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Abstract. Optimal policy recommendations from natural resource
management models can involve fast-changing management interventions.
Actual policies often change more gradually, potentially reflecting costs as-
sociated with policy adjustment. We examine how including policy adjust-
ment costs changes policy recommendations in models of fishery manage-
ment. Specifically, we examine cases where policy adjustment costs increase
at an increasing rate with the rate of change of fishing effort levels. We exam-
ine how accounting for these costs changes optimal management strategies
in static and time-varying environments. Increasing policy adjustment costs
results in optimal approach paths to stationary optimal solutions that are
more gradual but that rely on oscillatory convergence. In time-varying envi-
ronments, including policy adjustment costs smoothes optimal management
recommendations, resulting in decreased variation in effort levels on the sta-
tionary part of the optimal solution, but increased variation in optimal stock
sizes. We conclude that accounting for policy adjustment costs in this way
leads to management recommendations that in some ways would be simpler
for managers to implement (more gradual approach paths), but in other ways
more challenging (oscillatory convergence) and that can affect where envi-
ronmental variability is expressed in model predictions (stock sizes versus
effort levels) while not suppressing this variability altogether.

Key Words: Regularization, harvesting, institutions, inflexible, slug-
gish, recruitment variation, implementation.

1. Introduction. One of the most important insights in the management of
natural resources was the framing of the problem as an investment decision for soci-
ety (Clark and Munro [1975], see also Clark [1990] and for a recent review, Conrad
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2 D. RYAN ET AL.

and Smith [2012]). The management strategies suggested by bioeconomic models
that formalize this framing often entail making rapid changes to harvesting policies.
For example, bioeconomic models often suggest that making fast transitions from
some initial ecosystem state toward a long-term management target would be opti-
mal (e.g., Spence and Starrett [1975], Hartl and Feichtinger [1987], Sanchirico et al.
[2010], Martinet et al. [2010]). Also, when managing stochastically varying popula-
tions, the classic optimal management strategy is that harvest rates in each period
track inter-annual variability in recruitment closely (Reed [1979], Nostbakken and
Conrad [2007], McGough et al. [2009], Kapaun and Quaas [2013]). In another ex-
ample, some deterministic problems, for example, how to manage age-structured
populations with harvesting strategies that cannot target individual cohorts, involve
recommendations that pulse harvesting would be optimal (Pope [1973], Bjorndal
and Brasao [2006], Tahvonen [2009], Armsworth et al. [2011]). With a pulse har-
vesting strategy, a population is harvested intensely for a short period and then left
unharvested for a number of years to recover before being harvested intensely once
more. As well as policies that change quickly in time, policies that change frequently
in space have also been recommended based on optimal control applications (e.g.,
Neubert [2003], Neubert and Herrera [2008]).

Fishery management policies, such as changes to total allowable catches, how-
ever, rarely follow such fast changing policy prescriptions (Biais [1995], Patterson
and Resimont [2007], Boettiger et al. [2016]). Rather, policies are sticky or slow
to change suggesting the presence of adjustment or transaction costs associated
with rapid changes in optimal policies. There are many political-economy reasons
for the presence of these costs. For example, there might be social pressures to
maintain fleet sizes when population sizes are low due to concerns about social and
economic displacement (Clark et al. [1985]). The latter is evident in many fishery
management debates surrounding rebuilding of fish populations (National Resource
Council [2014]) and is the reason for disaster relief packages being provided to fish-
ing industry participants. Other reasons could be associated with the time scale of
stock assessments (e.g., required every 3 years) or fishery management plans (e.g.,
setting policies for a number of years), or with uncertainty surrounding assessments
of current cohort sizes (Ralston et al. [2011]).

