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1. Introduction

Gauge theories—theories that are invariant under 
a group of local transformations— span various 
subjects of modern physics. Artificial generation 
of gauge fields, such as those emanating from 
electromagnetism, can be realized and probed not 
only in condensed matter [1], but also in engineered 
lattice systems, such as cold atoms in optical lattices 
[2–5] and photonic crystals [6, 7]. A recent example 
in solid state physics was the realization and successful 
manipulation of artificial gauge fields in Graphene 
[8]. In this case, the effective gauge fields emerge from 
a strain field that couples to the Dirac quasiparticles 
in this material. Spatial derivatives of the strain field 
define a gauge field that, unlike the electromagnetic 
gauge field, couples with opposite signs to each valley 
(Dirac node). In parallel, synthetic systems have 
also been successful in emulating and controlling 
effective electromagnetic gauge fields [2–4, 6, 7]. 
Examples include the recent optical lattice realization 
and characterization of the Hofstadter and Haldane 
models [9–16], which open the possibility of probing 
exotic topological states in ways that are challenging 

to realize in condensed matter, such as monitoring 
‘heating’ [17]. Interestingly, effective magnetic 
fields could also be engineered by combining strain 
methods and optical lattice technologies, as was 
recently proposed in [18].

Engineered gauge fields not only provide an 
intriguing and promising avenue towards the control 
of electronic properties of two-dimensional mat erials 
[1], they also lie at the core of the recently discovered 
three-dimensional Weyl semimetals [19–31]. The 
band structure of Weyl semimetals hosts a set of band-
touching points around which quasiparticles disperse 
as massless Weyl fermions [32–35]. This description 
assigns quasiparticles chirality, a quantum number 
that reflects the parallel or anti-parallel orientation 
of the spin with respect to the momentum of massless 
particles. Weyl fermions appear in the Brillouin zone 
in pairs of opposite chirality [36–39]; they are sepa-
rated in energy-momentum space by a four-vector 
bµ = (b0, b). Unlike in Graphene, the gapless touching 
points, known as the Weyl nodes, do not  necessarily 
coincide with a high-symmetry point of recipro-
cal space in the absence of strain. However, similar to 
Graphene, it was recently realized [19] that strain can 
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corresponding Weyl momenta. First, we introduce two realistic models, inspired by recent cold-atom 
developments, which are particularly suitable for the exploration of these synthetic axial gauge fields. 
Second, we describe how to realize and measure the effects of such axial fields through center-of-
mass observables, based on semiclassical equations of motion and exact numerical simulations. In 
particular, we suggest realistic protocols to reveal an axial Hall response due to the axial electric field 
E5, as well as axial cyclotron orbits and chiral pseudo-magnetic effect due to the axial magnetic field 
B5.
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promote bµ to a local vector field that couples with 
opposite signs to opposite chiralities, termed the chiral 
or axial gauge field. This identification enables one to 
define an axial magnetic field B5 = ∇r × b(r, t) and 
an axial electric field E5 = −∇rb0(r, t)− ∂tb(r, t) in 
analogy with the usual electromagnetic fields.

Several groups have used this powerful analogy to 
predict novel phenomena and provide a different per-
spective on the properties of Weyl semimetals [20–22, 
24–27, 30, 40–45] and Helium-3 [32, 46, 47]. Analo-
gous to the positive magneto-conductivity propor-
tional to magnetic field B that emerges from the chiral 
anomaly [48], a strain field that creates a constant B5 
is predicted to result in a strain enhanced conductiv-
ity [20, 21]. Additionally, a strain induced B5 can lead 
to pseudo-magnetic oscillations [27]. Moreover, the 
surface states of Weyl semimetals can be reinterpreted 
as the zeroth pseudo-Landau levels due to a B5 field 
localised at the boundary [21, 49]. This is a fruitful re-
interpretation of the origin of the surface states: it is a 
natural framework to treat smooth interfaces between 
topological states [21, 50–53], as well as edge states in 
the strained Haldane model [54]. Finally, through this 
identification, the contribution of axial gauge fields 
to 3  +  1 dimensional anomalies known in the high-
energy literature [55] could be in principle explored in 
full [20, 21, 40, 56]. Of particular interest is the differ-
ence between covariant and consistent versions of the 
anomaly (see [57] and references therein for a review) 
which have been shown to matter even at the kinetic 
theory level [25].

Despite the intriguing predictions and exciting 
prospects above, the realization of controllable and 
sizeable axial gauge fields is challenging in condensed 
matter. Although realistic proposals exist, they rely on 
interface strain effects, defects [21] or bulk strain pat-
terns that are so far difficult to engineer at will [20].

In this work, we investigate a host of phenomena 
that are made possible by axial gauge fields in engi-
neered Weyl semimetals. We specifically focus on 
ultra-cold atomic realizations, where we show that 
simple tuning of the lattice enables arbitrary control 
over the axial fields of interest. We argue that these 
axial fields are more readily controllable over a larger 
dynamic range than their condensed matter counter-
part, which combined with the pristine nature of opti-
cal lattices for ultra-cold atoms suggests these systems 
as ideal platforms for studying Weyl physics. Fur-
thermore, while it is not straightforward to perform 
conventional transport experiments in cold-atom 
experiments (see [58] for a review), these synthetic 
systems are conducive to dynamical (in situ) density 
measurements. In par ticular, wavepacket dynam-
ics often serve as ideal probes for extracting electro-
magnetic responses [11, 59–62]. Therefore, using a 
semiclassical wavepacket formalism, we show how 
various responses to engineered gauge and axial gauge 
potentials give rise to measurable quantities in realistic 
experimental settings that are unique to axial electro-

magnetic fields. Our work complements previous 
Kubo-based approaches on lattice models [22, 23, 27] 
that compute transport properties arising due to the 
presence of axial fields.

In section 2 we set the stage by introducing nota-
tion and discussing two realistic models that allow to 
control axial-gauge fields in realistic setups. In sec-
tion 3 we discuss signatures of the axial fields that 
can be probed in experiment monitoring wavepacket 
dynamics. Finally in section 4 we discuss our results 
and present some concluding remarks.

2. Models and axial gauge fields

In this section, we discuss the basic ingredients that 
are needed for the realization of axial gauge fields 
in (engineered) Weyl semimetals. Based on two 
experimentally-relevant lattice models, we describe 
how such axial gauge fields naturally emerge as one 
modulates the model parameters in space or in time; 
this analysis also highlights the tunability of these 
fields under realistic conditions. Finally, we discuss 
optical lattice realizations of these two toy models.

2.1. Axial gauge fields
As a starting point we review how, in the low-energy 
theory close to the Weyl nodes, the four-vector, 
bµ = (b0, b) denoting the separation between two 
Weyl points can be reinterpreted as a chiral or axial 
gauge field [19]. The time-like component b0 denotes 
the Weyl node separation in energy space, and the 
space-like component b denotes their separation 
in momentum space. This identification naturally 
follows from the low-energy Hamiltonian for the 
two decoupled Weyl nodes, which can be generically 
represented as

Heff
WSM =

∑
η=±1


ηb0I2 +

∑
i,j=x,y,z

[D(η)]
j
i σ

i(kj − ηbj)


 ,

 (1)

where sgn(Det[D(η)]) = η (= ±1) denotes the 
chirality of the Weyl node located at momentum 
k = ηb and energy ε = ηb0. Comparing equation (1) 
with that of a fermion of charge e minimally 
coupled to an external gauge field Aµ = (Φ, A) 
via H(k) → Φ+H(k − eA) immediately leads to 
the identification of the Weyl node separation bµ 
as an effective gauge potential experienced by the 
Weyl fermions. Henceforth we work in units where 
e = � = 1. Also, all lengths are in units of the lattice 
constant and all time scales are in units of inverse 
hopping amplitude of the lattice Hamiltonians, which 
we specify below.

