bank-level estimation in Section 1.4.3 is consistent with county-

level results, and also reveals that the size of banks also plays a role in lending patterns.

4



Large banks in general are less willing to lend, small-mid banks lend less to small farms

and more to large farms, and very small banks lend more to small farms. Due to the

dominance of large banks in smaller loans, on which small farms most likely rely, the

reduction of this type of lending may explain the credit access loss that small farms

experience at the county aggregate level.

Based on the econometric estimation, I also conduct scenario analysis of the

impact of future climate scenarios at county and bank levels. More specifically, I cal-

culate marginal effects of a given temperature anomaly (of a given climate scenario) on

lending patterns. As a climate scenario becomes more pessimistic (higher temperature),

the magnitudes of effects become larger, as do the divergent impact across farm types.

The chapter proceeds as follows. Section 1.2 delineates the two-period model

and its qualitative predictions. Section 1.3 describes the datasets, why particular tem-

perature measurements are used, and summary statistics. Section 1.4 shows the econo-

metric framework, and presents the results at the county-aggregate level and bank-level.

Section 1.5 concludes and discusses the implications of the results.

1.2 Conceptual Framework

Timeline and Environment

To illustrate the link between climate change and bank lending to farms, this

section provides a conceptual framework7 of loan contracting based on Chodorow-Reich

7The current framework assumes one is agnostic about the bank type. As illustrated in the empirical
section, bank size/type plays a role in lending decisions. I plan to further develop this model to consider
the role of bank type

5



et al. (2021) and Holmstrom & Tirole (1998), with applications to the distributional

assumptions specific to climate change shocks and the importance of farm sizes. In a

stylized economy, there is one bank and one farm. The farmer faces uncertain output

and lives for only 2 periods. The timeline of the framework is shown in Figure 1.1.

At t = 0, the farm applies for a loan (or credit line) with the bank, and this loan

is to be used next period. At t = 1, due to climate change, the cash-flow shock ρ

materializes: to continue operations, the farmer needs to inject ρ per unit of asset,

and ρ ∼ F = N
(
µ, σ2

)
. When ρ > 0, it means the farm has cash needs. The bank

approves or denies the loan, based on the cash-flow shock and uncertain terminal value.

If approved, the credit line is ρ̂. If the farm has been denied credit, it has to shut down.8

At t = 2, the farm yields payoff z+ ϵ per unit of asset. The shock ϵ is uncorrelated with

ρ and has mean zero, and is observable at t = 1 if the bank pays a monitoring cost of ξ.

In other words, there are two states in the system: ρ and ϵ. It is worth dis-

cussing further the key parameters in the framework. The two parameters that describe

the distribution of ρ are mean µ and standard deviation σ. Science literature generally

uses temperature anomaly to measure climate change, and some studies suggest that

in recent decades, the bell curve of temperature has changed. More specifically, on a

global scale, the mean of temperature anomaly has shifted to the right, and the tails of

the curve have become ‘fatter’.9 In other words, the temperature is becoming higher

than normal, and it is more likely for extreme temperature to occur. Relating this to

the framework, it means that the size of the cash-flow shock that a farmer faces may

8In other words, we assume that the farm has no other way to raise alternative capital
9For a graphical illustration, see Figure 4 of Hansen et al. (2012)

6



become bigger and more extreme than historical averages, which has implications for

whether and how much the bank provides credit.

Moreover, z is the parameter that contributes to the farm’s terminal value

per unit of asset at t = 2. One can interpret this parameter as the fundamentals or

productivity of a farm. Besides, a financial friction exists in the economy such that

when applying for credit, the farm can only pledge a fraction, indicated by θ of their

terminal value as collateral.

For simplicity, this framework only focuses on discretion as the contractual

form. Under discretion, the bank can choose to monitor the farm at t = 1. In other

words, the bank can terminate the loan/credit line upon observing cash-flow shock ρ

or ϵ shock to terminal value. Put another way, even if the initial loan contract is

established at t = 0, the fund is not disbursed until the next period. Then at t = 1, the

bank observes the cash-flow shock ρ. The bank can also choose to monitor the shock

ϵ to farm by paying a cost of ξ. After considering the potential payoff, the bank can

choose to abandon the loan contract. In the literature, commitment is another possible

contractual form, but empirical studies such as Sufi (2007) show that bad shocks can

modify or end credit line. More importantly, the commitment contract is less insightful

in illustrating how credit provision varies with both the states of ρ and ϵ, as the bank

grants credit only if ρ < θz (and monitoring does not exist under the commitment

contract).10

10More specifically, under commitment, the solution to ρ̂ = µ+σh−1
(
µ−θz

σ

)
, where h−1 is the inverse

of h(x) = ϕ(x)/Φ(x), the ratio of standard normal probability density function to cumulative density
function. For derivation details, see Chodorow-Reich et al. (2021).
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Figure 1.1: Timeline of Bank Lending to Farms

Equilibrium

To solve for the equilibrium under the discretion contract, the bank simulta-

neously decides on whether to monitor and whether to approve or deny the loan. The

expected value of monitoring is VM , and of not monitoring V N .

The bank’s lending decision can be characterized as the following:

V = max{VM , V N} (1.1)

where

V N = max{θz − ρ, 0} (1.2)

and

VM = E[max{θ(z + ϵ)− ρ, 0}]− ξ (1.3)

Thus, with monitoring, the bank’s decision to lend or not is based on minimiz-

ing their losses, namely lending only occurs if ρ < θ(z + ϵ).

More detail on the monitoring decision is found in Chodorow-Reich et al.

(2021), and the main insight is that monitoring only makes sense when the cash-flow

shock is in a range, or ρ ∈ [ρ, ρ̄]. In other words, when the cash-flow shock ρ is extremely
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small, to the left of ρ, the bank will approve the loan and there is no value in monitoring.

On the other hand, when ρ is extremely large, to the right of ρ̄, the bank always denies

the loan and there is no value in monitoring.

To derive close-form solutions for the these critical values ρ and ρ̄, assume for

simplicity that ϵ takes on 3 values {−e, 0, e} with probability {q, 1− 2q, q}.

When the cash-flow shock ρ is sufficiently small, θ(z−e) < ρ < θz, the expected

payoff of monitoring is:

VM = θz − ρ︸ ︷︷ ︸
V N

+ q[ρ− (θ(z − e)]︸ ︷︷ ︸
Monitoring value

− ξ︸︷︷︸
Monitoring cost

(1.4)

such that the bank would prefer monitoring if and only if

ρ > ρ := θ(z − e) + ξ/q (1.5)

When the cash-flow shock ρ is sufficiently large, θz < ρ < θ(z+e), the expected

payoff of monitoring is:

VM = 0︸︷︷︸
V N

+ q[θ(z + e)− ρ]︸ ︷︷ ︸
Monitoring value

− ξ︸︷︷︸
Monitoring cost

(1.6)

where V N = 0 because without monitoring, the expected payoff θz − ρ is negative,

and the bank would automatically reject the loan, such that the bank would prefer

monitoring if and only if

ρ < ρ̄ := θ(z + e)− ξ/q (1.7)

By combining and generalizing the above results, the bank’s lending decisions

can be graphically illustrated in Figure 1.2. To summarize, the lending decisions depend
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on both the states ρ and ϵ. The horizontal axis illustrates the degree of cash-flow shock:

the more to the right, the higher a farm’s cash needs are. The vertical axis shows the

degree of fundamentals that determine the terminal value of the farm (put simply, the

positive ϵ illustrates good state, while negative ϵ refers to bad state). θz is the farm’s

pledgeable terminal value as collateral.

The graph shows that the bank will lend to the farm in two broad cases: 1) ϵ

is in good state, and ρ is not too large; 2) ϵ is in bad state, but ρ is very small. On the

other hand, the bank will deny lending to the farm in two broad cases: 1) ϵ is in good

state, but ρ is too large; 2) ϵ is in bad state, and ρ is sufficiently large.

So far the analysis assumes that there is only one type of farm in the economy.

However, studies such as Chodorow-Reich et al. (2021) illustrate that firm size matters

for the terms of contract for bank loans. More specifically, within the U.S. farm system,

it is possible that there are fundamental differences between large and smaller farmers

that affect the key parameters in this stylized framework. For example, regardless of

the shock ϵ, large farms have higher z than smaller farms. In fact, there is evidence of

differing productivity between large and small farms, as documented by the Economic

Research Service (ERS), United States Department of Agriculture (USDA). Moreover,

there is emerging evidence from microeconomic studies such as Etwire et al. (2022)

suggesting that farm size has a positive relationship with the decision to adopt climate

adaptation measures. Put another way, when faced with the identical climate induced-

shock ρ, large farms’ adaptation capability ensures they have larger terminal value.

Finally, due to their market power or name recognition, large farms may have more
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publicly available information about themselves, thus the bank spends less ξ monitoring

large farms.

Assuming that large farms have larger z and smaller ξ, define the critical values

for large farms as ρ
b
and ρ̄b. We can derive from Equations 1.5 and 1.7 that ρ

b
≈ ρ

and ρ̄b > ρ̄. As seen in Figure 1.2, the critical range is wider for large farms. Moreover,

when faced with large shocks, it is more likely for large farms to be approved for a

loan, and the lending region is bigger. Put simply, large farms have more ‘room to

maneuver.’ Motivated by the predictions of this conceptual framework, the rest of the

chapter examines the empirical links between climate shocks and bank lending to farms.

1.3 Data and Measurements

The chapter employs three main types of data: bank lending to farms; climate

risks and disasters; agriculture production and other banking variables. The data are

observed at U.S. county level and on an annual frequency.

Bank Financing

Accurately capturing lending to U.S. farms is a challenge, as such data at loan

level tend to be confidential. While bank call reports include information about farm

loans, such data are only available at bank institution level, and not at bank branch

level. Therefore, these data do not have geographic variations that are necessary to

identify how climate change vulnerability relates to farm lending in different regions.

To the best of my knowledge, the Community Reinvestment Act (CRA) dataset11 is

11See https://www.ffiec.gov/cra/craproducts.htm
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Figure 1.2: Lending Regions under Bank Discretion: Small-Medium versus Large
Farms

Note: Compared with smaller farms, the lending region to large farms is wider. ρ stands for the cash-flow shock
caused by temperature anomaly; ϵ is an independent shock that contributes to a farm’s terminal value. The

subscript b refers to the scenario in which the farm is large.

the only publicly available source that provides a relatively comprehensive view of farm

lending for the United States.

The CRA is a federal law enacted to encourage banks to lend to rural as well

as low- and middle-income communities.12 The dataset covers years 1996 to 2019, and

loans to small farms by county as well as by bank institutions. For the purpose of the

12Keenan & Mattiuzzi (2019)
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chapter, I use information of small farm loan originations, both in terms of the total

number and amount of loans. Additionally, the original CRA database is disaggregated

by several overlapping levels of measurements: loan size, banking institution, and income

characteristics of recipients. The analysis focuses on total of loans in each county. In

other words, the unit of analysis is the total amount of CRA financing in each county.

It results in a panel dataset at county level across years.

More specifically, two types of CRA variables are used: number of CRA loans;

total amount of such loans. All the loan variables are converted to real terms (2015

dollar). Additionally, I categorize the loans based on farm groups: 1) loans to small-

medium size farms (less than $1 million gross revenue); 2) loans to large farms (more

than $1 million gross revenue).

The CRA dataset identifies loans to farms with less than $1 million of gross

annual revenue. Thus the funding that goes to large farms can be derived from this vari-

able. This categorization is broadly consistent with the classifications of the Economic

Research Service (ERS) of USDA (2021). The ERS classification is based on farm gross

revenue as well: 1) small farms have less than $350 thousand gross revenue; 2) midsize

farms have $350-999 thousand gross revenue; 3) large farms have more than $1 million

gross revenue.

While the CRA dataset is insightful, it is limited in its scope and coverage.

First, it does not encompass all the farm lending that banks provide, as not all U.S.

financial institutions are subject to CRA reporting requirements. For example, credit

unions, which are not backed by the Federal Deposit Insurance Corporation (FDIC),
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are not included in the dataset. Moreover, the dataset is only for farm lending that is

small in terms of amount. According to the CRA reporting guidelines shown in FFIEC

(2015), a small farm loan is defined as one with amount less than $500,000, and can be

either for farm land or production purpose. While CRA lending goes to farms of all

sizes, it is likely that the lending to large farms are not representative of all the financial

flows to such farms.

Climate Change Measures

To measure vulnerability to climate change, I use two types of variables:

1) county-level climate-related disasters; 2) county-level records of extreme climate con-

ditions. The data on climate-related disasters come from the Disaster Declarations

Summary by the Federal Emergency Management Agency (FEMA).13 Publicly avail-

able, this dataset records the dates and types of natural disasters (e.g., hurricane; flood)

at the county level. The year coverage is 1953 to present. However, extreme weather

events are not equivalent to climate change.

Thus I also use the temperature and precipitation data that NOAA collects

from year 1895 to present. More specifically, I use NOAA Monthly U.S. Climate Di-

visional Database (NClimDiv). Using such data, I measure climate anomaly that each

county experiences in each year compared to its long-run average (e.g., 30 years).14 Es-

sentially this anomaly variable is the difference between yearly observed value and the

13See https://www.fema.gov/openfema-dataset-disaster-declarations-summaries-v2
14In the climate literature, there does not seem to be consensus on what the “correct” baseline is,

studies use anywhere between the past 30 years and the preindustrial years as reference periods. See
Moore et al. (2019)
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county’s mean value in record.15 Finally, I also categorize counties into climate regions

using the 2012 International Energy Conservation Code created by the International

Code Council.

It is worth discussing the primary choice of temperature measurement in this

chapter—maximum temperature (observed daily but extrapolated to yearly for anal-

ysis in the chapter). While mean temperature and its increase are often discussed in

relation to climate change, it is problematic as an empirical measure as it has a clear

trend. Additionally, temperature extremes are likely more indicative of the unexpected

“shocks” posed by climate change, therefore likely have more exogenous variation. For

example, it is likely easier for agents to predict mean temperature than temperature

extremes based on historical observations—the mean temperature is the first moment,

whereas temperature extremes are related to higher moments. In other words, temper-

ature extremes are likely to be unanticipated by economic agents, thus truly exogenous

to the economic behavior one tries to explain.

Thus the choice comes down to maximum versus minimum temperature, and

the maximum measurement is the primary metric used in the chapter. The main reason

for this choice is that at least within the United States, record high temperatures are

becoming more common than record low temperatures. For instance, one report by

the Environmental Protection Agency (EPA) shows that the frequency distribution

of extreme highs and lows are uneven in the past few decades; in particular, in the

2000s extreme highs had twice as many occurrences as extreme lows. One way of

15The original NOAA data are monthly observations, and I took average of the monthly observations
to obtain the annual observations
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interpreting this unevenness is that it is more likely for climate change to materialize as

maximum than minimum temperature. Besides the factor of frequency, studies by Vose

et al. (2017) for the National Climate Assessment project that throughout the century,

the intensity of extreme highs are going to increase, while that of extreme lows will

decrease—more severe heat waves, and less severe cold waves. Finally, recent studies

such as Diffenbaugh et al. (2021) that examine how climate change affects the economics

of agriculture use daily maximum temperature as the primary measurement. However,

in this chapter, minimum temperature and precipitation data are included as controls

or used as alternative measurements in robustness tests.

Agricultural and Other Banking Variables

Estimations in the chapter are supplemented by variables that illustrate the

characteristics of agricultural production and banking in each county. The farm-related

data mainly come from USDA Agricultural Census, which is generally conducted every 5

years. Additionally, USDA ERS also provides classifications such as farm areas that are

helpful to understand regional heterogeneity of the impact of climate on bank lending.

Finally, I use the Summary of Deposit (SOD) dataset from FDIC to control for each

county’s banking characteristics such as number of bank branches.

Summary Statistics

The analysis in the chapter makes an effort to distinguish between the lending

to large and to smaller farms. At the same time, CRA lending goes primarily to non-

large farms. Thus it is first useful to understand the distribution of farm size and why
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one should care about the insights from analyzing the CRA lending data.

Using the USDA Agricultural Census 1997 through 2017, I have tabulated the

distribution of farm size in Table (1.1). In the United States, large farms dominate

the value of total market production (MacDonald (2021)). But as seen in Table (1.1),

in terms of number of operations, the vast majority of farms are not large. In fact,

small farms on average account for over 80% of the country’s total farms in the past

two decades.16 Across the years observed, it seems that farms with over $500 thousand

gross sales have increased in shares—in fact, their shares have exactly doubled between

1997 and 2017. At the same, farms in the intermediate range ($100k to 499k) have

dwindled, with the smallest farms (less than $100k) seeing a small increase across the

years observed. While it requires more rigorous testing, it seems the distribution of

farm size, in terms of number of operations, has become more bimodal. In summary,

based on the Census data, small farms are critical parts of the U.S. agricultural system.

Table 1.1: Size and Sales Distribution of U.S. Farms

Share of farms (Percent)

Farm size Sales category 1997 2002 2007 2012 2017

Small < $100k 81.9 85.3 83.8 81.5 82.1

Small to Midsize $100k-499k 14.5 11.3 10.9 11.1 10.7

Midsize $500k-999k 2.2 2.1 2.8 3.6 3.4

Large > $1 million 1.4 1.3 2.5 3.8 3.8

Source: USDA Census 1997-2017, Table 2 “Market Value of Agricultural Products Sold Including Landlord’s Share and Direct
Sales”

16The sales categories in the Census go from $100k to $249k, and then $250k to $499k. Thus the
Census data do not provide a clear cutoff between small and midsize farms—the threshold is $350k
according to ERS.
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Tables (1.2) provides summary statistics of CRA loans at the county level in

terms of number of loans, and the amount of loans. The table is grouped by lending to

large and to small-medium farms. Overall there are 3,106 counties in the CRA dataset

across 24 years (1996-2019). As shown by Table (1.2), due to the nature of CRA, the

overall magnitudes of lending to small-medium farms are bigger than to large farms.

Section 1.6 provides additional summary statistics grouped by the loan size thresholds.

To illustrate the geospatial distribution of CRA lending, I have mapped data

through Figures (1.3) and (1.4) that illustrate the average county values during 1996-

2019. At first glance, regions and states that are traditionally major agricultural pro-

ducers (e.g., parts of California and the Midwest) also tend to receive more financing,

both in terms of number and amount of loans. For the rest of the country, CRA lending

seems relatively evenly distributed. Section 1.6 provides more maps of CRA lending

to small-medium versus large farms (both in absolute values and normalized by county

GDP). While Table (1.1) summarizes the size distribution of farms across years, Figure

(1.5) illustrates the distribution across space. Comparing it with the CRA maps, it

seems there are parallels between the high share of larger farms and the bank lending,

though the patterns do not hold for all counties.

1.4 Econometric Analysis

In this section I present econometric analysis testing the hypothesis that farms

located in U.S. counties more exposed to climate change tend to receive less bank fi-

18



Figure 1.3: Yearly Average Total Amount of CRA Farm Loans, 1996-2019, in thousand
2015 USD

Source: FFIEC (2021)
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Figure 1.4: Yearly Average Number of CRA Farm Loans, 1996-2019
Source: FFIEC (2021)
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Figure 1.5: Share of Small Farms (gross sales < $250k), 2012-2017
Source: USDA Census
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Table 1.2: Summary Statistics

Variable Mean Std. Dev. Min Max Observations

Number of loans overall 17.07 26.69 1.00 1030.00 N = 64253
to large farms between 18.24 1.00 245.67 n = 3102

within 18.75 -166.97 979.99 T-bar = 20.7

Amount of loans overall 1080.59 2226.96 1.01 40557.89 N = 63983
to large farms between 1748.34 3.64 27361.08 n = 3101
(thousand 2015 USD) within 1236.82 -13643.49 26748.78 T-bar = 20.63

Number of loans overall 52.87 81.44 1.00 1623.00 N = 70914
to small-medium farms between 64.85 1.00 1101.08 n = 3105

within 48.25 -416.13 1020.78 T-bar = 22.8

Amount of loans overall 2890.80 4867.74 1.01 140596.10 N = 70749
to small-medium farms between 4212.58 1.06 85225.58 n = 3104
(thousand 2015 USD) within 2322.11 -48932.92 58261.29 T-bar = 22.8

nancing. The analysis uses two measures of climate change: disasters; climate condition

anomaly.17 The econometric specifications in the chapter focus on the nonlinearity of

temperature effect, following the standard approach in the literature such as Diffenbaugh

et al. (2021) and Schlenker & Roberts (2009) on agriculture and climate change.

Empirical Framework

The framework follows closely that in Hsiang (2016) and Burke et al. (2015).

Weather and climate are different, yet empirical measurements of climate change are

largely derived from weather data such as temperature and precipitation. As in Hsiang

(2016), one can define c(C) as the observable characteristics of weather c conditional

on the underlying climate process C. Suppose that vector C has length K, indexed

by k. Additionally, define Y as an economic outcome, and in this case bank lending.

Moreover, conditional on the climate process, agents’ beliefs b may affect their decisions

17Additional empirical results forthcoming: constructing the Herfindahl index to measure bank’s
market power.
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and relevant actions—for example, climate adaptation behavior. Suppose vector b has

length N indexed by n. Thus the relationship between climate change and an economic

outcome can be described as the following:

Y (C) = Y [c(C),b(C)] (1.8)

Therefore, the total marginal effect of climate change is the following:

dY (C)

dC
= ∇cY (C) · dc

dC
+∇bY (C) · db

dC

=
K∑
k=1

∂Y (C)

∂ck

dck
dC︸ ︷︷ ︸

direct effects

+
N∑

n=1

∂Y (C)

∂bn

dbn

dC︸ ︷︷ ︸
belief / adaptation effects

,
(1.9)

where ∇c and ∇b are the gradients of c and b, and dc
dC and db

dC are K ×K and N ×K

Jacobians.

In reality, it is difficult to observe beliefs, and thus challenging to disentangle

the direct effects from belief effects. Thus, in this chapter I focus on estimating the

overall effects.18

1.4.1 Climate Disasters

Climate disasters are the realizations of climate change risks. Thus, examin-

ing the effect of climate-related disasters on bank lending establishes helpful baseline

understandings.

The econometric specification for the county level analysis is

yit = βkdisasterit + γitrend+ γi2trend
2 + ui + ηt + λrt + eit (1.10)

18I plan on using the data from Yale Climate Opinion Maps in future versions of the paper.
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where yit refers to CRA lending variables, with subscript i as county index and subscript

t as year. Additionally, each of the county i corresponds to one climate region indexed

by r. disasterit refers to a vector of climate-related disasters reported by FEMA.

Since the evolution of bank lending in relation to climate change may be non-

linear, the linear and quadratic county-specific year trends, denoted as trend and trend2,

are both included, to allow for more flexibility in estimation. ui and ηt are county and

year fixed effects. ui controls for the time-invariant heterogeneities of counties. The

year fixed effect controls for global shocks such as commodity cycles in specific years.

Moreover, it is likely that the effects of such shocks differ by climate region, thus the

region by year (interaction) fixed effect λrt is included to explicitly control for this.

Finally, eit is the error term.

Moreover, there are four main CRA variables used in the analysis: 1) Number

of loans to large farms 2) Amount of loans to large farms 3) Number of loans to small-

medium farms 4) Amount of loans to small-medium farms.

To measure climate disasters, I count the number of FEMA-declared disasters

that are related to climate in each county in each year. It is important to note that

such events are all extreme/anomaly events. FEMA, a federal agency, only declares

an event as a disaster when local and state governments are unable to cope with it

(FEMA (2021)). The main types of FEMA-declared disasters include: 1) coastal storm,

2) flood, 3) freezing, 4) hurricane, 5) landslide, 6) ice storm, 7) storm, 8) snow, 9) and

tornado. The disaster events are orthogonal to each other (i.e., no double counting)

due to how FEMA categorizes such events. For example, while snow and ice storm may

24



seem related, they are generally distinct events. Additionally, for disaster events such

as freezing, ice storm, and snow that occur in winter, it is likely that they occur at the

end of a year and thus their effects are lagged compared with other disasters. Thus, in

the regression these winter disasters are lagged by 1 year.

Table (1.3) reports the results from estimation of Equation (1.10). With the

exception of freezing, almost all the disasters have some significant effect on at least

one of the CRA variables. In particular, the coefficients for hurricane and storm are

negative and significant across all the lending variables. Similarly, the relationship

between CRA lending and flood, landslide, ice storm, and snow is generally negative.

In other words, for the aforementioned events, the more they occur, the less the level

of CRA lending there is. Section 1.6 reports the same estimations but grouped by the

loan size thresholds. Additionally, the results are robust to dropping observations from

years 2008-2009 (the Great Recession), reported in Section 1.6.

The results of Table (1.3) suggest that there is a negative link between climate-

related disasters and the level of bank lending. Moreover, this relationship holds for

loans to both large and small-medium farms. However, one key limitation from the

estimation of Equation (1.10) is that it is difficult to plausibly identify that such climate-

related disasters are all occurring due to climate change. Put another way, weather

events are not the same as climate change. Therefore in the remainder of the chapter,

I use temperature and precipitation data as more direct measures of climate change.
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Table 1.3: CRA Farm Loans and Climate Disasters, County Total

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Coastal Storm 1.64** -16.40 0.04 -169.21
(0.73) (48.44) (1.89) (103.11)

Flood -0.82*** -7.06 -1.70** -22.73
(0.30) (24.96) (0.80) (44.87)

Freezing (lagged) 10.68 225.97 7.39 340.29
(8.47) (241.82) (8.48) (211.47)

Hurricane -0.91*** -44.37*** -0.57* -105.77***
(0.15) (8.35) (0.31) (15.88)

Landslide -8.10*** -519.86*** 8.09** -600.68***
(1.77) (112.00) (3.21) (104.77)

Ice storm (lagged) -0.78*** -42.40*** 1.49 -4.93
(0.22) (14.82) (0.95) (38.12)

Storm -0.32** -36.60*** -1.48*** -43.96**
(0.12) (9.59) (0.44) (19.45)

Snow (lagged) -0.02 3.18 -5.61*** -11.76
(0.24) (20.74) (0.95) (46.84)

Tornado -1.13* 11.23 3.39 206.95
(0.67) (62.78) (2.78) (130.59)

Observations 69,728 69,728 69,728 69,728
R-squared 0.203 0.138 0.140 0.052
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.10) yit = βkdisasterit + γitrend+ γi2trend
2 + ui +

ηt + λrt + eit

1.4.2 Climate Change Measured by Temperature Anomaly: County

Level

In this section, I use temperature and precipitation data from NOAA to mea-

sure climate change. Following the framework as in Burke et al. (2015), the baseline

regression is the following:

yit = β1Tit + β2T
2
it + ui + ηt + λrt + γitrend+ γi2trend

2 + eit (1.11)

Here the variable Tit stands for anomaly of maximum temperature observed

in a county in each year. To calculate this variable, I take the difference between each
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county’s observation in a year and the same county’s average maximum temperature in

the past 30 years. There are two reasons for this choice of calculation. First, compared

with mean value, temperature anomaly is a preferred metric for climate scientists to

measure climate change.19 Additionally, the process of calculating the anomaly is equiv-

alent to “centering” the variable Tit, so that the issue of multicollinearity is minimized

when including the quadratic term T 2
it. The inclusion of the quadratic term is similar

to that in Burke et al. (2015), so that the nonlinear effect of temperature is accounted

for. Everything else in Equation (1.11) is the same as in Equation (1.10).

Table (1.4) shows the results of the baseline regression. Columns (1)-(2) show

the results of CRA lending to large farms, while Columns (3)-(4) showing lending to

small-medium farms. The signs of coefficients are the opposite for these two groups in

Table (1.4). More specifically, the linear effect of high temperature anomaly is negative

for large farms, and it is positive for small-medium farms. In contrast, the quadratic

effects for the two groups are the opposite.

The results are robust to excluding 2008 and 2009 observations, as shown in

Section 1.6. Additionally, the results are robust to alternative year intervals of temper-

ature anomaly, as seen in Section 1.6. More specifically, the current measure of anomaly

is based on the deviation from the 30-year mean, but the results are consistent for the

following year intervals as well: 50 years, 70 years, 100 years, and 1895 to 2019.

The shapes of the effects can be visualized in Figure (1.6), where Panels (a)

and (b) illustrate small-medium and large farms respectively. The shape of temperature

19For example, see NOAA’s description of its dataset Global Surface Temperature Anomalies
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Table 1.4: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.14* -15.47*** 1.49*** 11.68
(0.08) (5.77) (0.19) (10.09)

Temp. anomaly (square) 0.01 4.22** -0.85*** -11.01***
(0.03) (1.94) (0.07) (3.91)

Observations 72,834 72,834 72,834 72,834
R-squared 0.194 0.142 0.133 0.058
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.11), yit = β1Tit + β2T 2
it + ui + ηt + λrt + γitrend+

γi2trend
2 + eit

anomaly effect for small-medium farms is concave. When temperature anomaly is neg-

ative (i.e., below normal), the level of CRA lending is increasing. But as the maximum

temperature anomaly goes above normal, the level of lending goes down. This suggests

that the overall effect of climate change, generally indicated by increasing temperature,

is negative for lending to small-medium farms. In contrast, for large farms, the shape

of the graph is convex. In particular, as temperature anomaly goes above normal, the

CRA lending to this group actually rebounds.

One possible explanation for this contrast is that the estimation here includes

both direct and adaptation effect. Large farms, due to more available resources, may be

better able to adapt to increasing temperature. Hence banks are more willing to lend

to such farms that are more adaptive to climate change. Another related explanation

is that banks consider large farms to be less risky, and replace their lending to small-

medium farms with loans to large farms—in other words, the overall lending to a county

may stay relatively constant, but it simply shifts from small to large farms.
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Figure 1.6: Nonlinear Effect of Temperature on CRA Lending

(a) Frequencies to Small-Medium Farms (b) Amount to Small-Medium Farms

(c) Frequencies to Large Farms (d) Amount to Large Farms

Note: Results based on regressions in Table (1.4); Gray lines indicate 95% confidence intervals

All the results so far focus on the level effect of temperature anomaly, and

additional analysis is conducted on the growth effect: i.e., the dependent variable is the

growth of CRA lending. The nonlinear effect still retains some significance, though the

directions of impact are the same across farm groups. The results are reported in Tables

(1.35) and (1.36) in Section 1.6 of Appendix.
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Marginal Effects by Climate Scenarios

Since this chapter focuses on the impact of climate change, it is useful to es-

timate the how such impact could materialize in the near future. The United Nations

(UN) Intergovernmental Panel on Climate Change (IPCC) conducts regular assessments

of the state of climate change.20 The IPCC assessments also provide projections for

temperatures in different climate scenarios, known as the Shared Socioeconomic Path-

ways (SSPs), based on factors such as greenhouse gas emission, economic growth, and

population growth.

For example, if assuming no effective climate policy, under the scenario of ‘busi-

ness as usual’ (SSP5-8.5). the maximum temperature anomaly in continuous United

States could be 2.8 Celsius (or 5.04 Fahrenheit). Using such projections,21 I thus esti-

mate the marginal effects of temperature anomaly on CRA lending. It is important to

note that only the measure of maximum temperature anomaly, not mean temperature,

is used. From Equation (1.11), the overall marginal effect can be derived as

∂y

∂T
= β1 + 2β2T

∗ (1.12)

where T ∗ is a value of high temperature anomaly. For example, if the temper-

ature anomaly is 1 degree Fahrenheit, the overall marginal effects on number of loans

are negative for both the small-medium and large farms, which can be calculated using

coefficient estimates from Table (1.4).

20For example, see a summary of the most recent IPCC assessment
21The projected numbers are retrieved from IPCC WGI Atlas: https://interactive-atlas.ipcc.

ch/
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Figure 1.7 shows22 the estimated results under a range of climate scenarios.

From left to right, the horizontal axes denote the climate scenarios, from the most

optimistic to the most pessimistic. Within each graph, marginal effects are estimated

for two different horizons: near term (now to 2040) and medium term (2041-2060). In

general, the more pessimistic the scenario, the higher projected maximum temperature

anomaly is. The longer the time horizon, the higher the projected temperature is.

Three general patterns emerge from observing the figure. First, both small-

medium and large farms suffer some loss of bank lending. Second, the marginal effects

are large in magnitudes for small-medium farms. Third, the negative impact is minimal

in terms of loan frequencies for large farms, and the impact is in fact positive in terms

of loan amount. The figure here further suggests that farms fare differently, depending

on their size, resulting in the lending approval region for large farms significantly wider.

Robustness Checks To assess robustness of the baseline results, I have conducted

additional estimations: 1) inclusion of precipitation as an additional control; 2) distin-

guishing between growing and non-growing season. The results are shown in 1.6 and

1.6. In short, including precipitation does not significantly alter the baseline results.

When focusing on growing season, the negative effects on small-medium farms become

amplified. When focusing on non-growing season, the effects on large farms become

22Within the near term, i) ‘net zero by 2075’ (SSP1-2.6) is equivalent to 1.5 ◦C/ 2.7◦F . ‘Net zero by
2100’ (SSP2-4.5) is equivalent to 1.5 ◦C/ 2.7◦F . ii) ‘2X CO2 by 2100’ (SSP5-8.5) is equivalent to 1.4
◦C/ 2.52◦F . iii) ‘3X CO2 by 2100’ (SSP3-7.0) is equivalent to 1.6 ◦C/ 2.88◦F .