In this paper, we set out to investigate how including adjustment costs changed
the predictions of a canonical deterministic optimal control model of fishery man-
agement (see Boettiger et al. [2016] for an investigation of these costs in a stochastic
fishery model). Specifically, we incorporate a penalty into the objective function
that increases in the change in fishing effort (denoted (dE/dt)2 penalty). Inclusion
of penalty functions of this type, termed regularization, is common in applications
of control theory in engineering (Kirsch [1996]). Additional costs associated with
quickly changing harvesting effort levels would emerge from increased administra-
tive transaction costs associated with repeatedly revisiting past policy decisions,
or from preferences on the part of managers, fishermen, fish processing plants, or
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other stakeholders for more regular harvests and employment schedules. A few stud-
ies have utilized this type of representation of policy adjustment costs usually in
the course of examining other fisheries management questions (Ludwig [1980], Wirl
[1992], Jørgensen and Kort [1993], Feichtinger et al. [1994], Liski et al. [2001]). Our
goal in this work is to focus on the consequences of policy adjustment costs per se
to aid natural resource modelers in understanding the consequences of including
them in a model.

The paper is structured as follows: the “Methods” section records our modeling
and parameter choices, and briefly describes our numerical methods. We focus on
deterministic optimal control via harvesting in a constant environment and in one
where stock productivity is characterized by periodic variation as a consequence of
oscillating environmental conditions (e.g., El Nino-La Nina cycles; see also Parma
[1990], Castilho and Srinivasu [2007], Carson et al. [2009]). The “Results” section
presents and analyzes solutions in both environmental settings. These results have
an added complexity in the time-varying setting, in which a central question is
how the time scale of the control interacts with the speed of the periodic varia-
tion. The “Discussion” section summarizes management implications and provides
recommendations for the design of natural resource management models. The Sup-
porting Information contains additional details relevant to our analysis, as well as
further numerical results that complement and refine results in the main text.

2. Methods. The following notation will be used throughout the paper:

Symbol Meaning

t time
N (t) biomass of fish stock at time t

E(t) total effort invested in fishing at time t

h(t) harvest rate
r or r(t) intrinsic rate of increase of the fish stock (see below)
K carrying capacity (constant)
p price of fish (constant)
q catchability coefficient (constant)
δ discount rate (constant)

Other symbols will be defined as they are introduced.

2.1. Growth and harvest rates. Throughout the paper, the harvest rate is
represented by a Schaefer model, that is, is proportional to both stock size and
fishing effort via the equation

h(t) = qE(t)N(t).
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Stock growth is assumed to be logistic, with intrinsic rate of increase r and
carrying capacity K,

dN(t)
dt

= rN(t)
(

1 − N(t)
K

)
− qE(t)N(t).(1)

As noted in the notation table, carrying capacity K and catchability coefficient
q are assumed constant. We start by assuming the same for growth parameter r.
Then, we examine how different policy adjustment costs affect the ability of the
optimal solutions to track changing environmental conditions by considering a case
where r = r(t) varies sinusoidally with time,

dN(t)
dt

= r(t)N(t)
(

1 − N(t)
K

)
− qE(t)N(t),(2)

where r(t) is of the form

r = r(t) ≡ 1 − 0.5 cos
(

πt

L

)

for some constant L. Note that with this formulation, the population always has
a positive intrinsic rate of increase, but environmental conditions oscillate between
favorable conditions during which the population is highly reproductive and less
favorable conditions where its reproductive potential is lower.

2.2. Management objectives. As a baseline, we assume the net present value
(NPV) of future harvests is given by

NPV1 ≡
∫ T

0
e−δt [pqE(t)N(t) − c1E(t)] dt ,(3)

where T is a time horizon and c1 is a constant that determines the cost of effort.
Here the managerial objective is to determine the value of E(t) that maximizes
(3), subject to stock dynamics (1). It is well known (see, e.g., Spence and Starrett
[1975] and Clark [1990]) that the linearity of the objective in the control leads to
a “bang-bang” solution, that is, one in which stock levels follow a most rapid ap-
proach path (MRAP) to and from the steady-state solution, and the effort function
exhibits discrete jumps. We have chosen to show results for a finite time problem
to highlight more clearly how including policy adjustment costs affects approach
paths to stationary optimal solutions. We utilize time horizons long enough that the
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relevant intuition for the infinite time horizon problem can be gained by ignoring
the terminal time approach path.

