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ABSTRACT

The HFB equations with genéralized isospin pairing are humerically'

‘solved without any approximations, except imposing certa;n>self4¢onsistent

symmetries. Realistic forces are used to make definite conclusions concerning

the shapes of nuclei and the existence of isospin pairing. Comparison withf

- previous approximations shows that in the s-d shell the HFB equations may nbti;;

be gquantitatively approximéted by HF + Bcs; HB - BCS, or by iterating between

HF and BCS. IsoSpin pairing restores axial symmetry to 2hMg and 325 and offers

:.36

‘an explanation fdr the existence of low—lying_vibrational states in ~Ar.
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I. INTRODUCTION

Nuclei in fhe first half of the s-d shell exhibit rotational features
such as energy level spacings obeying an I(I+1) law and enhanced electromagneticf
transition probabilities between states ﬁithin a rotational band. A very useful
techniQﬁe for caléﬁlating the wavéfunctions of such'stafes involves the construc-
tién_of an intrinsic state and the subsequent projection of angular momentum using
the Hill—Wheeler.ihtegrall or various approximations based on fhe adiabatic
nature of the‘rotational motiona2 Intrinsic states have been calculéted-using
deformed potential mbdels3 and mqré recently they have been caléulated_usiﬁg
Hartree—FoEk (HF) theory. For a review of HF calculétions in the s-d shell sée
Refs. k4 and 5;

The.HF’description-fails for the N = 2 even-even nuélei beyond 2ONe.
These failures have been discussed in'detail in a previous publication6 hereafter
referred to as I. However to summafize the most impprtant points of this dis-
cussion wé'note (1) there are several expéfimental investigétions which strongly
indicate that the intrinsic shape of 2hMg.is prolate and axial while HF unam-
biguously pfedicts the shape to 5é triaxial, (2) for 2BSi HF predicts both a low
'lying‘oblate and an orthogonal low lying prolate intrinsic state which is in

3

contradiction ﬁo the experimental spectrum, (3) for 28 HF predicts a triaxial

shape7 with >82 = 0. again.in contradiction tdlthe experiméntal spectrum; and

36Ar can be interpretéd phenamenologically as. a

(4) experiments suggest that
vibrator while HF predicts a well deformed oblate intrinsic state giving low
energy rotational levels. If we are to adopt'theICOncept of an.iﬁtrinsic étaﬁe
then a more'complicated_onevmust Be used. |

In I we pointed out that the Hartrée—Fock~Bogoliubov method. (HFB) might

-be useful for describing the intrinsic states in the s-d shell. Recently such
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calculations have been cérried out by two groups ’

who both conclude}thaf for
N = Z even-even nﬁclei the usual‘J =0 pairiﬁg does notvocéur. As clearly
pointed out in Réf. 9 and in I this result can not be taken tq mean‘thathFB
will not produqe-néﬁ intriﬁsic states since thése authors have_omiﬁtedvneutron—
proﬂon correlations which have been shéwn to be imporﬁant for Nb= Z nuclei.;o )
In (1) wé solvedvthe HFB equatiéns inclﬁding neutron—proton correlationé using
.an approximation simiiar to that employed by Kumar and Baranger.ll In this>
paper we solve the HFB equations exactly énd make a careful examination of
approximétions most usually employed in their solutidn and we also comment on
the relevance of pairihg in:the intrinsic states of the N = Z even-even nuclei

in the s-d shell. :We will uée féalistic interactions in this paper‘iﬁ order

to make our coﬁclusions about the existencé of neﬁtron—proton ?airing and fhe
shapes of these nuclei in a parameter free fashion. In Sec. II we briefly
develop the formulation of HFB and discuss in some length the concept ofvsélf—
consistent symmétry in HFB‘and the importance of the particulaf phases that we
introduce. We also comment on the various approximations to HFB that have been
used in discussing pairing. In Sec. IIi we describe our calculations, atteépt-to
justify the solutions, and discuss the effects of truncation and the impésition

- of éelf—consistent symmetries. In Sec. IV we give the resulfs of our calculations
discussing the validity of’previous»approximations, while in Sec. V we discuss_
the implications of paired intrinsic states on the interpretation of experimental

data in the s-d shell. Finally in Sec. VI we present our conclusions.
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II. A SUMMARY OF HFB THEORY

"A. - The Quasiparticle Transformation

We assume that the nucleus can be described by a two body Hamiltonian

Ciulolay s ot ;Z
25: lUlTlJV Ciucjv + 3 &, (1uqvlva|kp26 )C uc vcﬁdckp . (1)

[UAVIR uvps .

where T is the kinetic energy and V 1is some effective two nucleon interaction.
Since we choose to work in an oscillator basis, |iT ) denotes a wavefunction with
guantum numbers _,niQijimiT ). The Hamiltonian is next transformed to one written

in terms of quasiparticles

T ' ‘ _ .
+
Gop Z (o, 1vCiv * Vo, v vl o , (2)
iv , _ }
where the u ... -and v . are complex coefficients of the HFR transformation.
Ou,1V OM,1V . - -

They are determined by requiring that the guasiparticles are Fermions and that the

Hamiltonian describes indepéndent‘quasiparticles except for a residual‘interaction,
i.eq , ' : ‘ S

H' = H= ANV = E| + ZE al s+ H.__, : - (3)
where

iviiv

is the number operator,
Ao el e el 5)

p and n refér to the isospin indices for the proton and neutron AD and An are
Lagrange-multipliers,_and Eau.are the guasiparticle energies. It is H! rather than

'H that must be transformed for when HTNT is neglected the‘quasiparticle"vacuum
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e

0 ) is an eigensiate of the independent quasiparticle Hamiltonian but not of the

neutron and pfoton number operators. The Lagrange multipliers are chosen so that

(N ) =3 (N ) =A-2. |  (e)
P v v v

The part of H' which must be transforméd to givé the independent quaéiparticles is
written
HY = Z(JC-A). . ‘:cfrc. :+lZA. o I
2 — id,Jv “iugv 2. .52 i,V id jv
iy . - : : i
Hv : S uv
1 .
o+ = A, .+ C..C,
2 T3 ip,dv iy jv
uv. ' ’

where the normal order is taken with respect to the quasiparticle vacuum and

=7 .+, | - (8)
I, JV IH,JV 1H,3V
Fiu,jv - 1uleVa|JvQ0 )OQG,kp . o _ (9)
‘ "o
Aiu,ij_ 2 & 1qu|Va(kp£c typ,00 (10)
po

p is the single particle density matrix and t 1is called the pairing tensor

and they can be written in terms of the quasiparticle transformation »

= (o |cfc. ) = z: i, - (11)
piu,jv <I)Olcj\)clul% ' vz Vao,jv 00 ,iy 7 (

e T .
Sy © PolCCiul e s ag, jvVao, 1y - L2
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The vacuum energy is given by

E = E._ +E___

0 HE . PAIR
where
'E = E: (T-A + ljr) | o | + X 7+ x (A-2)
[SAYRS
aﬂd
_Ll ) t | | o
“pATR T 2 Aiu,jvtjv,iu I - (13)

dJ
"y
The coefficients in the transformation (2) and the quasiparticle energies are
given by the solutions of the HFB equations
(H-x & 7 [u u .
-j'. . - =7 . ) . o o (1k4)
The matrix to be diagonalized in (1L) is often referred to as the k matrix.
Since the poteﬁﬁials dépend on the solutions to the equations, the equatibns
must‘be éolvéd.byviteration until self-Cohsisﬂency is achieved.

