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ABSTRACT OF THE DISSERTATION

Essays On Testing Conditional Independence

by

Meng Huang

Doctor of Philosophy in Economics

University of California, San Diego, 2009

Professor Halbert White, Chair

Conditional independence is of interest for testing unconfoundedness as-

sumptions in causal inference, for selecting among semiparametric models, and

for testing Granger noncausality, etc. This dissertation propose flexible tests for

conditional independence, which are simple to implement yet powerful in the sense

that they are consistent and achieve
√
n local power.

In the literature, there are many tests available for the case in which the

variables are categorical. But there are only a few nonparametric tests for the

continuous case. On the other hand, in economics applications, it is common to

condition on continuous variables. Chapter 1 provides a nonparametric test for

continuous variables. The test statistic is a Wald type test based on an estimator

of the topological “distance” between the restricted and unrestricted probability

measures corresponding to conditional independence or its absence. The distance

is evaluated using a family of Generically Comprehensively Revealing (GCR) func-

tions indexed by a nuisance parameter vector.

Although the test in chapter 1 is easy to calculate and has a tractable

limiting null distribution, its consistency relies on the randomization of the choice

xiii



of the nuisance parameters. In chapter 2, I obtain a Bierens type Integrated

Conditional Moment test by integrating out the nuisance parameters. The test still

achieves
√
n local power and its consistency does not rely on the randomization

any more. Its limiting null distribution is a functional of a mean zero Gaussian

process. I simulate the critical values by a conditional simulation approach. As

an example of application, I test the key assumption of unconfoundedness in the

context of estimating the returns to schooling.

In applied microeconomics, many variables are categorical or binary. For

example, in the returns-to-schooling example, the conditioning variables usually

include a number of discrete variables such as sex, race, union or industry. However,

in previous chapters I assume the conditioning variables to be continuous. In

chapter 3, I extend the conditional independence tests to incorporate the case

of mixed conditioning random variables, using the frequency approach and the

smoothing approach.
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1

A Chi-square Test for Conditional

Independence

1.1 Introduction

In this chapter, I propose a nonparametric test for conditional indepen-

dence. Let X, Y and Z be three random vectors. The null hypothesis we want to

test is that Y is independent of X given Z, which can be denoted as

Y ⊥ X ∣ Z.

Intuitively, this means that given the information in Z, X cannot provide addi-

tional information to predict Y . The notation and definition of conditional inde-

pendence is as given by Dawid (1979).

Dawid (1979) showed that some simple heuristic properties of conditional

independence can form a conceptual framework for many important topics in sta-

tistical inference: sufficiency and ancillarity, parameter identification, causal infer-

1
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ence, prediction sufficiency, data selection mechanisms, invariant statistical models,

and a subjectivist approach to model-building.

In economics, conditional independence is often used as a part of the

identifying restrictions, as in the identification for nonseparable models. It is also

of interest for selecting among semiparametric models and for testing Granger

noncausality, as mentioned in Su and White (2008). Another potential application

of conditional independence testing is to test a key assumption identifying causal

effects. For example, if we are interested in estimating the effect of additional

year of schooling on income, but we are worried that unobserved ability will affect

both years of schooling and income, then OLS will generally fail to give us a

consistent estimator. Nevertheless, if we can find a set of covariates, say AFQT

scores, such that ability will be independent of schooling given the covariates, then

we can estimate the returns to schooling by various methods provided in the causal

inference literature. The conditional independence assumption is a key assumption

identifying the causal effect. Since ability is unobservable, we cannot directly test

this assumption using the proposed test. But if there is another set of observable

covariates satisfying certain conditions (see White and Chalak (2006)), we may

test an implied conditional independence assumption: the new set of observable

covariates is independent of schooling given the AFQT scores.

In the literature, there are many tests for conditional independence for the

case in which the variables are categorical. But there are only a few nonparametric

tests for the continuous case. On the other hand, in economics applications, it is

common to condition on continuous variables. Previous work on testing conditional

independence for continuous random variables includes that of Linton and Gozalo

(1997), Fernandez and Flores (2002), and Delgado and Gonzalez-Manteiga (2001).

More recently, Su and White have several papers (Su and White (2003), Su and

White (2007) and Su and White (2008), “SW”) attacking this question. Although
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SW’s tests are consistent against any deviation from the null, they are only able

to detect local alternatives converging to the null at a rate slower than 1/
√
n and

hence suffer from the “curse of dimensionality”.

The test proposed here achieves
√
n local power. The philosophy of the

test follows a series of papers of consistent specification tests in Bierens (1982),

Bierens (1990), Bierens and Ploberger (1997) and Stinchcombe and White (1998),

among others. Whereas Bierens (1982), Bierens (1990) and Bierens and Ploberger

(1997) construct tests essentially by comparing a restricted parametric and an

unrestricted regression model, the test in this paper follows a suggestion of Stinch-

combe and White (1998), basing the test on estimators of the topological “dis-

tance” between unrestricted and restricted probability measures, corresponding to

conditional independence or its absence.

This distance between the two probability measures is measured indi-

rectly by a family of moments, which use Generically Comprehensively Revealing

(GCR) functions such as the logistic cumulative distribution function (CDF) or

the normal probability density function (PDF) as the test functions, indexed by a

nuisance parameter vector . Under the null, all such moments are zeroes. under

the alternatives, the use of GCR functions makes the test consistent, because of

its property that any deviation from the null will result in nonzero moments for

essentially all choices of .

I estimate these moments by their sample analogs, using kernel smooth-

ing. A Wald type test statistic based on these estimators is obtained and its

limiting distribution is a Chi-square distribution.

The plan of the remaining paper is as follows. In section 2, I explain the

hypothesis and the basic idea of my test for conditional independence, and derive an
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equivalent null hypothesis which is based on the topological distance between the

restricted and unrestricted models. I then suggest an estimator for that distance

and a test statistic based on that. In section 3, I establish asymptotic normality

of the properly centered and scaled moment estimators using extended U-statistic

theory, and prove the test is consistent. I use a simple plug-in bandwidth following

Powell and Stoker (1996). In section 4, I perform simulations to examine the finite

sample properties of the test. Section 5 concludes.

1.2 The Hypothesis and the Test Statistic

1.2.A The Hypothesis

Let X, Y, and Z be three random vectors, with dimensions dX , dY , and

dZ , respectively. For convenience, I assume throughout that the sample observa-

tions {(Xi, Yi, Zi)
n
i=1} are independent and identically distributed (IID). Analogous

results hold under weaker conditions, but I leave consideration of these aside here.

Formally, I make the following assumption:

Assumption 1.1 {Wi ≡ (X ′i, Y
′
i , Z

′
i)
′} is an IID sequence of random variables on

the complete probability space (ΩW ,ℱW , PW ). Xi, Yi, and Zi take values in ℝdX ,

ℝdY ,and ℝdZ , respectively, and dW ≡ dX + dY + dZ .

We exploit the identical distribution assumption to drop the i subscript

when convenient, and we write W ≡ (X, Y, Z) . The null hypothesis to be tested

is that Y is independent of X given Z, i.e.
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H0 : Y ⊥ X ∣ Z, (1.2.1)

whereas the alternative is that Y and X are dependent conditioning on Z, i.e.

Ha : Y ∕⊥ X ∣ Z. (1.2.2)

The definition of conditional independence is as given by Dawid (1979).

We say that Y is independent of X given Z, if for all x

fY ∣XZ(y ∣ x, z) = fY ∣Z(y ∣ z), (1.2.3)

where fY ∣XZ(y ∣ x, z)and fY ∣Z(y ∣ z) denote the conditional density of Y given

(X,Z) = (x, z) and the conditional density of Y given X = x, respectively. The

intuition of the meaning of conditional independence is that given Z, X cannot

provide further information to predict Y . Note that (1.2.3) and the following three

expressions are equivalent to one another:

fX∣Y Z(x ∣ y, z) = fX∣Y (x ∣ y), (1.2.4)

fXY ∣Z(x, y ∣ z) = fX∣Z(x ∣ z) fY ∣Z∣(y ∣ z), (1.2.5)

and

fXY Z(x, y, z) fZ(z) = fXZ(x, z) fY Z(y, z). (1.2.6)

From (1.2.5) and (1.2.6) we see clearly that the definition is symmetric

for X and Y . So we use “X and Y are independent given Z”, “X is independent

of Y given Z” and “Y is independent of X given Z” interchangeably, and we use

“Y ⊥ X ∣ Z” and “X ⊥ Y ∣ Z” interchangeably.
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As mentioned in the introduction, there are many conditional indepen-

dence tests in the literature designed for categorical random variables. So in this

paper, I am particularly interested in the case for continuous random variables.

1.2.B An Equivalent Hypothesis in the Form of Moment

Conditions

For testing the null hypothesis (1.2.1), what I will do is to test an equiv-

alent hypothesis which is a family of moment conditions. Since we can easily

estimate the moment conditions by their sample analogs, we can construct a test

statistic based on these estimators. I will first establish that equivalent hypothesis.

The idea is inspired by a series of papers of consistent specification tests:

Bierens (1982), Bierens (1990), Bierens and Ploberger (1997), and Stinchcombe

and White (1998), among others. Those tests are based on an infinite number

of moment conditions indexed by nuisance parameters. Bierens (1990) provides

a consistent test of specification of nonlinear regression models. Consider the

regression function g (x) ≡ E (Y ∣ X = x). Bierens tests the hypothesis that the

parametric functional form, f (x, �), is correctly specified in the sense that g (x) =

f (x, �0) for some �0 ∈ Θ. The test statistic is based on estimators of a family

of moments E
[
(Y − f(X, �0))e

′X
]

indexed by a nuisance parameter vector .

Under the null hypothesis of correct specification, these moments are zeroes for

all . lemma 1 in Bierens (1990) shows that the converse essentially holds, due to

the properties of the exponential function, making possible a test able to detect

all deviations from the null.

Stinchcombe and White (1998) find that there is a broader class of func-

tions having this property. They extend Bierens’s result by replacing the exponen-
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tial function in the moment conditions by any Generically Comprehensively Re-

vealing (GCR) function, e.g. nonpolynomial analytic functions, and by extending

the probability measures considered in the Bierens’s approach (Bierens (1990)) to

signed measures. Further, they point out that such specification tests are based on

estimates of topological distance between a restricted and an unrestricted model.

Following this idea, we can construct a test for conditional independence based on

estimates of the topological distance between unrestricted and restricted probabil-

ity measures corresponding to conditional independence or its absence.

We first restate the definition of GCR function from Stinchcombe and

White (1998). We let C(B) denote the set of continuous functions on a compact

set B ⊂ ℝdW , and we write sp H'(Γ) to denote the span of a collection of functions

H'(Γ).

Definition 1 (Definition 3.6 in Stinchcombe and White (1998)) We say that

H' =
{
ℎ : ℝdW → ℝ ∣ ℎ(w) = ' (w̃′) ,  ∈ Γ ⊂ ℝ1+dW , w̃ := (1, w′)′

}
is generi-

cally comprehensively revealing if for all Γ with non-empty interior, the uniform

closure of sp H'(Γ) contains C(B) for every compact set B ⊂ ℝdW .

Intuitively, GCR functions are a class of functions indexed by  ∈ Γ whose

span comes arbitrarily close to any continuous function, regardless of the choice

of Γ as long as it has non-empty interior. When there is no confusion, we simply

call ' a GCR if the generated H' is a GCR. As stated in Stinchcombe and White

(1998), GCR functions include real analytic functions except for the polynomials,

e.g. exp, logistic CDF, sine, cosine, and also some nonanalytic functions like the

normal CDF or its density.

I now establish an equivalent hypothesis in the form of a family of moment

conditions following the argument of Stinchcombe and White (1998). Let P be
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the joint distribution1 of the random vector W = (X, Y, Z), and let Q be the

joint distribution of W with Y ⊥ X ∣ Z. Thus, P is an unrestricted probability

measure, whereas Q is restricted. To be specific, P and Q are defined such that

for any event A,

P (A) =

∫
1[(x, y, z) ∈ A]dFXY Z(x, y, z) (1.2.7)

and

Q(A) ≡
∫

1[(x, y, z) ∈ A]dFY ∣Z(y∣z)dFXZ(x, z), (1.2.8)

where 1[⋅] is an indicator function, and dFY ∣Z(y ∣ z), dFXZ(x, z), dFXY Z(x, y, z)

denote the conditional or joint densities indicated by their subscripts and argu-

ments.

Note that the measure P will be the same as the measure Q if and only

if the null is true:

Q(A) ≡
∫

1[(x, y, z) ∈ A]dFY ∣Z(y∣z)dFXZ(x, z)

H0=

∫
1[(x, y, z) ∈ A]dFY ∣XZ(y∣x, z)dFXZ(x, z)

= P (A).

To test the null hypothesis is thus equivalent to test whether there is any deviation

of P from Q.

Let EP and EQ denote expectations with respect to P and Q, respectively,

and define

Δ' () ≡ EP ('(0 +X ′1 + Y ′2 + Z ′3))− EQ('(0 +X ′1 + Y ′2 + Z ′3)),

where  ≡ (0, 
′
1, 
′
2, 
′
3)′ ∈ ℝ1+dW is a vector of nuisance parameters. Under the

null hypothesis, Δ' () is obviously zero for any choice of function ' including

1The distribution of X is the measure F := P ∘ X−1 on (R, �(R)) defined by (A ∈ �(R)),
F (A) = P ∘X−1 = P [X ∈ A].
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GCR functions and for any choice of . To build up a test, we want Δ' () to

be nonzero under the alternatives. If Δ'0
(0) is not zero under some alternative,

we say that '0 can detect that particular alternative for the choice of  = 0. An

arbitrary function may fail to detect some alternatives. Nevertheless, according to

Stinchcombe and White (1998), if W is a bounded random vector, the properties of

GCR functions imply that GCR functions can detect all alternatives for essentially

any choice of  ∈ Γ ⊂ ℝ1+dW with Γ having non-empty interior. “Essentially any”

 ∈ Γ means that the set of “bad” ’s, { ∈ Γ:Δ' () = 0 and Y ∕⊥ X ∣ Z} i.e.

the ’s which cannot detect the alternative with the choice of test function ', has

Lebesgue measure zero and is not dense in Γ.

This remarkable result implies that any deviation of P from Q can be

detected by essentially any choice of  ∈ Γ, provided we choose ' to be a GCR

function. In other words, to test H0 : Y ⊥ X ∣ Z is equivalent to test that

H0 : Δ' () = 0 for essentially all  ∈ Γ (1.2.9)

against

HA : H0 is false,

where ' is GCR and Γ has non-empty interior.

Note that to get the result, we require W to be bounded. But as in

Bierens (1990) and Stinchcombe and White (1998), boundedness can be ensured

by replacing W by Φ (W ), where Φ is a bounded one-to-one mapping such as

Φ (W ) = Φ(W (1),W (2), ...,W (dW )) = [tan−1(W (1)), tan−1(W (2)), ..., tan−1(W (dW ))].

This replacement will not affect the conditional independence (or its absence)

since the sigma fields will not be affected by this transformation. We leave this

transformation implicit in this paper to make the notation simpler.
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A straightforward test would be to estimate Δ' () and to see how far

it is from zero. But if we proceed in that way, we will encounter a nonparametric

estimator f̂Z of the density fZ in the denominator of the estimator, making the

asymptotic normality of the estimator hard to prove.

For this technical reason, I replace ' by '∗ ≡ 'fZ to avoid f̂Z appearing

in the denominator. To ensure the continued validity of the test, I need to show

that '∗ is still a GCR function under certain assumptions. For that purpose, I

extend Stinchcombe and White (1998)’s definition of generically comprehensively

revealing functions to permit multiplication by a function.

Definition 2 Let dW ∈ ℕ, and let ' : ℝ → ℝ and f : ℝdW → ℝ be measurable

functions. For Γ ⊂ ℝ1+dW , let H'f (Γ) ≡ {ℎ : ℝdW → ℝ ∣ ℎ(w) = '(w̃′)f(w), ∈

Γ}, where w ∈ ℝdW and w̃ ≡ (1, w′)′. We say that H'f is generically comprehen-

sively revealing (GCR) if for all Γ with non-empty interior, the uniform closure of

sp H'f (Γ) contains C(B) for every compact set B ⊂ ℝdW .

When H'f is a GCR, we also say that 'f is a GCR. The following propo-

sition shows that 'fZ is still a GCR if ' is a GCR and the density fZ satisfies

some conditions.

Proposition 1 Let Z be a dZ × 1 sub-vector of the random dW × 1 vector W , and

suppose that fZ, the density of Z, is continuous, positive, and bounded on supp(Z).

Let ' be a GCR. Then '∗ ≡ 'fZ is a GCR.

I impose these conditions in the following assumption.

Assumption 1.2 fZ , the density of Z, is continuous, positive, and bounded on

supp(Z).



11

Then I conclude that a null hypothesis equivalent to conditional indepen-

dence is

H0 : Δ () = 0 for essentially all  ∈ Γ, (1.2.10)

where

Δ ()

≡ EP ['∗(W ;)]− EQ ['∗(W ;)] (1.2.11)

= EP ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

−EQ ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)] ,

' is a GCR, and Γ ⊂ ℝ1+dW with Γ having non-empty interior. By “essentially

all”  ∈ Γ, I mean that the set { ∈ Γ:Δ () = 0 and Y ∕⊥ X ∣ Z} has Lebesgue

measure zero and is not dense in Γ. Δ () = 0 is a moment condition, as it is the

difference of two expectations. The null hypothesis of conditional independence is

thus equivalent to a family of moment conditions indexed by .

1.2.C Estimators of the Moments and a Wald Type Test

Statistic

Since we are testing whether Δ () is zero or not, it is natural to construct

a test statistic based on an estimator of Δ (). In the following, I will use a sample

analog Δ̄n,ℎ() to estimate Δ (), and then propose to use a finite collection of ’s

to construct a Chi-square test statistic.

First, Ie construct a sample analog to estimate Δ (). Note that Δ () is
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the difference between two expectations:

Δ ()

≡ EP ['∗(W ;)]− EQ ['∗(W ;)]

= EP ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

−EQ ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

=

∫
'(0 + x′1 + y′2 + z′3)fZ(z)dFXY Z(x, y, z) (1.2.12)

−
∫
'(0 + x′1 + y′2 + z′3)fZ(z)fY ∣Z(y∣z)dy dFXZ(x, z)

≡ EX,Y,Z ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]−
∫
gXZ(x, z;)dFXZ(x, z)

= EX,Y,Z ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]− EX,Z [gXZ(X,Z;)]

where

gXZ(x, z;) ≡
∫
'(0 + x′1 + y′2 + z′3)fZ(z)fY ∣Z(y, z)dy

= E ['(0 + x′1 + Y ′2 + z′3)fZ(z)∣Z = z] .

The first term of Δ () is a mean of 'fZ , where ' is chosen by us and fZ can

be estimated by a kernel smoothing method. The second term is a mean of gXZ ,

where the function gXZ(x, z;) is a conditional expectation that can be estimated

by a Nadaraya Watson estimator. Thus I propose to use the following estimator

to estimate Δ ():

Δ̄n,ℎ() =
1

n

n∑
i=1

[
'(0 +X ′i1 + Y ′i 2 + Z ′i3)f̂Z(Zi)

]
− 1

n

n∑
i=1

ĝXZ(Xi, Zi;)

=
1

n

n∑
i=1

[
'(0 +X ′i1 + Y ′i 2 + Z ′i3)

1

n− 1

n∑
j=1,j ∕=i

Kℎ(Zi − Zj)

]

− 1

n

n∑
i=1

[
1

n− 1

n∑
j=1,j ∕=i

'(0 +X ′i1 + Y ′j 2 + Z ′i3)Kℎ(Zi − Zj)

]

=
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3) (1.2.13)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]Kℎ(Zi − Zj)},
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where Kℎ(⋅) is defined as

Kℎ(u) ≡ 1

ℎdu
K(

u

ℎ
),

with K(⋅) a symmetric product kernel density function, du the dimension of u, and

the bandwidth ℎ ≡ ℎn depending on n.

Intuitively, Δ̄n,ℎ() should be close to zero under the null and nonzero

under the alternatives for essentially all  ∈ Γ. By choosing multiple ’s we can

get a vector of such estimators. For convenience, I denote the vector [Δ̄n,ℎ1(1),

Δ̄n,ℎ2(2), ...Δ̄n,ℎs(s)]
′ by Δ̄n,h(Γs), where Γs ≡ {1,2, ...,s} is the set of chosen

’s, and h = (ℎ1, ℎ2, ..., ℎs)
′ is the corresponding set of chosen bandwidths. The

choice of smoothing kernel K could in principle depend on  too, but here I

use the same kernel K as this choice will not affect the results significantly and

I want to keep the notation simple. Similarly, I define Δ(Γs) ≡ [Δ(1),Δ(2),

..., Δ(s)]
′, etc. In the next section, I will show that after proper centering and

scaling, Δ̄n,h(Γs) converges to an s-dimension normal distribution. Given Ω̂, a

consistent estimator of the variance-covariance matrix, I can construct a Wald

type test statistic

Sn(Γs) ≡ n
[
Δ̄n,h(Γs)

]′
Ω̂−1

[
Δ̄n,h(Γs)

]
. (1.2.14)

And the test is consistent if we choose Γs randomly from a distribution which is

absolutely continuous with respect to Lebesgue measure on Γ.

