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Abstract

Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a

Two-Dimensional Electron Gas

by

Christopher Phillip Weber

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joseph Orenstein, Chair

Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique,
is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings,
the suppression of Ds relative to Dc agrees quantitatively with the prediction of “spin Coulomb
drag” theory, which takes into account the exchange of spin in electron-electron collisions.

Moreover, the spin-diffusion length, Ls, is a nearly constant 1 µm over the same range of
T and n, despite Ds’s varying by nearly two orders of magnitude. This constancy supports the
D’yakonov-Perel’-Kachorovskii model of spin relaxation through interrupted precessional dephasing
in the spin-orbit field.

Professor Joseph Orenstein
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Spin transport and diffusion

An electron propagating through a solid carries spin angular momentum in addition to its mass
and charge. Of late there has been considerable interest in developing electronic devices based on
the transport of spin1, in hope that they might offer advantages in dissipation, size, and speed
over charge-based devices2. It has been suggested, however, that spin-based field-effect transistors
are likely to have higher power consumption and longer switching times than their charge-based
counterparts3, and are additionally unlikely to do anything that a charge-based transistor does
not4.

Whatever the prospects of spin-based devices, the introduction of spin into electronics brings
with it additional complexity. The electrical current carried by a gas of electrons is simply pro-
portional to its total momentum, so the charge current is not affected by (non-Umklapp) electron-
electron ( e-e ) collisions5. However, since the electron’s spin along a given spatial direction can
take the values ±~/2 (conventionally ↑, ↓), the spin current need not be proportional to the mo-
mentum. Although the transport of spin polarization is not protected by momentum conservation,
it has been widely assumed that, like the charge current, spin current is unaffected by e-e in-
teractions. The primary result of this work is to demonstrate experimentally not only that this
assumption is invalid, but that over a broad range of temperature and electron density, the flow of
spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions6.

The experiments that I report here were conducted to investigate propagation and dephasing
of spin populations, characterized by the spin-diffusion coefficient Ds and the spin decay rate
τ−1
s . The Einstein relation, a special case of the fluctuation-dissipation theorem, relates Ds to its
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accompanying conductivity, σs, and many-body susceptibility, χs ≡ ∂s/∂B:

Ds =
σs

e2χs
. (1.1)

Spin diffusion thus measures spin transport. The effect of e-e collisions on spin transport is to
suppress Ds relative to the charge-diffusion coefficient—in these measurements, by as much as a
factor of 7.5. I find this suppression to agree quantitatively with the “spin Coulomb drag” theory
of D’Amico and Vignale7,8.

Spin polarization in GaAs quantum wells is believed to relax primarily through the D’yakonov-
Perel’-Kachorovskii mechanism of precessional dephasing in the spin-orbit field. In this case, Ds has
a further significance, through the prediction that Dsτs = const, explained in Chapter 4. Si et al.9

have suggested further that the spin-charge separation postulated to occur in correlated-electron
materials ought to show up as a difference between the diffusion coefficients of spin and charge.

1.2 The transient spin grating

In this work, I characterize spin diffusion in a two-dimensional electron gas (2DEG) by the
transient-spin-grating technique10, which is based on optical injection of spin-polarized electrons.
The 2DEG resides in a GaAs quantum well; near-bandgap illumination of the GaAs excites electrons
whose initial spin is determined by the helicity of the light11. If the GaAs is excited by two non-
collinear, coherent beams of light with orthogonal linear polarization, then in the region where
the beams interfere the helicity varies sinusoidally from plus to minus one. The optical-helicity
wave generates a wave of electron-spin polarization with the same spatial frequency, which in turn
generates a sinusoidal variation (the eponymous “grating”) in the index of refraction through the
Kerr effect.

The time-evolution of the transient spin grating directly reveals the nature of spin transport
and relaxation in the electronic system, functioning like a time-domain version of neutron scatter-
ing. I measure the spin polarization by detecting the diffraction of a probe beam off the grating. A
sensitive coherent detection scheme enables acquisition of the ∼ 150 grating decays required to char-
acterize the spin dynamics of each 2DEG throughout a broad temperature-wavevector parameter
space.

1.3 Prior measurements of Ds

Other than this work, to my knowledge only three measurements of spin diffusion in GaAs
have been published; two used the transient-spin-grating method. Allan Miller’s group10 measured
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an undoped GaAs/AlGaAs quantum well of width 6.5 nm. They estimated the background con-
centration as p-type, with n = 6.5 ×109 cm−2. Measuring at room temperature, they found that
Ds = 127 cm2/s and τs = 55 ps. In a conference proceeding12, Keith Nelson’s group reported
measurement of an undoped quantum well of width 6.8 nm, but did not say at what temperature.
They found Ds = 58 cm2/s and τs = 17 ps.

David Awschalom’s group13 measured n-type, bulk GaAs with n = 1016 cm−3, at 1.6 K. Their
experiment involved photo-injecting a population of spin-polarized electrons, which drifted in an
applied electric field, and were detected at distances up to 100 µm away. They didn’t explicitly
state Ds, but if one näıvely takes calipers to their graph, one gets Ds = 100 cm2/s and τs = 28,000
ps. This estimate, however, fails to take into account the Coulomb interaction between electrons
and holes, which tends to “stretch” the spin-packet, making Ds appear to be larger than it is14.

3



Chapter 2

Transient Spin Gratings

2.1 Probing spin dynamics with transient gratings

Transient grating spectroscopy (TGS) is an experimental tool that is capable of selectively
inducing and probing fluctuations of charge and spin density. It is a two-step, or pump-probe,
technique in which a spatially varying modulation of spin or charge is first introduced by the
interference of two “pump” laser pulses. In the second step, the time-evolution of the modulation is
measured by the diffraction of a “probe” beam. Measuring the time-dependence of the modulation
as a function of its wavevector gives direct information about the collective and single-particle
excitations that govern spin or charge transport. The combination of pump-probe spectroscopy
and sensitivity to spin and charge provides an additional degree of freedom—one can introduce
a density fluctuation and probe the resulting spin fluctuation (or vice versa). The transient spin
grating, used in these experiments, was first introduced by Cameron et al.10.

2.1.1 Optical orientation in GaAs

The transient spin grating is based on the optical orientation of electron spins: near-bandgap
illumination of a GaAs quantum well excites electrons whose initial spin is determined by the
helicity of the light11.

The valence and conduction bands of GaAs derive from p- and s-orbitals, and so have j = 3
2

and j = 1
2 , respectively, near the zone center. Confinement in a quantum well splits the valence

band’s mj = ±3
2 (heavy hole) and mj = ±1

2 (light hole), with the heavy hole at higher energy. The
situation is shown schematically in Fig. 2.1.1. Conservation of angular momentum requires that,
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Figure 2.1. A representation of the selection rules for optical transitions between the valence
and conduction bands of a GaAs quantum well. The figure is taken from Cameron et al.10.
Here mj is taken along the direction of the incident light. σ± labels allowed transitions due
to the absorption of right- and left-circularly polarized light.

for absorption of right-circularly-polarized light, only those transitions with ∆mj = +1 (labeled
σ+) are allowed; illumination with left circular allows only σ− transitions.

One can photoexcite GaAs with light that has sufficient energy to excite electrons from the
heavy-hole band, but not from the light-hole band. Then if the light is, for instance, right-circularly
polarized, it will induce transitions only from

(
3
2 ,−3

2

)
to

(
1
2 ,−1

2

)
, resulting in a completely spin-

polarized population of electrons and holes. (Even in the bulk material, in which the heavy-
and light-hole bands are degenerate at the zone center, partial spin orientation is possible. The
probabilities of transitions from the mj = ±3

2 and mj = ±1
2 states are in a 3:1 ratio15.)

Immediately after photoexcitation, the electron and hole spins lie along the direction of
illumination—that is, in the growth direction of the quantum well. The direction of the hole
spin rapidly randomizes due to scattering. Because the conduction band derives from an atomic
s-orbital, electrons lose spin memory much more slowly than the holes. Therefore, for time delays
longer than ∼ 1 picosecond, the spin memory resides exclusively in the nonequilibrium electron
population.

2.1.2 Generating the transient grating

A transient grating is generated by a pair of coherent pulses traveling with a relative angle θ.
Their interference produces a standing wave in the plane of the sample, with an electric field,

~E ∝ ê1e
iφ(x) + ê2e

−iφ(x), (2.1)

where ê1 and ê2 are the polarization vectors for the two pulses, φ(x) = kx sin θ, and k is the
wavevector of the incident light. The time-averaged intensity in the plane has a spatially varying
component proportional to ê1 · ê2. The intensity contrast is a maximum when ê1 and ê2 are
parallel, while for ê1⊥ê2 the intensity is spatially uniform. Nevertheless, orthogonal pulses do
create a standing wave, but of photon helicity rather than intensity. If, for example, the beams are
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Figure 2.2. A representation of the charge grating produced by interference of two beams
with parallel linear polarizations. Because the Coulomb interaction between electrons and
holes enforces local charge neutrality, the grating diffuses at the slower rate of the holes.