“B. Self-Consistent .Symmetries

The HFB equatlons contain both the HF and BCS equatlons as llmlts The

generallzed BCS equatlons result from choosing; an initial transformatlon Of the

form

ot _'Ez PO ) . :
Bin T L (uiu,ivciy * Viu,fvcfv) i ) (15)
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where |I ) is the state time conjugate to |i) and |i) is some single

particle state chosen so that for any relevant set of isospin indices
[Cig v lim g €I g |1 50 ]
,(i.f'lvalj 3K E|Va[j iy .o (16)

The HFB equations may then be approximated by the usual 4 X L4 system of
BCS equations.10 It is of course not obvious a pribri‘that such single particle
states can be found and it wiii be one of‘our importénﬁﬂconciusiohs that such
approximations are-noé valid ih the s-d shell; _The HF equationé can be obtained
by simply choosiné trial wayefunctions such that all tij =‘O. By Eq. (10) this
insures A = 0 and from the structure of Eq. (1L) we see that at each stage of
the iteration A will remain zero and finally upon convergence will give the
HF solution.

This isAan example of a syﬁmetry which when initially built info the
HFB equaﬁions prdpagateé through to the final self-consistent solution. Wé'will
call these probagating s&mmefries (PS). It is important to consider such éym—
metries. for a seemingly arbitrary trial wavefunction might cqntain one or more
of them and so it may Be iméossible to obtain the solufioh with the largest_
binding energy?f?oﬁ such an'initial_guess. Moreover the solution of a completely
‘unrestricted HFB problem is imﬁraéticle even in the s-d shell for from Egs. (2) and
.(1h) we see tﬁatrthis would involve diagonalizing 48 x L8 complex matrices until
self consistency is achieved. Thus it is imperative to use PS's;té reduce the
numerical problem. To this end we wish to specify a subset of_the PS's Wﬁich we

will call self-consistent symmetries (SCS) and which can be uniquely defined.
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Itvshould.Be stréésed that there are other PS's which to our knoﬁledge can not

be uniquely defined and which from timé to time we ﬁave diécovered‘nﬁmerically.
A SCS is‘defiﬁed as a ﬁnitary or antilinear unitary Oﬁerator S which

commutes with the H) part of the Hamiltonian (see Tg. (7)). Sufficient con-

ditions for such an operator to be a SC35 are

1) The total Hamiltonian (3) is invariant under the symmetry operation, i.e.

[H(,s]_=»o - | N | (17)

2) 'The trial wavefunctions is invariant up to a Rhase under the

symmetry-opérations, i.e,
) = l ¢ ) R . . '
5 o,) = e o ) . | L : (18)

3) s méps the single particle basis states into themselves.
The proof of this theorem and a rather compléte discussion of SCS's

has been recently given by pP. U. Sauer.13 If Hé commutes with S, then of course

. + + + - '
.the quasiparticle states a . and a , , = Sa S . are degenerate and may be speci-
_ - au . o' au v S
fied by the labels'of the irreducible representations of the symmetry gréup' 5.
Thus 1f we can show that our trial wavefunction satisfieé conditions I, II, -and _
III for some operator S and if the matrix Eq. (1%) is reduced to block form
because of this symmetry, then because we have a PS we need only diagonalize the
sméller blocks effecting a large saving in effort. Moreover for discrete'sym—
.metfies:such as time reversal one need only solve>0ne’half the problem sincé the

time conjugate. states may be obtained from the relation
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For évery SCS introduced the generality of the theory is reduced, but cften

the dynamicé of the problem suggest that such symmetries will be contained %n ﬁhe
physically relevant HF or HFB solutiéns,lh i.e. even if the S8CS is brokeh in the
trial wavefunction, it will be recovered at the end of the iteratioh process. We
will now list the SCS's used in this work and briefly discuss their implications.
Parity. The qguasiparticles are labeled by the parity quantum number
and so the Kk matrix is diagonaiized separétely in spaces of positive and nega-
tive périty. There can be no inversion nonQinvariant deformations in the intrin-

sic state.

Time reversal, Use of this SCS allows one to further decompose the
K matrix into blocks which define quasiparticles connected by time conjugation.
In this paper we use harmonic oscillator basis states and choose our phases so

that

Tlhetjmt) = (-1) J-m+2 In 23§ -m1).

Bécause. T acts only on the spacé—spin coordinates, we will supress the isospin
coordinate for the discussion of time reversal. We divide the basis states into
two sets, the first containing states with m-1/2 = even integer énd denoted by
i|i );; the second contains those states having m~i/2 = 0dd integer."They are
chosen to bhe thg pime conjugate states of the first set énd aenoted by.{‘{ )i.
In this paéer we‘ﬁill restrict the pairing to be between time conjugate states,

i.e., we write the transformation (2) either with Uy and VoI °F Yg and
. b

-
b s 1

_VB .. Making this restriction in the trial wavefunctions breaks the « mafrix
,1 : v

into blocks and introduces a PS. However since we are dealing with even-even

systems we can choose time reversal as a SCS. This implies.the restriction
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* ‘ %
Y1 T Yyt Yai T Vool (1)
and finally the HFB equations reduce to
3 - A A u u
= E , (22)
A A=)\ v V. -

where in contrast to (1Lk) = (H), , 6, A = (A)ig, and both  and A are hermitian.

D

. Axiai>symmetry. This introduces a new quanﬁumfnumberv 2  (the

 z-projection of angular momentum) into the specification of the quasiparticle.

This symmetry is introduced by restricting the gquasiparticle transformations to

states |i) with the same value of m and states |I) with -m. Although

? in HF (in 2hMg and 25 the lowest solutions are

‘triaxial) it is one of the main purposes of this paper to examine whether this

is any longer true in HFB. \

Rotational symmetry. . The quasiparticles are specified by the quantum

‘numbers Jm. Such a symmetry may be introduced by restricting the transformation

S0 that_tbe set ;[i)i have the same Jm and the ‘set {|§’>; have j-m. This
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symmetry is in general too restrictive and in HF is valid only for doubly magic
nuclei. We find within the framework of HFB that the lowest solutions in the s-d

shell do not have this symmetry.

Rotations in Isospace. Since we have a general transformation which

includes the coupling of neutrons and protons there mayvbe various.SCS's in

isospace. For example we mighf demaﬁd rotationél invariance. However this Qould
restrict us to N = Z nuclei and T = 0 pairing. Since we limit ourselves to

N = Z even-even nﬁclei in this.paper this_would be a possibie symmetry. However. we
want to examine if we can not lower the energy by allowing nonconservation of iso-
topic spin in the intrinsic state. One might also demand rotational invariance about
the zanis, but:then we wouldvrestrict burselfes tovneutron—pfoton pairing and

we wish to allqw for neutron-neutron and proton—protontpairiﬁg és well. For N_= Z
nuclei, it is physically reasonable to expect that. the ground state has the.pro—

perty that (T) =017

This can be ensured by choosing an
operator T' = 'TyK (Ty is two times the y componeﬁt of isospin and K 1s the com-

plex conjugation operator) in isospace as a SCS. With this symmetry the trans-

formation in isospin space is written

+ .

8 U, 0 1,1 - V1,2 C;

+ * +

- 0 Y101 V1,2 11 n

_ = . - ,(23)
& Vi, Vi, W,y O “p

— * -

&2 Vi,2 1,0 O© Y11 y
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and v to be real. With this tfans—_

and further we choose the matrices ul,l' 1,1

formation the pairing potential 4 may be written

A A N .
p= [ v , (24)
A ~-A
pn " PP
where
A= ATt e a0 (25)

pn n pn

A closé examinaﬁiénl8 of A shows that diagonalvélements of AT=O vanish if
we choose the PS that all coefficients‘are real,va result‘independent‘of any
SCS in isospace. »Cbnséquently a complex HFB transformation is fe@uired for
simultaneous T.= 0 and T #.l pairing.