1.3 Asymptotic Behavior of the Test Statistic

To show that the proposed test statistic Sn(Γs) follows a Chi-square

asymptotic distribution under the null, the key is to show
√
nΔ̄n,h(Γs) is asymp-

totically normal. Note that Δ̄n,h(Γs) is not an average of independent random
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variables because of the double summation. Indeed, it is a U-statistic of degree

two. I apply asymptotic theory from the literature on U-statistics (see Hoeffding

(1948), Lee (1990), Powell et al. (1989), among others) to show its asymptotic

normality. In particular, I apply the extended U-statistic theory developed in

Powell et al. (1989). The idea is to use the H-decomposition (Hoeffding (1948))

to decompose
√
nΔ̄n,h(Γs) into three parts: its mean vector, Δh(Γs); an average

of independent zero mean random vectors, 2Hn,h,1(Γs); and a residual, Rn,h,1(Γs).

The first two parts constitute the “projection” of Δ̄n,h(Γs). I first show that the

residual is small enough so that
√
nΔ̄n,h(Γs) has the same limiting distribution as

its projection, and I then derive the asymptotic normality of the projection.

Before I proceed, I first list the assumptions I will use immediately:

Assumption 2 (Kernel function) Let q ≥ 2 be an even integer. The kernel K is

a product of a symmetric qth order univariate kernel k : ℝ→ ℝ s.t.
∫
k(v)dv = 1,∫

vjk(v)dv = 0 for j = 1, 2, ...q − 1, and 0 <
∫
vqk(v)dv <∞.

Assumption 3 Zi takes values in the interior of the support of Z, i = 1, 2, ... .

Assumption 4 (Smoothness of the densities) The density of Z, fZ , is continuously

differentiable of order q + 1; and all partial derivatives of fY Z(y, z), fXZ(y, z),

fXY Z(x, y, z) with respect to z of order q exist.

Assumption 5 '(⋅) is a bounded GCR function.

Assumption 6 (Bandwidth) The bandwidth ℎl ≡ ℎl,n, for l = 1, 2, ..., s , satisfies

(A 6.1) nℎdZl →∞ as n→∞, and
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(A 6.2)
√
nℎql = o(1), i.e. ℎl = o(n−1/(2q)) as n→∞.

Remark 1 I impose Assumption 3 to avoid the boundary bias problem. I could relax

this assumption and use boundary kernels. For now I assume interior points to

simplify the problem. To ensure this condition, we may need to trim the data when

Z is boundedly supported. In that case, I use Kℎ(Zi −Zj) ⋅ 1 [Zi ∈ Z"] ⋅ 1 [Zj ∈ Z"]

with Z" ⊂ Supp (Z) defined by P [Zi ∈ Z"] = 1 − ", " > 0 small, instead of

Kℎ(Zi − Zj), and modify all proofs accordingly.

Remark 2 In Assumption 4, we do not assume that the marginal distributions of

X and Y are smooth. In fact, X and Y could be discrete or continuous.

Remark 3 Assumption 5 is stronger than necessary. We only need certain mo-

ments of '(0 + X ′1 + Y ′2 + Z ′3)fZ(Z) bounded. For example, if ' is con-

tinuous, we don’t need it to be bounded since W is bounded. But Assumption 5 is

a convenient one to ensure those conditions, and we can easily choose a bounded

GCR function e.g. normal PDF., sin or cos.

Remark 4 In Assumption 6, (A 6.1) ensures that the residual Rn,h,1(Γs) is small,

while (A 6.2) is used to kill the bias of Δ̄n,h(Γs) as n → ∞. Together these

conditions imply that 2q > dZ.

1.3.A H-decomposition

We observe that Δ̄n,h(Γs) = [Δ̄n,ℎ1(1), Δ̄n,ℎ2(2), ...Δ̄n,ℎs(s)]
′ is a vector

U-statistic of degree 2, where each element of Δ̄n,h(Γs) has the form
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Δ̄n,ℎ( l) =
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(l0 +X ′il1 + Y ′i l2 + Z ′il3)

−'(l0 +X ′il1 + Y ′j l2 + Z ′il3]Kℎ(Zi − Zj)} (1.3.1)

=

⎛⎝ n

2

⎞⎠−1 ∑
(n,2)

�ℎ(Wi,Wj; l),

where �ℎ(Wi,Wj; l) is a symmetric kernel in Wi and Wj defined as

�ℎ(Wi,Wj; l)

≡ 1

2
['(l0 +X ′il1 + Y ′i l2 + Z ′il3)

−'(l0 +X ′il1 + Y ′j l2 + Z ′il3)]Kℎ(Zi − Zj)

+
1

2
['(l0 +X ′jl1 + Y ′j l2 + Z ′jl3)

−'(l0 +X ′jl1 + Y ′i l2 + Z ′jl3)]Kℎ(Zj − Zi)

= �ℎ(Wj,Wi; l),

and l = 1, 2, ...s, and
∑

(n,2) means the summation is over different pairs of i and

j.

The idea is to use H-decomposition, named after its inventor Hoeffding,

to decompose Δ̄n,h(Γs) into three parts:

Δ̄n,h(Γs) = Δh(Γs) + 2Hn,h,1(Γs) +Rn,h,1(Γs), (1.3.2)

where

Δh(Γs) ≡ E
[
Δ̄n,h(Γs)

]
(1.3.3)

Hn,h,1(Γs) ≡
1

n

n∑
i=1

�̃h,1(Wi; Γs), with {�̃h,1(Wi; Γs)} IID,

�̃h,1(Wi; Γs) ≡ �h,1(Wi; Γs)−Δh (Γs) (1.3.4)

�h,1(Wi; Γs) ≡ E [�h(Wi,Wj; Γs)∣Wi] i ∕= j,
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and

Rn,h,1 (Γs) ≡ Δ̄n,h(Γs)−Δh (Γs)− 2Hn,h,1 (Γs) . (1.3.5)

The subscript 1 in the above notations denotes that the item is a projection on the

first argument of �h, Wi. The first part Δh(Γs) is the mean part, which depends

on h. When h is small, It turns out that Δh(Γs) is equal to Δ(Γs) plus some small

terms. 2Hn,h,1(Γs) is a leading term, which is an average of IID random variables

whose asymptotic behavior is straightforward to derive. And Rn,h,1 (Γs) is the

remainder. Both Hn,h,1 (Γs) and Rn,h,1 (Γs) have zero means and are uncorrelated

to each other. The projection Δ̂n,h(Γs) is defined as

Δ̂n,h(Γs) ≡ Δh(Γs) + 2Hn,h,1(Γs). (1.3.6)

The idea is to first show the remainder is small so that the projection is the leading

term, and then to derive the asymptotics of the projection.

Remark 5 According to the U-statistic theory (e.g. Lee (1990)),

Rn,h,1 ( l) ≡ Δ̄n,h( l)−Δh ( l)− 2Hn,h,1 ( l)

=

⎛⎝ n

2

⎞⎠−1 ∑
(n,2)

[�̃ℎ,2(Wi,Wj; l)] (1.3.7)

is another U-statistic of degree 2 with the kernel

�̃ℎ,2(Wi,Wj; l) ≡ [�ℎ(Wi,Wj; l)− �̃ℎ,1(Wi; l)− �̃ℎ,1(Wj; l)−Δh ( l)] .

And

E [Rn,h,1 ( l)] = E [�̃ℎ,2(Wi,Wj; l)] = 0,

V ar [Rn,h,1 ( l)] =
2

n(n− 1)

[
2 (n− 2) �2

1 + �2
2

]
=

2�2
2

n(n− 1)
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where

�2
1 ≡ V AR {E [�̃ℎ,2(Wi,Wj; l)∣Wj]}

= V AR {E [�ℎ(Wi,Wj; l)−Δh ( l) ∣Wj]− E [�̃ℎ,1(Wi; l)]− �̃ℎ,1(Wj; l)}

= V AR {�̃ℎ,1(Wj; l)− 0− �̃ℎ,1(Wj; l)}

= 0

and

�2
2 ≡ V AR [�̃ℎ,2(Wi,Wj; l)]

= E [�ℎ(Wi,Wj; l)− �̃ℎ,1(Wi; l)− �̃ℎ,1(Wj; l)−Δh ( l)]
2 .

So for a fixed ℎ, the remainder Rn,h,1 ( l) has a smaller order variance than the

leading term 2Hn,h,1(Γs).

1.3.B
√
nΔ̄n,h(Γs) Has the Same Limiting Distribution As

Its Projection
√
nΔ̂n,h(Γs)

We have seen that if h were fixed, Δ̄n,h(Γs) would be a conventional U-

statistic and Rn,h,1 (Γs) = Δ̄n,h(Γs) − Δ̂n,h(Γs) would be op
(
n−1/2

)
. But now the

bandwidth vector h ≡ hn is going to 0 as n → ∞, so we need the theory for the

extended U-statistics. I apply Lemma 3.1 in Powell et al. (1989) to show that

Rn,hn,1 (Γs) is still op
(
n−1/2

)
if we properly control hn so that it does not shrink

too fast. I summarize the result precisely in the next lemma.

Lemma 2 Under Assumptions 1-5, if each ℎl (l = 1, 2, ..., s) satisfies assumption

6.1, i.e. nℎdZl → ∞, and ℎl → 0 as n → ∞, then
√
n
[
Δ̄n,h(Γs)− Δ̂n,h(Γs)

]
=

op(1).
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1.3.C Asymptotic Distribution of Δ̄n,h(Γs)

Given the asymptotic equivalence of Δ̄n,h(Γs) and Δ̂n,h(Γs), the remaining

task is to show that Δ̂n,h(Γs) has a
√
n limiting normal distribution with mean

Δ(Γs). Note that both Δh(Γs) and Hn,h,1(Γs) depend on h. When h is fixed,

Δ̂n,h(Γs) is obviously normal, but with a bias depending on h. Using Taylor

expansion, I can separate the parts independent of h and the parts associated

with h in Δh(Γs) and Hn,h,1(Γs). I then use a higher order kernel K and control

the rate of h to shrink fast enough so that the parts associated with h will vanish

asymptotically, as is the case in Powell et al. (1989).

I now discuss the results in detail. In the following lemma, I first show

that Δh(Γs) = Δ(Γs) + O(hq), where q is the order of the kernel K and hq =

(ℎq1, ℎ
q
2, ..., ℎ

q
s)
′. Then I show that Hn,h,1(Γs) = n−1

∑n
i=1{�1(Wi; Γs)−

E [�1(Wi; Γs)]}+Op(h
q), where

�1(Wi;) ≡ 1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (1.3.8)

+
1

2

∫
'(0 + x′1 + y′2 + Z ′i3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx.

Under Assumption 6.2,
√
nℎql → 0 for l = 1, 2, ..., s, which makes both the sec-

ond term of Δh(Γs) and the second term of Hn,h,1(Γs) vanish asymptotically. The

leading term of Hn,h,1(Γs) is an average of IID random variables independent of

ℎ, which obeys the Lindeberg-Levy Central Limit Theorem. The following lemma

summarizes the facts that the projection
√
nΔ̂n,h(Γs) is asymptotically normal

with mean zero under the null and diverges under the alternatives.

Lemma 3 Under Assumptions 1-5 and if each ℎl (l = 1, 2, ..., s) satisfies assump-
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tion 6.2, i.e.
√
nℎql → 0, then Δh (Γs) ≡ E

[
Δ̄n,h(Γs)

]
= Δ (Γs) + o

(
n−1/2

)
and

Hn,h,1(Γs) = n−1
∑n

i=1 {�1(Wi; Γs)− E [�1(Wi; Γs)]}+ op
(
n−1/2

)
, hence

√
nΔ̂n,h(Γs) =

√
nΔ (Γs) + 2n−1/2

n∑
i=1

{�1(Wi; Γs)− E [�1(Wi; Γs)]}+ op (1) .

So
√
n
(

Δ̂n,h(Γs)−Δ(Γs)
)

d→ N (0,Ω)

where

Ω(l, k) ≡ �Δ ( l,k) = 4cov [�1(Wi; l), �1(Wi;k)] . (1.3.9)

If in addition H0 holds, then Δ(Γs) = 0,
√
nΔ̂n,h(Γs)

d→ N (0,Ω), and

cov [�1(Wi; l), �1(Wi;k)] = E [Λ(Wi; l)Λ(Wi;k)] ,

where

Λ(Wi;) =
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Xi, Yi, Zi] (1.3.10)

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Xi, Zi]

+
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Zi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Yi, Zi] .

From the H-decomposition and the results in lemma 2 and 3, we can

conclude immediately that
√
nΔ̄n,h(Γs) is also asymptotically normal with mean

zero under the null and diverges under the alternatives. I state these results in the

following theorem.

Theorem 4 Under Assumptions 1-6,

√
nΔ̄n,h(Γs) =

√
nΔ (Γs) + 2n−1/2

n∑
i=1

{�1(Wi; Γs)− E [�1(Wi; Γs)]}+ op (1) .
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So
√
n
(
Δ̄n,h(Γs)−Δ(Γs)

) d→ N (0,Ω) ,

where Ω is defined as in (1.3.9). If in addition H0 holds, then Δ(Γs) = 0 and

cov [�1(Wi; l), �1(Wi;k)] = E [Λ(Wi; l)Λ(Wi;k)] ;

hence
√
nΔ̄n,h(Γs)

d→ N(0, 4E [Λ(Wi; Γs)Λ(Wi; Γs)
′]).

The consistency of Δ̄n,h(Γs) as an estimator of Δ(Γs) is a by-product of

the previous theorem, which is stated as a corollary in the following.

Corollary 5 Under Assumptions 1-6, Δ̄n,h(Γs)
P→ Δ(Γs).

1.3.D A Consistent Variance-Covariance Matrix Estimator

To construct a Chi-square test statistic based on theorem 4, we need a

consistent estimator for the variance-covariance matrix Ω. Similar to the case in

Powell et al. (1989), the U-statistic theory we used before also suggests a natural

estimator for the asymptotic variance. Note that

E[�1 (Wi;)] =
1

2
EXY Z ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)] (1.3.11)

−1

2

∫
'(0 + x′1 + y′2 + z′3)fY Z(y, z)fXZ(x, z)dydxdz

+
1

2

∫
'(0 + x′1 + y′2 + z′3)fXY Z(x, y, z)fZ(z)dxdydz

−1

2

∫
'(0 + x′1 + y′2 + z′3)fXZ(x, Zi)fY Z(y, z)dxdydz

= EXY Z ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)]− EX,Z [g(X,Z; )]

= Δ(),
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so

Ω = 4cov [�1(Wi; Γs)�1(Wi; Γs)
′]

= 4E [�1(Wi; Γs)�1(Wi; Γs)
′]− 4Δ(Γs)Δ(Γs)

′.

I can use

�̂h,1(Wi; Γs) ≡ (n− 1)−1

n∑
j=1,j ∕=i

�h(Wi,Wj; Γs)

to replace the unknown �1(Wi; Γs), then the proposed estimator of Ω is

Ω̂ = 4n−1

n∑
i=1

[�̂ℎ,1(Wi; Γs)�̂ℎ,1(Wi; Γs)
′]− 4Δ̄n,h(Γs)Δ̄n,h(Γs)

′

= 4n−1

n∑
i=1

{[
(n− 1)−1

n∑
j=1,j ∕=i

�h(Wi,Wj; Γs)

]
(1.3.12)

×

[
(n− 1)−1

n∑
j=1,j ∕=i

�h(Wi,Wj; Γs)

]′}
− 4Δ̄n,h(Γs)Δ̄n,h(Γs)

′.

The following theorem establishes the consistency of Ω̂.

Theorem 6 Under Assumptions 1-6, Ω̂
P→ Ω.

As Δ̄n,h(Γs)
P→ 0 under the null hypothesis, I can immediately get another

estimator of Ω which is consistent only under the null:

Corollary 7 Under the Assumptions 1-6 and H0,

Ω̃ ≡ 4n−1

n∑
i=1

[�̂ℎ,1(Wi; Γs)�̂ℎ,1(Wi; Γs)
′]

P→ Ω.

Remark 6 Since E
[√
n
(
Δ̄n()−Δ

)]
= E [B5(Wi;)]

√
nℎq + o(

√
nℎq)

= O (
√
nℎq) , the order of the kernel K (⋅) will affect the bias of the mean. And
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since we require nℎdZ → ∞,
√
nℎ through

√
nℎ

dZ
2 will explode. Hence we require

the order q is bigger than dZ
2

to make the bias term vanish asymptotically. On the

other hand, the choice of K (⋅) does not affect Ω, the leading term of the variance.

So it looks reasonable to use higher order kernel to reduce the bias. We may even

consider an infinity order kernel like k∞(u) = 1+cosu−2 cos2 u
�u2 . Then we will need to

modify our theorems and proofs. And of course we need to assume accordingly the

higher smoothness of the densities.

Remark 7 The asymptotic variance-covariance matrix of 1√
n

∑n
i=1 �1(Wi; Γs)

would be cov [�1(Wi; Γs)�1(Wi; Γs)
′]. Now that

√
nΔ̄n,ℎ(Γs) =

√
n

⎛⎝ n

2

⎞⎠−1 ∑
(n,2)

�ℎ(Wi,Wj; Γs)

=
1√
n

n∑
i=1

{
1

n− 1

n∑
j=1,j ∕=i

�ℎ(Wi,Wj; Γs)

}

=
1√
n

n∑
i=1

�̂ℎ,1(Wi; Γs).

Due to the dependence between {�̂ℎ,1(Wi;)}ni=1 , the asymptotic variance-

covariance matrix of
√
nΔ̄n,ℎ(Γs) turns out to be four times bigger than that of

1√
n

∑n
i=1 �1(Wi; Γs).

1.3.E The Chi-square Test Is Consistent

√
nΔ̄n,h(Γs) is asymptotically normal with mean zero under the null and

diverges under the alternatives, so I can use these facts to construct a Chi-square

test statistic. As proposed in the previous subsections, the test statistic is

Sn(Γs) ≡ n
[
Δ̄n,h(Γs)

]′
Ω̂−1

[
Δ̄n,h(Γs)

]
. (1.3.13)
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It has a limiting Chi-square distribution of degree s if Ω is not degenerate. Let’s

impose the following assumption:

Assumption 7 Ω is positive definite.

This and the consistency of Ω̂ ensures that Ω̂ is positive definite with

probability approaching one.

The following result defines a Wald type test statistic.

Corollary 8 (Chi-square Test) Under Assumptions 1-7,

n
[
Δ̄n,h(Γs)−Δ(Γs)

]′
Ω̂−1

[
Δ̄n,h(Γs)−Δ(Γs)

] d→ �2 (s)

If in addition H0 holds, then

Sn(Γs) ≡ n
[
Δ̄n,h(Γs)

]′
Ω̂−1

[
Δ̄n,h(Γs)

] d→ �2 (s)

Thus Sn(Γs) is a Wald type test statistic whose asymptotic null distribu-

tion is a Chi-square distribution with degree s.

As the sample size goes to infinity, Δ̄n,h(Γs) goes to Δ(Γs) ≡ [Δ(1),

Δ(2), ... Δ(s)]
′. Under the null, Δ(Γs) is zero. under the alternatives, each

element of Δ(Γs), Δ( l), is nonzero for essentially all  l ∈ Γ, since the GCR

function can detect any difference between the restricted and unrestricted proba-

bility measures for essentially all  l ∈ Γ. That means Sn(Γs) goes to infinity for

essentially all Γs ∈ Γ under the alternatives. The test is thus consistent against

all alternatives with probability one if we choose Γs randomly from a distribution

which is absolutely continuous with respect to Lebesgue measure on Γ.
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Proposition 9 Under assumptions 1-7 and assume ' is a GCR function, then for

essentially all Γs ∈ Γ,

lim
n→∞

Pr(Sn(Γs) ∈ R) = lim
n→∞

Pr(∣Sn(Γs)∣ > Ca) = 1 (1.3.14)

where R represents the rejection region of the test, and Ca represents the critical

value of a test of size a.

1.3.F The Symmetry Problem

We observe that Δ̄n,ℎ() (hence Δ̄n,h(Γs)) is not symmetric in X and

Y, whereas the hypothesis Y ⊥ X ∣ Z is. From the previous subsection, we see

that
√
n
(
Δ̄n,ℎ()−Δℎ()

)
=
√
n
(
Δ̄n,ℎ()−Δ()

)
+o (1)

d→ N(0, �2
Δ ()) where

�2
Δ () = 4V AR [�1 (Wi;)]. Note that Y and X are symmetric in both

�1 (Wi;) ≡ 1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (1.3.15)

+
1

2

∫
'(0 + x′1 + y′2 + Z ′i3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx

and in

Δ() ≡ E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)]− E [gXZ(Xi, Zi; )]

= E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)]

−
∫
'(0 + x′1 + y′2 + z′3)fY Z(y, z)fXZ (x, z) dxdydz

= E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)]− E [gY Z(Yi, Zi;)] .