A few remarks are in order. First, the axial gauge 
potential bµ couples to the Weyl fermions with dif-
ferent signs, depending on their chirality, and thus it 
resembles an axial gauge field Aµ

5  for Weyl fermions 
employed in high-energy physics [55]. However, it is 
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important to keep in mind that, unlike the axial gauge 
field Aµ

5  introduced in the high-energy context, a 
gauge configuration of bµ is in fact observable in the 
present framework. This seemingly innocent remark 
has key implications, such as the vanishing of the chiral 
magnetic effect in Weyl semimetals [56, 63]. Second, 
the effective model Heff

WSM breaks inversion symme-
try (I ) if b0 �= 0 and time-reversal symmetry (T ) if 
b �= 0. These symmetries can be restored by introduc-
ing a suitable number of copies of the Hamiltonian (1), 
as will be explained shortly.

In the following, we are interested in situations 
where the parameters of a microscopic lattice Hamil-
tonian HWSM, which describes a Weyl semimetal, are 
varied in space and/or time. We will assume that such 
modulations are performed on timescales that are 
much slower than the intrinsic timescales of the sys-
tem (e.g. as set by the bandwidth of the single-particle 
energy spectrum), and on length-scales that are much 
longer than the intrinsic length-scales (e.g. the lattice 
spacing). Under such assumptions, these modulations 
then directly affect the low-energy Hamiltonian (1) 
through smooth spatiotemporal dependences, in par-
ticular bµ → bµ(r, t). This immediately allows for the 
definition of an axial electric and magnetic fields,

E5(r, t) = −∇rb0(r, t)− ∂tb(r, t), (2a)

B5(r, t) = ∇r × b(r, t), (2b)

which, at low energies can be regarded as effective 
external fields, which have direct consequences on 
transport properties (see section 3). In a lattice tight-
binding model, the locations and energies of Weyl 
nodes would generically depend on all the parameters 
entering the microscopic Hamiltonian. However, the 
identification of realistic schemes realizing non-trivial 
E5(r, t) or B5(r, t) requires a careful analysis of simple 
Weyl semimetal models, as we now illustrate.

2.2. Axial gauge fields from a simple lattice model
In this subsection, we discuss how arbitrary 
configurations of E5 and B5 (equation (2)) can be 
obtained by modifying a simple Weyl semimetal 
Hamiltonian, suitable for cold-atom implementations 
[64]. The lattice model of [64] is defined on a 
cubic lattice, and is captured by the tight-binding 
Hamiltonian

HWSM = − J
∑

r

[
(−1)x+y(c†r cr+ax̂ + c†r cr+âz)

+ c†r cr+aŷ

]
+ h.c.,

 

(3)

where c†r creates a particle at lattice site r, J denotes the 
hopping amplitude, and x̂ denotes the unit vector 
along the x direction. Importantly, the sign of the 
tunneling matrix elements alternates for hopping 
processes taking place along the x and z directions. This 
leads to a two-site sublattice structure, corresponding 
to sites with even or odd values of x  +  y, as illustrated 
in figure 1(a). Diagonalizing the Hamiltonian in 

equation (3) reveals two pairs of Weyl nodes in the first 
Brillouin zone. Specifically, this model realizes a Weyl 
semi-metal with time-reversal symmetry (see [64]).

2.2.1. The staggered mass model HM
WSM

In order to realize tunable axial gauge fields, we must 
introduce additional ingredients to the model of [64]. 
As a first example, we propose to build on the sublattice 
structure of this model by adding a staggered potential 
that shifts the on-site energy of one sublattice with 
respect to the other. The corresponding Hamiltonian 
therefore takes the form

HM
WSM = −J

∑
r

[(−1)x+y(c†r cr+ax̂ + c†r cr+âz)

+ c†r cr+aŷ + h.c.] + M
∑

r

(−1)x+yc†r cr,

 (4)

with a staggered potential of strength M.
For the sake of simplicity, we will analyze this 

model in a reference frame that is rotated by π/4 about 
the z-axis, such that each sublattice forms a cubic lat-
tice with its primary lattice vectors given by 

√
2ax̂, √

2aŷ , and 
√

2aẑ  respectively; for the rest of the paper 
we will also set a = 1/

√
2. In this rotated frame, the 

Hamiltonian in equation (4) can now be expressed as

HM
WSM = − J

∑
r

[̂c†A,r(ĉB,r − ĉB,r−x̂ + ĉB,r−ŷ

+ ĉB,r−x̂−ŷ + ĉA,r+ẑ)− ĉ†B,rĉB,r+ẑ + h.c]

+ M
∑

r

[̂c†A,rĉA,r − ĉ†B,rĉB,r],

 

(5)

where c†A,r (c†B,r) denotes the creation operator on the A 
(B) sublattice within the unit cell located at position r.

Owing to the bipartite structure of Hamiltonian 
(5), it may be represented in a simple form in recipro-
cal space, HM

WSM(k) = d(k) · σ, where σx,y,z are Pauli 
matrices and the Pauli vector d(k) is

dx = J(1 − cos kx + cos ky + cos(kx + ky)),

dy = J(− sin kx + sin ky + sin(kx + ky)),

dz = 2J cos kz + M.

 

(6)

Analyzing the energy spectrum, εk = ±|dk|, 
reveals that there remain two pairs of Weyl nodes in the 
spectrum, one pair being the time-reversed partner of 
the other [64]. The locations of the four Weyl nodes in 
momentum-space are given by

kW = ±(π/2,π/2,± cos−1(−M/2J)). (7)

Importantly, the Weyl node locations (and 
separations) are found to only depend on one 
dimensionless parameter: M/J ≡ M , setting J  =  1. 
Hence, a spatiotemporal variation of the parameter M 
should generate axial fields (equation (2)), as we will 
now show explicitly.

In the presence of multiple pairs of Weyl nodes, 
only those pair(s) for which the spatiotemporally vary-
ing parameter leads to a relative shift in the position of 
the two Weyl nodes can lead to axial fields. Thus, in this 
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case, we can focus our analysis on the pair of Weyl points 
located at kW ,± = (π/2,π/2,± cos−1(−M/2))7. 
Around these two Weyl points, the Hamiltonian can be 
expanded to linear order in momentum as

H± =(k′x − k′y)σ
x − (k′x + k′y)σ

y

∓
√

4 − M2[kz ∓ cos−1(−M/2)]σz,
 

(8)

where k′x(y) = kx(y) − π/2. Comparing the form of the 
linearized Hamiltonian (8) with equation (1), one can 
make the identification

D(η) =




1 −1 0

−1 −1 0

0 0 −η
√

4 − M2


 , (9)

which shows that the two Weyl nodes considered 
above are indeed associated with opposite chiralities, 

since Det[D(η)] = 2η
√

4 − M2. Importantly, this 
comparison allows for the identification of the axial 
gauge potential

b = (0, 0, cos−1(−M/2)), (10)

which can also be directly identified through 
equation (7). Hence, allowing M(r, t) to depend 
parametrically on space and time, leads to the axial fields

E5(r, t) =
∂tM(r, t)√
4 − M(r, t)2

ẑ, (11a)

B5(r, t) =
∂yM(r, t)x̂ − ∂xM(r, t)ŷ√

4 − M(r, t)2
. (11b)

One should note that the spatiotemporal varia-
tion of the parameter M does not only generate axial 
fields in the equations of motion. It also modulates 
the shape of the band structure, and hence intro-

duces spatiotemporal dependences in the band 
velocity [65]. This effect is apparent in our model, 
where from equation (8) we observe that the Fermi 
velocity along z depends on M. When analyzing the 
semiclassical equations of motion in section 3, we 
will neglect this spatiotemporal variation of the 
Fermi velocity, which is well justified when the varia-
tions of M are taken to be small. Furthermore, within 
the linearized regime, the relative momentum will 
also be taken to be small, and hence any variation 
of the Fermi velocity will appear as a second order 
effect, which can hence be neglected. Such spati-
otemporal Fermi velocity effects have been consid-
ered previously in [41, 42].

2.2.2. The staggered hopping model H∆
WSM and gauge 

field tunability
Inspection of equation (11) reveals that a 
spatiotemporal variation of the staggered-potential 
strength M(r, t) produces axial fields with highly-
constrained orientations: E5 is necessarily directed 
along ẑ , while B5 lies in the (x, y) plane. In particular, 
we find that E5 is restricted to the direction set by the 
Weyl node separation, while B5 is restricted to be 
perpendicular to this direction.