In.our discﬁssibn of time reversal we sﬂowed that fesﬁricting the pairing
to time conjugate states gives time reversal as a SCS. This however éxcludes
a possible modé of neutron-proton pairing where both pafticlesiaré in the same space-
spin state « “énd are coupled to T = 0, i.e. we could consider o pairiné"in addi-
tion to the.usual Q0. pairingQ‘ Such a mode could in priﬁcipie be included in the gen-
eral transfprmatioh but Wou1d make the numericéllcalculation essentially impossible
since one looses the advantage of bresking up the‘spacé into time conjugate.blocks
(although the éolutiOn could étill have time reversal as é SCS) and further we
no longer égn have rotational invariance about the z-axis as a 5CsS. In fhe next .
section we will calculate .this mode'and attempt ﬁo argue numerically that it is
much less coherent_thaﬁ the usual mode and so can»bevsafely neglected.’ The lack

of coherence of the oo type of pairing can be explicitély'demonstrated in the

case of a simple J = 1 force,l
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C. The Canonical Basis

In this subseéfion we wish o describe several apprbximations to the most
general HFB formalism and also to describe our methbd for presenﬁation of wave-
functions. This may best be done by using a theorem similar ﬁo that of Bloch and
Messiahl7 which states that the most general transformatién Bgen is given by the
’product of three transformations:l

1) a transformation D in particle spaceiwhich defines the canonical
pasis’and is obtained by diagonalizing the density matrix; 2) a generalized BCS

transformation Bsp; and 3) a transformation R in the quasiparticle space.
B =R B_D. S : (26)

Now the well known BCS approximation consists of aésuﬁihg that we know a priori the
canonical basis and further that ¥ and vA " are diagonal inkthe space-spin part
of this basis. Then the « métrix breaks into b ox ﬁ blocks. If there is no
neutron-proton péiring the K ﬁatrix further reduces to the>familiar‘2.x 2 métriQ
ces yielding tHe gaﬁbequéfion for thé‘pairing of identical particles. In the HFB
calculation of Ref. 11 this simplification is aéhieved.by-use of the pairing plus
quadfupole Hamiltonian in which case A ié trivially diaggﬁél invthe HF repfesén—
tation of the Q- q forcef The appféximation ﬁhat we used ih I is to takevfhé
coupled Harﬁree—Bogqliubovlg and BCS equations thqh are equivalénf to the HFB
e@ﬁatioﬁs up to a unitary transforﬁation and‘noﬁe that if.the off—diagénai ele-
ments of A ‘éré sméll then they reduce to coupled generglized HF and BCS equations.
Although this might ihtuitively seem a better_approximation than BCS it still depends‘_,
on A being diagonal in the canonical basis.v.In any diagonal A approximation
.R is the unit ﬁatrix. One of the major pointé to be éxploredvin fhe present paper’
_is the extent to which the non—zero.off—diagonal elements of _A affectithé sblution.
In Sec. IV we will discﬁss the various approximations numerically and it_will

be useful to éxpress the wavefunctions in terms of the three transformations.

NE
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+—Z>D..'CT \
Cru ™ o ri,iv Tiv ' : : o (a71)

iv
The isospin structure of this transformation consistent with the SC3's is

ey

b= | PP | | B e (28)

>
ar

where D__ = D . With our choice of SCS's the second transformation B may

be written in terms_bf the submatrices

rv

F a+ ] | _ﬁr - 0 ~ T ] “Cqk ]
rl - 11 11 12 -1 “rp
o r | r¥ r : T
Erp ‘ O ¥y Vi Vi | e
= ’ L : e {
o e s 1. : (29)
rl o 11 12 11 rp
r¥ r r ‘
| %2 [ V12 Y1p O Y11 | “fn _
r . r r : C
where u and v, are real numbers and v is complex. The third trans-
11 o1 : 12 ' :
formatidn_is written
- o OM,TV TV !

and the isospin structure consistent with our SCS's becomes

R 0-
g= s (31)
0 R22
., where .Rll = REé' The general transibrmationlcan'thus be specified by giving

. B ' ' : e e r r
the real orthogonal matrlces Dpp and Rll’ and ‘the coefficients -ull’ Vll’

andlvig. It is interesting to point out that the canonical basis is doubly
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degenerate and so by taking appropriatel8 liﬁear combinations of the degenerate
solutidns it is possible to define the pairing Between EEE single particle statas
which become linear combinations of proton and neutfon states with complex coef-
ficients. These are the states which defihe the Bchh—Méssiah canonicai basis.lY
We do not ﬁse this.mixedfneutron proton canonical basisrfor convenien;e in com-
paring with previbus results.

| ITI. .DESCRIPTION OF THE CALCULATION

A. Method of Solution

To- solve the HFB.equations (14) it is important to have reliable initial
guesses._ In the first place‘using cohpletely random guesses may intfoduce
undesiréble PS'svand moreover suéh bad guesses may take a prohibitively lqng
time to converge."Wé solvé this problem in the following way: |

1) We‘fifst solve the HF equations which give_varioué HF solutions.

In particular we find axially asymmetric and both prolaté and obléte axialiy ;
 symmetric solutibns, and often we find several solutions.having the same sﬁape.

The HF single particle states may be written as
= D'.c) . : . 2
cau = . OM,1u 1y : ‘ (32)

2) We next calculate the coefficients of a generalized BCS trans-

.formation
Tt E 7 [+ ]
‘8 u - -y!
al o 0 vy Ve Cap_
+ | _ t
a_ 0 vt ¥
a2 . . ua VQ. Va C(XD v
= , (33)
a= ! —
ol Yo Ya Yo 0 Cap
V*. (
| %52 | Vo Vg ) Yo | Can
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1 s . : -
where u, and v, -are real and Vi is complex. The method of solving for

the u's and v's has been given in an earlier paper.
'3) The starting values of the HFB transformation coefficients are now
given as

u ... =D ,oou 8
oM, 1V au,iv "o TH,V

o | | |
Yo1,i1 T 'Vaz,ie - Dal,il Yy : \3&)‘
— ¥ - '
Val,i2 = Ya2,i1 = Po1,i1 Vo

4) The starting value of X is also obtained from solutions of the
generalized BCS equations.15 |

S)v'With'£hése starting values, we ébtain the final solutions by iter—
ation until self-consistency is achieved. | |

Once fhe HFB tfansformatibn has been determined we express it as a
productVOf the thfée Bloch-Messiah matrices discussed in tﬁe last éection. Thé
procedure for determining_them is. outlined below. .
| 1) The canonical basis is obtained by diagonalizing the density matrix
(11). This gives us the transformatién D of Eq. (27). ) vand t are then
determined in the canonical basis.

2)  We now express p and t in terms of the coefficients of the

. second transformation Bsp’ Eq. (29). We then have the following relations

pr = pr R 2 + ]vr I2 o ; - - (35)
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r r
p. = p =0 (36)
pn np
r r r r '
tpp = U3 V91 T (37)
r _ r _r* _ r¥
tpn - ot Vi T tnp ’ ' (38)
where pl = a tf =+t r - . . ) .
pUV'_ pru,rv' an T By put Yy Ty be obtained irom Eq. (35) as
r . r 1 '
T VAR | - (39)
We choose ﬁil >0 and then Vil and vig can be obtained from Eags. (37)

and (38).
3) Since B , D and B are now known R can be determined from'.
gen : sp
Eq. (26). Further details can be found in Ref. 18.