In fact, if we construct another estimator Δ̃n() by switching the roles
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of X and Y , we will find that this is asymptotically equivalent to Δ̄n,ℎ(). Define

Δ̃n() ≡ 1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′j1 + Y ′i 2 + Z ′i3]Kℎ(Zi − Zj)}. (1.3.16)

Inspecting the proofs in the previous subsections, we can see that

√
nΔ̃n() =

√
nΔ() +

√
n2Hn,ℎ,1() + op (1)

=
√
nΔ() + n−1/2

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]}+ op (1) .

The leading term,
√
nΔ() + n−1/2

∑n
i=1 {�1(Wi;)− E [�1(Wi;)]}, is the same

as in
√
nΔ̄n,ℎ(), which follows from the symmetry of Δ() and �1(Wi;) in X

and Y . As a result,
√
nΔ̃n() has the same asymptotic distribution as

√
nΔ̄n,ℎ()

under both the null and the alternatives. Further, the asymptotic correlation of
√
nΔ̄n,ℎ() and

√
nΔ̃n() is 1. So, if we consider a weighted average of Δ̄n,ℎ() and

Δ̃n(), the resulting new test statistic would have the same asymptotic distribution

as
√
nΔ̄n,ℎ() under both the null and the alternatives for any choice of the weights.

For a symmetry of the test statistic, we may take the average of
√
nΔ̄n,ℎ() and

√
nΔ̃n(). But to make the notation simpler, we don’t do this here.

1.3.G The Bandwidth Selection

Although theoretically speaking the specific choice of bandwidth h will

not affect the first order results as long as it satisfies the order restrictions in

assumption 6, in practice we need some guidance on how to select h. Ideally we

should select h that would give us the greatest power given particular size, but

that procedure would be complicated enough for another study and only make

difference in the higher order results. Therefore, for the purpose of this study, I
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provide a simple “plug-in” estimator of the MSE-minimizing bandwidth proposed

by Powell and Stoker (1996).

Since the test statistic is based on Δ̄n,ℎ(), which is an estimator of

Δ (), it is reasonable to choose ℎ which minimizes the mean squared error (MSE)

of Δ̄n,ℎ().

After some tedious yet straightforward calculation, I get

MSE
[
Δ̄n,ℎ()

]
= (Δℎ ()−Δ ())2 + V AR

[
Δ̄n,ℎ()

]
= {E [B5(Wi;)]ℎq + o(ℎq)}2 + V AR

[
Δ̄n,ℎ()

]
= {E [B5(Wi;)]}2 ℎ2q + o(ℎ2q) + V AR

[
Δ̄n,ℎ()

]
= {E [B5(Wi;)]}2 ℎ2q + o(ℎ2q) (1.3.17)

+4n−1V AR [�1 (Wi;)] + 4n−1C0 ()ℎq + o(n−1ℎq)

−4n−2V AR [�1 (Wi;)] + 2n−2E [� (Wi;)]ℎ−dZ

+o
(
n−2ℎ−dZ

)
− 2n−2Δ ()2 + o(n−2),

where B5 is defined in (1.6.6), and � (Wi) is defined by

E
[
∥�ℎ (Wi,Wj;)∥2 ∣Wi

]
= � (Wi;)ℎ−dZ + �∗ (Wi, ℎ;) ,

where E ∥�∗ (Wi, ℎ;)∥ = o
(
ℎ−dZ

)
.

The term 4n−1V AR [Γ(Wi;)] − 4n−2V AR [�1 (Wi;)] does not depend

on ℎ. The term 2n−2Δ ()2 must be of smaller order than 4n−1C0ℎ
q, and 4n−1C0ℎ

q

of smaller order than {E [B5 (Wi;)]}2 ℎ2q otherwise there would be a contradic-

tion. So the leading term of MSE
[
Δ̄n,ℎ()

]
which involves ℎ is

L MSE
[
Δ̄n,ℎ()

]
≡ {E [B5 (Wi;)]}2 ℎ2q + 2n−2E [� (Wi;)]ℎ−dZ . (1.3.18)
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By minimizing L MSE
[
Δ̄n,ℎ()

]
, we obtain the optimal bandwidth

ℎ+ =

[
dZ ⋅ E [� (Wi;)]

q ⋅ {E [B5 (Wi;)]}2

]1/(2q+dZ)

⋅
[

1

n

]2/(2q+dZ)

+ o

([
1

n

]2/(2q+dZ)
)
. (1.3.19)

Under the condition 2q > dZ , which is implied by Assumption 6, the right-hand

remainder term is o (n−1), but necessarily greater than O (n−2). ℎ+ could be

approximated by its leading term

ℎ++ =

[
dZ ⋅ E [� (Wi;)]

q ⋅ {E [B5 (Wi;)]}2

]1/(2q+dZ)

⋅
[

1

n

]2/(2q+dZ)

= O
(
n−2/(2q+dZ)

)
. (1.3.20)

Now (A 6.1) is satisfied:

n
(
ℎ++

)dZ = O
(
n1−2dZ/(2q+dZ)

)
= O

(
n(2q−dZ)/(2q+dZ)

)
→∞, given 2q > dZ .

And so is (A 6.2):

√
n
(
ℎ++

)q
= O

(
n1/2−2q/(2q+dZ)

)
= O

(
n−(2q−dZ)/2(2q+dZ)

)
= o(1), given 2q > dZ .

But E [� (Wi;)] and E [B5 (Wi;)] are unknown since the densities are unknown.

So I use a simple plug-in estimator of ℎ+ proposed by Powell and Stoker (1996).

Let ℎ0 be an initial bandwidth. Suppose E [�ℎ(Wi,Wj;)4] = O
(
ℎ−�−2dZ

0

)
for

some � > 0, and let � = max {� + 2dZ , 2q + dZ}. If ℎ0 → 0 and nℎ�0 → ∞, then

by Proposition 4.2 of Powell and Stoker (1996),

�̂ ≡ �̂ (ℎ0) =
1⎛⎝ n

2

⎞⎠
∑
(n,2)

ℎdZ0 ⋅ �ℎ0(Wi,Wj;)2 P→ E [� (Wi;)] (1.3.21)

and

B̂5 ≡ Δ̄n,�ℎ0()− Δ̄n,ℎ0()

(�ℎ0)q − ℎq0
for some positive � ∕= 1 (1.3.22)

P→ E [B5 (Wi;)] .

The estimator B̂5 suggested in (1.3.22) is a “slope” of two point (ℎq0, Δ̄n,ℎ0()) and

(�ℎq0, Δ̄n,�ℎ0()). To get a more stable estimator B̂5, we could use a regression of

Δ̄n,ℎ0() on ℎq0 for various values of ℎ0.
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Thus the proposed bandwidth selection is

ℎ̂ =

[
dZ ⋅ �̂
q ⋅ B̂2

5

]1/(2q+dZ)

⋅
[

1

n

]2/(2q+dZ)

. (1.3.23)

Remark 8 In practice we can choose q large enough such that � = max{� + 2dZ,

2q+ dZ} = 2q+ dZ, then we can choose the initial bandwidth ℎ0 = o
(
n−1/(2q+dZ)

)
.

Remark 9 Powell and Stoker (1996) mentioned one technical proviso: Δ̄n(; ℎ̂)

is not guaranteed to be asymptotically equivalent to Δ̄n(;ℎ++) since the MSE

calculations used to derive the form of ℎ+ held ℎ fixed in calculating the moments of

Δ̄n,ℎ(). The suggested straightforward solution is to discretize the set of possible

scaling constants, replacing ℎ̂ with the closest value, ℎ̂′, in some finite set.

1.4 Monte Carlo Experiments

In this section, we perform some simple Monte Carlo simulation experi-

ments to examine the finite sample performance of our nonparametric conditional

independence test.

For all the simulations, I generate {(Xi, Yi, Zi)
n
i=1} IID. The bandwidth I

use is a value close to ℎ̂, and I use ℎ0 = n−1/[3(2q+dZ)] and � = 0.5 when calculating

ℎ̂ by (1.3.23). I choose '(⋅) to be the standard normal PDF, and k(u) the sixth

order Gaussian kernel. In the following experiments, I only choose one , i.e. I let

Γs = {}.
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1.4.A The Distribution of Test Statistic

We consider the following DGP to study the distributions of the test

statistic under the null and under the alternatives.

DGP 1:

Y = �X + Z + �Y

X = Z + Z2 + �X⎛⎝ �X

�Y

⎞⎠ ˜N

⎛⎝0,

⎛⎝ �2
X 0

0 �2
Y

⎞⎠⎞⎠ = N

⎛⎝0,

⎛⎝ 4 0

0 1

⎞⎠⎞⎠
Z˜N(0, �2

Z) = N(0, 3)

We are testing

H0 : Y ⊥ X∣Z.

Note that when � = 0, the null is true; otherwise the alternative is true.

Under the Null

Let � = 0 in DGP 1. Hence the null hypothesis holds.

Although selecting  at random from a smooth density will deliver a

consistent test with probability 1 (Bierens (1990)), in practice we should avoid

to choose  which makes ∣0 +X ′i1 + Y ′i 2 + Z ′i3∣ too large or too small. The

reason is that the value of '(u) will be very close to zero if ∣u∣ too large and

'(u) will be close to linear if ∣u∣ too small, in which cases the test will not have

good power. In our simulation, we choose  which make ∣0 +X ′i1 + Y ′i 2 + Z ′i3∣
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around one. To be specific, we choose

0 ≈ 1−
[

X̄

std({Xi}ni=1)
+

Ȳ

std({Yi}ni=1)
+

Z̄

std({Zi}ni=1)

]
1 ≈

(
1

std({Xi}ni=1)

)
2 ≈

(
1

std({Yi}ni=1)

)
3 ≈

(
1

std({Zi}ni=1)

)
.

The QQ plot (figure 1.1) shows that the distribution of T̃n() ≡
√
nΔ̄n,ℎ()

�̂Δ()

is approximately standard normal. Other choices of ' give similar results. We also

examined other DGP’s under the null, but results are not reported here because

the resulting figures are similar.

Under the Alternative

Now let � = 0.2887 such that

�
X,Y ∣Z =

cov (X, Y ∣Z)

�X∣Z�Y ∣Z
=

4�

2
√

4�2 + 1
= 0.5.

In this case the alternative is true.

The QQ plots (figure 1.2)shows that the distribution of T̃n() is still close

to normal but the mean of our proposed statistic is not zero. In fact, the mean

increases with the sample size n.
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1.4.B Size and Power Study

DGP 1

In this section, we use DGP 1 to study the finite sample size/power of

the test against conditional mean dependence. We use

�
X,Y ∣Z =

cov (X, Y ∣Z)

�X∣Z�Y ∣Z
=

��2
X

�X

√
�2�2

X + �2
Y

=
4�

2
√

4�2 + 1

to indicate the strength of the dependence for X and Y , conditional on Z. Since

X∣Z and Y ∣Z are normal, �
X,Y ∣Z does represent the dependence between X and

Y , conditional on Z.

We want to plot the power of test against � from −0.9 to 0.9. To do that,

we choose

� =
�

X,Y ∣Z

2

√(
1− �2

X,Y ∣Z

) such that �
X,Y ∣Z = −0.9,−0.8, ..., 0.9

Figure 1.3 shows the power of the test when choosing '(⋅) as standard

normal PDF and k(u) the sixth order Gaussian kernel. The size and power looks

not bad when the sample size is as big as 500.

DGP 2

DGP 2 is a modification of the first one by choosing �X and �Y to be

student t distribution of degree 3:

�X ∼ 2t3, �Y ∼ t3, �X ⊥ �Y .

Then the results showed in figure 1.4 are a little worse than the previous normal

distribution case.
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DGP 3

DGP 3 is again a modification of the first one by choosing �X and �Y to

be centered Chi square distribution:

�X ∼ 2
(
�2

1 − 1
)
, �Y ∼

(
�2

1 − 1
)
, �X ⊥ �Y .

Then the results showed in figure 1.5 are a little better than previous two cases.

1.5 Concluding Remarks

In this chapter, I proposed a nonparametric GCR test for conditional

independence. The basic idea is to test if the topological distance between a

restricted and an unrestricted probability measures corresponding to conditional

independence or its absence is zero. The test statistic has a simple closed form

and hence easy to compute. The limiting null distribution of the test statistic is a

Chi-square distribution.

I use a collection of ’s for constructing the test statistic.  is a nuisance

parameter “present only under the alternative”; it is also described as “identified

only under the alternative”. Although Bierens (1990) points out that selecting 

at random from a smooth density will deliver a consistent test with probability

1, this method will introduce a degree of arbitrariness into both the size and the

power of the test. In chapter 2, I will study how to “integrate out” .

In the assumptions, I assume the conditioning variables to be continuous.

But in applied microeconomics, many variables are discrete. I will discuss how

to deal with mixed data in chapter 3. Another limitation is that I assume IID

data. But the IID assumption is not suitable for time series. For example, IID.
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assumption fails when we want to test nonlinear Granger causality. We may extend

this approach to a time series framework in the future.

1.6 Appendix: Proofs

Proof of Proposition 1: It suffices to verify that '∗ satisfies our extension

of the GCR definition. By assumption, H' is GCR, so that for every T with non-

empty interior, sp H'(T ) is uniformly dense in C(B) for any compact B. Let B be

a given compact set belonging to supp(Z). Then for every such T , all g ∈ C(B),

and all � > 0, there exists ℎg,�,B,T ∈ sp H'(T ) such that

sup
w∈B

∣g(w)− ℎg,�,B,T (w)∣ < �.

By assumption, there are constants CL,B and CU such that 0 < CL,B < fZ(z) <

CU < ∞ for all z ∈ supp(Z). It follows that with f(w) ≡ fZ(z), we have 0 <

CL,B < f(w) < CU < ∞ for all w ∈ B. Because 0 < CL,B < f(w), it follows that

if g ∈ C(B), then also g/f ∈ C(B). Let '∗ ≡ f'. Then there exists ℎ∗g/f,�,B,T =

fℎg/f,�,B,T ∈ sp H'∗(T ) such that

sup
w∈B
∣g(w)− ℎ∗g/f,�,B,T (w)∣ = sup

w∈B
∣g(w)− f(w)ℎg/f,�,B,T (w)∣

= sup
w∈B
∣f(w)[g(w)/f(w)− ℎg/f,�,B,T (w)]∣

≤ CU sup
w∈B
∣[g(w)/f(w)− ℎg/f,�,B,T (w)]∣

≤ CU �.

As B, T, g, and � are arbitrary, the definition is verified, and the result follows.■

Proof of Lemma 2: Lemma 3.1 in Powell et al. (1989) shows that if

E ∥�h(Wi,Wj; Γs)∥2 = o(n),then
√
n
(

Δ̄n,ℎ()− Δ̂n()
)

= op(1). Now we need to

find the condition on h such that E ∥�h(Wi,Wj; Γs)∥2 = o(n) satisfied.
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We first show that E∣�ℎl(Wi,Wj; l)∣2 = o(n) for l = 1, 2, ..., s, if nℎdZl →

∞ and ℎl → 0 as n→∞. We observe

E ∣'(0 +X ′i1 + Y ′i 2 + Z ′i3)Kℎ(Zi − Zj)∣2

=

∫
'2(0 + x1 + y2 + z13)

1

ℎ2dZ

∣∣∣∣K(
z1 − z2

ℎ
)

∣∣∣∣2
×fXY Z(x, y, z1)fZ(z2)dxdydz1dz2

=

∫
1

ℎdZ
'2(0 + x1 + y2 + z13) ∣K(u)∣2

×fXY Z(x, y, z1)fZ(z1 + uℎ)dxdz1dydu

= O(
1

ℎdZ
)

and

E
∣∣'(0 +X ′i1 + Y ′j 2 + Z ′i3)Kℎ(Zi − Zj)

∣∣2
= E

{
'(0 +X ′i1 + Y ′j 2 + Z ′i3)Kℎ(Zi − Zj)

}2

=

∫
'2(0 + x1 + y2 + z13)

1

ℎ2dZ

∣∣∣∣K(
z1 − z2

ℎ
)

∣∣∣∣2
×fXZ(x, z1)fY Z(y, z2)dxdz1dydz2

=

∫
1

ℎdZ
'2(0 + x1 + y2 + z13) ∣K(u)∣2

×fXZ(x, z1)fY Z(y, z1 + uℎ)dxdz1dydu

= O(
1

ℎdZ
),

where in the second last step we use ℎ→ 0.

Since

�ℎ(Wi,Wj; )

≡ 1

2
['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3)
]
Kℎ(Zi − Zj)

+
1

2

[
'(0 +X ′j1 + Y ′j 2 + Z ′j3)

−'(0 +X ′j1 + Y ′i 2 + Z ′j3)
]
Kℎ(Zj − Zi),
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we have

E∣�ℎ(Wi,Wj;)∣2

≤ 2E ∣'(0 +X ′i1 + Y ′i 2 + Z ′i3)Kℎ(Zi − Zj)∣2

+2E
∣∣'(0 +X ′i1 + Y ′j 2 + Z ′i3)Kℎ(Zi − Zj)

∣∣2
+2E

∣∣'(0 +X ′j1 + Y ′j 2 + Z ′j3)Kℎ(Zj − Zi)
∣∣2

+E
∣∣'(0 +X ′j1 + Y ′i 2 + Z ′j3)Kℎ(Zj − Zi)

∣∣2
= O

(
1

ℎdZ

)
= O(n

1

nℎdZ
)(

if nℎdZ →∞
)

= o(n)

So E ∥�ℎ(Wi,Wj; Γs)∥2 ≤
s∑
l=1

E ∣�ℎ(Wi,Wj; l)∣
2 = O(n 1

nℎdZ
). And if

nℎdZl →∞ for l = 1, 2, ..., s = o(n), E ∥�ℎ(Wi,Wj; Γs)∥2 = o(n). ■

Proof of Lemma 3: (a) Show that Δh (Γs) ≡ E
[
Δ̄n,h(Γs)

]
= Δ (Γs) +

O(hq).

Using Taylor expansions, we get

E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)Kℎ(Zi − Zj)]

= E {E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)Kℎ(Zi − Zj)∣Wi]}

= E

[
'(0 +X ′i1 + Y ′i 2 + Z ′i3)

∫
K(u)fZ(Zi + uℎ)du

]
= E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)] + ℎqC1() + o(ℎ2)

with

C1() ≡ E

{
'(0 +X ′i1 + Y ′i 2 + Z ′i3)

dZ∑
s=1

[
∂qfZ (Zi) /∂ (Zis)

q

q!

]}∫
uqk(u)du,
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and similarly

E
[
'(0 +X ′i1 + Y ′j 2 + Z ′i3)Kℎ(Zi − Zj)

]
= E [gXZ(Xi, Zi; )] + C2()ℎq + o(ℎq)

with

C2() = E

{∫
'(0 +X ′i1 + y′2 + Z ′i3)

dZ∑
s=1

[
∂qfZ (Zi) /∂ (Zis)

q

q!

]
dy

}
×
∫
uqk(u)du.

So

Δh() ≡ E
[
Δ̄n,ℎ()

]
= E{['(0 +X ′i1 + Y ′i 2 + Z ′i3)Kℎ(Zi − Zj)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3)]Kℎ(Zi − Zj)}

= E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)] + C1()ℎq + o(ℎq)

−{E [gXZ(X,Z;)] + C2()ℎq + o(ℎq)}

= Δ () + C3()ℎq + o(ℎq)

with

C3() ≡ C1()− C2().

It follows that

E
[
Δ̄n,h(Γs)

]
= Δ (Γs) + C3(Γs)h

q + o(hq)

hence the result.

(b) Show that Hn,h,1(Γs) = 1
n

∑n
i=1 {�1(Wi; Γs)− E [�1(Wi; Γs)]}

+Op(h
q).
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�ℎ,1(W
i
;) ≡ E [�ℎ(Wi,Wj;)∣Wi]

=
1

2
{'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

+ℎqB1(Xi, Yi, Zi;) + o(ℎq)}

−1

2
{
∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy

+ℎqB2(Xi, Zi;) + o(ℎq)}

+
1

2
{
∫
'(0 + x1 + y2 + Z ′i3)fXY Z(x, y, Zi)dxdy

+ℎqB3(Zi;) + o(ℎq)}

−1

2
{
∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx

+ℎqB4(Yi, Zi;) + o(ℎq)}

≡ �1(Wi;) + ℎqB5(Xi, Yi, Zi;) + o(ℎq)

where

�1(Wi;) ≡ 1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (1.6.1)

+
1

2

∫
'(0 + x′1 + y′2 + Z ′i3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx,

B1(Xi, Yi, Zi;) ≡ '(0 +X ′i1 + Y ′i 2 + Z ′i3)

dZ∑
s=1

[
∂qfZ (Zi) /∂ (Zis)

q

q!