In this paragraph, we propose an alternate modi-
fication of the model in equation (3), which allows 
for more flexibility over the pseudo-field orientation. 
Instead of introducing a staggered potential, we pro-
pose to modulate the tunneling matrix elements along 
the y direction, as described by the following Hamil-
tonian

H∆
WSM = −

∑
r

[(−1)x+yJ(c†r cr+ax̂ + c†r cr+âz)

+ Jy(r, t)c†r cr+aŷ + h.c.],
 

(12)

where

Jy(r, t) =
1

2
[(J +∆(r, t)) + (−1)x+y(J −∆(r, t))].

 (13)

As illustrated in figure 1(b), the alternating hopping 
amplitudes (J,∆) along y preserve the sublattice 
structure of the original model (3). Therefore, as for 
the staggered mass model (equation (5)), we write the 
Hamiltonian in a rotated frame, which reads

Figure 1. Schematic of the lattice models of Weyl semimetals on a cubic lattice. Depiction of (a) the staggered mass model (4) and 
(b) the staggered hopping model (12).

7 Note that, for the pair of Weyl points at kW ,± =  
(−π/2,−π/2,± cos−1(−M/2)), the analysis remains  
unchanged except for a flip in the chiralities. On the 
other hand, choosing the pair of Weyl points located 
at the same value of kz, for instance the pair kW ,± = 
(±π/2,±π/2, cos−1(−M/2)) does not result in axial 
fields since any variation in M leads to an overall shift in the 
Weyl points and not a relative shift between the two. The 
effective low-energy Hamiltonian for such pair does not 
possess an axial gauge potential.

2D Mater. 5 (2018) 024001



5

S Roy et al

H∆
WSM = −J

∑
r

[̂c†A,r(ĉB,r − ĉB,r−x̂ + ĉB,r−ŷ + ĉA,r+ẑ

+ (∆/J)ĉB,r−x̂−ŷ)− ĉ†B,rĉB,r+ẑ + h.c].
 (14)

In reciprocal space, this Hamiltonian can be writ-
ten in the form H∆

WSM(k) = d(k) · σ with

dx = J(1 − cos kx + cos ky + (∆/J) cos(kx + ky)),

dy = J(− sin kx + sin ky + (∆/J) sin(kx + ky)),

dz = 2J cos kz.
 

(15)

Analyzing the energy spectrum of the Hamiltonian 
H∆

WSM(k) reveals that the Weyl nodes are now located 
at

kW = ±(K,π −K,±π/2), (16)

where

K = tan−1

[√
(3J −∆)(J +∆)

J −∆

]
. (17)

Note that the original Weyl nodes, in the 
absence of perturbation (∆ = J ), are located at 
kW = ±(π/2,π/2,±π/2).

As for the staggered mass model, (4), we focus on 
the Weyl node pairs which will lead to emergent axial 
fields. In this case, these include those for which the 
nodes are located at the same value of kz, say kz = π/2, 
denoted by

kW ,± = (±K,±(π −K),π/2). (18)

The axial gauge potential can then be identified as

b = (K,π −K, 0). (19)

Hence, using equations (2), (17) and (19), we find that 
a spatiotemporal variation of the tunneling parameter 
∆(r, t) can be used to produce the axial fields E5 and 
B5, which can be expressed as

E5(r, t) = −∂tK(r, t)[x̂ − ŷ]; (20a)

B5(r, t) = ∂zK(r, t)[x̂ + ŷ]− [∂xK(r, t) + ∂yK(r, t)]ẑ.
 

(20b)

In contrast with the staggered-mass model (4), this 
approach allows one to generate a field E5(r, t) that 
is perpendicular to the direction set by the original 
separation between the Weyl nodes (b ∝ (x̂ + ŷ); see 
equation (19) for ∆ = J ). Moreover, we note that the 
field B5(r, t) now has components that are parallel to 
the Weyl node separation.

As a final remark, we note that one could combine 
the ingredients of the staggered-mass (4) and stag-
gered-hopping models (12), in order to generate axial 
fields of any arbitrary directions (with respect to the 
original Weyl node separation).

2.3. Optical lattice implementation
In this section, we describe realistic schemes that 
realize the staggered mass and staggered hopping 

models, defined by equations (4) and (12) respectively, 
using accessible optical lattice technologies.

A promising scheme realizing the simple model 
in equation (3) has already been carefully described 
in [64]. The scheme is based on the observation that, 
in this model, the sign of tunneling matrix elements 
alternates for hopping processes taking place along the 
x and z directions. In order to modify these tunneling 
matrix elements, modulation-induced tunneling 
[66–69] is performed along these two directions. This 
is realized by tilting a 3D optical lattice along the x and 
z direction, for instance by using magnetic field gradi-
ents, and then restoring tunneling using an external 
resonant time-modulation via, e.g. superimposing 
a moving optical lattice whose frequency is resonant 
with the energy offsets generated by the tilt. The phase 
of this time-modulation, which is typically space 
dependent, can then be tuned so as to generate the pat-
tern of alternating hopping amplitudes along both x 
and z; see [64] for details.

It is important to note that the time-modulated 
optical lattice of [64] realizes synthetic π-fluxes in a 
set of plaquettes defined in the x  −  y and x  −  z planes; 
hence, this artificial magnetic field [3–5] will be pre-
sent in the following discussion, independently of 
the axial gauge fields (on which the focus will be set). 
As will become apparent below, the schemes realiz-
ing standard (non-axial) synthetic gauge fields (e.g. 
through light-induced or shaking methods [3–5]) are 
compatible with those generating axial gauge fields.

2.3.1. Realizing the staggered-mass model
The only difference between the staggered-mass 
model Hamiltonian in equation (4) and that of [64] 
in equation (3) is the presence of a staggered mass 
term M, which will be required to depend on both 
time and space. A simple way to realize the staggered 
mass model, starting from the configuration laid out 
in [64], would consist in adding an additional square 
lattice in the xy plane, with spacing a

√
2 and aligned 

with the blue sites in figure 1(a). This would generate 
the staggered potential of equation (4) by changing 
the on-site energy of the even sublattice only. Time 
dependence of M is trivially generated by modulating 
the intensity of the laser field that generates this extra 
lattice potential. Space dependence is most easily 
generated by either slightly detuning the wavelength of 
the additional M lattice from the original one to yield 
long-distance changes in M, or offsetting the M lattice 
from the main lattice beams such that spatial intensity 
variations towards the edge of the beam waist give rise 
to spatial dependence of the staggered mass.

Another option for implementing the staggered 
mass model is based on directly exploiting the check-
erboard (sublattice) structure displayed in the xy plane 
(figure 1(a)). Following [70], we note that such a 2D 
checkerboard configuration can be implemented by 
trapping two internal states of an atom (e.g. g and e) 
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with an optical square lattice field that is set at an ‘anti-
magic’ wavelength, i.e. a special wavelength such that 
the g (e) states are trapped at the potential’s minima 
(maxima), leading to a checkerboard configuration of 
g and e states in the 2D plane. As shown in [70], tun-
neling between the neighboring sites of this checker-
board lattice can be activated by resonantly coupling 
the g and e states [71]. Interestingly, the tunneling 
along the x and y directions can be activated and tuned 
independently by exploiting transitions between 
degenerate Zeeman sublevels of the g and e manifolds  
[70, 72]. The latter feature can be exploited to generate 
the alternating tunneling matrix elements (±J) in the 
xy plane, as required in equation (3). Then, the stag-
gered potential of equation (4) can be simply obtained 
by detuning the g  −  e transitions, i.e. by slightly shift-
ing the state dependent potential out of resonance 
(which could be realized in a spatiotemporal manner). 
Finally, tunneling along the z-direction could be mod-
ulation-induced so as to realize the desired tunneling 
matrix elements  ±J. Here, one could use an optical lat-
tice along the z direction that is set at a ‘magic’ wave-
length, meaning that both g and e states feel the same 
potential along z. Modulation-induced tunneling can 
then be implemented as explained above by tilting the 
lattice and activating the hopping through an addi-
tional moving optical lattice.

