
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Neuroprosthetic Skill Learning and Stimulation-Based Neuromodulation

Permalink
https://escholarship.org/uc/item/15s4r0f5

Author
Zippi, Ellen Luisa

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15s4r0f5
https://escholarship.org
http://www.cdlib.org/


  

 

 

Neuroprosthetic Skill Learning and Stimulation-Based Neuromodulation 

by  

Ellen Luisa Zippi  

 

 

A dissertation submitted in partial satisfaction of the  

requirements for the degree of  

Doctor of Philosophy  

in  

Neuroscience  

in the  

Graduate Division  

of the  

University of California, Berkeley  

 

Committee in charge:  

Professor Jose M. Carmena, Co-Chair  

Professor Joni Wallis, Co-Chair  

Professor Robert T. Knight  

Professor Richard Ivry  

 

Summer 2022  

 

 



  

 

 

 

 

 

 

 

 

 

 

© 2022 Copyright, Ellen Luisa Zippi  

All Rights Reserved 

  



 

 1 

Abstract 

Neuroprosthetic Skill Learning and Stimulation-Based Neuromodulation 

by  

Ellen L. Zippi  

Doctor of Philosophy in Neuroscience  

University of California, Berkeley  

Professor Jose M. Carmena, Co-Chair  

Professor Joni Wallis, Co-Chair  

Brain-machine interface (BMI) systems hold great promise for improving quality of life 
in patients with a number of motor and cognitive disabilities, but significant 
advancements must be made before these systems are clinically viable. Developing 
neuroprosthetic devices and adaptive deep brain stimulators that are 
neurobiologically-informed is essential for increasing the usability and scalability of 
these systems. To do so, we must first develop an understanding of how the brain 
interacts with these systems. Previous work has shown that learning to control a BMI 
is associated with neural adaptations that depend on large-scale networks across 
multiple brain regions. In this work, we aim to develop a better understanding of this 
large-scale learning process by analyzing how motor cortical population dynamics 
differ in groups of neurons used to directly control a BMI and the remaining recorded 
population. Then, we investigate the role of corticostriatal circuits in BMI control by 
simultaneously recording from dorsolateral prefrontal cortex, the caudate nucleus of 
the striatum, and motor cortex as a nonhuman primate controls a motor cortical BMI. 
Finally, we assess how high-frequency microstimulation administered in the striatum 
changes functional decision-making behavior and underlying neural representations of 
value in the caudate and anterior cingulate cortex with the goal of developing a better 
understanding of how stimulation-based therapies can be used for neuropsychiatric 
disorders. Altogether, this work aims to improve our understanding of the 
neurobiology of BMIs with the goal of developing neurobiologically informed 
neuroprosthetic devices.  
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Chapter 1: Introduction 

Advances in neural recording technology and machine learning over the past several 
decades have enabled a direct connection of brains with machines. These brain-
machine interfaces (BMIs) allow for the real-time transformation of neural activity into 
control signals for external devices, such as computer cursors or robotic arms, or for 
internal devices, such as deep brain stimulators (DBS). These systems create new 
ways for users to engage with their environments, enabling numerous clinical and 
scientific applications.  

1.1 Brain Machine Interface (BMI) Systems 

A typical BMI consists of three main components: the neural activity signal, the 
decoding algorithm that transforms the neural activity into a control signal, and the 
actuator, or machine, that is being controlled (Figure 1.1). Recorded neural activity is 
input to the online decoding algorithm and converted into a control signal. This control 
signal then sends instructions to a device. In many systems, there is an additional 
feedback component in which the user receives sensory feedback, such as visual or 
auditory feedback, to aid in learning to control the BMI.  

 

Figure 1.1 Schematic representation of the general architecture of a closed-
loop BMI system. Recorded neural activity is mapped into control signals for an 
actuator via a decoding algorithm. These systems typically provide sensory 
feedback (e.g., visual feedback) to the user, creating a closed-loop system.  

There are a vast number of manifestations of BMI systems. For instance, many types of 
neural signals have been used to control a BMI, including electroencephalography 
(EEG), electrocorticography (ECoG), local-field potentials (LFPs), and single- and multi-
unit action potentials (Figure 1.2B). Noninvasive BMIs, such as those using EEG 
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signals, offer poor spatial and temporal resolution relative to invasive recording 
techniques, limiting the complexity of control signals that these recordings can 
support. On the other hand, invasive techniques, which offer superior spatial and 
temporal resolution, require surgery before they can be used and are susceptible to 
signal degradation over time. While all of these recording techniques have been 
demonstrated to provide effective control of a BMI, array recordings, including LFP and 
single- and multi-unit action potentials, continue to be the most commonly used for 
BMIs in both a clinical and research setting.  

 

Figure 1.2 Examples of different manifestations of BMI systems. (A) Schematic 
representation of the general architecture of a BMI system. (B) Figure from 
Schwartz et al., 2006. Representation of different neural recording modalities and 
comparisons of their spatial scale of recording. (C) Representation of possible 
brain-controlled actuators, including robotic arm, computer cursor, wheelchair, 
and brain stimulator.  

A variety of decoding algorithms have also been used to create a mapping between 
the selected neural activity signal and the BMI actuator. Depending on the goal of the 
BMI, this decoder may be used to estimate a subject’s motor intent for translation into 
a desired action or to detect abnormal brain activity for translation into stimulation 
parameters for adaptive DBS. These algorithms map the recorded neural activity to the 
desired control signal via regression or classification. Within motor BMIs, decoders can 
either be biomimetic or non-biomimetic (Ganguly & Carmena, 2010; Shenoy & 
Carmena, 2014). Biomimetic decoders aim to mimic the natural biological mapping 
between neural activity and movement as closely as possible. Non-biomimetic 
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decoders require subjects to learn arbitrary mappings between neural activity and 
movement, requiring some amount of neural adaptation for proficient control. While 
biomimetic decoders may seem superior for clinical use cases, they can be more 
difficult to implement due to our current lack of understanding of the brain’s natural 
mapping between neural activity and movement. Furthermore, the neural adaptation 
that occurs when learning to control a non-biomimetic decoder can be useful when 
using BMIs as a scientific tool to study learning. Additionally, neural adaptation during 
BMI learning may enable more robust BMIs (Orsborn & Carmena, 2013). Finally, 
decoding algorithms can be fixed or adaptive. While fixed decoders remain constant, 
closed-loop decoder adaptation (CLDA) is an approach to improve BMI performance by 
modifying the decoder during operation of the BMI (Dangi et al., 2013; Gilja et al., 
2012; Orsborn et al., 2012, 2014). Using knowledge of task goals and assumptions 
about a user’s intent (e.g., assuming a user intends to reach in a straight line towards a 
presented target at a known location), supervised algorithms can update the decoder 
to better reflect the user’s intentions.  

Finally, a variety of devices have been successfully controlled in real time using 
combinations of these neural activity signals and decoding algorithms (Figure 1.2C). 
Overall these BMI systems can be used to transform neural activity into a variety of 
control signals to be used for a myriad of devices including virtual objects (Carmena et 
al., 2003; Degenhart et al., 2020; Ganguly & Carmena, 2009; Gilja et al., 2012; 
Hochberg et al., 2006; Jarosiewicz et al., 2008; Leuthardt et al., 2004; Olsen et al., 
2021; Schalk et al., 2008; Serruya et al., 2002; Silversmith et al., 2021; Taylor et al., 
2002; Wander et al., 2013; Willett et al., 2021; Wolpaw & McFarland, 2004), robotic 
devices (Carmena et al., 2003; Chapin et al., 1999; Collinger et al., 2013; Flesher et al., 
2021; Hochberg et al., 2012; Taylor et al., 2002; Velliste et al., 2008), wheelchairs 
(Carlson & del R. Millan, 2013; Iturrate et al., 2009; K.-T. Kim et al., 2018; Millán, 
2010), muscle stimulators (Ajiboye et al., 2017; Collinger et al., 2018; Ethier et al., 
2012; Moritz et al., 2008), and deep brain stimulators (Hoang et al., 2017; Little et al., 
2013, 2016; Rosa et al., 2017; Swann et al., 2018). 

1.2 Clinical Applications of BMIs 

Neurological disorders including stroke, dementia, mood disorders, brain injuries, 
Parkinson’s disease, and more affect up to one billion people worldwide (Feigin et al., 
2019). Together, they make up the largest global disease burden as measured by 
disability-adjusted life years, a time-based measure that accounts for years of life lost 
due to premature mortality and adjusted years of life lost due to time lived in a state of 
less than full health (Feigin et al., 2019, 2020). Furthermore, this global burden has 
continued to increase in recent years as the aging population continues to grow 
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worldwide (Carroll, 2019). Thus, neurological disorders pose an important public 
health challenge that affects people across the globe, irrespective of age, gender, or 
income. 

1.2.1 External Devices  

BMIs have useful clinical applications for a number of neurological disorders. Closed-
loop BMIs can be used to control neuroprosthetic systems in which users with motor 
control deficits can manipulate robotic arms or computer cursors, enabling them to 
interact with their environments in new ways. These devices have allowed patients to 
perform reach-to-grasp motions with a robotic arm to feed themselves (Collinger et al., 
2013; Flesher et al., 2021; Hochberg et al., 2012), to surf the internet or operate point-
and-click computer applications using a brain-controlled computer cursor (Kim et al., 
2011; Nuyujukian et al., 2018), and to control wheelchair movements (Iturrate et al., 
2009; Kim et al., 2018). Additionally, these closed-loop systems, in combination with 
predictive text completion, have enabled locked-in users suffering from amyotrophic 
lateral sclerosis to operate speller or typing systems (Jarosiewicz et al., 2015; 
Pandarinath et al., 2017). Other systems allow users to communicate by decoding 
neural signals to synthesize speech or handwriting (Anumanchipalli et al., 2019; 
Willett et al., 2021; Wilson et al., 2020). These applications are important examples of 
ways in which BMIs can be used to improve the quality of life for those suffering from 
various neurological disorders.  

1.2.2 Internal Devices 

In addition to controlling external devices, BMIs can be used to control internal devices 
such as deep brain stimulators. Traditional DBS is a device-based therapy that sends 
electrical signals to specific regions of the brain to treat certain neurological diseases. 
For example, stimulation of the subthalamic nucleus or the globus pallidus internus is 
a common treatment for Parkinson’s Disease in patients whose symptoms are not 
adequately controlled with medication (Benabid, 2003; Benabid et al., 2009; Deuschl 
et al., 2006; Rodriguez-Oroz et al., 2005). In these traditional DBS systems, 
neurologists manually adjust stimulation parameters every 3–12 months after 
implantation and a consistent electrical current is delivered between programming 
sessions. Recently, closed-loop stimulation has been shown to result in fewer side 
effects, equal or better effectiveness, and less power consumption (Parastarfeizabadi & 
Kouzani, 2017). These closed-loop DBS systems are referred to as adaptive DBS. In 
these systems, stimulation is delivered when the brain is detected to be in an abnormal 
state or stimulation parameters are dynamically adjusted based on variations in a 
recorded biosignal over time. While these devices have only been approved by the 
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United States Food and Drug Administration for Epilepsy and Parkinson’s Diseases 
(Hoang et al., 2017; Little et al., 2013; Rosin et al., 2011; Sun et al., 2008; Wu et al., 
2021), recent work has suggested that closed-loop systems may improve the efficacy 
of stimulation-based therapies for mood disorders as well (Scangos et al., 2021; 
Shanechi, 2019; Widge et al., 2018). Identifying reliable biomarkers of disease and 
understanding how stimulation affects the neurophysiology of brain circuits involved in 
neurological disorders will further the possible clinical applications for these BMIs.  