]
×
∫
uqk(u)du, (1.6.2)

B2(Xi, Zi;) =

∫
'(0 +X ′i1 + y′2 + Z ′i3)

dZ∑
s=1

1

q!

∂qfY Z(y, Zi)

∂ (Zis)
q dy

×
∫
uqk (u) du, (1.6.3)
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B3(Zi;) =

∫ dZ∑
s=1

1

q!

∂q ['(0 + x1 + y2 + Zi3)fXY Z(x, y, Zi)]

∂ (Zis)
q dxdy

×
∫
uqk (u) du, (1.6.4)

B4(Yi, Zi;) ≡
∫ dZ∑

s=1

1

q!

∂q ['(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)]

∂ (Zis)
q

×
∫
uqk (u) dudx, (1.6.5)

and

B5(Xi, Yi, Zi;) ≡ 1

2
[B1(Xi, Yi, Zi;)−B2(Xi, Zi;)

+B3(Zi;)−B4(Yi, Zi;)] . (1.6.6)

Define

tℎ(Wi;) ≡ �ℎ,1(W
i
;)− �1(Wi;) (1.6.7)

= ℎqB5(Xi, Yi, Zi;) + o(ℎq),

then

E [tℎ(Wi;)] = E [�ℎ,1(W
i
;)]− E [�1(Wi;)]

= Δh ()−Δ () .

So

Hn,h,1() ≡ 1

n

n∑
i=1

�̃h,1(Wi;)

=
1

n

n∑
i=1

{�h,1(Wi;)−Δh ()} (1.6.8)

=
1

n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]}

+
1

n

n∑
i=1

{tℎ(Wi;)− E [tℎ(Wi;)]} ,
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where

1

n

n∑
i=1

{tℎ(Wi;)− E [tℎ(Wi;)]}

=
1

n

n∑
i=1

{ℎqB5(Xi, Yi, Zi;)− E [B5(Xi, Yi, Zi;)]ℎq}+ op(ℎ
q)

= Op(ℎ
q) + op(ℎ

q).

So

Hn,h,1(Γs) =
1

n

n∑
i=1

{�1(Wi; Γs)− E [�1(Wi; Γs)]}+Op(h
q).

(c) Show that under assumption (6.2)
√
nHn,h,1(Γs)

d→ N (0,ΩH), hence
√
n
(

Δ̂n,h(Γs)−Δh(Γs)
)

=
√
n
(

Δ̂n,h(Γs)−Δ(Γs)
)

+ o (1)
d→ N (0,Ω).

Under assumption (6.2),
√
n(hq) = o (1), so Δh (Γs) = Δ (Γs) + o( 1√

n
)

and Hn,h,1(Γs) = 1
n

∑n
i=1 {�1(Wi; Γs)− E [�1(Wi; Γs)]}+ op(

1√
n
). Then

Δ̂n,h(Γs) = Δh (Γs) + 2Hn,h,1(Γs)

= Δ (Γs) +
2

n

n∑
i=1

{�1(Wi; Γs)− E [�1(Wi; Γs)]}+ op(
1√
n

)

The leading term of Hn,h,1(Γs) converges to a multivariate normal distribution by

applying the Lindeberg-Levy Central Limit Theorem. Hence

√
n
(

Δ̂n,h(Γs)−Δ(Γs)
)

=
2√
n

n∑
i=1

{�1(Wi; Γs)− E [�1(Wi; Γs)]}+ op(1)

d→ N (0,Ω)

where

Ω(l, k) ≡ �Δ ( l,k) = 4cov [�1(Wi; l), �1(Wi;k)] . (1.6.9)



41

If in addition H0 holds, then Δ(Γs) = 0 and

�1(Wi; ) =
1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (1.6.10)

+
1

2

∫
'(0 + x′1 + y′2 + Z ′i3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx

(under H0) =
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Xi, Yi, Zi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Xi, Zi]

+
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Zi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Yi, Zi]

≡ Λ(Wi;).

So

cov [�1(Wi; l), �1(Wi;k)]

(under H0) = E [Λ(Wi; l)Λ(Wi;k)] .

■

Proof of Theorem 4: It follows directly from the H-decomposition and

lemma 2 and 3. ■

Proof of Corollary 5: It follows from theorem 4. ■

Proof of Theorem 6: The proof is similar to the proof of theorem 3.4

in Powell et al. (1989). I have shown that Δ̄n,h(Γs)
P→ Δ(Γs) in previous corol-

lary, so I only need to show the consistency of 1
n

∑n
i=1 [�̂ℎ,1(Wi; Γs)�̂ℎ,1(Wi; Γs)

′] for
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E [�1(Wi; Γs)�1(Wi; Γs)
′]. First, I show that E

[
∥�̂ℎ,1(Wi; Γs)− �ℎ,1(Wi; Γs)∥2] =

o (1).

E
[
∥�̂ℎ,1(Wi; Γs)− �ℎ,1(Wi; Γs)∥2]

= E

{
s∑
l=1

[�̂ℎ,1(Wi; l)− �ℎ,1(Wi; l)]
2

}

=
s∑
l=1

E

⎛⎝[ 1

n− 1

n∑
j=1,j ∕=i

�ℎ(Wi,Wj; l)− E [�ℎ(Wi,Wj; l)∣Wi]

]2
⎞⎠

=
s∑
l=1

E

(
1

n− 1

n∑
j=1,j ∕=i

{�ℎ(Wi,Wj; l)− E [�ℎ(Wi,Wj; l)∣Wi]}

)2

=
s∑
l=1

E

[
1

(n− 1)2

n∑
j=1,j ∕=i

{�ℎ(Wi,Wj; l)− E [�ℎ(Wi,Wj; l)∣Wi]}2

]
⎛⎝ cross product

terms are zeros

⎞⎠
=

1

n− 1

s∑
l=1

E
[
{�ℎ(Wi,Wj; l)− E [�ℎ(Wi,Wj; l)∣Wi]}2]

=
1

n− 1

s∑
l=1

E
{
E
[
{�ℎ(Wi,Wj; l)− E [�ℎ(Wi,Wj; l)∣Wi]}2 ∣Wi

]}
=

1

n− 1

s∑
l=1

E {V AR [�ℎ(Wi,Wj; l)∣Wi]} , j ∕= i

=
1

n− 1

s∑
l=1

(
E [�ℎ(Wi,Wj; l)]

2 − E {E [�ℎ(Wi,Wj; l)∣Wi]}2)
≤ 1

n− 1

s∑
l=1

E [�ℎ(Wi,Wj; l)]
2 , equality ℎolds iff E [�ℎ(Wi,Wj; l)∣Wi] = 0

=
1

n− 1
E ∥�ℎ(Wi,Wj; Γs)∥2

≤ 1

n− 1
O

(
1

ℎdZ

)
= O

(
1

nℎdZ

)
= o (1) ,

where in the last step I use the assumption (A 6.1).
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Secondly,

E ∥�ℎ,1(Wi; Γs)− �1 (Wi; Γs)∥2

= ∥tℎ(Wi; Γs)∥2

=
s∑
l=1

[tℎ(Wi; l)]
2

=
s∑
l=1

[Op (ℎql )]
2 = op

(
1

n

)
where in the last step I use the assumption (A 6.2) i.e.

√
nℎql → 0.

So.

E ∥�̂ℎ,1(Wi; Γs)− �1 (Wi; Γs)∥2

= E ∥[�̂ℎ,1(Wi; Γs)− �ℎ,1(Wi; Γs)] + [�ℎ,1(Wi; Γs)− �1 (Wi; Γs)]∥2

≤ E ∥�̂ℎ,1(Wi; Γs)− �ℎ,1(Wi; Γs)∥2 + E ∥�ℎ,1(Wi; Γs)− �1 (Wi; Γs)∥2

= op (1)

which implies

E [∥�̂ℎ,1(Wi; Γs)�̂ℎ,1(Wi; Γs)
′ − �1(Wi; Γs)�1(Wi; Γs)

′∥] = o (1) .

where for a matrix A, ∥A∥ ≡ [trace (A′A)]1/2. Using Markov’s inequality and the

SLLN, I obtain

1

n

n∑
i=1

�̂ℎ,1(Wi; Γs)�̂ℎ,1(Wi; Γs)
′ =

1

n

n∑
i=1

�1(Wi; Γs)�1(Wi; Γs)
′ + op (1)

P→ E [�1(Wi; Γs)�1(Wi; Γs)
′]

hence

Ω̂
P→ Ω

■
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Proof of Corollary 7: Ω̃ − Ω̂ = 4Δ̄n,h(Γs)Δ̄n,h(Γs)
′ P→ 4Δ(Γs)Δ(Γs)

′, by

Corollary 5. And under the null, Δ(Γs) = 0. ■

Proof of Corollary 8: The results follow from theorem 4 and 6. ■

Proof of Proposition 9: The result follows from corollary 8 and that under

the alternatives Δ(Γs) ∕= 0 for essentially all Γs ⊂ Γ. ■
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1.7 Figures

Figure 1.1: QQ plot of T̃n under the null vs. standard normal
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Figure 1.2: QQ plot of T̃n under the alternative vs. standard normal
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Figure 1.3: Power functions of Chi-square test for DGP 1
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Figure 1.4: Power functions of Chi-square test for DGP 2
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Figure 1.5: Power functions of Chi-square test for DGP 3



2

An Integrated Conditional

Moment Test for Conditional

Independence

2.1 Introduction

In chapter 1, I proposed a nonparametric test for conditional indepen-

dence. Suppose we have the data for three random vectors X, Y and Z. The

null hypothesis we are testing is that Y is independent of X given Z. The idea

of the test in chapter 1 follows a series of papers of consistent specification tests

in Bierens (1982), Bierens (1990), Bierens and Ploberger (1997) and Stinchcombe

and White (1998), among others. The test statistic is based on an estimator of the

topological “distance” between restricted and unrestricted probability measures

corresponding to conditional independence or its absence. The distance is eval-

uated using a family of Generically Comprehensively Revealing (GCR) functions

50
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indexed by a nuisance parameter vector. The use of GCR functions makes the

test consistent. Under the null, the limiting distribution of the test statistic is a

Chi-square distribution.

Although the test statistic in chapter 1 is easy to calculate and has a

tractable limiting null distribution, its consistency relies on the randomization of

the choice of the test parameters. In this chapter I obtain a Bierens type Integrated

Conditional Moment (ICM) test by integrating out the nuisance parameters. The

test still achieves
√
n local power and its consistency does not rely on the ran-

domization any more. Its limiting null distribution is a functional of a mean zero

Gaussian process. I simulate critical values using a conditional simulation approach

suggested by Hansen (1996). I also examine the use of convenient case-independent

upper bounds suggested by Bierens and Ploberger (1997).

One potential application of conditional independence testing in eco-

nomics is to test a key assumption identifying causal effects. Suppose we are

interested in estimating the effect of X (e.g. schooling) on Y (e.g. income), and

X and Y are related by the structural equation

Y = �0 + �1X + U,

where U (e.g. ability) is an unobserved cause of Y (income) and �0 and �1 are

unknown coefficients with �1 representing the effect of X on Y . Since X is typically

not randomly assigned and is correlated with U (e.g. unobserved ability will affect

both the schooling and the income), OLS will generally fail to consistently estimate

�1. Nevertheless, if we can find a set of covariates Z (e.g. AFQT scores) such that

given Z, U and X are independent, i.e.

U ⊥ X ∣ Z, (2.1.1)
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we can estimate �1 consistently by various methods: covariance adjustment,

matching, methods using the propensity score such as weighting and blocking, or

combinations of these approaches.

Assumption (2.1.1) is the key assumption for identifying �1; this is called

a conditional exogeneity assumption by White and Chalak (2006). This enforces

the “ignorability” or “unconfoundedness” condition, also known as “selection on

observables” (Barnow et al. (1981)).

Note that assumption (2.1.1) cannot be directly tested since U is unob-

servable. But if there are other observable covariates V satisfying certain conditions

(see White and Chalak (2006)), we have

U ⊥ X ∣ Z ⇒ V ⊥ X ∣ Z,

so we can test (2.1.1) by testing its implication,

V ⊥ X ∣ Z. (2.1.2)

Section 5 of this paper applies this test in the context of the study of the returns

to schooling.

The plan of this chapter is as follows. In section 2, I state the hypotheses

to be tested and explain the basic idea of the test. In section 3, I develop an ICM

test and discuss its local and global properties. I derive the asymptotic distribution

of the test statistic and simulate the critical values. In section 4, I report some

Monte Carlo results which show the test performs well for finite samples. In section

5, I apply the ICM test in the context of the study of the returns to schooling,

testing the key assumption of unconfoundedness. Section 6 concludes and discusses

directions for further research.
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2.2 The Hypotheses and the Idea of the Test

2.2.A The Hypotheses

As in chapter 1, let X, Y, and Z be three random vectors, with dimensions

dX , dY , and dZ , respectively. I still assume the sample observations {(Xi, Yi, Zi)
n
i=1}

are independent and identically distributed (IID) and drop the i subscript when

convenient. Formally, I keep Assumption 1.1 in chapter 1:

Assumption 1 {Wi ≡ (X ′i, Y
′
i , Z

′
i)
′} is an IID sequence of random variables on

the complete probability space (ΩW ,ℱW , PW ). Xi, Yi, and Zi take values in ℝdX ,

ℝdY ,and ℝdZ , respectively, and dW ≡ dX + dY + dZ .

The null hypothesis is that X and Y are independent given Z, whereas

the alternative is its negation. Using the same notation introduced in chapter 1,

we are testing

H0 : Y ⊥ X ∣ Z vs. Ha : Y ∕⊥ X ∣ Z. (2.2.1)

Conditional independence can be defined via conditional densities or den-

sities, as given by Dawid (1979). The following four equations are equivalent to

each other and each defines that X and Y are independent conditioning on Z:

fY ∣X,Z(y ∣ x, z) = fY ∣Z(y ∣ z), (2.2.2)

fX∣Y Z(x ∣ y, z) = fX∣Y (x ∣ y), (2.2.3)

fXY ∣Z(x, y ∣ z) = fX∣Z(x ∣ z) fY ∣Z∣(y ∣ z), (2.2.4)
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and

fXY Z(x, y, z) fZ(z) = fXZ(x, z) fY Z(y, z) (2.2.5)

where f⋅∣⋅ denotes the conditional densities and f⋅ denotes the densities.

2.2.B The Idea of the Test

One way to test conditional independence is to compare the densities in its

definition to see if the equality condition holds. For example, Su and White’s (2008)

test essentially compares fXY Z(x, y, z)fZ (z) to fXZ(x, z)fY Z (y, z). But to do that,

they estimate fXY Z(x, y, z), fZ (z) , fXZ(x, z), and fY Z (y, z) nonparametrically,

so their test has a power against local alternatives only at a rate of n−1/2ℎ−dW /4,

the slowest rate of the four nonparametric density estimators i.e. the rate of

f̂XY Z(x, y, z). This is a rate slower than 1/
√
n and hence suffer from the “curse

of dimensionality”. The dimension here is dW = dX + dY + dZ , which is at least

three and potentially high.

To achieve a rate of 1/
√
n, I do not compare the density functions directly.

Instead, I use a family of “average” indexed by a nuisance parameter vector  to in-

directly measure the distance between fXY Z(x, y, z)fZ (z) and fXZ(x, z)fY Z (y, z),

so that for each given , the test statistic is based on an estimator of an average

which could achieve 1/
√
n rate just like what a semiparametric estimator would

do. This idea is analogous to Bierens (1982), Bierens (1990) and Stinchcombe and

White (1998)’s specification tests, among others.

In chapter 1, I have established a pair of hypotheses equivalent to (2.2.1),
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i.e.

H ′0 : Δ () ≡ EP ('∗(0 +X ′1 + Y ′2 + Z ′3))

−EQ('∗(0 +X ′1 + Y ′2 + Z ′3)) (2.2.6)

= 0,∀ ∈ Γ

versus

H ′a : Δ () ∕= 0, for essentially all  ∈ Γ.

P denotes the (unrestricted) joint distribution of the random vectorW = (X, Y, Z),

Q denotes the (restricted) joint distribution of W with Y ⊥ X ∣ Z. EP and EQ

denote the expectations with respect to P and Q , respectively. The function we

choose to measure the distance of P from Q is

'∗ ≡ 'fZ ,

where ' is a univariate Generically Comprehensively Revealing (GCR) function.

And the index parameter vector is

 ≡ (0, 1, 2, 3)′ ∈ Γ ⊂ ℝ1+dW

with Γ having non-empty interior. “Essentially any”  ∈ Γ means that the set of

“bad” ’s, { ∈ Γ:Δ' () = 0 and Y ∕⊥ X ∣ Z}, has Lebesgue measure zero and is

not dense in Γ.

To understand the moment conditions given in the equivalent null hy-

pothesis, we notice
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Δ ()

= EP ['∗(W ;)]− EQ ['∗(W ;)] (2.2.7)

= EP ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

−EQ ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

=

∫
'(0 + x′1 + y′2 + z′3)fZ(z)dFXY Z(x, y, z)

−
∫
'(0 + x′1 + y′2 + z′3)fZ(z)fY ∣Z(y∣z)dy dFXZ(x, z)

=

∫
'(0 + x′1 + y′2 + z′3)fZ(z)fXY Z(x, y, z)dxdydz

−
∫
'(0 + x′1 + y′2 + z′3)fY Z(y, z)fXZ(x, z)dxdydz.

Instead of comparing fXY Z(x, y, z)fZ(z) to fY Z(y, z)fXZ(x, z), we are now com-

paring their transformation
∫
'(0 + x′1 + y′2 + z′3)fXY Z(x, y, z)fZ (z) dydxdz

and
∫
'(0 + x′1 + y′2 + z′3)fXZ(x, z)fY Z (y, z) dydxdz. Before the transfor-

mation, the density functions fXY Z(x, y, z)fZ(z) and fY Z(y, z)fXZ(x, z) are func-

tions in (x, y, z), the data points, so that those functions can only be estimated

at a nonparametric rate which is slower than n−1/2. After the transformation,∫
'(0 + x′1 + y′2 + z′3)fXY Z(x, y, z)fZ (z) dydxdz and

∫
'(0 + x′1 + y′2 +

z′3)fXZ(x, z)fY Z (y, z) dydxdz are now functions in  ≡ (0, 1, 2, 3). For each

, the transformation is an average of the data, so that semiparametric techniques

could be used here to get a n−1/2 rate. Essentially, we are comparing two functions

by comparing an infinite number of their weighted averages. And the two com-

parison are equivalent because of the properties of the test functions we choose.

Intuitively, a family of GCR functions indexed by  is a class of functions with a

span that comes arbitrarily close to any function. If we choose GCR functions as

our test functions that run though an index space Γ and couldn’t detect any dif-

ference between P and Q, then P and Q should agree for any function. Moreover,

the index space Γ could be “small” as long as it has non-empty interior.
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2.3 Integrated Conditional Moment Type Test

In chapter 1, I estimate Δ () by its sample analog Δ̄n,ℎ() and choose a

finite collection of ’s to construct a Chi-square test statistic. The consistency of

the Chi-square test is due to randomization of the choice of ’s, which introduces a

degree of arbitrariness into both the size and the power of the test. In this section,

I will integrate out  to get an Integrated Conditional Moment (ICM) type test

statistic, following Bierens (1990), Bierens and Ploberger (1997) and Stinchcombe

and White (1998).

2.3.A The Test Statistic

As I have showed, testing H0 : Y ⊥ X ∣ Z vs. Ha : Y ∕⊥ X ∣ Z is

equivalent to testing

H ′0 : Δ () = 0 for  ∈Γ where Γ has a non-empty interior.

If we in addition choose Γ to be compact, it turns out that
√
nΔ̄n,ℎ() converges

to a Gaussian process with a mean function
√
nΔ (). Under the null, that mean

function is a zero function. In other words, if we view Δ̄n,ℎ(), the estimator of

Δ () , as a random function in , we are testing if its mean function Δ () is zero

on Γ.

Based on
√
nΔ̄n,ℎ(), I can construct an integrated conditional moment

test statistic

Mn ≡ n

∫
Γ

[
Δ̄n,ℎ()

]2
d� () ,

where � is a probability measure on Γ which is chosen absolutely continuous with

respect to the Lebesgue measure on Γ. As introduced in chapter 1, I use the sample
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analog Δ̄n,ℎ() to estimate Δ ():

Δ̄n,ℎ() =
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]Kℎ(Zi − Zj)},

where Kℎ(⋅) is defined as

Kℎ(u) ≡ 1

ℎdu
K(

u

ℎ
),

with K(⋅) a symmetric product kernel density function, du the dimension of u, and

bandwidth ℎ ≡ ℎn depending on n.