2.3.2. Realizing the staggered-hopping model
The staggered hopping model in equation (12) builds 
on a very specific ingredient: the tunneling amplitudes 
should be ‘dimerized’ in the xy plane, with amplitudes 
J and Δ (figure 1(b)). In order to achieve such a 
configuration, one could start from the tunable optical 
lattice potential that was introduced by Tarruel et al 
in [73]: through a proper adjustment of the optical 
potential, the lattice sites can be combined by pairs, 
hence leading to strong coupling within ‘dimers’ (with 
coupling Δ) and weaker couplings between the dimers 
(with amplitudes J1 and J2, along x and y respectively); 
see figure 1(b) in [73]. By tuning the optical potential 
such that J1 ∼ J2, one can generate the alternating 
pattern of hopping amplitudes in the xy plane (J,Δ), as 
depicted in figure 1(b). In this scheme, Δ can be varied 
in space and time by modulating the optical potential 
of [73], as required for the generation of axial fields; 
see also [74] for a scheme realizing smooth spatial 
modulations of this tunable lattice potential. Tuning 
the sign of the tunneling matrix elements along x 
and z could then be realized through modulation-
induced tunneling methods [64], as explained above 
for the staggered mass model. We have verified that 
the difference J1 �= J2, which is usually present in 
the ‘dimer’ potential of [73], does not modify the 
properties of axial fields in a significant manner. 
Finally, we note that the staggered mass and staggered 
hopping models could be combined, through a fusion 
of the schemes proposed in this section.

3. Semiclassical probes for E5 and B5

In this section, we discuss how dynamics of 
wavepackets analyzed semiclassically can serve as 
probes for the axial fields. As we noted earlier, while 
conventional transport experiments are difficult 
in the context of ultra-cold atoms, unconventional 
probes such as direct non-equilibrium measurement 
of wavepacket dynamics are much more feasible. 
Apart from the corrections corresponding to the 
usual anomalous Hall velocity [75], the semiclassical 
equations we use also contain corrections due to the 
slow and parametric spatiotemporal dependence of 
the Hamiltonian parameters, which are accounted for 
via gradient corrections [76].

3.1. General formalism and methodology
Let us start by considering the behavior of a wavepacket, 
centered around the position rc and momentum kc, and 
prepared in the Bloch band associated with an eigenstate 
|u〉 ≡ |u(k; r, t)〉 of a generic Hamiltonian H(k; r, t); 
the generalized semiclassical equations then read [76]

ṙc = ∇kεk − Ωkrṙc − Ωkkk̇c +Ωtk, (21)

k̇c = −∇rεk +Ωrrṙc +Ωrkk̇c −Ωtr, (22)

where Ωkk, Ωkr, and Ωrr are generalized Berry 
curvature matrices with their elements given by

(Ωkk)
ij = Ωkikj

= i
[〈
∂ki

u|∂kj
u
〉
−
〈
∂kj

u|∂ki
u
〉]

,
 (23)

and similarly for Ωrk and Ωrr, while the components of 
the vector Ωtk are defined as

(Ωtk)
i = i [〈∂tu|∂ki

u〉 − 〈∂ki
u|∂tu〉] , (24)

and similarly for Ωtr. Note that the energy dispersion εk  
can also depend parametrically on r and t, through the 
spatiotemporally-varying Hamiltonian parameters.

Let us note some important technical remarks 
about the applicability of equations (23) and (24). In 
order for these semiclassical approaches to be valid, the 
temporal variations of the lattice system should occur 
on a much slower time scale as compared to the intrin-
sic time scales of the system (e.g. the inverse of hopping 
energies). Similarly, the spatial variations should occur 
on much longer length scales than the intrinsic length 
scales (e.g. the lattice spacing). When this assump-
tion holds, equations (23) and (24) are meaningful 
attempts to ‘coarse grain’ the dynamics. For cold-
atom experiments, which are the main focus of this 
work, the wavepackets are typically much larger than 
the lattice spacing, and much smaller than the cyclo-
tron orbits (which are much smaller than the total 
size of the optical lattice). It is thus not surprising that 
such semiclassical equations of motions are found to 
well describe recent cold-atom experiments on Berry 
curvature effects [11, 61]. Additionally, as explained 
in detail in [76], this formalism naturally allows us to 
treat external magnetic and electric fields in the same 
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footing as perturbations due to spatio-temporal vari-
ations of the Hamiltonian parameters, as they enter 
through the Berry curvatures defined above. In what 
follows, we assume that there are no synthetic electro-
magnetic fields acting on the models in section 2, 
focusing instead on perturbations that generate exter-
nal axial fields as we now describe.

For the two-band models described in section 2 
and defined by equations (4), (12), (23) and (24) can 
be simplified to

Ωkikj
= d · [∂ki

d × ∂kj
d]/|d|3, (25)

where d is the Pauli vector representing the 
Hamiltonian in momentum space defined by 
equations (6) and (15) for models (5) and (12), 
respectively.

For concreteness, we shall use the model described 
in equations (5) and (6) throughout this section. To 
generate the E5 and B5 fields, M is taken to be spati-
otemporally inhomogeneous and linear, namely

M(r, t) = M0 + M(t)
1 t + M(x)

1 x. (26)

As the semiclassical equations of motion solely 
depend on local gradients of the various fields and 
pseudo-fields, this linear approximation plays no 
important physical role, and is thus invoked to simplify 
the analysis. More general (slow) spatio-temporal 
dependence can easily be treated by locally linearizing 
the equations.

In the following subsections, we shall show that 
finite E5 and B5 fields can be detected via anomalous 
Hall-like drifts and cyclotron orbits of a wavepacket, 
as well as through a pseudo chiral magnetic effect. In 
doing so, we will obtain a more transparent expression 
for the equations of motion given in equations (21) 
and (22). Indeed, we will show that the latter can be 
recast in the more standard form [75]

ṙηc = ∇qε− Ωqq · q̇η
c ,

 (27)

q̇η
c = ηE5 + ηṙc × B5,

 (28)
where the reference frame was changed so as to 
measure the momentum relative to the Weyl nodes: 
specifically, for each node labelled by η = ±, we 
defined the relative momentum qη = k − ηb, where 
ηb is the location of the Weyl node with respect to the 
wavepacket’s momentum. Note that this alternative 
form (27) and (28) is reminiscent of the standard 
semiclassical equations of motion, as modified by 
conventional external electromagnetic fields [75]. In 
particular, E5 and B5 can indeed be directly detected 
and characterized through wavepacket dynamics, as 
we now investigate in more detail.

3.2. Anomalous Hall drifts due to E5

3.2.1. Analytical description

We first consider the case where M(x)
1 = 0 and 

M(t)
1 �= 0, which leads to a finite E5 but zero B5; see 

equation (11). Since there is no spatial dependence on 

the Hamiltonian, one obtains from equation (22) that 
k̇c = 0, i.e. translational symmetry implies that the 
momentum of the wavepacket is a constant of motion. 
Using this in equation (21) results in ṙc = ∇kε+Ωtk  
where the first term is the trivial group velocity and 
the second term is a Berry curvature correction. We 
now show that the second term Ωtk is precisely the 
anomalous Hall velocity due to E5, as suggested by 
equation (27). Using equation (25), together with 
equations (6) and (26), we obtain

(Ωtk)
i = −εlmndl(∂ki

dm)(∂tdn)/|d|3

= −εlmzdl(∂ki
dm)M

(t)
1 /|d|3,

 (29)

where εlmn is the three dimensional Levi-Civita symbol. 
For concreteness, we explicitly use the specifics of the 
model from equation (6). A more general analysis in 
the linearized regime is presented in appendix.

We now connect equation (29) to an anomalous 
Hall response due to E5, following a two-step approach: 
We first evaluate E5 using equation (6), and then, using 
a coordinate change, we show that the anomalous Hall 
response resulting from equations (27) and (28) is pre-
cisely given by (29). To this end we first expand dz in 
equation (6) (as it is the only time dependent term) 
to linear order in momentum around the Weyl points 
η cos−1(−M/2), where 0 � cos−1(−M/2) � π, to 
obtain

d(η)
z ≈ −η

√
4 − M2[kz − η cos−1(−M/2)]

≈ −η

(√
4 − M2

0 −
M0M(t)

1 t√
4 − M2

0

)

×

[
kz − η

(
cos−1

(
−M0

2

)
+

M(t)
1 t√

4 − M2
0

)]
,

 
(30)

where in the second step we have also expanded the 

terms to leading order in M(t)
1 . However, since we 

consider M(t)
1  small, and also the analysis stays valid 

as long as kz is close to the Weyl node, we ignore the 

dependence on M(t)
1  of the Fermi velocity to obtain

d(η)
z ≈ −η

√
4 − M2

0

[
kz − η

(
cos−1

(
−M0

2

)
+

M(t)
1 t√

4 − M2
0

)]
.