To account for policy adjustment costs, we assume that these costs scale quadrat-
ically with the rate of change of effort, where the NPV function is

NPV2 ≡
∫ T

0
e−δt

(
pqE(t)N(t) − c1E(t) − c2

(
dE(t)

dt

)2
)

dt ,(4)

where c2 > 0 is a constant. In this formulation, the state becomes a two-dimensional
vector (N(t), E(t)), and the control is the function dE(t)/dt. This formulation as-
sumes that the policy adjustment costs are symmetric with respect to increases or
decreases of effort, which is a reasonable starting place as fishermen often argue that
fishing harvests are slow to increase and conservationists argue that fishing catches
are slow to decrease. Considering asymmetric policy adjustment costs (e.g., where
it is more difficult to reduce effort than to increase it) would provide a sensible
extension.

Quadratic scaling is not essential, but it does represent a simple, analytically
tractable way to impose the extra costs, and thus a reasonable point of depar-
ture for this study. The two different management objectives (3) and (4), when
constrained by the two versions of the stock dynamics (1) and (2), describe four
different maximization problems. For each, we require that E(t) ≥ 0 and N(t) ≥ 0.
In all cases, we assume that the initial value of the stock is given by N0 = K.

2.3. Parameter choice. We focus on qualitative changes in the optimal man-
agement recommendations and their impact on state dynamics under each of the
different objective-state equation pairs. We emphasize in particular how optimal
management recommendations are affected as the importance of additional costs in
determining the overall management objective is increased, as determined by pa-
rameter c2 in NPV2 . To produce figures illustrating the types of qualitative changes
that we observe as c2 is varied, other parameter values were chosen to be illustra-
tive only. Specifically, unless otherwise stated, we set r = 1, K = 100, q = 1, and
p = 1. We used a discount rate δ = 0.05 and set the linear cost of effort c1 = 15
such that under open access conditions, the fishery would be harvested to 15% of
virgin biomass with linear profits.

2.4. Solution techniques. The solution to NPV1 with state dynamics (1) is
given in (Clark [1990]), and a solution with state dynamics (2) is derived in the
Supporting Information.

The solutions with NPV2 are complicated by the fact that the objective is not
linear in the control. We employ a direct method to find these solutions, that is,
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we discretize time to turn the control problem into a finite dimensional nonlinear
optimization problem, which we then solve with an sequential quadratic program-
ming (SQP) method (see Buskens and Maurer [2000] for a nice overview of this
approach). Specifically, we choose N + 1 uniformly spaced points ti on [0, T ], and
seek an optimal control among the set of functions that are continuous and linear
between these ti . Since each such control is uniquely defined by its values at the
ti , this restriction reduces the problem to a finite-dimensional one amenable to the
techniques of nonlinear programming. Starting with a discrete control vector, we
compute the objective functional by integrating the state equations forward in time
using a fourth-order Runge Kutta scheme. The gradient of the objective function
is then calculated numerically, and used as the basis for an update to the control
vector, a process that repeats until convergence is achieved. The numerical solu-
tions displayed in this paper were achieved by formalizing this discrete optimization
problem and feeding it into Matlab’s fmincon function, a standard nonlinear con-
strained optimization solver.

A strength of the direct approach is that it uses only the control variables as
the optimization variables and dispenses completely with the need to calculate the
adjoint. (The adjoint can be regained after the algorithm has converged, however;
see Buskens and Maurer [2000] for details.) One of its weakness, however, is that
it can be analytically opaque. Since we wish to study the equilibrium solutions, we
also employ an indirect method in which we introduce an adjoint variable and invoke
Pontryagin’s Maximum Principle to convert the problem into a two-point boundary
value problems (see, e.g., Lenhart and Workman [2007].) This transformation allows
us to use local linearization analysis to analyze long-run equilibria.

3. Results. This section presents graphical, numerical, and analytical compar-
isons of solutions to the two different management objectives (3) and(4) under the
two models for stock dynamics (1) and (2).