Within the medium term, i) ‘net zero by 2075’ (SSP1-2.6) refers to 1.9 ◦C/ 3.4◦F . ‘net zero by 2100’
(SSP2-4.5) is equivalent to 2.2 ◦C/ 3.96◦F . ii) ‘2X CO2 by 2100’ (SSP5-8.5) is equivalent to 2.3 ◦C/
4.14◦F . iii) ‘3X CO2 by 2100’ (SSP5-8.5) is equivalent to 2.8 ◦C/ 5.04◦F .
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Figure 1.7: Marginal Effect of Temperature Anomaly on CRA Lending, Climate Sce-
narios

(a) Frequencies to Small-Medium Farms (b) Amount to Small-Medium Farms

(c) Frequencies to Large Farms (d) Amount to Large Farms

Note: Marginal effects with 95% confidence intervals, calculated based on Equation (1.12); The projected temperature estimates
are from IPCC. The projections are specific to continuous United States, and refer to permanent increase of annual maximum

temperature. The projections are based on Coupled Model Intercomparison Project Phase 6 (CMIP6) Model, taking into
account emission uncertainty, and use 1986- 2005 as baseline. Climate scenarios are categorized into near term (now to 2040)

and medium term (2041-2060)

statistically insignificant.

Extension I: Census Tract Income Areas

So far the analysis has focused on county aggregates, with consideration of farm

size. In this section, I expand the estimation by considering another dimension: the

income areas where the farms are located. Such analysis is important as CRA-qualifying

loans in theory should go to low-income or moderate-income (LMI) communities.23

Therefore, whether farms are located in high- or low-income areas may matter for bank

23For example, see https://www.federalreserve.gov/consumerscommunities/cra_about.htm
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lending decisions.

Using the definition of an income area from FFIEC, I conduct analysis at the

level of county-income group pair. More specifically, a county may have one or more

income groups (defined at Census tract level), hence resulting in multiple county-income

group pairs within the same county. This dimension of analysis is possible due to the

fact that CRA lending data is also available at the Census tract level. The unit of

analysis is essentially the income group aggregate within each county, and there are

12,290 such county-income group pairs.24

Thus the regression adds the income group dimension, denoted by subscript c,

and the specification is at the county-income group pair level, with income group fixed

effect ξc added.

yict = β1Tit + β2T
2
it + ui + ξc + ηt + λrt + γitrend+ γi2trend

2 + eict (1.13)

Tables (1.5-1.9) show the estimation results. For the entire sample and con-

trolling for income area fixed effects, Table (1.5) shows very similar results to Table

(1.4), albeit with higher degrees of significance. Thus for all income areas, the impact

of climate risks is significant for lending to large and smaller farms, and the signs of im-

pact differ by the farm size. But this is not to say that income area has no relationship

with the degrees of impact. To uncover this relationship, I repeat the analysis by four

main income areas: low, moderate, middle, and high in Tables (1.6-1.9).

24FFIEC categorizes Census tracts into the following income groups based on what the Median Family
Income (MFI) of a Census tract compared to that of the Metropolitan Statistical Areas (MSA): 1) Low
Income, less than 50% of MFI of the MSA; 2) Moderate Income, 50% to 80% of MFI of the MSA;
3) Middle Income, 80% to 120% of MFI of the MSA; 4) Upper Income, greater than or equal to 120%
of MFI of the MSA;
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By comparing these four tables, it becomes clear that the impact of climate

vulnerability is heterogeneous across income groups. In terms of the frequency of lending

to small-medium farms, the impact is consistent across income areas. Moreover, as

shown in Table (1.9), conditional on being located in high income area, farms generally

experience limited or insignificant impact of climate vulnerability on lending, with the

exception of lending frequency to smaller farms. This makes intuitive sense in that

such high income areas may have more resources available that improve farms’ financial

resilience to adverse shocks.

When looking at the farms in low and moderate income areas, however, the

results in Tables (1.6-1.7) are seemingly surprising. Conditional on being in these areas,

large farms do not experience significant impact. Moreover, even for smaller farms,

higher climate vulnerability largely do not contribute to lower amount of loans. One

plausible explanation is that to meet CRA requirements, banks need to ensure that they

provide funding to farms located in low- and moderate-income communities. Therefore,

such lending activities are less sensitive to changing climate vulnerabilities.

In contrast, it seems that farms located in middle income areas are most af-

fected by climate vulnerabilities. Compared with farms in high-income areas, they may

not have as much financial resource to respond to climate change. Moreover, since

banks are not mandated to maintain certain lending activities in middle income areas,

they make lending decisions more purely based on their assessments of farms’ termi-

nal values in relation to climate vulnerabilities. In this case and consistent with Table

(1.5), smaller farms are less likely to receive financing when climate risks increase. Put
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Table 1.5: CRA Farm Loans and Climate Vulnerability, All Income Areas

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.20*** -13.99*** 1.10*** 18.43***
(0.04) (2.91) (0.10) (5.87)

Temp. anomaly (square) 0.08*** 6.27*** -0.52*** -7.04***
(0.02) (1.12) (0.04) (2.43)

Observations 160,137 160,137 160,137 160,137
R-squared 0.111 0.045 0.075 0.027
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Income Area FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.13), yict = β1Tit + β2T 2
it + ui + ξc + ηt + λrt +

γitrend + γi2trend
2 + eict. Table (1.5) has greater number of observations than the sum of Tables (1.6)-(1.9),

as there are Census tracts that are uncategorizable by income

Table 1.6: CRA Farm Loans and Climate Vulnerability, Low Income Areas

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.05 -1.98 0.17** -0.73
(0.04) (3.54) (0.07) (6.53)

Temp. anomaly (square) 0.01 0.28 -0.09*** -3.01
(0.02) (1.71) (0.03) (2.91)

Observations 5,129 5,129 5,129 5,129
R-squared 0.045 0.033 0.067 0.052
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.13), yict = β1Tit + β2T 2
it + ui + ξc + ηt + λrt +

γitrend+ γi2trend
2 + eict, but only for the sample of low income areas.

another way, the variations within the middle income areas are driving the results in

Table (1.5).
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Table 1.7: CRA Farm Loans and Climate Vulnerability, Moderate Income Areas

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.07 -0.38 0.47*** 12.34*
(0.04) (3.87) (0.11) (7.23)

Temp. anomaly (square) 0.01 2.05 -0.23*** -4.48
(0.02) (1.31) (0.06) (3.57)

Observations 31,702 31,702 31,702 31,702
R-squared 0.060 0.014 0.069 0.041
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.8: CRA Farm Loans and Climate Vulnerability, Middle Income Areas

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.36*** -27.07*** 2.10*** 34.26***
(0.07) (6.14) (0.21) (12.79)

Temp. anomaly (square) 0.16*** 11.39*** -0.87*** -9.49*
(0.03) (2.24) (0.09) (5.19)

Observations 65,603 65,603 65,603 65,603
R-squared 0.172 0.078 0.130 0.049
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.9: CRA Farm Loans and Climate Vulnerability, High Income Areas

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly 0.03 -1.68 0.21 -1.32
(0.07) (7.59) (0.14) (10.53)

Temp. anomaly (square) 0.01 4.22* -0.22*** 3.90
(0.03) (2.22) (0.07) (5.39)

Observations 29,308 29,308 29,308 29,308
R-squared 0.154 0.060 0.054 0.026
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for Tables 1.7 to 1.9 is Equation (1.13), yict = β1Tit+β2T 2
it+ui+ ξc+ηt+λrt+

γitrend + γi2trend
2 + eict, and for the sample of moderate income area, middle income area, and high income

area respectively.
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Extension II: Including Bank Branches

One challenge of empirically estimating the impact of climate change is that it

affects almost all activities in the economy. Thus it is difficult to justify using variables

such as GDP growth and unemployment rate, often used as control variables, as they

do not have exogenous variation in relation to climate change variables. At the same

time, it could be problematic to completely ignore bank-related variables. The presence

of bank branches may be able to explain variation in lending, and the opening and

closing of branches could be a mechanism through which bank lending responds to

climate change. I calculate the deviation of number of branches in each county from its

mean (1996-2019), using the Summary of Deposits (SOD) dataset. This procedure of

centering data also minimizes the issue of multicollinearity between climate and branch

variables.

The econometric specification is the following:

yit =β1Tit + β2T
2
it + θ1branchit + θ2Tit · branchit + θ3T

2
it · branchit

+ ui + ηt + λrt + γitrend+ γi2trend
2 + eit

(1.14)

where branchit is the deviation of each county’s bank presence from its histor-

ical mean. Tit · branchit is the interaction term between high temperature anomaly and

the bank branch variable, and T 2
it · branchit is the interaction of squared temperature

anomaly and bank branch.

Table (1.10) presents the results. In terms of the coefficients for temperature,

there are no noticeable differences between the estimation here and that in the baseline

in Table (1.4). As shown by the row of “total number of bank branches,” the more bank
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presence there is, the more CRA lending there is across all types of farms. This makes

intuitive sense. What is interesting, however, is that the interaction effects between

temperature anomaly and bank branches are largely negative. This means that given

the same temperature anomaly, counties with more bank branches tend to have less

CRA lending. This interaction effect is significant for the number of loans to both large

and small-medium farms. This suggests bank presence, as measured by bank branches,

may serve as an amplification mechanism of climate change risks into lending.

Table 1.10: CRA Farm Loans and Climate Vulnerability, Interaction with Bank
Branch

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.14* -16.33*** 1.54*** 11.40
(0.08) (5.89) (0.19) (10.26)

Temp. anomaly (square) 0.02 4.54** -0.85*** -10.81***
(0.03) (1.95) (0.08) (3.98)

Num. bank branches 0.21*** 3.05*** 0.22*** 4.40***
(0.02) (1.16) (0.04) (1.58)

Temp. anomaly x Branches -0.01 -0.61 -0.02 -0.80
(0.01) (0.45) (0.03) (0.55)

Temp. anomaly (square) x Branches -0.01*** 0.29 -0.03*** 0.30
(0.00) (0.37) (0.01) (0.52)

Observations 72,447 72,447 72,447 72,447
R-squared 0.204 0.143 0.134 0.058
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.14), yit = β1Tit + β2T 2
it + θ1branchit + θ2Tit ·

branchit + θ3T 2
it · branchit + ui + ηt + λrt + γitrend+ γi2trend

2 + eit

To further analyze how bank branching plays a role, I conduct additional

regressions using a different dimension of CRA lending—loan size bracket: 1) loans

less than $100 thousand 2) loans between $100 thousand and $250 thousand 3) loans

between $250 thousand and $500 thousand.
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Estimation by Loan Sizes The CRA dataset does not provide information to com-

pare loan size brackets and lending to large versus small farms. In other words, it is

difficult to know whether loans in the smaller bracket are directed primarily towards to

small-medium farms. However, it is plausible that in absolute terms, large farms have

bigger financing needs and thus may be more likely to have larger loans. Moreover,

independently of which type of farms the lending goes to, the sheer size of loans corre-

lates with banks’ exposure, and is indicative of how banks may want to manage their

exposure in light of climate risks.

Table (1.11) presents the estimation in terms of amount of loans. As shown

by Column (2), the coefficients of temperature for loans less than $100 thousand mirror

those for overall loans to small-medium farms—suggesting a concave curve. In contrast,

the coefficients for loans of size $250 to $500 thousand have the opposite signs. More-

over, as seen in Column (2), the interaction effect between temperature anomaly and

bank branches is highly significant for small loans, suggesting that banks adjust the size

of their exposure in relation to climate change. This adjustment may involve substitu-

tion between loan sizes, as suggested by Column (1), there is no significant impact of

temperature on the total amount of loans.

Similarly, Table (1.12) shows the results for the number of loans. The effects

of temperature on loans smaller than $100 thousand are similar to Column (2) of Table

(1.11). However, temperature has almost no impact on the number of loans of size $250

to $500 thousand. Additionally, while statistically significant, the coefficients for loans

of $100 to $250 thousand have the same signs as Column (2), as are total number of loans
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Table 1.11: CRA Farm Loan Amount and Climate Vulnerability, Loan Size Bracket

(1) (2) (3) (4)
VARIABLES Total Amt. Amount (less 100k) Amount (100k to 250k) Amount (250k to 500k)

Temp. anomaly -4.93 18.48*** 0.99 -24.40***
(12.75) (3.98) (4.77) (6.60)

Temp. anomaly (square) -6.27 -13.56*** -1.58 8.87***
(4.96) (1.45) (1.85) (2.56)

Num. bank branches 7.45*** 6.87*** 0.34 0.24
(2.46) (1.28) (0.66) (1.41)

Temp. anomaly x Branches -1.41 -0.15 -0.41 -0.85*
(0.87) (0.32) (0.27) (0.46)

Temp. anomaly (square) x Branches 0.58 -0.53*** 0.43 0.68
(0.85) (0.10) (0.28) (0.60)

Observations 72,447 72,447 72,447 72,447
R-squared 0.090 0.054 0.072 0.125
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.14), yit = β1Tit + β2T 2
it + θ1branchit + θ2Tit ·

branchit + θ3T 2
it · branchit + ui + ηt + λrt + γitrend + γi2trend

2 + eit, where yit is the loan variable based on
loan size bracket.

in Column (1). In contrast to Table (1.11), in terms of number of loans, Table (1.12)

shows that there does not seem to be substitution between different sizes of lending.

Rather, climate change, measured in terms of increasing high temperature anomaly, has

overall negative impact on the total number of loans.

40



Table 1.12: CRA Farm Loan Frequency and Climate Vulnerability, Loan Size Bracket

(1) (2) (3) (4)
VARIABLES Total Num. Number (less 100k) Number (100k to 250k) Number (250k to 500k)

Temp. anomaly 1.40*** 1.30*** 0.13*** -0.02
(0.21) (0.18) (0.03) (0.02)

Temp. anomaly (square) -0.83*** -0.78*** -0.06*** 0.01
(0.08) (0.07) (0.01) (0.01)

Num. bank branches 0.43*** 0.44*** -0.00 -0.01
(0.04) (0.04) (0.01) (0.01)

Temp. anomaly x Branches -0.03 -0.03 -0.00 -0.00**
(0.04) (0.04) (0.00) (0.00)

Temp. anomaly (square) x Branches -0.04*** -0.04*** 0.00 0.00
(0.01) (0.01) (0.00) (0.00)

Observations 72,447 72,447 72,447 72,447
R-squared 0.080 0.087 0.046 0.073
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.14), yit = β1Tit + β2T 2
it + θ1branchit + θ2Tit ·

branchit + θ3T 2
it · branchit + ui + ηt + λrt + γitrend + γi2trend

2 + eit, where yit is the loan variable based on
loan size bracket.

Extension III: Distributed Lag Model

In the chapter so far I focus on the contemporaneous relationship between

temperature anomaly and CRA lending. However, the impact of climate change may

play out over time rather than materializing instantaneously. In this section, I use a

distributed lag specification to examine such longer-term effect.

yit =
2∑

l=0

(βlTi,t−l) +
2∑

m=0

(
θmT

2
i,t−m

)
+ ui + ηt + λrt + γitrend+ γi2trend

2 + eit (1.15)

where the lagged terms (1 and 2 years) of temperature anomaly are added to the baseline

specification.

If we assume at time t there is a permanent increase of temperature anomaly

evaluated at T ∗, the effect will materialize this period but also last into the next two

periods. Additionally, the cumulative marginal effect of temperature anomaly over time
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is
2∑

l=0

βl +
2∑

m=0

θm = β0 + 2θ0T
∗ + β1 + 2θ1T

∗ + β2 + 2θ2T
∗ (1.16)

In other words, the cumulative effect of a temperature anomaly T ∗ is a weighted

sum of linear and nonlinear effects, both in the present and in two previous periods.

The results from estimating Equation (1.15) are shown is Table (1.13). Within

each of the columns, it is clear that the contemporaneous effects are still generally

significant. However, it is interesting that the coefficient for the amount of loans to

small-medium farm is now negative. Besides, for all the CRA variables, especially the

lending to small-medium farms, the lagged effects are significant. This provides evidence

showing that climate change impact accumulates over time.

Using Equation (1.16), we can calculate the cumulative effect of a permanent

increase of 1 high temperature anomaly—1 degree in Fahrenheit, or about 0.56 Celsius.

For large farms, the effect is 0.36 for number of loans, and is 21.55 for the amount of

loans. For small-medium farms, the effect is -0.92 for number of loans, and is -4.48 for

the amount of loans.

Based on the results, it is clear that small-medium farms are more vulnerable to

bank lending cutback due to climate change. With 1 degree in Fahrenheit of temperature

anomaly, lending to small-medium in one county would decrease by about 1 loan and

$4,480. However, if the anomaly is 3 degrees Fahrenheit (1.5 Celsius), the number of

loans cut would be 14 and the amount reduced would be $118,160. While the data here

are at the county aggregate level, not farm-level, the magnitudes of effect are not trivial.

In contrast, with temperature increasing, large farms will likely experience increase in
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Table 1.13: CRA Farm Loans and Climate Vulnerability, Distributed Lag

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.20** -22.80*** 1.93*** -30.97***
(0.10) (7.00) (0.21) (12.01)

Temp. anomaly (lag) 0.11 -20.48*** 1.93*** 22.41**
(0.07) (5.15) (0.17) (9.71)

Temp. anomaly (2 lags) 0.05 -6.65 1.88*** 60.71***
(0.07) (5.08) (0.19) (9.65)

Temp. anomaly (square) 0.08** 12.83*** -1.31*** 1.40
(0.04) (2.55) (0.10) (5.05)

Temp. anomaly (square, lag) 0.09** 12.69*** -1.29*** -18.04***
(0.04) (2.42) (0.10) (4.59)

Temp. anomaly (square, 2 lags) 0.03 10.14*** -0.74*** -11.78***
(0.03) (2.37) (0.09) (4.37)

Observations 66,622 66,622 66,622 66,622
R-squared 0.201 0.135 0.161 0.049
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification for this table is Equation (1.15), yit =
∑2

l=0

(
βlTi,t−l

)
+

∑2
m=0

(
θmT 2

i,t−m

)
+

ui + ηt + λrt + γitrend+ γi2trend
2 + eit

both number and amount of lending. As the results in Tables (1.11) and (1.12) suggest,

at least in terms of amount of loan, the different financial flows that large and small-

medium farms experience are likely to due to banks’ shift of lending between these types

of farms. It is beyond the scope of the chapter to explicit account for what may explain

the differential outcome, but one possible explanation is that large farms are better able

to adapt to climate change. Banks see less risk in such farms and are thus more willing

to lend to them.

Extension IV: Regional Heterogeneity

The analysis thus far examines farms in the United States as a whole, control-

ling for unobserved county fixed effects. But these farm systems are not monolithic, and

it is useful to examine their heterogeneity. In this section, I conduct such analysis using
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the Farm Resource Regions categorized by USDA Economic Research Service (ERS).

Such regions are constructed based on similarities in land resources, clusters of farming

characteristics, and dominant and specialty crops (USDA (2000)). The main reason for

such analysis using Farm Resource Regions is to account for the possibility that climate

change impact on lending to farm areas is not homogeneous. For example, depending

on the dominant crops, the degree of vulnerability in terms of production loss differs

between regions, thus potentially leading to differential lending outcomes.

As illustrated by Figure (1.8), the Farm Resource Regions include: 1– Heart-

land (HT), 2– Northern Crescent (NC), 3– Northern Great Plains (NG), 4– Prairie

Gateway (PG), 5– Eastern Uplands (EU), 6– Southern Seaboard (SS), 7– Fruitful Rim

(FR), 8– Basin and Range (BR), 9– Mississippi Portal (MP).

Following Equation (1.12), I estimate the marginal effects for different ERS

regions in the medium term (2041-2060) and under the climate scenario of ‘net zero

by 2100’ (SSP2-4.5), equivalent to increase of high temperature by 2.2 Celsius or 3.96

Fahrenheit. The results are in shown Figure (1.9). Compare with Figure (1.7), the

results here are overall consistent: small-medium farms suffer negative impact, while the

effects large farms are small and even positive in some cases. However, there are also

considerable regional heterogeneity. For example, for all farms in Northern Crescent

(NC), increase in temperature anomaly have only positive impact. In contrast, the

impact is negative across all categories for the regions of Basin and Range (BR) and

Southern Seaboard (SS).

By matching each county with its region category, I also run the regression
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Figure 1.8: Farm Resource Regions
Source: USDA ERS

specified in Equation (1.15) for each of the farm regions. The region “Fruitful Rim” is

quite broad, encompassing not only western United States, but also Texas and Florida.

However, they are in different climate regions. Thus the analysis decomposes this region

into: 1) parts of Texas and Florida; 2) the rest of the fruitful rim.

The regression tables for individual regions are all reported in Appendix 1.6.

Here I focus on discussing the cumulative effects, calculated using Equation (1.16). Table

(1.14) presents the calculations based on the scenario in which there is a permanent

increase of 3 Fahrenheit degrees of temperature anomaly. The results for small-medium

farms are shown in Columns (3) and (4). In terms of the number of loans, there are

reductions in almost all the regions except the Northern Crescent. As suggested by

the previous results in Table (1.13), the national average of reduced loan number is 14.

It seems that the two regions that experience the most drastic decrease are: Northern
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Great Plains; the Texan and Floridan parts of the Fruitful Rim. The results for the

amounts of loans to small-medium farms are more mixed. The effect of temperature

anomaly is small or positive for four of the regions. For regions that experience reduction

in amount of loans, the effect is particularly pronounced for the Fruitful Rim overall. In

sharp contrast, as shown in Columns (1) and (2), for large farms, half of all the regions

experience an increase in amount of loans, and 40% of the regions experience increase

in the number of loans.

Table (1.14) illustrates the regional heterogeneity of bank lending, and is

broadly consistent with the national results in Table (1.13): 1) The effect of climate

change on lending to small-medium farms is generally negative; 2) In contrast, large

farms seem to fare better; 3) There seems to be shift of lending from small-medium

to large farms in regions such as the Northern Great Plains, southeastern parts of the

Fruitful Rim, and the Mississippi Portal; 4) The overall magnitude is more pronounced

in the Northern Great Plains and the whole Fruitful Rim.

Table 1.14: Cumulative Effects of 3 Fahrenheit Degrees of High Temp. Anomaly

(1) (2) (3) (4)
Region Num. to large Amount to large Num. to small-mid Amount to small-mid

Heartland 2.4 -41.41 -6.45 548.94

Northern Crescent 2.27 157.19 8.22 242.78

Northern Great Plains 4.24 452.63 -25.17 -481.88

Prairie Gateway -4.5 -108.52 -10.46 4

Eastern Uplands -0.53 125.15 -9.25 208.71

Southern Seaboard -5.49 -215.23 -8.3 -603.25

Fruitful Rim (TX and FL) -4.82 111.55 -17.48 -704.21

Fruitful Rim (remaining) -13.96 -522.88 -12.78 -871.94

Basin and Range -1.79 -145.69 -8.21 -579.41

Mississippi Portal 3.91 43.11 -2.54 -528.34

Note: Results calculated using Equation (1.16),
∑2

l=0 βl +
∑2

m=0 θm = β0 +2θ0T ∗ + β1 +2θ1T ∗ + β2 +2θ2T ∗
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Figure 1.9: Marginal Effect of Temperature on CRA Lending, Regional Heterogeneity

(a) Frequencies to Small-Medium Farms (b) Amount to Small-Medium Farms

(c) Frequencies to Large Farms (d) Amount to Large Farms

Note Climate scenario: medium term (2041-2060) and ‘net zero by 2100’ (SSP2-4.5), equivalent to 2.2 ◦C/ 3.96◦F . Marginal
effects with 95% confidence intervals, calculated based on Equation (1.12); The projected temperature estimates are from IPCC.
The projections are specific to continuous United States, and refer to permanent increase of annual maximum temperature. The

projections are based on CMIP6 Model, taking into account emission uncertainty, and use 1986- 2005 as baseline.
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1.4.3 Climate Change Measured by Temperature Anomaly: Bank-

County Level

Previous sections focus on the county-level aggregate frequencies and amounts

of bank lending. The results in this section further answer the research question from a

different perspective: bank-county level pair.25 In other words, what is being estimated

here is more granular: for a banking institution, whether there is difference in their

lending to farms according to not only farms’ exposure to climate risks, but also to

bank-specific operations and market shares. The point of this bank-county pair section

is to demonstrate that banks’ own characteristics such as size play a role in the impact,

complementing the main results of the aggregate estimates.

More specifically, I classify banks by their sizes based on CRA definitions26:

1) very small banks: asset value less than $300 million; 2) small-mid banks: asset value

between $300 million and $1.2 billion; 3) large banks: asset value over $1.2 billion. It is

important to point out the composition of the lending data: the vast majority of banks

in the CRA dataset are large banks, and very small banks make up the smallest share.

The loan size also matters in understanding the banks’ lending behavior. The

CRA dataset categorize loans into three brackets based on their sizes: 1) smaller loans

(‘100k loans’): less than $100 thousand per origination; 2) medium loans (‘250k loans’):

between $100 and 250 thousand; 3) larger loans (‘500k loans’): between $250 and 500

25The bank level here refers to the bank entity level, not bank branch level. The bank-county level
pair is not necessarily equivalent to bank branch in that county.

26The categories are based on a 2014 CRA fact sheet. As of now, the bank asset data in the estimates
are in nominal values
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thousand. Given their market share in general, it is reasonable to assume the majority

of the CRA loans originate from large banks. However, it is somewhat surprising that

large banks are also dominant in lending out loans of less than $100 thousand. For such

small loans, almost 73% of the total number of loan originations is made by large banks,

whereas the shares for small and medium banks are 5% and 22% respectively.27

The intersection of large banks and smaller farms loans (size of less than $100k)

provides an important clue in understanding why different types of farms fare differently

in terms of financial access, as these smaller loans make up the biggest share of total loan

origination frequencies in years 1996-2019. The CRA dataset is not granular enough

to decompose loans by farm type and simultaneously by loan size brackets. In other

words, it is difficult to say how much of the smaller loans go to a certain type of farms.

Yet it is plausible that small farms are most likely the recipients of these smaller loans.

Thus the effects of climate risks on loans of smaller sizes are especially relevant to these

small farms, both qualitatively and quantitatively.

To uncover the lending patterns at the bank-county level, I first set the scene

through regressions by loan sizes. These results provide important contexts in under-

standing the ensuing estimations of loans to small and large farms, and for connecting

the bank-county level results with the county-aggregate results.

Taking into account the interaction between bank size and temperature anomaly,

27The dominance of large banks in providing small loans mirrors the findings by DiSalvo (2021) that
examines the patterns of small business loans in metropolitan areas. Existing studies such as Mkhaiber
& Werner (2021) suggest that large banks tend to lend to large firms. But the interaction between large
banks and small farms/firms is worth further investigation
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the econometric specification in this section is

yibt =β1Tit + β2T
2
it + (a1 + a2Tit + a2T

2
it)small+ (b1 + b2Tit + b3T

2
it)medium

+ (c1 + c2Tit + c3T
2
it)large+ ui + ψb + ηt + λrt + γitrend+ γi2trend

2 + eibt

(1.17)

Compared with Equation (1.11), the main difference of Equation (1.17) is that

the lending variables are at the bank entity level (with subscript b) in a specific county,

with the additional ψb as bank-level fixed effects. In short, what is being estimated here

is that given the county and year, how a bank makes lending decisions, controlling for

bank characteristics. Moreover, bank-size dummy variables are included: small (asset

less than $300 million), medium (asset between $300 million and $1.2 billion), and large

(asset over $1.2 billion)). Additionally, these bank-size dummies interact with the linear

and quadratic temperature anomaly terms.

The first set of regression using Equation (1.17) is at the loan bracket level, and

the results for the effects on loan origination frequencies are illustrated in Figure (1.10).

Due to the interpretation challenge posed by the multitude of interaction terms, the full

results of the regressions are reported in Table (1.52) in Appendix, where the vast ma-

jority of main and interaction terms are highly significant. To facilitate interpretation,

I estimate the average marginal effects, reported in Figure (1.10).28

In response to climate risks, the contrast between how banks make 100k loans

and the other two brackets is stark. As shown by the first row of graphs of Figure

28The calculation procedure is similar to that in Equation (1.12). Note due to the peculiarity of how
Stata calculates marginal effects, there may be slight differences between the results reported in the
graph and those calculated by hand.
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(1.10), holding all else constant, small banks will make more 100k loans to farms. In

comparison, it is much more likely for medium and large banks to reject such loan

applications. In terms of magnitude, the mean marginal effect of medium banks is

much bigger than that of large banks. It is worth emphasizing the contrast of lending

behavior here. As discussed previously, small farms are most likely the recipients of

these smaller, 100k loans. With respect to the increase of climate risks, small banks

actually want to provide more of such loans, likely due to small farms being important

clients for them. However, medium substantially reduce funding access to the 100k

loans. Most importantly, large banks also respond by lending less, and their dominance

in the smaller loan market likely add up. Put another way, while small banks want

to support (mostly small) farms who apply for 100k loans, their market share is not

substantial enough to compensate for the withdraw of funding from large banks.

The second and third rows of Figure (1.10) provide further evidence of hetero-

geneous effects by loan size. For the 250k and 500k loans, all banks, including medium

and large banks respond to increased temperature anomaly by lending more, and such

larger loans are more likely to go to large farms. The lending behavior by bank type

can also be viewed vertically. In general, small banks do not decrease funding access. In

comparison, larger banks deny loans only of smaller sizes, but will approve larger size

loans.

Additional estimations are conducted in terms of loan amount, and the full

results are reported in Table (1.54) in Appendix. Figure (1.11) illustrates the estimates

of average marginal effects, and the results are consistent with Figure (1.10) in terms
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Figure 1.10: Marginal Effect of Temperature Anomaly on CRA Lending Frequency,
by Loan Size

Note: Average marginal effects with 95% confidence intervals, assuming a temperature anomaly of 2.8 ◦C/ 5.04◦F . This is
consistent with an adverse climate scenario, or‘3X CO2 by 2100’ (SSP5-8.5). The regression results corresponding to this graph

are in Table (1.52) in Appendix

of the directions of impact.

With the results of loan size providing contexts, I use Equation (1.17) to run
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Figure 1.11: Marginal Effect of Temperature Anomaly on CRA Lending Amount, by
Loan Size

Note: Average marginal effects with 95% confidence intervals, assuming a temperature anomaly of 2.8 ◦C/ 5.04◦F . This is
consistent with an adverse climate scenario, or‘3X CO2 by 2100’ (SSP5-8.5). The regression results corresponding to this graph

are in Table (1.53) in Appendix
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regressions on the loans to small and large farms. The results of loan frequencies are

illustrated in Figure (1.12), and those of loan magnitudes shown in Figure (1.13) (re-

gression results shown in Table (1.54) in Appendix; most of the main and interaction

coefficients are significant). Additionally, the results are estimated for two climate sce-

narios: moderate and severe.

The first row of Figure (1.12) illustrates the results for small farms, while

the second row shows the results for large farms. For small farms, the contraction of

lending frequencies from medium and large banks are noticeable, and the magnitude of

impact from medium banks is particularly large. Small banks do increase their lending

frequencies to small farms. But such increased support is unlikely to overturn the

overall loss of lending access that small farms experience, simply due to small banks’

very limited market share.

In contrast, for large farms, the impact of lending frequencies from small and

medium banks are negligible or even positive at times. Only large banks noticeably

reduce lending frequencies to large farms. One way to interpret these results is that as

farms’ climate vulnerability increase, small farms do not seem to drastically reduce their

perceived risk exposure. Instead, they increase lending to small farms likely due to that

they rely on this type of farms as clients. Medium banks try to reduce their exposure

to small farms by reducing loan frequencies, while maintaining relatively similar level

of lending activities to large farms. Thus medium banks de-risk by lending less to small

farms. Other than that, they largely maintain their lending activities within the same

county. Moreover, since large banks reduce their lending frequencies to both small and
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large farms, it is plausible that these large banks de-risk by moving their farm lending to

other less-risky counties (the only other valid interpretation is that large banks reduce

their farm lending altogether). Thus, for large banks, there may be leakage of lending

across counties. This is plausible as such banks have more extensive branches and

operations than smaller-sized banks.

Figure (1.13) shows the results for the estimation of lending magnitudes. It is

important to first point out the difference of the results here versus county-level estima-

tions of lending amount. For the county-level regression, the results are underpinned by

the composition effect: there is a multitude of banks operating within a county, and on

aggregation the effect could be negative for a county. In comparison, the bank-county

level estimation largely shows the effect conditional on the loans already being approved.

The qualitative model of the chapter predicts that as climate risks increase, farms’ fi-

nancing needs also increase. Therefore it is reasonable to expect that the actual amount

of lending will increase. This is exactly what is shown in Figure (1.13). Conditional on

already being approved for loans, both small and large farms obtain increased amount

of lending. It is interesting that the magnitudes of impact are more pronounced for

small farms. But this is not surprising, if one assumes that small farms want to access

more funding to improve their climate resilience.