1.3 BMIs as Scientific Tools 

In addition to offering promising assistive technologies and clinical therapies for a 
number of neurological disorders, BMIs are also a valuable scientific tool. Previous 
work has demonstrated that motor cortical BMIs are not simply an artificial 
replacement for dysfunctional neural circuits, but rather a tool that users learn to 
control through the modulation of neural signals (Orsborn & Carmena, 2013). Thus, 
BMIs provide a unique means of studying learning. Because the neural activity 
controlling the BMI output is selected by the experimenter and the mapping between 
this activity and control is known, BMIs provide a well-defined, simplified system 
without simplifying the actual learning process (Golub et al., 2016; Moxon & Foffani, 
2015; Orsborn & Carmena, 2013; Orsborn & Pesaran, 2017). This is in contrast to the 
natural motor system, in which there are more motor-related neurons than can be 
recorded and the mapping between their activity and behavioral output is unknown.  

In the case of motor BMI systems, the process of learning proficient control has been 
well studied. A key feature of this neuroprosthetic skill learning is that users can learn 
to volitionally modulate neural activity (Fetz, 2007; Green & Kalaska, 2011). To 
proficiently control a BMI, users must learn a neural representation of the mapping 
between neural activity and the actuator that facilitates successful control. Much like 
the representation of natural motor skills, this neuroprosthetic representation has been 
shown to be stable across days, readily recallable, and resistant to interference from 
learning a second mapping (Ganguly & Carmena, 2009). Experimenters can 
manipulate the mapping between neural activity and output control to study the 
neuroplasticity underlying learning to control a novel actuator. These manipulations 
have shed light onto the cognitive processes underlying sensorimotor control (Athalye 
et al., 2017, 2018; Clancy et al., 2014; Ganguly et al., 2011; Ganguly & Carmena, 
2009; Golub et al., 2016, 2018; Jarosiewicz et al., 2008; Koralek et al., 2012, 2013; 
Neely et al., 2018; Oby et al., 2019; Orsborn et al., 2014; Sadtler et al., 2014).  

 



 

 7 

1.4 Remaining Challenges  

Whether by translating thought into action for the purpose of movement restoration or 
assistive communication or by detecting and responding to biomarkers of disease via 
adaptive deep brain stimulation, BMIs hold a lot of clinical promise. However, this 
emerging technology is still limited in its usefulness as a clinical tool by both 
technological and biological challenges. 

Technological challenges include improving the biocompatibility and longevity of 
implants, as well as improving algorithms for decoding neural activity and artifact 
removal (Rapeaux & Constandinou, 2021). Clinical applications of BMIs typically rely 
on wired, invasive neural probes such as Utah arrays, which cause damage to brain 
tissue and can result in a chronic inflammatory response, cell death, and encapsulation 
of the electrodes by microglia leading to degradation of signal quality (Biran et al., 
2005; Polikov et al., 2005; Turner et al., 1999). Furthermore, these wired systems are 
more susceptible to infection and are bulky and inconvenient to use. Work on 
miniaturizing these systems, making them wireless, and improving biocompatibility of 
materials is critical for the advancement of BMIs as a clinical tool. Non-invasive BMI 
systems, such as those that rely on EEG signals, do not face these same limitations but 
are limited to recording lower-frequency signals due to the attenuation of voltage 
signals through the skull (Fahimi Hnazaee et al., 2020). Improving decoding algorithms 
and artifact detection and removal for both invasive and non-invasive neural signals 
will be important for improving BMIs as a clinical tool.  

Biological challenges facing BMIs include improving our understanding of how 
information about intention, mental state, and disease is encoded in the brain, as well 
as how the brain interacts with and learns to control novel actuators (Kawala-Sterniuk 
et al., 2021). State-of-the-art motor BMIs currently operate using relatively few 
degrees-of-freedom relative to the natural motor system and can be slow and 
unintuitive to use. It can take users days of practice to master control of a motor BMI 
and this process of learning has been reported to be frustrating to some. Several 
studies have demonstrated that BMIs create new systems that engage learning and 
adaptation (Carmena et al., 2003; Fetz, 2007; Taylor et al., 2002). Understanding these 
systems may be important for developing successful, intuitive neuroprosthetic devices. 
Additionally, advances in understanding how information about action intention and 
language is encoded in the brain is important for developing BMIs that are more 
natural and intuitive to use and identifying reliable biomarkers of mental state and 
disease is critical for improving BMIs for adaptive DBS.   
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The focus of this thesis will be on questions pertaining to the second of these two 
challenges and aims to improve our understanding of how the brain learns to control a 
BMI and how brain stimulation can affect the neural encoding of specific information. 
By furthering our understanding of the neurobiology of BMIs, we hope to develop 
more neurobiologically-informed neuroprosthetic devices that are easier to learn and 
scale.  

1.5 Chapter Previews  

In this thesis, we will cover work exploring neuroprosthetic skill learning and control as 
well as stimulation-based neuromodulation. Specifically, we aim to further our 
understanding of the neurobiology of BMIs by gaining insight into how distributed 
networks in the brain learn to control a virtual cursor and how microstimulation affects 
neural representations of value.  

In Chapter 2, we compare the changes in coordinated spatiotemporal activity that 
occur in subpopulations of neurons whose activity was directly used as input to a BMI 
decoder and the remaining recorded motor cortical subpopulation. This project 
provides insight into how motor cortex explores population-level activity to produce 
coordinated neural dynamics in populations of neurons relevant for control, shedding 
light onto how novel motor skills are learned. 

In Chapter 3, we present a novel technique for simultaneous recording of cortical and 
subcortical brain areas during motor BMI control. We identified task-relevant changes 
in spectral power in dorsolateral prefrontal cortex, caudate, and motor cortex as well 
as changes in directed functional connectivity between these regions. This work is an 
important step in understanding the large-scale networks involved in reinforcing 
neural patterns of activity that are necessary for proficient BMI control.  

Finally, in Chapter 4 we explore stimulation-based neuromodulation during a decision-
making task. We present work investigating how caudate microstimulation capable of 
biasing choice behavior affects underlying neural representations of task-relevant 
stimulus values in the caudate and anterior cingulate cortex. In this study, we aim to 
develop a better understanding of how stimulation-based therapies may be used to 
regulate valuation of choices in neuropsychiatric patients. 
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Chapter 2: Selective Modulation of Motor Cortical Population 
Dynamics in Groups of Neurons Causally Linked to Behavior  

Brain-machine interfaces (BMIs) provide a framework for studying how cortical 
population dynamics evolve over learning in a task in which the mapping between 
neural activity and behavior is precisely defined. Learning to control a BMI is associated 
with the emergence of coordinated neural dynamics in populations of neurons whose 
activity serves as direct input to the BMI decoder (direct subpopulation). While 
previous work shows differential modification of firing rate modulation in this 
population relative to a population whose activity was not directly input to the BMI 
decoder (indirect subpopulation), little is known about how learning-related changes in 
cortical population dynamics within these groups compare. To investigate this, we 
monitored both direct and indirect subpopulations as two macaque monkeys learned 
to control a BMI. We found that while the combined population increased coordinated 
neural dynamics, this increase in coordination was primarily driven by changes in the 
direct subpopulation. These findings suggest that motor cortex refines cortical 
dynamics by increasing neural variance throughout the entire population during 
learning, with a more pronounced coordination of firing activity in subpopulations that 
are causally linked to behavior. This work was done in collaboration with Albert K. You, 
Karunesh Ganguly, and Jose M. Carmena. It is currently in review at Scientific Reports 
and an earlier version of the manuscript is available as a preprint on BioRxiv (Zippi, You 
et al., 2021).  

2.1 Introduction  

Learned behaviors are reinforced through mechanisms involving both cortical and 
subcortical structures (Donchin et al., 2012; Krakauer et al., 2004; Sing & Smith, 2010; 
Sutton & Barto, 1998). Just as behavioral actions are reinforced, so is the cortical 
population activity required to efficiently produce these actions (Athalye et al., 2017; 
Costa, 2011; Tumer & Brainard, 2007). Studying mechanisms of cortical reinforcement 
underlying behavioral reinforcement can be challenging as the exact neural population 
controlling the desired behavior is unknown. Early studies of biofeedback 
demonstrated that activity in motor cortex can be reinforced and volitionally controlled 
using reward and sensory feedback of the firing rate (Fetz, 1969; Fetz & Baker, 1973). 
Later, initial research on brain-machine interfaces (BMIs) showed that subjects could 
learn to control external devices (e.g. computer cursors or robotic arms) by learning to 
modulate the activity of a population of neurons and that the neural encoding of these 
prosthetic movements changed over time and decreased in variability (Carmena et al., 
2003; Ganguly & Carmena, 2009; Musallam et al., 2004; Taylor et al., 2002; 
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Zacksenhouse et al., 2007). These BMIs allow for precisely defined mappings between 
recorded neural activity and behavior (Carmena et al., 2003; Shenoy & Carmena, 2014; 
Taylor et al., 2002). Studies leveraging BMIs to study learning-related changes in 
cortical activity have demonstrated that neuroprosthetic skill learning can require the 
production of novel cortical dynamics to obtain skillful control (Ganguly et al., 2011; 
Ganguly & Carmena, 2009; Orsborn et al., 2014). 

While classical approaches examine individual neurons to understand fundamentally 
how motor cortical activity is reinforced, more recent methods looking at population-
level activity have uncovered how dynamic processes may govern movement planning 
and execution (Ames & Churchland, 2019; Churchland et al., 2010, 2012; Elsayed et 
al., 2016; Heming et al., 2019; Kao et al., 2015; Kaufman et al., 2014; Pandarinath et 
al., 2018; Russo et al., 2018; Shenoy et al., 2013; Suresh et al., 2020; Zhou et al., 
2019), as well as learning (Golub et al., 2018; Hennig et al., 2021; Oby et al., 2019; 
Perich et al., 2018; Sadtler et al., 2014; X. Sun et al., 2022; Vyas et al., 2018; Vyas, 
Golub, et al., 2020; Vyas, O’Shea, et al., 2020; Zhou et al., 2019). Population-level 
activity is often characterized by low-dimensional dynamics that capture patterns of 
co-activation across neurons within a population (Gallego et al., 2017). These 
population-level dynamics arise from input connectivity and within-population 
connectivity. Two parallel mechanisms have been proposed to reinforce specific 
cortical population dynamics; fast reinforcement of dynamics that naturally produce a 
desired behavior and slower reinforcement that refines them to result in more reliable 
production of neural activity patterns (Athalye et al., 2020; Dayan & Cohen, 2011).  

Previous studies have shown that neural populations are constrained to generate 
activity patterns within a pre-existing covariance structure within short timescales 
(Golub et al., 2018; Perich et al., 2018; Sadtler et al., 2014; X. Sun et al., 2022), 
suggesting that it is faster to learn to control and repurpose pre-existing cortical 
population dynamics than it is to modify them. When decoder perturbations that 
change the behavioral output associated with specific neural activity were introduced 
after subjects had already achieved proficient control using a BMI there was an 
immediate deficit in performance. However, over training, subjects were able to 
recover performance of cursor control and furthermore, experienced a washout when 
the perturbation was removed, but only when the perturbation did not require 
alteration of the natural covariance pattern among the recorded neurons (Sadtler et al., 
2014). Other work has demonstrated that animals can learn to control BMIs that 
require neural patterns outside of the pre-existing covariance structure over the course 
of multiple days (Athalye et al., 2017; Oby et al., 2019). This eventual modification of 
cortical dynamics suggests that learning novel skills requires the production of new 
underlying population activity that develops over longer timescales.  
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With motor cortical BMIs, a small subset of neurons of all possible neurons in motor 
cortex is selected to use as input to the decoder (direct neurons). These neurons exist 
within a large network of other motor cortical neurons (indirect neurons). While the 
selection of direct neurons from all recorded units in our experiments was arbitrary and 
there was initially no functional difference between the those selected to be direct and 
those that are not, previous work has shown that differences in the neural activity of 
these two groups emerge with learning (Clancy et al., 2014; Ganguly et al., 2011; 
Gulati et al., 2014; Koralek et al., 2012, 2013; Neely et al., 2018; So et al., 2012). For 
example, it has been demonstrated that the task-relevant modulation of indirect 
neurons gradually reduces relative to direct neurons over learning (Ganguly et al., 
2011). Additionally, it has been shown in rodents that coherence develops between 
dorsal striatum and direct neurons, but not indirect neurons (Koralek et al., 2012, 2013; 
Neely et al., 2018). In a study using 2-photon calcium imaging to record neural activity, 
mice initially modulated activity of both direct and indirect neurons, but predominantly 
modulated direct activity after learning (Clancy et al., 2014). Thus, it is likely that the 
initial cortical dynamics that produce desirable outcomes involve both direct neurons 
and the surrounding cortical network. Over time, as these cortical dynamics are refined, 
they may adapt to exclude neurons that do not directly drive behavior. 