B. Choice of Force

In‘I, we used a Rosenfeld—Yukawa force in our'caléulations. Since the
leiistence and imﬁortancébof the isospin pairing cdrrelations depend on the
nature of ﬁhe effective interaction (for example, tﬁe relative strengfh of
T=0vs. T =1 matrig elements or the s-wave triplet to singlet strength), we have
used three types Qf force in this work, the fifst two of which are commonly
regarded as reglistig.‘ The rational for using such forces in both the HF aﬁd
HFB calculations is that these calculations are to be regarded as & caricature of an
exact shell model: calculation in a sufficiently large model space.

1. Yale t-matrix. The Yale potentialgo was determined by very accﬁrate
fitting of the nucleon-nucleon scattering data. Since a hard cofe is included,

one mustvrep;§§g¥§hg_matrix elements of V by those of t. The t-matrix




-17- D UCRL-19506
o v

elements used in this paper are those calculated by'Shakin_gz_§£.21 from the

Yale potential: As is customary, the dependence of the t—matrix on the single
particle wavefunctiohs and energiec {double self-consistency) is'ignoréd. The
shell model space is confined.to the lowest three oscillator shells. The oscil-
lator barametef»(b = /5755) chosen is V3.1 fm. This choice of force and para-
meters enableé us to compare our resﬁlts with previous HF calculationé.22

2; NesﬁoréDavies—Kriegér-Baranger (NﬁKB) poﬁential.23‘ This potential
was‘specificallj designéd with.no hafd core for Hartree—Foékvcalcﬁlations. fhe-
effect of the hard core is simﬁlaﬁed?by'using a velocify_dependent term in the
potential. Invfitting the force pafameters (we-ﬁse set number 3), primary
emphasis was given to reproducing the binding energy and eéuilibriﬁm density of
nuclear matter, in such a ménner that the secoﬁd ordér corféctions to the
binding energy are small.

- 3. Roéenfeld—Yﬁkawa effective interaction; Tﬁis forcelhas been Widely
used in the s—d shell (see discussion in I). For the HFB calculations we trun-—
cate to the N = 2voscillator shell and replace the kinetic energy by single
particle_energiés_(see I and Ref. 4). As in I we use!singié §értiéle‘enérgieg’m
which correspond to the experimental ones found in 170 (Rosenfeld 1) and also
to energies which were used in the Hf calculationgu of 2LLMg (ROSenféld 2). We
use this force in'ordér to compare with the results in I.énd'féf fhelpqssibilitj
of comparing Qith the resulﬁs of exépt shell model calcuiaﬁions. Since the’
 HFB method is»used'hefe in>tﬁe‘spirit of approximating an'exact shell modél

calculation, such a comparison should be carried out in the future.



-18- ' | UCRL-19506

C. Validity of Number Non-Conservation Approximations

In I wé'compafed number non-conserving BCS-with the results of exact
number projection fér T = 0 pairing. Although we found that the total energies
do not change appréciably, the pairing energy was reduced by approximately 30%
in the number conserving casé andvthis‘was due to the drastic reduction of the

i : .
dispersion of the particies_across the Fermi surface (see Fig. 1 in I). For
number non-conservation to be accurate.ﬁe would expect that the binding énergy
should vary linearly with N. Because of the importance of.n;p pairing this
iinearity ﬁill bé particﬁlarly importanf‘befween odd-odd and even-even N.-= Z
nuclei.. A cﬁrédry giance at thé experimental mass symmetries of the s-d‘shell
éven.mass nuclei,.shows_the preseﬁce of a sharp discontinuity at the N = Z even-
even nuclei. For example the mass discontinuity at.ghMg is‘

26 (2uMg) + M(22Na)) = 10.5 MeV. However this experimental

AM(2hMg) (= M("7A1) - 2M
discontindity is of no relevance in pairing theory. Rather it will be the
discontinuity calculated with the underlying HF wavefunctions. It is interesting

2y

to note thét with the'triaﬁial HF solution calculated in Ref. 22, AM(
11.3 MeV. This is due to the presence of ablarge gap iﬁ the triaxial solﬁtion.
In I it wés shownv£hat it is Just this gap which prevents the (number non-
cénserving) pairingyfield from building up in the triaxial HF bésis. On the
other hand using the axially symmetric prolate HF solution giveﬁ in Ref. 22 one

2k

gets AM(° 'Mg) = -3.8 MeV. Since the mass discontinuity is relatively small in
this case, a strong number non-conserving T = 0 pair field builds up on this

solution (see Sec. IV and I). However this djscontinuity'is large enough to
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Severely.limif the accuraéy of the number noﬁ~conserving.BCSvmethod. To ouf

knowledge a'number conéerving HFB calculation has not been cafried out. We do
notbatﬁémpt'ﬁo do so in this paper,.however.one can get a rough estimate of

the validity.of the number non-conserving method by calculating thé disbohtinuity

for the cénonical'basis. Using the canonical Baéis functions given in Sec. IV we'find

2k

AM(T Mg) ='23.7 Mev, AM(32S) = -7.1 MeV, and AM(36Ar)_= 5.0 MeV. This suggests

that the number nOn—conserVihg method is not any more valid in HFB than in BCS,

D. The Absence of o-o and T = 1 Pairing
In Séc;‘II itvwas pointed out that'we have not included the possibility of
oo pairing in_pﬁr.calculatidns but in i it has already been shown that a dominance
of a péir fieid of one'kind»précludes the build up of other.ﬁairing.fields. FQr

example T = 1 pairing is supressed by the T = 0 rield for all.N = 7 even even nuclei.

‘This remains true for the solutions presented in this paper; vWith_the'Yale force

and a space of three oscillator shells we also investigated a0 pairing and find
2L '

Mg has a binding energy of -130.53 MeV, while 328 and_36Ar have binding ehergies:

of —225.12‘MeV and -291.07 MeV respectively. Thése_solutionsvare_obtaiped with the

L

‘nuclei artificially constrained to be axially symmetric. When this constraint is

removed the nuclei either gain ~ 0.3 MeV in binding energy or fall into the triaxial
HF solutions. = For pure oo pairing the binding energies for these nuclei are

~132.53 MeV, =229.66 MeV, and -291.76 MeV. - The relative lack of coherence of the

ao pair field is clear. It is therefore expected'that“this'field will be‘éupressed

by the stronger ‘a0 pair field in a more genéral calculation although this hasvngt"

yet been investigated numerically.
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IV. NUMERICAL RESULTS

A. Comparison of the HF and Canonical Basis and the Validity

of the Approximation used in I.