Besides the aforementioned results, I have estimated additional regressions

separately for three groups of banks: very small, small-mid, and large. For the sake of

brevity, Tables (1.55-1.57) appear in the Appendix. The results are largely the same as
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Figure 1.12: Marginal Effect of Temperature Anomaly on CRA Lending Frequencies,
by Farm Size

Note: Average marginal effects with 95% confidence intervals, with two scenarios: i). temperature anomaly of 1.5 ◦C/ 2.7◦F ;
ii). temperature anomaly of 2.8 ◦C/ 5.04◦F ; The first is consistent with a moderate climate scenario, or ‘net zero by 2075’

(SSP1-2.6). The second is consistent with an adverse climate scenario, or‘3X CO2 by 2100’ (SSP5-8.5). The regression results
corresponding to this graph are in Table (1.54) in Appendix.
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Figure 1.13: Marginal Effect of Temperature Anomaly on CRA Lending Amount, by
Farm Size

Note: Average marginal effects with 95% confidence intervals, with two scenarios: i). temperature anomaly of 1.5 ◦C/ 2.7◦F ;
ii). temperature anomaly of 2.8 ◦C/ 5.04◦F ; The first is consistent with a moderate climate scenario, or ‘net zero by 2075’

(SSP1-2.6). The second is consistent with an adverse climate scenario, or‘3X CO2 by 2100’ (SSP5-8.5). The regression results
corresponding to this graph are in Table (1.54) in Appendix.
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in the estimations with bank dummies and interaction effects.29

While more analyses are needed, one potential mechanism at work is a bank’s

ability to relocate their operations or businesses. The large banks in the sample are

generally national entities with operations in many counties. Thus they have more

leeway to move their businesses elsewhere, should the lending activities in a few locations

are anticipated to be less profitable due to climate risks. In comparison, smaller banks,

and especially those very small banks are much more localized. For some of them, their

entire operations are constrained to one county, and do not have the flexibility as large

banks for geographic risk-sharing or arbitrage. For small-mid banks, it is possible that

they anticipate large farms to be more climate-resilient, thus continue lending to them.

For very small banks, their lending decision could be more dictated by their established

relations with small-medium farms, or they are liquidity-constrained such that they

cannot meet the financing needs of large farms.

Extension: Census Tract Income Areas

The analyses of bank-county pair can be expanded further by considering which

income areas farms are located in. Thus the unit of analysis here becomes bank-county-

income group pair. The econometric specification becomes

yibct = β1Tit + β2T
2
it + ui + ψb + ξc + ηt + λrt + γitrend+ γi2trend

2 + eibct (1.18)

29Tables (1.55-1.57) show results from the estimation, with bank-level fixed effects included. As seen
in Table (1.55), very small banks’ lending do not change in a significant way in response to farms’
climate risks. What is more interesting is that as such risks increase, the lending to smaller farms
actually increase, both in terms of frequency and amount. In contrast, as Table (1.56) shows, for small
to midsize banks, their lending to small farms shrinks, while the amount of lending to large farms
increases. As farms’ exposure to climate risks increase, large banks in general are less willing to lend to
farms, regardless of farm size, the magnitude of the effect seem slightly larger for small-medium farms.
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The estimation now includes more granular data of how much a bank b lends

in income area c of county i, and income group fixed effect ξc is included.

Tables (1.58-1.60) show the results for all income groups, estimated by bank

sizes30, which are mostly identical to the results in Tables (1.55-1.57). In short, large

banks in general are less willing to lend, small-mid banks lend less to small farms and

more to large farms, and very small banks lend more to small farms.

As suggested by similar analysis in Section 1.4.2, it is necessary to understand

the heterogeneity of impact by income groups: in general, farms located middle income

areas of counties bear the brunt the effect of climate risks. The results in Section 1.4.2

are at county level. This pattern continues to hold here at bank-county-income group

level, as seen in Tables (1.61-1.63) for middle income areas, and additional tables in

Appendix 1.6.

In summary, the results in this section confirm that at bank level, farms’

vulnerability to climate risks still matter for lending. More specifically, as climate risks

increase, very small banks maintain or lend more to small farms. Small-mid size banks

lend more to large farms, and lend less to small farms. Large banks uniformly lend less

to big and small farms in terms of frequencies. The results are largely consistent with

the aggregate county-level data, but with richer details by bank characteristics.31

30Note the current estimation includes bank income group fixed effect, not bank-level fixed effect.
The income group is classified based on the yearly decile distribution of banks’ assets (of the prior year)

31The correspondence between the county-level and bank-county level results is not immediately
straightforward. A paper by Blickle et al. (2021) suggests banks themselves are fairly resilient to
natural disasters: in general, their balance sheets are not hit hard in a significant way. In short, analysis
of climate effect at bank level does not always point to significant results.
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1.5 Conclusion and Discussions

In this chapter, I answer the question of how exposure to climate change risks

affect farms’ financial access. The causal effect exists because extreme temperature

and disasters reduce farms’ output and revenue, and therefore increase their likelihood

of defaulting on bank loans. By designing a two-period model, I show that farm size

matters in modulating such impact: it is more likely for smaller farms to lose financial

access. Then using data from the Community Reinvestment Act (CRA), the empirical

estimation shows that vulnerability to climate change indeed has negative and significant

impact on bank lending to farms, and such effects are nonlinear. Moreover, the financial

impact on large farms is negligible or at times positive. In contrast, small to medium

farms generally suffer from loss of credit access.

In addition to the overall patterns by farm size, I also present additional gran-

ular results based on bank type, region, and income area. Banks’ own size also acts as

a mechanism in determining the frequencies and amount of lending. Large banks tend

to lend less frequently altogether in risky counties, and likely move their operations

elsewhere. Medium banks are less willing to lend to small farms, and are in fact more

wiling to lend to large farms as climate risks increase. Due to their highly localized

operations, very small banks maintain and even increase lending to small farms. There

is a range of regional heterogeneity as well. In particular, the magnitudes of effect are

large in parts of the Midwest, southwestern, and southeastern states. Moreover, the

income areas where farms are located also matter, and the impact is more pronounced
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in middle income areas.

While it is difficult to directly test whether there is diversion of lending from

smaller farms to large farms, the results suggest there is such evidence, particularly

observed by the lending behavior of medium banks. In short, it is not necessarily the

case that all banks reduce lending completely as climate risks increase. Rather, banks

reassess and readjust their lending strategies to minimize potential loss and maximize

profits. Consequently, with the advantages of size and higher productivity, large farms

are less vulnerable to the adverse financial impact, while smaller farms are not. Though

focusing on farm lending, the results of the chapter suggest the financial impact of

climate change may hit smaller stakeholders the hardest. This calls for further research

not only in bank lending but in other financial issues such as insurance premium. Deeper

understandings of such inequity are necessary to broaden communities’ financial access

to improve their climate resilience.
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1.6 Appendix

Additional Figure

Figure 1.14: Non-Performing Farm Loans at U.S. Commercial Banks
Note: 4-quarter moving average; accruing and non-accruing loans past due 90 or more days

Sources: Bank call reports and Kreitman & Cowley (2020)
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Appendix: Summary Statistics

Table 1.15: Summary Statistics of Number of CRA Loans, County Level

Variable Mean Std. Dev. Min Max Observations

Number of loans smaller than $100k overall 54.32 77.09 0.00 1518.00 N = 72834
between 62.23 0.25 940.21 n = 3106
within 45.18 -438.10 1058.90 T-bar = 23.45

Number of loans $100k to $250k overall 8.24 14.43 0.00 349.00 N = 72834
between 12.55 0.00 204.96 n = 3106
within 6.98 -103.72 152.28 T-bar = 23.45

Number of loans $250k to $500k overall 3.97 8.12 0.00 199.00 N = 72834
between 7.03 0.00 124.13 n = 3106
within 3.96 -85.16 78.84 T-bar = 23.45

Table 1.16: Summary Statistics of Amount of CRA Loans, County Level, in thousand
2015 $

Variable Mean Std. Dev. Min Max Observations

Amount of loans smaller than $100k overall 1230.26 1844.59 0.00 47299.75 N = 72834
between 1604.50 0.43 28959.89 n = 3106
within 894.52 -13151.50 19570.12 T-bar = 23.45

Amount of loans $100k to $250k overall 1218.87 2178.50 0.00 56579.62 N = 72834
between 1882.13 0.00 31524.24 n = 3106
within 1074.01 -20163.81 26274.25 T-bar = 23.45

Amount of loans $250k to $500k overall 1307.94 2783.98 0.00 72390.09 N = 72834
between 2348.64 0.00 42286.68 n = 3106
within 1464.12 -31752.53 31411.35 T-bar = 23.45
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Appendix: Robustness Check: Including Precipitation

Besides temperature anomaly, precipitation anomaly is another measurement

of climate change. In Burke & Emerick (2016), both mean temperature and precipitation

are included in the estimation. At the same time, in the climate process, temperature

and precipitation closely interact with each other. Thus the inclusion of precipitation

may be unnecessary or could lead to problem of multicollinearity. However, for com-

pleteness, I extend the baseline regression to examine how considering precipitation

shapes the overall results.

yit = β1Tit + β2T
2
it + θ1Pit + θ2P

2
it + ui + ηt + λrt + γitrend+ γi2trend

2 + eit (1.19)

where Pit refers to precipitation anomaly observed in each county in each year,

P 2
it is the quadratic form. Everything else is the same as in Equation (1.11).

Table (1.17) shows the results: including precipitation does not significantly

change the coefficient estimates of temperature, though it does make the coefficient of

linear high temperature anomaly in Column (1) insignificant. Moreover, precipitation

anomaly seems to have positive effect on the amount of loans for both large and small-

medium farms. In comparison, both the linear and nonlinear effects on the number of

loans to small-medium farms are negative. In short, the patterns revealed by precip-

itation anomaly is less clear compared with temperature. One possibility is that the

NOAA data on precipitation does not distinguish between high or low precipitation.

Therefore, for remainder of the chapter, I focus on using high temperature anomaly to

measure climate change.
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Table 1.17: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly -0.09 -13.38** 1.34*** 15.21
(0.09) (5.93) (0.20) (11.08)

Temp. anomaly (square) 0.02 4.21** -0.85*** -11.43***
(0.03) (1.94) (0.08) (3.88)

Precip. anomaly 0.24** 10.53 -0.75** 18.88
(0.12) (8.32) (0.34) (16.14)

Precip. anomaly (square) -0.11 8.08 -0.63*** 32.15***
(0.08) (5.47) (0.22) (10.17)

Observations 72,834 72,834 72,834 72,834
R-squared 0.193 0.141 0.133 0.057
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Appendix: Robustness Check: Seasonal Effects

While the estimation is conducted at annual frequency, it is possible to isolate

the seasonal effects of high temperature anomaly. For example, Diffenbaugh et al. (2021)

splits the estimation into growing season (April through October) and non-growing

season. Thus I follow their approaching by calculating the temperature anomaly for

the growing season and the rest of the year, using original, monthly observations of

the NOAA NClimDiv dataset. Other than the new measurements of temperature, the

specification follows that of 1.11. Tables (1.18) and (1.19) show the results. For small-

medium farms, a temperature anomaly shock seems more costly during the growing

season, as the coefficients for the amount of loans are both negative, indicating that

both the first and second effects are negative. On the other hand, small-medium farms

remain vulnerable during the non-growing season. Yet for large farms, during non-

growing season, the impact of a climate shock is mostly statistically insignificant.
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Table 1.18: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly (season) -0.33*** -20.91*** 1.13*** -25.45***
(0.07) (5.00) (0.17) (9.42)

Temp. anomaly (square, season) -0.01 3.97*** -0.67*** -8.96***
(0.02) (1.50) (0.06) (3.10)

Observations 72,834 72,834 72,834 72,834
R-squared 0.195 0.142 0.133 0.058
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.19: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. to large farms Amount to large farms Num. to small-mid farms Amount to small-mid farms

Temp. anomaly (non-season) 0.11** -1.70 0.66*** 28.40***
(0.04) (3.06) (0.12) (5.20)

Temp. anomaly (square, non-season) 0.01 -0.20 -0.22*** -5.11***
(0.01) (0.83) (0.03) (1.72)

Observations 72,834 72,834 72,834 72,834
R-squared 0.194 0.142 0.132 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Appendix: Estimations by Loan Size Brackets
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Table 1.20: Amount of CRA Farm Loans and Climate Disasters, County Total

(1) (2) (3) (4)
VARIABLES Total Amount Amount of loan (less 100k) Amount of loan (100k to 250k) Amount of loan (250k to 500k)

Coastal Storm -185.61 -18.55 -43.76 -123.31**
(123.55) (38.53) (50.51) (62.10)

Flood -29.79 -32.62* -31.16 33.99
(60.51) (17.46) (22.20) (29.04)

Freezing (lagged) 566.26* 206.57 195.28** 164.41
(339.66) (196.23) (86.55) (153.15)

Hurricane -150.14*** -42.95*** -43.88*** -63.31***
(19.86) (7.30) (7.52) (9.37)

Landslide -1,120.54*** -86.12** -309.04*** -725.38***
(184.29) (42.23) (52.82) (122.79)

Ice storm (lagged) -47.33 -6.48 -13.26 -27.58
(42.53) (16.04) (16.09) (19.53)

Storm -80.56*** -16.93** -19.73** -43.90***
(23.86) (8.02) (8.97) (11.50)

Snow (lagged) -8.58 -75.37*** 14.23 52.55*
(58.34) (17.23) (23.07) (28.61)

Tornado 218.18 79.14 90.52 48.52
(164.14) (54.23) (59.34) (83.63)

Observations 69,728 69,728 69,728 69,728
R-squared 0.082 0.049 0.063 0.118
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.21: Number of CRA Farm Loans and Climate Disasters, County Total

(1) (2) (3) (4)
VARIABLES Total Number Number of loan (less 100k) Number of loan (100k to 250k) Number of loan (250k to 500k)

Coastal Storm 1.68 1.96 -0.12 -0.16
(2.17) (1.93) (0.34) (0.18)

Flood -2.52*** -2.17*** -0.36*** 0.00
(0.89) (0.76) (0.14) (0.08)

Freezing (lagged) 18.07 15.38 1.81** 0.88*
(16.33) (16.05) (0.78) (0.48)

Hurricane -1.48*** -1.15*** -0.19*** -0.14***
(0.37) (0.34) (0.05) (0.03)

Landslide -0.01 2.01 -0.58 -1.44***
(1.94) (1.43) (0.60) (0.38)

Ice storm (lagged) 0.71 0.67 0.06 -0.02
(0.96) (0.89) (0.11) (0.06)

Storm -1.79*** -1.58*** -0.11* -0.10***
(0.47) (0.42) (0.06) (0.03)

Snow (lagged) -5.63*** -5.51*** -0.15 0.03
(0.99) (0.88) (0.16) (0.08)

Tornado 2.26 1.35 0.77* 0.13
(2.82) (2.51) (0.40) (0.24)

Observations 69,728 69,728 69,728 69,728
R-squared 0.080 0.086 0.045 0.067
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix: Dropping Years 2008 and 2009

Table 1.22: Number of CRA Farm Loans and Climate Disasters, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Coastal Storm 1.81** -14.46 0.28 -168.37
(0.74) (49.11) (1.96) (106.49)

Flood -0.79*** 0.70 -1.97** -17.29
(0.30) (25.44) (0.81) (44.87)

Freezing (lagged) -9.08** -434.70* -15.59*** -163.66
(3.70) (248.16) (5.70) (295.25)

Hurricane -0.95*** -47.45*** 0.04 -87.70***
(0.16) (8.71) (0.30) (15.71)

Landslide -7.93*** -521.70*** 8.94*** -597.17***
(1.79) (110.49) (3.31) (105.82)

Ice storm (lagged) -0.81*** -51.25*** 3.75*** 19.78
(0.27) (18.65) (1.17) (48.01)

Storm -0.34** -52.27*** -0.81 -24.00
(0.14) (10.41) (0.50) (21.76)

Snow (lagged) 0.31 11.43 -4.31*** 61.26
(0.24) (20.69) (1.02) (49.51)

Tornado -1.38** -0.24 3.48 211.89
(0.69) (63.11) (2.79) (132.12)

Observations 63,642 63,642 63,642 63,642
R-squared 0.214 0.146 0.142 0.054
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.23: Number of CRA Farm Loans and Climate Disasters, County Total

(1) (2) (3) (4)
VARIABLES Total Amount Amount of loan (less 100k) Amount of loan (100k to 250k) Amount of loan (250k to 500k)

Coastal Storm -182.83 -17.29 -43.00 -122.54*
(127.15) (40.40) (51.53) (62.95)

Flood -16.59 -31.83* -25.19 40.43
(60.56) (17.40) (22.16) (29.48)

Freezing (lagged) -598.36 -370.74** 84.46 -312.09
(446.00) (160.95) (131.94) (234.00)

Hurricane -135.15*** -39.14*** -41.40*** -54.62***
(19.99) (7.39) (7.67) (9.53)

Landslide -1,118.86*** -80.25* -310.12*** -728.49***
(185.08) (41.38) (51.63) (122.75)

Ice storm (lagged) -31.47 8.26 -10.50 -29.23
(55.10) (19.20) (20.67) (25.84)

Storm -76.27*** -7.40 -19.63* -49.23***
(26.52) (9.10) (10.06) (12.60)

Snow (lagged) 72.68 -46.08*** 39.94* 78.83***
(60.19) (17.82) (23.97) (29.40)

Tornado 211.64 73.64 92.09 45.91
(165.72) (54.87) (60.62) (83.91)

Observations 63,642 63,642 63,642 63,642
R-squared 0.086 0.050 0.066 0.124
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.24: Number of CRA Farm Loans and Climate Disasters, County Total

(1) (2) (3) (4)
VARIABLES Total Number Number of loan (less 100k) Number of loan (100k to 250k) Number of loan (250k to 500k)

Coastal Storm 2.09 2.36 -0.11 -0.16
(2.25) (2.00) (0.35) (0.18)

Flood -2.77*** -2.47*** -0.32** 0.03
(0.90) (0.77) (0.14) (0.08)

Freezing (lagged) -24.67*** -26.43*** 1.70 0.06
(8.18) (7.69) (1.15) (0.46)

Hurricane -0.91** -0.64* -0.16*** -0.10***
(0.36) (0.33) (0.05) (0.03)

Landslide 1.01 3.01** -0.56 -1.44***
(1.98) (1.45) (0.59) (0.39)

Ice storm (lagged) 2.94** 2.86*** 0.10 -0.02
(1.20) (1.10) (0.15) (0.08)

Storm -1.15** -0.95** -0.09 -0.11***
(0.53) (0.48) (0.07) (0.04)

Snow (lagged) -4.00*** -4.12*** 0.02 0.10
(1.04) (0.93) (0.17) (0.08)

Tornado 2.09 1.17 0.79* 0.14
(2.84) (2.53) (0.40) (0.24)

Observations 63,642 63,642 63,642 63,642
R-squared 0.078 0.084 0.046 0.071
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.25: Number of CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.18** -11.39* 1.18*** 11.81
(0.08) (6.39) (0.20) (10.75)

High temperature anomaly (square) 0.00 3.46* -0.84*** -11.40***
(0.03) (1.94) (0.08) (3.83)

Observations 66,748 66,748 66,748 66,748
R-squared 0.203 0.149 0.134 0.060
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.26: Number of CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.15* -10.85* 1.05*** 14.48
(0.09) (6.44) (0.21) (11.42)

High temperature anomaly (square) 0.01 3.41* -0.84*** -11.78***
(0.03) (1.94) (0.08) (3.79)

Precipitation anomaly 0.13 3.58 -0.76** 18.93
(0.12) (8.67) (0.35) (17.02)

Precipitation anomaly (square) -0.12 5.32 -0.69*** 33.12***
(0.08) (5.56) (0.22) (10.58)

Observations 66,748 66,748 66,748 66,748
R-squared 0.203 0.149 0.134 0.060
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix: Using Min Temperature and Seasonal Effect

Table 1.27: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Low temperature anomaly -0.34*** -29.12*** 1.30*** -15.83
(0.11) (7.10) (0.25) (15.61)

Low temperature anomaly (square) -0.24*** -10.93*** -0.13 -43.81***
(0.05) (2.75) (0.12) (5.29)

Observations 72,834 72,834 72,834 72,834
R-squared 0.195 0.143 0.132 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.28: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Temperature anomaly (max and min combined) -0.15** -18.23*** 1.35*** 4.22
(0.07) (4.94) (0.18) (10.81)

Temperature anomaly, square (max and min combined) -0.01 11.25*** -1.06*** -13.73***
(0.03) (2.15) (0.09) (4.42)

Observations 72,834 72,834 72,834 72,834
R-squared 0.194 0.142 0.134 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: The temperature measure here uses maximum temperature for spring and summer, and minimum tem-
perature for fall and winter

Table 1.29: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Temperature anomaly (min and max combined) -0.34*** -29.90*** 1.79*** -6.12
(0.08) (5.93) (0.21) (12.37)

Temperature anomaly, square (min and max combined) -0.17*** -10.44*** -0.60*** -41.20***
(0.04) (2.86) (0.10) (5.82)

Observations 72,834 72,834 72,834 72,834
R-squared 0.194 0.143 0.133 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: The temperature measure here uses minimum temperature for spring and summer, and maximum tem-
perature for fall and winter

71



Table 1.30: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Max temp. anomaly (winter) 0.01 -6.56*** 0.93*** 1.97
(0.03) (2.21) (0.09) (4.54)

Max temp. anomaly (square, winter) -0.05*** -3.92*** 0.03 -6.43***
(0.01) (0.72) (0.02) (1.37)

Observations 72,834 72,834 72,834 72,834
R-squared 0.195 0.143 0.132 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.31: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Max temp. anomaly (spring) -0.09** -2.62 0.05 28.05***
(0.04) (2.90) (0.09) (4.92)

Max temp. anomaly (square, spring) 0.06*** 2.39*** -0.24*** -3.97***
(0.01) (0.72) (0.02) (1.10)

Observations 72,834 72,834 72,834 72,834
R-squared 0.195 0.142 0.132 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.32: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Max temp. anomaly (summer) -0.09 -10.76*** 0.24* -17.84**
(0.06) (3.75) (0.13) (6.96)

Max temp. anomaly (square, summer) 0.03** 3.34*** -0.05 3.20**
(0.01) (0.83) (0.03) (1.57)

Observations 72,834 72,834 72,834 72,834
R-squared 0.194 0.142 0.131 0.058
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.33: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

Max temp. anomaly (fall) -0.21*** -12.55*** 0.43*** -22.92***
(0.06) (3.87) (0.13) (7.04)

Max temp. anomaly (square, fall) -0.04*** -0.84 -0.27*** -11.05***
(0.01) (1.03) (0.04) (1.98)

Observations 72,834 72,834 72,834 72,834
R-squared 0.195 0.142 0.132 0.059
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix: Lagged and Growth Effect

Table 1.34: CRA Farm Loans and Climate Vulnerability (Lagged), County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly (lag) 0.26*** -4.55 1.65*** 54.43***
(0.07) (5.30) (0.18) (9.43)

High temperature anomaly (square, lag) -0.00 2.19 -0.94*** -28.14***
(0.03) (1.84) (0.08) (3.66)

Observations 69,728 69,728 69,728 69,728
R-squared 0.202 0.138 0.142 0.053
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.35: CRA Farm Loans (growth) and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms (%) Amount of loans to large farms (%) Num. of loans to small-medium farms (%) Amount of loans to small-medium farms (%)

High temperature anomaly 0.30*** 2.57 -0.54*** -5.60
(0.06) (4.14) (0.13) (7.91)

High temperature anomaly (square) 0.07** -2.90* 0.01 -1.28
(0.03) (1.73) (0.04) (2.75)

Observations 69,728 69,728 69,728 69,728
R-squared 0.053 0.029 0.049 0.041
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.36: CRA Farm Loans (growth) and Climate Vulnerability (lag), County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms (%) Amount of loans to large farms (%) Num. of loans to small-medium farms (%) Amount of loans to small-medium farms (%)

High temperature anomaly (lag) 0.26*** 4.10 0.13 2.13
(0.07) (4.59) (0.13) (8.10)

High temperature anomaly (square, lag) -0.04 -3.10* -0.03 -7.29**
(0.03) (1.70) (0.05) (2.91)

Observations 69,728 69,728 69,728 69,728
R-squared 0.053 0.029 0.049 0.042
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix: Alternative Measures of Temperature Anomaly

Table 1.37: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly (50 years) -0.14 -18.91*** 2.08*** 20.83*
(0.09) (6.44) (0.22) (11.55)

High temperature anomaly (square, 50 years) 0.00 4.37** -0.80*** -11.39***
(0.03) (1.97) (0.08) (3.82)

Observations 72,834 72,834 72,834 72,834
R-squared 0.193 0.141 0.132 0.057
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.38: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly (70 years) -0.16* -20.79*** 2.20*** 23.26*
(0.09) (6.59) (0.23) (11.94)

High temperature aneromaly (square, 70 years) 0.01 5.12** -0.76*** -11.48***
(0.03) (2.01) (0.07) (3.76)

Observations 72,834 72,834 72,834 72,834
R-squared 0.193 0.141 0.132 0.057
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.39: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly (100 years) -0.15 -19.84*** 2.01*** 21.78*
(0.09) (6.48) (0.22) (11.50)

High temperature anomaly (square, 100 years) 0.01 4.73** -0.66*** -11.14***
(0.03) (1.96) (0.07) (3.51)

Observations 72,834 72,834 72,834 72,834
R-squared 0.193 0.141 0.132 0.057
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.40: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly (since 1895) -0.17* -21.44*** 2.12*** 24.70**
(0.10) (6.76) (0.23) (12.03)

High temperature anomaly (square, since 1895) 0.02 4.82** -0.61*** -10.79***
(0.03) (1.92) (0.07) (3.38)

Observations 72,834 72,834 72,834 72,834
R-squared 0.193 0.141 0.132 0.057
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.41: CRA Farm Loans and Climate Vulnerability, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly (1981-2010) -0.10 -16.61*** 1.89*** 18.93*
(0.09) (6.21) (0.21) (11.08)

High temperature anomaly (square, 1981-2010) -0.03 3.01 -0.76*** -12.00***
(0.03) (1.88) (0.07) (3.67)

Observations 72,834 72,834 72,834 72,834
R-squared 0.194 0.142 0.133 0.058
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Appendix: Regression Tables of Regional Heterogeneity

Table 1.42: Heartland, Amount of CRA Farm Loans and Extreme Temperature,
County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.38 3.64 2.88*** -34.19
(0.53) (43.99) (0.92) (60.00)

High temperature anomaly (lag) -0.52* -23.14 3.78*** 113.20**
(0.29) (22.72) (0.91) (50.76)

High temperature anomaly (two lags) 0.38 70.09*** 1.34 258.09***
(0.31) (25.55) (1.06) (67.93)

High temperature anomaly (square) 0.25** 1.90 -0.92*** 25.14
(0.13) (10.87) (0.32) (19.73)

High temperature anomaly (square, lag) 0.09 -5.26 -1.10*** -1.31
(0.10) (8.40) (0.32) (17.58)

High temperature anomaly (square, two lags) 0.01 -11.93 -0.39 12.00
(0.11) (12.18) (0.36) (20.91)

Observations 11,954 11,954 11,954 11,954
R-squared 0.314 0.235 0.249 0.110
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.43: Northern Crescent, Amount of CRA Farm Loans and Extreme Tempera-
ture, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -1.44*** -129.56*** 5.20*** 151.62**
(0.29) (24.72) (1.20) (64.46)

High temperature anomaly (lag) -0.82*** -21.42 3.56*** 119.82***
(0.22) (19.43) (0.87) (42.05)

High temperature anomaly (two lags) -0.93*** -40.74*** 1.72** 99.28***
(0.17) (13.43) (0.68) (36.28)

High temperature anomaly (square) 0.64*** 42.28*** 0.01 2.54
(0.13) (8.99) (0.30) (16.30)

High temperature anomaly (square, lag) 0.24*** 14.91 -0.31 -6.94
(0.09) (9.19) (0.28) (17.84)

High temperature anomaly (square, two lags) 0.03 0.93 -0.09 -17.15
(0.06) (6.13) (0.21) (13.97)

Observations 9,052 9,052 9,052 9,052
R-squared 0.334 0.157 0.173 0.044
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.44: Northern Great Plains, Amount of CRA Farm Loans and Extreme Tem-
perature, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.03 29.14 -0.34 29.67
(0.78) (43.26) (1.52) (70.19)

High temperature anomaly (lag) 0.64 22.56 -2.07 -118.05*
(0.48) (42.15) (1.39) (65.76)

High temperature anomaly (two lags) 2.05** 138.14** -0.27 98.92
(0.82) (60.66) (1.41) (72.22)

High temperature anomaly (square) 0.08 17.24* -1.19*** -24.35
(0.15) (9.96) (0.42) (22.59)

High temperature anomaly (square, lag) 0.40* 21.99** -1.04* -3.54
(0.21) (10.90) (0.53) (23.45)

High temperature anomaly (square, two lags) -0.23* 4.68 -1.50*** -54.90**
(0.12) (8.78) (0.48) (21.34)

Observations 3,915 3,915 3,915 3,915
R-squared 0.323 0.303 0.284 0.140
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.45: Prairie Gateway, Amount of CRA Farm Loans and Extreme Temperature,
County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.84** -16.94 1.47* -28.09
(0.40) (20.45) (0.78) (43.23)

High temperature anomaly (lag) 0.49 4.32 1.65** 18.22
(0.35) (15.39) (0.65) (36.98)

High temperature anomaly (two lags) -1.15*** -28.36** 0.38 -1.85
(0.28) (13.20) (0.68) (37.03)

High temperature anomaly (square) -0.02 -3.58 -1.07*** 7.89
(0.12) (6.31) (0.32) (17.56)

High temperature anomaly (square, lag) -0.11 -0.75 -0.90*** -11.45
(0.15) (5.85) (0.29) (17.04)

High temperature anomaly (square, two lags) -0.37* -7.13 -0.37 5.96
(0.20) (8.08) (0.25) (15.02)

Observations 8,602 8,602 8,602 8,602
R-squared 0.212 0.152 0.153 0.095
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.46: Eastern Uplands, Amount of CRA Farm Loans and Extreme Temperature,
County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.02 -32.03** -0.50 -170.66***
(0.30) (15.53) (0.95) (38.96)

High temperature anomaly (lag) 0.09 -1.93 1.85*** 21.65
(0.12) (7.65) (0.54) (23.63)

High temperature anomaly (two lags) 0.25* -6.05 2.90*** 33.56*
(0.14) (5.28) (0.57) (18.51)

High temperature anomaly (square) -0.11 10.20*** -0.98** 2.86
(0.10) (3.87) (0.43) (13.12)

High temperature anomaly (square, lag) -0.02 7.51** -1.04*** 2.69
(0.11) (3.43) (0.40) (11.06)

High temperature anomaly (square, two lags) -0.02 9.86*** -0.23 48.22***
(0.06) (2.96) (0.35) (11.94)

Observations 8,671 8,671 8,671 8,671
R-squared 0.190 0.064 0.159 0.091
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.47: Southern Seaboard, Amount of CRA Farm Loans and Extreme Temper-
ature, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -1.19*** -32.30** -2.55*** -103.19***
(0.31) (13.05) (0.79) (34.38)

High temperature anomaly (lag) 0.44** 3.08 0.83* 50.15***
(0.20) (11.06) (0.46) (17.07)

High temperature anomaly (two lags) -0.30 -9.24 -0.22 6.93
(0.28) (9.91) (0.53) (19.00)

High temperature anomaly (square) -0.09 -5.09 -0.47* -37.06***
(0.09) (5.40) (0.26) (10.80)

High temperature anomaly (square, lag) -0.25** -8.43* -0.51** -30.69***
(0.11) (4.87) (0.22) (10.14)

High temperature anomaly (square, two lags) -0.39*** -16.00*** -0.08 -24.72***
(0.08) (4.51) (0.20) (9.08)

Observations 10,679 10,679 10,679 10,679
R-squared 0.252 0.136 0.159 0.068
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.48: Fruitful Rim (TX and FL), Amount of CRA Farm Loans and Extreme
Temperature, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.47 87.62*** 2.06*** 105.84***
(0.52) (23.77) (0.77) (37.51)

High temperature anomaly (lag) 0.13 38.35** -0.12 54.74*
(0.50) (18.57) (0.59) (29.83)

High temperature anomaly (two lags) -0.40 22.48 0.56 44.78
(0.47) (21.44) (0.70) (28.14)

High temperature anomaly (square) -0.73* -32.00** -1.13** -60.68**
(0.37) (13.09) (0.57) (27.87)

High temperature anomaly (square, lag) -0.73* -32.93*** -0.46 -55.70**
(0.38) (11.79) (0.50) (25.33)

High temperature anomaly (square, two lags) -0.88** -45.32*** -0.84** -62.17***
(0.37) (12.67) (0.37) (20.43)

Observations 2,461 2,461 2,461 2,461
R-squared 0.109 0.073 0.293 0.094
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.49: Fruitful Rim (western states), Amount of CRA Farm Loans and Extreme
Temperature, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 1.85*** 146.82*** 1.89** 87.14*
(0.66) (48.35) (0.82) (46.77)

High temperature anomaly (lag) 0.85 -11.95 0.15 83.92
(0.53) (32.57) (0.81) (53.76)

High temperature anomaly (two lags) 1.80*** 107.55** 0.27 22.84
(0.61) (51.41) (1.37) (51.04)

High temperature anomaly (square) -0.67 9.02 -1.37* -48.11
(0.41) (27.42) (0.82) (34.85)

High temperature anomaly (square, lag) -0.35 -12.17 -0.67 -15.94
(0.36) (27.43) (0.63) (27.49)

High temperature anomaly (square, two lags) -0.54 -19.48 -1.29* -83.80**
(0.34) (26.82) (0.70) (33.98)

Observations 3,525 3,525 3,525 3,525
R-squared 0.310 0.168 0.290 0.156
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.50: Basin and Range, Amount of CRA Farm Loans and Extreme Temperature,
County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.13 -24.14 0.07 -120.23
(0.17) (17.47) (0.79) (73.85)