Phase I

Investigate spin Coulomb drag; spin-spin coupling

TGS in spin-spin mode

Materials: Explore phase space of density, mobility, and 

growth direction to investigate spin dynamics:

• through metal-insulator transition

• through degenerate/non-degenerate cross-over

• with different anisotropy of internal SO magnetic fields

Experiment: measure dynamics of grating vs. q and T

Theory: Incorporate e-e interactions into the formulation 

of drift/diffusion equations

Figure 2.3. A representation of the spin grating produced by interference of two beams with
perpendicular linear polarizations. The electron and hole populations do not vary spatially.

polarized along x and y, we can express the total electric field in the circularly-polarized basis:

~E ∝ ê+ cos(φ + π/2) + ê− sin(φ + π/2), (2.2)

where ê± = x̂± iŷ. The intensity of the electromagnetic field at the surface is

I = I+ cos2(φ + π/2) + I− sin2(φ + π/2), (2.3)

where I± is the intensity in the positive (negative) sense of helicity. The intensity at the sample
surface can be viewed as the sum of standing waves of left and right circularly polarized intensity
that are shifted relative to each other by a quarter wavelength.

Generation of an intensity or helicity wave creates two distinct patterns of excitation in the
semiconductor as illustrated in Figs. 2.2 and 2.3. The intensity standing wave generates a sinusoidal
modulation of nonequilibrium electron-hole density (Fig. 2.2), while the electron-hole density is
uniform for the helicity wave (Fig. 2.3). However, photon helicity couples directly to the spin of
the carriers because of spin-orbit splitting of the valence band.
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2.1.3 Probing the transient grating

After the coherent pulse pair generates nonequilibrium states with spatial modulation of carrier
and spin density, the coupled spin and charge dynamics of the semiconductor are encoded in
the subsequent time-evolution of the modulation. The information can be decoded because the
nonequilibrium carriers perturb the index of refraction, n, of the semiconductor medium, creating
a transient diffraction grating. The carrier density modulation creates an index change δn that is
independent of polarization. By contrast, a modulation of spin density generates circular optical
birefringence—that is, an index difference for left- and right-circularly polarized light.

The evolution through time of the nonequilibrium state can be measured by diffracting a probe
beam from the transient grating. Both types of gratings are probed most effectively with linearly
polarized light. A beam diffracted from a carrier-density grating emerges with its polarization
unchanged, while the polarization of a probe diffracted from a spin grating is rotated by 90 degrees.
(This difference is extremely helpful in distinguishing the two gratings experimentally.)

The origin of the polarization rotation from the spin grating can be seen by viewing the linear
polarization state of the probe as a superposition of left and right circular states. After diffracting
from the grating, the relative phase of the left and right components of the probe are phase shifted
by 90 degrees, reflecting the quarter-wave spatial shift between the spin-up and spin-down electron
populations. The 90-degree phase shift between left and right circular components corresponds to
a 90-degree rotation when reexpressed in the linear polarization basis.

2.1.4 Key innovations

Despite the technique’s elegance and potential power, only a handful of spin-grating decay
curves appear in the literature (to myknowledge only Cameron et al.10 and Adachi et al.12), re-
flecting the previous difficulties inherent in the measurement. The diffracted signal has typically
been weak, slowing acquisition of data and making it difficult to reject stray light. The ability, in
principle, to scan wavevector by changing the relative angle of the two pump beams has been diffi-
cult to implement in practice: each new wavevector required almost a complete optical realignment,
involving changing the direction of the pump beams and repositioning of the detection optics.

Our implementation of the transient grating technique16 solves these problems, thereby creating
new opportunities for experiments not feasible with conventional techniques. (The work presented
in Section 3.2 alone required acquisition of ∼ 450 grating decays.) Here I discuss two features that
are key to our experiment: (1) replacing the conventional beamsplitter with a phase-mask array;
and (2) introducing phase-modulated heterodyne detection of the diffracted wave.

In our transient grating apparatus, as in a standard pump-probe experiment, the laser beam is
first divided into pump and probe beams by using a conventional beamplitter. An optical delay line
introduces a variable delay into the probe beam’s path. In the next stage, both beams are focused
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onto a transmission grating fabricated using silica phase-mask technology. (The phase masks are
described more fully in Appendix A.) The phase mask is designed to maximize the energy diffracted
into the ±1 orders. Four beams, two for pumping and two for probing, emerge from the phase
mask, and are focused onto the sample surface using a spherical mirror. The pump beams generate
a transient grating whose wavelength is one-half of the wavelength of the transmission grating from
which they are derived. Because the two probes emerge from the same transmission grating as
the pumps, a phase-matching condition is automatically satisfied—the component of each probe
diffracted from the transient grating is scattered exactly into the beam path of the transmitted
component of the other.

Creating pulse pairs with a phase mask solves the two most serious problems inherent in the
conventional implementation of the transient grating experiment. First, we are able to scan the
transient grating wavevector without any need for optical realignment. To accomplish this we use
a phase mask array consisting of ten transmission gratings, with different wavelengths, etched onto
the same silica wafer. The wavelength of the transient grating is changed simply by translating the
array so that a different transmission grating is placed at the appropriate focus. In the detection
stage another spherical mirror and phase mask array convert the ±1 orders back into a zeroth-
order beam. Thus the detector and associated focusing and filtering optics remain fixed as well
during the wavevector scan. Second, the signal-to-noise and stray light rejection is tremendously
enhanced by a phase-modulated coherent detection scheme. As mentioned above, a diffracted probe
emerges from the sample colinearly with the transmitted part of the other probe. These two pulses
coherently mix at a photodiode detector to produce a photocurrent signal,

i ∝ Etrans · Ediff cos θ, (2.4)

where Etrans and Ediff are the electric fields of the transmitted and diffracted probe, respectively,
and θ is their relative phase. In this scheme the signal is proportional to the amplitude rather
than intensity of the diffracted wave17,18,16. Considering that Ediff/Etrans is typically of order
10−5 − 10−4, coherent detection enhances the ratio of signal to stray light by four or five orders
of magnitude. Furthermore, the sensitivity of the signal to the phase angle θ allows for a large
improvement in signal-noise ratio. In our apparatus a thin wafer of glass is mounted on a torsional
oscillator and placed in the path of one of the probe beams. Oscillating the angle of the glass causes
θ to vary sinusoidally, selectively modulating the component of the photocurrent signal that comes
from the diffracted wave. We measure the photocurrent with a lock-in amplifier synchronized to the
torsional oscillator’s frequency. This reduces the effect of the 1/f fluctuations of the probe beam’s
amplitude, which are the dominant source of noise in the experiment.
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2.2 Details of our measurement

For the measurements reported here, the wavevector of the injected spin-density wave is in the
plane of the 2DEG and the spin polarization is oriented perpendicular to this plane. The two inter-
fering beams that generate the optical-helicity wave derive from a Ti:Sapphire laser, which produces
a train of optical pulses with duration 100 fs, interpulse separation 11 ns and center wavelength
820 nm. The incident power density for most measurements was ∼ 500 W/cm2, corresponding to
∼ 6 W/cm2 absorbed per quantum well (or 3× 1011 cm−2 photoexcited electrons per well per laser
pulse). For T > 35 K grating decay rates did not change when measured at incident powers down
to 100 W/cm2, suggesting that photoinduced holes do not play a significant role in the electron spin
transport (typical electron-hole recombination times were ∼ 750 ps). At low T the grating decay
rate increased slowly with decreasing power, consistent with an electron heating model described
in Section 3.2.3.

The grating wavevector was directed along the GaAs (011̄) direction. The torsional oscillator
modulates the relative phase of the two beams sinusoidally at frequencies between 210 Hz and
1.2 kHz. Synchronous detection with a lock-in amplifier at the modulation frequency leads to
considerable rejection of laser noise and stray light.
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Chapter 3

Spin Diffusion in 2-D: Observation of

Spin Coulomb Drag

3.1 About our samples

The main results of this work derive from measurements on three samples: GaAs/Ga0.7Al0.3As
quantum wells, grown in the (100) direction by molecular beam epitaxy by Jason Stephens of
David Awschalom’s group. Each consisted of ten quantum wells of thickness 12 nm, separated
by 48 nm barriers. The Si impurities were deposited in eight single atomic layers in the center
14 nm of each barrier to maximize their distance from the 2DEG. The carrier concentration, n,
mobility, µ, and electrical resisitivity ρ were measured using 4-probe transport techniques without
illumination. For the samples with n of 7.8, 4.3, and 1.9 ×1011 cm−2 per quantum well, at low
temperature µ reached 240,000, 92,000, and 69,000 cm2/V-s, respectively. The improved screening
of the dopant-ion potential at higher n most likely accounts for the increased mobility.

A later generation of samples consisted of 30 quantum wells each; the magnitude of the pump-
probe modulation signal was correspondingly bigger than in the ten-well samples. In another set of
samples we deliberately introduced disorder by depositing a portion of the Si dopants in the well,
randomly distributed. A few results from the sample with 83% of the dopant in the well appear
below.

For a system with 12 nm wells and Ga1−xAlxAs barriers where x =0.3, the bottom of the second
subband is 70 meV above the bottom of the first subband.19 This energy is significantly larger than
the Fermi energies of the three samples, which are 8.7, 19, and 34 meV. Thus at low temperatures
there are essentially no carriers in the second subband. Figure 3.1 shows the expected fraction
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Figure 3.1. Occupancy of the 2nd subband of the sample with TF = 400 K, as a function
of temperature.

of carriers in the second subband as a function of T for the sample with the highest density (the
fraction is entirely negligible for the two lower-density samples).