In Table I we give the HFB w&vefunctions for the solutions with the - A
largest binding energy in terms of the three Bloch-Messiah transformations
defined in Eqs. (26) - (31). These .wavefunctions were obtained with the Yale

t-matrix with three:oscillator shells.
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As pointed out in Sec. II, a meaéure‘of.the deviation of our previous approxi-
mation from the complete HFB is given by the deviation of R from the unit matrix.
It can be seen from Table I, that this deviation although appreciable for 2hMg and

2 . - v .
3 36Ar. A similar measure can be obtained by compairing the

S5, is véry large for
HF wavefunctions D' given in Ref. 21.with'thevcahonical wavéfunctions D of
Table V. Again large deviations are due to the fact that A 1is not diagonal in
the'canonicalkﬁasis. ’In Table II we give the matrix A 1ih the canonical basis

2l 32 . 36 s . ' ) s
for ~ Mg, S, and ~ Ar. Not surprisingly we find that A - has a large off dia-

~gonal elements for all three nuclei. - Although 21Mg has large off diagonal elements,

the canonical basis is remarkably similar to the HF solution and the dispersions

calculated from the HFB énd the diagonél A approximation of I are also .very
éimilar. Thus for this particular éase only the third transférmation is effeéted
by the non diaéonal elémehts of A. We know of no criteria that will tell a
‘priori whetﬁér ‘A_ will be diagonal in the caﬁonical basis so we therefore ¢on;
clude that in the.s—d shell the-complete'HFB is necessary since the diagénal
A approximation’méy be misleading. This is especially true fbr(excited state
calculations which depend on the quasiparticle energies and wavefunctions.

In Table III we compare E

g> and E for the HF + BCS approxi-

HF? EPAI TOTAL

mation,lo the diagonal A HFB approximation of I, and the complete HFB of fhis
paper. ' From this.com§arison we may conclude thét HFB always gives the iargest
binding energy. Secona, we observe that the pairing energy incréases in the HFB.
(largely'at:the expense of HF energy) often by more than a facfbr of two. Thus‘

is understandable because the HF wavefunctions were derived to maximize the HF
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binding energy. When the pairing field is allowed to build up simultaneously
and self—con81stently, it should be expected that the pair field will galn energy
at- the expense of the HF field.

B. Physical Properties of the HFB Solutions

In Table IV, we list certain}properties whinh describe the intrinsic states
for all the paired HFB solutions we have obtained for all the N = 7 -even even s;d
shell nuclei with all the fnrces we nave discussed in Sec. III. The NDKB1 solu-
tions were obtained in a space of thfee oscillator shells using the Hestor-Davies-
Krieger—Barangen force. The NDKB2 solutions were obtained-using'the-samenforné
but in a space expanded tn include four oscillator shells. The parameters charac-
~ terizing the ﬁFB’intrinsic states that we_shall discuss.are defined below. We

specify the shape of an intrinsic state by giving their quadrupole and hexadeca-

pole moments

]
. -~ -
9 O
1] >
Hf“ﬂ_

R

no
<

20 20

h o R
Qo = z; Yho Q ). | (ko)

It is also usual to define the shape of a nucleus with the size indépéndent shape

parameters B'

5 and Bh which for axially symmetric deformations are defined by

. Q S
. km 20
By = 3 R A N (h1)
iy o ! | | -
B, = = ﬁ_hx , : _ (%42) _




different HF + BCS solutions converge to the same HFB solution. All of the forces
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where .R is taken to be the root mean square radius

2
A S
1 2
R2 = x <z I‘i> 5 (43)
i=1
and
A .
. L k |
Ry, = 7 ( g;l r. >, - | } (4b)

and ‘A is'fhe.mass number. From Table IV we méke the following éonclusion.

HFB theqry is lesé ambigﬁous than'HF + BCS.in the sense that as maﬁy aé four

lead to more or 1éss.ﬁhé same. conclusions about the physical properties of’intrinsi;
states. Als¢>§e.observé that the gnérgy gaps are on the averége 20% larger .in
theVHFBvsolutidﬁs.compared with the HF + BCS approximation indicating an increased
sfabiliﬁy for these solutions. Finally we observe that inéreasing the shell épace

to include thejnext major shell has éhe expected property that deformation increases

due to core polariiation, reflected'by a substantial increase in 62 of approxi-

mately w%. ‘ L
Also from Table IV one can sée there is a definite tendency for the in-

crease of pairihg energy as one expands the shell model space. "The amount of

4 36

increase is only'EO% at 2 Mg but iﬁcreases to 90% at “"Ar. The effective energy

gap of two quasiparticle excitations displayed in the last column of Table IV

36

increases from 20% in ghMg to 45% in.the case of ~ Ar due to‘the enlargenent of

the spaée. This demonstrates that the solutions become more stable as one
enlarges the shell model space.

The effect of various factors on thevunderlying self-consistent field

such asgthevtruncations of the shell space or the iriclusion of pairing
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correlations can be demonstrated in a pictorial manner by plotting the mass -

distribution defined by

. | | |
Mo = 2 ) Clsle g lidey . (15)

0.,
ij k=1 It

Figures 1-6 present the equidensity contours of various HF and HFB solutions.
All of these plots show the pfojection of the density distribution on a plane
which has the axis of symmetry,és the vertical axis. The densities are normalized-
with respect to the corresponding maximum density taken arbitrarilj as uﬁity.

In Fig. 1 we plot the'contoﬁré of constant density for paired 328 calcu-
vlated with a SPace including only thfee oscillator shells. Arsiﬁilar plot but
now including fourvoécillator shells is given in Fig; 2. Apgrt from the con-
spicuous increase in the ovérall aeférmation, a compérison of the two figures
reveals that the enhancement of pairing correlations is associated with a con-
siderable'shift‘of_mass towards fﬁe éenter of the nucleus. The effect of:pairing
correlations on the nuclear shape and in pafticular the.teﬁdancy toward higher /
symmetry due to éairing isvdemonstrafed with Figs. 3 and 4 vy cdﬁbéring'the
density distribution of the prolate ﬁF solution and the prolate HFB solution for
211LMg. In this\caéé it can also be seen that there is an alpha particle élustering
in the HF solution and that this efféct is reduced in the HFB solution. A similar
comparison is given for 36Ar in Figs; 5 and 6 where we plot the density distri-
butions for the oblate HF and HFB solutions respectively. Here again a'big
reduction in deformation due to pairing is clearly demonstratéd. It will be shown
later that this reduction is responsible for gorreéting the3discrepancy in tﬁe

HF'description for 36Ar.
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The changes in shape of the HFB intrinsic states afe also reflected in -
the total angular momentum contained in each state. It is interesting to compare
the values of <J2 ) calculated with the wavefunctions'given'in‘Table I and the
solutions with largest binding energy which are quoted in Ref. 22. When the values

2 NI 2 - A
of (J% ) are expressed in units of h" a comparison shows ° Mg(22.k vs. 2L.L),

j28(19.5'vs.~25‘h), and 36Ar(13.o vs. 16.5) where the value from the HFB calcu-
lation appears first. The decrease in angular momentum for the guMg and 525 HFB
|

intrinsic states is because the HF solutions are triaxial and such non-symmetric

shapes contain large amounts of angular momentum.
Before we conclude this section we would liké to mention thatvthe inertial
e " : _ : ' v
parameter A(= gagwhere F is the moment of inertia) isicalculated using the Inglis

cranking model.??  The expression for the moment of inertia for an HFB intrinsic

state is
‘ Ciuls lsudCevls loav ) :
F =2 E:: lUIJXIEU E 'JXl Vap,i u; kv V;T v UBT, 3 - (46)
IJ'U . . O’.__ 0 Py1U 0, b sJH ; B
kv '
o

In this expression EO is the vacuum energy and E is'thejenergy of ‘a two
quasiparticlgrstate (EO = EO + Eap + EBT) and where the sum on ¢ is made in
such a way as to avoid double counting the two quasiparticle states. One might

expect on observing the structure of (46) that since the gaps increase in HFB

over the:values obtained from the HF + BCS approximation that the inertial parae‘

“meters will be somewhat larger. The limitations of the cranking model have been .

discussed in I,
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.V. COMPARISON WITH EXPERIMENT

It was pointed,ouf in Sec. IIT that the HFB solutions with fhe largest
5inding energy exhibit only T = O péirihg; This was also a feature of the calcu-.
lations in i and.the reasons -for this phenomena are discussed there. Another
general feature of.the HFB solutions is‘the néar degeneracy [in (H )] of several
solutions. These solutions haﬁe a large o&erlap and so only one of them is
physically rélevént as far as the 1owvenergy spectruﬁ is concerned. Self—consiétent
field calcﬁlations are usually unable tovméke the proper choice among théée'nearly
degeneraté sblutions because of the negléct of many highef order correctioﬁs
(see discuséion‘in 1). Nevertheléssbit is often poésible to compare properties
predicted by the various intrinsic states with experimental information and so
eliminate»the non-physical states. Below we will consider the nuclei individually.