High temperature anomaly (lag) -0.19 -29.33** -0.31 -99.70**
(0.14) (12.16) (0.51) (47.12)

High temperature anomaly (two lags) 0.15 -3.19 0.56 -23.90
(0.12) (11.00) (0.54) (36.64)

High temperature anomaly (square) -0.11** 0.40 -0.36** 4.87
(0.05) (4.01) (0.17) (14.78)

High temperature anomaly (square, lag) -0.07 -9.23** -0.36** -16.07
(0.05) (4.40) (0.16) (11.24)

High temperature anomaly (square, two lags) -0.09 -5.69 -0.73*** -47.07**
(0.06) (5.10) (0.20) (19.67)

Observations 4,151 4,151 4,151 4,151
R-squared 0.307 0.131 0.127 0.074
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.51: Mississippi Portal, Amount of CRA Farm Loans and Extreme Tempera-
ture, County Total

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -2.21*** -157.92** 4.61* 96.18
(0.67) (63.79) (2.40) (104.12)

High temperature anomaly (lag) -2.01*** -152.71** 1.05 -81.89
(0.63) (66.69) (1.85) (84.95)

High temperature anomaly (two lags) -0.03 -85.78* 3.86* 78.07
(0.54) (51.10) (2.23) (106.65)

High temperature anomaly (square) 0.84*** 44.89* -1.46* -64.34
(0.24) (26.01) (0.87) (42.16)

High temperature anomaly (square, lag) 0.55*** 34.82* -0.04 0.20
(0.18) (18.54) (0.70) (37.37)

High temperature anomaly (square, two lags) -0.02 -6.02 -0.50 -39.33
(0.19) (15.41) (0.69) (37.17)

Observations 3,596 3,596 3,596 3,596
R-squared 0.350 0.103 0.373 0.203
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix: Tables of Bank Level Estimates

Table 1.52: Number of CRA Farm Loans and Climate Vulnerability, Bank-County
Level by Loan Size

(1) (2) (3) (4)
VARIABLES Total Num. of Loans Number of loan (less 100k) Number of loan (100k to 250k) Number of loan (250k to 500k)

High temperature anomaly 0.12 0.25*** -0.07*** -0.06***
(0.08) (0.07) (0.01) (0.01)

High temperature anomaly (square) -0.17*** -0.22*** 0.02*** 0.03***
(0.04) (0.04) (0.01) (0.00)

Mid-size bank = 1 2.62*** 1.87*** 0.48*** 0.26***
(0.61) (0.55) (0.08) (0.05)

Large-size bank = 1 3.72*** 1.53** 1.34*** 0.85***
(0.74) (0.67) (0.11) (0.07)

Small bank × Temperature -0.12 -0.22 0.07** 0.02*
(0.20) (0.18) (0.03) (0.01)

Small bank × Temperature (square) 0.30*** 0.32*** -0.01 -0.01
(0.11) (0.11) (0.02) (0.01)

Large bank × Temperature -0.00 -0.10 0.06*** 0.04***
(0.08) (0.07) (0.01) (0.01)

Large bank × Temperature (square) 0.12*** 0.16*** -0.02*** -0.02***
(0.04) (0.04) (0.01) (0.00)

Observations 480,898 480,898 480,898 480,898
R-squared 0.018 0.023 0.011 0.016
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.53: Amount of CRA Farm Loans and Climate Vulnerability, Bank-County
Level by Loan Size

(1) (2) (3) (4)
VARIABLES Total Amt. of Loans Amount of loan (less 100k) Amount of loan (100k to 250k) Amount of loan (250k to 500k)

High temperature anomaly -40.80*** -3.99*** -14.95*** -21.86***
(5.50) (1.49) (2.05) (3.11)

High temperature anomaly (square) 15.95*** -0.11 5.96*** 10.10***
(2.54) (0.65) (0.96) (1.51)

Small-size bank = 1 -240.40*** -69.47*** -81.66*** -89.27***
(36.54) (10.90) (13.04) (18.35)

Large-size bank = 1 477.37*** 79.01*** 168.99*** 229.38***
(31.97) (8.08) (12.16) (15.79)

Small bank × Temperature 22.71** 4.53 11.96*** 6.22
(10.74) (3.55) (4.08) (4.87)

Small bank × Temperature (square) -5.05 2.06 -3.38 -3.72
(5.89) (1.92) (2.12) (2.84)

Large bank × Temperature 29.03*** 4.64*** 10.65*** 13.73***
(4.99) (1.42) (1.90) (2.79)

Large bank × Temperature (square) -12.86*** -0.47 -4.63*** -7.76***
(2.54) (0.66) (0.97) (1.50)

Observations 480,898 480,898 480,898 480,898
R-squared 0.025 0.009 0.020 0.028
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.54: CRA Farm Loans and Climate Vulnerability, Bank-County Level

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.10*** -13.64*** 0.22*** -27.16***
(0.03) (2.59) (0.08) (4.03)

High temperature anomaly (square) 0.01 7.28*** -0.18*** 8.67***
(0.01) (1.30) (0.04) (1.74)

Mid-size bank (= 1 if yes) -0.15 38.43*** 2.77*** 201.97***
(0.16) (13.99) (0.59) (28.58)

Large-size bank (= 1 if yes) 0.49** 186.18*** 3.23*** 531.59***
(0.20) (19.92) (0.71) (38.12)

Small bank × Temperature 0.17*** 10.02** -0.29 12.69
(0.05) (4.00) (0.19) (8.37)

Small bank × Temperature (square) -0.02 -3.85* 0.33*** -1.20
(0.02) (2.08) (0.11) (4.66)

Large bank × Temperature 0.12*** 10.71*** -0.12* 18.31***
(0.03) (2.35) (0.07) (3.71)

Large bank × Temperature (square) -0.04*** -6.55*** 0.16*** -6.31***
(0.01) (1.30) (0.04) (1.74)

Observations 480,898 480,898 480,898 480,898
R-squared 0.005 0.021 0.025 0.016
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.55: CRA Farm Loans and Climate Vulnerability, Very Small Banks

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.09 -4.51 0.15 9.68
(0.13) (4.38) (0.34) (13.20)

High temperature anomaly (square) 0.03 1.70 0.13 7.06
(0.04) (3.34) (0.14) (5.34)

Observations 14,055 14,055 14,055 14,055
R-squared 0.023 0.037 0.024 0.057
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.56: CRA Farm Loans and Climate Vulnerability, Small-Mid Banks

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.02 3.46 -0.14 -8.92
(0.04) (2.77) (0.11) (5.51)

High temperature anomaly (square) -0.00 0.32 -0.14*** -0.66
(0.01) (1.11) (0.05) (2.05)

Observations 66,647 66,647 66,647 66,647
R-squared 0.014 0.074 0.036 0.039
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.57: CRA Farm Loans and Climate Vulnerability, Large Banks

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.04*** -0.57 0.08*** -4.64***
(0.01) (0.76) (0.02) (1.24)

High temperature anomaly (square) -0.03*** 0.14 -0.03*** 0.45
(0.00) (0.25) (0.01) (0.40)

Observations 400,196 400,196 400,196 400,196
R-squared 0.008 0.011 0.033 0.006
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.58: CRA Farm Loans and Climate Vulnerability, Very Small Banks x All
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.02 -1.96 0.02 2.58
(0.03) (1.31) (0.09) (3.95)

High temperature anomaly (square) 0.01 0.59 -0.02 -0.37
(0.01) (0.87) (0.03) (1.64)

Observations 77,026 77,026 77,026 77,026
R-squared 0.004 0.004 0.004 0.005
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Income Area FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.59: CRA Farm Loans and Climate Vulnerability, Small-Mid Banks x All
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.01 1.24* -0.04 -2.62**
(0.01) (0.72) (0.02) (1.32)

High temperature anomaly (square) 0.00 -0.01 -0.02*** -0.44
(0.00) (0.24) (0.01) (0.44)

Observations 376,490 376,490 376,490 376,490
R-squared 0.003 0.009 0.006 0.003
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Income Area FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.60: CRA Farm Loans and Climate Vulnerability, Large Banks x All Income
Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.01*** -0.13 0.01*** -0.16
(0.00) (0.16) (0.00) (0.28)

High temperature anomaly (square) -0.00*** 0.01 -0.01*** -0.07
(0.00) (0.05) (0.00) (0.08)

Observations 2,351,067 2,351,067 2,351,067 2,351,067
R-squared 0.002 0.001 0.006 0.003
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Income Area FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.61: CRA Farm Loans and Climate Vulnerability, Very Small Banks × Middle
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.05 -7.32 0.19 12.71
(0.14) (7.19) (0.39) (17.90)

High temperature anomaly (square) 0.03 1.59 -0.08 -5.19
(0.03) (3.30) (0.16) (7.38)

Observations 14,678 14,678 14,678 14,678
R-squared 0.027 0.048 0.034 0.040
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.62: CRA Farm Loans and Climate Vulnerability, Small-Mid Banks × Middle
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.01 5.03 -0.15 -12.70*
(0.04) (3.37) (0.11) (6.67)

High temperature anomaly (square) 0.00 0.50 -0.12*** -2.77
(0.01) (1.21) (0.05) (2.44)

Observations 68,736 68,736 68,736 68,736
R-squared 0.014 0.048 0.029 0.017
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.63: CRA Farm Loans and Climate Vulnerability, Large Banks × Middle
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.02* -0.62 0.07*** 0.16
(0.01) (0.77) (0.02) (1.52)

High temperature anomaly (square) -0.02*** 0.18 -0.02*** -0.20
(0.00) (0.25) (0.01) (0.46)

Observations 402,543 402,543 402,543 402,543
R-squared 0.005 0.007 0.029 0.015
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.64: CRA Farm Loans and Climate Vulnerability, Very Small Banks × Low
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.00 -0.02 -0.00 -0.82
(0.00) (0.03) (0.00) (0.54)

High temperature anomaly (square) 0.00 0.02 -0.00 -0.20
(0.00) (0.01) (0.00) (0.16)

Observations 14,673 14,673 14,673 14,673
R-squared 0.020 0.016 0.018 0.015
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.65: CRA Farm Loans and Climate Vulnerability, Small-Mid Banks × Low
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.00 -0.15 0.01 0.03
(0.00) (0.25) (0.00) (0.30)

High temperature anomaly (square) 0.00 -0.02 0.00 0.04
(0.00) (0.06) (0.00) (0.15)

Observations 68,746 68,746 68,746 68,746
R-squared 0.004 0.005 0.004 0.003
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.66: CRA Farm Loans and Climate Vulnerability, Large Banks × Low Income
Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.00 0.03 0.00 0.05
(0.00) (0.06) (0.00) (0.09)

High temperature anomaly (square) -0.00 -0.00 -0.00** -0.05**
(0.00) (0.02) (0.00) (0.02)

Observations 402,538 402,538 402,538 402,538
R-squared 0.003 0.003 0.002 0.002
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.67: CRA Farm Loans and Climate Vulnerability, Very Small Banks × Mod-
erate Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.04* 2.60 0.07 7.43
(0.02) (1.83) (0.18) (6.46)

High temperature anomaly (square) -0.00 0.71 -0.08* -0.11
(0.01) (0.58) (0.05) (1.54)

Observations 14,674 14,674 14,674 14,674
R-squared 0.027 0.044 0.016 0.021
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.68: CRA Farm Loans and Climate Vulnerability, Small-Mid Banks × Moder-
ate Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.03 2.57** 0.00 1.63
(0.02) (1.22) (0.04) (2.80)

High temperature anomaly (square) -0.00 -0.39 0.00 -0.02
(0.01) (0.31) (0.01) (0.73)

Observations 68,746 68,746 68,746 68,746
R-squared 0.004 0.011 0.009 0.007
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.69: CRA Farm Loans and Climate Vulnerability, Large Banks × Moderate
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.00 -0.12 0.01 0.02
(0.00) (0.31) (0.01) (0.51)

High temperature anomaly (square) -0.00*** -0.13* -0.00** -0.36*
(0.00) (0.08) (0.00) (0.19)

Observations 402,537 402,537 402,537 402,537
R-squared 0.003 0.002 0.008 0.005
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.70: CRA Farm Loans and Climate Vulnerability, Very Small Banks × High
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.05 -3.73 -0.32** -13.31
(0.07) (4.45) (0.16) (9.06)

High temperature anomaly (square) 0.02 1.57 0.07 5.38
(0.01) (1.63) (0.04) (3.44)

Observations 14,678 14,678 14,678 14,678
R-squared 0.016 0.019 0.025 0.031
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.71: CRA Farm Loans and Climate Vulnerability, Small-Mid Banks × High
Income Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly -0.00 -1.06 -0.06* -4.64*
(0.01) (1.00) (0.04) (2.68)

High temperature anomaly (square) -0.00 -0.18 -0.01 -0.04
(0.00) (0.41) (0.02) (1.14)

Observations 68,745 68,745 68,745 68,745
R-squared 0.007 0.013 0.009 0.011
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1.72: CRA Farm Loans and Climate Vulnerability, Large Banks × High Income
Areas

(1) (2) (3) (4)
VARIABLES Num. of loans to large farms Amount of loans to large farms Num. of loans to small-medium farms Amount of loans to small-medium farms

High temperature anomaly 0.01* -0.04 -0.00 -1.08*
(0.00) (0.50) (0.01) (0.56)

High temperature anomaly (square) -0.01*** 0.02 -0.00 0.24
(0.00) (0.11) (0.00) (0.19)

Observations 402,534 402,534 402,534 402,534
R-squared 0.008 0.004 0.007 0.004
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Size FE Yes Yes Yes Yes
Region x Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix: Additional Choropleths

Figure 1.15: Yearly Average Total Amount of CRA Loans to Large Farms, 1996-2019,
in thousand 2015 $

Source: FFIEC (2021)
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Figure 1.16: Yearly Average Number of CRA Loans to Large Farms, 1996-2019
Source: FFIEC (2021)

Figure 1.17: Yearly Average Total Amount of CRA Loans to Small-Med Farms, 1996-
2019, in thousand 2015 $

Source: FFIEC (2021)
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Figure 1.18: Yearly Average Number of CRA Loans to Small-Med Farms, 1996-2019
Source: FFIEC (2021)

Figure 1.19: Yearly Average Total Amount of CRA Loans to Large Farms (share of
county GDP), 1996-2019, in thousand 2015 $

Source: FFIEC (2021)
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Figure 1.20: Yearly Average Number of CRA Loans to Large Farms (share of county
GDP), 1996-2019

Source: FFIEC (2021)

Figure 1.21: Yearly Average Total Amount of CRA Loans to Small-Med Farms (share
of county GDP), 1996-2019, in thousand 2015 $

Source: FFIEC (2021)

90



Figure 1.22: Yearly Average Number of CRA Loans to Small-Med Farms (share of
county GDP), 1996-2019

Source: FFIEC (2021)
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Chapter 2

Sovereign Default Risk and Household

Consumption

2.1 Introduction

Governments borrow to facilitate consumption smoothing and to provide pub-

lic services, as described in canonical models such as Eaton & Gersovitz (1981) and

Arellano (2008). A key question of sovereign debt default studies is why nations ser-

vice external liabilities in the first place. Studies on default costs including Arteta &

Hale (2008), Borensztein & Panizza (2009), and Zymek (2012) suggest the loss of access

to the capital and trade markets as an explanation of why countries fulfill their debt

commitments. When the government has difficulty repaying the debt, it often needs to

implement fiscal adjustment through tax increase or expenditure reduction. But during

the sovereign debt distress, how such fiscal adjustment spills over into household con-
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sumption behavior is poorly understood. While some recent studies such as Balke (2023)

analyze consumption costs of sovereign risks, few have quantified such costs from micro

data. In this chapter, I intend to fill this gap by providing estimates of this relationship.

The linkage between sovereign debt default risks (and default) and household

consumption may not seem immediately obvious. A commonly accepted assumption

in existing literature is that a default loosens the government budget constraint, thus

freeing up money to provide for public and private consumption. But this may not

necessarily be the case. First, there is an aggregate output loss associated with default,

thus suggesting a reduction of aggregate income as a possible outcome. Moreover,

sovereign debt returns can correlate with broader asset returns, leading to household

consumption response through the wealth channel. Most importantly, sovereign debt

is closely related to public taxation and revenue decisions, and government transfers

often play a role in household consumption. Thus fiscal policy serves as crucial channel

transmitting sovereign default risks to households. At the same time, there may be

heterogeneous effects on households across the income distribution.

The eurozone crisis provides an example of this link. Figure (2.1) is a com-

parison of sovereign bond spread and household real consumption in the euro-periphery

countries: Spain, Ireland, Italy, Greece, and Portugal. All these countries experienced

sovereign default distress after Greece lost capital market access and sought IMF bailout

in 2010. Their default risks—measured by the spread over German bond—all rose dras-

tically between 2010 and 2012. Almost around the same time, all countries except for

Ireland also observed sharp decline in real household consumption. After the risk re-
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ceded, consumption also seemed to increase. Anecdotal evidence suggests that fiscal

adjustment may have served as a propagation mechanism of sovereign risk into house-

holds’ reduced consumption: these countries especially Greece imposed austerity policies

that included drastic expenditure cut of items such as pension and public sector wage.

In short, it is worth investigating the precise sovereign-household consumption linkage.

Figure 2.1: Sovereign Risk and Household Consumption (Quarterly)

(a) 10-Year Sovereign Bond Spread (b) Household Real Consumption Index

Source: OECD

In this chapter, I answer the following question: what is the relationship be-

tween sovereign debt default risks and the heterogeneity of household consumption; the

role of public expenditure and its rigidity in this relationship. Fiscal rigidity refers to

constraints that limit the ability to adjust budget in the short term. Put another way,

the question is two-fold: 1) how household consumption responds to sovereign default

risk;1 2) how to measure public expenditure rigidity using micro data, which helps

answer a broader question of what fiscal rigidity is.

1Moreover, how such response is disaggregated by groups: for instance, those who receive high share
of government transfers and those who do not
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Measuring fiscal rigidity is important because fiscal policy may either act as

a buffer against or propagation mechanism of sovereign default risk. A country expe-

riencing government debt distress typically conducts fiscal consolidation, whether by

choice or required by bailout agencies, to avoid default. But with high degree of fiscal

rigidity, a government’s expenditure may not be able to adjust much—fiscal transfer

thus can act as a buffer if they are significant enough for household consumption. Be-

sides, understanding fiscal rigidity is important in its own right for the sovereign default

literature. Despite much debate about fiscal consolidation, there is no consensus on

whether front-loaded (adjust more today than later) or back-loaded adjustment is op-

timal. The aforementioned discussion and the current sovereign default literature have

largely missed considering a government’s ability to adjust, namely the effectiveness to

raise revenue or cut expenditure. For some governments, the rigidity of budget due to

institutional and legal factors constrains such an ability.

To help answer the research question, I focus on using Mexico’s data, in par-

ticular the National Survey of Household Income and Expenditure (ENIGH) of Mexico.

Emerging markets (EMs) are of particular interest for sovereign default studies, and

Mexico is a widely studied case.2 My research hypothesis is that there is a nega-

tive relationship between sovereign default risk and household consumption, and the

government takes this relation into account when deciding whether or not to default.

2To provide initial understandings, Figure (2.6) in the Appendix presents a set of scatter plots that
illustrate the relationships of pension expenditure (as measured in the government’s budget), private
consumption, and default risk for Mexico, using quarterly aggregate data in 1993-2019. The spread
here is defined as the difference between Mexico’s and United States’ 3-month treasury yields. Accord-
ing to Figure (2.6) (b), there seems be a strong positive correlation between pension and household
consumption. The relationship between pension and spread is slightly less clear.
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However, aggregate data are not always informative for mapping the linkage. For one,

not all households have the same portfolios of financial assets (or hold significant as-

sets at all), thus the wealth channel affects some households more or than others. In

other words, understanding the sovereign-household consumption linkage calls for more

granular data.3

Allowing for household heterogeneity will make both empirical and theoretical

contribution to the literature. To the best of my knowledge, there are few studies that

link sovereign debt distress and household well-being at a micro level.4 Additionally,

a typical sovereign default model assumes a representative household, and a decision

to default is often motivated by freeing up resources to provide public goods. Yet in

reality fiscal adjustment such as austerity measures rarely affects everyone equally. It

is possible that sovereign default theory needs to consider the differential impact of

default, thus rendering the sovereign’s decision more nuanced and realistic.

Using the ENIGH data, my results show at both the state and household lev-

els, there is a significant and negative relationship between sovereign default risk and

household consumption, which is linked by fiscal transfers such as pension. Addition-

ally, measuring fiscal rigidity through micro data makes methodological contributions.

These results warrant a modification to standard sovereign default models by consider-

ing heterogeneous household consumption and the friction of expenditure rigidity.

3In the simplest structural model, there are two types of households: higher income with wealth,
and lower income living hand-to-mouth with government transfers. There is no mobility between these
two groups, and I assume that government transfer perfectly targets the hand-to-mouth households. In
the more realist version of the model, there exists a continuum of households that vary by their initial
draw of productivity or income. Thus, these households’ income growth path is an AR process with
idiosyncratic shock.

4One exception is Garbinti et al (2020)
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The chapter is structured as the followings. Section 2.2 provides a review of

relevant literature, which includes both structural models and empirical papers. In

Section 2.3, I focus on describing the ENIGH dataset, its advantages as well as short-

comings, and some summary statistics. Additionally, a subsection is devoted to the

institutional background pertaining to Mexico’s fiscal transfers. Section 2.4 describes

the main methods used to measure fiscal rigidity, and to map the relationship between

sovereign default risk and household consumption. Section 2.5 presents the empirical

results, and the following section concludes.

2.2 Literature Review

This chapter contributes to two related, but largely separate strands of litera-

ture: one on strategic sovereign default; and the second on financial crises and household

consumption. In the first type of studies, the sovereign default model in Arellano (2008)

generally serves the conceptual basis. Studies in this literature can be organized into

three subsets, depending on their incorporation of the mechanisms of bailout, fiscal

adjustment, and international trade. In the second type of literature, many studies

examine household consumption responses, such as marginal propensity to consume, in

the context of an aggregate financial shock.

The first subset of sovereign debt studies connect fiscal policy with default (and

risks). Fiscal adjustment often goes hand in hand with policy conditionality imposed

by the international financial institutions (IFIs). For example, Boz (2011) models fis-
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cal adjustment as a higher discount factor (i.e., more prudent government) imposed by

the IFI. In Fink & Scholl (2016), fiscal adjustment means that government expenditure

in each period cannot be higher than a fixed parameter; fiscal adjustment enters into

the model as part of the government budget constraint. In a similar paper, Kirsch &

Rühmkorf (2017) examine the effect of financial assistance on default probability. But in

this case, the policy conditionality that official creditors impose is a debt limit instead

of primary balance target.5 In a theory paper, Hatchondo et al. (2022) test the the

effects of fiscal rules on sovereign default premium.6 There are two other studies that

are specifically on austerity and debt: Arellano & Bai (2017) and Anzoategui (2022).

In the model of Arellano & Bai (2017), their model allows for the scenario in which the

government defaults to free up resources to accommodate public and private consump-

tion. Anzoategui (2022) examines the effects of fiscal austerity on sovereign spreads.7

The aforementioned studies are generally concerned with explaining endogenous default

behavior or what accounts for sovereign default risk, and household consumption is

rarely a focus.

Within the sovereign default literature, there exists a second subset of stud-

ies that examine the interaction between default incentives and redistributive impli-

cations. A paper by Ferriere (2015) is one such example that links sovereign default

5One limitation of this paper is that it does not explicitly model the behavior of expenditure, tax,
or production.

6They define fiscal rule as debt ceiling chosen by the country government, instead of being required
by an external lender. Their main result is that the sovereign prioritizes a procyclical debt ceiling,
leading to larger reduction of default probability. Higher debt level, however, limits the government’s
ability to implement a less procyclical fiscal policy to reduce consumption volatility. While private
consumption is discussed, the paper does not go beyond simulating its volatility.

7In the model, the government starts with a fixed value of fiscal target, and if austerity is imple-
mented, cuts the spending monotonically.
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models with heterogeneous households, through income inequality and the redistribu-

tion costs of taxes. The author finds that taking tax progressivity as given, the more

regressive the tax system is, the higher default incentive is.8 Similarly, the paper by

Jeon & Kabukcuoglu (2018) also examines how income inequality affects sovereign de-

fault, where they model heterogeneous households that are subject to income inequality

shock.9 In another study, Dovis et al. (2016) develops a political economy model, where

the inter-temporal trade-off between paying external debt and addressing household

wealth inequality gives rise to an optimal policy in which populist fiscal policy (i.e.

increased transfers) is followed by austerity.10 In short, such studies point out that

sovereign default has tangible welfare implications for households. Yet they do not fo-

cus on the consumption implications of default risks, nor do they discuss the role of

fiscal rigidity.

While my chapter does not account for international trade, it is related to a

third subset of sovereign debt studies, in which the trade costs of default has received

increased attention. In an empirical paper, Zymek (2012) argues that sovereign default

reduces exporters’ access to credit, especially sectors that are more reliant on external

finance. Asonuma et al. (2016) examine the differential impact of debt restructuring

8This relationship is explained by income inequality: contemporaneously, the default gains increase
with a higher share of low-income households that value tax reduction more than their higher-income
counterparts. But the welfare costs of volatile taxes (due to capital market exclusion) are also higher
for low-income households, thus increasing the future default costs—but overall the contemporaneous
effects tend to dominate.

9They argue that a default actually helps redistribute household welfare by reducing the high- and
low-income households’ difference in marginal utilities of consumption. With both negative productivity
and inequality shocks, the government has a higher incentive to default so that the tax burden on the
poor can decrease.

10While the theoretical predictions are appealing, this paper does not offer evidence of the model’s
quantitative performance, therefore is less convincing in explaining the endogenous default behavior of
the government.
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(preemptive versus delayed) on external trade, and find that delayed restructuring (or

outright default) leads to more severe and protracted decline in both import and export.

A paper by Gu (2021) rationalizes the trade costs of default using a two country model

with endogenous default risks, penalty, and consumption home bias.11 By examining

the default-consumption linkage, my chapter may enrich the understandings of the trade

costs of default.12

In short, very few studies in the sovereign default literature explicitly examine

default as an aggregate shock with implications for household consumption. A com-

monly accepted assumption in such papers is that a default loosens the government

budget constraint, thus freeing up money to provide for public and private consump-

tion. But it is uncommon to see a paper that takes a step back, and rigorously and

empirically tests if a default, or rising default risks necessarily lead to an increase of

private consumption. Empirical understanding of the consumption ramification of de-

fault is important because existing studies generally only account for the loss of capital

or trade access. It is possible that direct household consumption cost is a factor of

endogenous sovereign default decision making.

In the following paragraphs, I focus on reviewing the second strand of literature—

relevant empirical studies that link financial crises and household consumption: 1) it is

11In the model, the defaulting country experiences income reduction due to adverse productivity shock
and wage decline. The defaulting country’s income loss is further amplified due to home bias leading to
deteriorating real exchange rate and terms of trade. The model also captures important trade dynamics
during default episodes: the volume of final goods export is less than that of import—leading to more
decline of total goods import than of goods export. This decline in income, coupled with reduced
import, has important implications for total consumption.

12In such studies, firms typically play a more prominent role than households—for instance, import
dynamics are driven by demand for intermediate goods for production. However, at a fundamental
level, trade and firm production eventually materialize as final goods for household consumption.

100



important to point out that my chapter has three key differences with such studies: not

many papers explicitly account for sovereign default and risks as macroeconomic shocks;

2) very few studies in this strand of literature specifically model fiscal or sovereign debt

behavior in their frameworks; 3) consequently such papers pay limited attention to the

possibility that default risks can be linked to households through fiscal policy. There-

fore, my chapter makes a contribution by connecting this literature and the sovereign

default papers.

Representing the more conventional strand of the literature, Barrell et al.

(2006) uses aggregate data of advanced economies to examine the impact of bank-

ing and currency crises on consumption.13 More recent empirical studies, increasingly

employing micro data in advanced economies such as France and Italy, point to hetero-

geneity of consumption responses to income shocks or an economic crisis. Some focus

specifically on the wealth channel, while others such as Bunn et al. (2018) examine both

positive and negative income shocks by also considering British households’ balance

sheet characteristics. Households’ interest rate exposure is a commonly used mecha-

nism through which macro shocks (for instance monetary policy shocks) transmit into

household consumption in such studies.14

For example, in Banks et al. (2013), the authors survey British households’

expectations of financial resource adequacy, and uncover the effects of the 2008-09 crisis

13A major shortcoming of this type of study is the lack of clean identification that pins down the
transmission mechanism of crises into household consumption.

14There are three approaches in modeling income (and wealth) shocks in relation to marginal propen-
sity to consume (MPC): 1) identifying episodes of unexpected changes in incomes (quasi-experimental
approach), 2) statistical decomposition of the income process into permanent and transitory components,
as seen in Blundell et al (2008), 3) newly designed survey questions eliciting responses to hypothetical
income changes.
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by simulating wealth changes based on asset price changes—therefore measuring the

wealth shock due to a crisis. A paper by Jappelli & Pistaferri (2014), closely related to

studies on fiscal stimulus and consumption, draws on an Italian survey of consumers’

anticipated consumption due to an unexpected transitory income change.15 One study

closely related to my research is by Garbinti et al. (2020). Using a cross-country harmo-

nized household level panel, Garbinti et al. (2020) examine the heterogeneity of MPC

out of wealth in five euro countries16 during the region’s financial crises in 2010-14,

though the impact of sovereign default impact is not the focus.17

Two papers most similar to my study are McKenzie (2003) and McKenzie

(2006), where the author uses ENIGH to examine the differential impact of the 1995

Mexican peso crisis across household types.18 In McKenzie (2003), the dependent vari-

ables are mainly social outcomes such as fertility, education, and household structure.

In McKenzie (2006), the author focuses on the changes in consumption composition

(durable versus nondurable) following the crisis. Since the peso crisis is an exoge-

nous shock, its impact on consumption are identified as mean effects by difference-in-

differences using data in 1994-96. The main finding is that the peso crisis decreased in-

15While high-quality direct survey data of consumer expectations would be ideal, it is uncommon
that such data are widely available for EMs. Mexico’s National Institute of Statistics and Geography
(INEGI) does house a National Survey on Consumer Confidence (ENCO), but the main data are not
about specific consumption values. Instead, the survey focuses on the consumer’s subjective view of the
general economic situations of the household and the country—there is one question about whether the
consumer expects to buy more or less durables

16Belgium, Cyprus, Germany, Spain, and Italy
17Their main estimation approach is an instrumented panel regression, and they use sovereign default

risk (aggregate asset prices changes) as an instrument to simulate household wealth changes and to
minimize endogeneity bias (household precautionary saving and portfolio reallocation behavior). While
sovereign default is not the direct focus, the results of the chapter are consistent with other studies that
a macroeconomic crisis can change household consumption through the wealth channel.

18The author employs an empirical approach that isolates the long-term trends (cohort effects) to
identify the effects of the crisis on the variables on interest.
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come and consumption across household types; in particular households reduce durable

and nonessential consumption to cope with the crisis.

My chapter differs from Mckenzie’s works in three main ways, though we both

employ ENIGH to understand the consumption implications of a financial crisis. First,

Mckenzie solely examines one near-default episode of Mexico, whereas the macroeco-

nomic shock—sovereign default risk—in my framework is broader and longer-term. Fur-

ther, Mckenzie’s papers refrain from explicitly modeling macroeconomic variables or

government behavior—the peso crisis is simply an exogenous (and abstract) shock in

the paper. In contrast, the underlying structure in my study allows for modeling govern-

ment’s endogenous fiscal and debt policies as well as their interactions with household

consumption. Finally and most importantly, my research question is different from

Mckenzie’s. His studies intend to understand the shift of household expenditure com-

positions during a crisis in light of Engel’s Law. In my chapter, I intend to identify the

channels and mechanisms through which sovereign default risks transmit into house-

hold consumption. In particular, I pay attention to the role of fiscal transfer and public

expenditure rigidity in modulating the shock.19

Fiscal Rigidity Moreover, few of the current studies pay attention to the issue of

fiscal rigidity, as they tend to focus on how a government can adjust, instead of whether

it can. Measuring fiscal rigidity is a relatively new endeavor. Munoz & Olaberria (2019)

measure rigid expenditures as inflexible budget components such as pension expenditure,

19Though the results so far are empirical, my ultimate goal is using the parameters and results from
the micro data to enrich a structural sovereign default model.
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public wage bill, debt service, and national-local revenue sharing. They argue that the

structural components of the rigid expenditure, due to institutional and legal factors, are

beyond fiscal policymakers’ control, at least in the short term. For example, in countries

like Brazil, job stability of public employees is protected by the country’s constitution.20

It is generally difficult for a democratically accountable government to drastically cut

rigid spending such as public wage bill, unless required by bailout agencies.

Existing studies employ two methods: a simple ratio of rigid budget item (e.g.,

pension payment) to total expenditure; an econometric estimation of the structural

and nonstructural components. More specifically, based on cross-country aggregate

data, Herrera & Olaberria (2020) estimate structural rigidity using a fixed effect model.

The structural component is determined by variables such as GDP and population.

The nonstructural component is simply the residual from the regression—the difference

between the actual and predicted expenditure, and is affected by short-term variables

such as election and business cycles.