If this hypothesis is true, we expect differences in how cortical population-level 
dynamics within direct and indirect subpopulations change over time as well. As 
cortical dynamics are modified for more efficient control, the direct subpopulation 
would be expected to undergo further modification than the indirect subpopulation as 
additional modifications to indirect activity would not directly result in desirable 
outcomes. Here, we investigate this idea by studying recorded ensembles of motor 
cortical neurons while only a subset was assigned to have a causal role during BMI 
control and characterize the differential changes in coordinated neural dynamics 
between direct and indirect subpopulations. 

2.2 Methods  

2.2.1 Animal Subjects  

All procedures were conducted in compliance with the NIH Guide for the Care and Use 
of Laboratory Animals and were approved by the University of California at Berkeley 
Institutional Animal Care and Use Committee. 

Two adult male rhesus monkeys (Macaca mulatta) were chronically implanted in the 
brain with arrays of 64 microelectrodes (Innovative Neurophysiology, Durham NC) 
(Ganguly & Carmena, 2009). Monkey P was implanted in the left hemisphere in the 
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arm area of both primary motor cortex (M1) and dorsal premotor cortex (PMd), and in 
the right hemisphere in the arm area of M1, with a total of 192 microwires across three 
implants. Monkey R was implanted bilaterally in the arm area of M1 and PMd (256 
microwires across four implants). Only activity from M1 was included in the direct 
ensembles (Monkey P: right M1; Monkey R: left M1) and only activity from the same 
hemisphere was included in the indirect ensemble. Array implants were targeted for 
pyramidal tract neurons in layer 5. Localization of target areas was performed using 
stereotactic coordinates from a neuroanatomical atlas of the rhesus brain (Paxinos et 
al., 2000).  

2.2.2 Electrophysiology  

Neural activity was recorded using the MAP system (Plexon, Dallas TX). Stable units, 
to be part of the direct ensemble, were selected based on waveform shape, amplitude, 
relationship to other units on the same channel, interspike interval distribution, and the 
presence of an absolute refractory period. Only units from primary motor cortex were 
used which had a clearly identified waveform with signal-to-noise ratio of at least 4:1. 
Activity was sorted prior to recording sessions using an online spike-sorting 
application (Sort Client; Plexon). Stability of waveforms was confirmed by analyzing 
the stability of PCA projections over days (Wavetracker; Plexon). 

Direct units are defined as the units being used to control the BMI. Indirect units 
consisted of the remaining recorded units. For analyses including only stable units 
from the same hemisphere, stability in the indirect ensemble was assessed using 
pairwise cross-correlograms, autocorrelograms, waveform shapes, and mean firing 
rates (Fraser & Schwartz, 2012). 

2.2.3 Manual Control Training Before BMI 

Before starting the BMI learning experiments, subjects were overtrained on the task 
performed with arm movements using a Kinarm (BKIN Technologies, Kingston ON) 
exoskeleton which restricted shoulder and elbow movements to the horizontal plane. 

2.2.4 BMI Tasks  

Data from Ganguly & Carmena, 2009, in which subjects performed a self-initiated, 
eight-target, center-out reaching task, was analyzed. In these experiments, a cursor on 
a screen was continuously controlled by neural activity. Subjects self-initiated trials by 
moving the cursor to a center target. One of the eight peripheral targets was randomly 
selected each trial. Self-initiated trials consisted of those in which the animal moved 
the cursor to the center target and held for 250-300 ms. Successful trials required the 
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animal to move the cursor to the peripheral target within 15 s of initiating the trial and 
hold the cursor at the target for 250-300 ms. Successful trials resulted in a juice 
reward; failed trials were repeated. During BMI control, both arms were lightly 
restrained to restrict arm movement during BMI control. During selected sessions, 
video and surface electromyogram (EMG) recordings from proximal muscle groups 
were performed to confirm minimal arm movements occurred during BMI control.   

After the initial 19-days of performing the BMI task with a fixed-decoder, Monkey P 
learned a second decoder over the course of four days. Within each of these four days, 
Monkey P performed one training block of the new decoder, followed by one training 
block of the old decoder. Both of these decoders were fixed and used the same direct 
ensemble as input.  

2.2.5 Preprocessing Pipeline 

For all analyses, neural data was binned into 100 ms bins to match the decoder 
timescale. Additionally, learning was analyzed over “training epochs,” where each 
epoch consisted of 150 self-initiated trials. Learning took place over the first 15 
training epochs (2250 self-initiated trials). We chose to analyze the data across 
training epochs, rather than days, to eliminate the effect of variable numbers of trials 
each day. Only the first 15 training epochs (2250 self-initiated trials) were analyzed; 
we defined early and late learning as the first and last seven of these training epochs, 
respectively. Monkey P initiated a total of 3589 trials. Monkey R initiated a total of 
2357 trials.  

2.2.6 Factor Analysis  

Shared-Over-Total Variance Ratio  

Factor analysis (FA) was conducted on the neural population for each epoch to observe 
underlying correlated neural activity. FA decomposes population signals into 
correlated and uncorrelated components. For a given neuron i, correlated activity is 
represented by the shared variance 𝛴!!"#$%&' , and the degree to which the activity was 
correlated over learning was represented by the ratio of shared-over-total variance of 
the neural population (SOT). We calculated the SOT ratio according to the methods 
described in Althaye et al., 2017.  

𝑆𝑂𝑇 =
𝑡𝑟𝑎𝑐𝑒(𝛴"#$%&')
𝑡𝑟𝑎𝑐𝑒(𝛴()($*)  
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Since FA decomposes the neural activity into correlated and uncorrelated components, 
we can reduce the dimensionality of the neural data by examining how much of the 
neural variance is captured by the shared (correlated) components. The number of 
dimensions was selected such that 90% (or more) of the shared variance was 
captured. A scree plot quantifying the variance captured by each factor for the 
combined population is shown in Figure 2.1. 

 
Figure 2.1 Scree plots for direct and indirect combined population. Factor 
analysis was performed on neural activity from the combined direct and indirect 
population for each training epoch individually. A scree plot is shown for each 
training epoch indicated by color.  

Total Variance 

We also considered how the total variance changed between early and late learning. 
This was the sum of the private and shared variances 𝛴!!()($* = 𝛴!!"#$%&' + 𝛴!!

+%!,$(&.  

Partial Shared-Over-Total Variance Ratio  

We quantified the respective contributions of subpopulations to the SOT ratio using 
the partial shared-over-total variance (pSOT) ratio. Here, we compared the sum of the 
shared variance for each subpopulation over the total variance for the entire 
population. A relative measure was used to account for the fact that the direct and 
indirect ensembles were different sizes. That is,  

𝑝𝑆𝑂𝑇'!%&-( =
𝑡𝑟𝑎𝑐𝑒/𝛴'!%&-("#$%&'0

𝑡𝑟𝑎𝑐𝑒/𝛴$**
+%!,$(&0 + 	𝑡𝑟𝑎𝑐𝑒/𝛴$**"#$%&'0

 

𝑝𝑆𝑂𝑇!.'!%&-( =
𝑡𝑟𝑎𝑐𝑒/𝛴!.'!%&-("#$%&' 0

𝑡𝑟𝑎𝑐𝑒/𝛴$**
+%!,$(&0 + 	𝑡𝑟𝑎𝑐𝑒/𝛴$**"#$%&'0
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where i denotes the covariance matrix for the (sub)population i.  

Shared Space Alignment 

We used the ‘‘shared space alignment’’ to measure the similarity between the shared 
variance of two different training epochs. The shared space alignment is the fraction of 
shared variance from one epoch captured in the shared space of a second epoch and 
thus ranges from 0 to 1. We calculated shared alignment according to the methods 
described in Athalye et al., 2017. Given two epochs, A and B, we first compute the 
projection matrix into Epoch B’s shared space, 𝑐𝑜𝑙(𝑈/).. We then project 𝛴0,"#$%&' onto 
B’s shared space, 𝑃2!𝛴0,"#$%&'𝑃2!

3 . Finally, the alignment is calculated, 

𝑆ℎ𝑎𝑟𝑒𝑑	𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =
𝑡𝑟𝑎𝑐𝑒/𝑃2!𝛴0,"#$%&'𝑃2!

3 0
𝑡𝑟𝑎𝑐𝑒(𝛴0,"#$%&')  

2.2.7 Quantification & Statistical Analyses  

All analyses were performed on each training epoch separately. Trends were analyzed 
for significance with linear regressions. Epochs 1-7 and Epochs 9-15 were grouped 
into “early” and “late,” respectively. Epoch 8 was omitted so that there were equal 
numbers of epochs for both early and late learning. Groupings of early and late epochs 
were compared using an unpaired two-sample t-test when comparing unstable 
populations of neurons and a paired one-sample t-test when comparing stable 
populations. Significance was considered as p < 0.05. A single asterisk was used to 
denote significance of at least p < 0.05, a double asterisk was used to denote p < 0.01, 
and a triple asterisk was used to denote p < 0.001. 

For t-tests resulting in a significant change in one group but not the other (e.g., direct 
but not indirect; near but not far), a random permutation test in which the group labels 
were shuffled 500 times was calculated to ensure that the results were not a 
consequence of a small sample size. In all cases, the t-statistic for the group with the 
significant change was outside 95% of the distribution of t-statistics obtained from the 
shuffled labels tests indicating that the significant group was not a chance combination 
of neurons.  

2.3 Results  

Two rhesus macaques (P and R) were chronically implanted with bilateral 
microelectrode arrays in primary motor and dorsal premotor cortices, with electrodes 
from a single hemisphere used for BMI control and subsequent analyses (see 



 

 16 

Methods). The monkeys learned to perform a two-dimensional, self-initiated, center-
out BMI task, in which they drove a cursor under neural control to one of eight 
randomly instructed peripheral targets for a juice reward (Figure 2.2A). The next trial 
was initiated by driving the cursor back to the center target. Trials from all days of the 
experiment were concatenated then separated into 150-trial epochs since the number 
of successful trials was lower in early days of learning. Both animals increased the 
fraction of successful trials (Figure 2.2B) and decreased the time to move the cursor 
from the center target to the peripheral target (Figure 2.2C) over the course of the first 
15 epochs. Example cursor trajectories from early and late learning are shown in 
Figure 2.2D. To capture the correlates of learning before performance saturated, only 
the first 15 epochs were used for each animal. 

 
Figure 2.2 Experimental setup and behavioral performance. (A) Experimental 
setup from Ganguly & Carmena, 2009. Activity recorded from direct neurons 
(blue) in M1/PMd was input into a fixed linear decoder and used to drive a 
computer cursor to perform a center-out task (see Methods for details). Activity 
from indirect neurons (red) was simultaneously recorded but was not input into 
the decoder. (B) Performance improves over the first 15 training epochs for 
Monkey P and Monkey R. Each training epoch consists of 150 initiated trials. For 
some analyses, epochs were divided into groups of early (orange) and late 
(purple). Fraction of initiated trials that were successful increased over training 
epochs. (C) The time to reach a target decreased over training epochs. (D) 
Representative examples of single-trial cursor trajectories during the early and 
late learning. 