At room temperature the occupancy is estimated to be 11% and it decreases rapidly with
decreasing T. As will be described below, the ratio of spin and charge transport coefficients is
observed to agree with the theory of spin Coulomb drag over the entire range from 40 K, where
occupancy of the second subband is negligible, up to room temperature. In view of this agreement,
and the agreement observed in the lower electron density samples where the fractional occupation
of the second subband is small at all temperatures, we don’t believe that the second subband affects
the comparison of theory and experiment.

3.2 Measurement of non-disordered, (100) quantum wells

Our main results are for three quantum well samples, with electron concentrations of 7.8, 4.3,
and 1.9 ×1011 cm−2, corresponding to Fermi temperatures of 400, 220, and 100 K, and to Fermi
velocities vF of 3.7, 2.7, and 1.8 ×107 cm/s, respectively. Fig. 3.2 shows the initial decay rate of the
spin grating as a function of T in the most heavily doped sample, for several grating wavevectors
from 0.4×104 cm−1 to 2.5×104 cm−1. The dependence on T can be described in terms of three
regions. For 100 K < T < 300 K the decay rate varies slowly. For 50 K < T < 100 K the decay
rate increases rapidly with decreasing T , and for T < 50 K it reaches a slowly varying plateau.

We begin by discussing the decay rate where it varies slowly, i.e., below 50 K and above 100
K. In the high-T region the spin dynamics can be accurately described in terms of independent
processes of spin diffusion and spin relaxation. In this description, the decay rate varies with q
quadratically, as γq = τ−1

s + Dsq
2, where Ds is the spin diffusion coefficient and τs is the spin
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Figure 3.2. Spin-grating decay at various q, T for the sample with TF = 400 K. Main
panel: The initial decay rate, γq, of the spin grating as a function of T for (bottom to top)
q = 0.45, 1.3, 1.8, 2.5 ×104 cm−1. Inset: The initial decay rate of the spin grating as a
function of q. Points are γq − τ−1

s ; τs is obtained from decay of homogenous (q = 0) spin
excitation. Error bars are the size of the points except as shown. Lower points and line:
Room temperature. The line is a fit of the data to γq = τ−1

s + Dsq
2. Upper points and

line: 5K. The line has slope=1, corresponding to ballistic, rather than diffusive, spin-motion
with a velocity of 2.3×107 cm/s.

relaxation time10. In the inset to Fig. 3.2 we plot γq − τ−1
s vs. q at 295 K (lower points) and

5 K (upper points), on logarithmic axes. Here 1/τs is independently determined from the decay
rate of the circular dichroism induced by a circularly polarized pump beam20 (see Chapter 4). A
comparison of the 295 K data with a line of slope two shows that the decay of the grating is well
described by diffusive dynamics: a fit of the data to γq = τ−1

s + Dsq
2 gives Ds = 130 cm2/s and

τs = 50 ps, yielding a spin diffusion length Ls = (Dsτs)1/2 = 0.81 µm and a “spin mean-free-path”
l = 2Ds/vF = 60 nm. The observation of diffusive motion is internally consistent, as l is much
smaller than both Ls and the smallest grating wavelength, 2.5 µm.

3.2.1 Model for ballistic-diffusive crossover

Next, we examine the spin-grating dynamics at T < 50 K. As shown in the inset, the initial
decay rates at 5 K are linear in q at the higher wavevectors. The change in power law exponent
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from two to one indicates that a crossover from diffusive to ballistic dynamics takes place as the
sample temperature is lowered. In the ballistic regime electrons propagate a distance comparable
to the grating wavelength, Λ, without scattering and the initial decay rate is ∼ vF q, the reciprocal
of the time required for an electron moving with the Fermi velocity to traverse a distance Λ/2π.

Although the grating’s initial decay rate saturates near vF q when T reaches ∼ 50 K, its time
dependence continues to change as T is lowered further. Fig. 3.3 shows the grating amplitude
as function of time for several temperatures between 5 K and 100 K, measured with a grating
wavevector of 2.5×104 cm−1 (the T indicated is the lattice temperature, which is below the electron
temperature, as discussed in Section 3.2.3). An oscillatory structure appears in the decay curves,
becoming increasingly pronounced as T decreases. The growth of these oscillations is a consequence
of the increase of the mean-free-path, l, in the regime where ql ≥ 1.

To determine Ds from data such as those in Fig. 3.3 we use an expression for the time depen-
dence of a spin fluctuation that is applicable throughout the diffusive-ballistic crossover regime.
If a spin polarization wave is introduced at t = 0, its subsequent time-dependence is the Fourier
transform of S(q, ω) ∝ [iω − D(q, ω)q2]−1, where D(q, ω) is the dynamic spin diffusivity. In the
limit q ¿ kF ,

D(q, ω) =
vF /2√

(iω/vF − 1/l)2 + q2
, (3.1)

where Eq. 3.1 extrapolates from the small-q limit21 to the ballistic regime. In attempting to fit
the grating decay curves in the “plateau” regime, we found that Eq. 3.1 is not quite sufficient
to describe the data. It is necessary to add to the Fourier transform of S(q, ω) a small, slowly
decaying exponential with relative initial amplitude ≈ 0.1 and characteristic time ≈ 25 ps. We
speculate that this slow exponential may originate from a small fraction of localized electrons.
The solid lines through the data points in Fig. 3.3 show the results of the fitting procedure, with
fitting parameters l, vF , and the amplitude and time constant of the slow exponential. Despite the
complicating presence of the slow exponential, we believe that the fits give an accurate indication
of l, as this is the only parameter that determines the rate at which the oscillations are damped.
Finally, the spin diffusion coefficient is determined from the relation Ds = vF l/2.

3.2.2 Comparison with Dc0

The temperature dependence of Ds obtained from our analysis of the spin-grating dynamics is
shown in Fig. 3.4 for QW’s of different electron density. For the two lower density samples (middle
and lower panels), the dynamics were diffusive at all T , consistent with their lower mobility. To
characterize charge transport in the same set of samples, we performed 4-probe measurements
(Hall effect in the van der Pauw geometry) of the 2D charge conductance, σc, carrier density, n,
and mobility, µ, on chips from the same set of wafers. Together, these measurements allow us to
test the assumption that the scattering processes that control spin diffusion and charge conduction
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Figure 3.3. Time-dependence of the spin-grating’s amplitude. The lines are fits of the data
to the fourier transform of S(q, ω). The values of l determined from these fits are indicated
in each panel. Due to laser heating, the temperature Te of the electron gas is higher than
the lattice temperatures indicated.

are the same. The link between conductance and diffusion coefficient is the Einstein relation,
Ds = σs/e2χs, where σs and χs are the spin conductance and susceptibility, respectively. If the spin
and charge scattering rates were the same (i.e. σc = σs), then Ds would equal (χ0/χs)Dc0,22 where
Dc0 ≡ σc/e2χ0 and χ0 = NF (1 − e−EF /kBT ) is the noninteracting susceptibility (see below; NF is
the density of states at the Fermi energy). Physically, Dc0 is the quasiparticle diffusion coefficient22,
approaching µEF /e and µkBT/e in the degenerate and nondegenerate regimes, respectively. Dc0,
calculated from the 4-probe transport data and plotted in Fig. 3.4, is considerably larger than
Ds at all T and for each of the samples. The ratio is far greater than can be accounted for by
many-body enhancement of the spin susceptibility, as the factor χs/χ0 is less than 1.4 in this range
of electron density, according to both analytical theory23 and Monte Carlo simulations24.

Derivation of χ0

Dc0 can be obtained directly from our 4-probe transport measurements, which determine σc,
n, and therefore EF . For a 2DEG, the noninteracting susceptibility χ0 can be expressed in closed
form in terms of the EF , T , and the density of states, NF , as we now describe. The starting point
is the definition χ0 ≡ ∂n/∂µ, where the derivative of n with respect to chemical potential µ is for
the noninteracting system. n and µ are related through the integral of the Fermi function,

n = NF

∫ ∞

0

dE

1 + e(E−µ)/kT
, (3.2)
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which can be evaluated analytically to obtain,

n = NF kBT ln(1 + eµ/kT ). (3.3)

Taking the derivative of n with respect to µ yields the following expression for χ0,

χ0 ≡ ∂n

∂µ
=

NF

1 + e−µ/kT
. (3.4)

We can invert Eq. 3 to obtain µ in terms of n = NF EF and substitute, getting:

χ0 = NF (1− e−EF /kBT ), (3.5)

and
Dc0 =

σc

e2NF (1− e−EF /kBT )
. (3.6)

Dc0, expressed in other equivalent forms, has been used widely as an estimate for the spin
diffusion coefficient expected when many-body renormalization of the spin susceptibility can be
neglected. It has the familiar limits v2

F τ/2 and v2
thτ/2 in the degenerate and nondegenerate limits,

respectively (vF is the Fermi velocity, vth ≡
√

2kBT/m∗ is the thermal velocity, and τ is the
transport mean-free-time). The surprising conclusion of our measurements is that for high-electron-
density, low-disorder 2DEG’s, where many-body renormalization is expected to be very weak,
electron-electron collisions nevertheless control Ds and reduce it well below Dc0.