The test statistic Mn uses an L2 norm to integrate out . We could also

use other norms to do this. For example, we can use a uniform norm to get another

test statistic supΓ

∣∣Δ̄n,ℎ()
∣∣. Intuitively, which norm is better will depend on the

underlying data generating process which is unknown.

2.3.B Asymptotic Distribution of the Test Statistic

The proposed ICM type test statistic Mn is a functional of Δ̄n,ℎ(). To

derive its asymptotic distribution, the key is to show that
√
n
[
Δ̄n,ℎ()−Δ ()

]
converges to a Gaussian process. In chapter 1 I have showed that under certain

assumptions, for a finite collection of ’s, Γs ≡ {1,2, ...,s} ⊂ Γ, The vec-

tor Δ̄n,h(Γs) = [Δ̄n,ℎ1(1), Δ̄n,ℎ2(2), ...Δ̄n,ℎs(s)]
′ is asymptotically normal after

proper centering and scaling, i.e.
√
n
(
Δ̄n,h(Γs)−Δ(Γs)

) d→ N (0,Ω). If we in

addition choose Γ to be compact, we can further show a stronger result, i.e. the

weak convergence of
√
n
[
Δ̄n,ℎ(⋅)−Δ (⋅)

]
to a Gaussian process on Γ with a mean

function zero. We keep assumptions 2-6 in chapter 1 and restate those assumptions

here

Assumption 2 (Kernel function) Let q ≥ 2 be an even integer. The kernel K is
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a product of a symmetric qth order univariate kernel k : ℝ→ ℝ s.t.
∫
k(v)dv = 1,∫

vjk(v)dv = 0 for j = 1, 2, ...q − 1, and 0 <
∫
vqk(v)dv <∞.

Assumption 3 Zi takes values in the interior of the support of Z, i = 1, 2, ... .

Assumption 4 (Smoothness of the densities) The density of Z, fZ , is continu-

ously differentiable of order q; and all partial derivatives of fY Z(y, z), fXZ(y, z),

fXY Z(x, y, z) with respect to z of order q exist.

Assumption 5 '(⋅) is a bounded GCR function.

Assumption 6 (Bandwidth) The bandwidth ℎ ≡ ℎn, satisfies

(A 6.1) nℎdZ →∞ as n→∞, and

(A 6.2)
√
nℎq = o(1), i.e. ℎ = o(n−1/(2q)) as n→∞.

In addition, we need the compactness of Γ which is stated in the following assump-

tion:

Assumption 7 The index parameter space Γ is compact with non-empty interior,

which is a subset of ℝ1+dW .

To show the weak convergence result, we first show the leading term of
√
n
[
Δ̄n,ℎ(⋅)−Δ (⋅)

]
converges to a zero mean Gaussian process and then show

that the remainder term is negligible. I still use U-statistic theory and Taylor

expansion to get the leading term as what I did in chapter 1, and the summarized

result is as follows.
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First, Δ̄n,ℎ() is a U-statistic of degree 2:

Δ̄n,ℎ() =
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]Kℎ(Zi − Zj)} (2.3.1)

=
1⎛⎝ n

2

⎞⎠
∑
(n,2)

�ℎ(Wi,Wj;),

where �ℎ(Wi,Wj;) is a symmetric kernel

�ℎ(Wi,Wj;) ≡ 1

2
['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3

]
Kℎ(Zi − Zj)

+
1

2

[
'(0 +X ′j1 + Y ′j 2 + Z ′j3)

−'(0 +X ′j1 + Y ′i 2 + Z ′j3)
]
Kℎ(Zj − Zi)

= �ℎ(Wj,Wi;).

As in chapter 1, we use H-decomposition to decompose Δ̄n,ℎ() into three parts

such that

Δ̄n,ℎ() = Δℎ() + 2Hn,ℎ,1() +Rn,ℎ,1() (2.3.2)

where

Δℎ() ≡ E
[
Δ̄n,ℎ()

]
= E [�ℎ(Wi,Wj)]

Hn,ℎ,1() ≡ 1

n

n∑
i=1

{�ℎ,1(Wi;)−Δℎ()} (2.3.3)

�ℎ,1(Wi;) ≡ E [�ℎ(Wi,Wj;)∣Wi] , i ∕= j (2.3.4)

and

Rn,ℎ,1() ≡ Δ̄n,ℎ()−Δℎ()− 2Hn,ℎ,1() (2.3.5)

and uncorrelated with Hn,ℎ,1().
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The first two terms Δ̄n,ℎ() and Hn,ℎ,1() constitute the projection of Δ̄n,ℎ()

and the remainder Rn,ℎ,1() is a smaller term if assumption 6.1 holds, which is

shown in detail in the proof of lemma 2 in chapter 1. Using Taylor expansion, I

have shown in the proof of lemma 3 in chapter 1 that Δℎ() = Δ () +O(ℎq) and

Hn,ℎ,1() = 1
n

∑n
i=1 {�1(Wi;)− E [�1(Wi;)]}+Op(ℎ

q), where

�1(Wi;) ≡ 1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (2.3.6)

+
1

2

∫
'(0 + x1 + y2 + Zi3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx.

O(ℎq) and Op(ℎ
q) should be smaller terms if assumption 6.2 holds.

To summarize, I have shown that under assumptions 1-6,

√
nΔ̄n,ℎ() =

√
n [Δℎ() + 2Hn,ℎ,1() +Rn,ℎ,1()]

=
√
nΔ () +

2√
n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]}

+small terms.

Define

�n() ≡ 2√
n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]} , (2.3.7)

which is the leading term of
√
n
[
Δ̄n,ℎ()−Δ ()

]
. I will first show that �n() con-

verges to a zero mean Gaussian process and then show that
√
n
[
Δ̄n,ℎ()−Δ ()

]
converges to the same zero mean Gaussian process. The results are given precisely

in the following theorem.

Theorem 1 Under assumptions 1-7,

(a) �n() =⇒ Z ()
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(b)
√
n
[
Δ̄n,ℎ()−Δ ()

]
=⇒ Z () ,

where  ∈Γ, and Z is a Gaussian process on Γ with a mean function zero and a

covariance function

cov (Z(1),Z(2)) = 4cov [ �1 (Wi;1) , �1 (Wi;2)] (2.3.8)

≡ �Δ (1,2) .

�n() is as defined in (2.3.7), Δ̄n,ℎ() is as defined in (2.3.1), and �1 (Wi;) is

as defined in (2.3.6). If in addition that H0 holds, then

Tn() ≡
√
nΔ̄n,ℎ() =⇒ Z () .

Remark 1 The theorem looks fine for {Xi, Yi, Zi} a strictly stationary and abso-

lutely regular with mixing coefficients  j s.t.
∞∑
j=1

j1/(r−1) j <∞.

Moreover, by applying the continuous mapping theorem (Billingsley

(1999), p.20), I get the following corollary:

Corollary 2 Under assumptions 1-7 and assuming H0 holds, let m : C (Γ)→ ℝ+

be ∥⋅∥∞ continuous and m (x) = 0 if and only if x = 0. Then

m [Tn()] =⇒ m [Z()] .

where  ∈Γ and Z () is the zero mean Gaussian process with covariance function

defined by (2.3.8).

For example, we could choose m to be the L2 norm to get an ICM test statistic

Mn ≡ m [Tn()] =

∫
Γ

[Tn()]2 d� () (2.3.9)

= n

∫
Γ

[
Δ̄n,ℎ()

]2
d� ()⇒

∫
Γ

[Z()]2 d� () ,
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where �() is a probability measure on Γ which is absolutely continuous with

respect to the Lebesgue measure on Γ.

2.3.C Calculate the Critical Values

Under the null, the ICM type test statistic Mn has limiting distribution as

a functional of a zero mean Gaussian process, whose covariance function depends

on the data generating process. Hence the asymptotic critical values will depend

on the data generating process and cannot be tabulated. In this section, I will use

the conditional Monte Carlo approach suggested by Hansen (1996) to simulate the

asymptotic null distribution. Additionally, I will give convenient case-independent

upper bounds as suggested by Bierens and Ploberger (1997).

Simulate the Asymptotic Null Distribution

In this subsection, I applied the Monte Carlo approach provided by

Hansen (1996) to simulate the asymptotic null distribution of the test statistic.

The idea is to construct Tn()∗ which follows a zero mean Gaussian process con-

ditional on Wi. The conditional covariance function is

cov [Tn(1)∗, Tn(2)∗∣ {Wi}ni=1]

=
4

n

n∑
i=1

�̂ℎ,1(Wi;1)�̂ℎ,1(Wi;2)

≡ �̃Δ (1,2) .

I have shown in corollary 7 of chapter 1 that under the Assumptions 1-6 and the

null hypothesis,

�̃Δ (1,2)
P→ �Δ (1,2) .
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So Tn()∗ should have the same unconditional limiting distribution as Tn() under

the null, and we can simulate a large enough sample of Tn()∗’s to approximate

the limiting null distribution of Tn().

A candidate Tn()∗ can be generated by generating {vi}ni=1 to be IID

standard normal random variables and setting

Tn()∗ =
2√
n

n∑
i=1

�̂ℎ,1(Wi;)vi. (2.3.10)

The following proposition states that Tn()∗ has the same limiting distribution as

Tn() under the null.

Proposition 3 Under assumption 1-7 and H0, Tn()∗ =⇒ Z () where  ∈Γ

and Z () is the zero mean Gaussian process with covariance function defined by

(2.3.8). Hence M∗
n ≡ m [Tn()∗] =

∫
Γ

[Tn()∗]2 d� ()⇒
∫
Γ

[Z()]2 d� ().

Figure 2.1 shows the empirical PDF of Mn and M∗
n are pretty close.

Thus theorem 2 of Hansen (1996) is applicable to our case and we can

simulate a large enough sample of M∗
n’s to approximate the distribution of Mn ≡

m [Tn()] =

∫
Γ

[Tn()]2 d� (). To be specific, I execute the following procedure J

times for j = 1, ..., J to get{M j∗
n }

J
j=1:

∙ generate {vij}ni=1 IID N(0, 1) random variables

∙ set

T jn()∗ ≡ 2√
n

n∑
i=1

�̂ℎ,1(Wi;)vij

=
2√
n

n∑
i=1

{[
1

n− 1

n∑
j=1,j ∕=i

�ℎ(Wi,Wj;)

]
vij

}
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∙ set M j∗
n ≡ m [T jn()∗] =

∫
Γ

[T jn()∗]
2
d� ()

This gives a simulated sample
(
M1∗

n , ...,M
J∗
n

)
, whose empirical distribu-

tion should be close to the true distribution of the actual test statistic Mn under

the null. Then we can compute the percentage of {M j∗
n }

J
j=1 which exceed Mn to

get the simulated asymptotic p value. We reject the null hypothesis if the size of

test is greater than the simulated p value. As argued in Hansen (1996), J is under

the control of the econometrician and can be chosen to be large enough in order

to get a good enough approximation.

Upper Bounds of the Critical Values

Although the conditional Monte Carlo approach is straightforward, it

needs simulation. Bierens and Ploberger (1997) suggested case-independent upper

bounds demanding lighter computation. Their results can be applied here. I

restate theorem 7 in Bierens and Ploberger (1997) in terms of our test:

Theorem 4 (Theorem 7 in Bierens and Ploberger (1997)) Let "j be IID N(0, 1)

and let

W̄ = sup
m≥1

1

m

m∑
j=1

"2
j .

For � > 0, under the H0 and assumptions 1-7,

lim
n→∞

Pr

[
Tn > �

∫
�̂Δ (,) d� ()

]
≤ P

[
W̄ > �

]
,



66

where

�̂Δ (,) = �̂2
Δ ()

= 4
1

n

n∑
i=1

[�̂ℎ,1(Wi;)]2 − 4
[
Δ̄n,ℎ()

]2
= 4

1

n

n∑
i=1

⎧⎨⎩
[

1

n− 1

n∑
j=1,j ∕=i

�ℎ(Wi,Wj;)

]2
⎫⎬⎭− 4

[
Δ̄n,ℎ()

]2
.

Bierens and Ploberger (1997) simulated W̄ using 10,000 replications, and

they derived the 10%, 5%, and 1% quantiles:

Pr
(
W̄ > 3.23

)
= 0.10; Pr

(
W̄ > 4.26

)
= 0.05; Pr

(
W̄ > 6.81

)
= 0.01.

Using the upper bounds, we would reject the null hypothesis at 5% significance

level if

Tn > 4.26

∫
�̂Δ (,) d� () .

2.3.D Global and Local Alternatives

The global alternatives which our conditional independence test is against

could be defined as

HG
a : fZ(z)fXY Z(x, y, z) = fY Z(y, z)fXZ(x, z) + � (y, x, z) (2.3.11)

where � (y, x, z) is a nontrivial nonzero function. Then under HG
a , we have

Δ ()

=

∫
'(0 + x′1 + y′2 + z′3)fZ(z)fXY Z(x, y, z)dxdydz

−
∫
'(0 + x′1 + y′2 + z′3)fY Z(y, z)fXZ(x, z)dxdydz

=

∫
'(0 + x′1 + y′2 + z′3)� (y, x, z) dxdydz, (2.3.12)



67

which should be nonzero for essentially all  ∈ Γ because of the property of the

GCR function '. Form the proof of the theorem 1, we can see

lim
n→∞

Pr(Mn ∈ Rejection Region) = 1. (2.3.13)

That is the test is consistent. As the sample size increases, the test will eventually

detect the alternative HG
a from the null hypothesis.

The local alternative can be defined as the following:

HL
a : fZ(z)fXY Z(x, y, z) = fY Z(y, z)fXZ(x, z) + � (y, x, z) /

√
n, (2.3.14)

where � (y, x, z) is a nontrivial nonzero function. As argued in section 2, HL
a could

be equivalently defined as

HL
a : Δ () = c' () /

√
n, (2.3.15)

where

c' () =

∫
'(0 + x′1 + y′2 + z′3)� (y, x, z) dxdydz.

The properties of GCR functions make c' () to be nonzero for essentially any

choice of .

The following result summarizes the asymptotic properties of our test

statistic under the local alternatives (2.3.15).

Proposition 5 Under assumptions 1-7 and under the local alternative HL
a ,

Tn() ≡
√
nΔ̄n,ℎ() =⇒ Zc () ,

where  ∈Γ and Zc is a Gaussian process on Γ with a mean function c' () and a

covariance function

cov (Zc(1),Zc(2)) = 4cov [ �1 (Wi;1) , �1 (Wi;2)] (2.3.16)

= �Δ (1,2) .
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Moreover,

Mn ≡ m [Tn()] =

∫
Γ

[Tn()]2 d� ()⇒
∫
Γ

[Zc()]2 d� () . (2.3.17)

2.3.E The Relationship Between the Chi-square and ICM

Tests

The proposed Chi-square test in chapter 1 and the ICM test in this chap-

ter are related. The Chi-square test statistic Sn(Γs) ≡ n
[
Δ̄n,h(Γs)

]′
Ω̂−1

[
Δ̄n,h(Γs)

]
is a quadratic form based on a finite number of Δ̄n( l)’s with Ω̂−1 as the weighting

matrix. Mn is an average over a continuum number of [Tn()]2’s. In practice when

we cannot get a closed form integral, we use Monte Carlo integration method for

this high dimensional integral so that the approximation errors shrink at a faster

rate. In that case, the integral is approximated by an average. If we choose � to

be a uniform distribution over Γ, Mn becomes an average of many [Tn()]2’s for

different ’s. Then this practical Mn is a quadratic form with a large s and with

the identity matrix as the weighting matrix. In other words, Mn exploits more ’s

than Sn but ignores the heteroskedasticity and dependence among Δ̄n( l)’s.

A variant ICM type statistic which takes care of the diagonal

heteroskedasticity of the variance covariance matrix of Ω would be based on

T̃n() ≡
√
nΔ̄n,ℎ()

�̂Δ ()
.

Hence we could use

M̃n ≡ m
[
T̃n()

]
=

∫
Γ

[
T̃n()

]2

d� ()

as an alternative ICM test statistic and simulate its critical values by the same

way as for Mn. The results for the variant statistic are summarized in the following

corollary:
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Corollary 6 (a) Under assumptions 1-7 and assume �n () > 0,

T̃n()−
√
n

Δ ()

�Δ ()
=
√
n

[
Δ̄n,ℎ()

�̂Δ ()
− Δ ()

�Δ ()

]
=⇒ Z̃ () ,

where  ∈Γ, and Z̃ is a Gaussian process on Γ with a mean function zero and a

covariance function

cov
(
Z̃(1), Z̃(2)

)
=

�Δ (1,2)

�Δ (1)�Δ (2)
(2.3.18)

≡ �Δ (1,2) .

If in addition that H0 holds, then

T̃n() ≡
√
nΔ̄n,ℎ()

�̂Δ ()
=⇒ Z̃ () .

(b) Under assumptions 1-7, assume �̂n () > 0, and assume H0 holds, let m :

C (Γ)→ ℝ+ be ∥⋅∥∞ continuous and m (x) = 0 if and only if x = 0. Then

m
[
T̃n()

]
=⇒ m

[
Z̃()

]
.

(c) Under assumption 1-7 and assume �̂n () > 0,

T̃n()∗ =⇒ Z̃ ()

where

T̃n()∗ ≡ 2

�̂n ()
⋅ 1√

n

n∑
i=1

�̂ℎ,1(Wi;)vij

with {vij}ni=1 IID N(0, 1) random variables. Hence

M̃∗
n ≡ m

[
T̃n()∗

]
=

∫
Γ

[
T̃n()∗

]2

d� ()⇒
∫
Γ

[
Z̃()

]2

d� () .

Figure 2.2 shows the empirical PDF of M̃n and M̃∗
n are pretty close.

Mn, which is based on Tn() =
√
nΔ̄n,ℎ(), is easier to calculate since

it needs not to calculate �̂Δ (), and it could get a sharper bound for the critical

values since �̂Δ () is typically very small. But the Monte Carlo results in the next

section suggest that M̃n, which is based on T̃n() =
√
nΔ̄n,ℎ()

�̂Δ()
, gets a little better

power for most experiments.
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2.4 Monte Carlo Experiments

In this section, I perform some simple Monte Carlo simulation experi-

ments to examine the finite sample performance of the ICM conditional indepen-

dence test.

For all the simulations, I generate {(Xi, Yi, Zi)
n
i=1} IID. The bandwidth I

use is a value close to ℎ̂ given in chapter 1 (1.3.23), and I use ℎ0 = n−1/[3∗(2q+dZ)]

and � = 0.5 when calculating ℎ̂. As in chapter 1, I choose '(⋅) to be the standard

normal PDF, and k(u) the sixth order Gaussian kernel. The number of replication

is 100, and the number of simulated M∗
n or M̃∗

n is 100.

2.4.A Size and Power Studies

DGP 1

I first generate the sample of {(Xi, Yi, Zi)
n
i=1} using the DGP 1 in chapter

1. DGP 1 is the following data generating process

Y = �X + Z + �Y

X = Z + Z2 + �X

where ⎛⎝ �X

�Y

⎞⎠ ∼ N

⎛⎝0,

⎛⎝ �2
X 0

0 �2
Y

⎞⎠⎞⎠ = N

⎛⎝0,

⎛⎝ 4 0

0 1

⎞⎠⎞⎠
and

Z ∼ N(0, �2
Z) = N(0, 3).
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The null hypothesis we are testing is

H0 : Y ⊥ X∣Z,

which is true only when � = 0. As in chapter 1, we use

�
X,Y ∣Z =

cov (X, Y ∣Z)

�X∣Z�Y ∣Z
=

4�

2
√

4�2 + 1

to indicate the strength of the dependence for X and Y , conditional on Z, which

is suitable since X∣Z and Y ∣Z are jointly normal. The power functions are plotted

against � from −0.9 to 0.9.

Although selecting  from any Γ, which is a compact set having a non-

empty interior, should deliver a consistent test, in practice we should avoid choosing

Γ which would make ∣0 +X ′i1 + Y ′i 2 + Z ′i3∣ too large or too small. This is

because the value of '(u) will be very close to zero if ∣u∣ is too large and '(u) will

be close to linear if ∣u∣ is in a too small range. In both cases the test will not have a

good power. In the simulation, I choose Γ which makes ∣0 +X ′i1 + Y ′i 2 + Z ′i3∣

around one. To be specific, I choose  ∼unif(Γ) where Γ = [center−0.5, center +

0.5] with

center,0 ≈ 1−
[

X̄

std({X1i}ni=1)
+

Ȳ

std({Yi}ni=1)
+

Z̄

std({Zi}ni=1)

]
center,1 ≈

(
1

std({X1i}ni=1)
,

1

std({X2i}ni=1)

)
center,2 ≈

(
1

std({Yi}ni=1)

)
center,3 ≈

(
1

std({Zi}ni=1)

)
.