 (31)
Hence b can be identified as

b =

(
0, 0, cos−1

(
−M0

2

)
+

M(t)
1 t√

4 − M2
0

)
, (32)

and consequently E5 as

E5 = −∂tb = − M(t)
1√

4 − M2
0

ẑ. (33)

We now make the change of reference for the 
momentum, such that kz is now measured relative to 
the time-dependent momentum of the Weyl node. 

The transformed momenta to linear order in M(t)
1  

takes the form
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qx(y) = kx(y), qz = kz − η

(
cos−1

(
−M0

2

)
+

M(t)
1 t√

4 − M2
0

)
.

 (34)

Since the transformed momentum is time-dependent, 
via equation (28) it can be regarded as coming from 
a net force acting on the wavepacket in this reference 
frame, which is given by the time-derivative of the 

momentum as q̇ = −ηM(t)
1 ẑ/

√
4 − M2

0 . Note that, 

the magnitude of the force is concomitant with E5 
derived in equation (33) and the factor of η is due to 
the chiral nature of E5.

The anomalous Hall response due to this field can 
then be calculated from equation (27) as

−(Ωqqq̇c)
i = −Ωqiqj q̇c,j

= −εlmndl(∂qi dm)(∂qj dn)q̇c,j/|d|3

= −εlmzdl(∂qi dm)(∂qz dz)q̇c,z/|d|3,

 

(35)

where we have used that only the z-component of 
q depends on time and only dz is dependent on qz. 

Using ∂qz dz = −η
√

4 − M2
0  from equation (31) and 

the form of q̇ from equations (34) in (35), we finally 
obtain the form of the anomalous Hall response as

−(Ωqqq̇c)
i = −εlmzdl(∂qi dm)M

(t)
1 /|d|3, (36)

which is exactly equal to the gradient correction to 
the velocity due to the time-dependent term Ωtk in 
equation (29).

Hence, we have shown that the interpretation of the 
E5 as an axial electric field leading to a Hall response is 
equivalent to the generalized Berry curvature-like cor-
rection Ωtk in equation (21). It is interesting to note 
that this geometrical contribution is independent of 
the chirality of the Weyl node. This is a consequence of 
the axial nature of E5; the axial electric field and Berry 
curvature have different signs at the two Weyl nodes 
and thus conspire to give the same effective Hall drift.

3.2.2. Numerical analysis
We now corroborate these results by studying 
wavepacket trajectories obtained by solving the 
equations of motion (21) for a lattice model. The 

Figure 2. Differential measurement to extract the geometric contribution. (a) Parametric dependence of the spectrum and the 

Weyl node locations on time for M0  =  −2, M(t)
1 = 0.01, and kx = π/2 = ky . The vertical dashed line corresponds to the wavepacket 

momentum kc,z, which is a constant of motion. (b) Same as (a) but with M0  =  2 and M(t)
1 = −0.01. (c) The different contributions 

to xc(t) as a function of t for kx = π/2, ky = π/2 + 0.05 and kz  =  0.4 with M0  =  −2, M(t)
1 = 0.01. (d) The same as (c) but for y(t) 

with kx = π/2 + 0.05 and ky = π/2. (e)-(f) Robust extraction of the geometric contribution using the two protocols discussed in 
the main text. Note that the group velocity contribution for the two protocols is identical (blue circles and orange squares), where 
as the Berry velocity contribution is exactly opposite (green up and red down triangles). Hence the net displacements for the two 
protocols (purple left and brown right triangles) can be subtracted to obtain the geometric contribution.
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parametric dependence of the energy spectrum 
(including the Weyl node location) on time for 

M(t)
1 �= 0 is shown in figures 2(a) and (b)8. Without 

loss of generality, we consider the initial conditions 
rc(t = 0) = 0. The trajectories at any later time are 

then given by rc(t) =
∫ t

0 dt′ [ṙg(t′) + ṙb(t′)], where 
ṙg(t) = ∇kεk  is the group velocity and ṙb(t) = Ωtk. 
Their explicit forms for the model (5) are

ẋg =
−2 cos kx sin ky√

4 − 4 sin kx sin ky + (M(t) + 2 cos kz)2
,

ẏg =
−2 sin kx cos ky√

4 − 4 sin kx sin ky + (M(t) + 2 cos kz)2
,

żg =
−2 sin kz(M(t) + 2 cos kz)√

4 − 4 sin kx sin ky + (M(t) + 2 cos kz)2
,

 (37)

and

ẋb =
2M(t)

1 (1 − cos ky − sin kx sin ky)

[4 − 4 sin kx sin ky + (M(t) + 2 cos kz)2]3/2
,

ẏb =
2M(t)

1 (1 + cos kx − sin kx sin ky)

[4 − 4 sin kx sin ky + (M(t) + 2 cos kz)2]3/2
,

żb = 0,
 (38)

where rg = (xg , yg , zg) and similarly for rb. The 
following important observations can be made from 
the expressions in equations (37) and (38). First we 
note that ṙb is invariant under kz → −kz, which is 
indicative of the fact that the anomalous Hall velocity 
is the same for the two Weyl points. This is consistent 
with what was deduced from the linearized regime by 
the absence of any η dependence in equation (36). It is 
indeed a signature that the two Weyl nodes experience 
the effective electric field with different signs. 
Further, since the anomalous Hall velocity is always 
perpendicular to the effective electric field, which in 
our case is along z, we have żb = 0.

To isolate the effect of E5 via the wavepacket tra-
jectories, it is necessary to extract the geometric 
contrib ution to the wavepacket dynamics. Thus the 
probing protocols should be such that the effect of the 
the group velocity ṙg  is factored out of the dynamics 
[59]. This can be achieved by preparing a wave-packet 
such that its momentum kc,x minimizes the group 
velocity contribution. From equation (37), it can be 
deduced that if the momentum of the wavepacket is 
kc,x = π/2 but kc,y �= π/2, then ẋg = 0. Hence the 
entire contribution to xc(t) is determined by (Ωtk)

x, 
which was shown to encode information about E5 via 
the equivalence of equations (29) and (36). The result 
for such a protocol is shown in figure 2(c). The group 
velocity contribution xg(t) stays zero for all times, and 
xc(t) = xb(t) �= 0. Note that the velocity increases as 
the Weyl node moves closer to the wavepacket momen-

tum (see figure 2(a)). This is indicative of the fact that 
the response due to Ωtk is equivalent to the response 
due to the interplay of the emergent field E5 and the 
Berry curvature Ωkk. Although the momentum of 
the wavepacket kc is a constant of motion, the effec-
tive Berry curvature experienced by the wavepacket 
increases in magnitude as the location of the Weyl node 
moves closer to kc, and it diverges when they coincide. 
A similar protocol can be carried out for yc(t) with the 
choice kc,y = π/2 and kc,x �= π/2, the results of which 
are shown in figure 2(d).

Although the above steps isolate the geomet-
ric contribution, it might be more desirable from an 
experimental point of view to have a protocol that does 
not depend on the preparation of the wavepacket at 
precise momenta. To this end, we now discuss a pro-
cedure which relies on monitoring the evolution for 
two distinct situations: a differential measurement 
between the two will cancel the effect of the group 
velocity and will enable the extraction of the geometri-
cal contribution [59].