Why we believe our measurement of ρc

We performed 4-probe measurements of resistivity and Hall effect as a function of T for each of
the samples used in this study. We have strong evidence from the transport data that the electron
density is quite uniform among the 10 QW’s. In characterizing the samples, we can compare the
average electron density (obtained by dividing by 10 the density obtained from transport) with the
target density given by the number of Si atoms introduced into the barrier layer. This comparison
is presented in a table in Fig. 3.5. As can be seen from the table, the electron density assuming
each well is the same is very close to the target density. We believe the effects of varying density
are not greater than 10% and that such effects cannot explain the discrepancy between spin and
charge transport coefficients which differ by as much as a factor of 7. It is also worth noting that
Si will act as a donor when it sits on a Ga site, and as an acceptor on an As site. According to
Jason Stephens, it is very widely accepted among people who make GaAs quantum wells that Si
dopants occupy Ga sites—consistent with the data shown in Fig. 3.5.
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Sample name n/10(from transport) Target Si density
AW03 / AW07 7.83× 1011cm −2 8× 1011 cm −2

AW09 4.31× 1011cm −2 4× 1011 cm −2

AW12 1.88× 1011cm −2 2× 1011 cm −2

Figure 3.5. Comparison of the average electron density (obtained by dividing by 10 the
density obtained from transport) with the target density given by the number of Si atoms
introduced into the barrier layer, for three samples.

3.2.3 Comparison of data with sCd theory

The contrast in the diffusion coefficients of charge and spin seen in Fig. 3.4 is surprising, as the
assumption Ds = Dc0 is widely used in modeling spin transport in semiconductors. However, this
assumption fails to take into account e-e collisions, whose rate can be much faster than those of
impurity or phonon scattering. The e-e scattering events can be ignored in the description of charge
transport because they conserve total momentum. However, they can have a profound effect on
spin transport, as illustrated in Fig. 3.6. For the collision depicted between electrons with opposite
spin, the charge current is conserved while the spin current reverses direction.

D’Amico and Vignale (DV) have proposed that the microscopic process shown in Fig. 3.6
can change the nature of macroscopic spin transport. Seen macroscopically, e-e collisions transfer
momentum between the spin-up and spin-down populations, creating a force damping their relative
motion that DV term “spin Coulomb drag” (sCd)7 (by analogy with “Coulomb drag”; for a recent
review see Rojo et al.25). Spin diffusion, which requires a counterflow of the spin populations,
is damped by sCd, while charge diffusion is not. (The recently observed26,27 spin Hall effect also
involves the counterflow of spin populations, and so should be damped by sCd.) According to DV7,
the reduction of Ds relative to Dc0 is:

Ds

Dc0
=

(
χ0

χs

)
1

1 + |ρ↑↓| /ρ
, (3.7)

where ρ = 1/σc is the charge resistance and ρ↑↓ is the spin drag resistance, parameterizing the rate
of momentum exchange between spin ↑ and ↓ electrons. DV, and Flensberg and Jensen28, have
calculated ρ↑↓(T ) for a 2DEG using the random phase approximation (RPA), obtaining results that
depend only on the electron density of the quantum well.

Eq. 3.7 predicts that despite the complex T dependences of the individual diffusion coefficients,
their ratio depends primarily on the single single factor, |ρ↑↓| /ρ. We test this prediction in Fig.
3.7, without invoking any assumptions or adjustable parameters, by plotting Dc0/Ds (the inverse of
Eq. 3.7) vs. |ρ↑↓| /ρ for each of the three samples measured in this study. The transport coefficients
are taken directly from our measurements, while |ρ↑↓| was calculated using Eq. 2 of D’Amico and
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Figure 3.6. A representation of e-e scattering that does not conserve spin-current. Prior to
the collision the spin-current is positive; after, it is negative. The charge current does not
change.

Vignale8. The resulting graph reveals the simple linear dependence of Dc0/Ds on |ρ↑↓| /ρ predicted
by Eq. 3.7 over a large range of |ρ↑↓| /ρ, implying that sCd is indeed the origin of the large
suppression of Ds relative to Dc0. The fact that the slope is slightly greater than unity is consistent
with the expectation that the many-body enhancement of χs relative to χ0 is small in this density
regime.23,24 Finally, the fact that Dc0/Ds extrapolates to near unity as |ρ↑↓| /ρ → 0 indicates
that the spin and charge diffusion coefficients approach each other in the limit that the spin drag
resistance becomes smaller than the ordinary resistance. This result provides independent evidence
that the spin grating and four-probe techniques used in this work accurately measure equilibrium
spin and charge transport coefficients, respectively.

Optical heating of electrons

Returning to the T -dependence shown in Fig. 3.4, the lower lines show the prediction of Eq.
3.7 for Ds with the factor χ0/χs set equal to unity. As could be anticipated from the discussion
of Fig. 3.7, sCd quantitatively accounts for the suppression of Ds relative to Dc0 over a broad
range of temperature and electron density. It is clear, however, that the measured Ds consistently
departs from theory below 40 K. We believe that this discrepancy indicates that at low T the
photoexcited electron gas does not cool to the lattice T . If the electron gas retains the heat, Q,
deposited by the excitation, its temperature Te will rise to approximately (T 2 + 2Q/β)1/2, where
β = 5.3×105 eV/cm2-K2 is the temperature coefficient of the electronic specific heat, calculated for
free electrons in two dimensions. We estimate Q = 4× 108 eV/cm2, assuming that each absorbed
photon deposits approximately 10 meV (the energy width of the laser pulse) into the Fermi sea.
The resulting estimate for the minimum Te is indeed ∼ 35 K.
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Figure 3.7. Relation between suppression of spin diffusion and spin drag resistance. X-
axis: ratio of ρ↑↓, determined from sCd theory8, to measured resistivity ρ. Y-axis: ratio
of quasiparticle diffusion coefficient, Dc0, to spin diffusion coefficient, Ds. Temperature
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the electrons do not cool below 40 K. Line: has unity slope and intercept, indicating the
prediction of Eq. 3.7 for χs = χ0. For points above the line, χs > χ0.

3.3 Results on other samples

3.3.1 Disordered samples

We originally had two reasons to be interested in measuring disordered samples. First is that
we hoped they might put us on the track of the Burkov-MacDonald effect29, which had been our
“holy grail,” or perhaps our “white whale.” Second, they can provide a “control” experiment for
our observation of spin Coulomb drag. Since Ds and Dc0 are measured by different techniques,
we would like to be sure that the observed suppression of Ds does not result from a systematic
difference between the two experiments. In particular, in the limit that |ρ↑↓| /ρ → 0, Ds should
approach Dc0. Since ρ↑↓ is intrinsic to electron-electron scattering, one cannot “turn off” ρ↑↓, except
by lowering the electronic temperature, which is difficult due to laser heating. So we decided instead
to increase ρ, by depositing a portion of the dopants (randomly distributed) in the quantum wells
rather than in the Al-GaAs barrier layers.30,31,32 This batch of samples was also the first batch in
which we had some samples with 30 wells, rather than 10, for greater signal.

Jason Stephens sent us the first of these samples on 17 June 2005. At the time of this writing
(November 2005), we have measured two of these: starting on 14 July, a sample with 30 wells and
33% of the dopant deposited in the wells (at room temperature, the carrier concentration is 7.9
×1011 cm−2 per well); and starting on 21 July, a sample with 30 wells, 83% in the wells, and n =
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Figure 3.8. Transport data for the 100% sample (points with lines; has 10 wells) and 83%
sample (points without lines; has 30 wells). The total n for all wells is shown. ρ shown is
per well. Changes in the data below 175 K were even larger for the 33% and 17% samples.

7.9 ×1011 cm−2 per well. We do not trust all of the transport data for these samples; they seem
to go bad below ≈ 175 K, we speculate perhaps because a contact may be freezing out. These
transport data were obtained from Hall effect measurements in the van der Pauw geometry; we
hope to measure the conductivity without contacts by THz spectroscopy. Data for the 100% and
83% samples appear in Fig. 3.8. The room temperature data, however, look very reasonable: the
resistivity very nearly matches ρ[Ω] = 100Ω + 2700Ω×√p, where p is the portion of the dopant in
the well (see Fig. 3.9).

The 33% sample we measured only at room temperature, finding Ds = 108 cm2/s τs = 19.6
ps, and Ls = 0.46 µm. The measured resistivity is 1770 Ω, and ρ↑↓ is predicted to be 1320 Ω, so
Dc0/Ds = 1.96 and 1 + |ρ↑↓| /ρ = 1.75. The agreement with sCd theory is fine, but it is surprising
that Ls is so small (see Chapter 4).

For the 83% sample,we find that at room temperature, Ds = 86 cm2/s, τs = 80 ps, and ρ =
2500 Ω; the predicted ρ↑↓ is 1350 Ω. Thus Ls = 0.83 µm and Dc0 = 150 cm2/s. If we assume sCd
theory to be exact, these give χs/χ0 = 1.1. This point, along with two other temperatures above
175 K, are the three additional (orange) points in Fig. 3.10. Temperature-dependent data for this
sample appear in Fig. 3.11. Though these data are taken only from our optical measurements,
and do not depend on the transport data, they, too, present some puzzles at lower temperatures.
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Figure 3.9. Room-temperature resistivity of five samples, vs. the square root of the portion
p of the dopant atoms deposited in the quantum well (the remainder, 1− p, are deposited
in the Al-GaAs barriers). All samples had TF ≈ 400 K.