3.1. Static growth parameter. When stock dynamics are logistic, that is,
given by (1), optimal solutions to each management objective (3) and (4) involve
three distinct phases. First, the optimal stock and effort are characterized by an
initial transition from the starting condition of the system toward a long-term target
for management. Then there is a period of management about this long-term target
(henceforth the stationary part of the optimal solution). Finally, there is another
transition from the long-term target toward a population size at which net revenue
from harvesting would be zero (often termed open access or bionomic equilibrium)
at the terminal time. (This latter transition would be absent in an infinite time
horizon problem.)

In our baseline problem, we can be more specific, because NPV1 is linear in the
control, E(t). For linear control problems, the initial and terminal transitions are
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MRAPs. For instance, for a previously unharvested population, the optimal policy
entails a pulse of intense fishing effort that instantaneously moves the stock from
its initial, unharvested state to the desired stationary stock size. Another pulse of
intense fishing effort is also applied at the terminal time to move the stock size
instantaneously to the biomass level corresponding to open access conditions where
instantaneous profit is zero, N(T ) = c1/pq. In between these two pulses of effort,
the stationary part of the optimal policy is equilibrial with a constant population
size, harvest, and effort level through time. See Clark [1990] for details, proofs, and
additional figures.

The standard approach for solving a control problem of the form (4) is to cast it
as a two-state optimal control problem. Here, we set one state to be the stock level
N and the other state effort level E, and define the control to be u = dE

dt . With this
convention, the optimal control problem becomes

maxu

∫ T

0 e−δt
(
pqEN − c1E − c2u

2
)

dt subject to

Ṅ = rN
(
1 − N

K

)− qEN , Ė = u ,

N(0) = N0 , N,E ≥ 0.

(5)

The current value Hamiltonian1 in this case is

Hc = pqEN − c1E − c2u
2 + λ1

[
rN

(
1 − N

K

)
− qEN

]
+ λ2u ,

where λ1 and λ2 satisfy

λ̇1 = δλ1 −
[
pqE + λ1r − 2rλ1N

K
− λ1qE

]
,

λ̇2 = δλ2 − [pqN − c1 − λ1qN ] ,

λ1(T ) = 0 , λ2(0) = λ2(T ) = 0 .

The Maximum Principle implies that if N ∗, E∗, λ∗
1 , and λ∗

2 are the optimal states
and adjoints, then the optimal control u∗ must satisfy

∂Hc

∂u
(N ∗, E∗, λ∗

1 , λ
∗
2 , u

∗) = −2c2u
∗ + λ∗

2 = 0 ,

whereupon solving for u∗ yields

u∗(λ∗
2) =

λ∗
2

2c2
.
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As before, we can now eliminate the control from the state and adjoint system
to arrive at the optimality system

Ṅ = rN

(
1 − N

K

)
− qEN ,(6)

Ė =
λ2

2c2
,(7)

λ̇1 = δλ1 − pqE − λ1r +
2rλ1N

K
+ qEλ1 ,(8)

λ̇2 = δλ2 − pqN + c1 + λ1qN ,(9)

N(0) = N0 , λ1(T ) = 0 , λ2(0) = λ2(T ) = 0 .

We solve for the steady-state solution by setting the left-hand side of this system
equal to zero and solving for the four unknowns N , E, λ1 , and λ2 . From (7) it is
clear that λ∗

2 = 0, and using this fact, together with some algebra, we find that N ∗

is the positive root of the quadratic polynomial

N ∗2 · 2qrp + N ∗ · (pKq(δ − r) − rc1) − δc1K.(10)

The quantities E∗ and λ∗
1 are then given in terms of N ∗ by

E∗ =
r

q

(
1 − N ∗

K

)
(11)

and

λ∗
1 = p − c1

N ∗ ,

respectively.