For concreteness, consider preparing a 
wavepacket with momentum close to the Weyl node 

at kW ,z ∈ [0,π]. We will study its time evo lution  

first when M(t)
1 > 0, denoting the corre sponding  

trajectories as rc1(t) = rg1(t) + rb1(t) and second 

when the sign of M(t) is flipped, i.e. M0 → −M0  

and M(t)
1 → −M(t)

1 , labelling the trajectories as  
rc2(t) = rg2(t) + rb2(t). Note that in the sec-
ond case, the Weyl node then shifts to π − kW ,z ,  
hence the wavepacket is then prepared with π − kc,z. 
The two situations are shown in figures 2(a) and (b). 
From equations (37) and (38), it can be deduced that 
xg1(t) = xg2(t), whereas xb1(t) = −xb2(t). Hence, 
the geometric contribution may be isolated by sim-
ply subtracting the responses of the two protocols as 
xb(t) = [xc1(t)− xc2(t)]/2 (the coordinate y(t) fol-
lows analogously, unlike z(t)). The numerical results 
in figures 2(e) and (f) confirm that the group veloc-
ity contributions are identical (blue circles and orange 
squares) while the Berry velocity contribution are 
opposite (green up and red down triangles) and thus 
a differential measurement will isolate the geometric 
contribution rb.

To summarize this subsection, we have shown 
that the geometric Hall-like response due to E5 can 
be interpreted via the generalized semiclassical equa-
tions of motion with gradient corrections for the tem-
poral dependence in the Hamiltonian, and the results 
have been corroborated with exact wavepacket trajec-
tories calculated using a lattice model with discussions 
of possible experimental protocols to isolate the geo-
metric contribution.

3.3. Cyclotron orbits and pseudo-chiral magnetic 
effect due to B5

In this subsection, we consider M(x)
1 �= 0 and M(t)

1 = 0 
such that B5 is finite and E5 = 0; see equation (11). We 

8 The parabolic spectrum at t  =  0 is an artifact of our initial 
condition M0  =  2, and is inconsequential to our results as for 
any t  >  0, the system is a Weyl semimetal.
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begin by showing that the semiclassical equations of 
motion with the gradient corrections, (21) and (22), 
can be recast in the form of the usual semiclassical 
equations, (27) and (28), in the presence of a magnetic 
field. We then study the corresponding cyclotron 
orbits analytically in the linearized regime and 
compare them to exact numerical simulations of the 
wave-packet evolution, confirming their validity. In 
the process, we discuss the geometrical contribution 
to the motion of the wave-packet, which is related to 
the so-called pseudo-chiral magnetic effect [21, 57, 
77]. We end the section by discussing the effects due to 
inhomogeneous profiles of B5 that are to be expected 
in realistic experimental situations.

3.3.1. Analytical description
We start with a Weyl semimetal Hamiltonian 
linearized around the two Weyl nodes, (8), and as in 
section 3.2, we consider a change of reference frame for 
the momentum:

q = k − ηb(r), η = ±1, (39)

where the Weyl nodes are located at ηb and b(r) is 
the Weyl node location depending parametrically 
on the position r. In the absence of an explicit time 
dependence, the semiclassical equations of motion 
with the gradient corrections, (21) and (22), can be 
expressed as

ṙc,i =
∂εk

∂ki
− Ωkirj

ṙc,j − Ωkikj
k̇c,j, (40)

k̇c,i = − ∂εk

∂rc,i
+Ωrirj ṙc,j +Ωrikj

k̇c,j. (41)

To make the analogy to the axial magnetic field B5, we 
first look at the transformation of the various Berry 
curvature-like terms under the change of reference 
(39):

Ωkikj
= Ωqiqj , (42)

Ωkirj
= i

[〈
∂u

∂ki

∣∣∣∣
∂u

∂rc,j

〉
−
〈

∂u

∂rc,j

∣∣∣∣
∂u

∂ki

〉]

= i

[〈
∂u

∂qi

∣∣∣∣
∂u

∂ql

〉
−
〈
∂u

∂ql

∣∣∣∣
∂u

∂qi

〉]
∂ql

∂rc,j

= −Ωqiql
(∂rc,j bl)η,

 

(43)

Ωrirc,j = −Ωriql
(∂rc,j bl)η. (44)

Using equations (42)–(44) the equation of motion 
equation (40) can be written as

ṙc,i =
∂ε

∂qi
+ ηΩqiql

(∂rc,j bl)ṙc,j − Ωqiqj [q̇c,j + ηṙc,l∂rl
bj]

=
∂ε

∂qi
− Ωqiqj q̇c,j.

 

(45)

Similarly, the equation of motion for the momentum, 
(41), can be recast as

k̇c,i = − ∂ε

∂qj

∂qj

∂rc,i
− ηΩriql

(∂rc,j bl)ṙc,j

+Ωriqj [q̇c,j + ηṙc,l∂rl
bj]

= η
∂ε

∂qj

∂bj

∂rc,i
− ηΩqlqj q̇c,j∂rc,i bl = ηṙc,l∂rc,i bl.

 

(46)

Using the relation k̇i = q̇i + ηṙl∂rc,l
bi  from 

equation (39), one obtains

q̇c,i = ηṙc,l(∂rc,i bl − ∂rc,l
bi)

= η[ṙc × (∇× b)]i = η[ṙc × B5]i.
 (47)

Comparing with equations (27) and (28), it is 
apparent that, in terms of the shifted momentum 
q, equations (45) and (47) take the form of the usual 
semiclassical equations [75] where the role of the 
magnetic field B is played by the axial magnetic field 
B5. Together with the equivalence of equations (29) 
and (36) regarding the axial electric field, we have 
established that the moving frame, defined in 
equations (27) and (28), is convenient to describe axial 
gauge fields.

Having established that a spatial variation in the 
Weyl node separation does indeed lead to an effec-
tive axial magnetic field, we expect cyclotron orbits 
to occur. To study these, we discuss the semiclassi-
cal equations of motion analytically in the linearized 
regime which will serve to analyze the exact numerical 
simulations of the wave-packet evolution. We will dis-
cuss as well the observable imprints of a pseudo-chiral 
magnetic effect [21, 57, 77].

We start with the linearized Hamiltonian (8), also 
expanded to leading order in M(x)

1  as

Hη = (k′x − k′y)σ
x − (k′x + k′y)σ

y

− ηv[kz − η(β0 + β1x)]σz,
 (48)

where v =
√

4 − M2
0 , β0 = cos−1(−M0/2), and 

β1 = M(x)
1 /

√
4 − M2

0 . Using equation (2) the effective 

magnetic field is along y and it is given by B5 = β1ŷ
The motion of the wavepacket in the presence of 

such axial magentic field separates into a cyclotron 
orbit in the (x, z) plane, and an unusual motion along 
the axial magnetic field direction ( ŷ). The latter has a 
trivial contribution due to the band velocity, but also 
a geometrical contribution that we will shortly asso-
ciate to a pseudo-chiral magnetic effect. To factor 
out the trivial band structure contribution we use a 
similar protocol as in the previous section; we set the 
wavepackets’ k′y = 0 so as to nullify the group veloc-
ity along y. The inspection of the equations of motion 

((45) and (46)) reveals that k̇y = 0 = k̇z, which is 
consistent with the fact that since translation symme-
try is broken only along x, only kx ceases to be a con-
stant of motion. Choosing the initial conditions as 
rc(t = 0) = 0 and kc,x(t = 0) = kx,0, the equations of 
motion can be solved analytically to obtain the cyclo-
tron orbits as

2D Mater. 5 (2018) 024001
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v2

[
xc(t)− η

kc,z − ηβ0

β1

]2

+ 2

[
zc(t) + η

k′x,0

β1

]2

=
1

β2
1

[
2k′2x,0 + v2(kc,z − ηβ0)

2
]

.

 

(49)

Note that the cyclotron orbits have opposite chiralities 
for the two Weyl nodes which is indicative of the fact 
that the two Weyl nodes feel an opposite effective 
magnetic field. Also the anisotropic group velocities 
of the Weyl node lead to elliptical orbits with the 
semi-major and semi-minor axes proportional to 

1/β1 ∝ 1/M(x)
1 ; this is consistent with the fact that 

increasing effective magnetic field causes the cyclotron 
orbits to become smaller.