Because the BMI decoder used in the experiment was novel to the subjects, they had 
to initially explore the neural population activity space. Over time, the subjects learn 
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from the behavioral consequences of explored activity patterns and select target-
achieving, rewarded patterns of activity. To characterize the neural dynamics 
associated with this neuroprosthetic learning, we examined recorded ensembles of 
motor cortical neurons from which only a subset was assigned a causal role during 
control. We define these neurons, whose activity was used as a direct input to the BMI 
decoder, as “direct neurons” (Monkey P, N = 15; Monkey R, N = 10). The remaining 
recorded motor cortical neurons recorded using the same two 4x4 mm 64-channel 
microelectrode arrays (interelectrode distance 500 um), whose activity was not used as 
direct input to the BMI, we define as “indirect neurons” (Monkey P, N = 29-69; Monkey 
R, N = 87-187). Spiking activity and waveforms for a representative direct and indirect 
unit are shown in Figure 2.3. For some analyses in which it is important to consider the 
same population across epochs we refer to indirect neurons that were stably recorded 
across all 15 epochs as “stable indirect neurons” (Monkey P, N = 17; Monkey R, N = 
14). Stability of the indirect neurons was assessed using the methods described in 
Fraser & Schwartz, 2012. This method uses pairwise cross-correlograms, the 
autocorrelogram, waveform shape, and mean firing rate to classify neurons and has 
previously been used on recordings obtained from chronically implanted 
microelectrode arrays to assess the stability of neurons across days (Downey et al., 
2018; Golub et al., 2014; Vasileva & Bondar, 2021; Yoo et al., 2021). Example 
waveforms from representative stable indirect units for each animal on the first day, 
middle day, and last day of recording are shown in Figure 2.4. 
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Figure 2.3 Spiking activity of representative units during BMI control. Raster 
plots separated by target (left) and 1000 waveforms (right). The height and width 
the waveform axes are 0.364 mV and 800 µs, respectively. (A) Spiking activity of 
a direct neuron from Monkey P. (B) Spiking activity of an indirect neuron from 
Monkey P. (C) Spiking activity of a direct neuron from Monkey R. (D) Spiking 
activity of an indirect neuron from Monkey P. 
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Figure 2.4 Stability of indirect neuron recordings. (A) Waveforms from five 
representative putative stable units as determined by the methods in Fraser & 
Schwartz, 2012 on the first day, middle day, and last day of recording for each 
animal. The height and width of each box are 0.485 mV and 800 µs, respectively. 
(B) Inter-spike interval (ISI) distributions are shown for the first day, middle day, 
and last day of recording for each animal for the same five representative stable 
units. 

2.3.1 Increases in Neural Variability with Learning  

First, we examined how the neural firing rate variance changed in each subpopulation 
over learning. Changes in neural variance are often used as a proxy for neural 
exploration, as increasing the variance in firing rate allows for neurons to form different 
coordinated patterns of firing (Arduin et al., 2013; Athalye et al., 2017; Dhawale et al., 
2017; Hennig et al., 2021; Mandelblat-Cerf et al., 2009; Sternad, 2018). Past work has 
shown neural activity fires in more coordinated patterns as behavior stabilizes, thereby 
decreasing the dimensionality in neural space over learning (Athalye et al., 2017; 
Golub et al., 2018; Oby et al., 2019; Sadtler et al., 2014). We commonly refer to these 
low-dimensional spaces as manifolds or neural subspaces. In order to observe changes 
in these neural subspaces, epochs were separated between early and late for each 
animal (Epochs 1-7 and Epochs 9-15, respectively) to track differences as behavioral 
performance improved. The firing rate for each neuron was binned in 100 ms intervals. 
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The binned firing rate variance for each neuron was then averaged across all neurons 
for each epoch. In early learning, the mean firing rate variance was significantly higher 
in the direct subpopulation than the indirect subpopulation for one subject and there 
was no significant difference for the other. We normalized the firing rate variance for 
each subpopulation based on the mean variance in early learning to assess relative 
change in variance from early to late learning within each subpopulation. In both 
animals, we observed an increase in relative unit variance between early and late 
learning for both direct and indirect subpopulations (Figure 2.5A). This increase in 
variance suggests a concerted effort of neural exploration that exists in a broader 
network that includes both direct and indirect neurons. To ensure that this increase in 
variance was not due to a change in the distribution of time spent at each target, we 
repeated this analysis within each target (Figure 2.5B). Trials to each target were 
evenly divided across 15 epochs and relative unit variance during early (first 7 epochs) 
and late learning (last 7 epochs) was considered for each target individually. The 
relative unit variance increased within both direct and indirect subpopulations for 
Monkey P and for six of the eight targets for Monkey R (Table 2.1), indicating that this 
result was not due to a change in the distribution of time spent at each target. Because 
the change in relative unit variance was consistent across targets, subsequent analyses 
included trials to all targets to increase the statistical power associated with more 
trials. Furthermore, because the task required two-dimensional control to achieve 
success at all targets, grouping trials across all targets provided better insight into 
how learning occurs in a generalized two-dimensional space rather than for target-
specific activity. 



 

 21 

 



 

 22 

Figure 2.5 Neural variance increases with learning. Variance was calculated for 
each neuron and then averaged across neurons. Relative variance was calculated 
by normalizing to the mean early variance within subpopulation. (a) Both direct 
and indirect subpopulations increased relative neural variance from early to late 
learning (Unpaired t-test; Monkey P: direct p = 8.63e-5, indirect p = 0.002; 
Monkey R: direct p = 0.007, indirect p = 0.003). (b) Analysis was repeated within 
target. Both direct and indirect subpopulations increased relative neural variance 
from early to late learning within target (Unpaired t-tests results reported in 
Table 2.1.) 

 
  

Target 
Monkey P Monkey R 

Direct Indirect Direct Indirect 

1 1.74e-04 0.003 0.006 8.64e-05 

2 9.01e-04 1.72e-04 0.010 7.72e-04 

3 0.004 0.001 0.015 0.002 

4 0.006  1.35e-04 0.117 (n.s.) 0.018 

5 7.24e-05  0.012 0.001 2.12e-06 

6 3.78e-04 1.25e-04 5.71e-04 4.51e-05 

7 3.17e-04 5.25e-04 0.005 9.75e-04 

8 6.07e-04 0.006 0.093 (n.s.) 0.037 

Table 2.1. Relative variance within target. P-values from unpaired t-test 
comparing relative neural variance in early and late learning calculated within 
each target separately.  

2.3.2 Increases in Coordinated Neural Activity with Learning  

Previous work has shown that neurons fire in increasingly coordinated patterns as 
performance improves (Athalye et al., 2017). We consider these changes in 
coordinated firing as a proxy for consolidation of neural population dynamics since the 
neural variance is stabilizing onto low-dimensional subspaces. We use factor analysis 
(FA) to separate the neural variance in the population into two components - private 
and shared variances (Everitt, 1984). The shared variance is the variance between 
neurons in the population and can be thought of as the underlying correlated firing 
pattern in the recorded population (Churchland et al., 2010; Yu et al., 2009). 
Conversely, the private variance denotes the amount of variance each neuron has that 
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is independent from the rest of the population. Past studies have explored the roles of 
these components in the direct neuron population, showing private variance as a proxy 
for exploration while an increase in shared variance is correlated to skill consolidation 
(Athalye et al., 2017, 2018). Previous work has quantified the amount of coordinated 
neural activity as a measure of the balance between shared and private variance: the 
ratio of shared variance over total variance (SOT) (Athalye et al., 2017, 2018; You et 
al., 2019). Here, we compared the proportion of the total neural variance that is 
captured in shared spaces for the combined direct and indirect population in each 
epoch as an estimate of coordination within the recorded population across learning.  

Since the indirect population consisted of different units each epoch, we normalized 
the SOT to the mean SOT for early epochs (Figure 2.6A). In both animals, we found 
that the relative SOT increased between early and late learning for the entire recorded 
population including both direct and indirect neurons. Together, with the increase in 
variance over learning, our results indicated a high level of increased coordination that 
occurs within the entire recorded population driven by increased exploration as BMI 
performance improves. To assess that the effect was not due to day-to-day differences 
in the population, we conducted the same analysis on neurons that were stably 
recorded across all 15 epochs, which yielded consistent results (Figure 2.6B). Along 
with an increase in SOT, previous work has shown learning-related decreases in 
dimensionality of the shared neural subspace for the direct subpopulation (Athalye et 
al., 2017). We found a similar decrease in dimensionality for the entire stably recorded 
population (Figure 2.6C) and furthermore found that the dimensionality of the neural 
subspace in each epoch was significantly correlated with the SOT of each epoch 
(Figure 2.6D).  
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Figure 2.6. Increases in coordinated neural activity over learning are primarily 
driven by direct neurons. (A) The relative shared-over-total variance (SOT) ratio 
was calculated with respect to the mean early SOT across the entire recorded 
population. Relative SOT increased between early and late learning, indicating an 
overall increase in coordination of neural activity in the entire recorded population 
(Unpaired t-test; Monkey P, p = 1.31e-5; Monkey R, p = 0.033). (B) Relative SOT 
also increased between early and late learning for a stably recorded population 
consisting of the same units each epoch (Paired t-test; Monkey P, p = 0.002; 
Monkey R, p = 0.027). (C) Dimensionality of the neural subspace for the stably 
recorded population decreased from early to late learning (Unpaired t-test; 
Monkey P: p = 4.10e-4; Monkey R: p = 8.24e-5). (D) The dimensionality of the 
neural subspace is correlated with SOT (Linear regression; Monkey P: R2 = 0.813, 
p = 4.41e-6; Monkey R: R2 = 0.277, p = 0.044). (E) Respective contributions of 
each sub-populations to the SOT ratio (pSOT, see Methods for details) were 
calculated in early and late learning relative to contributions in early learning. 
Only direct pSOT relative to early learning increased from early to late learning 
(Paired t-test; Monkey P, direct p = 0.003, indirect p = 0.805; Monkey R, direct p 
= 0.084, indirect p = 0.675). To test that the change in direct was not due to a 
chance grouping of neurons, we repeated the t-test 500 times while shuffling 
direct and indirect labels and compared the true direct t-statistic to a distribution 
of t-statistics from the shuffled populations (Permutation test; Monkey P, direct p 
= 0.014; Monkey R, direct p = 0.078). (F) Both near and far indirect neurons 
exhibited significant increases in neural variance (Unpaired t-test; near p = 0.006, 
far p = 0.007). (G) Only near indirect neurons exhibited a significant increase in 
pSOT relative to early learning (Unpaired t-test; p = 0.003). Far indirect neurons 
exhibited a significant decrease in pSOT (Unpaired t-test; p = 0.022). To test that 
changes in pSOT are not due to a chance grouping of neurons, we repeated the 
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t-tests 500 times while shuffling near and far labels (Permutation test; near, p = 
0.008; far, p = 0.002). 