EEQE: The ground intrinsicvstate is adeqguately described by a prolate

HF solution.26-.For this solution'pairihg corrections are small27 and can not

: be_calculated by our methods (see discussion in I).

ghMg. For ehMg HF theory predictsz8 thé ground state shape to be tri-

- T . v : | :
axial (in agreement with SU_3 theory29). In I we discussed in detail several
pieces of experimental evidence which show that this nucleus is best déscribed :

' 30,31

by an axiél'prolate-intrinsic state. Since then an exact projéction of
‘angular moﬁentum has been cafriedvout32 which shows that this intrinéic state
~does not produce an I(I+1) spectrum for either the K = O or X =f2'band§ which
feature is_in.sharpvcontradiction to expériment;  Fﬁfther the K = 0 and K = .2
bénd splitting is underestimated by 1.7 MeV. With Yale-Shakin t-matrix elements,

the HFB equations give almost degenerate solutions: 1) the triaxial HF state

with (H )= -133.14 MeV, 2) a prolate paired state with (H)= -132.53 MeV, and
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3) an oblate paired state where ‘(H )='—l32.05 MeV. From therdiscussion in the
last paragraph we rule out ﬁhe H? solution as a suitable intrinsic state.
Recently, the qﬁadrupole moment of the first 2+ state of ehMg has been measUred33
and is found to have a negative sign consistent with a.prolgte shape for the
intriﬁsic state.'_This rules out the axial oblate solution. The axially.symmetriq
prolate soldtion'éeems'to be consistentlwith experimentai data. It trivially
gives the I(I+1) spectra for the K = 0 and K = 2 bands. The‘cranking value of

the inertial péiaméter for the_gfound band is found.to be 0.33 MeV, and the
unperturbed position of the lowest K = 2+ two quasiparticle state is 4.81 MeV.

The paired prolate intrinsic state gives § muéh more consistént description of
experimental'déta than any HF state. | | |

E§§i. It is well known that HF predicfs‘two nearly degenerate and
orthogonal solutions, one being axially symmetriévérolaté aﬁd the other oblaté.

. The ordering of the two states, based on the value of (H >, depehds on fhe

22,34

particular force used. ExperiMentally one does not see two loW—lying K=0

.bands and it has been theoretically shown that the bands can not be separated

by mixing.35 Furthermore recent experimental measurements36 of the gquadrupole

moment of the first 2+ state show that the band is in fact oblate. But the
ground state band deviates considerably from an IL(I+1) spectrum since the J = 0
‘member of the band is too low. It has recently been suggestedsj that this

depression could be explained by the interaction of the‘J = 0 member with a !
coexisting spherical state. However ﬁF calculatioﬁs with realistic forceélpréj’ 
dict a épherical state»that is much foo high to be aSsociated with fhe coexist=
ing spherical state seen at h.§8 MeV. 'Unfortdnately the‘solutions-to the HFB

equations also give force dépendent'results.' The Yale t-matrix giveé identical
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results to HF because both the prdlate and oblate HF solutions have too large
single particle gaps to permit pairing correlations usingvdur methodé. However
with the NDKB potential, we find an fsospin paired axially syﬁmetric prolate
sélution almost'degenérate with tﬁeAprolatevand oblate HF solutions. This HFB

' prolate solution has a significant overlap.with both the HF solutions since.ali‘
the single particlé>stateé aré partially oécupied because bf_the pairing cor-
relations. With this potential one can discard the ﬁrolate HF solution because
of its small enérgy gap and the prolate HFB solﬁtion-because of its.large overlap
with the oblate.HF solution. The latter solufion appears'to be_in essential.
agreement with eXperimehtbif the coexistencé picture is accepted. Ho&éver we
afe unable to prodﬁée a loﬁ_energy‘sﬁherical solution with_aﬂy of the potentials
used, | |

32

S. HF theory predicts a triaxial intrinsic shape for 32

S. ‘This state
i; very peculiar having‘the>inertialiparameters.about all three axes equal and
a vanishing guadrupole distortion parameter.7 Physical predictions made.from.
such an intrinsic state do not agree with experiment. Héwever it isvpossible
to interpret the experimental.data using an éxially éymmetric intrinsic state

if one allows for the coexistence37 of a spherical intrinsic state which abpears
‘at 3.78 MeV. Thé_éolutions to the HFB equations again give three solutions
~with similar binding eﬁergies. With the Yale t-matrix we find the triaxial HF
solﬁtion with (H )= -227.7k MeV, a paired axially symmetric oblate state with
(H)= —229.66 MeV, and a paired axially symmetric prolaté state with |

(HD)>= -224.53 MéV. All three solutions have significant’overlapband only one‘
can be an acceptable intrinsic state. The asymmetric—stéte Ean be elimiﬂated

from the experimental data. However since there has been no experimental measure
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of the qﬁadrufole moment of the first 2+ state, we cén not chocse between the.
oblate and frolate axlally symmetric solutions. As in the’case of 288i we were
not able to.findva épherical solutioﬁ with a éufficiently low energy to be the
coexisting statéf |
Eéég. This nﬁcleué is very interesting because phenoménologically oné
can interpret the low lying Spectrum as being vibrational. On the other hand,
HF calculationS»giVe a deformed oblate state (.<H )= -201.07 MeV for the Yale
t—matrix) with é large energy gap and a small vélue of thé inertial parameter.
This intrinéié‘state bf course predicts low lying rotational structure in dié—.
agreemept with experiment. The.solutions to thg HFB equations offer a poésible
answer to the problem. dne thainé a paired oblate solution lower in energy
than the HF solution ( (H)= -291.77 MeV). This HFB solution is remarkable in
that its‘inertial‘parameter is uﬁusually large (A = 0.62). This means that the
rotational statés appeér at energies comparable with thé‘two quasiparticle states
with the result that rotational structure will be destroyed.

38

"A recent paper by de Swiniarski et al. has used a coupled channel
: . |

anélysis of inelastic scattering data to determine the 82 and Bh values for
the N = Z even-even nuclei. In Fig. 7 we compare our calculated values with the
results of their‘analysis. The theoretical numbers -are calculated with the

2 3 ' .
wavefunctions in Table IT for hMg; 328; and ‘éAr. We use the wavefunctions

from Ref. 21 for 2O_Ne and 2881. In Fig. 8 we compafe the inertial pérameters
calcdlatéd with these wavefunctions with the values obtained from.experiment

as discﬁséed in I.‘ We also plot the HF results. A comﬁarison of Figi. 2 in'I and
Fig. 8 show that the inértial parameter inéreéses in HFB over the HF + BCS approxi-

mation by 20%. As pointed out in Sec. IV, this is understodd.by the increase in

the gap.
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vI. CONCLUSION

In prefious works we have investigated the existence of.generalized
isospin (T = 0 and ‘T = 1) pairing with the assumption that the paif potential
is diagonal in space-spin co-ordinates. The HFB equatiohs have now beeﬁ solved
without making this approximation and also using "realistic force." All approxi-
mations. to the HFB equations (HF and BCS, iterating between HF and BCS and HB
+ BCS) have'serioﬁs defects. - They fail to approximate the exact (HFB) wavefunétions.
The fifst two aﬁprbximations underestimaté the pairing energy (often by a factor
of 2 or 3). The HFB canonical éingle particle basis often bears no similarity
to the HF single particlé basis. | |

The third transformation of the Blbch-Messiéh theorem may not be approxi-
mated by the unit matrix, nor is the pair potential diagonal in the canonical
_ basis.