First, the q-dependence at low T shows an anomalous dispersion, closer to γq ∼ q3 than to γq ∼ q2.
Second, the low-T curves (transient-grating signal vs. time) show a “bounce” (or zero-crossing)
that we do not think is related to a residual intensity grating. Analysis of this bounce complicates
interpretation of γ(q) and γ(T ). Finally, the spin-diffusion length, Ls, gets larger as T approaches
zero, ending up around 2 µm. As explained in Chapter 4, we expect Ls to be nearly constant and
roughly 1 µm, in keeping with the D’yakonov-Perel mechanism of spin relaxation33.

3.3.2 (110) quantum wells

On 22 June, 2005, Hideo Ohno sent us two samples, both GaAs/Al-GaAs quantum wells grown
in the (110) direction. Spin lifetimes in (110) QWs are much longer than in (100) wells34 (see
Chapter 4).

One sample, named VR420, had five wells with carrier density 1.3 × 1012 cm−2 each, and
room-temperature resistivity ρ(RT ) = 2750 Ω. The other, VR510, five wells with n = 4 × 1011

cm−2 each; we don’t know ρ(RT ). Irene D’Amico sent us calculations for ρ↑↓(T ) for these two
values of n, giving room temperature values of 644 Ω and 2620 Ω, respectively.

I cracked the substrate of the first sample, leaving a sample that is probably fine for optical
measurements (I was able to see a weak transient-grating signal in intensity-mode) but is unsuitable
for low-temperature measurements in a cold-finger cryostat. (Nonetheless, I took some data around
175 K.) At room temperature, I found a q2 dispersion, Ds ≈ 53 cm2/s, and γs indistinguishable
from zero. So Dc0/Ds = 2.13, and |ρ↑↓| /ρ = 0.23, which is not particularly good agreement with
sCd theory. Because of the lack of transport data, I never measured VR510.
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3.3.3 The old Chemla sample

Before measuring quantum wells, we had tried to measure spin diffusion in bulk GaAs samples,
thinned by mechanical polishing so that we could do measurements in transmission rather than
reflection. (Many thanks to Ben Cardozo of Eugene Haller’s group for his help with the polishing!)
However, we observed features that puzzled us, that we speculated might be related to the Franz-
Keldysh effect35,36 due to the surface field. So we decided to try measuring a quantum well.

Our first quantum-well sample was borrowed from Daniel Chemla’s group on 9 February, 2004.
It was a sample that Neil Fromer had used in his thesis work, grown by Dan Driscoll in Art
Gossard’s group at UC Santa Barbara37. We named this sample CW01; Fromer’s name for it was
D00707. It consists of 10 quantum wells of thickness 12 nm, separated by 42 nm Al0.3Ga0.7As
barriers, with n ∼ 2 × 1011 cm−2 each. The carriers were modulation-doped: the Si donors were
deposited in the central 12 nm of the barriers. This sample was the pattern for the first batch of
quantum wells that Jason Stephens grew for us6, which includes all three non-disordered samples
mentioned above (Stephens was able to find Driscoll’s detailed “recipe” for the sample).

We don’t know ρ(T ), but do know that at room temperature and 5 K, the mobility is µ = 4×103

cm2/V-s and µ = 9 × 104 cm2/V-s, giving ρ = 7.8 kΩ and 350 Ω, respectively. Our optical
measurements gave Ds(RT ) = 88 cm2/s and Ds(5K) somewhere between 35 and 80 cm2/s. This
gives Dc0/Ds = 1.4 and |ρ↑↓| /ρ = 0.62 at room temperature, which agrees fairly with sCd theory.
At 5 K Dc0/Ds is between 10 and 23 and |ρ↑↓| /ρ = 0.68.
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Chapter 4

Spin Relaxation

4.1 Introduction

The spin-orbit coupling in semiconductors such as GaAs has been proposed as a mechanism
for control of spin1, but it also can contribute to spin relaxation. Here I describe our experiments
exploring the mechanism of spin relaxation in two-dimensional electron gases in both the degenerate
and the nondegenerate regimes.

To investigate spin relaxation, we measured the same three non-disordered quantum well (QW)
samples as we used for our measurements of Ds, discussed in Chapter 3. We measured τs inde-
pendently of Ds through the decay of circular dichroism20,10: a circularly polarized pump-beam
excites spatially homogenous spin polarization, which results in circular dichroism; a time-delayed
probe pulse has circular polarization either the same as (SCP) or opposite to (OCP) that of the
pump. The transient changes in transmitted intensity of the SCP and OCP cases are subtracted,
giving the time-dependence of the spin polarization, from which we determine τs. The operation of
the laser and the optical heating of the electron gas are the same as in the diffusion measurements.

The unfortunate nature of this field is that the few simple results follow from a long chain of
calculations and approximations. Indeed, the content of the theory is summed up in Eqs. 4.10 and
4.16, and the experimental content in Fig. 4.2. I include a detailed account of the theory, of prior
experiments, and of the long history of misinterpreting the theory, in order to highlight the new
features of this experiment, as laid out in Section 4.2.
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4.1.1 Explanation of D’yakonov-Perel’-Kachorovskii spin relaxation

Spin relaxation in these systems is believed to be dominated by the D’yakonov-Perel’-
Kachorovskii (DPK) mechanism of precessional dephasing in the spin-orbit field15. Each electron
experiences an “effective magnetic field” that depends on its wavevector k, causing its spin to
precess about an effective Larmor vector Ω(k). Each time an electron is scattered, its Ω also
scatters. If the spins precess through an angle much less than 2π between events that scatter k

(the “motional narrowing” regime), then the frequent scattering of the precession axis Ω causes
the spin’s direction to execute a random walk in angle-space. The net effect on a spin population
is, surprisingly, that increasing the scattering rate lengthens τs.

Three dimensions

We start by defining a set of electronic scattering times, τl. Using the notation of Pikus and
Titkov11, for electrons of energy ε:

1
τl(ε)

= N(ε)
∫

dω

4π
W (ε, θ) [1− Pl (cos θ)] , (4.1)

Here W (ε, θ) · δ(ε − ε′) is the probability of scattering through an angle θ, N(ε) is the density of
states, the integral over dω is over the unit sphere, and θ is the polar angle. Pl is the lth (odd)
Legendre polynomial; for even l, 1/τl = 0. D’yakonov and Perel’33 find that τ3 controls the spin
relaxation. In the motional narrowing regime, the spin lifetime becomes:

1
τs

=
2
3

〈
Ω2τ3

〉
, (4.2)

where Ω2 is an average over angles, and 〈·〉 is an average over energy. It would be convenient,
however, to express τs in terms of a parameter more experimentally accessible than τ3. For this
reason D’yakonov and Perel’ consider the “momentum scattering time” of a single electron, τp = τ1:

1
τp(ε)

= N(ε)
∫

dω

4π
W (ε, θ)[1− cos θ]. (4.3)

As mentioned in Chapter 3, the scattering time for the total electronic momentum, which deter-
mines the resistivity, does not include the effect of e-e collisions. For this reason τp is not quite as
experimentally accessible as is sometimes supposed—at least, it cannot be inferred directly from
transport measurements. Moreover, the relation between τp and τ3 depends on the θ-dependence of
the scattering mechanism. For scattering off of acoustic phonons τ3 = τp, while for scattering off of
ionized impurities or holes τ3 = τp/6. The distinction, then, between τ3 and τp can strongly influ-
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ence the spin relaxation time, as can the difference between contributions from different scattering
mechanisms.

Two dimensions

In a quantum well of a zincblende material, the spin-orbit Hamiltonian takes the form38

HSO =
~αR

2
(kyσx − kxσy) +

~αD

2
(kyσy − kxσx) . (4.4)

Here ẑ is the growth direction, and αR and αD are the Rashba and Dresselhaus coefficients. The
magnitude of the Ω resulting from combined Rashba and Dresselhaus coupling scales as ∼ |k|, but
both its magnitude and its direction depend on the direction of k. The Dresselhaus coupling also
scales as

ΩD ∼ αD

∼ q2

∼ E1e, (4.5)

where q is the wavevector in the growth direction and E1e is the confinement energy. The Dressel-
haus term arises from the bulk inversion asymmetry of the zincblende structure, while the Rashba
term arises from asymmetry along the growth direction of the QW. For this reason it is usually
assumed that for nominally symmetric wells Ω is dominated by the Dresselhaus term. In fact, Eq.
4.4 gives Ω only perturbatively. Further possible refinements include adding a Dresselhaus term
that scales as k3/q2 or even performing non-perturbative calculations in a fourteen-band basis39.
Writing Ωj,l for the coefficients of expanding the jth vector component of Ω in the basis of cos(lθ),
sin(lθ),

Ωj(θ) =
∑

l

Ωj,lc cos(lθ) + Ωj,ls sin(lθ), (4.6)

we can define
Ω2

l = |Ωlc|2 + |Ωls|2 . (4.7)

Then defining τl in analogy with the 3-D case,

1
τl(ε)

= N(ε)
∫ 2π

0
dθW (θ, ε)[1− cos(lθ)]. (4.8)
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Again τp = τ1, and again τl depends on the scattering mechanism. Then

1
τs

=
1
n

∫
dεN(ε)f(ε) [1− f(ε)]

∑

l

τl(ε)Ω2
l (ε)

=
∑

l

〈
τlΩ2

l

〉
, (4.9)

where n is the electronic density and 〈·〉 is the thermal average indicated. For a (100) QW, the
out-of-plane component of the spin, Sz, relaxes with τz = τs, while the in-plane component relaxes
with 2τs. All of the optical measurements discussed here, both in this work and in previous work,
measure Sz(t).