Figures 1(a) and (b) illustrate full optimal solutions to objective (4) for three
different values of c2 . In line with this derivation, the steady-state stock size (10)
and effort levels do not depend on c2 . This feature is a consequence of the fact that
a constant growth rate implies a constant harvest rate at equilibrium, at which
point the penalty term dE/dt disappears entirely.
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FIGURE 1. Stock sizes (panels a and c) and effort levels (panels b and d) through time
corresponding to optimal management in the presence of policy adjustment costs associated
with the rate of change of fishing effort. Black, gray and dashed curves correspond to in-
creasing cost coefficients, c2 , in each case. The solutions shown in panels a and b are shown
over a shorter time period in panels c and d to illustrate approach paths more clearly. State
dynamics given by logistic growth with a constant intrinsic rate of increase r. Parameters:
[r, K, q, p, c1 , δ] = [1, 100, 1, 1, 15, 0.05].

On the other hand, c2 does influence the approach path, which as can be seen
in Figures 1(c) and (d) is oscillatory. In other words, the optimal policy would
have managers first overshoot the long-term target by maintaining a higher effort
level for longer, before compensating by reducing the effort level below the long-run
target resulting in an oscillatory approach. Mathematical justification for this oscil-
lation can be achieved by the local linearization analysis of the associated boundary
value problem. The Jacobian for the system (6)–(9) is a four by four matrix in the
seven problem parameters r, p, q, K, δ, c1 , and c2 . Algebraic expressions for the
eigenvalues are daunting, so we solve for the eigenvalues numerically as a func-
tion of c2 , setting all the other parameters to their usual values, that is, p = r =
q = 1, K = 100, δ = 0.05, and c1 = 15. For each value of c2 , we find one complex



10 D. RYAN ET AL.

FIGURE 2. A snapshot of the singular optimal stock and effort solution, normalized to have
zero mean and superimposed over r(t), for the case of time-varying growth (r(t)). The annota-
tions draw attention to alignment (or nonalignment) between peaks and valleys, and the phe-
nomenon of wide peaks in the stock signal. Parameters: [r, K, q, p, c1 , δ] = [1, 100, 1, 1, 15, 0.05].

conjugate pair with negative real part, and one such pair with positive real part. The
imaginary parts of the complex conjugate pairs describe the oscillatory approach
while the real parts describe the rate of approach.

3.2. Time-varying growth parameter. When stock dynamics vary with
time, the periodic features of the growth signal are reflected in the solution sig-
nals. The “baseline” problem for this analysis is linear management objective (3)
with stock dynamics (2). An analytic solution to this problem is worked out in the
Supporting Information and is similar to the solution for the case of constant r but
includes some more complex functional forms. Nonetheless, because the objective
is linear in E, the solution will be again an “MRAP” path, that is, the stock will
descend rapidly from N0 until it meets the singular path, and then follow the sin-
gular path until it departs, where the departure too will be as rapid as possible.
Figure 2 shows a view of the singular stock and effort solutions superimposed over
a plot of r(t). In this plot, all signals have been translated to have mean zero, so
it is easy to compare amplitude and peak or valley positions. Note that the stock
and effort functions are oscillatory, with the same period as r(t), but that the stock
function is asymmetric, with wide peaks and narrow valleys. It turns out this par-
ticular asymmetry diminishes as c1 increases (Supporting Information). Note too
that effort and stock peaks coincide almost exactly with those of r(t), but that
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FIGURE 3. Stock sizes (panels a and c) and effort levels (panels b and d) through time that
correspond to optimal management in the presence of policy adjustment costs associated with
the rate of change of fishing effort. Progression from solid black, to gray to dashed curves
illustrates how optimal stock sizes and effort levels change as the severity of policy adjustment
costs increases. State dynamics are given by logistic growth with a varying intrinsic rate of
increase r(t); for this illustration, r(t) is described using a sinusoid with a period of six time
steps. The solutions shown in panels a and b are shown over a shorter time period in panels
c and d to illustrate approach paths more clearly. The average value and amplitude of r are,
respectively, set at 1 and 0.5. Parameters: [K, q, p, c1 , δ] = [100, 1, 1, 15, 0.05].

effort valleys are slightly out of phase. Once again, this phase shift depends on c1 ,
as shown in Figure S2.