The size and power does not look bad when the sample size is as small

as 100, and it looks pretty good when the sample size reaches 200. The “non-

standardized” results in figure 2.3 correspond to Mn and the “standardized” results
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in figure 2.4 correspond to M̃n. The power functions show that M̃n performs better

than Mn in this experiment. The reason might be that the standardized ICM test

M̃n has more reasonable weights than Mn when summing up Tn’s, just like GLS is

more efficient than OLS.

DGP 2

The DGP 2 I simulate and test is the DGP 2 in chapter 1, a modification of

the DGP 1. This time I am focusing on the outcome of the fat tailed distributions.

So I choose �X and �Y to be student t distribution of degree 3:

�X ∼ 2t3, �Y ∼ t3, �X ⊥ �Y .

The power functions of Mn is plotted in figure 2.5 and the power functions of M̃n

is plotted in figure 2.6. We can see the power is a little worse than the previous

one with normal distributions.

DGP 3

The following DGP is the DGP 3 in chapter 1, which is again a modi-

fication of DGP 1. This time I choose both �X and �Y to be centered chi-square

distributions:

�X ∼ 2
(
�2

1 − 1
)
, �Y ∼

(
�2

1 − 1
)
, �X ⊥ �Y .

The power functions of Mn is plotted in figure2.7 and the power functions of M̃n

is plotted in figure 2.8. The power looks a little better than that of DGP 1 which

uses normal distributions:
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2.4.B Comparison to Other Tests

In this section I will compare the standardized ICM test to other con-

ditional independence tests by some simulations. Su and White’s (2008) test es-

sentially compares fXY Z(x, y, z)fZ(z) to fXZ(x, z)fY Z(y, z) and can detect local

alternatives at a rate of n−
1
2ℎ−

dX+dY +dZ
4 . Su and White’s (2007) test essentially

compares fY ∣X,Z(y∣x, z) to fY ∣Z(y∣z) and can detect local alternatives at a rate

of n−
1
2ℎ−

dX+dZ
4 . My test compares

∫
'(0 + x′1 + y′2 + z′3)fXY Z(x, y, z)fZ (z)

dydxdz to
∫
'(0 + x′1 + y′2 + z′3)fXZ(x, z)fY Z (y, z) dydxdz and can detect

local alternatives at a rate of n−1/2. We first compare all three tests using DGP1.

Figure 2.9 shows the power functions when the sample size is 100. SW 2007 per-

forms better on the negative correlation part while my test is better on the positive

correlation part, and both tests performs better than the SW 2008. Figure 2.10

and figure 2.11 show the power functions when the sample size is increased to 200

and to 500, respectively. We can see the power of my test improves faster than the

power of SW 2007, which again improves faster than the power of SW 2008. This

result is consistent with the rates of local alternatives these tests could detect.

I also compares the power function of my test to the power functions of

other tests, and the results are shown in figure 2.12, where the “t-test” represents

the t-test for � = 0, “LG 1997 CM” represents the Cramer-von Mises type test

statistic of Linton and Gozalo (1997), “LG 1997 KS” represents the Kolmogorov-

Smirnov type test statistic of Linton and Gozalo (1997), “DG 2001 CM” and “DG

2001 KS” represent the Cramer-von Mises type test statistic and the Kolmogorov-

Smirnov type test statistic of Delgado and Gonzalez-Manteiga (2001), respectively.

Although our test loses power compared to the t-test, which is reasonable since

t-test uses more information, it performs better than other nonparametric tests

when the sample size is 500 for DGP1.
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2.5 Application to Returns-To-Schooling Exam-

ple

As stated in the introduction, one potential application of the test is to

test a key assumption identifying causal effects. In this section, I will provide an

example to demonstrate this.

In the literature of returns to schooling, the most widely investigated

structural equation is a Mincer (1974) type semi-logarithmic human capital earn-

ings function:

lnYi = �0 + �1Si + �2EXPi + �3EXP
2
i + Ui, (2.5.1)

where the subscript i stands for individuals, lnYi is log hourly wage, Si is years of

completed schooling, EXPi is years of work experience, EXP 2
i is work experience

squared, and Ui is the residual term with a mean of zero. �1 is the effect of

additional year of schooling on wage. Our goal is to consistently estimate �1.

However, direct estimation of Mincer functions suffers from the well

known ability bias problem, which is caused by the dependence of schooling on

unobserved ability. To make this explicit, let Ui be defined as Ui = Ai + "i and

rewrite the Mincer equation (2.5.1) as

lnYi = �0 + �1Si + �2EXPi + �3EXP
2
i + Ai + "i, (2.5.2)

where Ai stands for unobserved “ability”.

Over the years, one method empirical researchers have adopted to tackle

the ability bias issue is to find proxies of ability, for example IQ or AFQT scores,

and include those as regressors (e.g. Griliches and M. (1972), Griliches (1977), and
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Blackburn and Neumark (1993)). In much empirical work, other terms affecting

earnings are also included in the regression. Hence, the following empirical wage

equation is often estimated

lnYi = �0 + �1Si + TSi +Xi� + Vi (2.5.3)

where TSi stands for ability proxies e.g. IQ or AFQT scores, and Xi includes

EXPi, EXP
2
i and other regressors like tenure, region, sex, race, union, etc.

If the conditional independence assumption

A ⊥ S ∣ (TS,X) (2.5.4)

holds, regression on the empirical wage equation (2.5.3) will then deliver a consis-

tent estimator of �1, the effect of schooling on wage in the Mincer function (2.5.2).

In fact, assumption (2.5.4) is the key assumption to identify �1. It is called a

“conditional exogeneity assumption” by White and Chalak (2006). That enforced

the “ignorability” or “unconfoundedness” condition, also known as “selection on

observables” in the literature. If assumption (2.5.4) holds, even if the separability

of Mincer function (2.5.2) does not hold, we can still identify �1 and consistently

estimate it by various methods.

We cannot test the conditional independence assumption (2.5.4) directly

since A is unobservable. However, following White H. and Chalak K. (2005), if we

could find TS2 s.t.

TS2 = f (A, TS,X, �) (2.5.5)

� ⊥ S ∣ (A, TS,X),

where f denotes some function form, then

A ⊥ S ∣ (TS,X)⇒ TS2 ⊥ S ∣ (TS,X).
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Thus we can test the implied conditional independence condition

H0 : TS2 ⊥ S ∣ (TS,X). (2.5.6)

From (2.5.5), we get some guidance about how to choose TS2. A candidate for TS2

could be a vector of variables that are driven by A, TS, X and some error term �.

Intuitively, TS and TS2 could be error-ridden proxies for ability.

Now I would like to test (2.5.6) using some data set. The data I use are

from the National Longitudinal Survey of Youth 1979 (NLSY 79). In particular, I

use the data from the survey year 2000 and restrict the sample to white males1. I

use the age-adjusted standardized AFQT in year 1980 as TS. TS2 includes math

and verbal scores for preliminary scholastic aptitude tests from 1981 high school

transcripts. To satisfy (2.5.5), I use years of schooling beyond high school as S, so

that TS2 should not be affected by S. X consists of actual experience in survey year

2000 and total tenure with employer in survey year 2000. To implement the test,

I choose '(⋅) to be the standard normal p.d.f., and k(⋅) the sixth order Gaussian

kernel. For the same reason stated in the Monte Carlo section,  is chosen from

a uniform distribution so that ∣0 +X ′i1 + Y ′i 2 + Z ′i3∣ won’t be too big or too

small. At a size of 5%, I cannot reject the null hypothesis (2.5.6). That provides

some evidence supporting the empirical wage equation (2.5.3) used by empirical

researchers.

1To restrict the sample so that it is suitable to estimating wage equation for survey year 2000,
I drop those who were enrolled in high school or college in survey year 2000, and I exclude those
who were in active forces or self-employed or working in family business in survey year 2000. I
also drop those whose hourly wage was not in the range ($1, $1000].
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2.6 Concluding Remarks

In this chapter, I develop a flexible test for conditional independence,

which is simple to implement yet powerful. It is consistent against any deviation

from the null and achieves
√
n local power.

Throughout the chapter, I assume the used data are IID. But the IID

assumption is not essential for the results. We may extend the approach to a

time series framework so that we could test, say, nonlinear Granger causality.

Another extension could be to alter the test so that it could be used on mixed

variables of Z. This need arises because in applied microeconomics, many variables

are categorical or binary while for the current version of conditional independence

test, Z is assumed continuous. A third extension could be further studies about the

bandwidth selection problem. Currently I choose the bandwidth to minimize the

mean square error of Δ̄n,ℎ(). But ideally, one should choose optimal bandwidths

considering the size and power tradeoff. That could be another topic for further

research.

2.7 Appendix: Proofs

Proof of Theorem 1: (a) Obviously for a finite number of ’s, {�n(1),

�n(2), ... ,�n(s)} is asymptotically normal. Also, we assume  ∈Γ ⊂ ℝ1+dW

with Γ a compact (hence totally bounded) set. To complete the proof, I need to

show that �n() is stochastic equicontinuous (Andrews (1994), Billingsley (1999)).
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To prove that, I use theorem 4-6 in Andrews (1994). Note that

�1(Wi;) ≡ 1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy

+
1

2

∫
'(0 + x1 + y2 + Zi3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx,

by theorem 6 in Andrews (1994), I only need to verify that each of the four terms

satisfies Ossiander’s L2 entropy condition.

For the first term

'∗(Wi;) ≡ '(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

= ' (Wi;) fZ(Zi),

then it is a type IV class if I can verify that

E

{
[fZ(Zi)]

2 sup
1:∥1−∥<�

∣' (Wi;1)− ' (Wi;)∣2
}
≤ C� (2.7.1)

for any  ∈Γ, for any � > 0 in a neighborhood of 0, and for some finite constants

C > 0 and  > 0, where ' (Wi;) ≡ '(0+X ′i1+Y ′i 2+Z ′i3). Under assumption

5, ' (Wi;) is differentiable in . Given that E
∥∥fZ(Zi) sup∈Γ ∂ [' (Wi;) /∂]

∥∥2

<∞ and Γ is bounded, I can show that (2.7.1) holds by mean value theorem and

Cauchy-Schwarz inequality.

Similarly, I can show that the other three terms in �1(Wi;) also belong

to type IV class. Hence �n() =⇒ Z ().

(b)second, I show that the difference between these two terms is op (1),

uniformly in , so that they have the same limiting distribution. I want to verify
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that

sup∈Γ∣
√
n
[
Δ̄n,ℎ()−Δ ()

]
− 1√

n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]} ∣ = op (1) .

Note that

√
n
[
Δ̄n,ℎ()−Δ ()

]
− 1√

n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]}

=
√
n [Δℎ ()−Δ ()] +

1√
n

n∑
i=1

{tℎ(Wi;)− E [tℎ(Wi;)]}+
√
nRn,ℎ,1 () .

The first term is

√
n [Δℎ ()−Δ ()] =

√
n[C3()ℎq + o(ℎq)]

with

C3() = E

{
'(0 +X ′i1 + Y ′i 2 + Z ′i3)

∫
1

q!

[(
∂q

∂Z

)
fZ (Zi) (u)q

]
K(u)du

}
−E

[∫
'(0 +X ′i1 + y′2 + Z ′i3)

1

q!

(
∂q

∂Z

)
fY Z(y, Zi)u

qK(u)dydu

]
,

so that

sup
∈Γ

∣∣√n [Δℎ ()−Δ ()]
∣∣

= sup
∈Γ

∣∣√nC3()ℎq +
√
no(ℎq)

∣∣
= op (1)

since C3() is continuous in  and Γ is bounded, and
√
nℎq = op (1) under assump-

tion 6.2. Similarly, we can see that the other two terms are also op (1), uniformly

in . ■

Proof of Corollary 2: The result follows from theorem 10 and the contin-

uous mapping theorem. ■
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Proof of Proposition 3: The proof is similar to that of theorem 2 in

Hansen (1996). ■

Proof of Theorem 4: This is the theorem 7 in Bierens and Ploberger

(1997).

■

Proof of Proposition 5: I have proven that under assumptions 1-7,

(a) �n() =
2√
n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]} =⇒ Z ()

and

(b)
√
n
[
Δ̄n,ℎ()−Δ ()

]
=⇒ Z () .

Inspecting the proof, we can see immediately that Tn() ≡
√
nΔ̄n,ℎ() =⇒ Zc ()

under the local alternative, with a mean function c' () and a covariance function

the same as Z ()’s. Hence the result follows. ■

Proof of Corollary 6: (a) Since

sup


∣∣∣∣√nΔ̄n,ℎ()

�̂n ()
−
√
nΔ()

�Δ ()

∣∣∣∣
≤ sup



∣∣∣∣√nΔ̄n,ℎ()

�̂n ()
−
√
nΔ̄n,ℎ()

�Δ ()

∣∣∣∣+ sup


∣∣∣∣√nΔ̄n,ℎ()

�Δ ()
−
√
nΔ()

�n ()

∣∣∣∣
≤ sup



∣∣∣∣�Δ ()

�̂n ()
− 1

∣∣∣∣ sup


∣∣∣∣√nΔ̄n,ℎ()

�Δ ()

∣∣∣∣+ sup


∣∣∣∣√nΔ̄n,ℎ()

�Δ ()
−
√
nΔ()

�n ()

∣∣∣∣
It’s sufficient to show that sup ∣�̂n ()− �Δ ()∣ = op(1) and �̂n () > 0, where

the former is implied in the proof of consistency of Ω̂ (theorem 6 of chapter 1) and

the latter is assumed.

(b) Similar to corollary 2.

(c) Similar to proposition 3. ■
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2.8 Figures

Figure 2.1: Conditional simulation for the asymptotic null distribution of Mn
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Figure 2.2: Conditional simulation for the asymptotic null distribution of M̃n
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Figure 2.3: Power functions of non-standardized ICM test (Mn) for DGP 1
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Figure 2.4: Power functions of standardized ICM test (M̃n) for DGP 1
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Figure 2.5: Power functions of non-standardized ICM test (Mn) for DGP 2
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Figure 2.6: Power functions of standardized ICM test (M̃n) for DGP 2
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Figure 2.7: Power functions of non-standardized ICM test (Mn) for DGP 3
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Figure 2.8: Power functions of standardized ICM test (M̃n) for DGP 3
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Figure 2.9: Comparison to SW 2007 and SW 2008, sample size 100
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Figure 2.10: Comparison to SW 2007 and SW 2008, sample size 200
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Figure 2.11: Comparison to SW 2007 and SW 2008, sample size 500
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Figure 2.12: Comparison to other tests, sample size 500



3

Conditional Independence Tests

for Mixed Discrete and

Continuous Conditioning Random

Variables

3.1 Introduction

In applied microeconomics, many variables are categorical or binary. For

a conditional independence test, the conditioning variables are usually a mix of

continuous and discrete variables. For example, in the returns-to-schooling exam-

ple we discussed in the first two chapters, the conditioning variables usually include

a number of discrete variables such as sex, race, union, or industry etc.

However, in previous chapters I assume the conditioning variables to be

93
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continuous, which makes the test difficult to directly apply. In this chapter, I

extend the conditional independence test to incorporate the case of mixed condi-

tioning random variables.

A straightforward way to do this would be using frequency estimators to

handle the discrete variables. This means we split the sample into a collection of

subsets (“cells”) according to the value of discrete random variables and calculate

the test statistics for each cell. For example, if the conditioning variables include

one discrete variable, say sex, we can divide the data into two cells: the data for

the male and the data for the female. If the conditioning variables include sex

and race, we can divide the data into the subsamples for white males, black males,

white females, black females, etc. Then we can apply the conditional independence

tests introduced in previous chapters to each cell and get a test statistic based on

that.

Li and Racine (2003, 2004 etc.) instead advocated the method of smooth-

ing the discrete variables, which originates in the work of Aitchison and Aitken

(1976). The idea is to use smooth estimators over different cells. The frequency

approach could be viewed as a special case of the smoothing approach, where

the frequency approach chooses zeroes as the smoothing parameters for discrete

random variables. Li and Racine argued that although smoothing may intro-

duce some estimation bias, it may also reduce the finite sample variance hence

reduce the finite-sample mean squared error. Li and Racine (2003) suggested a

cross-validation (CV) smoothing method to estimate an unknown distributions of

categorical and continuous data. Racine and Li (2004) extended that method to

estimate regression functions. Hsiao et al. (2007) applied that method to model

specification test with mixed discrete and continuous data. In this chapter, I apply

their idea to my conditional independence test.
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The plan of this chapter is as follows. In section 2, I state the hypotheses

I want to test and summarize the testing idea from the previous chapters. In sec-

tion 3, I modify the test statistics introduced in previous chapters by the frequency

approach, so that we can apply the test for the case where the conditioning ran-

dom variables are mixed discrete and continuous. In section 4, I use a smoothing

approach to deal with the mixed data. In section 5, I report some Monte Carlo

results. Section 6 concludes.

3.2 The Hypotheses and the Idea of the Test

As in previous two chapters, we let X, Y, and Z be three random vec-

tors, with dimensions dX , dY , and dZ , respectively. For convenience, I still assume

that the sample observations {(Xi, Yi, Zi)
n
i=1} are independent and identically dis-

tributed (IID). As introduced in chapter 1 and 2 , the null hypothesis is that X

and Y are independent given Z, and the alternative is that they are dependent

given Z, i.e.

H0 : Y ⊥ X ∣ Z vs. Ha : Y ∕⊥ X ∣ Z. (3.2.1)

In chapter 1, I established equivalent hypotheses in the form of moment

conditions, i.e.

H ′0 : Δ () ≡ EP ('∗(0 +X ′1 + Y ′2 + Z ′3))

−EQ('∗(0 +X ′1 + Y ′2 + Z ′3)) (3.2.2)

= 0,∀ ∈ Γ

versus

H ′a : Δ () ∕= 0, for essentially all  ∈ Γ.
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We restate the notations here: P denotes the unrestricted joint distribution of the

random vector W , whereas Q denotes the (restricted) joint distribution of W with

the null holding. EP and EQ represent the expectations with respect to P and

Q , respectively. The distance between P and Q is measured using a family of

tests functions '∗ ≡ 'fZ indexed by  ≡ (0, 1, 2, 3)′ ∈ Γ ⊂ ℝ1+dW , where

' is a univariate Generically Comprehensively Revealing (GCR) function and Γ

has non-empty interior. “Essentially any”  ∈ Γ means that the set of “bad” ’s,

{ ∈ Γ:Δ' () = 0 and Y ∕⊥ X ∣ Z}, has Lebesgue measure zero and is not dense

in Γ. Note that Δ () is an estimatable moment:

Δ ()

≡ EP ['∗(W ;)]− EQ ['∗(W ;)]

= EP ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

−EQ ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]

=

∫
'(0 + x′1 + y′2 + z′3)fZ(z)dFXY Z(x, y, z) (3.2.3)

−
∫
'(0 + x′1 + y′2 + z′3)fZ(z)fY ∣Z(y∣z)dy dFXZ(x, z)

≡ EX,Y,Z ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]−
∫
gXZ(x, z;)dFXZ(x, z)

= EX,Y,Z ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]− EX,Z [gXZ(X,Z;)]

where

gXZ(x, z;) ≡
∫
'(0 + x′1 + y′2 + z′3)fZ(z)fY ∣Z(y, z)dy (3.2.4)

= E ['(0 + x′1 + Y ′2 + z′3)fZ(z)∣Z = z] .

I use a sample analog Δ̄n,ℎ() to estimate Δ (), and construct a Chi-square test

in chapter 1, an Integrated Conditional Moment (ICM) test in chapter 2. In this

chapter, I will modify Δ̄n,ℎ() so that it is suitable for the mixed continuous and
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discrete conditioning variables, and then we can construct a Chi-square test or an

ICM test in the same way as before.

3.3 Mixed Data and the Frequency Approach

3.3.A Mixed Discrete and Continuous Conditioning Ran-

dom Variables

In this chapter, we allow the conditioning random variables to be mixed

continuous and discrete. Let the conditioning random variables Z be denoted by

Z =
(
Zc′, Zd′)′ ,

where Zd is a vector of dd categorical random variables and Zc is a vector of dc

continuous random variables. Let zds be the s-th component of zd (s = 1, 2, ..., dd),

which can assume cs different values, where cs ⩾ 2 is a positive integer. We assume

that Zd has finite support, so zds ∈ DZd
s
≡
{
zds,1, z

d
s,2, ..., z

d
s,cs

}
. We denote the joint

density of Z by fZ (z) = fZ
(
zc, zd

)
.

3.3.B Summarized Assumptions

I keep assumptions 5 and 7 in chapter 2 and modify other assumptions

to incorporate the discrete conditioning random variables.

Assumption 1 {Wi ≡ (X ′i, Y
′
i , Z

′
i)
′} is an IID sequence of random variables on

the complete probability space (ΩW ,ℱW , PW ). The random vector Z =
(
Zc′ , Zd′)′ ,

where Zd is a vector of dd categorical random variables and Zc is a vector of dc
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continuous random variables. dZ = dc + dd. Xi, Yi, and Zi take values in ℝdX ,

ℝdY ,and ℝdc × Πdd
s=1DZd

s
, respectively, dW ≡ dX + dY + dZ .