The solution to the equations of motion also show 
a ballistic motion of the wavepacket along y as

yc(t) =
2vβ1t

v2(kc,z − ηβ0)2 + 2k′2x,0

. (50)

Unlike the motion of the wave-packet along a 
magnetic field B, the motion along the direction of 
the axial field is independent of the node’s chirality 
η and is solely due to B5 = β1ŷ . Such wavepacket 
motion is inherited from the axial field analog of the 
chiral magnetic effect [57, 77–83], which has been 
termed the pseudo-chiral magnetic effect [21, 57, 77].  
For each node the axial field induces a current parallel 
and proportional to it ( j ‖ B5). Physically, this 
contribution can be reinterpreted as a magnetization 

current [21, 30] and is consistent with the fact 
that b itself breaks time-reversal symmetry; note 
it enters as a Zeeman magnetization coupling in 
equation (1). Thus B5 = ∇× b is physically the curl 
of a magnetization which is by definition a magnetic 
(or bound) current [21].

Although the focus of the present work is on the 
realization of pseudo electric and mangetic fields, it is 
important to stress that the results in this section high-
light how the dynamical nature of experiments with 
ultracold atoms is well suited to probe also the chiral 
magnetic effect originating from a magnetic field B. 
The difficulty of probing this effect in a solid-state set-
up is that it vanishes in equilibrium [56, 63], unlike the 
pseudo chiral magnetic effect which is a magnetization 
current [21]. Thus, our results suggest that the chiral 
magnetic effect can be probed by studying the cyclo-
tron orbits of a wavepacket in the presence of a synth-
etic magnetic field, in an analogous way to the results 
presented in this section.

3.3.2. Numerical analysis: constant B5

We corroborate the above results by solving the 
equations of motion numerically for the full lattice 
model beyond the linearized regime. The results are 
shown in figure 3. Although there are slight deviations 
due to the non-linear effects of the lattice, the 
qualitative behavior is rather similar suggesting that 
the validity of the interpretations beyond the linearized 
regime. The essential features of the dynamics of the 

Figure 3. Cyclotron orbits and chiral pseudo-magnetic effect due to B5. (a) Cyclotron orbits in the (x, z) plane. The solid lines 
correspond to the exact results with the arrows representing the direction of time. The corresponding dashed show the trajectories 
from the linearized result (49). On increasing the effective B5, the cyclotron orbits shrink. The main figure corresponds to η = 1, 
where as the inset shows η = −1. (b) Manifestation of the chiral magnetic effect due to B5 represented by a ballistic motion of the 
wavepacket along y. The corresponding velocities, which grow linearly with M1(x), are shown in (c). The dashed lines correspond to 
the linearized result (50). The parameters for the plots are kx,0 = 1.7, ky = π/2, kz = 1.1, and M0  =  −1.
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wavepacket remain the same, namely the cyclotron 

orbits become smaller on increasing M(x)
1  and there 

is ballistic motion along y, the velocity of which also 

linearly increases with M(x)
1 . Also note that, between 

figure 3(a) and its inset, the wavepacket is prepared 
with kc,z = η(β0 + δkz) but the same kx,0. Hence, from 
the equation (49), one expects that the x component of 
the trajectories are the same between the two, whereas 
the z component is opposite. This leads to a different 
chirality of the cyclotron orbit between the two Weyl 
nodes, as seen in figure 3(a).

3.3.3. Numerical analysis: inhomogeneous B5

So far, our discussion assumed that B5 was taken to be 
finite and constant (to linear order) everywhere within 
the sample. However B5 is by construction a bounded 
field and thus every region with B5 > 0 must be 
compensated with regions where B5 < 0, even at linear 
order [57]. This implies that, if B5 is taken as a positive 
constant in the bulk, as in our previous considerations, 
the boundaries of the sample must be compensate with 
B5 < 0. This fact has been used recently to re-interpret 

the topological surface states of Weyl semimetals, the 
Fermi arcs, as zeroth pseudo-Landau levels of B5. Our 
results above are therefore valid for wavepackets that 
have an average center of mass where B5 is a constant, 
so that edge-effects and inhomogeneous contributions 
to B5 can be safely disregarded.

However, in realistic experimental set-ups the vec-
tor b will be finite only within a local spatial region and 
zero otherwise. This implies that B5 will be localized 
at specific, narrow regions of the system. In solid state 
systems it is the boundary with vacuum which will 
impose such discontinuity in b. In cold atomic systems 
the atomic trap potential can act as a boundary, but it 
will typically impose a smooth, step-like profile of the 
Weyl node separation. Within the two-band model (5) 
such profile in b can be modelled by

M(x) ≡ M0 + f [tanh(α(x − xs))− tanh(α(x + xs))],
 (51)

and is plotted in figure 4(a). Its corresponding Weyl 
node separation is given in figure 4(b). Here, ±xs, α 
and f control the location, sharpness and height of the 
step.

Figure 4. Configurations for inhomogeneous B5 and resulting wavepacket trajectories. (a) Profile of M(x) for different values of 
xs. Throughout the figure, data with the same color corresponds to the same value of xs. (b) Location of Weyl node as a function of x. 
The horizontal dashed corresponds to kc,z of the wavepacket. (c) Drift of the wavepacket along x (solid) and z (dashed) as a function 
of time. Vertical lines represent times of maximum velocity along y. (d) Drift of the wavepacket along y as a function of time. Vertical 
lines are the same as (c) which denote the times where xc(t) = xs . (e) Trajectories of the wavepacket with the arrows showing the 
direction of time. The parameters are kx,0 = 1.6, ky = π/2, kz = 0.55, M0 = −1.95, f = 0.1, and α = 0.7.
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To study the effect of profile equation (51) on 
the wavepacket dynamics numerically, we consider 
a wavepacket with kc,y = π/2 so as to avoid the effect 
of the band group velocity along y, as described in 
previous sections. It is illustrative to describe what 
is expected for a wavepacket released from an ini-
tial position xi with M(xi) ∼ M0 and thus B5 equal 
to zero. Intuitively, this amounts to releasing a wave 
packet from the left of figure 4(a) and monitoring its 
evolution as it encounters the step at M(xs) due to the 
profile equation (51). Before the wavepacket reaches 
the vicinity of ±xs, there is no drift of the wavepacket 
along the y direction and its velocity along the x and z 
are simply given by the group velocities, which remain 
approximately constant in the vicinity of the Weyl 
nodes. As the wave packet reaches the vicinity of ±xs, 
the inhomogeneity of M(x), or equivalently a finite B5 
field along y, will affect its motion. Semiclassically, this 
induces a velocity along the y direction by making the 
terms k̇x and Ωkyx (see equations (40) and (41)) finite, 
as those are terms which rely on the derivative with 
respect to x being finite. During the course of the evo-
lution we also expect that the velocities along x and z 
change as they reach xs.

As the wavepacket moves away from xs, the drift 
along y due to B5 stops and the wavepacket moves only 
in the (x, z) plane.

Equivalently, such description of the dynamics can 
also be phrased in terms of the pseudo-Landau level 
emerging due to B5 [21]. As the wavepacket reaches the 
vicinity of xs, it finds a Landau level in the spectrum 
which disperses parallel to B5 along y, imprinting a 
finite drift along the y direction. Following [21], the 
motion of the wave packet along ŷ is thus the motion 
along the Fermi arc occurring between a system with 
b �= 0 and a system with b = 0.

To confirm and extend this picture we have per-
formed a numerical analysis and study the motion of 
the wave packet as a function of the step parameters 
xs, α and f. The semiclassical trajectories for differ-
ent step positions, set by xs are shown in figure 4. The 
wavepacket starts without any velocity along y and 
shows no drift until it reaches the vicinity of xs. This 
can be seen directly from figure 4(c). The wavepacket 
drift along the y direction starts to be finite for later 
times for larger values of xs. In (c) and (d), the vertical 
lines corresponds to the times where the velocity along 
the y is the maximum, and from the horizontal lines in 

Figure 5. Same as figure 4 except now xs  =  5 where as the different colors represent different values of α. Note that increasing the 
sharpness of the imhomogeneity leads to the y drift being sharper and happening sharply at the time when the x coordinate of the 
wavepacket is closer to xs  =  5.
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(d) it can be seen that at these times, the x component 
of the wavepacket position is precisely xs. Also at these 
times, the velocity along x and z also show a change as 
expected. These observations are further corroborated 
by the projection of the trajectory of the wavepacket 
on the (x, y) plane as shown in (e). Note that here also, 
for smaller values of xs the wavepacket drifts along the 
y direction earlier. Due to the motion along x, as the 
wavepacket moves past the region of inhomogeneity, 
the velocity along y again goes to zero and the y coordi-
nate of the wavepacket flattens out with time.