Under the regularization scheme (4), the problem becomes nonlinear in the con-
trol, and there are changes in the approach paths and stationary solution. Some of
these changes closely mirror those of the static r case. Figure 3 shows full solution
trajectories for both stock and effort under variable growth model (2) and a broad
range of regularization parameters c2 . Comparing Figure 3 to Figure 1, we see that
in both cases the regularization scheme succeeds in smoothing out transitions to
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FIGURE 4. Amplitude and phase metrics for optimal singular paths in a time-varying en-
vironment in the presence of policy adjustment costs associated with the rate of change of
fishing effort. Amplitude was calculated as the average difference between local maxima and
minima. Peak lag was calculated as the average difference between the position of peaks in
r(t) and the nearest peaks in the solution signals. Note that as the regularization constant
grows, stock variation rises, effort variation shrinks, and peak lags grow. For further analysis
of the periodic properties of the solution signals, see the Supporting Information, especially
Figures S1 and S2. Parameters: [K, q, p, c1 , δ] = [100, 1, 1, 15, 0.05].

and from the stationary path. The “overshoot” phenomenon observed for (4) is still
present but in Figure 3 it is obscured by signal oscillations.

A more significant distinction between Figures 1 and 3 is that the latter contains
amplitude and phase features, with a period that exactly matches that of the growth
model. Figure 3 shows that as c2 increases, the amplitude of the stock variation
increases and the amplitude of the effort variation decreases. A close inspection
of the figure also reveals that changes in the regularization parameters cause small
shifts in the alignment between peaks and valleys. Figure 4 summarizes these results
by plotting the magnitude of the amplitude and phase shift against the size of
the regularization parameter, showing, for example, that very large values of c2
have the effect of suppressing the variation in effort levels almost completely. Phase
shifts, which represent the temporal lags between the growth signal and the solution
signals, increase monotonically with the regularization parameter. The Supporting
Information contains further discussion of signal shape, alternative phase measures,
and convergence in solution-space as the regularization terms goes to zero.

4. Discussion. Policy adjustment costs are likely to be common in many natu-
ral resource management settings. Indeed, in our own experience, recommendations
that would require managers to implement fast changing policies (e.g., bang-bang
approach paths or pulse harvesting) are often questioned on the grounds that such
policies would be difficult, that is, expensive, to implement. Here, we examined
one way that policy adjustment costs could be included in harvesting models: by
attaching additional costs to quick changes to harvesting effort.
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As one would expect, including policy adjustment costs results in a more gradual
approach path to the stationary solution from the initial or terminal conditions
being optimal. Also, accounting for policy adjustment cost leads to a smoothing of
effort levels through time along the stationary part of the path in time-varying envi-
ronments. In many settings, these two changes to optimal policy recommendations
are consistent with observations of resource managers’ actions.

However, if a modeler associates these costs with the rate of change of effort mo-
tivated due to a desire to “simplify” a policy recommendation (e.g., by smoothing
effort levels or avoiding a most rapid approach recommendation), other forms of
policy complexity can arise. In particular, when policy adjustment costs are associ-
ated with (dE/dt)2 , the optimal approach path is oscillatory, something that could
also be very difficult to implement.

Moreover, a necessary counter-part to the inclusion of policy adjustment costs
smoothing optimal effort levels in time-varying environments is that the stock sizes
will be more variable in time. In essence, the control variables absorb less of the
recruitment variability inherent in the stock. Having more variable stock sizes is
less of a concern in simple deterministic models of the type that we consider, but
may be important when moving to stochastic settings, especially if there are Allee
thresholds, extinction boundaries, or other undesirable system states to be avoided
(Roughgarden and Armsworth [2001], Boettiger et al. [2015]).