Assumption 2 (Kernel functions for continuous conditioning variables) Let q ≥ 2

be an even integer. The kernel Kc is a product of a symmetric qth order univariate

kernel k : ℝ → ℝ s.t.
∫
k(v)dv = 1,

∫
vjk(v)dv = 0 for j = 1, 2, ...q − 1, and

0 <
∫
vqk(v)dv <∞.

Assumption 3 Zc
i takes values in the interior of the support of Zc, i = 1, 2, ... .

Assumption 4 (Smoothness of the densities) The density of Zc, fZc , is contin-

uously differentiable of order q; and all partial derivatives of fZ (z), fY Z(y, z),

fXZ(y, z), fXY Z(x, y, z) with respect to zc of order q exist.

Assumption 5 '(⋅) is a bounded GCR function.

Assumption 6 (Bandwidths for continuous conditioning variables) The band-

width for the continuous kernel, ℎs ≡ ℎs,n for s = 1, 2, ..., dc, satisfies

(A 6.1) nΠdc
s=1ℎs →∞ as n→∞, and

(A 6.2)
√
nℎqs = op(1), i.e. ℎs = op(n

−1/(2q)) as n→∞.

Assumption 7 The index parameter space Γ is compact with non-empty interior.
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3.3.C The Frequency Approach

Our test is based on the distance of the restricted and unrestricted joint

probabilities. The distance is indirectly measured by

Δ () = EX,Y,Z ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)]−EX,Z [gXZ(X,Z;)] (3.3.1)

where

gXZ(x, z;) = E ['(0 + x′1 + Y ′2 + z′3)fZ(z)∣Z = z] .

We thus need to estimate Δ () to construct the test statistic. To do that, we

can estimate fZ(z) and gXZ(x, z;), then use a sample average to estimate the

expectations.

Discrete Conditioning Random Variables

A special case would be that the conditioning random vector is discrete.

That is, dc = 0 and Z = Zd. Then fZ would be the probability density function

of Z and can be estimated by the leave-one-out estimator

f̂Z(Zi) = f̂Zd(Zd
i ) =

1

n− 1

n∑
j=1,j ∕=i

1 (Zj = Zi) .

The conditional mean gXZ can be estimated by

ĝXZ(Xi, Zi;) =
1

n− 1

n∑
j=1,j ∕=i

'(0 +X ′i1 + Y ′j 2 + Z ′i3)1 (Zj = Zi) .

Hence the estimator of Δ () would be

Δ̄n,ℎ() =
1

n

n∑
i=1

[
'(0 +X ′i1 + Y ′i 2 + Z ′i3)f̂Z(Zi)

]
− 1

n

n∑
i=1

ĝXZ(Xi, Zi;)

=
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]1 (Zj = Zi)}.
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Remark 1 If Z is discrete, there is no need to use a density weighted expectation

(see the reasoning in chapter 1). So we can instead based our test statistic on

Δ' ()

= EP ['(W ;)]− EQ ['(W ;)]

= EX,Y,Z ['(0 +X ′1 + Y ′2 + Z ′3)]− EX,Z [g';XZ(X,Z;)] ,

where

g';XZ(x, z;) ≡
∫
'(0 + x′1 + y′2 + z′3)fY ∣Z(y, z)dy

= E ['(0 + x′1 + Y ′2 + z′3)∣Z = z] .

And we can then estimate Δ' () by

Δ̄';n,ℎ() =
1

n

n∑
i=1

['(0 +X ′i1 + Y ′i 2 + Z ′i3)]− 1

n

n∑
i=1

ĝ';XZ(Xi, Zi;)

=
1

n

n∑
i=1

['(0 +X ′i1 + Y ′i 2 + Z ′i3)]

− 1

n (n− 1)

n∑
i=1

[
1∑n

j=1,j ∕=i 1 (Zj = Zi) / (n− 1)

×
n∑

j=1,j ∕=i

'(0 +X ′i1 + Y ′j 2 + Z ′i3)1 (Zj = Zi)

]
.

Mixed Conditioning Random Variables

Now suppose we have mixed discrete and continuous Z. The leave-one-

out version of the nonparametric kernel estimator of fZ (Zi) would be

f̂Z(Zi) =
1

n− 1

n∑
j=1,j ∕=i

Kℎ(Z
c
i − Zj)1

(
Zd
j = Zd

i

)
,

and the estimator for the conditional mean gXZ(Xi, Zi;) would be

ĝXZ(Xi, Zi;) =
1

n− 1

n∑
j=1,j ∕=i

'(0 +X ′i1 +Y ′j 2 +Z ′i3)Kc
ℎ(Z

c
i −Zj)1

(
Zd
i = Zd

i

)
.
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Hence the estimator of Δ () would be

Δ̄n,ℎ() =
1

n

n∑
i=1

[
'(0 +X ′i1 + Y ′i 2 + Z ′i3)f̂Z(Zi)

]
− 1

n

n∑
i=1

ĝXZ(Xi, Zi;)

=
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3) (3.3.2)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]Kc
ℎ(Z

c
i − Zj)1

(
Zd
j = Zd

i

)
},

where Kc
ℎ(⋅) is defined as

Kc
ℎ(u) ≡ 1

ℎdu
Kc(

u

ℎ
),

with Kc(⋅) a symmetric product kernel density function, du the dimension of u,

and the bandwidth ℎ ≡ ℎn depending on n.

The frequency estimator Δ̄n,ℎ() is a linear combination of the estimators

defined in chapter 2 for each cell. If we split the sample into a collection of cells

according to the value of Zd and denote the number of observations in each cell as

nzd ≡
∑n

i=1 1
(
Zd
i = zd

)
, then the estimator for each cell is

Δ̄n,ℎ,zd() =
1

nzd (nzd − 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]Kℎ(Zi − Zj)1
(
Zd
j = Zd

i = zd
)
}.

Note that

Δ̄n,ℎ()

=
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3) (3.3.3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]Kc
ℎ(Z

c
i − Zj)1

(
Zd
j = Zd

i

)
}

=
∑
zd

Δ̄n,ℎ,zd() ⋅ f̃Zd

(
zd
)
⋅ f̂Zd

(
zd
)

where
∑

zd denotes the summation over the set Πdd
s=1DZd

s
,

f̃Zd

(
zd
)
≡ 1

n

n∑
i=1

1
(
Zd
i = zd

)
,
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and

f̂Zd

(
zd
)

=
1

n− 1

[
n∑
j=1

1
(
Zd
i = zd

)
− 1

]
.

Both f̃Zd

(
zd
)

and f̂Zd

(
zd
)

are estimators for fZd

(
zd
)
, so that Δ̄n,ℎ() can be

approximately viewed as a linear combination of the estimators for each subsample

with the weight
[
fZd

(
zd
)]2

.

3.4 Discrete Kernels and The Smoothing Ap-

proach

Li and Racine (2003, 2004, 2007 etc.) recommend using a smoothing

method to deal with the mixed data instead of splitting the sample into a number

of cells. I apply their idea to our test in this section.

3.4.A Discrete Kernels

Now we modify the product kernel Kℎ to be

K�,ℎ = Kd
� ⋅Kc

ℎ

where Kd
� is a product kernel with a smoothing parameter vector � and Kc

ℎ is a

product kernel with a smoothing parameter vector ℎ. Kd
� is introduced for discrete

variables Zd while Kc
ℎ is a high-order-bias-reduction kernel for continuous variables

Zc as before.

We use the kernel functions suggested by Racine and Li (2004) which

have a simple form and treat ordered and unordered discrete random variables

separately. Let Zd = (Z̄d′, Z̃d′)′. Z̄d denote categorical random variables which
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have no natural ordering while Z̃d denotes discrete random variables which have a

natural ordering. Correspondingly, the kernel for Z̄d is defined as k̄d�
(
Z̄d
is, z̄

d
s

)
= 1

if Z̄d
is = z̄ds and k̄d�

(
Z̄d
is, z̄

d
s

)
= �s if Z̄d

is ∕= z̄ds , and the kernel for Z̃d is defined as

k̃d�

(
Z̃d
is, z̃

d
s

)
= 1 if Z̃d

is = z̃ds and k̃d�

(
Z̃d
is, z̃

d
s

)
= �
∣Z̃d

is−z̃ds ∣
s if Z̃d

is ∕= z̃ds , �s ∈ [0, 1].

Then the product kernel Kd
� is

Kd
�

(
Zd
i , z

d
)

=

⎡⎣ d̄d∏
s=1

k̄d�
(
Z̄d
is, z̄

d
s

)⎤⎦⎡⎣ dd∏
s=d̄d+1

k̃d�

(
Z̃d
is, z̃

d
s

)⎤⎦
=

⎡⎣ d̄d∏
s=1

�
1(Z̄d

is ∕=z̄ds)
s

⎤⎦⎡⎣ dd∏
s=d̄d+1

�
∣Z̃d

is−z̃ds ∣
s

⎤⎦ .
Note that here we allow the smoothing parameters �’s to be different for different

discrete random variables. If we also allow the smoothing parameters ℎ’s to be

different for different continuous random variables, we get the kernel

K�,ℎ (Zi, z)

= Kd
� ⋅Kc

ℎ

= Kd
�

(
Zd
i , z

d
)
⋅Kc

ℎ (Zc
i − zc) (3.4.1)

=

⎡⎣ d̄d∏
s=1

k̄d�
(
Z̄d
is, z̄

d
s

)⎤⎦⎡⎣ dd∏
s=d̄d+1

k̃d�

(
Z̃d
is, z̃

d
s

)⎤⎦ ⋅ dc∏
s=1

1

ℎs
k(
Zc
is − zcs
ℎs

)

=

⎡⎣ d̄d∏
s=1

�
1
[Z̄d

is
∕=z̄ds ]

s

⎤⎦⎡⎣ dd∏
s=d̄d+1

�
∣Z̃d

is−z̃ds ∣
s

⎤⎦ ⋅ dc∏
s=1

1

ℎs
k(
Zc
is − zcs
ℎs

).

3.4.B The Test Statistic

Replacing the kernel Kℎ defined in previous chapters by the new one, we

can see that the estimator for Δ () becomes
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Δ̄n,�,ℎ() =
1

n

n∑
i=1

[
'(0 +X ′i1 + Y ′i 2 + Z ′i3)f̂Z(Zi)

]
− 1

n

n∑
i=1

ĝXZ(Xi, Zi;)

=
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

{['(0 +X ′i1 + Y ′i 2 + Z ′i3) (3.4.2)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3]K�,ℎ(Zi, Zj)}.

When � takes the value zero, K�,ℎ(Zi, Zj) becomes Kc
ℎ(Z

c
i − Zj)1

(
Zd
j = Zd

i

)
and

Δ̄n,�,ℎ() becomes the frequency estimator.

Based on
√
nΔ̄n,�,ℎ(), I can construct an integrated conditional moment

test statistic in the same way as in chapter 2:

Mn ≡ n

∫
Γ

[
Δ̄n,�,ℎ()

]2
d� () ,

where � is a probability measure on Γ which is chosen to be absolutely continuous

with respect to Lebesgue measure on Γ. Under the null, we expect Mn is close to

zero.

A standardized version of the ICM type statistic introduced in chapter 2

is

M̃n ≡ m
[
T̃n()

]
=

∫
Γ

[
T̃n()

]2

d� () ,

where

T̃n() ≡
√
nΔ̄n,ℎ()

�̂Δ ()

with a consistent estimator of variance

�̂Δ (,) = �̂2
Δ ()

= 4
1

n

n∑
i=1

[�̂�,ℎ,1(Wi;)]2 − 4
[
Δ̄n,�,ℎ()

]2
= 4

1

n

n∑
i=1

⎧⎨⎩
[

1

n− 1

n∑
j=1,j ∕=i

��,ℎ(Wi,Wj;)

]2
⎫⎬⎭− 4

[
Δ̄n,�,ℎ()

]2
.
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3.4.C U-statistics Theory and the H-decomposition

Since K�,ℎ = Kd
� ⋅Kc

ℎ is still symmetric, Δ̄n,�,ℎ() is still a U-statistic of

degree 2:

Δ̄n,�,ℎ() =
1

n (n− 1)

n∑
i=1

n∑
j=1,j ∕=i

['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3)
]
K�,ℎ(Zi, Zj)

=
1⎛⎝ n

2

⎞⎠
∑
(i,j)

��,ℎ(Wi,Wj;),

with

��,ℎ(Wi,Wj;) ≡ 1

2
['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3)
]
K�,ℎ(Zi, Zj)

+
1

2

[
'(0 +X ′j1 + Y ′j 2 + Z ′j3)

−'(0 +X ′j1 + Y ′i 2 + Z ′j3)
]
K�,ℎ(Zj, Zi).

We still use H-decomposition to decompose Δ̄n,�,ℎ() into three parts:

Δ̄n,�,ℎ() = Δ�,ℎ() + 2Hn,�,ℎ,1() +Rn,�,ℎ,1(), (3.4.3)

where

Δ�,ℎ() ≡ E
[
Δ̄n,�,ℎ()

]
(3.4.4)

Hn,�,ℎ,1() ≡ 1

n

n∑
i=1

�̃�,ℎ,1(Wi;), with {�̃�,ℎ,1(Wi;)} IID

�̃�,ℎ,1(Wi;) ≡ ��,ℎ,1(Wi;)−Δ�,ℎ () (3.4.5)

��,ℎ,1(Wi;) ≡ E [��,ℎ(Wi,Wj;)∣Wi] i ∕= j,

and

Rn,�,ℎ,1 () ≡ Δ̄n,�,ℎ()−Δ�,ℎ ()− 2Hn,�,ℎ,1 () . (3.4.6)
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The subscript 1 in the above notations denotes that the item is a projection on

the first argument of ��,ℎ, Wi. Hn,�,ℎ,1 () and Rn,�,ℎ,1 () have zero means and

are uncorrelated. I define the projection Δ̂n,�,ℎ() as:

Δ̂n,�,ℎ() ≡ Δ�,ℎ() + 2Hn,�,ℎ,1(). (3.4.7)

The mean Δ�,ℎ() is not random (although it depends on (�, ℎ)), and Hn,�,ℎ,1()

is just an average of IID random variables whose asymptotic behavior is straight-

forward to derive.

3.4.D The Bias Term

We first show that under the null Δ̄n,�,ℎ() is close to zero if we choose

the smoothing parameters ℎ and � small enough. To do that, we add a suitable

assumption for �.

Assumption 8 (Bandwidths for discrete conditioning variables) The bandwidth

for the discrete kernel, �s ≡ �s,n, satisfies �s = op(n
−1/2) for s = 1, 2, ..., dd, as

n→∞.

Because we will use ��,ℎ,1(Wi;) later to calculate the variance term, we first find

the leading term of ��,ℎ,1(Wi;):

��,ℎ,1(Wi;)

= E [��,ℎ(Wi,Wj;)∣Wi]

≡ �1(Wi;) +
dc∑
s=1

[
Bc

5,s(Wi;)ℎqs
]

+

dd∑
s=1

[
Bd

5.s(Wi;)�s
]

+ s.o.,
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where

�1(Wi;)

≡ 1

2
'∗(Wi;)− 1

2
gXZ(Xi, Zi;) +

1

2
gZ(Zi;)− 1

2
gY Z(Yi, Zi;)

=
1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (3.4.8)

+
1

2

∫
'(0 + x1 + y2 + Zi3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx

(under H0) =
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Wi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Xi, Zi] (under H0)

+
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Zi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Yi, Zi] (under H0).

Note that

E [�1(Wi;)] = Δ () ,

So the bias term would be
∑dc

s=1

[
Bc

5,s(Wi;)ℎqs
]
+
∑dd

s=1

[
Bd

5.s(Wi;)�s
]
+s.o.. The

following proposition summarized the result.

Proposition 1 Under Assumptions 1-5 and ℎs → 0 and �s → 0, Δ�,ℎ() ≡

Δ () +
∑dc

s=1 B
c
5,s(Wi;)ℎqs +

∑dd
s=1B

d
5.s(Wi;)�s + s.o. If in addition H0 holds,

then Δ () = 0. If we furthermore assume ℎs satisfies (A 6.2) and � satisfies as-

sumption 8, then Δ�,ℎ() = o
(

1√
n

)
. Δ�,ℎ(), Δ (), Bc

5,s(Wi;), and Bd
5.s(Wi;)

are defined as in (3.4.4), (3.3.1), (3.7.2) and (3.7.3), respectively.

Remark 2 The leading term of the bias for the discrete variables is of order∑dd
s=1 �s, which is determined by those data which are differ from zd only for one
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element AND by distance 1. When we smooth around zd(say it’s a vector with

dimension dd, for example those are discrete characteristics of the subjects), those

close to zd in the sense that only differ from zd in one value of its variable (say

only the sex is different) should carry more information about zd. If they differ

for, say, two variables, the term is of order �s�t where Zd
is ∕= zds and Zd

it ∕= zdt ,

then it is of a smaller order. And if they differ for, say, one variable but by by

distance 2, the term is of order �2
s which is of a smaller order.

3.4.E The Variance Term

According to Lee (1990) pp 12 Theorem 3, the variance of the U-statistic

Δ̄n,�,ℎ() is

V AR
[
Δ̄n,�,ℎ()

]
=

⎛⎝ n

2

⎞⎠−1

{2 (n− 2)V AR [��,ℎ,1(Wi;)]

+V AR [��,ℎ(Wi,Wj;)]} .

After some calculation, we get

V AR [��,ℎ,1(Wi;)]

= V AR [�1(Wi;)] +
dc∑
s=1

2COV
[
�1(Wi;), Bc

5,s(Wi;)
]
ℎqs

+

dd∑
s=1

2COV [�1(Wi;), Bd
5.s(Wi;)]�s + s.o.

≡ V AR [�1(Wi;)] +
dc∑
s=1

Cc
0,s ()ℎqs +

dd∑
s=1

Cd
0,s ()�s + s.o.

and

V AR [��,ℎ(Wi,Wj;)] = E [� (Wi;)]
dc∏
s=1

1

ℎs
+ s.o..
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So the variance of Δ̄n,�,ℎ() would be

V AR
[
Δ̄n,�,ℎ()

]
= 4n−1V AR [�1(Wi;)] + 4n−1

dc∑
s=1

Cc
0,s ()ℎqs + 4n−1

dd∑
s=1

Cd
0,s ()�s

+2n−2E [� (Wi;)]
dc∏
s=1

1

ℎs
+ s.o.. (3.4.9)

Details of the calculation are in the appendix. As long as assumptions 6 and 8 are

satisfied, the leading term of the variance would be

V AR
[
Δ̄n,�,ℎ()

]
= 4n−1V AR [�1(Wi;)] + s.o.(Assumption 6 and 8). (3.4.10)

3.4.F Asymptotic Distribution of the Test Statistic

Δ̄n,�,ℎ() is different from a conventional U-statistic since its kernel

��,ℎ(Wi,Wj;) depends on the smoothing parameters � and ℎ, which are shrinking

to zero as n→∞. As shown in previous chapters, we need the theory for extended

U-statistics. Lemma 3.1 in Powell et al. (1989) shows that if E ∥��,ℎ(Wi,Wj;)∥2 =

o(n),then
√
n
(

Δ̄n,ℎ()− Δ̂n()
)

= op(1). When calculating the variance term,

we have already gotten that E
[
�2
�,ℎ(Wi,Wj;)∣Wi

]
≡ Op

(
Πdc
s=1ℎ

−1
s

)
. With as-

sumption 6.1, that will make E ∥��,ℎ(Wi,Wj;)∥2 to be o(n). Intuitively, if the

bandwidth for the continuous variables does not shrink too fast, the remainder

term will be of smaller order. I summarize the result precisely in the following

lemma:

Lemma 2 Under Assumptions 1-5, and assumption 6.1 i.e. nΠdc
s=1ℎs → ∞ as

n → ∞, and ℎs → 0 as n → ∞ for s = 1, 2, ..., dc, and assumption 8 i.e.

�s = op(n
−1/2) for s = 1, 2, ..., dd, then

√
n
[
Δ̄n,h()− Δ̂n,h()

]
= op(1).
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To summarize, I have shown that under assumptions 1-6, and assumption

8 that

√
nΔ̄n,�,ℎ() =

√
n [Δ�,ℎ() + 2Hn,�,ℎ,1() +Rn,�,ℎ,1()]

=
√
nΔ () +

2√
n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]}

+small terms.

If we further assume assumption 8 holds, the results will hold uniformly in .

Define the leading term to be

�n() ≡ 2√
n

n∑
i=1

{�1(Wi;)− E [�1(Wi;)]} , (3.4.11)

we can show that �n() converges to a zero mean Gaussian process and thus
√
n
[
Δ̄n,ℎ()−Δ ()

]
converges to the same zero mean Gaussian process. The

results are given precisely in the following theorem.