However, this approach neglects the fact that nominal rigidity is also an inter-

temporal issue: tomorrow’s public expenditure partly depends on today’s, due to the

aforementioned institutional and legal factors that are resistant to change. Additionally,

the aggregate data in Herrera & Olaberria (2020) relies on exploiting cross-country

variation and country time-invariant fixed effects. The structural rigidity coefficient

being estimated is just an average across countries sampled. It cannot inform us precisely

of a sovereign’s default decision that can be tied to its idiosyncratic consumption or

20Soto & Karpowicz (2018) “Rightsizing Brazil’s Public-Sector Wage Bill”
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rigidity conditions. Thus, using household level data ENIGH in Mexico can exploit

within-country variation. If this parameter and related micro moments are properly

identified, they yield strong external validity for the rigidity friction to be incorporated

in a structural model.

In summary, most of the current macroeconomic studies have yet to establish a

direct link between sovereign debt default and the heterogeneity of household consump-

tion; nor do they pay attention to the role that public expenditure and its rigidity play

in this relationship. The wealth channel of a crisis or shock into household consump-

tion is corroborated by current literature. But it is unclear whether public expenditure

acts either as a buffer or a propagation mechanism of sovereign default risk. In my

chapter, I pay attention to the wealth channel but also propose fiscal transfer (and its

rigidity) as another mechanism (part of my assumption is that for poorer households,

the wealth channel will not be very important, but the fiscal transfer mechanism may

be significant).

2.3 Data Description and Institutional Background

To estimate public expenditure rigidity, measure household consumption, and

understand their relationships with sovereign default, I primarily use the National Sur-

vey of Household Income and Expenditure (ENIGH) of Mexico. The survey is conducted

by Mexico’s National Institute of Statistics and Geography (INEGI) dating back to 1984.

Since 1992, ENIGH has occurred, using multi-stage random sampling, every two years

105



with the most recent data available as of 2018. In essence, ENIGH is a representative

database of the income and expenditure behavior of Mexican households in urban and

rural areas, complemented by information of their socio-demographic and occupational

characteristics. Not all the households are surveyed every time, thus the entire database

is pooled cross-sectional rather than panel-type.

ENIGH contains three main components: income (monetary and nonmone-

tary) and its sources, expenditure and its goals, and household member characteristics

(e.g. age, occupation, education, health). The section most relevant to my research

is called “income and financial and capital payments of each of the members of the

household.” In the 2014 survey, for example, 21,427 housing units with a total of 89,131

observations are in the income section of the survey. Each individual member of the

household is asked about their incomes and sources over the past 6 months. There is an

extensive list of codes (clave) that categorize the income sources: wages and salaries,

sales from self-employment, and government transfers. The variable most useful for my

analysis will be quarterly income (ing tri) organized by each income source, especially

various types of government transfers. Additionally, there is one aggregate variable

measuring households’ cash flows/income (percep tot) generated by their assets.

While my chapter currently focuses on Mexico, the approach is applicable to

other countries with comparable data. In fact, World Bank’s Socio-Economic Database

for Latin America and the Caribbean (SEDLAC), a meta-database, shows that house-

hold income surveys similar to ENIGH exist in most of the 25 countries in the region.

The vast majority of such surveys also include information of pension and government
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transfers.

2.3.1 Summary Statistics

2.3.1.1 Aggregate Data

In order to gain more comprehensive understandings of Mexico’s public expen-

ditures, I have analyzed all major items in the government’s quarterly balance sheets

from 1993 through 2019. These balance sheets reveal the main types of programs pro-

vided by the Mexican government. Table (2.1) illustrates the top 10 types of spending

(as a share of total government expenditure), in terms of 5-year average.

From this table, it seems that there are four key types of fiscal spending that

are also related to household consumption: federal transfer, pension, wage, and welfare.

Funding allocated to state and municipal governments is the most significant item,

generally accounting for around a quarter of the total government spending. Since

2000, pension consistently ranks as the second biggest government spending, and seems

to be on an upward trend in its importance. The increased relative importance is also

seen in public wage and welfare (social programs). In comparison, items such as defense

and agricultural development seem to have diminishing relative importance. In short,

when examining the sovereign-consumption linkage, these summary statistics suggest it

is sufficient to focus on federal transfer, pension, wage, and welfare.21

21Unemployment insurance is not among the top expenditure items. Mexico does not have a national
unemployment insurance program. The country’s unemployment insurance system is too fragmented to
account for a big portion of the ”social welfare” category. For example, in response to COVID19, the
national housing fund Infonavit has provided temporary unemployment benefits to formal sector workers.
However, Infonavit is actually part of the pension system (formal workers make mandatory housing
contributions, which then would become housing savings or when they retire, pension). Unemployment
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Table 2.1: 5-Year Average of Top 10 Expenditure as Share of Total Gov. Spending

1995-99 2000-04 2005-09 2010-14 2015-19

Federal Transfer to States and Municipalities 14.0 32.4 26.9 23.5 22.4
Pension 10.2 14.1 15.4 19.1 21.8
Public Education 16.3 13.5 12.3 12.6 10.6
Public Wage 2.1 2.5 7.2 5.0 8.0
Health 4.1 2.6 3.8 4.9 4.2
Energy 3.4 3.8 5.5 1.2 4.1
Communication & Transportation 5.6 2.8 3.5 4.1 3.9
Welfare (social programs) 2.2 2.1 3.0 3.9 3.8
Defense 4.1 3.0 2.5 2.8 2.7
Agricultural & Rural Development 6.4 4.5 4.2 3.4 2.4

Source: Mexico’s Ministry of Finance and Public Credit

2.3.1.2 ENIGH

Using the 2014 data, the summary statistics below provide some preliminary

insights into the role of public expenditure in household incomes. Table (2.2) illustrates

the income sources of households at an individual level. For Mexican households, wages

and salaries are the most important way to make a living. Nearly a quarter of all house-

holds rely on employment. By comparison, pension income constitutes a much smaller

share of income source measured by frequency. At the same time, around 16 percent of

individuals receive some kind of social program assistance from the government.

Table 2.2: Household Income by Sources in 2014 (Individual Level)

Income source Frequency Percent

Wages and/or salaries 22,114 24.81
Pension 2,869 3.21
Social programs 14,291 16.03

More specifically, such government transfer includes food and farming support,

education scholarship, benefits for the elderly, unemployment benefits, and other assis-

data may confound the pension data, but they are unlikely to be significant enough to alter results in
the chapter.
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tance. These government transfers come from both the federal and/or state level. Table

2.3 provides summary statistics of income at a household level. There are 19,104 unique

household-level observations for total quarterly income. On average, a Mexican house-

hold earns 11,021 pesos per month in 2014. However, there is significant variability in

household income, suggesting the existence of high income inequality.

For the pensioners, each household earns only 6,044 pesos per month, which

is over 82 percent less than the average income. While more information is needed, it

is possible that there is an upward nominal pension rigidity: the pension income here

is already so low compared with the mean household income, it is politically difficult

for the government to cut pension. The magnitudes of government social programs

are small, as evident in Table (2.2). However, this does not mean that they play no

role in households’ incomes and well-being. For instance, it seems nearly over 18% of

households receive some type of cash or food assistance.

As discussed in Section 2.1, my research hypothesis is that there is a negative

relationship between sovereign default risk and household consumption, both of which

linked by fiscal transfer such as pension. Based on the aggregate data, it seems that

there is a strong positive relationship between pension and household consumption.

Figure (2.2) is a scatter plot of this relationship using the ENIGH data in 2014 for

households that receive pension. The micro data in 2014 are largely consistent with the

macro data.

There are two key benefits in using this micro dataset: the heterogeneity and

distribution implications of the sovereign-consumption link; the external validity and
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Table 2.3: Summary of Income by Sources in 2014 (Unique Household Level & in
Mexican pesos)

Income source Obs Mean Std. Dev. Min Max

Household Income (quarterly) 19,104 33,064.4 54,551.2 96.8 4,101,295
Pension 2,468 18,132.8 22,959.1 88 246,521.7
Education Support 895 2,326.1 5,050.7 58.69 71,539.7
Oportunidades and Food Assistance 3,992 2,433.8 1542.7 129.28 12,013
Agricultural Subsidy 749 2,854.7 7,341.1 146.7 166,304.3
Other Benefits for Elders 2,318 2,055.2 930.6 129.28 10,330.4
Unemployment and Other Benefits 388 1,283.1 1,529.5 48.91 14,673.9

Figure 2.2: Household Pension and Consumption in 2014

Note: only households with pension income are shown here

portability of the moments generated from empirical analysis to structural modeling. It

is possible to use only aggregate statistics to measure the relationship between sovereign

risk and consumption, but the estimated coefficient, averaged across all types of house-

holds, would weed out the diversity of consumption responses. We can think of this in

terms of the distribution of household consumption. Figure (2.3) shows histograms of
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the natural log of consumption using household-level data for years 1994-2018,22 disag-

gregated by those who receive pension and those who do not. Within each category,

the distribution is relatively wide-ranging. There are also noticeable differences between

these two groups. These differences are important because pension is a possible channel

that transmits or prevents sovereign default risk. In other words, sovereign risk has

tangible distributional consequences for households. Figures (2.4) and (2.5) show the

yearly averages by municipality for consumption and other income. The distinction

between the pension and no pension groups are less obvious but still noticeable.

The second benefit of using micro data for research identification is the wide

applicability (or external validity) of the estimated moments, which is difficult to achieve

by using aggregate data. While international statistics standards exist, there remain

differences in how countries measure and implement aggregate data. While micro data

do not automatically eliminate this issue, it is possible to minimize it by controlling

for essential individual and household characteristics (e.g., education, income, health).

Put another way, identification based on micro moments can generate the “portable

statistics” discussed by Nakamura and Steinsson (2018). Relating this specifically to

sovereign default literature, if properly identified in my chapter, the consumption cost

parameter and rigidity friction can be incorporated in a structural model (as opposed

to macro moments that depend heavily on the model structure and assumptions).

22It may be problematic to graph pooled cross-sectional data as histograms. Figure (2.3) is purely
for illustrative purpose
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Figure 2.3: Household Consumption in 1994-2018

2.3.2 Background on Pension and Other Government Transfers

Using the ENIGH data we can observe a notable structural break that is dif-

ficult to discern in the aggregate data. At a household level and averaged by state,

there is a drastic decline of pension income in the mid-to-late 1990s. In fact, the Mex-

ican government conducted a structural reform of the pension system during 1996-97:

some of the pension schemes switched from pay-as-you-go to defined-contribution, and

the funds are managed by private administrators that are regulated by the National

Commission for the Retirement Savings System (CONSAR).23 While there are multiple

reasons for the reform, one important factor is the high fiscal cost of the pre-reform

regime: for instance, the lifetime benefits and contributions of the worker have almost

no correlation.24

23Alonso et al. (2015)
24Sales-Sarrapy et al. (1998)
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Figure 2.4: Yearly Average of Household Consumption by Municipality

Figure 2.5: Yearly Average of Household Non-Pension Income by Municipality

The two most important pension systems are the Mexican Social Security

Institute (IMSS) and the Social Security Institute for Public-Sector Workers (ISSSTE),

both public entities under direct budgetary control of the Mexican government. Private

sector workers contribute to IMSS, while public employees contribute to ISSSTE—
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together these two systems account for around 40% of the economically active population

of Mexico.25 In other words, the pension coverage is low, which is consistent with the

high level of informality in the country’s labor force.

Additionally, it is important to note that despite the structural reform in

the 1990s, Mexico’s pension architecture is still in a transition period. The country

maintains two pension regimes: the pre-1997 regime (L73) and the reformed regime

(L97). The L73 regime only requires 500 weeks (less than 10 years) of contribution,26

while the L97 requires a minimum of 1,250 weeks (24 years) of contributions.27 At the

time of the reform, workers that were already contributing could choose between the

L73 and L97 schemes to receive their benefits upon retirement.28 However, L73 was

more generous than L97 because it is based on a defined benefits (DB) formula instead

of DC29—workers who entered the system after 1997 likely receive far less retirement

benefits. In both regimes, the minimum age to receive pension is 65 years, while the

minimum early retirement age is 60. Additionally, while pension relies on individual

contributions, under L97, the Mexico government also makes a contribution (Cuota

Social) to the system for low-income workers.30 Besides the federal pension systems,

there are some state-level programs (13 states as of 2015), but both their coverage and

benefits are very low.31 Though the management of pension funds is privatized, social

security is still an important item in Mexico government’s balance sheet. But it is

25Alonso et al. (2015)
26https://www.gob.mx/consar/articulos/pension-por-regimen-73
27https://www.gob.mx/consar/articulos/por-regimen-de-97
28Alonso et al. (2015)
29OECD (2016)
30Alonso et al. (2015)
31Alonso et al. (2015)
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important to acknowledge the limitation of my chapter: the assets dynamics of pension

funds management is not measured.

2.4 Research Methods

This section describes the method through which to answer the main research

question: how household consumption responds to sovereign default risk. ENIGH sur-

veys generally include residency information such as state, municipality, and Basic Geo-

statistical Area (AGEB),32 which allows for panel data estimation at the state level.

The household-level estimation is conducted using pooled cross-section data. All the

data are in real terms (2015 peso).

2.4.1 Specification at State Level

By converting ENIGH into a residency-level panel dataset, I can use a fixed

effect model with a measure of sovereign risk on the right-hand side. The first step is to

estimate the response of government transfers to sovereign default risk.33 Then I use the

predicted change of transfers as the independent variable in the second regression, where

household consumption (disaggregated by wealth or fiscal transfer) is the dependent

variable.

Stage 1. Examine the relationship between government expenditure and

32However, while AGEB is a variable, it is generally coded as “000-0” in the publicly available data.
In other words, I will rely on state-level and municipality-level variation.

33The relationship between sovereign risk and fiscal expenditure likely exists primarily at the na-
tional/federal level—states rely on federal transfers, and state-level expenditures such as pension are
relatively insignificant.
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sovereign risk. More specifically,

gt = β0 + β1dt + γZt + trend+ ϵt (2.1)

where t refers to time. gt is a type of federal government expenditure such as pension

and public wage. dt is a measurement of default risk. Zs,t is a list of control variables. ϵt

is the error term. From this regression, we can generate predicted government transfer

changes ∆ĝs,t using the coefficient β1. In other words, the aggregate spending change

can be observed at the state level in the second stage.

Stage 2. Regress household consumption against ∆ĝs,t and control variables.

∆cs,t = α0 + α1∆ĝs,t + ϕ∆ξs,t + es + δt + µs,t (2.2)

where cs,t is household consumption observed at state level s, ξs,t is the list of control

variables, δt is time fixed effect, and µs,t is the error term. Through the coefficient α1,

we can interpret the direction as well as the magnitude of consumption response due to

government transfer changes that are induced by sovereign default risk changes.

2.4.2 Specification at Household Level

We can also analyze the data at a household level. The first stage is identical to

that of the state level. The key difference lies in the second stage, where it is possible to

also control for household demographic characteristics such as size and age profile, as well

as income group fixed effects. In particular, households are categorized into deciles based

on their total income. It is likely that households in the same income distribution share
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certain unobserved characteristics that affect their consumption choices. Controlling for

such unobserved characteristics minimizes the potential omitted variables bias.

Stage 2. The specification at the household level is

∆ci,s,t,g = α0 + α1∆ĝi,s,t,g + ϕ∆ξi,s,t,g + es + δt + ωg + µi,s,t,g (2.3)

where the the subscript g refers to the income group that a household belongs to, and

ωg stands for time-invariant and state-invariant income group fixed effect. The data

employed in the estimation are pooled cross-section.

2.5 Results

2.5.1 Household Consumption

This section presents results using primarily the ENIGH data at household

level and at state level. The analyses are conducted at two stages: first stage at the

macro level (quarterly), and second stage stage at the disaggregated level (state and

household level). The first stage estimation is conducted at the aggregate level (using

data in per capita and in real terms), namely the specification shown in Equation (2.1).

Such aggregate data are from Mexico’s Ministry of Finance and Public Credit (SHCP).

For ENIGH, the sample considers data for years 1994 through 2018 (the survey is

generally conducted every two years).
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2.5.1.1 Stage 1

Using aggregate data, it is important to first flesh out which fiscal spending cor-

relates significantly with sovereign default risk. Following Equation (2.1) (but without

control variables), I have conducted univariate regressions of expenditure items against

measures of sovereign default risks. There are two types of risk measures: Mexico-U.S.

3-month Treasury spread; JPMorgan Emerging Market Bond Index (EMBI) for Mexico.

All the expenditure variables are de-seasonalized, real, and in per capita terms.

As shown in Table 2.1, there are 10 types of expenditure of interest due to their

large shares in Mexican government’s budget. These items, in order of importance, are:

1) federal transfer to states and municipal governments, 2) pension, 3)public education,

4)public wage, 5)health, 6)energy, 7) communication and transportation, 8) social wel-

fare programs, 9) defense, and 10) agricultural development. Therefore the univariate

regressions focus on these 10 variables.

Table 2.4 presents results using two types of explanatory variables: 3-month

spread and EMBI index. Among the 10 important expenditure items, six are statisti-

cally significant: federal transfer, pension, education, energy, defense, and agricultural

development. For all such variables except defense, when sovereign default risk rises,

there is reduction in expenditure. Notably, public wage bill has no significant correlation

with either 3-month spread or EMBI. Table 2.23 in Appendix shows the specifications

in which the sovereign risk measures are lagged by one quarter. The results are broadly

consistent with the previous table, with transportation expenditure now significantly
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Table 2.4: First Stage OLS Regression by Expenditure Type (Aggregate, Real, Per
Capita)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

3-month spread (log) -0.119*** -0.185*** -0.097*** -0.044 -0.038 -0.445** 0.028 -0.013 0.047* -0.162***
(0.027) (0.035) (0.020) (0.276) (0.051) (0.216) (0.073) (0.046) (0.027) (0.042)

Observations 88 108 108 107 108 108 108 108 108 108
R-squared 0.423 0.932 0.674 0.282 0.673 0.040 0.214 0.871 0.493 0.184

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

EMBI (log) -0.096*** -0.204*** -0.046** -0.090 0.021 -0.334 0.115 0.031 0.085*** -0.134***
(0.034) (0.043) (0.022) (0.340) (0.061) (0.252) (0.081) (0.049) (0.031) (0.049)

Observations 82 99 99 98 99 99 99 99 99 99
R-squared 0.363 0.924 0.720 0.305 0.690 0.019 0.294 0.881 0.475 0.086

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification is Equation (2.1) without the control variables, gt = β0+β1dt+ trend+ϵt, where
dt is a measurement of default risk. Spread (in percentage) is the difference between Mexico 3-month and U.S.
3-month yields. All dependent variables are seasonally adjusted, and are in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, FRED, JPMorgan EMBI

correlated with EMBI.

To check the robustness of the above results, the data are adjusted through first

differencing (log) and Christiano-Fitzgerald (CF) filter to better account for time trend.

Table 2.24 shows that now only three types of expenditure are significant: pension,

energy, and agricultural development. Though smaller in magnitude, the results for

pension are consistent with those in Tables 2.4 & 2.23. Table 2.25 illustrates the case

for CF-filtered data. Due to data availability and log transformation, the number of

observations is much smaller. However, at least for the EMBI measure, when sovereign

risk rises, pension experiences a reduction. Across all the tables, there is no case in

which public wage significantly responds to rising sovereign risk. This suggests that

public wage could be among the most rigid expenditure.

Besides the above results, I have also conducted similar regressions for granular
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variables of public wage. Mexico’s Ministry of Finance and Public Credit provides public

wage data disaggregated by government sector: for example, wage for public employees

working in the health sector. The vast majority of such wage variables have no significant

correlation with sovereign risk measures.34

In short, though there is much diversity in Mexico government’s expenditure,

Table 2.1 establishes that only 10 items matter due to their magnitude. However, not

all them matter directly for household consumption. Moreover, not all of them correlate

with the fluctuation of sovereign default risk. In other words, some of them are rigid

expenditure. Based on the regression results, it seems that pension is likely the primary

fiscal channel through which sovereign risk transmits into household consumption.35

The following regressions focuses on pension, but now with inclusion of control

variables. Tables 2.5 through 2.7 report the first stage results: pension expenditure is the

dependent variable and spread is the independent variable. In Table 2.5, it seems that in

all cases, there is a significant negative relationship between spread and pension—when

sovereign default risk rises, pension expenditure decreases. The relationship remains

significant, when we take into account pension revenue, which in theory should be the

most important predictor for pension expenditure. Overall, with default risk rising

by 1 basis point, the pension expenditure decreases by around 0.18%. In Table 2.6,

the sovereign debt shock is lagged by one period, and the magnitudes of the spread

coefficients become much bigger. In Table 2.7, all the variables except GDP growth

34the results are available upon request
35Federal transfer to local governments and public wage bill are not as important as pension, but may

be worth further examination.
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Table 2.5: First Stage OLS Regression (Aggregate Data, Real, Per Capita)

(1) (2) (3) (4)
VARIABLES Pension (log) Pension (log) Pension (log) Pension (log)

Spread (log) -0.183*** -0.189*** -0.180*** -0.190***
(0.0349) (0.0357) (0.0367) (0.0357)

Real GDP growth -0.010 -0.008 -0.012
(0.014) (0.014) (0.014)

Labor force part. rate (log) -1.485
(1.466)

Pension rev. growth rate (log) 1.313
(1.802)

Observations 108 108 108 107
R-squared 0.933 0.933 0.934 0.932

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification is Equation (2.1), gt = β0 + β1dt + γZt + trend+ ϵt, where dt is a measurement
of default risk. Zt is a list of control variables. Spread (in basis points) is the difference between Mexico 3-month
and U.S. 3-month yields. Pension, revenue, and labor force participate rate are seasonally adjusted. All in real,
per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, OECD, FRED, ILO, National Institute of Statistics
and Geography

have been first differenced. The magnitudes and significance of the coefficients become

a lot smaller, though the directions of change are still consistent with the previous table.

For example, in Column (1) the coefficient is -0.045.

2.5.1.2 Stage 2

In the remainder of the analysis, for the second stage regression, I use two

coefficients: -1.172 from Table 2.6 and -0.045 from Table 2.7. There are two types of re-

gressions conducted: state-level panel based on the ENIGH data; household-level pooled

cross-section. There are 32 states in Mexico, and state-level observations are obtained

by taking unweighted averages of household-level observations by residency/location.

Then the average household pension at the state level is multiplied to obtain the pre-
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Table 2.6: First Stage OLS Regression with Lag Spread (Aggregate, Real, Per Capita)

(1) (2) (3) (4)
VARIABLES Pension (log) Pension (log) Pension (log) Pension (log)

Lag Spread (log) -1.172*** -1.201*** -1.141*** -1.207***
(0.238) (0.243) (0.249) (0.244)

Real GDP growth -0.009 -0.006 -0.010
(0.014) (0.014) (0.014)

Labor force part. rate (log) -1.695
(1.476)

Pension rev. growth rate (log) 1.446
(1.830)

Observations 107 107 107 107
R-squared 0.929 0.930 0.931 0.930

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification is a variant of Equation (2.1), gt = β0 + β1dt−1 + γZt + trend + ϵt, where
dt−t is the lagged measure of default risk. Zt is a list of control variables. Spread (in basis points) is the
difference between Mexico 3-month and U.S. 3-month yields. Pension, revenue, and labor force participate rate
are seasonally adjusted. All in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, OECD, FRED, ILO, National Institute of Statistics
and Geography

Table 2.7: First Stage OLS Regression with First Differencing (Aggregate Data, Real,
Per Capita)

(1) (2) (3) (4) (5) (6)
VARIABLES ∆ Pension ∆ Pension ∆ Pension ∆ Pension ∆ Pension ∆ Pension

∆ Spread -0.045* -0.025 -0.022 -0.025 -0.046*
(0.023) (0.024) (0.024) (0.024) (0.023)

Real GDP growth 0.010** 0.010** 0.010**
(0.004) (0.004) (0.004)

∆ Labor Force rate 0.998
(0.674)

∆ Pension revenue -0.089 -0.067 -0.059
(0.080) (0.081) (0.082)

Observations 107 107 107 107 107 107
R-squared 0.035 0.080 0.099 0.091 0.041 0.005

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification is a variant of Equation (2.1), ∆gt = β0 + β1∆dt + γ∆Zt + trend+ ϵt with first
differencing of logs, where ∆dt is measure of default risk. ∆Zt is a list of control variables. Spread (in basis
points) is the difference between Mexico 3-month and U.S. 3-month yields. Pension, revenue, and labor force
participate rate are seasonally adjusted. All in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, OECD, FRED, ILO, National Institute of Statistics
and Geography
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dicted pension change (the data are multiplied by -1.172 or -0.045). To establish some

baselines, the second stage include regressions without the sovereign debt shock, namely

without using the first stage results. Moreover, thanks to the micro nature of the ENIGH

data, three types of consumption are considered: total consumption, food consumption,

and non-food discretionary consumption. Finally, all the analyses include the mid-1990s

years in which pension reform occurred. In the actual data, the structural break ap-

pears to occur during 1998-2000. Thus a dummy variable for year 2000 is included in

the following regressions.

State-Level Results Tables 2.8 and 2.9 present the results for total consumption at

the state level. In the baseline, all columns show a positive and significant relationship

between pension income and total consumption. The “other income” variable measures

not only wage but also earnings from self-employment and informal sector earnings as

well. Table 2.9 presents the second stage results using log-diff values and the estimate

from the first stage. It is important to note that the predicted pension change is lagged

by one period (namely, pension is multiplied by -1.172 and then lagged).

For columns (1) through (5) of Table 2.9, the coefficients are positive—this

means that when ∆ Pension increases, say from -2 to -1 (reduced risk and less pension

reduction), consumption actually increases as a response 36. In other words, a positive

coefficient in Table 2.9 actually means that the lower the pension, the lower the con-

sumption is. In the case of a debt crisis, wealth channel may be at work—therefore the

36for example, ŷ1 = −1 ∗ b > −2 ∗ b = ŷ2, increasing from -2 to -1 results in an increase of y
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results in Column (4) may be the most robust.

Tables 2.10 and 2.11 repeat the exercise, but with food consumption as the

dependent variable. In the baseline, the signs of pension coefficients are consistent with

the baseline for total consumption. More importantly, as shown by Table 2.11, when we

incorporate sovereign debt shock, all the pension coefficients remain positive. In short,

lower pension income due to higher default risk leads to lower food spending.

Tables 2.12 and 2.13 present the results for discretionary consumption. It is im-

portant to note that the measure of “discretionary” spending used here is broad: it only

excludes food, but includes other life necessities such as housing and medical spending.

At the baseline, as shown by Table 2.12, the pension coefficients are largely consistent

with the estimates for total and food consumption. In Table 2.13, all the coefficients are

positive—lower pension income due to higher default risk leads to lower discretionary

spending. However, as shown by Columns (3) through (5), when controlling for wage,

wealth, or labor, the relationships become insignificant.

Based on the results from the state-level regressions, it is plausible to derive

the following statements: when sovereign default risk rises, pension expenditure expe-

riences downward pressure contemporaneously, which materializes as lower household

pension income in the next period. As a result, lower pension income also leads to

lower consumption, especially total and food consumption items. It is important to

emphasizes that this negative default-consumption link is more likely to be lagged than

contemporaneous. This reinforces the idea that certain government transfers such as

pension are rigid expenditures in the inter-temporal sense.
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Table 2.8: State-Level Baseline Fixed Effect Regression—No Sovereign Default Shock
(Total Consumption)

(1) (2) (3) (4) (5)
VARIABLES Consumption (log) Consumption (log) Consumption (log) Consumption (log) Consumption (log)

Pension (log) 0.185*** 0.574*** 0.148*** 0.151*** 0.173***
(0.0251) (0.0355) (0.0289) (0.0260) (0.0212)

Other Income (log) 0.495***
(0.0344)

Wage (log) 0.202**
(0.0754)

Wealth (log) 0.099***
(0.0154)

Work Hours (log) 0.129***
(0.0249)

Reform 0.626*** -0.593*** 0.378*** 0.592*** 0.569***
(0.0895) (0.0965) (0.116) (0.0890) (0.0759)

Observations 448 448 448 448 448
Fixed Effects State & Year State & Year State & Year State & Year State & Year
R-squared 0.746 0.853 0.757 0.777 0.784
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.2) without sovereign default risks, cs,t = α0 +
α1ĝs,t + ϕξs,t + es + δt + µs,t where cs,t is household consumption observed at state level s, ξs,t is the list of
control variables, δt is time fixed effect. Unweighted averages at household level by state. All in real terms. For
robustness check, the regression is also done using first differenced values—the results (shown in the Appendix)
are not significantly different from the level observations
Sources: ENEGI and other data from Mexico’s National Institute of Statistics and Geography
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Table 2.9: State-Level Second-Stage Fixed Effect Regression—With Lagged Sovereign
Default Shock (∆ Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption

∆ Pension (predicted, lag) 0.116*** 0.150*** 0.078*** 0.106*** 0.101***
(0.0196) (0.0279) (0.0218) (0.0206) (0.0192)

∆ Other Income (log-diff) 0.055
(0.0329)

∆ Wage (log-diff) 0.481***
(0.0576)

∆ Wealth (log-diff) 0.087***
(0.0164)

∆ Work Hours (log-diff) 0.120***
(0.0266)

Reform 0.263*** -0.027 -0.096 -0.017 0.272***
(0.057) (0.199) (0.065) (0.083) (0.050)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 416 416 416 416 416
R-squared 0.537 0.543 0.628 0.585 0.598
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification of Equation (2.2) considering sovereign default risks, using coefficient -1.172 from
Table 2.6: ∆cs,t = α0 + α1∆ĝs,t−1 + ϕ∆ξs,t + es + δt + µs,t where cs,t is household consumption observed at
state level s, ξs,t is the list of control variables, δt is time fixed effect. Unweighted averages at household level
by state. All in real terms
Sources: ENEGI and other data from Mexico’s National Institute of Statistics and Geography
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Table 2.10: State-Level Baseline Fixed Effect Regression—No Sovereign Default Shock
(Food Consumption)

(1) (2) (3) (4) (5)
VARIABLES Food Consum. (log) Food Consum. (log) Food Consum. (log) Food Consum. (log) Food Consum. (log)

Pension (log) 0.103*** 0.187** 0.042 0.083*** 0.103***
(0.0344) (0.0802) (0.0325) (0.0295) (0.0352)

Other Income (log) 0.107
(0.0876)

Wage (log) 0.332***
(0.0752)

Wealth (log) 0.061***
(0.016)

Work Hours (log) 0.003
(0.043)

Reform 3.293*** 3.031*** 2.890*** 3.272*** 3.291***
(0.120) (0.238) (0.138) (0.110) (0.125)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 446 446 446 446 446
R-squared 0.987 0.987 0.988 0.988 0.987
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.2) without sovereign default risks, cs,t = α0 +
α1ĝs,t + ϕξs,t + es + δt + µs,t where cs,t is household consumption observed at state level s, ξs,t is the list of
control variables, δt is time fixed effect. Unweighted averages at household level by state. All in real terms. For
robustness check, the regression is also done using first differenced values—most of the results (shown in the
Appendix) have different signs from the level observations here
Sources: Mexico’s National Institute of Statistics and Geography

Table 2.11: State-Level Second-Stage Fixed Effect Regression—With Lagged
Sovereign Default Shock (∆ Food Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump.

∆ Pension (predicted, lag) 0.068*** 0.008 0.045*** 0.064*** 0.066***
(0.015) (0.036) (0.010) (0.015) (0.014)

∆ Other Income (log-diff) -0.097*
(0.053)

∆ Wage (log-diff) 0.293***
(0.097)

∆ Wealth (log-diff) 0.035**
(0.013)

∆ Work Hours (log-diff) 0.018
(0.059)

Reform 4.609*** 5.122*** 4.395*** 4.497*** 4.610***
(0.110) (0.288) (0.140) (0.107) (0.109)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 412 412 412 412 412
R-squared 0.954 0.954 0.955 0.954 0.954
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification of Equation (2.2) considering sovereign default risks, using coefficient -1.172 from
Table 2.6: ∆cs,t = α0 + α1∆ĝs,t−1 + ϕ∆ξs,t + es + δt + µs,t where cs,t is household consumption observed at
state level s, ξs,t is the list of control variables, δt is time fixed effect. Unweighted averages at a household level
by state. All in real terms
Sources: Mexico’s National Institute of Statistics and Geography
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Table 2.12: State-Level Baseline Fixed Effect Regression—No Sovereign Default Shock
(Discretionary Consumption)

(1) (2) (3) (4) (5)
VARIABLES Nonfood Consum. (log) Nonfood Consum. (log) Nonfood Consum. (log) Nonfood Consum. (log) Nonfood Consum. (log)

Pension (log) 0.082** 0.389*** 0.105*** 0.069* 0.069*
(0.038) (0.086) (0.033) (0.038) (0.038)

Other Income (log) 0.391***
(0.094)

Wage (log) -0.129
(0.096)

Wealth (log) 0.038
(0.024)

Work Hours (log) 0.127***
(0.038)

Reform -2.668*** -3.628*** -2.512*** -2.681*** -2.725***
(0.131) (0.247) (0.116) (0.135) (0.136)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 446 446 446 446 446
R-squared 0.984 0.986 0.984 0.984 0.985
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.2) without sovereign default risks, cs,t = α0 +
α1ĝs,t + ϕξs,t + es + δt + µs,t where cs,t is household consumption observed at state level s, ξs,t is the list of
control variables, δt is time fixed effect. Unweighted averages at household level by state. All in real terms. For
robustness check, the regression is also done using first differenced values—the results (shown in the Appendix)
are not significantly different from the level observations
Sources: Mexico’s National Institute of Statistics and Geography

Table 2.13: State-Level Second-Stage Fixed Effect Regression—With Lagged
Sovereign Default Shock (∆ Discretionary Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum.