While we assumed policy adjustment costs increase at an increasing rate with the
rate of change of fishing effort levels, other ways of representing these costs also
make sense. For example, we compared our results with a formulation in which the
marginal cost per unit of effort increases in effort by including a quadratic penalty
on effort itself E2 . This alternative approach is more commonly motivated not from
a policy adjustment perspective but rather from underlying characteristics of the
fishing catch methods and operations that can lead to congestion externalities (e.g.,
Brown [1974], Lewis [1981], Anderson [1982], Hanson and Ryan [1998], Friedland
[2010], Kellner et al. [2011]). Optimal policies with a penalty on E2 share many
characteristics with those that we found when the penalty is attached to (dE/dt)2 .
Approach paths were again more gradual, but this time were monotonic and not
oscillatory. Also, the variation in effort levels decreased and that in the stock size
increased with the severity of the penalty on effort in the time-varying case. In one
important difference however, the stationary solution itself also changes when in-
creased costs are associated with E2 , unlike the case of (dE/dt)2 penalties. Another
approach would be to focus on viable control instead of only optimal control (Bene
et al. [2001], DeLara and Doyen [2008], Krawczyk et al. [2013]) and to seek man-
agement strategies that satisfied constraints on fisheries management reflecting the
goals of different stakeholders. Indeed, some viable control studies also emphasize
political economy challenges involved in implementing fast transitions to desired
states (e.g., Martinet et al. [2010]). If taking a viable control approach, managers
potentially could be presented with a range of possible management strategies that
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avoided making fast policy changes provided other desired outcomes of managing
a fishery (e.g., ensuring a large NPV of the fishery) could still be met.

Our approach to representing policy adjustment costs was clearly very phe-
nomenological, potentially representing multiple entry-points of policy adjustment
costs acting simultaneously. A complementary modeling strategy would be to pick
one of those potential entry-points and model how policy adjustments lead to in-
creased costs more mechanistically. However, our understanding of the many pos-
sible channels through which policy adjustment costs may manifest themselves re-
mains limited and data to parameterize more complicated models are more limited
still. As such, we anticipate use of phenomenological representations of policy ad-
justment costs, of the type we seek to inform, will continue in natural resource
models for the time being.

While our models are highly simplified and phenomenological, we would argue
that they provide an entry-point to much broader debates within natural resource
management about how well-positioned existing natural resource management in-
stitutions are to respond to the dynamics of the ecological systems they are respon-
sible for (Young [2002], Sanchirico and Wilen [2005], Berkes [2007], Armsworth et al.
[2015], Bode et al. [2016]). More specifically, our work recognizes that policy makers
cannot track ecological dynamics as swiftly as they might like, at least not without
incurring significant policy adjustment costs, and examines the implications of this
for the resource dynamics and the design of intervention strategies.
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ENDNOTE

1. The current value Hamiltonian for our problem is obtained by multiplying the present value
Hamiltonian by eδ t and defining λi to be current value multipliers (see Kamien and Schwartz
[1991] for further details). A current value Hamiltonian is sometimes favored for applications of
this type for developing intuition about the nature of the optimal solution.
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Supporting Information. Additional Supporting Information may be found
in the online version of this article at the publisher’s web site:

Figure S1:This plot shows the evolution of the peak-to-valley width ratio for
the optimal stock function N ∗ in the case of time-varying r(t). The peak width is
defined as the amount of time the stock spends above the mid-point between the
max and the min (below, in the case of valley width.) Note that as c2 increases,
the peak-to-valley ratio approaches one, which is the value it would have for a
symmetric sinusoid.

Figure S2: The evolution of the phase lag between valleys of r(t) and valleys of
the (a) singular stock and (b) singular effort level in the presence of policy adjust-
ment costs associated with the rate of change of effort. Solutions were calculated for
four different values of the regularization parameter (c2) and a dense set of values
for c1 . Note that for each value of the regularization parameter, the general trend
is for the phase lag to decrease as c1 increases. (Compare this to Figure 4 c, which
shows that for fixed c1 , the phase lag increases as c2 increases.) The regularized
phase lags seem to converge toward the unregularized phase lags uniformly in c1 as
c2 → 0.