Next we consider the trajectories for different 
values of α, which controls the width or sharpness 
of the profile (see figures 5(a) and (b)). The results 
are shown in figures 5(c)–(e); as α is increased, the 
wavepacket drift along y becomes sharper as apparent 
in figure 5(c). From figure 5(e), as the profile of M(x) 
converges towards a step function, the jump in the y 
coordinate of the wavepacket also progressively moves 
closer to x  =  xs which is set to xs  =  5.

From figures 4 and 5 it is apparent that the net 
y-drift of the wavepacket, the total drift once the wave-
packet has moved past the region of inhomogeneity 
along x is the same irrespective of the details of the pro-

file of b(x). This is a consequence of the fact that the 
net change in b which is controlled by the step height 
f is, for all previous cases, the same across the inhomo-
geneity. The effect of varying the parameter f in equa-
tion (51) is shown in figure 6. The figure shows that the 
net y drift is proportional to f. These observations sug-
gests that if the wavepacket is prepared at a momen-
tum where the group velocity along y is zero and travels 
from ri to rf  then the net y drift is given by

yf − yi ∝
∫ xf

xi

dx (B5(x))y = bz(xf )− bz(xi)
 (52)
which we now justify.

Consider the case where bz takes two different 
constant values in two spatial regions separated by 
the region of inhomogeneity, such that bz(x) is some 
smooth function interpolating between the two. As 
bz(x) is smooth, we will approximate by a series of lin-
ear segments of a width that we will take to be zero at 
the end of the calculation. Then, in order to show that 
equation (52) indeed holds, we need to show that it 
holds for each of the linear segments. With the initial 
condition r0 = 0, the trajectory along x from the solu-
tions of equations (40) and (41) is given by

Figure 6. Same as figure 4 except now x0  =  5 where as the different colors represent different values of f. The inset in (d) shows 
the net displacement along y as a function of f ∝ B5. The approximate linear behavior numerically corroborates the prediction of 
equation (52).
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xc(t) =
(kc,z − ηβ0)− (kc,z − ηβ0) cos(ωt) +

√
2

k′x,0

v sin(ωt)

ηβ1
,

 (53)

where ω =
√

2ηvβ1/
√

v2(kc,z − ηβ0)2 + 2k′2x,0 . The 

above equation indicates that the dynamics for an 
infinitesimally small linear segment is equivalent to 
considering very short time dynamics. Thus we expand 
the trajectory to linear order in t, resulting in

xc(t) ≈
2k′x,0t√

v2(kc,z − ηβ0)2 + 2k′2x,0

. (54)

From time t  =  0 to t, the net y-drift from equation (50) 
is

yc(t) =
vβ1xc(t)

k′x,0

√
v2(kc,z − ηβ0)2 + 2k′2x,0

. (55)

This may be recast as

yc(t) =
v[bz(xc(t))− bz(xc(t = 0))]

k′x,0

√
v2(kc,z − ηβ0)2 + 2k′2x,0

, (56)

showing that equation (52) holds for infinitesimal 
segments. Applying this argument sequentially results 
in equation (52).

The short time approximation can be reinterpreted 
as the requirement that the length scale of the pertur-
bation is short compared to the cyclotron radius. Note 
that in our units the cyclotron radius in equation (49) 
is equivalent to the inverse cyclotron frequency, which 
in turn is the time scale entering the sines and cosines 
in the trajectory equations of equation (53). Therefore, 
the expansion in t is only valid for times much smaller 
than the inverse cyclotron frequency. Alternatively, 
this statement can also be reinterpreted in the position 
language: the expansion is valid for an x-displacement 
that covers length scales much smaller than the cyclo-
tron radius.

4. Conclusions

In conclusion, we have presented evidence that 
cold atomic systems are ideal platforms for creating 
and probing axial gauge fields for engineered Weyl 
semimetals. We have demonstrated two realistic 
models that enable this. We have further shown that 
semiclassical wavepacket dynamics in these models 
exhibit a variety of features characteristic of the 
geometric properties of the Weyl spectrum. While 
some of these, such as the anomalous Hall responses 
and the cyclotron orbits, are two-dimensional 
responses embedded in the three-dimensional system, 
responses like the chiral pseudo-magnetic effect are 
exclusive to three dimensions. We particularly note 
that, while some of these predictions are known to 
be difficult to experimentally realize in condensed 
matter platforms, we propose how they may be readily 

probed by using the fundamentally dynamical nature 
of ultracold atoms. For instance, the chiral magnetic 
effect [57, 77–83] vanishes in equilibrium [56, 63] 
making the proposed synthetic platforms suitable for 
its direct detection.

Our work opens a number of future research 
directions. The tunability of these cold atom realiza-
tions should enable access to non-linear effects of the 
axial gauge fields, such as the chiral anomaly. Given 
the explicit experimental realizability of these models, 
they should serve as an ideal platform for helping to 
address experimentally how anomalies occur in the 
lattice and in particular the differences between the 
consistent and covariant anomaly representations [22, 
23, 56, 57]. Furthermore, unlike in condensed matter, 
both the real and the axial gauge fields may be taken 
to be strongly varying over the length of a unit cell. 
While this work has only addressed the semiclassical 
response, for which weak (in the Hofstadter sense) 
and slowly varying fields are assumed, recent work 
has shown that the chiral anomaly has a fractal nature 
inherited from the Hofstadter butterfly when these 
systems are placed in large electric and magnetic fields 
[84]. In addition, axial gauge fields naturally occur in 
interface regions between topological phases [21]. The 
example we considered in the main text, which lead 
to cyclotron orbits in regions of finite axial magnetic 
field, could be generalized to more intricate scenarios 
where topological phases of different kind meet [50, 
53]. Finally, the controllability of both disorder and 
interactions in ultracold atomic and molecular sys-
tems will yield the interesting experimental possibil-
ity of studying the effects of interaction and disorder 
on anomalous responses, which can help isolate and 
discern between intrinsic and extrinsic signatures 
on the negative magnetoresistance measurements in 
condensed matter Weyl semimetals [85, 86]. In short, 
our theoretical work is provides a realistic basis from 
which one may explore multiple avenues towards real-
izing and probing axial gauge fields effects in synthetic 
systems. We thus expect it to be a good starting point to 
explore a rich phenomenology of novel physical effects 
in synthetic Weyl semimetals.
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Appendix. Anomalous Hall response due 
to E5 from semiclassical equations

In this appendix, we show how the response due to 
Ωtk  in equation (21) is equivalent to an anomalous 
Hall response due to E5 for a generic Weyl semimemtal 
model in the linearized regime. Following equation (1), 
we start with a generic low-energy effective model 
described by

Heff
WSM =

∑
η=±1


 ∑

i,j=x,y,z

D(η) j
i σi(kj − ηbj(t))


 , 

(A.1)

where the time-dependence in b(t) leads to 
an E5 = ∂tb. The Hamiltonian for the Weyl 

node corresponding to η can be expressed as ∑
i=x,y,z d(η)

i σi, where d(η)
i = D(η) j

i (kj − ηbj(t)). 

Expressing the eigenspinors |u〉 in equation (24) in terms 

of d(η), one finds that

(Ωtk)
i = ηεlmndlD(η)i

m D(η) j
n ∂tbj/|d(η)|3. (A.2)

Now, consider the change of reference for 
momenta as

q = k − ηb(t).

In this modified reference frame, the anomalous Hall 
response is −Ωqqq̇ , which can be expessed in terms of 
d(η) as

−(Ωqqq̇)i = −εlmndl(∂qi dm)(∂qj dn)q̇j/|d|3

= −εlmndlD(η)i
m D(η) j

n q̇j/|d(η)|3,
 

(A.3)

which is indeed identical to the response due to (Ωtk)
i 

as calculated in equation (A.2).
While k  is a constant of motion, q has an explicit 

time-dependence via b(t) which can be inter-
preted as coming from the axial electric field ηE5 as 
q̇ = −η∂tb = ηE5.

Hence the response due to Ωtk  is shown to be equal 
to an anomalous Hall response due to E5.
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