Iterating between the HF And the BCS equations in aﬁ attempt to‘perndt
both degrees of fréedom'to interaét with one anbtherl.is.aﬁ even worse approxi-
mation to HFB tﬁan merely solving the BCS equations with the triviai HF'basis
butvallowing HF éiﬁgle particle energies to be modified by'pairihg. Presumably
this results'frém the‘lack of self—consisténcy in the former methodf To permit
both T = O'and:T =1 péiring it is necessary to use complex quésiparticle co-
ordinates., In practice, however, T = 0O pairing always éu?resses T = 1 pairing.

Nevertheless the resultsvregarding the equilibrium shapes remain muéh
32

. Dy v ,
the same as in I: T = 0 pairing restores axial symmetry to = Mg and 5 and

provides an explanation for the nonexistence of low-lying rotational states in
36 '

Ar. We finally conclude that isospin (T = 0) pairing is an important cor-

relation effect for light nuclei. As far as we know, this is theuonly occasion
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that pairing occurs in nature in other than singlet S states. Furthermofe,

‘the iséspin pairing phenomencn is distinguished by the the largeness of the pairing

energy. Much work;-theoretical and experimental, remains to be done before a
complete understanding of this phenomenon of isospin pairing is achieved.
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TABLE CAPTIONS
Table 1. HFB wavefunctions for the lowest energy nontrivial HFB solutions‘for;v
2 32 36 s ey . . .
Mg, S and “"Ar. Calculations are done with the Yale-Shakin potential
in the s-p-s-d shell basis. {n .denotes the compenent of total angular
momentum on the symmetry axis and the_paritybresPectively for each orbital.
E denotes the quasiparticle energiés in MeV. The general quasiparticle
transformation is displayed as a product of three transformations as ekplained

in the text. In the column giving [Im v ) is given

12

2 g |
17, (the sign of I@ Voo

in the parenthesis. Note that Vi, T Revl2 = 0 for all the solutions.
A is the Fermi energy.
Table II. The T = O pair potential (in MeV) in the canonical basis, corresponding

to the solutions in Table I.

and E denote the

My . .l. ot E .
féble.III.. A comparison of pairing theorles. EHF’ PATR TOTAL

Hartree-Fock, pairing, and the total energies in MeV.

Table IV. Paired HFB solﬁtion in the s-d shell. Only non—triviai solufions
are diéplayed. Iﬁ the third column denoting the shape éf the HFB solutioh,
the shape bf thé trial HF wavefunction is also shown in parentﬁesis:

P; ‘prolate, 0:  oblate, S: spherical. In case there is»mQre than oné HF<
solution of a given shape, they are distinguished by an additional member
e.g., P1, P2, etc., The numbers in the gap'colﬁmn are the sum of the.two

smallest quasiparticle energies.




- =372+

Table I. HFB Wavefuhctiohs.
o E Transformation R [Imvlg]2 Transformation D
2uMg |
ld5/2
S/26 3777 1.000 - (+)0.03h 1.000
ld5/2 ld3/2
2.651 0.167 0.986 (+)0.008 0.347 -0.938
7.982 0.986 -0.167 (=)0. 68k 0.938  0.347
151/2 ld5/2 251/2 ld3/2
. X ]
1/2+ 2.158 0.247 0.923 -C.296 0.015 (+)0.01k 2.ik3 -0.%09 -0.7L7 ©.50k 3?
5.058 0.926 -0.134 0.351 -0.036 (-)0.317 0.024 -0,617 -0.175 ~0.767
6.503 10.285 -0.361 -0.888 0.021 (+)0.953 0.067 0.672 -0.622 -0.396
49,655 0.024 -~0.011 .0.036.-0.999 - (+)1.000 0.987  0.029 0.155 -0.027
| P3 o
“3/2- 19.334 ©1.000 (-)0.997 1.000
e R
1/2- 16.958 0.990 1 0.139 (-)0.996 0.570 0.821 § 
. 26.09h | -0.139 0.990 (+)o.998'. 0.821 -0.570 ‘£
' A = -9.150 MeV- 2
- [@2N

(continued)



Table I. continued

- Tfansformation R _ . [Imvl2]2 Tranéformation D
32S
s,
5/2+  1.073 1.000 . (-)0.981 1.000
| g, 1dg ),
23/2+ 2,931 0.906 0.k22 (+)0.527 | 0.712  0.702
5.337 0.422 -0.906 (-)0.949 0.702 -0.712
lsl/2 ldﬁ/; 251/2 ld3/2
1/2+  3.238 0.322 0.937 -0.136 0.011 (-)o.107 0.106 0.487 -0.533 -0.68kL
5,425 0.378 -0.260 -0.884 0.086 ' (+)0. 1480 0.039 0.643 -0.306 0.702
6.168 0.868 -0.235 0.435 -0.052 (-=)o.97k 0.158 -0.591 -0.765 0.199
55.521 0.010 -0.000 0.100 0.995 (-)0.999 0.981 0.017 0.193 0.0lk
230
-3/2-  29.56k 1.000 (+)0.997 1.000
1p3/2 lpl/g'
1/2- 21.848 0.998 0.068 (-)0.991 0.734 - -0.680
28.358 0.068 -0.998 (+)0.996 0.680  0.73k4

A = -1L4.2L45 Mev

“(continued)

—9e-

90§61‘THOH




Table I. continued

Cx o= 216,772 MeV

Qm Transformation'R _ {Imvlg}2 Transformation D
36Ar
_ /e
5/2+ 8.012 °1.000 (-)0.993 1.000
| g, 1y,
-3/2+ 2.488 0.830 0.557 (+)0.877 0.703  0.711
6.771 0.557 -0.830 (-)0.980 0.711 -0.703
Isyp Mg 28, 1dj,
1/g+ 2.750 0.608 0.754 50.2&9 0.003 (-)0.322 0.088  0.451 -0.528 -0.715
L.927 0.793 -0.561 0.239 -0.022 (+)0.852 0.042  0.635 -0.368 0.678
£.486 -=0.041 0.343 0.938 -0.038 (-)0.988 0.105 -0.627 -0.752  0.173
57.983 0.014 -0.002 0.0k2  0.999 (-)0.999 0.990 -0.000 0.142  0.017
D3/
~3/2- 31.500 1.000. (+)0.998 ©1.000
P30 1Py 0
- 1/2-  26.0Lk 0.964 0.267 (-)0.994 0.741 -0.671
30,35k  0.267 -0.96k (+)0.998 0.671  0.7h1

...LE..

9046T-T80N



Table TII.