Theorem 3 Under assumptions 1-8,

(a) �n() =⇒ Z ()

(b)
√
n
[
Δ̄n,�,ℎ()−Δ ()

]
=⇒ Z () ,

where  ∈Γ with Γ a compact set having a non-empty interior, and Z is a Gaussian

process on Γ with a mean function zero and a covariance function

cov (Z(1),Z(2)) = 4cov [ �1 (Wi;1) , �1 (Wi;2)] (3.4.12)

= �Δ (1,2) ,

where �n() is as defined in (3.4.11), Δ̄n,�,ℎ() is as defined in (3.4.2), and

�1 (Wi;) is as defined in (3.4.8). If in addition that H0 holds,

Tn() ≡
√
nΔ̄n,�,ℎ() =⇒ Z () .
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According to corollary 2 in chapter 2, we will get

Mn = n

∫
Γ

[
Δ̄n,�,ℎ()

]2
d� ()⇒

H0

∫
Γ

[Z()]2 d� () ,

so we can still use the conditional Monte Carlo approach as in chapter 2 to simulate

the asymptotic null distribution of the modified ICM test.

As discussed in chapter 1 and 2, ℎ, the smoothing parameter for the

continuous kernel, needs to shrink to zero fast enough as the sample size increases

so that the bias term associated with ℎ will vanish asymptotically. On the other

hand, ℎ cannot shrink too fast so that the variance term won’t blow up.

The rate requirement for the smoothing parameter of the discrete kernel

is only that �s = op(n
−1/2). So � has to shrink fast enough to kill the introduced

bias asymptotically. Unlike ℎ, the shrinking rate of � does not have a upper bound

since since it will not blow up the variance term even if we let it be zero. Note

that when � = 0, the discrete kernel reduces to an indicator function so that the

frequency approach could be viewed as a special case of the smoothing approach.

Li and Racine (2003, 2004) argued that although smoothing may intro-

duce some estimation bias, it may also reduce the finite sample variance to reduce

the finite-sample mean squared error. They suggested a cross-validation (CV)

smoothing method to select the smoothing parameters. But here we cannot ap-

ply the cross-validation method directly since we are not estimating a density or

regression function.



112

3.5 Monte Carlo Experiments

In this section, I perform some simple Monte Carlo simulation experi-

ments to examine the finite sample performance of the conditional independence

tests for mixed discrete and continuous conditioning variables using frequency and

smoothing approaches.

For all the simulations, I generate {(Xi, Yi, Zi)
n
i=1} IID. The bandwidth

for the continuous kernel I use is a value close to ℎ̂ as given in chapter 1 (1.3.23). If

not indicated otherwise, the bandwidth for the discrete kernel, �, is a value close to

ℎ̂q in DGP2 since I want the bias associated with � to be of the same order as the

bias associated with ℎ; and I set � in DGP 1 the same as in DGP 2. I choose '(⋅)

to be the standard normal PDF, and kc(u), the kernel for the continuous variables,

to be the sixth order Gaussian kernel. The number of replications is 100.

3.5.A DGP 1: A binary conditioning random variable

I first generate DGP 1 where the conditioning random variable is binary,

as in the following data generating process

Y = �X + Zd + �Y

X = Zd + �X

where ⎛⎝ �X

�Y

⎞⎠ ∼ N

⎛⎝0,

⎛⎝ �2
X 0

0 �2
Y

⎞⎠⎞⎠ = N

⎛⎝0,

⎛⎝ 4 0

0 1

⎞⎠⎞⎠ ,

and

Zd = 0, with Pr
(
Zd = 1

)
= 0.3,

Zd = 1, with Pr
(
Zd = 1

)
= 0.7.
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As for the DGP 1 in chapter 1 and 2, I use

�
X,Y ∣Z =

cov (X, Y ∣Z)

�X∣Z�Y ∣Z
=

4�

2
√

4�2 + 1

to indicate the strength of the dependence for X and Y , conditional on Z. Be-

cause X∣Z and Y ∣Z are jointly normal, the conditional correlation represents the

dependence between X and Y given Z.

I use the frequency approach to test the conditional independence and

plot the power of test against � from −0.9 to 0.9. The size and power does not

look bad when the sample size is as small as 100, and it looks pretty good when

the sample size reaches 200. The “standardized” results in figure 3.1 correspond

to M̃n and the “non-standardized” results in figure 3.2 correspond to Mn. Again

the simulation results show that M̃n performed better than Mn in this experiment.

I also use the smoothing approach with a positive smoothing parameter

for the discrete kernel. The results for M̃n and Mn are reported in figure 3.3 and

figure 3.4, respectively. The size and power looks similar to the results from the

frequency approach. We can only notice a very tiny improvement of the test power

over some area. Figure 3.5 shows how the power function of M̃n will change when

we change the choice of �, the bandwidth for discrete variable, where the sample

size is 200. Note that when � = 0, the smoothing method becomes the frequency

method. The results show that smoothing may improve the power slightly for this

DGP.
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3.5.B DGP 2: Mixed discrete and continuous conditioning

random variables

DGP 2 generates two conditioning variables, where one is binary as in

DGP 1 and the other is continuous:

Y = �X + Zd + Zc + �Y

X = Zd +
(
2− Zd

)
Zc + (Zc)2 + �X

where ⎛⎝ �X

�Y

⎞⎠ ∼ N

⎛⎝0,

⎛⎝ �2
X 0

0 �2
Y

⎞⎠⎞⎠ = N

⎛⎝0,

⎛⎝ 4 0

0 1

⎞⎠⎞⎠ ,

and

Zd = 0, with Pr
(
Zd = 1

)
= 0.3,

Zd = 1, with Pr
(
Zd = 1

)
= 0.7,

Given Zd = 0, Zc˜N(−2, 4),

Given Zd = 1, Zc˜N(2, 4).

This DGP has more cells than the previous one.

I first use the frequency approach to test the conditional independence

and plot the power function for � from −0.9 to 0.9. The “standardized” results

in figure 3.6 correspond to M̃n and the “non-standardized” results in figure 3.7

correspond to Mn. The power becomes good when the sample size increased to

200 and the dependence is moderate.

I then use the smoothing approach with a positive smoothing parameter

for the discrete kernel. The results for M̃n and Mn are reported in figure 3.8 and

figure 3.9, respectively. The size and power looks similar to the results from the

frequency approach while there is very small improvement of the test power over
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some area. Figure 3.10 shows how the power function of M̃n will change when

we change the choice of �, where the sample size is 200. This results show that

when we select the correct bandwidth for the discrete variable (in this case 0.04),

smoothing may significantly improve the power. But when we choose a too big

discrete bandwidth, the size of the test could be way off.

3.6 Concluding Remarks

In this chapter I extend the nonparametric test for conditional indepen-

dence to incorporate the case where the conditioning random variables are mixed

discrete and continuous. The frequency approach divides the sample into a col-

lection of cells according to the value of the discrete conditioning variables, and

constructs the test statistic based on a linear combination of estimators for all

cells. The frequency approach is easy to calculate and performs well in the simula-

tions. Another method would be to use kernel smoothing for both continuous and

discrete variables. This can incorporate the frequency method as a special case.

The two tests have the same asymptotic distributions as long as the bandwidth

of the discrete kernel shrinks to zero faster enough. The smoothing approach may

increase the power for finite samples especially when the number of cells is rel-

atively large. Nevertheless the choice of the bandwidth of the discrete kernel is

challenging.
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3.7 Appendix: Proofs

Proof of Proposition 1:

Δ�,ℎ()

= E [��,ℎ(Wi,Wj;)]

= E {E [��,ℎ(Wi,Wj;)∣Wi]}

≡ E {��,ℎ,1(Wi;)}

= E

{
�1(Wi;) +

dc∑
s=1

Bc
5,s(Wi;)ℎqs +

dd∑
s=1

Bd
5.s(Wi;)�s + s.o

}

= Δ () +
dc∑
s=1

E
[
Bc

5,s(Wi;)
]
ℎqs +

dd∑
s=1

E
[
Bd

5.s(Wi;)
]
�s + s.o

To calculate the last second step in above derivation, we notice that
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��,ℎ,1(Wi;)

= E [��,ℎ(Wi,Wj;)∣Wi]

=
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)K�,ℎ(Zi, Zj)∣Wi]

−1

2
E
[
'(0 +X ′i1 + Y ′j 2 + Z ′i3)K�,ℎ(Zi, Zj)∣Wi

]
+

1

2
E
[
'(0 +X ′j1 + Y ′j 2 + Z ′j3)K�,ℎ(Zj, Zi)∣Wi

]
−1

2
E
[
'(0 +X ′j1 + Y ′i 2 + Z ′j3)K�,ℎ(Zj, Zi)∣Wi

]
=

1

2

{
'∗(Wi;) +

dc∑
s=1

[
Bc

1,s(Wi;)ℎqs
]

+

dd∑
s=1

[
Bd

1.s(Wi;)�s
]}

−1

2

{
gXZ(Xi, Zi;) +

dc∑
s=1

[
Bc

2,s(Xi, Zi;)ℎqs
]

+

dd∑
s=1

[
Bd

2.s(Xi, Zi;)�s
]}

+
1

2

{
gZ(Zi;) +

dc∑
s=1

[
Bc

3,s(Zi;)ℎqs
]

+

dd∑
s=1

[
Bd

3.s(Zi;)�s
]}

−1

2

{
gY Z(Yi, Zi;) +

dc∑
s=1

[
Bc

4,s(Yi, Zi;)ℎqs
]

+

dd∑
s=1

[
Bd

4.s(Yi, Zi;)�s
]}

+ s.o

≡ �1(Wi;) +
dc∑
s=1

[
Bc

5,s(Wi;)ℎqs
]

+

dd∑
s=1

[
Bd

5.s(Wi;)�s
]

+ s.o
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�1(Wi;)

≡ 1

2
'∗(Wi;)− 1

2
gXZ(Xi, Zi;) +

1

2
gZ(Zi;)− 1

2
gY Z(Yi, Zi;)

=
1

2
'(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)

−1

2

∫
'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zi)dy (3.7.1)

+
1

2

∫
'(0 + x1 + y2 + Zi3)fXY Z(x, y, Zi)dxdy

−1

2

∫
'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx

(under H0) =
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Wi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Xi, Zi] (under H0)

+
1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Zi]

−1

2
E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Yi, Zi] (under H0)

where

gXZ(x, z;) ≡
∫
'(0 + x′1 + y′2 + z′3)fY Z(y, z)dy

= E ['(0 + x′1 + Y ′2 + z′3)fZ(z)∣Z = z]

(under H0) = E ['(0 +X ′1 + Y ′2 + Z ′3)fZ(Z)∣X = x, Z = z] ,

gZ(Zi;) ≡
∫
'(0 + x′1 + y′2 + Z ′i3)fXY Z(x, y, Zi)dxdy

= E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Zi] ,

gY Z(Yi, Zi;) ≡
∫ x

U

xL

'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)dx

(under H0) = E ['(0 +X ′i1 + Y ′i 2 + Z ′i3)fZ(Zi)∣Yi, Zi] ,

Bc
1,s(Wi;) ≡ '(0 +X ′i1 + Y ′i 2 + Z ′i3)

[
∂qfZ

(
Zc
i , Z

d
i

)
/∂ (Zc

is)
q

q!

]∫
uqk(u)du,
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Bd
1,s(Wi;) ≡ '(0 +X ′i1 + Y ′i 2 + Z ′i3)(

∑
zd

[
1s
(
Zd
i , z

d
)
fZ(Zc

i , z
d)
]
)

without natural ordering

or '(0 +X ′i1 + Y ′i 2 + Z ′i3)(
∑
zd

[
1s
(∣∣Zd

i − zd
∣∣ = 1

)
fZ(Zc

i , z
d)
]
)

with natural ordering,

with

1s
(
Zd
i , z

d
)
≡ 1

(
Zd
is ∕= zds

) ∏
s′ ∕=s

1
(
Zd
is = zds

)
i.e. Zd

i and zd only differ for the sth element,

1s
(∣∣Zd

i − zd
∣∣ = 1

)
≡ 1

(∣∣Zd
i − zd

∣∣ = 1
)

1
(
Zd
is ∕= zds

) ∏
s′ ∕=s

1
(
Zd
is = zds

)
only the sth variable is different by distance 1,

Bc
2,s(Xi, Zi;) ≡

∫
uqk (u) du

×
∫ y

U

yL

'(0 +X ′i1 + y′2 + Z ′i3)
∂qfY Z(y, Zi)/∂ (Zc

is)
q

q!
dy,

Bd
2,s(Xi, Zi;) ≡

∑
zd

[
1s
(
Zd
i , z

d
)

×
∫ y

U

yL

'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zc
i , z

d)dy

]
without natural ordering

or =
∑
zd

[
1s
(∣∣Zd

i − zd
∣∣ = 1

)
×
∫ y

U

yL

'(0 +X ′i1 + y′2 + Z ′i3)fY Z(y, Zc
i , z

d)dy

]
with natural ordering,

Bc
3,s(Zi;)

≡
∫
uqk (u) du

×
∫ y

U

yL

∫ x
U

xL

[
∂q'(0 + x′1 + y′2 + Z ′i3)fXY Z (x, y, Zi) /∂ (Zc

is)
q

q!

]
dxdy,
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Bd
3,s(Zi;) ≡

∑
zd

[1s
(
Zd
i , z

d
)

×
∫
'(0 + x′1 + y′2 + Zc′

i 
c
3 + zd′d3)fXY Z(x, y, Zc

i , z
d)dxdy]

without natural ordering

or =
∑
zd

[1s
(∣∣Zd

i − zd
∣∣ = 1

)
×
∫
'(0 + x′1 + y′2 + Zc′

i 
c
3 + zd′d3)fXY Z(x, y, Zc

i , z
d)dxdy]

with natural ordering,

Bc
4,s(Yi, Zi;) ≡

∫
uqk (u) du

×
∫ x

U

xL

[
∂q'(0 + x′1 + Y ′i 2 + Z ′i3)fXZ(x, Zi)/∂ (Zc

is)
q

q!

]
dx,

Bd
4,s(Yi, Zi;) ≡

∑
zd

[1s
(
Zd
i , z

d
)

×
∫ x

U

xL

'(0 + x′1 + Y ′i 2 + Zc′
i 

c
3 + zd′d3)fXZ(x, Zc

i , z
d)dx]

without natural ordering

or =
∑
zd

[1s
(∣∣Zd

i − zd
∣∣ = 1

)
×
∫ x

U

xL

'(0 + x′1 + Y ′i 2 + Zc′
i 

c
3 + zd′d3)fXZ(x, Zc

i , z
d)dx]

with natural ordering,

Bc
5,s(Wi;) ≡ 1

2

[
Bc

1,s(Wi;)−Bc
2,s(Xi, Zi;) +Bc

3,s(Zi;)−Bc
4,s(Yi, Zi;)

]
,

(3.7.2)

and

Bd
5.s(Wi;) ≡ 1

2

[
Bd

1,s(Wi;)−Bd
2,s(Xi, Zi;) +Bd

3,s(Zi;)−Bd
4,s(Yi, Zi;)

]
.

(3.7.3)
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Note that

E [�1(Wi;)]

≡ 1

2
E ['∗(Wi;)]− 1

2
E [gXZ(Xi, Zi;)] +

1

2
E [gZ(Zi;)]− 1

2
E [gY Z(Yi, Zi;)]

=
1

2

∫
'(0 + x′1 + y′2 + z′3)fZ(z)fXY Z(x, y, z)dxdydz

−1

2

∫
'(0 + x′1 + y′2 + z′3)fY Z(y, z)fXZ(x, z)dydxdz (3.7.4)

+
1

2

∫
'(0 + x′1 + y′2 + z′3)fXY Z(x, y, z)fZ(z)dxdydz

−1

2

∫
'(0 + x′1 + y′2 + z′3)fXZ(x, z)fY Z(y, z)dxdydz

=

∫
'(0 + x′1 + y′2 + z′3)fZ(z)fXY Z(x, y, z)dxdydz

−
∫
'(0 + x′1 + y′2 + z′3)fXZ(x, z)fY Z(y, z)dxdydz

= EP ['∗(0 +X ′1 + Y ′2 + Z ′3)]− EQ ['∗(0 +X ′1 + Y ′2 + Z ′3)]

= Δ () ,

where we use

E ['∗(Wi;)] = E [gZ(Zi;)]

and

E [gXZ(Xi, Zi;)] = E [gY Z(Yi, Zi;)] .

■

Proof of (3.4.9): According to Lee (1990) pp 12 Theorem 3, the variance

of the U-statistic Δ̄n,�,ℎ() is

V AR
[
Δ̄n,�,ℎ()

]
=

⎛⎝ n

2

⎞⎠−1

{2 (n− 2)V AR [��,ℎ,1(Wi;)]

+V AR [��,ℎ(Wi,Wj;)]} ,
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where

��,ℎ(Wi,Wj;) =
1

2
['(0 +X ′i1 + Y ′i 2 + Z ′i3)

−'(0 +X ′i1 + Y ′j 2 + Z ′i3)
]
K�,ℎ(Zi, Zj)

+
1

2

[
'(0 +X ′j1 + Y ′j 2 + Z ′j3)

−'(0 +X ′j1 + Y ′i 2 + Z ′j3)
]
K�,ℎ(Zj, Zi)

and

��,ℎ,1(Wi;)

= E [��,ℎ(Wi,Wj;)∣Wi]

= �1(Wi;) +
dc∑
s=1

[
Bc

5,s(Wi;)ℎqs
]

+

dd∑
s=1

[
Bd

5.s(Wi;)�s
]

+ s.o..

V AR [��,ℎ,1(Wi;)]

= V AR [�1(Wi;)] +
dc∑
s=1

2COV
[
�1(Wi;), Bc

5,s(Wi;)
]
ℎqs

+

dd∑
s=1

2COV [�1(Wi;), Bd
5.s(Wi;)]�s + s.o.

≡ V AR [�1(Wi;)] +
dc∑
s=1

Cc
0,s ()ℎqs +

dd∑
s=1

Cd
0,s ()�s + s.o.,

where

Cc
0,s () ≡ 2COV

[
�1(Wi;), Bc

5,s(Wi;)
]
,

and

Cd
0,s () ≡ 2COV [�1(Wi;), Bd

5.s(Wi;)].

E
[
�2
�,ℎ(Wi,Wj;)∣Wi

]
≡ � (Wi;)

dc∏
s=1

1

ℎs
+ s.o.
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V AR [��,ℎ(Wi,Wj;)]

= E
[
�2
�,ℎ(Wi,Wj;)

]
−Δ�,ℎ()2

= E [� (Wi;)]
dc∏
s=1

1

ℎs
−Δ�,ℎ()2 + s.o.

= E [� (Wi;)]
dc∏
s=1

1

ℎs
+ Δ2() + s.o.

= E [� (Wi;)]
dc∏
s=1

1

ℎs
+ s.o. if ℎs = o (1) .

V AR
[
Δ̄n,�,ℎ()

]
=

2

n(n− 1)
{2 (n− 2)V AR [��,ℎ,1(Wi;)]

+V AR [��,ℎ(Wi,Wj;)]}

= 4n−1V AR [��,ℎ,1(Wi;)]− 4

n (n− 1)
V AR [��,ℎ,1(Wi;)]

+2n−2V AR [��,ℎ(Wi,Wj;)] + s.o.

= 4n−1V AR [��,ℎ,1(Wi;)]

+2n−2V AR [��,ℎ(Wi,Wj;)] + s.o.

= 4n−1V AR [�1(Wi;)] + 4n−1

dc∑
s=1

Cc
0,s ()ℎqs

+4n−1

dd∑
s=1

Cd
0,s ()�s + s.o.

+2n−2E [� (Wi;)]
dc∏
s=1

1

ℎs
+ s.o.

■

Proof of Theorem 3: Replacing the kernel Kℎ in chapter 2 by K�,ℎ defined

in (3.4.1), and using the results in the proof of proposition 1 and the proof of (3.4.9),

we find that the proof of theorem 1 in chapter 2 still goes through. ■
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3.8 Figures

Figure 3.1: Power functions of M̃n for DGP 1, frequency approach
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Figure 3.2: Power functions of Mn for DGP 1, frequency approach
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Figure 3.3: Power functions of M̃n for DGP 1, smoothing approach
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Figure 3.4: Power functions of Mn for DGP 1, smoothing approach
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Figure 3.5: Power functions of M̃n for DGP 1, different bandwidths for the discrete

variable
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Figure 3.6: Power functions of M̃n for DGP 2, frequency approach
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Figure 3.7: Power functions of Mn for DGP 2, frequency approach
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Figure 3.8: Power functions of M̃n for DGP 2, smoothing approach
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Figure 3.9: Power functions of Mn for DGP 2, smoothing approach
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Figure 3.10: Power functions of M̃n for DGP 2, different bandwidths for the discrete

variable
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