While the increase in SOT indicates more coordination within the entire population, it 
does not explain whether these changes are driven by a specific subpopulation. To 
answer this question, we considered the partial shared-over-total variance (pSOT) 
ratio of the stably recorded population to see how the same population of neurons 
change coordinated firing activity over learning (see Methods). Intuitively, the pSOT 
ratio asks how much of the overall change in coordinated activity was driven by one 
subpopulation versus the other. We see that, relative to early learning, there was an 
increase in pSOTdirect in late learning but not in pSOTindirect for both animals (Figure 
2.6E), indicating that the increase in coordination of population activity seen across the 
stably recorded population was driven by the increase in coordination of population 
activity within the direct subpopulation. While this result was only statistically 
significant in Monkey P, Monkey R (who had fewer direct neurons) exhibited the same 
trend. The larger increase in pSOTdirect suggests that the increased neural exploration in 
the network was primarily a consequence of changes in coordinated patterns specific 
to the direct neurons. To further characterize these changes in the indirect neurons, we 
separated all of the indirect neurons in Monkey P into “far” and “near” indirect neurons. 
“Far” indirect neurons (N = 29-69) were those recorded on electrodes not containing 
direct neurons. In contrast, “near” indirect neurons (N = 7-14) were indirect neurons 
that existed on the same electrode shanks as direct neurons. Monkey R was excluded 
from these analyses due to recording too few near indirect neurons during several 
epochs (N = 0-10). We found that neural variance increased for both far and near 
indirect neurons between early and late learning (Figure 2.6F). However, the pSOT 
only increased for the near indirect subpopulation and significantly decreased for the 
far indirect subpopulation (Figure 2.6G). Together, these results suggest that while 
neural exploration exists in broader networks consisting of both direct and indirect 
neurons, activity in neurons closer in proximity to direct neurons becomes more 
coordinated than activity in neurons farther away from direct neurons. Differences in 
near and far indirect neurons could be due to synaptic projections from other brain 
regions into M1. Because neurons in closer spatial proximity may be more likely to 
share inputs, the increase in pSOT seen in the near indirect neurons may be the result 
of an increase in neural variability across an interconnected network.  

2.3.3 Changes in Neural Covariance with Learning  

To characterize how neural exploration modified the direct and indirect neural 
subspaces differently, we quantified these changes by calculating the shared 
alignment pairwise between each training epoch’s shared covariance matrix for each 
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subpopulation according to the methods described in Athalye et al., 2017 (Figure 
2.7A). The shared alignment measures the similarity of covariance planes to compare 
how much of the shared space of one epoch projects onto the shared space of another 
epoch. Intuitively, given both two-dimensional shared subspaces, the shared alignment 
compares the angle between the two planes. Orthogonal planes, or subspaces, would 
result in a shared alignment of 0 and perfectly aligned planes would result in a shared 
alignment of 1. If the shared subspace consolidates with learning, as has been shown 
in direct subpopulations (Athalye et al., 2017), we would expect the shared subspace 
to rotate away from the initial subspace over learning. If the shared subspace remains 
fixed over learning, we would predict that the alignment between the first epoch and 
later epochs remains high, indicating little change in the coordinated activity of the 
population. Since we are interested in how the subspaces pertaining to specific 
populations change over time, we analyzed only the neurons that were stable across 
learning. We found that the shared alignment decreased from the first epoch for both 
subpopulations (Figure 2.7B). This indicates that both subpopulations rotated their 
low-dimensional subspaces, suggesting that neurons may adapt on a network level 
that includes both direct and indirect neurons. Furthermore, this rotation of the low-
dimensional subspaces is correlated with behavior (Figure 2.7C). As the shared 
subspace diverges from where it began in the first epoch, the fraction of correct trials 
significantly increases and the time it takes for the cursor to reach the target 
significantly decreases. While this is true for both the direct and indirect 
subpopulations, the extent of rotation as measured by the shared alignment with the 
first epoch and the proportion of the variation in the shared alignment that is 
predictable from the behavior were higher for the direct subpopulation than the 
indirect subpopulation.   
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Figure 2.7. Rotation of low-dimensional neural subspace. (A) Shared alignment 
was calculated pairwise between epochs for each subpopulation. (B) Alignment 
diverges from the first epoch in both subpopulations (Linear regression; Monkey 
P: direct, R2 = 0.530, p = 0.001, indirect, R2 = 0.352, p = 0.012; Monkey R: direct 
R2 = 0.857, p = 4.63e-7, indirect R2 = 0.760, p = 1.41e-5). The slopes for direct 
and indirect shared alignment across epochs were significantly different (One-
way ANCOVA; Monkey P: p = 0.024; Monkey R: p = 5.84e-6). (C) Alignment is 
correlated with fraction correct (Top, linear regression; Monkey P: direct, R2 = 
0.657, p = 2.0e-4, indirect R2 = 0.481, p = 4.2e-4; Monkey R: direct R2 = 0.870, 
p < 1.0e-6, indirect R2 = 0.589, p = 8.0e-4) and time to hit (Bottom, linear 
regression; Monkey P: direct, R2 = 0.535, p = 0.002, indirect R2 = 0.380, p = 0.014; 
Monkey R: direct R2 = 0.815, p < 1.0e-6, indirect R2 = 0.592, p = 8.0e-4). 

2.3.4 Changes in Neural Variability with a Novel Decoder 

 To further explore how indirect and direct neural activity may adapt together, we 
analyzed data from a second experiment in which Monkey P learned to perform the 
same BMI task with a new decoder following proficient control with the original 
learned decoder (Figure 2.8A). The new decoder used the same direct neurons as the 
original decoder, but the decoder weight assigned to each direct neuron was changed 
so that the same activity patterns result in different cursor movements when using the 
different decoders. Eight experimental blocks were performed over the course of four 
days, alternating between control with the new and previously learned decoder each 
day. The neural variance for direct and indirect neurons was calculated within each of 
these eight blocks. Note that only stable indirect neurons were used for this analysis 
since we wanted to explicitly track how the variance changed as a function of block 
number. We found that both subpopulations increased and decreased neural variance 
together over blocks, with similar changes in variance between blocks occurring in 
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both direct and indirect neurons (Figure 2.8B). Thus, increases in neural variability with 
changing decoders over shorter timescales involved increased exploration not only by 
the direct neurons, but also by the supporting indirect neurons. Because there was an 
increase in neural variability in both subpopulations with each decoder swap, we were 
also able to assess whether the amount change in neural variance was similar 
between the two subpopulations. We found that the changes in the firing rate variance 
of the direct subpopulation were correlated to changes in the indirect subpopulation 
(Figure 2.8C).  

 

Figure 2.8. Neural variance modulates concomitantly between subpopulations. 
(a) Monkey P learned to perform BMI with a new decoder following proficient 
control with the old decoder. 8 experimental blocks were performed, alternating 
between a new decoder (diamond) and the previously learned decoder (circle). 
Fraction of initiated trials that were successful increased over training blocks (left) 
and the time to reach a target decreased over training blocks (right). (b) Both 
subpopulations increase their neural variance over blocks (Linear regression; 
Direct R2 = 0.623, p = 0.020, Indirect R2 = 0.655, p = 0.015). The relative 
variances across blocks are correlated between subpopulations (Pearson’s r, r = 
0.856, p = 0.007). (c) Each point represents the change in relative variance 
between two consecutive blocks. The changes in relative variance within the 
direct and indirect subpopulations are correlated (Pearson’s r, r = 0.820, p = 
0.024).  

2.4 Discussion 

In this study, we explored how changes in cortical population dynamics underlie skill 
learning. Specifically, we examined how cortical dynamics of subpopulations of 
neurons change over learning when the mapping of neural activity to behavior is 
precisely defined using a BMI. That is, how does the adaptation of the subpopulations 
used as inputs into a BMI decoder (direct neurons) compare to that of a subpopulation 
not used for decoding (indirect neurons)?  
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Our results revealed that learning-related neural state space exploration included 
neurons from both the direct and indirect subpopulations. Both subpopulations 
increased variance in their firing rates (Figure 2.5) and there was an increase in 
coordination of neural firing patterns across the combined population that was 
correlated with a decrease in dimensionality of the neural space (Figure 2.6). While we 
could not directly compare these changes in neural variance and coordinated activity to 
undetected movements made by the animals, both animals were observed to have 
minimal movements during BMI control (Ganguly & Carmena, 2009). Previous 
literature has suggested that volitional modulation of neural activity in animals may be 
related to movements, cognitive imagery, or shifts in attention (Fetz, 2007; Hwang et 
al., 2013). Thus, it is possible that these learning-related changes in neural variance 
are the result of an underlying behavioral strategy through which the animals learn to 
modulate their neural activity.  

An increase in neural variability with learning, as observed in our results, has also been 
seen in previous studies. One explanation for this increase in variability is that it allows 
the brain to explore new activity patterns that may improve behavior (Athalye et al., 
2017). Another study finding the same increase in neural variability in early learning 
proposed that this increase may be the result of changing internal states or increased 
neural engagement (Hennig et al., 2021). Thus, this increase in variance of the firing 
rates of both direct and indirect neurons may be a result of an increased exploratory 
drive or a change in the animals’ internal state, which may be indicative of its arousal 
or uncertainty about its environment.  

Previous work observing increases in coordinated population activity suggested that 
these changes are characteristic of more stereotyped behavior over learning and this 
increased neural covariance has been associated with subjects making straighter, more 
direct paths to the targets (Athalye et al., 2017). Furthermore, changes in covariance 
structure have been shown to relate to synaptic connectivity (Okun et al., 2015). Thus, 
when considering the entire recorded population, it appears as though the whole 
population adapts together to facilitate learning. However, past work has shown 
differences in adaptation between direct and indirect neurons (Ganguly et al., 2011; 
Gulati et al., 2014; Koralek et al., 2013). When we considered the relative contribution 
of each subpopulation to the overall increase in coordination, we found that the 
indirect subpopulation contributed very little to the increase in coordinated patterns 
(Figure 2.6E). That is, while we witnessed an increase in coordination in the entire 
recorded population, there was less within-group coordination in indirect neurons 
compared to direct neurons. Our metrics of coordination (e.g., SOT) rely on averaging 
the amount of correlated activity between pairs of neurons. Coordination of firing 
activity occurring more heavily in one subpopulation would nevertheless increase the 
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SOT in the entire population. Altogether, while both subpopulations exhibit similar 
levels of exploration over learning as demonstrated by an increase in neural variance, 
the exploration by the indirect subpopulation results in less of an increase in 
coordination of neural firing patterns than that of the direct subpopulation. 

Changes in coordinated neural activity resulted in rotations of the neural space over 
learning in both direct and indirect subpopulations (Figure 2.7). The neural space can 
be intuitively thought of as the lower-dimensional space in which co-activations of 
neurons exist and rotating this neural space corresponds to adjusting which neurons 
are more active given the state of other neurons in the population. Following this 
interpretation, both direct and indirect subpopulations similarly adapted their 
coordinated firing patterns within subpopulation over learning. This adaptation in 
coordinated firing patterns was also correlated with behavioral improvements in the 
task for both the direct and indirect subpopulations, however, the relationship was 
stronger for the direct subpopulation than the indirect subpopulation for both subjects. 
This result, along with the increase in pSOT observed in the direct subpopulation, 
suggests that as the direct subpopulation increases coordination of neural activity its 
covariance exhibits greater changes than that of the indirect subpopulation over 
learning.  

We also examined how the neural firing rate variance of both the direct and indirect 
subpopulations changed in an experiment where two decoders were swapped each 
day, requiring changes in neural activity over short timescales. We found that changes 
in neural variance occurred with each decoder swap and were proportional between 
the two subpopulations (Figure 2.8). This suggests that increases in neural variability 
occur over both short timescales, as seen in this experiment, and over longer 
timescales, as seen in the initial 15 epochs, involve both neurons within the supporting 
cortical network and direct neurons. Furthermore, the changes in neural variance 
between the two subpopulations were correlated. Consequently, both the direct and 
indirect subpopulations may be adapting via the same mechanism but to different 
extents. However, this experiment was limited to only four days of switching between 
decoders. It is unclear whether or not these parallel changes in neural variance 
between the direct and indirect subpopulations would continue if the animal was given 
more extensive practice.  