Some preferred approximations of the DPK relation

It is evident that deriving quantitative predictions from Eq. 4.9 will require a number of
approximations. The approach we take here is roughly equivalent to that most commonly found in
the literature.

Using perturbative expressions for ΩD, for a (100) QW one gets ΩD,3 ∼ k3, which is the same as
in three dimensions. However, while in three dimensions ΩD,1 = 0, in two dimensions ΩD,1 ∼ kE1e.
Thus if Dresselhaus coupling exists, as it is certain to, then there will be a term ΩD,1 of order k.
The Rashba coupling also has an l = 1 component; so regardless of the relative strength of the two
couplings the l = 1 term should dominate the spin relaxation:

1
τs

=
〈
τpΩ2

1

〉
. (4.10)

A widely repeated result of Eq. 4.10 is that τ−1
s is proportional to the mobility, µ, independent

of the dominant scattering mechanism. This result, however, is based on the mistaken belief that
µ ∝ τp. In fact, scattering that preserves the total electronic momentum (such as e-e collisions)
contributes to µ only weakly, through Umklapp processes, but contributes strongly to τp.

Next we use the perturbative expression for HSO that gives |ΩD,R| = αD,Rk to first order in k.
Evaluating Ω2

1(ε) requires knowledge of the relative strengths of αD and αR; but no such knowledge
is needed to write Ω2

1(ε) = α2
effk2(ε) = 2α2

effm∗ε/~2. The parameter αeff is of order αD,R; since it
depends only on αD,R, it should be a constant for a given quantum well structure. Because all of
our QWs were grown with the same recipe, merely changing the dopant concentration, we believe
that all of our wells have the same value of αeff. We have, then,

1
τs

=
2α2

effm∗

~2
〈ετp〉 (4.11)
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4.1.2 Prior work on spin relaxation in GaAs quantum wells

According to Eq. 4.10, τs depends on Ω, T , and τp. Though not discussed above, it also depends
on the quantum well orientation40. Studies of DPK relaxation in GaAs QWs have accordingly
taken the form of varying one or more of these four parameters. While studies vs. orientation have
produced the results expected from DPK theory, studies vs. well width (changing Ω) and scattering
rate have had much more limited success.

τs vs. quantum well orientation

One striking result of DPK theory is that in a (110) quantum well the out-of-plane spin com-
ponent Sz does not decay, to first order. (The cubic Dresselhaus term can still cause Sz to relax.)
Hideo Ohno’s group34,41,42 investigated τs in both (100) and (110) QWs, finding that τ

(110)
s ex-

ceeded τ
(100)
s by a factor of 30 or more. This slow rate, moreover, did not appear to originate from

the DPK mechanism, as indicated by their studies of τ
(110)
s as a function of temperature and well

width. (Admittedly, though, the same trends in τ
(100)
s were only partially consistent with DPK; see

below.) For undoped (110) wells they speculated that spin relaxation might be due to the electron-
hole exchange interaction43. Measurement of n-doped (110) QWs supported this conclusion: τ

(110)
s

was yet longer than in the undoped samples, as expected due to screening of the electron-hole
interaction42.

τs vs. well width

If Dresselhaus coupling is assumed to be stronger than Rashba (which is not assumed in Eq.
4.10), then Eq. 4.5 predicts that τs ∼ E−2

1e which depends on the QW’s width. Tackeuchi et
al.44 measured τs for a series of undoped wells of various widths at room temperature. They
found agreement with E−2

1e , though over the rather restricted range of 80 meV < E1e < 160 meV.
Subsequent work by Britton et al.45 found that τs at low E1e saturated around the bulk value of
50–100 ps, while at 160 meV τs was ∼ 35% lower than found by Tackeuchi et al.—overall, a much
weaker trend than E−2

1e . Terauchi et al.31 studied n-doped QWs (though still at room temperature),
again finding τs to vary more weakly than E−2

1e .

The first convincing trend, a good fit to τ−1
s = .015 ps−1 + bE2

1e, was found by Malinowski et
al.46 in undoped QWs on 10–100 meV. Reviewing the various data from a theoretical perspective,
Bournel et al.47 optimistically deemed the agreement with E−2

1e good, but remarked that the pre-
dicted values of τs were too short, by a factor from two45 to ten31. This quantitative discrepancy
between theory and experiment has been explored most thoroughly, though, not in studies of well
width, but in studies of the scattering rate.
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τs vs. temperature and scattering rate

Eq. 4.10 is commonly evaluated in the nondegenerate limit to give τ−1
s ∝ τpT , which in turn

is widely believed to predict that τ−1
s ∝ µT . This prediction has inspired a series of experimental

and theoretical studies of the µ- and T -dependence of τs. All of the measurements discussed here
were on (100) QWs.

Terauchi et al.31 studied a series of QWs of different mobilities at room temperature (RT). In
order to vary the samples’ mobility, some were modulation-doped with Si, while others were Si-
doped in the well, or had both Be (an acceptor) and Si doped into the well. They found that each
set of samples could fit to τs ∝ µ−1 over a narrow range of µ, but that taken as a whole the series of
samples gave a much weaker dependence. More striking, though, was that their τs was longer than
the DPK prediction by a factor of 5. A subsequent study by Ohno et al.41 measured both τs(T )
and µ(T ) for a single sample with n = 4 × 1010 cm−2. They found τ−1

s ∝ µT in the range from
RT to 30 Kelvin—and quantitative agreement with the DPK prediction, provided they multiplied
the predicted τs by a factor of 10. Malinowski et al.46 measurred undoped wells of varying widths
from 80 to 300 K, and found that for each one τs(T ) was constant; this, they concluded, indicated
that µ ∝ T−1.

Reviewing the data from Terauchi et al.31, Lau, Olesberg, and Flatté39 concluded that neither
τs ∝ µ−1 nor τs ∝ E−2

1e was consistent with the data. They introduced a detailed calculation
that follows more or less the DPK model—τs given by Ω and τp in a motional narrowing regime,
Dresselhaus coupling assumed to be much stronger than Rashba—but that calculates Ωl(ε) non-
purturbatively in a 14-band basis. Their results agree much better with the data than do the
DPK-based calculations in Terauchi et al.31: their τs are longer by about the needed factor of 5.
If one supposes that as µ drops the scattering shifts from optical-phonon to nonionized-impurity,
the calculated dependence on µ becomes weaker than µ−1; and the calculated dependence on con-
finement energy is weaker than E−2

1e .

Lau et al.’s calculation assumed that e-e scattering was “negligible in τl.” Glazov and
Ivchenko48 treated the case of e-e scattering in a nondegenerate, (100) QW with Rashba coupling.
They started with the scattering rate for exchange of energy among electrons: τ∗ee = ~kBTε2/ne4,
where ε is the dielectric constant. They then calculated that τ−1

s = I |Ω|2 τ∗ee, and found I ≈ 0.028.
(The value of I would likely be different under Dresselhaus coupling.)

Brand et al.49 measured the spin polarization Sz(t) for a high-mobility n-GaAs QW. At low
temperature they observed time-dependences that oscillated and were damped; at increased T these
crossed over smoothly to exponential relaxation. The oscillations, they realized, were the spin-orbit
precession outside the motional narrowing regime, that is with Ωτp & 1. They used Monte Carlo
simulations to extract τp from these data, and also found the transport scattering time τµ from
the mobility. At low T , τp and τµ approached each other; but for 20 K < T < 100 K, τp was
shorter than τµ by more than an order of magnitude. They postulated that this extra scattering
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was due to e-e collisions, which should disappear as T → 0. Calculating τee ≈ 1 ps at 35 K from
Fermi liquid theory, they confirmed that τ−1

p = τ−1
ee +τ−1

µ . However, to match this formula at other
temperatures required τee ∼ T−1, which is not given by theory.

4.2 The strategy of this work

The key prediction of DPK theory is that in the motional narrowing regime τ−1
s ∝ τp. To

date comparisons between τs and τp have been indirect, mostly inferring τp from the mobility,
i.e. assuming τp = τµ and ignoring the effect of e-e scattering. The Monte Carlo simulations of
Brand et al. do give τp in the non-narrowed regime; but when the spin dynamics cross over to an
exponential decay their method of inferring τp amounts to assuming the DPK result. Agreement
with τ−1

p = τ−1
ee +τ−1

µ could test this assumption; but the agreement is good at only one temperature.
(There is, however, one measurement in bulk GaAs for which τp was determined independently
through the dependence of τs on an applied magnetic field50.)

To date no comparison has been made between measurements of τs and of Ds. We have
found6, for the n-doped, (100) QW samples we measured, that over a wide range of n and T the
spin diffusion coefficient is given by D’Amico and Vignale’s formula8:

Ds

Dc0
=

(
χ0

χs

)
1

1 + |ρ↑↓| /ρ
, (4.12)

which includes the effect of e-e scattering through the spin Coulomb drag term. We can thus
infer τp from Ds, as explained in Section 4.2.1. By measuring τs independently, we can test the
prediction τs ∝ τ−1

p ; or, equivalently, that the spin diffusion length Ls ≡
√

Dsτs is a constant51

independent of n and T (see below). The new features of this work are: that it includes the effect
of e-e collisions not as an inference, as in Brand et al., but through the measured effect on Ds due
to the spin Coulomb drag mechanism; and that it compares τs with a τp that is not incorrectly
inferred from the mobility.