∆ Pension (predicted, lag) 0.045* 0.138*** 0.031 0.039 0.033
(0.024) (0.049) (0.024) (0.025) (0.024)

∆ Other Income (log-diff) 0.150**
(0.061)

∆ Wage (log-diff) 0.183
(0.111)

∆ Wealth (log-diff) 0.052**
(0.021)

∆ Work Hours (log-diff) 0.010
(0.062)

Reform -4.358*** -5.156*** -4.491*** -4.525*** -4.348***
(0.128) (0.354) (0.147) (0.148) (0.121)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 412 412 412 412 412
R-squared 0.941 0.943 0.941 0.942 0.942
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification of Equation (2.2) considering sovereign default risks, using coefficient -1.172 from
Table 2.6: ∆cs,t = α0 + α1∆ĝs,t−1 + ϕ∆ξs,t + es + δt + µs,t where cs,t is household consumption observed at
state level s, ξs,t is the list of control variables, δt is time fixed effect. Unweighted averages at household level
by state. All in real terms.
Sources: Mexico’s National Institute of Statistics and Geography
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Household-Level Results Having examined the data at the state level, I further

examine the default-consumption relationship using household-level data. By combin-

ing ENIGH surveys from 1994 through 2018, I obtain a pooled cross-section dataset,

where each household unit is randomly selected and not repeated. In other words, it is

difficult to analyze the default effect that is lagged by time. Therefore, all the following

results illustrate contemporaneous relationships. Here predicted pension is calculated

by multiplying the observations by -0.045. Similar to the state-level regressions, the

analyses here are organized by total, food, and discretionary consumption. The results

are overall consistent with the state-level but with notable differences.

Table 2.14 and Table 2.15 illustrate results of total consumption. The baseline

result is consistent with the state-level estimates, though at a much smaller magnitude.

Table 2.15 is the estimation by taking into account sovereign default risk shock. Column

(1) shows the specification in which predicted pension is the only financial explanatory

variable. The coefficient is positive and significant—the lower the pension, the lower

total consumption. When taking into account wealth, the coefficient remains positive

and significant. The result becomes insignificant when considering wage. However, when

controlling for other income and work hours, the pension coefficient becomes negative.

It seems the results for total consumption could be driven by composition effects of

what households consume.

To further understand the results here, I continue the analysis for food con-

sumption and discretionary consumption. Table 2.17 shows that for food consumption,

the pension coefficients are all negative and significant. This makes sense since food is a
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relatively inflexible expense—it is difficult to cut down such spending even with reduced

pension income. Table 2.19 shows the estimation for discretionary spending: the signs

of the coefficients are the same as in Table 2.15. If focusing on the results in Columns

(1) and (4), it is likely that when pension income is reduced due to rising sovereign

risk, contemporaneously households respond by cutting discretionary spending, while

maintaining or increasing their food consumption. It requires further investigation why

including non-pension income flips the coefficient sign (as seen in Column 2), while

taking into account wealth does not.

The results presented here suggest three insights. First, the relationship be-

tween sovereign default risk and pension is significant, as is the relationship between

pension and consumption. Second, in the majority of the cases at both the state and

household levels, we observe a negative correlation between sovereign default risk and

consumption. Third, this default-consumption linkage is more likely to be negative

when lagged by one period. In fact, it is possible that contemporaneously this link-

age is positive, but becomes negative in the next period as the changes of rigid public

expenditures actually materialize. In other words, households’ consumption decisions

respond to changes in rigid government transfers inter-temporally.

2.5.1.3 Robustness Tests

Tables 2.29, 2.30, and 2.31 examine the changes in total, food, and discre-

tionary consumption in response to pension fluctuation within the same period. These

are state-level results and show that the coefficients are negative and significant. Tables
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Table 2.14: Household Level, Baseline Fixed Effect Regression—No Sovereign Default
Shock (Total Consumption, Log)

(1) (2) (3) (4) (5)
VARIABLES Consumption Consumption Consumption Consumption Consumption

Pension (log) 0.002*** 0.024*** 0.047*** 0.042*** 0.052***
(0.000) (0.000) (0.000) (0.000) (0.000)

Other Income (log) 0.366***
(0.003)

Wage (log) 0.039***
(0.000)

Wealth (log) 0.034***
(0.000)

Work Hours (log) 0.115***
(0.001)

Household Size 0.015*** 0.012*** 0.111*** 0.141*** 0.097***
(0.000) (0.000) (0.000) (0.000) (0.000)

Number of Minors 0.000 0.005*** -0.133*** -0.160*** -0.119***
(0.000) (0.001) (0.001) (0.002) (0.002)

Number of Elders (65+) -0.103*** -0.107*** -0.218*** -0.284*** -0.232***
(0.002) (0.002) (0.002) (0.002) (0.002)

Reform -0.011* -0.046* -0.182*** -0.073*** -0.086***
(0.006) (0.023) (0.010) (0.010) (0.010)

Fixed Effects State & Year & Income State & Year & Income State & Year & Income State & Year & Income State & Year & Income
Observations 340,638 314,455 340,638 340,638 340,638
R-squared 0.703 0.706 0.274 0.260 0.262

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.3) without sovereign default risks, ci,s,t,g =
α0 + α1gi,s,t,g + ϕξi,s,t,g + es + δt + ωg + µi,s,t,g where the the subscript g refers to the income group that a
household belongs to, and ωg stands for income group fixed effect. All in real terms. Income fixed effect refers to
unobserved household characteristics due to their position in the income distribution (deciles). Sources: Mexico’s
National Institute of Statistics and Geography
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Table 2.15: Household Level, Second Stage Fixed Effect Regression—With Sovereign
Default Shock (∆ Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption

∆ Pension (predicted) 0.095*** -0.778*** -0.014 0.089*** -0.137***
(0.011) (0.009) (0.011) (0.011) (0.011)

∆ Other Income (log-diff) 0.644***
(0.001)

∆ Wage (log-diff) (log-diff) 0.025***
(0.000)

∆ Wealth (log-diff) 0.023***
(0.000)

∆ Work Hours (log-diff) 0.111***
(0.000)

Household Size 0.067*** 0.029*** 0.054*** 0.068*** 0.033***
(0.001) (0.001) (0.001) (0.001) (0.001)

Number of Minors -0.013*** 0.002 -0.005*** -0.016*** 0.017***
(0.002) (0.001) (0.002) (0.002) (0.002)

Number of Elders (65+) -0.099*** -0.101*** -0.071*** -0.098*** -0.059***
(0.003) (0.002) (0.003) (0.003) (0.003)

Reform 0.065*** 0.170 0.056*** 0.064*** 0.048***
(0.011) (0.115) (0.011) (0.011) (0.011)

Fixed Effects State & Year & Income State & Year & Income State & Year & Income State & Year & Income State & Year & Income
Observations 340,637 313,566 340,637 340,637 340,637
R-squared 0.214 0.528 0.236 0.227 0.254

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (2.3) considering sovereign default risks, using coefficient -0.045
from Table 2.7: ∆ci,s,t,g = α0 +α1∆ĝi,s,t,g +ϕ∆ξi,s,t,g + es + δt +ωg +µi,s,t,g where the the subscript g refers
to the income group that a household belongs to, and ωg stands for income group fixed effect. All in real terms.
Income fixed effect refers to unobserved household characteristics due to their position in the income distribution
(deciles). Sources: Mexico’s National Institute of Statistics and Geography

2.32, 2.33, and 2.34 repeat the state-level baseline by first-differencing the variables. The

results reinforce the significant relationship between pension income and consumption.
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Table 2.16: Household Level, Baseline Fixed Effect Regression—No Sovereign Default
Shock (Food Consumption, Log)

(1) (2) (3) (4) (5)
VARIABLES Food Consum. Food Consum. Food Consum. Food Consum. Food Consum.

Pension (log) 0.009*** 0.017*** 0.039*** 0.034*** 0.046***
(0.001) (0.001) (0.001) (0.001) (0.001)

Other Income (log) 0.138***
(0.007)

Wage (log) 0.047***
(0.005)

Wealth (log) 0.015***
(0.001)

Work Hours (log) 0.144***
(0.002)

Household Size 0.010*** 0.096*** 0.142*** 0.177*** 0.122***
(0.001) (0.001) (0.001) (0.001) (0.001)

Number of Minors -0.032*** -0.031*** -0.097*** -0.128*** -0.079***
(0.002) (0.002) (0.002) (0.002) (0.002)

Number of Elders (65+) -0.181*** -0.178*** -0.214*** -0.298*** -0.228***
(0.003) (0.003) (0.003) (0.003) (0.004)

Reform 0.067*** 0.023 -0.010*** 0.030** 0.015
(0.014) (0.050) (0.014) (0.014) (0.014)

Fixed Effects State & Year & Income State & Year & Income State & Year & Income State & Year & Income State & Year & Income
Observations 340,638 314,455 340,638 340,638 340,638
R-squared 0.207 0.211 0.141 0.116 0.133

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.3) without sovereign default risks, ci,s,t,g =
α0 + α1gi,s,t,g + ϕξi,s,t,g + es + δt + ωg + µi,s,t,g where the the subscript g refers to the income group that a
household belongs to, and ωg stands for income group fixed effect. All in real terms. Income fixed effect refers to
unobserved household characteristics due to their position in the income distribution (deciles). Sources: Mexico’s
National Institute of Statistics and Geography
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Table 2.17: Household Level, Second Stage Fixed Effect Regression—With Sovereign
Default Shock (∆ Food Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump.

∆ Pension (predicted) -0.097*** -0.641*** -0.272*** -0.010*** -0.457***
(0.019) (0.018) (0.019) (0.019) (0.017)

∆ Other Income (log-diff) 0.408***
(0.003)

∆ Wage (log-diff) (log-diff) 0.040***
(0.000)

∆ Wealth (log-diff) 0.010***
(0.000)

∆ Work Hours (log-diff) 0.172***
(0.001)

Household Size 0.130*** 0.102*** 0.109*** 0.130*** 0.077***
(0.002) (0.002) (0.002) (0.002) (0.002)

Number of Minors -0.036*** -0.027*** -0.024*** -0.038*** 0.010***
(0.003) (0.003) (0.003) (0.003) (0.003)

Number of Elders (65+) -0.164*** -0.161*** -0.119*** -0.164*** -0.103***
(0.005) (0.005) (0.005) (0.005) (0.005)

Reform 0.069*** 0.182 0.054*** 0.069*** 0.042**
(0.019) (0.241) (0.018) (0.019) (0.018)

Fixed Effects State & Year & Income State & Year & Income State & Year & Income State & Year & Income State & Year & Income
Observations 340,637 313,566 340,637 340,637 340,637
R-squared 0.063 0.119 0.086 0.064 0.102

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (2.3) considering sovereign default risks, using coefficient -0.045
from Table 2.7: ∆ci,s,t,g = α0 +α1∆ĝi,s,t,g +ϕ∆ξi,s,t,g + es + δt +ωg +µi,s,t,g where the the subscript g refers
to the income group that a household belongs to, and ωg stands for income group fixed effect. All in real terms.
Income fixed effect refers to unobserved household characteristics due to their position in the income distribution
(deciles). Sources: Mexico’s National Institute of Statistics and Geography
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Table 2.18: Household Level, Baseline Fixed Effect Regression—No Sovereign Default
Shock (Discretionary Consumption, Log)

(1) (2) (3) (4) (5)
VARIABLES Nonfood Consum. Nonfood Consum. Nonfood Consum. Nonfood Consum. Nonfood Consum.

Pension (log) 0.002*** 0.028*** 0.056*** 0.050*** 0.062***
(0.000) (0.000) (0.001) (0.001) (0.001)

Other Income (log) 0.427***
(0.004)

Wage (log) 0.044***
(0.000)

Wealth (log) 0.043***
(0.000)

Work Hours (log) 0.129***
(0.001)

Household Size -0.001 -0.005*** 0.116*** 0.149*** 0.099***
(0.001) (0.001) (0.001) (0.001) (0.001)

Number of Minors 0.007*** 0.012*** -0.154*** -0.184*** -0.138***
(0.001) (0.001) (0.002) (0.002) (0.002)

Number of Elders (65+) -0.110*** -0.116*** -0.253*** -0.326*** -0.269***
(0.002) (0.002) (0.002) (0.002) (0.002)

Reform -0.017** -0.050* -0.212*** -0.091*** -0.105***
(0.008) (0.029) (0.012) (0.012) (0.012)

Fixed Effects State & Year & Income State & Year & Income State & Year & Income State & Year & Income State & Year & Income
Observations 340,638 314,455 340,638 340,638 340,638
R-squared 0.695 0.697 0.287 0.280 0.277

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.3) without sovereign default risks, ci,s,t,g =
α0 + α1gi,s,t,g + ϕξi,s,t,g + es + δt + ωg + µi,s,t,g where the the subscript g refers to the income group that a
household belongs to, and ωg stands for income group fixed effect. All in real terms. Income fixed effect refers to
unobserved household characteristics due to their position in the income distribution (deciles). Sources: Mexico’s
National Institute of Statistics and Geography
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Table 2.19: Household Level, Second Stage Fixed Effect Regression—With Sovereign
Default Shock (∆ Discretionary Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum.

∆ Pension (predicted) 0.112*** -0.918*** -0.003 0.104*** -0.133***
(0.013) (0.011) (0.013) (0.013) (0.013)

∆ Other Income (log-diff) 0.758***
(0.002)

∆ Wage (log-diff) (log-diff) 0.026***
(0.000)

∆ Wealth (log-diff) 0.030***
(0.000)

∆ Work Hours (log-diff) 0.117***
(0.001)

Household Size 0.061*** 0.017*** 0.047*** 0.062*** 0.025***
(0.001) (0.001) (0.001) (0.001) (0.001)

Number of Minors -0.010*** 0.008*** -0.001 -0.014*** 0.022***
(0.002) (0.002) (0.002) (0.002) (0.002)

Number of Elders (65+) -0.106*** -0.110*** -0.077*** -0.105*** -0.064***
(0.003) (0.003) (0.003) (0.003) (0.003)

Reform 0.070*** 0.227 0.061*** 0.069*** 0.052***
(0.013) (0.143) (0.013) (0.013) (0.013)

Fixed Effects State & Year & Income State & Year & Income State & Year & Income State & Year & Income State & Year & Income
Observations 340,637 313,566 340,637 340,637 340,637
R-squared 0.197 0.498 0.214 0.212 0.228

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (2.3) without sovereign default risks, ci,s,t,g =
α0 + α1gi,s,t,g + ϕξi,s,t,g + es + δt + ωg + µi,s,t,g where the the subscript g refers to the income group that a
household belongs to, and ωg stands for income group fixed effect. All in real terms. Income fixed effect refers to
unobserved household characteristics due to their position in the income distribution (deciles). Sources: Mexico’s
National Institute of Statistics and Geography
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2.5.2 Measuring Rigidity

The previous results suggest that the degree to which government expenditure

is rigid matters for how sovereign default risks transmit into household consumption

behavior. Therefore it is useful to better understand fiscal rigidity, and it serves pre-

dictors of which types of government expenditures are more likely to affect household

consumption in times of sovereign distress. In this section I present results of measuring

fiscal rigidity.

2.5.2.1 Specification 1—Panel with Fixed Effects

The first approach is to construct a new panel dataset by year and house-

hold residency. One section of ENIGH identifies household’s residency information by

Mexico’s states and municipality. Assuming such information exists for all the years

surveyed, I can construct new variables illustrating public transfer to households at a

state level. Then I can use a specification similar to Herrera and Olaberria (2020), but

just at the residency level. More specifically,

ln(gi,t) = Axi,t + ui + ϵi,t (2.4)

where gi,t is a rigid expenditure, xi,t is the set of independent structural vari-

ables including GDP and population, and ϵi,t represents the nonstructural component.

To facilitate preliminary analysis, ENIGH is converted into a panel dataset at state level

for years 1998 through 2018, with a gap of 2 years in between. Basically I calculated

state-level averages (unweighted) for variables of interest based on household level data.
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In other words, gi,t in Equation (2.4) refers to the pension income per household by

state. Currently there are four control variables: real GDP index by state, state age

index (ratio of elderly to youth) by state, population by state, and elderly population

by state.

Following Herrera and Olaberria (2020), I also employ the corrected ordinary

least square (COLS) method, but with state and year fixed effects. The main benefit

of this approach is to ensure that the estimated residuals, the nonstructural component

of the rigid expenditure, are always positive to facilitate interpretation. Additionally,

as discussed later, this approach essentially measures the minimum spending implied

by structural factors, which dovetails with the question of rigid spending. COLS is a

method described in Greene (2008) to estimate deterministic production or cost frontier

models 37. More specifically, COLS involves subtracting the largest estimated residual:

ϵCOLS
i,t = ϵi,t −max

i
ϵi,t (2.5)

This is equivalent to shifting the intercept in the OLS equation “upward” (and

simultaneously shifting the predicted values “downward”) so that all observations lie

above or on the regression line. By shifting the line “downward” to the frontier, I

ensure that the residuals are always positive. “Frontier” in this context refers to the

minimum level of rigid expenditure predicted by Mexico’s structural characteristics in

each state 38. Since the residuals also represent the nonstructural component of a rigid

37William H. Greene (2008) “The Econometric Approach to Efficiency Analysis” The Measurement
of Productive Efficiency and Productivity Change: Oxford University Press

38Page 48 of Herrera and Olaberria (2020) provides illustration of this idea
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expenditure, it is possible to infer the structural component.

Consequently, the main results of interest are the estimated residuals, rather

than the individual coefficients of the regression. Table 2.20 summarizes the mean

residuals by state through COLS. The structural variables used include GDP growth,

elderly population, population, and age index. It is important to note that all these

variables are at the state level: for example, the GDP growth data are for each of

the 32 states. For all these specifications, state-level pension data (per household) of

ENIGH serve as the dependent variable. The main difference between specifications

1-3 and specifications 4-6 is that the latter group are first differenced, including for the

dependent variable (Table 2.26 in the Appendix shows the OLS results and provides

further details on the specifications).

For Table 2.20, the estimated residuals are averaged by state, and the table

summarizes such average values depending on regression specification. For specifications

1-3, the mean residual is generally 0.32, measuring the nonstructural component of

the pension expenditure. In other words, for every 1 peso of pension, 0.32 of the

unit is nonstructural, implying that the structural component is around 68%. This

figure is in fact consistent with the number of 70% for the regional average of rigid

spending (including pension and public wage bill) in Latin America, based on cross-

country regression in Herrera and Olaberria (2020). Specifications 4-6, however, suggest

that the structural component of a rigid expenditure like pension may be much higher—

between 82% and 90%.

139



Table 2.20: Summary of Nonstructural Component of Pension by State

Mean Std. Dev. Min Max

Spec 1: GDP & elderly pop. 0.3225 0.0110 0.3125 0.3701
Spec 2: GDP & population 0.3255 0.0111 0.3155 0.3734
Spec 3: GDP & age index 0.3277 0.0112 0.3175 0.3757
Spec 4: GDP & elderly pop. (1st diff) 0.0977 0.0139 0.0903 0.1731
Spec 5: GDP & population (1st diff) 0.0999 0.0141 0.0924 0.1764
Spec 6: GDP, pop., & age index (1st diff) 0.0999 0.0141 0.0924 0.1763

Note: Results follow from first estimating Equation (2.4), ln(gi,t) = Axi,t+ui+ ϵi,t and then calculations using
Equation (2.5), ϵCOLS

i,t = ϵi,t −maxi ϵi,t

Specification 2—Time Series and Inter-temporal

Another approach is to use an AR(1) type model to estimate fiscal rigidity in

the inter-temporal sense. Studies such as Blanchard and Perotti (2002) and Fernández-

Villaverde et al (2015) have established that we can empirically identify fiscal rules and

policy shocks in a reduced form. More specifically, there is an inter-temporal relationship

between today’s and yesterday’s fiscal policies. Similar to Fernández-Villaverde et al

(2015), we can estimate the law of motion of a rigid expenditure as

gt−g = ρg (gt−1 − g)+ϕg,yỹt−1+ϕg,b

(
bt−1

yt−1
− b

y

)
+exp (σg,t) εg,t, εg,t ∼ N (0, 1) (2.6)

where g is the mean public expenditure as a share of output, ỹt−1 is lagged detrended log

output, and bt is public debt. If replacing ỹt−1 with GDP growth, the output parameter

is denoted as ϕ̃g,y. This specification captures the following characteristics of fiscal

behavior: the expected public expenditure based on the past value of expenditure, on

the business cycle, and on the public debt, yet taking into account possible deviations

due to new legislations and other unexpected fiscal actions.

Fernández-Villaverde et al (2015) focuses on the time-varying volatility of fiscal
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policy innovation, measured by exp (σg,t). Due to their research questions, such studies

tend to focus on the error term instead of the coefficient (and rightfully so). Yet it will

be useful to start paying attention to the persistent/rigid part denoted by ρg, which

measures how much of the past value determines today’s public expenditure. While

ENIGH is a pooled cross-section dataset, it is possible to convert it into time series

disaggregated by public expenditure items and household types (e.g., high, low incomes).

The values used in each year—17 years in total—can be an average of household-level

observations (one potential problem is the two-year gap between the data). The random-

sampling nature of the survey ensures the comparability and consistency of data across

years.

Focusing on pension and wage, I have used Mexico’s quarterly aggregate data

(real terms) in 1998-2019 to estimate the rigidity parameter. Similar to Fernández-

Villaverde et al (2015), Christiano-Fitzgerald (CF) filter detrends the output. Besides,

real GDP growth is used as an alternative variable (the parameter in this case is ϕ̃g,y).

Tables 2.21 and 2.22 report the estimation of pension rigidity in the inter-temporal

sense; the main parameter of interest is ρg. There are three types of estimation: AR(1)

for pension data, OLS for Equation (2.6), and Bayesian for Equation (2.6).39 The

Fernández-Villaverde et al (2015) paper employs a Bayesian approach to estimate fis-

cal rules, using U.S. aggregate, quarterly data (1970Q1 to 2014Q2), and reports the

posterior median for the government spending parameter as 0.99.

For pension, Column 1 of Table 2.21 shows that Mexico’s rigidity parameter

39The estimations that follow Equation (2.6) do not include the term exp (σg,t)
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Table 2.21: Parameters of Inter-Temporal Pension Rigidity

(1) (2) (3) (4)
Estimation AR(1) OLS1 OLS2 Bayesian

ρg 0.9996 0.7864 0.8228 0.7871
[0.9818, 1.0173] [0.6545, 0.9182] [0.6914, 0.9541] [0.7862, 0.7882]

ϕg,y -0.0086 -0.0107
[-0.0195, 0.0024] [-0.0133 -0.0081]

ϕ̃g,y -0.0001
[-0.0003, 0.00007]

ϕg,b 0.0003 0.00006 -0.0005
[-0.0025, 0.0030] [-0.0027, 0.0028] [-0.0023, 0.0010]

Note: Results in Columns (2)-(4) use a variant of Equation (2.6), gt − g = ρg (gt−1 − g) + ϕg,y ỹt−1 +

ϕg,b

(
bt−1

yt−1
− b

y

)
+εg,t. Sample period: 1998Q1-2019Q4. 95% confidence interval are reported in brackets. “OLS1”

refers to using detrended GDP variable (through CF filter); “OLS2” uses real GDP growth. Following Fernández-
Villaverde et al (2015), the Bayesian estimation here uses flat priors & Markov Chain Monte Carlo to sample from
the posterior. The results for Bayesian are posterior medians. OLS and Bayesian both contain a trend component.

is over 0.99 from AR(1). For OLS estimation, there are two different specifications:

detrended output using the CF filter, and real GDP growth. ρg is 0.7864 in the first

specification, and is 0.8228 in the second specification. The result of the Bayesian

approach is nearly identical to the first OLS estimation. In summary, the inter-temporal

rigidity of pension expenditure is around 0.8, as illustrated by Column 2, with an upward

limit of 0.99. In comparison, Table 2.22 shows that public wage bill has a much higher

degree of rigidity. This is consistent with the results in Table 2.4 that when faced with

need for fiscal adjustment due to debt distress, pension is much more responsive to

sovereign debt spread than public wage spending.
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Table 2.22: Parameters of Inter-Temporal Public Wage Rigidity

(1) (2) (3) (4)
Estimation AR(1) OLS1 OLS2 Bayesian

ρg 0.9801 0.9291 0.9295 0.9183
[0.9498, 1.010] [0.8527, 1.0055] [0.8555, 1.0034] [0.8414, 0.9978]

ϕg,y 0.0036 0.0022
[ -0.0594, 0.0666] [-0.0677 -0.0596]

ϕ̃g,y 0.0001
[-0.0008, 0.0011]

ϕg,b -0.0021 -0.0028 -0.0021
[-0.0207, 0.0163] [-0.0205, 0.0150] [-0.0227, 0.0145]

Note: Results in Columns (2)-(4) use a variant of Equation (2.6), gt − g = ρg (gt−1 − g) + ϕg,y ỹt−1 +

ϕg,b

(
bt−1

yt−1
− b

y

)
+ εg,t. Sample period: 1993Q1-2019Q4. 95% confidence interval are reported in brackets.

“OLS1” refers to using detrended GDP variable (through CF filter); “OLS2” uses real GDP growth. Following
Fernández-Villaverde et al (2015), the Bayesian estimation here uses flat priors & Markov Chain Monte Carlo to
sample from the posterior. The results for Bayesian are posterior medians. OLS and Bayesian both contain a
trend component.
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2.6 Conclusion

In this chapter, I examine how sovereign debt default risks transmit into house-

hold consumption behavior, and the role played by fiscal transfer, using data from the

National Survey of Household Income and Expenditure (ENIGH) of Mexico. This chap-

ter establishes a novel empirical link between default risks and household consumption.

More specifically, when the government faces financial pressures and higher debt servic-

ing costs, it adjusts expenditures and revenues to ensure debt sustainability. I show that

expenditure types such as pension payments are reduced in response to rising default

risks, while other items such as public wage bill are more rigid. This consequently gen-

erates consumption loss of households who rely on government transfers like pension,

and this effect is particularly pronounced for discretionary spending. Finally, properly

measuring public expenditure rigidity contributes to the understanding of this link, for

which I conduct estimates that illustrate feasible measurement approaches. For future

research, results in this chapter provide the empirical basis for constructing more real-

istic structural sovereign default models that consider fiscal rigidity and spillovers into

household behavior.
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2.7 Appendix

Table 2.23: First Stage OLS Regression with Lagged Sovereign Risk (Aggregate, Real,
Per Capita)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

3-month spread, lagged (log) -0.105*** -0.173*** -0.097*** -0.228 -0.049 -0.455** 0.020 -0.021 0.047* -0.193***
(0.028) (0.036) (0.020) (0.279) (0.051) (0.218) (0.074) (0.044) (0.028) (0.041)

trend 0.002*** 0.018*** 0.003*** 0.025*** 0.011*** -0.010* 0.007*** 0.019*** 0.005*** -0.005***
(0.001) (0.001) (0.000) (0.007) (0.001) (0.005) (0.002) (0.001) (0.001) (0.001)

Observations 88 107 107 106 107 107 107 107 107 107
R-squared 0.394 0.927 0.675 0.293 0.673 0.044 0.209 0.875 0.484 0.233
F test: 27.69 662.6 107.9 21.39 106.8 2.372 13.74 362.4 48.69 15.84

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

EMBI, lagged (log) -0.077** -0.203*** -0.059*** -0.156 -0.029 -0.449* 0.141* -0.003 0.065** -0.222***
(0.035) (0.042) (0.022) (0.337) (0.062) (0.255) (0.083) (0.051) (0.031) (0.047)

trend 0.003*** 0.019*** 0.005*** 0.032*** 0.013*** -0.010* 0.010*** 0.019*** 0.005*** -0.004***
(0.001) (0.001) (0.000) (0.006) (0.001) (0.005) (0.002) (0.001) (0.001) (0.001)

Observations 83 99 99 98 99 99 99 99 99 99
R-squared 0.327 0.923 0.723 0.325 0.678 0.042 0.318 0.866 0.465 0.209
F test: 19.45 576.6 125.2 22.89 101 2.121 22.35 310.1 41.79 12.71

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Spread (in percentage) is the difference between Mexico 3-month and U.S. 3-month yields. All dependent variables are
seasonally adjusted, and are in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, FRED, JPMorgan EMBI

Table 2.24: First Stage OLS Regression with Log Diff (Aggregate, Real, Per Capita)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

3-month spread(log-dif) -0.020 -0.051* -0.059 0.065 0.031 0.167 -0.148 0.020 -0.072 0.101
(0.116) (0.029) (0.040) (0.798) (0.082) (0.428) (0.175) (0.062) (0.059) (0.095)

Observations 87 107 107 105 107 107 107 107 107 107
R-squared 0.000 0.029 0.020 0.000 0.001 0.001 0.007 0.001 0.014 0.011
F test: 0.0282 3.147 2.153 0.00670 0.144 0.152 0.721 0.106 1.476 1.149

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

EMBI(log-dif) 0.030 -0.081*** -0.025 -0.859 0.108 0.724* -0.261 0.076 0.010 0.218**
(0.090) (0.027) (0.037) (0.814) (0.082) (0.385) (0.161) (0.059) (0.050) (0.091)

Observations 81 98 98 96 98 98 98 98 98 98
R-squared 0.001 0.084 0.005 0.012 0.018 0.036 0.027 0.017 0.000 0.056
F test: 0.111 8.757 0.457 1.114 1.725 3.539 2.616 1.671 0.0416 5.677

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Spread (in percentage) is the difference between Mexico 3-month and U.S. 3-month yields. All dependent variables are
seasonally adjusted, and are in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, FRED, JPMorgan EMBI
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Table 2.25: First Stage OLS Regression with CF Filter (Aggregate, Real, Per Capita)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

3-month spread(CF filter) 0.196 -0.086 0.036 0.162 0.015 0.015 -0.228 -0.037 -0.308 -0.048
(0.121) (0.113) (0.161) (0.177) (0.110) (0.133) (0.138) (0.115) (0.263) (0.174)

Observations 19 29 23 32 22 34 31 28 23 28
R-squared 0.133 0.021 0.002 0.027 0.001 0.000 0.086 0.004 0.062 0.003
F test: 2.610 0.584 0.0510 0.838 0.0187 0.0123 2.720 0.104 1.378 0.0764

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Fed transfer Pension Education Wage Health Energy Transport Welfare Defense Agro

EMBI(CF filter) -0.328 -0.571** -0.013 0.229 -0.282 0.106 -0.247 0.117 -0.095 -0.018
(0.277) (0.256) (0.279) (0.274) (0.182) (0.369) (0.288) (0.191) (0.351) (0.285)

Observations 17 17 24 23 22 25 25 26 24 25
R-squared 0.086 0.249 0.000 0.032 0.107 0.004 0.031 0.015 0.003 0.000
F test: 1.405 4.984 0.00207 0.699 2.395 0.0822 0.732 0.376 0.0737 0.00392

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Spread (in percentage) is the difference between Mexico 3-month and U.S. 3-month yields. All dependent variables are
seasonally adjusted, and are in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, FRED, JPMorgan EMBI

Table 2.26: Pension Expenditure Rigidity at State Level

(1) (2) (3) (4) (5) (6)
VARIABLES Pension (per HH, log) Pension (per HH, log) Pension (per HH, log) ∆ Pension ∆ Pension ∆ Pension

State GDP growth -0.00251 -0.00204 -0.00184 -0.00159 -0.00168 -0.00169
(0.00609) (0.00611) (0.00614) (0.00850) (0.00852) (0.00854)

State elderly population (log) 1.112**
(0.453)

State population (log) 0.975**
(0.481)

State age index -0.186
(0.477)

∆ Elderly population 1.174
(1.164)

∆ Population -0.444 -0.405
(1.101) (1.183)

∆ Age index 0.00242
(0.0266)

Constant -5.088 -6.310 -5.331 -3.530*** -3.308*** -3.316***
(4.984) (6.642) (7.106) (0.244) (0.180) (0.203)

Fixed Effects State & Year State & Year State & Year State & Year State & Year State & Year
Observations 352 352 352 352 352 352
R-squared 0.730 0.729 0.729 0.863 0.863 0.863

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: All variables are in real terms and at state level. Sample period: 1998-2018.
All ∆ variables are first differenced level variables
Pension data: unweighted averages at a household level by state.
Age index is defined as the ratio of older adults (60 and over) for every hundred children and youth (0 to 14 years of age). Elderly
population is defined as anyone older than 60 years old.
Only the variable of age index exhibits a minor upward trend
Sources: Mexico’s National Institute of Statistics and Geography
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Figure 2.6: Default Risk, Pension, and Consumption of Mexico (Per Capita, 1993-
2019, Quarterly)

(a) Sovereign Debt Spread and Pension Expenditure (b) Household Consumption and Pension Expenditure

(c) Sovereign Debt Spread and Household Consumption

Source: OECD, FRED, and Mexico’s Ministry of Finance and Public Credit
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Table 2.27: First Stage OLS Regression with Lag Spread and First Differencing (Ag-
gregate, Real, Per Capita)

(1) (2) (3) (4)
VARIABLES ∆ Pension (log) ∆ Pension (log) ∆ Pension (log) ∆ Pension (log)

∆ Spread (lag) -0.0582** -0.0376 -0.0382 -0.0677**
(0.0230) (0.0250) (0.0248) (0.0274)

realGDPgrowth 0.00843* 0.00874** 0.00512
(0.00433) (0.00429) (0.00514)

∆ Labor force (log) 1.114*
(0.669)

∆ Pension revenue (log) -0.0377
(0.143)

Constant 0.0201*** 0.0154*** 0.0151*** 0.0190***
(0.00512) (0.00561) (0.00556) (0.00603)

Observations 106 106 106 99
R-squared 0.058 0.092 0.116 0.116

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Spread (in basis points) is the difference between Mexico 3-month and U.S. 3-month yields. Pension, revenue, and labor
force participate rate are seasonally adjusted. All in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, OECD, FRED, ILO, National Institute of Statistics and Geography

Table 2.28: Aggregate Data—Second Stage OLS Regression (Real, Per Capita)

(1) (2) (3) (4)
VARIABLES ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption

∆ pension -0.00743 -0.0342 0.0180 -0.0343
(0.0549) (0.0351) (0.0396) (0.0353)

realGDPgrowth 0.0104*** 0.00843*** 0.0105***
(0.000838) (0.000910) (0.00123)

∆ earning -0.0483
(0.248)

∆ saving -0.0327
(0.350)

Constant -0.000227 -0.0138 0.00283 -0.0139
(0.0157) (0.0101) (0.0116) (0.0101)

Observations 107 107 99 107
R-squared 0.000 0.597 0.488 0.597

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Predicted pension refers to the observations generated from the predicted values using the spread coefficient -0.0450 from
Stage 1. Pension and savings are seasonally adjusted. All in real, per capita terms.
Sources: Mexico’s Ministry of Finance and Public Credit, OECD, FRED, ILO, National Institute of Statistics and Geography
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Table 2.29: State-Level Second-Stage Fixed Effect Regression—With Sovereign De-
fault Shock (Total Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption

∆ Pension (predicted) -3.669*** -4.187*** -2.439*** -3.464*** -3.071***
(0.657) (0.875) (0.618) (0.675) (0.573)

∆ Other Income (log-diff) 0.0359
(0.0328)

reform 0.257** -0.00427 -0.693*** 0.279** 0.212*
(0.107) (0.260) (0.160) (0.113) (0.110)

∆ Wage (log-diff) 0.534***
(0.0647)

∆ Wealth (log-diff) 0.0823***
(0.0162)

∆ Work Hours (log-diff) 0.144***
(0.0246)

Constant -1.280*** -1.369*** -0.309 -1.243*** -1.060***
(0.300) (0.323) (0.304) (0.314) (0.266)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 447 447 447 447 447
R-squared 0.600 0.602 0.700 0.628 0.671
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.30: State-Level Second-Stage Fixed Effect Regression—With Sovereign De-
fault Shock (Food Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump.