Our findings that both direct and indirect subpopulations increase neural variability 
similarly but exhibit differential changes in coordination could be explained by existing 
hypotheses on how the brain learns to refine coordinated neural dynamics (Athalye et 
al., 2020). Specifically, small networks of cortical neurons may be driven by upstream 
cortical and subcortical inputs. We found that indirect neurons adapted in similar ways 
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as direct neurons, suggesting that some indirect neurons may in fact be adapting with 
or alongside direct neurons. When we investigated how distance from direct neurons 
influenced these results, we found that indirect neurons in closer spatial proximity to 
direct neurons increased coordination more than indirect neurons that were farther 
away (Figure 2.6G). While the upstream projections from cortical and subcortical 
structures are not necessarily spatially organized, our results are consistent with the 
hypothesis that upstream structures may be driving changes in smaller groups of inter-
connected neurons (Vyas, Golub, et al., 2020). Furthermore, it has previously been 
shown that when disparities are present between the control space and neural space 
(i.e. how well the decoders aligned to the natural firing patterns of the neurons), 
neurons with larger disparities adapt more over learning compared to neurons with 
smaller disparities (Athalye et al., 2017; Chase et al., 2012; Jarosiewicz et al., 2008; 
Orsborn et al., 2014). A recent study has shown that task-related neurons, consisting 
of direct neurons as well as task-modulated indirect neurons, increase coherency to 
slow-wave activity (SWA) during sleep which has been linked with consolidation 
(Gulati et al., 2014). This suggests that in addition to online task practice, neural 
reactivations during sleep can aid in exploring the contributions of direct and indirect 
neural population relative to successful outcomes and reward. Notably, indirect 
neurons that were closely tied to reward were preserved and resembled direct 
neurons; this might explain why some indirect neurons were modified during 
neuroprosthetic skill acquisition. This also provides further evidence that mechanisms 
of reinforcement learning may underlie our observed phenomena. Thus, it is quite 
plausible that adaptation of neural activity over BMI learning is attributed to finding the 
clusters of neurons with a direct effect on behavior, which may include both direct and 
indirect neurons, depending on their specific network connectivity and temporal 
association with successful outcomes.  

In this study, we used factor analysis (FA) to find correlations in the neural activity of 
the recorded population. Underlying this model are latent factors, which are variables 
that coarsely group neurons together based on coordinated activity patterns. 
Importantly, the activity of a single neuron can be associated with multiple latent 
factors. While we were agnostic to what the latent factors in FA may correspond to in 
this study, they may be physiologically analogous to upstream connections from 
cortical or subcortical structures that drive changes in small clusters of neurons 
containing direct neurons. The idea that neural reinforcement is dependent on cortico-
cortical and cortico-striatal circuits, similar to behavioral reinforcement, has been 
previously supported by studies using BMIs. For example, as rodents learned to 
produce specific patterns of cortical activity, coherence between these neurons and 
dorsal striatum emerged and neurons in dorsal striatum developed target-predictive 
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modulation of firing activity (Koralek et al., 2012, 2013; Neely et al., 2018). 
Furthermore, mice without functional NMDA receptors in striatal projection neurons 
could not learn to re-enter a cortical pattern that led to reward. Thus, cortico-striatal 
plasticity is necessary for learning to efficiently produce the cortical activity patterns 
required to obtain rewards. These findings along with the results from our study 
further support the hypothesis that smaller clusters of neurons, which may include 
both direct and indirect neurons, are adapted over learning more than clusters of 
neurons that do not drive behavior.  

Overall, our results demonstrate that the brain learns to modify cortical population 
dynamics in subpopulations relevant for behavioral control. When using a BMI, we find 
that neurons with direct input to the decoder as well as neurons in the surrounding 
cortical network increase exploration and consolidate their firing activity onto a low-
dimensional neural space. The degree of coordination among the population is 
dependent on the relationship of the neural activity to the behavioral output. Thus, the 
brain may not be reinforcing the activity of single neurons, but rather reinforcing 
cortical population dynamics that are relevant to producing a desired behavior. These 
findings indicate that the brain learns to control a BMI by refining cortical population-
level dynamics, suggesting that BMI decoders extracting information based on 
population-level statistics, such as the covariance structure of the population, may be 
more effective compared to traditional decoding methods based on the statistics of 
individual neurons. Dimensionality reduction techniques such as FA allow us to pull 
out the correlated activity in a population of neurons. That is, the shared variance 
obtained using FA represents the concerted activity of a population and if we assume 
that the uncorrelated activity is largely noise, then using these population-level 
statistics effectively increases the signal-to-noise ratio of the neural activity. Building 
decoders based on these smoothed neural signals may translate to smoother output 
signals (e.g., cursor movements).  

In conclusion, this study demonstrates an emergence of coordinated population 
dynamics within both populations of neurons whose activity is directly used as input 
for BMI control as well as within the surrounding network. The extent to which these 
subpopulations modify their coordinated activity varies, with the direct subpopulation 
exhibiting larger changes. Understanding the role of modifications of adjacent indirect 
activity in obtaining precise control of a BMI may help us understand the neural 
adaptation that is required for achieving long-term, stable control of a BMI.  
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Chapter 3: Simultaneous Large-Scale Recordings During 
Neuroprosthetic Control in Nonhuman Primates 

Brain-machine interfaces (BMIs) allow for the real-time transformation of neural 
activity into control signals for external devices. Learning to control these devices 
engages a wide array of learning mechanisms that rely on distributed cortical and 
subcortical areas. Many of these mechanisms are associated with both the caudate 
nucleus of the striatum (Cd) and the dorsolateral prefrontal cortex (DLPFC). Previous 
work in rodent BMI has demonstrated involvement of the striatum in neuroprosthetic 
skill learning, however DLPFC has been largely ignored in motor BMI studies. In this 
chapter, I present a novel method for recording motor cortical units from a nonhuman 
primate (NHP) to input to a BMI while simultaneously recording from multiple cortical 
and subcortical brain regions. This technique enables the investigation of the role of 
distributed brain regions and their interactions during BMI control to create a more 
detailed, mechanistic understanding of how neuroprosthetic control is implemented in 
the brain. To demonstrate this, we investigated changes in local field potentials (LFP) 
from Cd and DLPFC that occur during BMI control. We found changes in spectral 
power that were predictive of control type and directed functional connectivity with 
motor cortex that differed from baseline. These findings provide further evidence that a 
distributed network of cortical and subcortical areas is involved in neuroprosthetic skill 
learning and control. This work was done in collaboration with Gabrielle Shvartsman, 
Joni Wallis, and Jose M. Carmena.  

3.1 Introduction 

The ability to volitionally modulate the activity of single neurons (Chapin et al., 1999; 
Fetz, 1969, 2007; Fetz & Baker, 1973; Kennedy & Bakay, 1998) or populations of 
neurons (Khanna et al., 2013, 2017; Leuthardt et al., 2004; Wolpaw et al., 1991, 2002) 
is fundamental to the operation of closed-loop motor BMIs. With a BMI, subjects must 
learn to produce specific patterns of activity to control an external device. Previous 
work has revealed that this ability is a learned skill by demonstrating that performance 
increases with practice (Carmena et al., 2003; Ganguly & Carmena, 2009; Moritz et al., 
2008; Schalk et al., 2008; Wolpaw & McFarland, 2004). The process of learning to 
volitionally modulate neural activity for the purpose of controlling an external device is 
referred to as neuroprosthetic skill learning.  

Neuroprosthetic tasks share characteristics with both concrete motor tasks and 
abstract cognitive tasks (Green & Kalaska, 2011; Wander et al., 2013). Specifically, an 
abstract neuroprosthetic task requires users to produce certain patterns of neural 
activity to manipulate their physical environment without physical movement. The 
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process of learning that specific patterns of neural activity result in a desired outcome 
is essential for neuroprosthetic skill learning and can be thought of as operant 
conditioning of cortical activity patterns. The prefrontal cortex and basal ganglia play 
key roles in learning arbitrary stimulus-response associations common in abstract 
tasks (Antzoulatos & Miller, 2011, 2014; Badre et al., 2010; Boettiger, 2005; 
Genovesio et al., 2005; Muhammad et al., 2006; Pasupathy & Miller, 2005). Learning to 
associate a specific pattern of neural activity with a particular outcome, such as a 
specific cursor movement, may also involve the prefrontal cortex and basal ganglia. 
Specifically, both dorsolateral prefrontal cortex (DLPFC) and the caudate nucleus of 
the striatum (Cd) have been implicated in learning abstract associations (Antzoulatos & 
Miller, 2011, 2014; Pasupathy & Miller, 2005). These two regions are extensively 
interconnected with one another, as well as with sensory, motor, and higher-level 
associational areas (Haber, 2003, 2016; Petrides & Pandya, 2006), making them prime 
candidates for involvement in neuroprosthetic skill learning. Furthermore, cortico-
striatal plasticity has been shown to be necessary for both motor learning (Costa et al., 
2004; Hikosaka et al., 1999) and neuroprosthetic learning (Koralek et al., 2012, 2013; 
Neely et al., 2018). 

Previous work investigating role of cortico-cortical and cortico-striatal interactions 
involved in neuroprosthetic learning and control have relied on simplified, one-
dimensional tasks in rodents (Koralek et al., 2012, 2013; Neely et al., 2018) or patients 
with electrocorticography arrays (Wander et al., 2013, 2016). Furthermore, 
interactions between DLPFC and Cd during a neuroprosthetic task have not been 
studied despite their role in learning abstract associations. This is partially due to the 
technical difficulties of simultaneous recordings from cortical and subcortical regions in 
a nonhuman primate (NHP) during an abstract neuroprosthetic task. Proficient control 
in abstract neuroprosthetic tasks takes several days to learn (Athalye et al., 2017; 
Ganguly & Carmena, 2009; Oby et al., 2019), requiring a stable recording system such 
as chronically implanted microelectrode arrays. However, most chronic recording 
techniques are not suited for recording from subcortical regions. To overcome these 
challenges, we used a large-scale semi-chronic microdrive to simultaneously record 
neural activity from cortical and subcortical structures as NHPs learned to control a 
two-dimensional abstract neuroprosthetic task. This recording technique enables the 
study of large-scale networks underlying neuroprosthetic skill learning.   

In this chapter, we present this novel recording technique for a neuroprosthetic task 
and investigate the role of Cd, DLPFC, motor cortex, and their interactions in an 
abstract neuroprosthetic task. We demonstrate that animals can learn to control a BMI 
with motor cortical recordings from a semi-chronic microdrive and that there are task-
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relevant changes in spectral power within and interactions between Cd, DLPFC, and 
motor cortex.  

3.2 Methods  

3.2.1 Segmenting MRIs for Anatomical Models 

For each subject, anatomical images with resolution of 1 x 0.84 x 0.84 mm were 
obtained using a 3T Siemens TIM/Trio MRI scanner with a two-channel receive-only 
head coil. 3D Slicer was used to construct models of the cranium and the neural 
targets (Fedorov et al., 2012). Boundaries of the skull and neural recording targets 
were defined using the segmentation and model functions in 3D Slicer. Regions of 
interest such as primary motor cortex (M1), dorsal premotor cortex (PMd), dorsolateral 
prefrontal cortex (DLPFC), caudate (Cd), and putamen (Pu) were manually traced in 3D 
Slicer using the Paxinos primate atlas as a reference (Paxinos et al., 2000). The 
resulting neuroanatomical and cranial models were used to custom-fit a titanium 
chamber to each subject and decide on stereotaxic coordinates for implantation.  

3.2.2 Large-Scale Semi-Chronic Microdrive System  

The large-scale semi-chronic microdrive system used in these experiments has been 
previously described in detail (Dotson et al., 2017; Qiao et al., 2016). It consists of a 
guide array, an actuator block, a printed circuit board (PCB), and a screw guide. The 
actuator block houses a set of linear actuators (n = 124), each consisting of a miniature 
stainless steel lead screw, a threaded brass shuttle, and a compression spring. Each 
actuator provided 32 mm of electrode travel at a resolution of 8 turns/mm. The 
actuators were spaced at 1.5 mm intervals. Electrodes consisted of both glass-coated 
Tungsten electrodes (AlphaOmega) and Platinum-Iridium electrodes (MicroProbes).  