4.2.1 Relating Ds to spin relaxation

The charge and spin diffusion coefficients, Dc0 and Ds, can be understood in terms of the charge
and spin conductivities, σc and σs, in a model-independent way through the Einstein relations:
Dc0 = σc/χ0 and Ds = σs/χs. The scattering time that one infers from the conductivity (or
mobility) is τµ = σcm

∗/ne2. We define an analogous “spin-scattering time” derived from the spin
conductivity:

τ ′s ≡ σsm
∗/ne2. (4.13)
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The ′ serves to distinguish this scattering time from the spin population lifetime, τs—two quantities
that not only differ in magnitude but also have completely different meanings.

(As an aside on what this definition means, we note that Eqs. 4.12 and 4.13 imply that

1
τ ′s

=
1
τµ

+
ne2 |ρ↑↓|

m∗ . (4.14)

Which says that, at least phenomenologically, |ρ↑↓| can be interpreted as adding another scattering
mechanism to those that determine the mobility. Since |ρ↑↓| is the result of Coulomb interactions
among electrons, one expects it to be closely related to τ−1

ee .)

Returning to the relation of Ds to τp, the key step is to guess that τ ′s = aτp, where a is a
constant of order unity. This guess makes physical sense because the spin Coulomb drag theory
does not involve spin-flip scattering. Roughly speaking, one can picture the spins as simply being
carried on the electrons, with the resultant spin-current changing each time an electron’s k scatters.
In such a simple picture the spin transport should weight scattering through θ with [1− cos(θ)],
which is the same weighting as determines τp.

This guess, then, gives us a way of inferring τp from Ds. The prediction we wish to test is that
τsτp = const. This can be re-cast in terms of the spin diffusion length, Ls ≡

√
Dsτs. From Eqs.

4.11 and 4.13:

L2
s =

ane2~2

2α2
effm∗2

τp
χs 〈τpε〉

= abn

(
χ0

χs

)
τp

χ0 〈τpε〉 (4.15)

Where b = e2~2/2α2
effm∗2 is constant. Evaluation of the thermal average gives 〈ε〉 =

EF /
(
1− e−EF /kBT

)
= n/χ0, so if we make the (admittedly rather bold) approximation that τp(ε)

is a constant, then
L2

s = ab
χ0

χs
. (4.16)

That is, Ls is constant. Reviewing what goes into this equation: a is the coefficient of the hypoth-
esized relation between τ ′s and τp, which we expect to be a constant of order unity; b depends only
on αeff, which in turn depends on the quantum well structure but not on temperature or dopant
level; and for 2DEGs of these densities and in this range of temperature, 1 < χs/χ0 . 1.4 (see
Chapter 3). We have not explored the temperature dependence of χs/χ0, but from Fig. 3.7 it
appears that the temperature dependence is weak.
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Figure 4.1. Left: Time-dependence of the photoinduced spin polarization at room tem-
perature for the sample with TF = 400 K, on a logarithmic scale. Drawing a straight line
through the data gives an exponential decay with τs = 56 ps. Right: Time-dependence of
the photoinduced spin polarization of the same sample at 5 K, on a linear scale.

4.3 Results and discussion

The left panel of Fig. 4.1 shows the time-dependence of the induced spin polarization at room
temperature for the sample with TF = 400 K. The spin decays as a single exponential, with rate
τ−1
s = 0.018 ps−1. Most of the values of τ−1

s determined in this experiment resulted from an
exponential fit to the initial decay of a curve similar to that shown. However, in the most heavily
doped sample at low temperature (where the mobility is high and e-e scattering is weak), the
time-traces resemble the right panel of Fig. 4.1, with oscillations resulting from the precession of
the spins in the spin-orbit field49. These two behaviors correspond to the diffusive and ballistic
regimes of spin propagation found in the transient-grating experiments. In this work we discuss
only our results in the diffusive regime.

Fig. 4.2 shows the values of Ds and τ−1
s that we measured for these three samples. The

diffusion coefficients all start out near 100 cm2/Vs at room temperature. In the two more heavily
doped samples, Ds rises (as does the mobility) as the temperature is lowered. The values of τ−1

s

show a similar pattern: the three samples have similar spin-relaxation times of ∼ 75 ps−1 at room
temperature, and diverge from each other at low temperatures. In fact, plotted on logarithmic
axes, the curves for τ−1

s look essentially like those of Ds, but with an overall “dip” around 100 K.

The right panel of Fig. 4.2 shows the spin diffusion length, Ls, calculated from Ls =
√

Dsτs.
We wish to emphasize three observations about these curves. First, the values of Ls(T ) for all three
samples lie on top of each other: the diffusion length is insensitive to TF . Second, Ls is nearly
constant in temperature. Each panel of Fig. 4.2 is logarithmic, and covers two orders of magnitude.
It is striking that, although Ds and τ−1

s vary over most of that range,
√

Dsτs varies by at most a
factor of two. This variation is our third observation: Ls(T ) curves downward, with a maximum
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Figure 4.2. Ds, τ−1
s and Ls for the samples with (top to bottom) TF = 400 K, 220K and

100 K. Data in the left panel are taken from our optical measurements of the transient
spin grating, Chapter 3. We obtain τ−1

s from the decay of induced circular dichroism; Ls

is calculated from
√

Dsτs. The vertical axis of each panel covers two orders of magnitude.
Notice that although Ds and τ−1

s vary over most of that range, Ls is nearly a constant 1 µm
at all temperatures and for all three dopings. The slight downward curve in Ls(T ) appears
to be independent of doping.

around 100 K. The shape of this curve is the same for all three samples, and so is independent of
TF .

The basic conclusion to be drawn from these data is, from the constancy of Ls, that τ−1
s ∝ τp,

in keeping with the DPK prediction. The same data appear in Fig. 4.3 with temperature an
implicit parameter. I show this plot primarily to emphasize the broad range of τ ′s over which our
result holds. Though deviations from τ−1

s ∝ τp are apparent both in this figure and in the right
panel of Fig. 4.2, the quantitative agreement is far better than in any of the studies that have
compared τs to µ; indeed, it is comparable to the agreement that Lau et al. obtain through a
detailed, non-perturbative calculation of Ωl(ε).

What can we learn from the the data’s deviations from the DPK prediction? First, the total
spread in Ls is about a factor of 2. Considering the many approximations that went into the
prediction, such a spread is hardly surprising; it also is not obvious which approximation is breaking
down. However, the net spread in Ls at any one temperature, as a function of n (i.e., for the three
samples) is much less. Apparently, then, the approximations that lead to Ls’s constancy in n are
not breaking down: namely, that Ω2

1 ∝ ε, and that Ds and 〈τpε〉 both scale linearly with n.

We have seen, then, that the DPK theory’s prediction Ls(n, T ) = const does indeed hold over a
broad range of n and T—provided that one accounts for e-e collisions. The ratio Dc0/Ds, which is
determined by the electrons’ Coulomb interaction, is effectively a gauge of the importance of these
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Figure 4.3. τ−1
s vs. Ds for the same three samples as in Fig. 4.2. Temperature is an implicit

parameter, which generally decreases with increasing Ds. Each axis of the graph covers two
orders of magnitude.

collisions. Considering that (Fig. 3.7) Dc0/Ds can be larger than 7.5, e-e collisions may often be
the most important process determining the spin relaxation rate.
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Chapter 5

Conclusion

This work has emphasized the role of e-e collisions in the transport and relaxation of spin. The
primary finding is that the theory of spin Coulomb drag quantitatively describes spin transport over
a broad range of n and T . Over much of that range, sCd suppresses spin diffusion by a large factor
relative to charge diffusion, indicating that spin transport is largely controlled by e-e interactions.

Over the same range of n and T , spin relaxation follows the D’yakonov-Perel’-Kachorovskii
model of interrupted precessional dephasing in the spin-orbit field. In particular, the relaxation’s
agreement with the DPK prediction that τ−1

s ∝ τp is much better than in previous studies that
sought to relate τs to the mobility. The reason is essentially the same: mobility, like charge diffusion,
is insensitive to e-e collisions, which conserve total electronic momentum. τp, on the other hand,
like Ds, is sensitive to these collisions—indeed, they often provide the largest contribution to τ−1

p .

Because the suppression of spin diffusion would at first sight seem detrimental to applications
of spin transport, it is worth noting that quite the opposite may be the case. Indeed, if the the
field of spintronics were ever to make the important grammatical shift from the subjunctive to the
indicative, it might find sCd highly advantageous.

Spin Coulomb drag increases the distance that a spin packet can be dragged by an electric field,
E, before it spreads due to diffusion. The length LD that a packet of width w will drift before it
broadens by a factor of two is w2Eµ/Ds. Thus

LD = w2E
µ

Dc0

χs

χ0

(
1 +

|ρ↑↓|
ρ

)
.

In the degenerate and nondegenerate regimes, respectively, the ratio µ/Dc0 equals e/EF or e/kBT ,
and LD is independent of the underlying scattering rates. In the degenerate regime, for example,
in the absence of sCd we would have LD/w = eEwχs/EF χ0; drifting a spin packet farther than
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its own width would only be possible in a strong electric field, with the potential drop across the
packet exceeding the Fermi energy. Introducing sCd slows the counterflow of spin ↑ and ↓ electrons
without affecting their co-propagation, amplifying LD by the factor 1+ |ρ↑↓(T )| /ρ. Clean materials
with strong e-e scattering will have the largest values of ρ↑↓/ρ, and hence be the best media for
propagation of spin information.