∆ Pension (predicted) -2.093*** -1.044 -1.399*** -1.997*** -2.045***
(0.558) (0.773) (0.510) (0.554) (0.541)

∆ Other Income (log-diff) -0.0726*
(0.0413)

reform 7.216*** 7.745*** 6.670*** 7.226*** 7.212***
(0.108) (0.320) (0.158) (0.107) (0.106)
(0.0849) (0.138) (0.105) (0.0832) (0.0846)

∆ Wage (log-diff) 0.308***
(0.0754)

∆ Wealth (log-diff) 0.0383***
(0.0128)

∆ Work Hours (log-diff) 0.0122
(0.0473)

Constant -4.010*** -3.830*** -3.458*** -3.993*** -3.993***
(0.275) (0.305) (0.271) (0.272) (0.266)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 443 443 443 443 443
R-squared 0.970 0.970 0.971 0.970 0.970
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.31: State-Level Second-Stage Fixed Effect Regression—With Sovereign De-
fault Shock (Discretionary Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum.

∆ Pension (predicted) -1.527** -3.090*** -1.023 -1.417* -1.010
(0.683) (1.073) (0.733) (0.709) (0.730)

∆ Other Income (log-diff) 0.108**
(0.0495)

reform -6.967*** -7.755*** -7.363*** -6.955*** -7.003***
(0.145) (0.397) (0.236) (0.146) (0.155)

∆ Wage (log-diff) 0.224**
(0.105)

∆ Wealth (log-diff) 0.0440**
(0.0194)

∆ Work Hours (log-diff) 0.131**
(0.0516)

Constant 2.755*** 2.486*** 3.156*** 2.775*** 2.941***
(0.330) (0.393) (0.389) (0.343) (0.353)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 443 443 443 443 443
R-squared 0.965 0.966 0.966 0.965 0.967
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.32: State-Level Baseline Fixed Effect Regression (First Differenced)—No
Sovereign Default Shock (Total Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption ∆ Consumption

∆ Pension (first diff) 0.210*** 0.625*** 0.145*** 0.199*** 0.181***
(0.0316) (0.0390) (0.0243) (0.0298) (0.0246)

∆ Other Income (log-diff) 0.519***
(0.0408)

reform 0.952*** -1.495*** -0.0699 0.932*** 0.821***
(0.163) (0.203) (0.194) (0.152) (0.134)

∆ Wage (log-diff) 0.442***
(0.0645)

∆ Wealth (log-diff) 0.0711***
(0.0181)

∆ Work Hours (log-diff) 0.126***
(0.0219)

Constant -0.104 1.051*** 0.392*** -0.126 -0.0829
(0.0801) (0.101) (0.0989) (0.0747) (0.0657)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 447 447 447 447 447
R-squared 0.665 0.818 0.727 0.686 0.718
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: unweighted averages at a household level by state.
Sources: ENEGI and other data from Mexico’s National Institute of Statistics and Geography
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Table 2.33: State-Level Baseline Fixed Effect Regression (First Differenced)—No
Sovereign Default Shock (Food Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump. ∆ Food Consump.

∆ Pension (first diff) 0.103*** 0.105 0.0631*** 0.0978*** 0.102***
(0.0252) (0.100) (0.0195) (0.0247) (0.0242)

∆ Other Income (log-diff) 0.00236
(0.114)

reform 7.509*** 7.498*** 6.881*** 7.500*** 7.506***
(0.165) (0.514) (0.195) (0.161) (0.160)

∆ Wage (log-diff) 0.273***
(0.0778)

∆ Wealth (log-diff) 0.0333**
(0.0126)

∆ Work Hours (log-diff) 0.00346
(0.0469)

Constant -3.294*** -3.289*** -2.989*** -3.304*** -3.294***
(0.0801) (0.238) (0.0986) (0.0748) (0.0783)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 443 443 443 443 443
R-squared 0.971 0.971 0.971 0.971 0.971
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: unweighted averages at a household level by state.
Sources: Mexico’s National Institute of Statistics and Geography

Table 2.34: State-Level Baseline Fixed Effect Regression (First Differenced)—No
Sovereign Default Shock (Discretionary Consumption)

(1) (2) (3) (4) (5)
VARIABLES ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum. ∆ Nonfood Consum.

∆ Pension (first diff) 0.104*** 0.518*** 0.0798*** 0.0984*** 0.0776***
(0.0249) (0.114) (0.0254) (0.0254) (0.0240)

∆ Other Income (log-diff) 0.516***
(0.128)

reform -6.575*** -9.001*** -6.961*** -6.586*** -6.694***
(0.152) (0.534) (0.250) (0.155) (0.158)

∆ Wage (log-diff) 0.168
(0.106)

∆ Wealth (log-diff) 0.0380*
(0.0210)

∆ Work Hours (log-diff) 0.123**
(0.0517)

Constant 3.198*** 4.343*** 3.386*** 3.186*** 3.215***
(0.0750) (0.256) (0.131) (0.0751) (0.0761)

Fixed Effects State & Year State & Year State & Year State & Year State & Year
Observations 443 443 443 443 443
R-squared 0.966 0.971 0.966 0.966 0.967
Number of state 32 32 32 32 32

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: unweighted averages at a household level by state.
Sources: Mexico’s National Institute of Statistics and Geography
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Chapter 3

Climate Risks and Sovereign Default:

Scenario Analysis of Fiscal Conditions

3.1 Introduction

Climate change is a pressing environmental and economic challenge, and it

poses increasing physical and financial risks.1 Its acceleration has materialized as in-

creasing frequencies of natural disasters globally, which often result in damages to prop-

erties, people, and the broader economy.2 Seminal studies such as Nordhaus (1992),

Nordhaus (2017), Burke et al. (2015), Burke et al. (2018) have documented how phys-

ical risks of climate change negatively affect economic output.3 These challenges call

for efforts in adaptation as well as in mitigation. For governments worldwide, there

1For example, see a 2015 speech by Mark Carney, then Governor of the Bank of England
2For an illustration of increasing frequencies of climate disasters, see Figure 3.3 in the Appendix
3Reisinger et al. (2020) define physical risks as those resulting from “climate change impacts and

climate-related hazards”
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is immense need for climate financing and consequently potentially high fiscal costs.

To limit the temperature increase to 1.5◦C, the Intergovernmental Panel on Climate

Change (IPCC (2022)) estimates that the global financing need for the energy sector is

$2.3 trillion per year between now and 2052. On climate adaptation, developing coun-

tries’ financing needs will likely be $310-555 billion per year by 2050 (UNEP (2021)).

It is not only developing countries that may be facing financing shortfalls.

In the United States, the federal government forecasts that due to climate

change, the federal revenue loss could be up to 1.9% of GDP in 2100.4 On the expendi-

ture side, the federal government could face additional expenditure of up to $128 billion

annually. Besides physical risks, transition risks of climate change are another cause of

concern for public finance. Reisinger et al. (2020) with IPCC define transition risks5 as

any non-physical risks associated with the economy shifting to being less-carbon inten-

sive. In other words, transition risks are the potential downsides of structural adjust-

ments in the economy in mitigating and adapting to climate change.6 These transition

risks put upward pressure on sovereign debt borrowing, as the climate-related spending

rises and the tax base weakens.7

4See United States Office of Management and Budget (2021), “Federal Budget Exposure to Climate
Risk”. The result of federal revenue loss uses a 10 percent impact on U.S. GDP, which represents the
95th percentile of estimated economic damages under the NGFS ‘Current Policy’ scenario.

5Such risks could arise in a disorderly transition (disruptive, unanticipated, sudden, and/or late
policy actions) in which fuel security is disrupted, energy markets become volatile, and assets become
stranded (e.g., loss of value)

6FSB (2020). IEA (2021); definition of “disorderly transition” from NGFS (2020). See this link
for definition of “stranded assets.” In essence, transition risks are part of the uncertainty posed by
climate change. As described by Goolgasian & Delongchamp (2020), the specific drivers of transition
risks include: 1) Shift from fossil fuels to renewable energy; 2) Change in asset valuation, access to
finance, and profitability in sectors that rely on fossil fuels; 3) Regulations that curb carbon emission;
4) Change in social norms and consumption behavior; 5) Labor market changes due to climate migration;
6) Technological innovations.

7Lorans & Moussavi (2019)
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With such financing gaps, governments are more likely to rely on debt for

these climate efforts, yet there are limited understandings of how climate change affects

sovereign default risks, particularly in relation to fiscal policy and fiscal conditions.

This chapter helps answer this question by employing a qualitative sovereign default

model, combined with empirical analysis, taking into account fiscal conditions. More

specifically, fiscal conditions refer to any factors that can modulate the conduct of fiscal

policy, and include two broad categories: fiscal rule and fiscal rigidity. Fiscal rule (how

to adjust) generally entails placing numerical constraints on budget and debt. On the

other hand, fiscal rigidity measures whether a government can adjust its expenditure or

revenue. Put another way, when a government has high degree of fiscal rigidity, there

is “little room to maneuver”: the government has limited inability to adjust tax or

spending in the short term.

There are few studies on fiscal rigidity in general or in the context of climate

change risks. Herrera & Olaberria (2020) is one such study that exploits cross-sectional

variations to show that on average 70% of government spending in Latin American

and Caribbean is rigid (meaning a significantly high portion of the spending cannot

be adjusted in the short term). In Chapter 2, taking an approaching focusing on inter-

temporal variations, I show that in Mexico as much as 82% of the expenditure is difficult

to adjust. Understandings of the fiscal conditions, especially fiscal rigidity, matter for

the analysis of climate risks, as they illustrate the potential paths to adjustment and

transition to a low-carbon economy. My chapter makes contributions by providing

empirical analysis of how both physical and transition risks affect sovereign default.
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More importantly, the results illustrate the ways fiscal conditions matter in how climate

risks affect sovereign default, which have important policy implications for structural

reforms.

The organization of the chapter is the followings: Section 3.2 summarizes

existing literature and highlights my contributions. Section 3.3 discusses the main

datasets used to measure climate vulnerability and physical hazards, in addition to fiscal

conditions. In Section 3.4, I take panel logistic regression as the estimation method, and

discuss the empirical strategy to estimate the role of fiscal conditions and the impact

of transition risks. In Section 3.5 I build a two-period model to illustrate that high

fiscal rigidity makes the government more financially constrained, therefore even more

susceptible to default due to climate change. Section 3.6 concludes.

3.2 Related Studies

While the explicit focus on climate change is relatively new, existing studies

have examined how natural disasters affect fiscal costs and debt level. Koetsier (2017)

find that sovereign debt level increases in response to natural disasters. Other studies

such as Deryugina (2017) and Noy & Nualsri (2011) both find that public spending

increases following natural disasters. Focusing on default probability, Klomp (2017)

employs a logit model in which the dependent variable is the incident of default,8 and

find that disasters such as storms and earthquakes raise default probability by 3%.

8According to this measure, a country is in default if 1) debt arrears are over 5% of total debt;
2) debt relief; 3) support from the IMF; 4) being classified as default by Standard & Poor’s.
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There is also emerging empirical evidence that climate change has significant

impact on sovereign debt, and in most cases it raises default risks. While not equiva-

lent to default probabilities, government credit ratings by agencies such as Standard &

Poor’s (S&P) provide insights into financial market’s perception of risks. Following the

S&P methodology, Klusak et al. (2021) conduct simulations and show that increased

temperature volatility could lead to sovereign credit rating downgrades. In particular,

under the “business as usual” scenario, many economies would experience credit rating

cuts, with downgrade of 2.48 notches on average by the year 21009.

Other studies use historical observations to examine the link between climate

change and sovereign default. Cevik & Jalles (2020b) use a panel dataset of 98 economies

for 1995-2017, and specifically focus on the measurements of climate vulnerability and

resilience. They find that country’s climate vulnerability increases its sovereign spread,

while climate resilience reduces it. Kling et al. (2018) also find that climate vulnerability

increases cost of sovereign debt borrowing. Similarly, Beirne et al. (2020) find that cli-

mate vulnerability has a bigger effect than climate resilience on sovereign risks. In some

cases, climate-related disasters can also trigger events of sovereign default. Asonuma

et al. (2018) find that Grenada’s debt restructuring in 2004-06 was triggered by Hur-

ricane Ivan (causing damage worth 200 percent of GDP) in September 2004. Grenada

started missing debt payments in October 2004, then was downgraded to “selective de-

fault.” The ensuing debt restructuring resulted in net present value (NPV) haircut of

38.4 percent.

9The rating is on a 20-notch scale
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Much attention on the climate change impact is on the physical damage, and

the projections often are in a long-term horizon (e.g., a hundred years from now). Yet in

the intermediate term, climate change may pose non-physical risks that have important

ramifications for the financial market. In fact, firms and the financial sector are not

oblivious to such risks10. Bolstad et al. (2019) employ textual analysis of public com-

panies’ annual 10k filings with the U.S. Securities and Exchange Commission (SEC)11,

and show that on average in each company’s filing, there are more mentions of climate

transitions risks than physical risks. At the same time, researchers in academia and

financial markets have started to notice the importance of measuring transition risks

for firms’ stock returns.12 Engle et al. (2020), Meinerding et al. (2020), and Sautner

et al. (2021) use textual analysis of news and corporate earnings calls to measure cli-

mate transition risks. In particular, Sautner et al. (2021) do find that investors demand

compensation ex ante for stocks more exposed to climate risks, though the movement

of risk premium over time is not monotonic.13

10For example, see Krueger et al. (2020) for survey of institutional investors’ perceptions of climate
regulatory risks

11While the 10k form is mandatory, companies voluntarily disclose their perceptions of climate risks.
The companies here are in the Russell 3000 Index

12Giese et al. (2021) focus on specific sectors’ carbon emission as a measurement of transition risk,
while Bolton & Kacperczyk (2021) use firm-level data in 77 countries. Despite the focus on carbon
emission, the two studies seem to have arrived at contradictory results: Bolton & Kacperczyk (2021) find
that higher-emission companies observe higher stock returns, as investors demand a “carbon premium.”
This contrast suggests the challenge of properly measuring transition risks. Additionally, such measures
may suffer from selection bias, as carbon emission disclosure tends to be voluntary, at least in the United
States

13Nevertheless, such narrative-based measures are not free from sample selection bias, as they are
dependent on information that is publicly disclosed. More importantly, the measures from all these
papers (all focusing on equity markets), regardless of focus on carbon or not, only capture firm-level or
sector-level climate risks and can only partially explain sovereign climate risks. Peszko et al. (2020) is
the only study I am aware of that has touched on the measurement of transitions risks for countries.
However, their methodology focuses on fossil fuel revenue (e.g., oil exporting countries) and has limited
external validity. Moreover, their measurement is only for year 2019
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On the theory and structural modeling side, Mallucci (2020) and Phan &

Schwartzman (2021) represent a nascent set of literature that examines the nexus be-

tween climate change and sovereign default though numerical methods. However, their

papers mainly focus on physical hazard (e.g., hurricane and cyclones), and do not ac-

count for fiscal policy. Additionally, my chapter is related to two other strands of

literature: 1) rare disaster risks; 2) climate change risks, especially the transition risks

due to policy uncertainty. Rare disaster literature such as Barro (2006), Rebelo et al.

(2018), and Gourio (2012) are informative in explaining the impact of extreme disaster

events on asset pricing. But these studies do not directly address the risks of climate

change, especially transition risks.14 In the second type of studies, papers such as Bar-

nett et al. (2020), Fried et al. (2021), Karydas & Xepapadeas (2019), Barnett (2019),

Carattini et al. (2021), and Bretschger & Soretz (2018) quantify the transition risks of

climate policy uncertainty, in relation to a wide range of issues including assess pricing,

carbon taxation, and macroprudential policies,15 but not sovereign debt default.16

14The main limitations of the rare disaster studies include: 1) Climate change risks have different
probability distributions compared with rare disasters; 2) the framework of rare disaster cannot capture
the transition risks posed by climate mitigation strategies, such as carbon taxation and technology
innovation; 3) Investors could “price in” the risks of climate change, for example, based on firms’ and
countries’ carbon emissions. Painter (2020) shows that investors are already pricing in climate risks in
municipal bonds. Ilhan et al. (2020) show that investors in the option market price in climate policy
uncertainty.

15Other relevant studies include Battiston et al. (2019) and Battiston & Monasterolo (2020)
16In particular, by modeling stochastic jump of oil input in aggregate production, Barnett (2019) shows

that the transition risks of climate policy can lead to accelerated extraction of oil, leading to downward
pressure on oil prices and valuation of oil firms. Similarly, Bretschger & Soretz (2018) measure policy
risk in the form of carbon tax that follows a Poisson process, so that the model captures unexpected
changes of taxation due to political and/or environmental reasons. The mechanism of climate policy
in Karydas & Xepapadeas (2019) also follows a Poisson process. In comparison, the paper by Fried
et al. (2021) models the policy risk as the probability of introducing a permanent, one-time carbon
tax policy—thus the economy transitions between pre- and post-tax steady states. The mechanism of
transition risk in my model is similar to Barnett (2019) and Bretschger & Soretz (2018) in that there
is time-varying stochastic volatility of policy risk, as opposed to the one-time, permanent change as in
Fried et al. (2021).
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While a relatively new field, an increasing number of studies examine the link

between climate change and sovereign debt default. But the main gap in the literature

is that a government’s ability to conduct fiscal adjustment is not properly accounted for.

Moreover, another point requiring more attention is that physical and transition risks

are not clearly differentiated or measured.17 My chapter makes two main contributions

to the literature. First, the empirical estimation of my chapter makes contributions

by measuring the vulnerability to physical and transition risks of climate change sep-

arately. The analysis reveals such vulnerability, especially the aspects unrelated to

physical hazards, increase sovereign default probabilities. My second contribution is

the incorporation of fiscal rigidity into a qualitative sovereign default model, and the

analysis shows how governments with unfavorable fiscal conditions can experience even

higher default risks due to climate change.

3.3 Data

The main types of datasets used are climate vulnerability, climate disasters,

sovereign default incidents, and macroeconomic control variables. All the data are his-

torical observations, thus cannot directly measure the risks of climate change, which

are forward-looking metrics. However, the data and empirical analysis do capture the

vulnerability to climate risks. The dataset of the Notre Dame Global Adaptation Ini-

17The only exception is an empirical paper by Beirne et al. (2020), who do try to account for transition
risk using carbon emission standards. But the transition risk measure is used more for a robustness
test, and its importance is clearly understated in this paper. Specifically, this measure is based on the
gap between carbon emission trend and target by 2050. For physical risks, their measure is based on
sea-level exposure, agriculture’s sensitivity to climate, and deaths due to climate extremes
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tiative (ND-GAIN) measures a country’s climate vulnerability18 based on the exposure,

sensitivity, and adaptive capacity of 6 areas: infrastructure, habitat, health, water,

food, and ecosystem.19 The vulnerability measure is a composite index based on 36

indicators including engagement in international environmental conventions, projected

change of crop yields, water withdrawal rate, access to sanitation, biome distribution,

and dependency on imported energy.20 The measurement is constructed by scoring each

indicator’s distance to an ideal state for each country. The database is annual, covering

years 1995–2018 for 184 countries.

The “climate vulnerability” variable in ND-GAIN in effect measures both a

country’s physical and transition susceptibility to climate change risks. In this dataset,

the exposure component mainly measures the physical risks21 from climate change,

adaptive capacity component mainly measures the transition risks,22 and the sensitiv-

ity component can measure both. Even with such classifications, however, it is not

straightforward to delineate physical versus transition risks. Moreover, it is likely that

physical risks and transition risks interact: for example, a snow storm may damage

power grids, a physical risk, but may also reduce the affected area’s electricity access

and capacity in the longer term, a transition risk.

Thus it is necessary to properly measure non-physical climate vulnerability

by decomposing the ND-GAIN data. There are two ways to achieve it: 1) Isolate

18Chen et al. (2015)
19GDP per capita and the impact of climate-related disasters are excluded from the index
20see Table 1 of Chen et al. (2015) for a complete list of indicators
21In the dataset, such indicators include flood hazard, precipitation, and population living under sea

level
22In the dataset, such indicators include hydropower capacity, agricultural technology, environmental

conventions, and health infrastructure
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non-physical risks from overall climate risks, by using the residuals from regression of

ND-GAIN and disasters; 2) Construct a new dataset similar to ND-GAIN but focus

on transition risks only.23 It is important to minimize the endogeneity bias of the

climate measures by ensuring they are orthogonal to macroeconomic conditions. I use

the variable “vulnerability, adjusted for GDP” from ND-GAIN, which is constructed

from the combined residual (cffect plus error term) from a regression of the original

vulnerability variable against GDP per capita.24 Therefore, the climate vulnerability

measure I use from ND-GAIN is decoupled from each country’s GDP per capita (this

also implicitly detrends the variable).

To measure physical hazards, I use the Emergency Events Database (EM-

DAT)25 housed at the Centre for Research on the Epidemiology of Disasters (CRED),

University of Louvain. It provides data of disaster events worldwide from 1900 and

present. There are three types of variables in EM-DAT26: 1) Count of events by disas-

ter subgroups: geophysical, meteorological, hydrological, climatological, and biological;

2) Count of events by disaster type: e.g., earthquake and drought; 3) Number of deaths,

number of people affected, and economic losses. The EM-DAT dataset is monthly, but

is aggregated to yearly frequency to match ND-GAIN.

While ND-GAIN is one of the most comprehensive measures of climate risks, it

23I plan to use select data series of ND-GAIN to construct such a measure
24This description is based on my own replication of the “vulnerability, adjusted for GDP” variable.

The documentation from ND-GAIN is relatively vague: “There is a correlation between ND-GAIN
scores and GDP per capita. To account for this, we introduce the ’GDP adjusted ND-GAIN score’.
This score is defined as the distance of a country’s measured ND-GAIN score and its expected value
based on the regression of ND-GAIN and GDP.” See the ND-GAIN website.

25This dataset is also used by the IMF to measure physical risks. See https://climatedata.imf.

org/pages/fi-indicators
26https://public.emdat.be/about
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may still suffer from endogeneity bias. Thus it is useful to include alternative measures

that are commonly used in climate science. In this chapter, as robustness checks, I

use temperature change data and the Palmer Drought Severity Index (PDSI).27 The

mean change of global surface temperature is from the National Aeronautics and Space

Administration’s Goddard Institute for Space Studies (NASA-GISS).28 PDSI is based

on precipitation and temperature data to measure relative dryness, thus one key effect of

climate change. The original PDSI is monthly, gridded data of weather stations around

the world (organized by geographic coordinates). In order to ensure they conform to

the format of my estimation, I convert the gridded data to country-level by matching

coordinates and taking the mean of all observations in each country.

To measure sovereign default, I use the BoC–BoE Sovereign Default Database

by Beers et al. (2020). Covering 147 countries for years 1960 to 2019, the database

records the events and amount of sovereign default organized by types of creditors. “De-

fault” is defined as any material losses that investors experience due to the followings:

1) Nonpayment of debt service; 2) Maturity extension or interest rate reduction based

on sovereign-creditors agreement; 3) Debt buyback or exchange at discount; 4) Cur-

rency redenomination from foreign to local currencies; 5) Sovereign debt swapped into

equity; 6) Retrospective taxation on debt payments; 7) Converting central bank notes

at discount.

The BoC-BoE dataset broadly identifies the creditor and currency types: i) Pri-

vate creditors, including foreign currency bank loans ii) Official creditors: Interna-

27It seems not many economics papers, with the exception of Hong et al. (2019), have used PDSI data
28The data are downloaded through FAOSTAT Temperature Change
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tional Monetary Fund (IMF), International Bank for Reconstruction and Development

(IBRD), International Development Association (IDA), Paris Club, and China; iii) for-

eign currency bonds; iv) local currency debt.

The macroeconomic control variables come from the IMF World Economic

Outlook, the Chicago Board Options Exchange’s CBOE Volatility Index (VIX) are

from the Federal Reserve Economic Data (FRED) of the Federal Reserve Bank of St.

Louis, and the real effective exchange rate data29 are from Bruegel.

3.3.1 Summary Statistics

Table 3.1 summarizes the key moments of the main variables: 1) Climate

vulnerability from ND-GAIN—the higher the number, the greater the vulnerability;

2) Count of climate-related disasters from EM-DAT; 3) Incident of sovereign default

on total debt from the BoC-BoE database; 4) Drought severity from PDSI—the lower

the number, the relatively drier a country is; 5) Temperature anomaly (in celsius) with

respect to the baseline years 1951–1980.

Since this is a panel data, the between-group and within-group moments are

also reported. For the within measures, since they are calculated as the deviation from

a country’s mean, the minimum values of variables such as climate disasters and total

sovereign default are negative.

There are three notable findings from the summary statistics: 1) Climate vul-

nerability exhibits relatively higher variability than other climate variables (especially

29The paper uses a narrow index of 67 trading partners

163



temperature anomaly), and the variability is driven by between-group variation; 2) The

ranges of climate disasters are large for the overall, between, and within measures, de-

spite relatively low standard deviations—suggesting that there are observations with

very extreme values; 3) The unconditional probability of default in this sample is 3%

(0.73 over years 1995-2018).

Table 3.1: Summary of Key Variables

Variable Mean Std. Dev. Min Max Obs

Climate vulnerability overall 0.46 6.48 -12.75 21.13 N = 3240
between 6.40 -10.85 18.90 n = 135
within 1.13 -6.40 12.68 T = 24

Climate disasters overall 1.51 2.44 0.00 30.00 N = 3408
between 2.03 0.00 14.54 n = 142
within 1.38 -7.37 18.63 T = 24

Total sovereign default overall 0.73 0.44 0.00 1.00 N = 3408
between 0.34 0.00 1.00 n = 142
within 0.29 -0.23 1.69 T = 24

Palmer drought index overall -0.66 1.74 -6.69 5.89 N = 2080
between 1.04 -4.22 1.86 n = 104
within 1.39 -6.27 4.40 T = 20

Temperature anomaly overall 0.89 0.50 -0.78 2.77 N = 2778
between 0.28 0.17 1.48 n = 120
within 0.42 -1.09 2.65 T-bar = 23.15

3.4 Empirical Estimation

In order to examine how climate risks affect sovereign default probability, I

use a panel logit econometric specification shown in Equation 3.1.

Pr [ default it = 1] = γclimateit + βkxit + ui + ηt + eit (3.1)
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where default is a binary variable of whether country i has defaulted in year t (=1 if

default). This variable is based on the BoC-BoE dataset, and can be examined in terms

of default on total sovereign debt, debt to private creditor, local currency debt, debt to

Paris Club, and debt to other official creditors.30

climate is a measure of vulnerability to climate change risks for each country in

each year. At the baseline, I use the variable of ND-GAIN climate vulnerability, adjusted

for GDP per capita. In other words, this baseline variable measures vulnerability to

both the physical and transition risks of climate change.

Further, xit refers to a vector of control variables: real GDP growth, fiscal

balance (share of GDP), inflation rate, unemployment rate, debt to GDP ratio, change

of real effective exchange rate, change of current account, change of GDP per capita,

and Chicago Board Options Exchange’s CBOE Volatility Index (VIX). Most of these

control variables are standard in the sovereign default literature, and VIX is included

to control for correlates of the global financial cycle. ui and ηt are year and country

fixed effects, and eit is the error term.

In addition, in order to disentangle transition risks from physical risks, I use the

variable of climate-related natural disasters from EM-DAT. First, I add the EM-DAT

climate disasters and their interaction terms with ND-GAIN climate vulnerability to

Equation 3.1, in order to flesh out whether the impact of climate vulnerability depends

on the frequency of climate-related natural disasters (in other words, whether physical

hazards dominate the effect of the overall climate risks).

30My analysis is limited to these types of default, though the BoC-BoE dataset covers more types of
creditors
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Following Equation 3.2, I then create a new measure of vulnerability to tran-

sition risks by conducting a linear fixed effect regression:

climateit = ξdisasteri,t−1 + ui + ηt + transitionit (3.2)

where climate vulnerability is the dependent variable and climate disasters (lagged by

one period31) are the independent variable. The residuals transitionit from the regres-

sion thus measure the components of climate risks that are not explained by physical

hazards—thus vulnerability to transition risks.

3.4.1 Baseline Results

Table 3.2 shows the baseline regression following Equation 3.1, where the ex-

planatory variable is the ND-GAIN climate vulnerability measure.32 The original co-

efficients from the logit regression are in log-odds, thus difficult to interpret. In order

to facilitate interpretation, the average marginal effects of climate vulnerability are re-

ported. Column 1 of the table shows that higher climate vulnerability increases the

default probability on total sovereign debt. In terms of magnitude, a percentage in-

crease in climate vulnerability increases the default probability by 5.6 percentage points.

The impact of climate vulnerability on defaulting on the private creditors is significant

around the 89% level, and the magnitude of 7% is slightly bigger than that for total

debt. Column 4 shows that the impact is significant for defaulting on Paris Club cred-

31This choice accounts for the possibility that the relationship between climate disasters and climate
vulnerability are not contemporaneous

32The baseline regression is similar to that in Cevik & Jalles (2020a). My empirical analysis improves
upon what is done in that paper as I decompose the climate vulnerability into physical and transition
components. Moreover, the purpose of the empirical analysis here is to motivate the structural model
in my chapter, whereas Cevik & Jalles (2020a) is a purely empirical paper
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Table 3.2: Climate Vulnerability and Default Probability (Marginal Effects)

(1) (2) (3) (4) (5)
VARIABLES total private creditor local currency Paris Club Other official creditor

Climate vulnerability 0.056** 0.071 0.003 0.043*** 0.036
(0.027) (0.043) (0.040) (0.017) (0.023)

Observations 876 850 224 414 975
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (3.1), Pr [ default it = 1] = γclimateit + βkxit + ui + ηt + eit.
Average marginal effects are reported (instead of log-odds) to facilitate interpretation.
Control variables: real GDP growth, fiscal balance (share of GDP), inflation, unemployment rate, debt to GDP
ratio, change of real effective exchange rate, change of current account, change of GDP per capita, and VIX.
“Other official creditors” exclude the IMF and the World Bank. The discrepancy of observation numbers between
columns 1 and 5 is due to countries being dropped for lacking within-group variations

itors as well. The coefficients are also economically significant. Sovereign default are

relatively rare events: the unconditional probability of sovereign default for a country

is generally between 2.2% and 2.9% (in other words, at most once every 33 years).33

3.4.2 Extension: Transition Risks

In order to better measure physical and non-physical risks, I extend the base-

line regression of Equation 3.1 to control for climate-related natural disasters and their

interaction with climate vulnerability. To measure disasters, I use two variables from the

EM-DAT dataset: meteorological and climatological disasters. Climatological disasters

include examples such as drought, wildfire, and glacial lake outburst. Meteorological

disasters include tropical storms, rain, tornado, and winter storm. In this chapter, “cli-

33See Reinhart et al. (2003) and Borensztein & Panizza (2009). By calculating the “liquidity premium”
of bonds issued post-default, Sturzenegger & Zettelmeyer (2008) estimate the default probability to be
2.7%.
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mate disasters” encompass meteorological, climatological, and hydrological disasters.34

Table 3.3 shows the results and reports the original coefficients of the logit

regression. The purpose here is not necessarily to interpret individual coefficients, but

to check whether the interaction of climate vulnerability and natural disasters are sig-

nificant. As the table shows, for total debt and Paris Club debt, the majority of the

interaction terms are not statistically significant. However, for debt owed to the private

sector, the effect of climatological disasters on default probability is significant, and the

interaction term between climate vulnerability and climatological disasters is positive

and significant. This means that for a country that experiences more frequent climato-

logical disasters, their climate vulnerability also has a bigger impact on the probability

of defaulting on debt to the private sector. Nevertheless, the results for total debt and

Paris Club echo that in Bolton & Kacperczyk (2021) where they find the effect of carbon

emission does not depend on countries’ physical risks. This suggests that the impact

of climate vulnerability on default probability may have a weak association with the

frequency of physical climate disasters.