3.2.3 Implanting the Chamber and Microdrive 

The large-scale semi-chronic microdrive system was implanted in three stages: 
chamber implantation, craniotomy, and microdrive implantation. Each stage was 
followed by a period of recovery and testing to ensure the animals were healthy before 
proceeding to the next step. Fluid from inside the chamber tested negative for infection 
before advancing to the next procedure at all stages to assure the sterility of the 
hermetically sealed chamber. All procedures were conducted in compliance with the 
National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals 
and were approved by the University of California at Berkeley Institutional Animal Care 
and Use Committee.  
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To implant the chamber in the first stage, the skin, fascia, muscle, and periosteum are 
retracted from the cranial bone over an area that is slightly larger than the footprint of 
the chamber. The chamber is then placed in position and sealed around its perimeter 
with a thin bead of C&B-Metabond (Parkell) cement. The coordinates for placing the 
chamber were determined using an anatomical model from an MRI. The chamber is 
then anchored to the skull using Titanium bone screws and acrylic bone cement. At the 
end of this stage, the cranial bone is left intact, and the chamber is hermetically sealed 
with silicone, a rubber gasket, and a short plug screwed into the titanium chamber. The 
chamber is then covered with a protective cap and the animal was given a minimum of 
two weeks to recover from this procedure before proceeding to the next stage.  

The second surgical step involved making a craniotomy inside of the chamber. After 
removing the cap, plug, and gasket, the chamber is rinsed, and the cranial bone surface 
debrided of connective tissue. The skull can then be removed within the chamber. The 
chamber, now with the cranial bone removed inside, is hermetically sealed again. This 
time, a tall plug is used to minimize bone and tissue regrowth in between surgical 
procedures. The animal was given a minimum of 48 hours to recover from this 
procedure before moving to the next stage.  

To implant the microdrive in the final surgical stage, the dorm-fitting plug is removed, 
and the inside of the chamber is cleaned of connective tissue before replacing rubber 
gasket and silicone and mounting the microdrive. The microdrive is secured to the 
chamber using machine screws that pass through the actuator block. The titanium 
chamber served as the reference and ground connection to the animal using a machine 
screw linked to a trace on the PCB.  

3.2.4 Impedance Monitoring and Advancing Electrodes 

After the microdrive had been mounted, the animals were given at least 48 hours to 
recover and receive a negative test for infection before advancing electrodes. Once the 
animal has been confirmed negative for infection, the electrodes can be advanced into 
the brain gradually over a period of 4-6 weeks. For the microdrive model used in these 
experiments, each leadscrew has a thread pitch of 125 μm per turn. The electrodes are 
advanced by counterclockwise rotation of the leadscrew. This was done in an 
incremental manner by advancing a subset of 10–30 electrodes each day until unit 
activity was detected. Adjacent electrodes were never lowered in a single day to avoid 
excess tissue compression.  

The impedance of the electrodes was monitored using a TDT NanoZ while advancing 
them into the brain. Initially, the impedance values will be high (>2.5 MOhm), 
indicating an open circuit while the electrodes are retracted inside of the microdrive. As 
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the electrodes are advanced outside of the microdrive and into the fluid between the 
brain and the bottom of the chamber, the impedance should drop to the electrode 
impedance. The impedance will begin to rise by about 1 MOhm as it is pressed into the 
dura. Then, when the electrode breaks through the dura, it will drop back to the current 
electrode impedance. If the impedance drops much lower (<100 kOhm), this usually 
indicates a broken electrode tip.  

Once the electrodes have passed the dura and are in the brain, they should be 
advanced by no more than 10 turns (1.25 mm) each day to avoid tissue compression. 
The electrode should be advanced until the neural target is reached. The number of 
turns can be estimated using the neuroanatomical models built in 3D Slicer (number of 
mm x 8 turns). Once the neural target is reached, the electrode position can be 
maintained. If desired, the electrode can be advanced further to search for new neural 
activity.  

3.2.5 Intracortical Recording 

Neural data were recorded using the OmniPlex Neural Recording Data Acquisition 
System (Plexon Inc, Dallas, TX). Single- and multi-unit activity was sorted prior to 
beginning recording sessions using an online sorting application (Sort Client, Plexon). 
Wideband activity was recorded at 5 kHz. LFP activity was obtained by low-pass 
filtering at 250 Hz, notch filtering at 60 Hz and 120 Hz, and down-sampling to 1 kHz. 

LFP activity was common median referenced by first z-scoring activity within each 
channel by subtracting the mean and dividing by the standard deviation in each 
recording session and then subtracting the median value across all channels at each 
time point. After subtracting the median to remove common signals, likely low 
frequency noise, across channels, the LFP activity was multiplied by the standard 
deviation and the mean was added to restore the LFP to its original scaling. Common 
median referencing was used instead of common average referencing because it is less 
susceptible to influence from outliers. The common-median-referenced LFP activity 
was then z-scored using the mean and standard deviation within channel across all 
recording sessions within a day. Unless otherwise stated, LFP analyses were 
performed using the average LFP across channels within each region of interest.  

3.2.6 Center-Out Task 

Subjects performed a self-paced delayed center-out reaching task to eight targets. 
Trials were initiated by moving to the central targets. A successful trial required a short 
hold at the center, moving to the peripheral target within a specified time, and a brief 
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hold at the target. Successful trials resulted in a liquid reward; failed trials were 
repeated. Target directions were presented in a pseudo-randomized order.  

Subjects were overtrained in the center-out task performed with arm movements 
before starting BMI. In this manual control (MC) version of the task, the subject’s arm 
moved in a KINARM exoskeleton (BKIN Technologies) that restricted movements to 
the horizontal plane. Neural activity recorded during MC was used to train a BMI 
decoder. Using this BMI decoder, the animals performed the same task under BMI 
control (BC). During BC, the animals’ arms were restricted in a fixed position within the 
exoskeleton and the animals were required to move the cursor to the target by 
modulation of motor cortex activity. 

3.2.7 Brain-Machine Interface  

Brain-Machine Interface Algorithms 

Subjects learned to control a two-dimensional BMI cursor in real-time using a fixed 
velocity Kalman Filter decoder (Gilja et al., 2012; S.-P. Kim et al., 2008; W. Wu et al., 
n.d.). The Kalman Filter assumes two linear models: 

𝑥(45 = 𝐴𝑥( +𝑤( 

𝑦(45 = 𝐶𝑥( + 𝑞( 

where 𝑥( and 𝑦(	are the cursor state and neural activity at time t, respectively. The first 
equation represents the state-transition model, which describes the state of the cursor 
over time. It is specified by the state-transition matrix 𝐴 and additive Gaussian noise 
term 𝑤(	~	𝑁(0,𝑊). Equation 2 represents the observation model and describes the 
relationship between neural activity and cursor state. It is parameterized by the 
observation matrix 𝐶 and additive Gaussian noise 𝑞(	~	𝑁(0, 𝑄). Neural activity was 
input as a vector of spike counts in 100 ms bins from the selected direct units.  

BMI Decoder Training  

Decoder parameters were initialized from neural and cursor kinematic data collected 
during the MC version of the task at the beginning of each recording day. Maximum 
likelihood estimation methods were used to fit initial parameters. Neural data from 10-
20 single- and multi-units recorded from motor cortex were selected for BMI control 
each day (i.e., direct units). The population of direct units was highly overlapping from 
day to day, but there was some variability as units dropped out or new ones appeared. 
For Monkey Y, closed-loop decoder adaptation (CLDA) was performed using the 
SmoothBatch algorithm before fixing the BMI decoder. This algorithm uses knowledge 
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of task goals (i.e., reaching targets) to infer a subject’s intent. The intended kinematics 
and observed neural activity during closed-loop BMI were used to re-estimate KF 
parameters. The SmoothBatch algorithm re-estimates the observation model of the KF 
(matrices C and Q), and updates were constrained to enforce smoothness. The 
SmoothBatch has been described in detail previously (Dangi et al., 2013; Gowda et al., 
2014; Orsborn et al., 2012). CLDA was typically run for 2-5 minutes to provide the 
subject with adequate performance to allow successful reaches to all targets. For 
Monkey H, the initial decoder trained from MC data was used.  

3.2.8 Neural Data Analysis  

All analyses were performed in Python with custom-written routines utilizing publicly 
available software packages including scipy, numpy, sklearn, and statsmodels. Unless 
otherwise specified, analyses were performed on the average LFP signal across all 
channels within each region of interest.  

Linear Classifiers  

To classify control type using power features, linear discriminant analysis (LDA) 
models using singular value decomposition (SVD) were trained and tested using the 
sklearn toolbox (Pedregosa et al., 2011) in Python. These models used power 
estimates obtained using Welch’s method from segments of LFP recorded during the 
BMI task, the manual task, or the baseline period from a single recording day as 
features for classifying control type. To avoid negative effects on imbalanced data 
between classes, the number of trials per task type (either manual or BMI control) was 
matched to the class with the fewest number of trials per day by selecting a subset of 
trials from the larger class of equal size to the number of trials in the smaller class. The 
corresponding number of windows were selected from the baseline period. Typical 
frequency band cut-offs were used. Theta is defined as 4-8 Hz, alpha as 8-13 Hz, beta 
as 13-35 Hz, gamma as 35-75 Hz, and high gamma as 75-150 Hz.  

Results for each model were validated using a 10-fold cross-validation within each 
recording day. Classification accuracies were compared to a chance accuracy obtained 
by shuffling task labels 1000 times. All frequency bands and regions of interest (ROIs) 
were trained and tested independently of one another first. Then, classifiers using 
power features from all frequency bands from different combinations of ROIs were 
compared. This process was performed separately for 500 ms segments of LFP 
recorded after the go cue and for 500 ms segments of LFP recorded prior to target 
achievement.  
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Granger Causality  

Granger causality was used to estimate the directional functional connectivity among 
all pairs of regions of interest. Granger causality relies on an autoregressive (AR) 
modeling framework, in which future values of a time series are modeled as a 
weighted combination of past values of time series. The quality of an AR-model is 
assessed by quantifying the variance of the model’s residuals. If the variance of the 
AR-model’s residuals is reduced by the inclusion of past measurements from a second 
time series, then the second time series is said to Granger-cause or G-cause the first. 
Thus, determining the Granger causality of one signal on another requires two AR-
models:  

𝑋( = 	𝐴 ∙ 𝑋(65 + 𝜀( 

𝑋( = 	𝐴 ∙ 𝑋(65 + 𝐵 ∙ 𝑌765 + 𝜀8( 

The first model is a univariate AR-model in which values of time series 𝑋 are predicted 
as a weighted combination of past values of time series 𝑋. The second model is a 
bivariate AR-model in which values of time series 𝑋 are predicted as a weighted 
combination of past values of time series 𝑌 in addition to past values of time series 𝑋.  

A significant reduction of the variance of the residuals when comparing the univariate 
AR-model to the bivariate AR-model implies that inclusion of information about the 
past values of time series 𝑌 in the prediction of time series 𝑋 improves prediction of 
time series 𝑋 beyond inclusion of only past values of time series 𝑋. More explicitly, 
Granger causality is defined as the natural logarithm of a ratio of residual variances 
obtained from two different AR-models:  

𝐺9→; = ln P
𝑣𝑎𝑟(𝜀()
𝑣𝑎𝑟(𝜀8()

R 

where 𝜀( and 𝜀8( represent the residuals from the univariate and bivariate AR-models, 
respectively. In cases where one signal G-causes another, the ratio of the variances is 
larger than one, leading to a G-causality value that is larger than zero (Bressler & Seth, 
2011; Ding et al., 2006; Granger, 1969). Applying this logic, we obtained G-causality 
estimates using simultaneously recorded LFP signals.  

We compared Bayesian information criterion (BIC) of AR-models of different orders, p, 
for each combination of LFP signals obtained from all pairs of regions during each trial 
from all recording sessions. We selected p=15 to minimize BIC in the average case, 
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allowing for the signals to be sufficiently long enough to capture the data structure 
without over-parameterization.  