T .= 0 Pair Potential in the Canonical Basis

Com

32

2y 5 36,
_5/2+‘ 1.312 -1.93k4 -1.372
-3/2+ 1,428 0.678 3.355  0.L466 2.508  0.h25
' 0.678 -2.60L 0.466 -2.166 0.425 -1.526
1/2+ 1.189 0.378 -0.116 1.058 23.707 -0.365 -0.530 -0.402 -3.862 -0.553 -0.264 -0.610
0.378 -2.589 0.845 -0..458 -0.365 3.561 -0;103 0.019 -0.553 2.755 =-0.256 0.039
-0.116 0.8L45 2,547 0.367 -0.530 -0.103 -1.940 -0.989 -o.26h’-Q.256 -1.360 -0.310
1.058 -o.h58' 0.367 1.656 -0.402 0.019 -0,989 _b.10k -0.610 ©.03% -0.310 -L.016
-3/2- ~2.178 * 3 - 2.620
1/2- -2.264 -0.022 -4.153 -0.015 -4,003 -0.034
-0.022  2.537 20.015  3.52k -0.034  2.707

\

._8€ -—
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. Table III. A coﬁparison of Pairing Theories.
' |

UCRL-19506

E

i
Method HF | EpatR FroraL
ehMg'

. HF + BCS ~126.02 -6.31 -132.33
Approx. HFB ~126.53 -5.58 -132.11
HFB ' -124.73 -7.80 ~132.53

324
HF + BCS ~219.01 -4.75 _023.76
Approx. HFB —218.9h -4, 88 -223.83
HFB -215.32 -9.21 -224.53 -
6y,
HF + BCS -283.71 -3.39 -287.10
- Approx. HFB -282.76 -3.92 -286.68
HFB - 282,24 -9.52 -291.76




Table IV: Paired HFB Solutions in the s-d Shell

Nucleus Force Shape - Mode EPAIR ETOTAL | ng 'QMO Gap

*ONe  Rosenfeld 2 Oblate (0) S m=o0  _T.625  -b1.69T 5.9 é5.9 L.78
Prolate (P2) T =0 -6.587  -hl.ukk 2.7 -53.5 L. 76

Yale AProlaté (8) T=o0 -2.3h -101.505  15.k - 80.0 b Th

EhMg Rosenfeld 1 Prol;teA(PE) T =0 -6.h38 -77.526. = 15.6 -1k4.9 5.68
| | Oblate (01,02) T = 0 -6.551 -77.238 - -13.0 40.8 5.hh:
Rosenfeld 2  Prolate (P1) T =0 -L.5T6  -95.170  15.6 -0.5 5.20

| bblaxe (01,02,03) T = d ‘ -6.858 -93.865 ~12.k. 58.1 4. 80

Yale Prolate (P) T=0 -7.802 -132.527 19.0  -12,1 k.32

- Oblaﬁé“(Ol,OQ) T =0 -17.205 ~-132.0k9  -12.1  31.k 5.98

NDKB 1 Prolate (P) ~ T =0 -8.121 -110.388 . 15.9 13.4 L;98

Oblaté (0) T=0 ~11.802 -109.301 -12.5 L7.5 k.22

NDKB 2 Prolate (P). T=0 -9.637 =-116.651 22,5 - 6.0 5.76

oblste (0) T =0 -15.887 -114.131  -16.6 - 52.8 5,28

28Si Rosenfeld 1 | Prolété (02) ‘T =0 -T7.234 -123.k20 0.13 116.0 | L.70

Rosenfeld 2  Oblate (02) 207  -150.01 .  -0.5 = -96.5 = 5.72

=]
1}

(@]
|
N

Prolate (03) T =0 -6.050 -147.808 . 0.1h  110.5 ~ . 3.80

90§6T“THOH

_{continued)
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Table IV. continued

Nucleus Force Shape Mode: EPAIR ETOTAL ng QMO _ Gap
'NDKB 1 Prolate (P,S) T = b -9.933 —iho.6io 15.1 . -20. .3;76
Prolate'(02)" T =0 _1h,375': -138.733 3.1 -8k, 3.72

WDKB 2 Prolate (oz;s)' T =0 '-8.359; —1hé.853 2&.9 72, L.k4o

32 Rosenfeld 1 Oblate (02,03) T=0 -5.835 -178.385 - ;1.3_ -110. 5.62
| Prolate (P) T=0 -7.276 -178.179 6.5 - -9k, 5.76
Prolate (S) T=0 -12.72h -176.173 3.4 3T. b, Th

Rosenfeid 2 Oblate (01,03) T =0 -1!385 -é12.901 -1.5  -95. 5.30

vale Oblate (NDKB1-0)T = 0 -13.233  -229.658 :-17.0 2. 5.86
Prolate (P) T=0 -9.208 -22k4,531 13.6  —66. 4.58

"NDKB T Jvlate {0} T =0 -6.988f' -179.696  -15.5 5. | 3.24
Prolate (P,8) T=0 -6.031  -179.266 - 12.8  -38. 3.94
NDKB 2 Oblate (0) T=0 - -9.977 -183.910  -20.k4 0. L1k

| Prolate (P,S) T =0 -10}953  -183.153 16.8 -52, 5.9k

Ar Rosenfeld 1‘7 Prolate (P,8) T = 0 -7.722 - -237.23L b9  -26. 4.36
Roéenfeld 2 .Pro;ate_(P,é) f =0 -5.079 -277.826 3.9 -21. 3.7L4

- Yale -Oblate (P,S) | T=0 -9}523 -291.765 -11.3 -37. k.58
NDKB .1 Prolate (P,S) T =0 -5.904  -22h,66L 6.0  -17. 2.72

NDKB 2 Prolate (P) T =0 -11.260 .-226;519 7.5 -19. 3.9k

_IW_

90$6T-T40N
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FIGURE

Fig. 1. Constant density contour plot

within the space of s-p-s-d oscillator orbitals.

donebfor the NDKB or Rms rédius =
units of 0.276 fm-3.

Fig. 2. Constant density contour plot

within the space of s-p-s-d-p-f orbitals again using‘the NDKB face. Rms

radius =

" Fig. 3. Constant'density contour plot

obtained with the Yale-potential.

are given-in units of 0.2L40 3,

Fig. 4. Constant density contouf'plot

obtained with the Yale potential.

are ‘given in units of 0.246 fmf3.

Fig. 5. Constant density contour plot

'36Ar obtained with the Yale force.

are given in units of 0.302 fm -.
Fig. 6. Constant density contour plot
obtained with the Yale potential.

are.given in units of 0.300 fm—3.

Fig. 7. The calculated values of distortion pérameters 82

pared with the experimental values

2.870 fm. The densities are given in units of 0.296 fm ~.

CAPTIONS

for the oblate HFB solution of 328

The calculations were

2.877 fm. The densities are given in -

for the oblate HFB solution of -°8

3

for the prolate HF solution of 2hMg

Rms radius = 2.853 fm. The densities

2k

for the prolate HFB solution of < Mg

Rms radius = 2.856 fm. The densities
for the lowest oblate HF solution of
Rms fadius = 3.017 fm. The densities
- . L 36,
for the oblate HFB solution of Ar
Rms radius = 3.018 fm. The densities
and . Bh -are com-

38 - 20

of de S%iniarski et al. For "~ “Ne and

the theoretical value corfesponds to the HF value.

Fig. 8. Thé theoretical value of the moment of inertia parameter h /23' (in

MeV) are compared with the experimental values. For

mental values given are as extracted in Ref. 37.' For

value corresponds to the HF value.

28

20

UCRL—19506

Ne and 2881 the HFB

284

Si and 3?8, the experi-
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NDKB HFB
IO orbitals
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report. o

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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