The estimations so far, however, have yet to directly decompose climate vul-

nerability into the physical hazard and transition risks dimensions. To do so, I estimate

Equation 3.2 using three types of specifications: 1) Climate disasters as a whole; 2) A

combination of types of climate disasters; 3) Disasters lagged by one period. The results

presented in Table 3.4 are interesting: overall, higher frequency of climate disasters de-

crease climate vulnerability, and the magnitudes of effect are bigger when the disasters

34hydrological disasters are not included in the regression here because they are significantly correlated
with climate vulnerability, thus may lead to multicollinearity
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Table 3.3: Climate Vulnerability, Disasters, and Default Probability (Log-Odds)

(1) (2) (3) (4)
VARIABLES total private creditor Paris Club Other official creditor

Climate vulnerability 0.661** 0.372 1.666** 0.345
(0.315) (0.333) (0.732) (0.262)

Meteorological disasters 0.092 -0.015 0.281 0.080
(0.116) (0.144) (0.542) (0.180)

Climatological disasters 0.491 0.919* -0.532 0.002
(0.337) (0.534) (1.507) (0.289)

Vulnerability interact Meteorological -0.031 -0.006 0.323* -0.026
(0.030) (0.034) (0.188) (0.032)

Vulnerability interact Climatological 0.056 0.155** -0.251 -0.020
(0.053) (0.071) (0.280) (0.041)

Observations 566 623 257 652
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows a variant of Equation (3.1) considering climate disasters and interactions
between climate vulnerability and disasters, Pr [ default it = 1] = γclimateit + δdisastersit + ξ(climateit ×
disastersit)+βkxit +ui + ηt + eit. Control variables: real GDP growth, fiscal balance (share of GDP), inflation,
unemployment rate, debt to GDP ratio, change of real effective exchange rate, change of current account, change
of GDP per capita, and VIX.
Local currency default not reported here as the regression failed to converge.
“Other official creditors” exclude the IMF and the World Bank. The discrepancy of observation numbers between
columns 1 and 4 is due to countries being dropped for lacking within-group variations
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are lagged by 1 year. While seemingly counter-intuitive, this direction of effect makes

sense: climate disasters induce more actions in mitigation and adaptation, thus reduc-

ing the overall vulnerability. Additionally, the effect is mainly driven by hydrological

disasters (e.g., flood).

Most importantly, Table 3.4 suggests estimation that neglects transition risks

(or only focus on natural disasters), thus not considering mitigation and adaption, may

be misrepresenting the true direction of impact from climate change on sovereign default.

The estimation of residuals transitionit from Equation 3.2 thus provides a

possible solution. The original ND-GAIN variable measures the vulnerability to both

physical and transition risks. Assuming climate disasters are good measurements of

physical hazards, Equation 3.2 essentially means that the variable disaster explains

well the physical risks. Thus controlling for country and year fixed effects, the residu-

als transitionit measure the “vulnerability to transition risks.” Table 3.8 in Appendix

provides summary statistics of this variable by region.

Then I extend the baseline logit regression by using this newly constructed

variable, which now appears on the right hand side as climateit in Equation 3.1. In other

words, instead of the overall climate vulnerability, the estimation now specifically focuses

on the vulnerability to transition risks, as the variable is decoupled from (uncorrelated

with) climate-related physical hazards.

Table 3.5 shows the results, which demonstrate that vulnerability to transition

risks are significant for default probability. The magnitudes of the effects are in fact on

par or slightly bigger than those in the baseline shown in Table 3.2. In particular, for
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Table 3.4: Regressions of Climate Vulnerability and Climate Disasters

(1) (2) (3) (4) (5)
VARIABLES climate vulnerability climate vulnerability climate vulnerability climate vulnerability climate vulnerability

Total climate -0.037*
(0.020)

Total climate (t-1) -0.041**
(0.019)

Climatological -0.007 -0.016
(0.070) (0.067)

Meteorological -0.021 -0.015
(0.048) (0.045)

Hydrological -0.046**
(0.019)

Climatological (t-1) -0.041
(0.064)

meteorological (t-1) -0.018
(0.041)

Hydrological (t-1) -0.050***
(0.019)

Observations 3,240 3,105 2,131 2,131 2,042
R-squared 0.023 0.024 0.017 0.019 0.022
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (3.2), climateit = ξdisasteri,t−1 + ui + ηt + transitionit. The
residuals transitionit from the regression thus measure the components of climate risks that are not explained by
physical hazards—thus vulnerability to transition risks. “total climate” is a sum of climatological, meteorological,
and hydrological disasters. According to EM-DAT, the definitions of these disasters are 1) Meteorological: “A
hazard caused by short-lived, micro- to meso-scale extreme weather and atmospheric conditions that last from
minutes to days”; 2) Hydrological: “A hazard caused by the occurrence, movement, and distribution of surface
and subsurface freshwater and saltwater”; 3) Climatological: “A hazard caused by long-lived, meso- to macro-scale
atmospheric processes ranging from intra-seasonal to multi-decadal climate variability” .
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Table 3.5: Transition Risks Vulnerability and Default Probability (Marginal Effects)

(1) (2) (3) (4) (5)
VARIABLES total private creditor local currency Paris Club Other official creditor

Vulnerability to transition risks 0.054* 0.074* -0.002 0.043*** 0.034
(0.028) (0.043) (0.043) (0.016) (0.023)

Observations 876 850 224 414 975
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (3.1), but using the transition risk vulnerability measure,
Pr [ default it = 1] = γclimateit + βkxit + ui + ηt + eit. Average marginal effects are reported (instead of
log-odds) to facilitate interpretation.
Control variables: climate disasters, real GDP growth, fiscal balance (share of GDP), inflation, unemployment
rate, debt to GDP ratio, change of real effective exchange rate, change of current account, change of GDP per
capita, and VIX.
“Other official creditors” exclude the IMF and the World Bank. The discrepancy of observation numbers between
columns 1 and 5 is due to countries being dropped for lacking within-group variations

default on the private creditor, the coefficient is now 7.3% and significant. The result

suggests that while existing studies tend to focus on physical risks such as hurricanes,

transition risks may have already played an important role in sovereign default decisions.

Moreover, as Burke et al. (2015) suggest, climate change may have hetero-

geneous impact on the output and default risks for different regions. Therefore, it is

important to conduct the estimation by different groups. Table 3.6 shows the how

transition risks vulnerability affects the total default probability by geographic regions.

Such effect is highly significant for Europe, Middle East, and South Asia. For Latin

America, the coefficient is significant at the 78% confidence level. It is also striking that

compared with Europe and Latin America, the differential impact for Southeast Asia

and South Asia can be as big as 27.1 percentage points. Tables 3.10 and 3.11 in the

Appendix provide additional estimations by region and by income group.
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Table 3.6: Total Default Probability by Region (Marginal Effects)

(1) (2) (3) (4) (5)
TOTAL DEFAULT BY REGION Europe Latin America & Caribbean Middle East/North Africa Southeast Asia South Asia

Vulnerability to transition risks 0.056*** 0.058 0.097*** 0.165 0.327**
(0.010) (0.051) (0.035) (0.303) (0.146)

Observations 222 237 136 72 74
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (3.1) using transition risk vulnerability. separately estimated
for each region, Pr [ default it = 1] = γclimateit + βkxit + ui + ηt + eit. Average marginal effects are reported
(instead of log-odds) to facilitate interpretation.
Control variables: real GDP growth, fiscal balance (share of GDP), inflation, unemployment rate, debt to
GDP ratio, change of real effective exchange rate, change of current account, change of GDP per capita, and VIX.

3.4.3 Extension: Fiscal Conditions

To show how fiscal conditions play a role in sovereign default probability, I

extend the baseline estimation by considering such factors. The model in section (3.5)

discusses in detail how fiscal rigidity, as a form of fiscal condition, may interact with

climate risks in affecting default probability. There are limited cross-country data specif-

ically measuring fiscal rigidity, and the Fiscal Rules dataset of IMF provides the best

proxy for fiscal conditions. In this dataset, the key variables are categorical variables.

I specifically use the variable called the budget balance rule (BBR); this rule places a

constraint on the fiscal deficit and subsequently the debt ratio. In any particular year,

if a government adopts or maintains a budget rule, the BBR variable is coded as 1;

otherwise it is 0.

When adopting or maintaining a budget balance rule, a government exhibits

fiscal efforts. Such efforts are the inverse of fiscal rigidity (Equation (3.10) in Section

(3.5) illustrates this). In short, when a government has a budget balance rule, it can help
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reduce the fiscal rigidity. More specifically, the specification now includes the balance

rule variable ruleit and its interaction with the climate vulnerability variable.

Pr [ default it = 1] = η(climateit × ruleit) + γclimateit + ξruleit + βkxit + ui + ηt + eit

(3.3)

Table (3.7) presents the results of the estimation. The direction of effect for the

climate vulnerability variable is consistent with the baseline: higher vulnerability leads

to higher default probability. The interaction term of vulnerability and budget rule can

be interpreted the following way: having a fiscal rule in place, how default probability

responds to climate vulnerability. With the exception of Paris Club debt, given a fiscal

rule, increasing climate vulnerability continues to raise default probability. The overall

effect of climate vulnerability and the budget rule is the sum of the main and interaction

effects. Given a unit increase in vulnerability, the overall effects on debt owed to all

investors, private creditors, and other official creditors are in fact negative. While the

estimates are fiscal rule are relatively imprecise, the results suggest that reducing fiscal

rigidity (having fiscal rule in place) could potentially alleviate the impact of climate

risks on default probability.

3.4.4 Robustness Check

To check the robustness of Tables 3.2, 3.5, and 3.6, the control variables are

lagged by one period. The results are reported in Tables 3.12, 3.13, and 3.14 in Ap-

pendix: in most cases, there are no major differences in the magnitudes nor significance.

However, in Table 3.13 (the lagged version of Table 3.5), the coefficient for private cred-
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Table 3.7: Climate Vulnerability with Fiscal Rule

(1) (2) (3) (4)
VARIABLES total private creditor Paris Club Other official creditor

Vulnerability × Fiscal rule 0.031 0.174 -0.185 0.026
(0.103) (0.161) (0.198) (0.062)

Climate vulnerability 0.283 0.463* 0.332 0.229
(0.191) (0.252) (0.484) (0.196)

Fiscal rule -0.804 -0.812 0.473 -0.940
(0.809) (0.938) (1.299) (0.750)

Observations 570 459 139 523
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Regression specification follows Equation (3.3), Pr [ default it = 1] = η(climateit×ruleit)+γclimateit+
ξruleit + βkxit + ui + ηt + eit. Control variables: real GDP growth, inflation, unemployment rate.
“Other official creditors” exclude the IMF and the World Bank.

itor is now significant at 87% percent. The coefficient for South Asia lost significance

and magnitude. Nevertheless, the main results from the original estimation hold.

Further, I use alternative measures of vulnerability to climate risks—PDSI35

and temperature anomaly. Estimations results are shown in Tables 3.15 and 3.16 in Ap-

pendix. The results are partly consistent with Table 3.2: using PDSI, climate change

has a significant impact on the total default probability, and the coefficient is 3.3%.

When using the measure of temperature anomaly, the significance only holds for the

default probability on Paris Club debt. At minimum, Tables 3.15 and 3.16 confirm that

by using PDSI and temperature anomaly, two measures commonly used by climate sci-

entists, we still observe a significant relationship between climate change and sovereign

35The process of converting PDSI from gridded data to country data is not yet complete; there are
some missing observations
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default.

3.5 Model

In this section, I build a qualitative model of fiscal rigidity based on Faria et al.

(2021), but incorporate climate risks and consider the interactions between such risks

and fiscal conditions.

3.5.1 Environment

In this 2-period economy, there is a representative government and lender.

The government issues debt to finance consumption. In this environment, I assume

that climate risks, especially physical risks, affect productivity of the economy. There is

emerging evidence that climate change, especially extreme heat, can create productivity

loss, especially in labor and agriculture as shown in studies such as Zhao et al. (2021)

and Ortiz-Bobea et al. (2021). To make the model tractable, the probability of being in

the high-productivity state (or boom state) in period 2 is represented by ps. The higher

climate risks are, the lower ps is.

The government’s primary surplus is characterized by the difference between

tax revenue and and expenditure, namely E = T −G.

In period 1, the debt issued is

φ = −E0/q = −E0(1 + r) (3.4)

where E0 is the government’s initial primary balance, q is the price of debt, and r is the
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interest rate.

In period 2, the government decides whether and how much to pay debt of its

debt. The decision is based on the state of the economy s,

Ds = E+
s (3.5)

where 0 ≤ Ds ≤ φ and is the amount of debt repayment.

In states s ∈ Γ, there are three broad cases of default:

1) Complete default. That is, Ds = 0,∀s ∈ Γ′

2) Partial default if ∃s ∈ Γ : 0 < Ds = Es < φ

3) No default if 0 < Ds = Es = φ,∀s ∈ Γ. In this chapter, I focus on the cases of partial

default.

Definition 1 (2nd Period Primary Surplus). In the 2nd period, given the uncer-

tainty of climate risk, the government’s primary surplus is

Es = E0 + Ā× Is (3.6)

where Ā > 0, and with Is =
(
2(s−1)
S−1 − 1

)
∈ [−1, 1]

(a) Ā is amplitude of the income stream. Is measures the degree to which the economy

is in a good or bad state

(b) The probability of a particular climate state P = (ps : s = 1, . . . , S) > 0. That is,

ps > 0, ∀s = 1, . . . , S. The higher s is, the better the state.

The primary surplus of the government also faces fiscal disturbance that mod-

ulates the income stream Ā. Fiscal disturbance is introduced as it helps with the
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forthcoming discussion of fiscal rigidity.

Definition 2 (Fiscal disturbance).

α = − Ā

E0
(3.7)

Here α captures the size of financing needs in relation to the 2nd period fiscal innovation.

3.5.2 Baseline Results

Having introduced some key definitions, in this section I derive expected re-

payment rate for this economy:

Proposition 1 (Default Rate). The repayment rate in state s is

1− πs =
E0 + ĀIs
−(1 + r)E0

, s ∈ Γ (3.8)

The expected repayment rate is

1− π̃ =

∑
s∈Γ ps (αIs − 1)

1 + r
(3.9)

Proof. The repayment rate is the calculated based on the 2nd period primary surplus

(as in Equation 3.6), divided by the amount the debt issued in the 1st period (as in

Equation 3.4). In other words, the government’s cash available in the 2nd period is the

amount available for debt repayment.

To derive the expected payment rate, first define 1 − π̃ = Σs∈Γps(1 − πs). This means

the expected payment rate is a weighted average of repayment rates across states. Using

equation of fiscal disturbance Equation 3.7, substitute Ā = −αE0 into Equation 1, we
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obtain 1 − πs = αIs−1
1+r . Sum this over all possible states, and we obtain the expected

repayment rate.

Equation 3.9 can be interpreted in the following ways: when the probability

of being in a good climate state ps increases, the expected default rate π̃ decreases. In

other words, the expected repayment rate increases when climate risks decrease.

3.5.3 Results with Fiscal Rigidity

Now we introduce fiscal rigidity into the analysis. Recall in the empirical

section that fiscal rigidity is an inter-temporal concept: it describes that the the current

fiscal behavior (e.g., spending) is proportion to the future fiscal behavior. In the context

of the model:

Definition 3 (Fiscal Rigidity).

η1 = ρη0 + (1− ρ)Ā

⇔ η1 = ρ
(
η0 − Ā

)
+ Ā

(3.10)

where ρ is fiscal rigidity, and fiscal efforts in periods 1 and 2 are η0 and η1 respectively.

Fiscal policy follows ‘bad habit’ if

η1 ≤ η0 ⇔ Ā ≤ η0

The ‘bad habit’ means that the fiscal effort in the second period is affected by

that in the first period, and by the fiscal rigidity term ρ due to Ā ≤ η0.
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Since Equation (3.10) defines the relation between ρ and Ā, we can endogenize

fiscal disturbance as the following

α(ρ) = −Ā(ρ)
E0

≡ η1 − ρη0
1− ρ

1

−E0

The aforementioned results allow for the result of how climate change affects

default probability, and the role of fiscal rigidity.

Proposition 2 (Climate Risk & Default). Climate risks, by making boom probability

ps less likely, increase default probability

∂π̃

∂ps
= −αIs − 1

1 + r
< 0 (3.11)

where in partial default states, αIs − 1 > 0.

This follows by taking partial derivative of Equation (3.9)

Proposition 3 (Rigidity & Default). Fiscal rigidity increases default probability

∂π̃

∂ρ
=

∂π̃

∂α(ρ)︸ ︷︷ ︸
<0

∂Ā(ρ)

∂ρ︸ ︷︷ ︸
η1−η0
(1−ρ)2

<0

> 0 (3.12)

Proof. π̃ = 1−
∑

s∈Γ ps(α(ρ)Is−1)

1+r ⇒ ∂π̃
∂α(ρ) = −

∑
s∈Γ psIs
1+r < 0.

Given α(ρ) = − Ā(ρ)
E0

≡ η1−ρη0
1−ρ

1
−E0

, Ā(ρ) = η1−ρη0
1−ρ ⇒ ∂Ā(ρ)

∂ρ = η0(1−ρ)+(η1−ρη0)
(1−ρ)2

= (η1−η0)
(1−ρ)2

Note we assume there is fiscal rigidity, or fiscal policy follows ‘bad habit’, thus η1 < η0,

thus ∂Ā(ρ)
∂ρ < 0. Therefore ∂π̃

∂ρ > 0.

Corollary 1 (Rigidity & Risk Premium). The sovereign default premium can be ex-
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pressed as

rpr = (1 + r)− (1 + i)

=

(∑
s∈Γ ps (α(ρ)Is − 1)

1− π̃

)
−
(∑

s∈Γ ps (α(ρ)Is − 1)∑
s∈Γ ps

) (3.13)

Thus can show that risk premium increases with fiscal rigidity

(rpr)′ (ρ) = (rpr)′ (α)︸ ︷︷ ︸
<0

α′(ρ)︸ ︷︷ ︸
<0

> 0 (3.14)

Proof. 1 + r =
(∑

s∈Γ ps(α(ρ)Is−1)

1−π̃

)
follows from Equation (3.9)

To derive he interest for the risk-free asset, note that the expected repayment rate is the

weighted sum of actual repayment rate across state, or 1− π̃ = Σs∈Γps(1− πs). When

there is no default, πs = 0, and then π̃ = 1−Σs∈Γps. Thus 1+ r =
(∑

s∈Γ ps(α(ρ)Is−1)∑
s∈Γ ps

)
.

α′(ρ) = (η1−η0)
(1−ρ)2

( 1
−E0

) < 0,where− E0 > 0.

Also (rpr)′ (α) = ∂rpr

∂α + ∂rpr

∂π̃ · ∂π̃
∂α =

(∑
s∈Γ psIs
1−π̃

)
−
(∑

s∈Γ psIs∑
s∈Γ ps

)
+

∑
s∈Γ ps(αIs−1)

(1−π̃)2
· ∂π̃
∂α ,

and now substitute with ∂π̃
∂α = −

∑
s∈Γ psIs
1+r and (1− π̃)(1 + r) =

∑
s∈Γ ps(αIs − 1),

(rpr)′ (α) =
∑

s∈Γ psIs(1−π̃)(1+r)

(1−π̃)2(1+r)
−

(∑
s∈Γ psIs∑
s∈Γ ps

)
−

∑
s∈Γ ps(αIs−1)

∑
s∈Γ psIs

(1−π̃)2(1+r)

= −
(∑

s∈Γ psIs∑
s∈Γ ps

)
< 0.

Thus (rpr)′ (ρ) > 0 follows from (rpr)′ (α) < 0 and α′(ρ) < 0.

3.5.4 Scenario Analysis

In the results so far, I have shown that climate change risks and fiscal rigidity

both affect sovereign default probability. More specifically, as climate risks increase, the

probability of a being in a boom state ps becomes less likely. This generally leads lower

primary surplus in the 2nd period Es, resulting in default probability π̃ to increase.
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At the same time, if the government has high fiscal rigidity ρ, the fiscal innovation

(disturbance) α decreases. This also leads to lower Es, resulting in higher π̃. In both

cases, as π̃ increase, the risk premium rpr also increases.

Based on such baseline results, I further analyze the implications of the model

given different scenarios of climate risks and fiscal conditions. In a simple 2-state case:

high climate risk versus low climate risk, and the probability of low climate risk is fixed

as p. In this 2-state case, and when there is no default, or π̃ = 0, Equation (3.9) is

simplified to

1 + r = p(α− 1)

When endogenizing α, we now have

m(ρ) = α(ρ)− 1 = − 1

E0

η1 − ρη0
1− ρ

− 1 (3.15)

Definition 4. Define

Lρ : 1 + r = m(ρ)p (3.16)

as the no default line, where m(ρ) = α(ρ)−1 = − 1
E0

η1−ρη0
1−ρ −1, and m′(ρ) < 0

In other words, m(ρ) is the slope of the line representing the relationship

between between climate risks and cost of borrowing, and Figure (3.1) is a visual illus-

tration of this. Since m′(ρ) < 0, as ρ increases, m(ρ) < 0 decreases. As shown in the

figure, going from L0 to L1, the no-default line becomes flatter.

The region between the complete default line and the no default line is simply

the partial-default region: when in this region, the government will default on part of its

debt. When the no-default line becomes flatter, it also means that the partial-default
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region becomes wider. The fiscal rigidity parameter ρ governs the shift of the no-default

line.

The implications of being in a wider default region is worth noting. Given

the same cost of borrowing 1 + r (when fitting a horizontal line), when ρ is high, it

requires much higher boom probability p for the government to not default. Given the

same boom probability p (when fitting a vertical line), it is much more likely for a

government with higher ρ to not be on the no-default line: for example, a small increase

in 1 + r could induce the government to default.

Figure 3.1: Default Region by Fiscal Rigidity

To further analyze the interactions of fiscal rigidity and risk premium, first

rewrite Equation (3.9) when in a world with no default (risk-free rate) as

R =
∑
s∈Γ

ps(αIs − 1) (3.17)

Substitute Equation (3.17) into Equation (3.9), and subtract both sizes by R,
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we obtain the following

rpr =
π̃

1− π̃
R (3.18)

In a 2-state world and with α endogenized, Equation (3.18) can be re-written

as

rpr = p
π̃

1− π̃
(α(ρ)− 1) = p

π̃

1− π̃
m(ρ) (3.19)

Figure 3.2: Risk Premium by Fiscal Rigidity

Using Equation (3.19), Figure (3.2) shows how default risk premium responds

to fiscal rigidity. With ρ being a variable, and due to the functional form of m(ρ), the

relationship is a curve and non-decreasing in ρ. In this case, when ρ changes, so does

π̃. Therefore, when ρ increases, the critical value of risk premium of the partial default

line decreases due to both ρ and π̃.

184



The area between the curves and the horizontal axis is the no-default region.

Here we can examine two scenarios: p is low versus high. The low p case is represented

by the light green curve, while the high p case by the dark green curve. When the

climate risks are low, or with high p, the no default region is larger.

In the low p scenario, when fiscal rigidity is high, or ρ = ρH , it is much easier

for the government is reach the partial default line. In other words, when fiscal rigidity

is high, the risk premium rpr cannot increase as much before the government has to

default, compared to when ρ = ρL. The same goes for the high p scenario. In other

words, given the same climate scenario, investors are more willing to accept the risk

premium when the fiscal rigidity is low.

At the same time, given the same fiscal rigidity, the lower the climate risks are

(high p), the higher risk premium rpr investors are willing to accept before a government

has to default. The difference of the acceptable risk premium is illustrated as ∆rpr in

the figure. Taken together, the results show that when climate risks are high, there

is not much room to maneuver for a government with high fiscal rigidity. But a high

degree of fiscal rigidity is acceptable if the exposure to climate risks can be reduced.
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3.6 Conclusion

In this chapter, I investigate how climate change risks affect sovereign default

probability, taking into account the role of fiscal rigidity. Improving upon existing liter-

ature that focus on physical risks, I also consider the transitions risks of climate change.

First I use panel logistic regressions to show that vulnerability to transition risks has

significant impact on sovereign default probability. In most cases, higher vulnerabil-

ity implies higher default risk. Then the qualitative model in the chapter formalizes

that fiscal rigidity reduces government’s primary surplus, therefore increasing the de-

fault probability and cost of borrowing. When faced with climate risks, a government

with high fiscal rigidity is much more financially constrained and less likely to convince

lenders to continue financing, even if paying higher risk premium. The results suggest

the importance of structural reform and improving efficiency in aspects of government

financing. This can help reduce fiscal rigidity, which would then expand the financial

options a government has, and contribute to a smoother path of green transition.
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3.7 Appendix

Additional Figure

Figure 3.3: Global Climate Disasters and Temperature Anomaly
Sources: NOAA and Emergency Events Database (EM-DAT)
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Table 3.8: Summary of Vulnerability to Transition Risks by Region

Region Mean Std. Dev. Min Max Obs

World overall -3.34E-10 1.093 -6.498 11.544 N = 3105
between 4.70E-09 -1.49E-08 2.25E-08 n = 135
within 1.093 -6.498 11.544 T = 23

Central and East Asia overall -6.48E-10 1.441 -3.034 4.861 N = 138
between 4.78E-09 -7.77E-09 5.18E-09 n = 6
within 1.441 -3.034 4.861 T = 23

Europe overall -1.65E-09 1.591 -6.498 11.544 N = 391
between 5.30E-09 -1.49E-08 7.77E-09 n = 17
within 1.591 -6.498 11.544 T = 23

Latin America & Caribbean overall -7.28E-10 0.835 -3.065 2.872 N = 690
between 4.10E-09 -8.10E-09 1.62E-08 n = 30
within 0.835 -3.065 2.872 T = 23

Middle East/North Africa overall -1.09E-09 0.764 -2.251 2.363 N = 345
between 2.76E-09 -6.80E-09 2.67E-09 n = 15
within 0.764 -2.251 2.363 T = 23

Table 3.9: Summary of Vulnerability to Transition Risks by Region

Region Mean Std. Dev. Min Max Obs

Oceania overall -1.47E-09 1.033 -2.608 4.096 N = 138
between 1.95E-09 -4.54E-09 6.07E-10 n = 6
within 1.033 -2.608 4.096 T = 23

South Asia overall -2.13E-09 1.247 -3.551 3.435 N = 207
between 4.53E-09 -1.20E-08 1.66E-09 n = 9
within 1.247 -3.551 3.435 T = 23

Southeast Asia overall 5.58E-10 1.031 -3.086 3.254 N = 161
between 4.61E-09 -5.18E-09 9.07E-09 n = 7
within 1.031 -3.086 3.254 T = 23

Sub-Saharan Africa overall 1.09E-09 1.040 -6.112 3.886 N = 1035
between 5.47E-09 -7.77E-09 2.25E-08 n = 45
within 1.040 -6.112 3.886 T = 23
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Appendix: Additional Regressions by Region and Country Groups

Table 3.10: Default Probability on Private Creditor Debt by Region (Marginal Effects)

(1) (2) (3) (4)
DEFAULT ON PRIVATE BY REGION Europe Latin America & Caribbean Southeast Asia South Asia

vulnerability to transition risks -0.134*** 0.125* 0.000 0.397
(0.044) (0.073) (0.000) (0.000)

Observations 171 271 48 54
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation.
Control variables: real GDP growth, fiscal balance, inflation, unemployment rate, debt to GDP ratio, change of real effective
exchange rate, change of current account, change of GDP per capita, and VIX. Though not reported in a table, for Latin American
& Caribbean, the effect of transition risks on the default probability on Paris Club debt is 0.173, and is significant at 99% level.

Table 3.11: Climate Vulnerability and Default Probability by Income Groups
(Marginal Effects)

(1) (2) (3) (4) (5) (6) (7)
VARIABLES EM-total EM-private EM-Paris EM-other official Developing-total Developing-private Developing-other official

vulnerability to transition risks 0.038 0.055 0.020 0.002 0.165** 0.111 0.126
(0.044) (0.049) (0.039) (0.040) (0.082) (0.083) (0.078)

Observations 515 542 176 553 250 253 292
Country FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation. Estimation includes the interaction
effects of PDSI and meteorological disasters and climatological disasters; the interaction effects are not significant. Control
variables: real GDP growth, fiscal balance, inflation, unemployment rate, debt to GDP ratio, change of real effective exchange
rate, change of current account, change of GDP per capita, and VIX. “Other official creditors” exclude the IMF and the World
Bank. The discrepancy of observation numbers between columns 1 and 4 is due to countries being dropped for lacking within-group
variations. “EM” stands for emerging market. “Developing” country group here excludes heavily indebted poor countries (HIPC).
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Appendix: Robustness Test

Table 3.12: Climate Vulnerability and Default Probability, Control Varst−1 (Marginal
Effects)

(1) (2) (3) (4)
VARIABLES total private creditor Paris Club Other official creditor

climate vulnerability 0.065** 0.067 0.038** 0.037
(0.032) (0.045) (0.017) (0.024)

Observations 814 793 395 930
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation. Control variables:
real GDP growth, fiscal balance (share of GDP), inflation, unemployment rate, debt to GDP ratio, change of real
effective exchange rate, change of current account, change of GDP per capita, and VIX. “Other official creditors”
exclude the IMF and the World Bank. The discrepancy of observation numbers between columns 1 and 4 is due
to countries being dropped for lacking within-group variations

Table 3.13: Transition Risks Vulnerability and Default Probability, Control Varst−1

(Marginal Effects)

(1) (2) (3) (4)
VARIABLES total private creditor Paris Club Other official creditor

vulnerability to transition risks 0.064* 0.069 0.037** 0.036
(0.033) (0.045) (0.016) (0.024)

Observations 814 793 395 930
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation. Control variables:
real GDP growth, fiscal balance (share of GDP), inflation, unemployment rate, debt to GDP ratio, change of real
effective exchange rate, change of current account, change of GDP per capita, and VIX. “Other official creditors”
exclude the IMF and the World Bank. The discrepancy of observation numbers between columns 1 and 4 is due
to countries being dropped for lacking within-group variations
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Table 3.14: Total Default Probability by Region, Control Varst−1 (Marginal Effects)

(1) (2) (3) (4) (5)
TOTAL DEFAULT BY REGION Europe Latin America & Caribbean Middle East/North Africa Southeast Asia South Asia

vulnerability to transition risks 0.064** 0.082 0.094*** 0.093 0.000
(0.026) (0.064) (0.036) (0.346) (0.000)

Observations 190 226 129 68 71
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation. Control variables: real GDP growth,
fiscal balance (share of GDP), inflation, unemployment rate, debt to GDP ratio, change of real effective exchange rate, change of
current account, change of GDP per capita, and VIX.

Table 3.15: PDSI and Default Probability (Marginal Effects)

(1) (2) (3) (4)
VARIABLES total private creditor Paris Club Other official creditor

PDSI 0.033** -0.002 -0.020 0.007
(0.015) (0.020) (0.015) (0.018)

Observations 438 454 265 461
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation. Estimation includes the interaction
effects of PDSI and meteorological disasters and climatological disasters; the interaction effects are not significant. Control
variables: real GDP growth, fiscal balance (share of GDP), inflation, unemployment rate, debt to GDP ratio, change of real
effective exchange rate, change of current account, change of GDP per capita, and VIX. “Other official creditors” exclude the IMF
and the World Bank. The discrepancy of observation numbers between columns 1 and 4 is due to countries being dropped for
lacking within-group variations

Table 3.16: Temperature Anomaly and Default Probability (Marginal Effects)

(1) (2) (3) (4) (5)
VARIABLES total private creditor local currency Paris Club Other official creditor

Temperature Anomaly -0.036 -0.055 0.061 0.108* -0.032
(0.037) (0.042) (0.142) (0.058) (0.034)

Observations 774 688 177 281 850
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Robust SE Cluster Cluster Cluster Cluster Cluster

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Average marginal effects are reported (instead of log-odds) to facilitate interpretation. Control variables: real GDP growth,
fiscal balance (share of GDP), inflation, unemployment rate, debt to GDP ratio, change of real effective exchange rate, change
of current account, change of GDP per capita, and VIX. “Other official creditors” exclude the IMF and the World Bank. The
discrepancy of observation numbers between columns 1 and 5 is due to countries being dropped for lacking within-group variations
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