By a similar analysis, the distance a spin packet can drift before it decays is LD′ = µEτs. DPK
spin relaxation gives τ−1

s ∝ Ds; that is, spin populations relax by diffusing. The sCd suppression
of Ds, then, increases LD′ by the same factor as LD.
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Appendix A

Experimental details

A.1 Preparing samples

Jason Stephens grows our GaAs quantum well samples by molecular beam epitaxy on top of
a GaAs wafer. The wafer’s crystal directions and specifications appear in Fig. A.1. When we get
the samples, they are in the form of a piece cut from the center of such a wafer, roughly 1.5 cm on
a side. Each sample we measure is yet a smaller piece cut from one of these pieces, and prepared
thinned for optical transmission as follows.

The piece is cleaved off by scoring in a straight line with a diamond-tipped scribe, then using a
ruler to deliver a sharp blow along that line. The piece is then epoxied face-down (quantum-well-
down) onto a sapphire substrate. The epoxy is Devcon no. 14260 (because that’s what Jason uses;
it’s available from McMaster-Carr). If the epoxy is not mixed to the right ratio it takes a long
time to set, and perhaps never completely sets—I’ve seen samples begin to slide off of the sapphire
substrate when heated on a hot-plate. Normally the epoxy cures overnight, with a weight pressing
the GaAs down to keep it flush to the sapphire.

The sapphire is from Almaz Optics, and is c-cut so that it is not birefringent (at least, for light
at normal incidence). It is 1.14 mm thick. (Earlier samples were glued onto sapphire that Jason
provided, which was also c-cut but 0.5 mm thick.) I opted for the thicker substrates because in the
pump-probe experiment reflections off of the substrate introduce a glitch in the time-trace. The
thicker substrate puts these “bad points” at a later time, where they are generally less troublesome.
The thick substrate is, however, hard to cleave: first one must score it on both sides and the edges
with a diamond-scribe reserved for this purpose (presumably by now very blunt), then clamp the
piece along the scored line, then strike it with a hammer.

Once the GaAs is epoxied to the substrate, the wafer must be removed so that the resulting
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Figure A.1. Crystal axis directions for the wafers on which Jason Stephens grows our
quantum well samples. Pieces cut from these wafers are marked with an “X” indicating
the side on which the quantum well is not grown, and a line parallel to the direction of the
longer of the two flattened edges. The wafers are from Wafer Technology Ltd., UK, with
specifications: cut (100) ±0.1◦; undoped, semi-insulating; DS polished; 500±25µm thick.

sample (quantum well plus sapphire) is sufficiently transparent to light at 800 nm. Much of this
process I learned from Jason during a visit of 8 July 2004.

The first step is mechanical polishing: the sample is waxed (sapph down) onto a polishing-
puck, then polished by hand to remove the first 400 µm or so of the wafer. For wax one may use
either Apiezon-W or Aremco Crystal Bond. I prefer the Apiezon because it has a lower melting
temperature, so one needn’t get the sample so hot when waxing (or un-waxing) it. (It’s heated by
placing the polishing-puck on a hot plate.) However, the Aremco is supposed to be removable with
acetone (perhaps hot acetone), while the Apiezon requires chloroform. Chloroform will attack the
epoxy, so one must apply it carefully, with a dropper.

The hand-polishing is done on pads with 9 µm grit attached to the surface (available from
Buehler, no. 69-3271). The thickness of the sample plus puck is measured with calipers beforehand
and frequently during the polishing to ensure that too much GaAs is not removed. Removing 400
µm typically takes about 20 minutes and uses up one or two pads.

The sample is then de-waxed from the puck (heated and removed), and the wax removed (see
above). The remainder of the wafer is then chemically etched away. (The lowest layer grown by
MBE is a “stop-etch” layer: 500 nm of Al0.3Ga0.7As, which etches much more slowly than GaAs.)
The etchant is a mixture of 200 ml 30% H2O2 with 6 ml 20% NH4OH. By blowing N2 through a glass
contraption, the etchant is sprayed onto the sample as a a stream of droplets (the sample is held
vertically so that the etchant runs off). One can tell when the stop-etch layer is reached because
the sample’s surface will go from a mat to a gloss finish (since the stop-etch layer is atomically
flat). This process is finicky (about a 25% success rate), and should be watched carefully to avoid
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etching away the entire sample. The etching can take anywhere from minutes to hours, depending
(in part, I believe) on the freshness of the chemicals. The most common way it fails is for the
sample to begin to grow shiny from the edge first; usually samples that etch successfully reach the
stop-etch layer first in the middle.

The sample is then mounted on a Cu block that can be attached to the cryostat’s cold-finger
(see Section A.2). Since it is measured in transmission, it is placed over a hole (which is drilled out
to the size of the sample—but no larger, to keep the thermal contact good) and on top of a piece
of indium foil. Another piece of In foil and a Cu plate (with holes in them, of course) are placed
on top of the sample, and screwed down as tightly as is safe without cracking the sapphire.

A.2 Cryostats

The angle between the two pump beams incident on the sample determines the grating’s q. In
order to measure at high q, one needs a cryostat that allows large incident angles; so the cryostat’s
front and back windows ought to be large and close together. For all of the data presented in
this work, the cryostat was an Oxford Microstat. We have now replaced this with a Janis ST-
300MS, which appears to be nearly equivalent. Both are cold-finger cryostats, in which the sample
is mounted on a copper block attached to the end of the cryostat’s cold finger. (In the Oxford,
the temperature sensor was mounted on this copper block; in the Janis, it is mounted on the cold
finger.) These copper blocks are interchangeable, so once a sample is mounted on one it need never
be de-mounted. Typically the sample’s name is scratched onto the surface of the block.

To improve the cryostat’s stability, when the LHe transfer line is connected, the LHe dewar
is belted to the optical table. The cryostat is pumped before an experiment, but not during. On
warming from low temperature, the Oxford would outgas, making the vacuum “soft”: condensation
would appear on the windows. To prevent condensation, dry N2 gas was blown onto both windows
during warming.

The cryostat works best if one pumps on the He outlet (not with a vacuum pump). The flow
can then be regulated with a gauge/valve on the He outlet. The Janis will reach 7 K with a flow
of 30 SCFH; at maximum flow, it reaches 4.5 K.

A.3 Phase masks

A phase mask works essentially as a diffraction grating in transmission, but puts a larger fraction
of the incident light into the ±1 diffracted orders. Ours were made for us circa August 2002 by
Digital Optics Co. They consist of arrays of ten phase masks on a single fused silica substrate (we
have several identical arrays of this type). The phase masks are optimized for light of wavelength
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250 300 360 420 500
3.14 3.77 4.53 5.28 6.29

Figure A.2. Layout of phase mask array. The top number shown is the number of grooves
per mm, n; the bottom number is the wavevector, q, of the grating formed on the sample
by the interference of the ±1 diffracted orders. The q shown here is in units of 104 cm−1.
Notice that q = 4πn. A picture of the phase mask array appears in Fig. A.3. The n of each
phase mask is printed next to it on the fused silica substrate in very small numerals.

λ = 800 nm. They vary in their number of “grooves” per mm, and are laid out as shown in Fig.
A.2. A picture of the phase mask array appears in Fig. A.3.

Once the phase mask has split the pump and probe beams into the ±1 orders, the resulting four
beams must be focused back together on the sample. We accomplish this with a large, spherical
mirror with radius of curvature 12.204 inches (made for us by A.M.F. Optics, and gold-coated by
International µicro Photonix). For transient gratings with q > 3.14× 104 cm−1, the ±1 orders do
not fit on this mirror. However, we have bought larger mirrors (with the same radius of curvature)
that will allow us to measure up to the highest q available on the phase mask array.

The optics are aligned such that both the phase mask and the sample are at the “center” of
the mirror’s sphere (with a folding-mirror in between), so that the angle θ by which each ±1 order
is diffracted is the same as the angle θ at which the beam is incident on the sample, measured from
the normal. For n grooves per mm, interference of the ±1 orders on the sample results in a grating
with wavelength Λ = 1/2n (if it were the 0 & +1 or 0 & -1 orders interfering, the factor of 2 would
not appear). Thus q = 4πn.

The limit on how low of a q we can measure is set by how low-n of a diffraction grating (in
transmission) we can buy. We bought gratings from Edmund Scientific, and glued them together
into an array, laid out as shown in Fig. A.4. To minimize re-alignment when switching from the
phase mask array to the Edmund grating array, the +1 order should be diffracted downwards.
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Figure A.3. The phase-mask array, in an aluminum holder.

70 80 92 110
0.44 0.50 0.58 0.69
n/a 1.01 1.16 1.38

Figure A.4. Layout of the array of Edmund gratings. The top number shown is the number
of grooves per mm, n; the middle number is the wavevector, q, of the grating formed on the
sample by the interference of the 0 & +1 diffracted orders; the bottom, by the ±1 orders.
(q is shown in units of 104 cm−1.) The n = 70 grating puts most of the incident beam’s
power into the 0 and +1 orders, and little into the -1, so no q is listed for ±1. The other
gratings put roughly equal amounts of light into -1, 0, and +1. Part numbers are recorded
in the lab book entry for 23 February 2005.
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