To account for any spurious interactions and assess the statistical significance of our 
interactions of interest, we estimated the G-causality between time series that were 
not recorded at the same time or during the same task. LFP signals recorded during 
baseline were used to predict LFP signals recorded during BMI control and vice versa 
to get a distribution of values obtained from random chance. Only estimates in G-
causality that were significantly greater than these values were considered statistically 
significant.  

To determine whether interactions were task-relevant, we computed the gain in 
Granger causality from baseline as follows:  

𝐺𝑎𝑖𝑛9→; =	
𝐺9→;,/<= − 𝐺9→;,/$"&*!.&

𝐺9→;,/$"&*!.&
 

Values greater than zero indicate that the interaction is greater during the task than 
during baseline, while values less than zero indicate that the interaction during the task 
is below that during baseline.  

3.2.9 Quantification & Statistical Analyses  

All analyses were performed within a single recording day and error is depicted across 
days. For analyses comparing two distributions or comparing a single distribution to a 
value, two-sample or one-sample t-tests were used, respectively. Bonferroni 
correction was used post hoc to correct for multiple comparisons. Significance is 
reported after correction for multiple comparisons.  

3.3 Results  

Two rhesus macaques (Monkey H and Monkey Y) were implanted with a custom-fit 
large-scale semi-chronic microdrive array on the left hemisphere (Figure 3.1). Single- 
and multi-unit recordings from motor cortex were used as input to a BMI decoder, 
while local-field potentials (LFP) were simultaneously recorded from primary motor 
cortex (M1), dorsolateral prefrontal cortex (DLPFC), and caudate (Cd). Each day, the 
animals performed a two-dimensional, self-initiated, center-out task. First, they 
performed the task under manual control followed by a four-minute baseline period. 
Then, they performed the same center-out task under BMI control, where they drove a 
cursor by modulating motor cortical activity to one of eight pseudo-randomly 
instructed peripheral targets for a juice reward (Figure 3.2).  
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Figure 3.1. Large-scale semi-chronic microdrive array for chronic, high-
throughput, neural recordings. (A) Three-dimensional model of the large-scale 
semi-chronic microdrive, neural targets, and skull of Monkey H obtained using 3D 
Slicer. (B) Arrangement of electrodes overlaid with neural targets. Different brain 
regions are shaded in different colors as indicated by the legend. Electrodes were 
either glass-coated tungsten (black) or platinum-iridium (yellow).  
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Figure 3.2. Task schematic representation of manual and BMI reaching. 
Monkeys performed a two-dimensional, self-initiated, center-out movement task 
in both manual control (A) and BMI control (B). In manual control, the subject’s 
arm was restricted to a two-dimensional plane within an exoskeleton. In BMI 
control, the subject’s arm was locked in a fixed position. (C) Timeline of the 
center-out task. See Methods for details.  

3.3.1 Online BMI Performance 

Both monkeys successfully learned to perform the eight-target center-out task using a 
cursor under BMI control. Task performance showed clear improvements across days, 
despite using different direct units and decoders each day. The monkeys learned to 
produce faster, straighter cursor trajectories, resulting in a decreased target acquisition 
time over days (Figure 3.3A). Example single-trial cursor trajectories from the center 
target to each peripheral target for successful trials in early learning and late learning 
are shown in Figure 3.3B. This improved performance demonstrates that the animals 
were able to learn an abstract neuroprosthetic skill using neural activity recorded from 
a semi-chronic microdrive.  
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Figure 3.3. Behavioral performance under BMI control. (A) The average time to 
reach a target decreased over training days (Monkey H, n = 13 days; Monkey Y, n 
= 22 days). (B) Representative examples of single-trial cursor trajectories during 
the first and last days of recording from Monkey Y. 

3.3.2 Control Type Classification with Power Features 

Using the LFP recorded from multiple electrodes in M1, DLPFC, and Cd during BMI 
task performance, manual task performance, and a baseline period, we computed the 
power in various frequency bands using Welch’s method of spectral estimation in 500 
ms windows. Both monkeys’ performance varied across days and across trials, but the 
500 ms segment following the go cue of successfully initiated trials was more 
stereotyped and a period in which the monkeys were reliably engaged in the task. A 
second period in which the monkeys were reliably engaged in neuroprosthetic control 
was the 500 ms period immediately before target achievement on successful trials. 
Thus, 500 ms windows following the go cue and preceding target acquisition on 
successful trials were used for the BMI task and manual task. The mean spectral 
power across channels within each region of interest (ROI) was computed within these 
windows and within 500 ms baseline windows. These power estimates were used as 
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features in a linear discriminant analysis (LDA) classifier to classify control type: BMI, 
manual, or baseline. All frequency bands and ROIs were trained and tested 
independently of one another, and a chance classification estimate was obtained by 
shuffling control type labels within each recording day. An additional model including 
all power features from all frequency bands was also included for each ROI.  

 

Figure 3.4. Classification accuracy using spectral power features from different 
frequency bands. LDA was done separately in each region of interest and 
accuracies for M1, DLPFC, and Cd are indicated by color (blue, green, and pink, 
respectively). (A) Average 10-fold cross-validated classification accuracy and 
error across days for individual frequency bands and all combined bands at the 
go cue for Monkey H (left) and Monkey Y (right). Chance accuracy shown as a 
dashed line. (B) Comparison of classification accuracies from classifiers using 
different power features as inputs at the go cue. Classification accuracies were 
compared within region (rows) and subject (columns). Blue, green, or pink boxes 
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indicate a significant difference via two-sample independent t-test after 
Bonferroni correction within M1, DLPFC, or Cd, respectively. (C, D) Same as (A, 
B) for power features obtained at target acquisition rather than at the go cue.  

Comparing Power Features from Different Frequency Bands 

All of the linear classifiers except for the one using alpha power from DLPFC for 
Monkey H predicted control type significantly above chance at the go cue (Figure 
3.4A). Mean classification accuracies using the different power features were 
compared within region and subject (Figure 3.4B). Across all regions, beta power 
features tended to demonstrate the highest classification performance of any 
individual frequency bands. The classifier using power from all frequency bands as 
input features performed better than any individual frequency band.  

These analyses were repeated using the mean power estimates within each region 
prior to target acquisition. With power features from this task event, all linear 
classifiers predicted control type significantly above chance except for the one using 
theta power from Cd theta for Monkey H (Figure 3.4C). The mean classification 
accuracies using different power features as inputs were also compared for these 
models (Figure 3.4D). Similar to the go cue, the classifier using all frequency bands has 
the best performance. No single frequency band provided a consistently higher 
prediction of control type at target acquisition.  

Comparing Power Features from Different Regions of Interest 

Power features from all three regions provided significant information about control 
type at both the go cue and target acquisition. To determine whether combining 
information across regions increases control type predictability, we compared 
classification accuracy using power features from all frequency bands within individual 
regions and from all possible combinations of regions (Figure 3.5).  
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Figure 3.5. Classification accuracy using power across all frequency bands 
from individual and combinations of regions of interest. (A) Average 10-fold 
cross-validated classification accuracy and error across days for individual 
frequency bands and all combined bands at the go cue for Monkey H (left) and 
Monkey Y (right). Classifiers are presented in order of ascending accuracy. Chance 
accuracy shown as a dashed line. (B) Comparison of classification accuracies from 
classifiers using power features from different combinations of regions of interest 
as inputs at the go cue. Purple boxes indicate a significant difference via two-
sample independent t-test after Bonferroni correction. (C, D) Same as (A, B) but 
for power estimates obtained at target acquisition.  

At the go cue, power features from DLPFC and M1 were significantly better at 
classifying control type than power features from Cd (Figure 3.5A, B). Furthermore, 
combining power features from DLPFC and M1 provided significantly higher 
classification performance than classifiers using power features from M1 only for both 
subjects and power features from DLPFC only for Monkey Y. While the classifier using 
power features from all three regions resulted in the highest classification accuracy for 
both subjects, there was no significant difference between classification accuracy when 
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using power features from all three regions and from M1 and DLPFC only for either 
subject. This suggests that most of the information about control type is contained in 
M1 and DLPFC at the go cue.  

At target acquisition, the classifier using power features from M1 demonstrated 
significantly higher performance than the classifiers using power features from DLPFC 
or Cd (Figure 3.5C, D). Adding power features from DLPFC to M1 significantly 
improved performance for Monkey Y, but not for Monkey H. Similar to the go cue, 
classification accuracy was highest for the model using power features from all three 
regions but the difference between this model and the model using power features 
from only M1 and DLPFC was not significant. Overall, these results suggest that most 
of the information about control type is present in M1 power features at target 
acquisition.  

Comparing Task Events 

To compare classification performance using power features from different task events, 
we compared the classification accuracy from models using power features from M1, 
DLPFC, Cd, and all combined ROIs at the go cue and at target acquisition (Figure 3.6). 
Classification accuracy was significantly higher at the go cue than at the target for 
models using DLPFC, Cd, or all combined power features. Interestingly, there was no 
significant difference in classification accuracy between the two task events for the 
model using power features from M1.  

 

Figure 3.6. Classification performance using all frequency bands from M1, 
DLPFC, Cd, and all combined ROIs. Classification accuracy is significantly higher 
at the go cue than at target acquisition for DLPFC (Monkey H, p = 3.4e-9; Monkey 
Y, p = 3.1e-11), Cd (Monkey H, p = 6.7e-9; Monkey Y, p = 5.6e-9), and all 
combined ROIs (Monkey H, p = 5.0e-3; Monkey Y, p = 3.5e=5), but not for M1 
(Monkey H, p = 0.060; Monkey Y, p = 0.352).   
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Misclassifications  

The model with the highest classification accuracy for both subjects at both events 
included power features from all regions of interest. Classification accuracy was 
significantly higher at the go cue than at target acquisition when using power features 
from all regions (Figure 3.7A). The normalized confusion matrices of control type 
classification at the go cue and at target acquisition are depicted in Figure 3.7B and 
Figure 3.7C, respectively. At both task events, the main misclassifications are related 
to manual control and BMI control, indicating that power features during BMI control 
are more similar to manual control than to baseline. Thus, there is more distinction 
between BMI and manual power features at the go cue than at target acquisition. 

 

 

Figure 3.7. Classification performance using all frequency bands from all ROIs. 
(A) Classification accuracy is higher at go cue than at target acquisition (Monkey 
H, p = 0.005; Monkey Y, p = 3.4e5, two-sample independent t-test). (B, C) 
Average normalized confusion matrices of classifying control type across all days 
at (B) go cue and (C) target acquisition. Confusion matrix cells are normalized by 
true class.  
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3.3.3 Differences in Directed Functional Connectivity 

To investigate how these regions interact during neuroprosthetic control, we evaluated 
directed functional connectivity between the average LFP recorded within each region 
using Granger causality. Granger causality is a statistical test for determining whether 
one time series is useful in predicting another (see Methods for details). To obtain an 
estimate of spurious interactions, we first determined Granger causality estimates 
between the average LFP recorded during 500 ms segments of a baseline period and 
the average LFP recorded during 500 ms segments following the go cue in 
successfully initiated trials under BMI control. Because these signals were recorded at 
separate times in different tasks, any interactions that occur between regions would be 
artifactual. True interactions between regions within baseline and BMI control were 
considered significant if they were statistically different from this null distribution. To 
measure the Granger causality between pairs of regions in baseline and BMI control, 
we used the 500 ms LFP segments recorded during the baseline period and the 500 
ms following the go cue of successfully initiated trial under BMI control, respectively. 
The average Granger causality value across trials within each day was determined and 
compared to that of the null distribution. All pairs of regions showed significant 
reciprocal interactions during both baseline and BMI control (Figure 3.8A). The 
direction and strength of these interactions is depicted by the direction and width of 
the arrows in Figure 3.8B.  
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Figure 3.8. Directed functional connectivity during baseline and BMI control. 
Baseline estimates are based on 500 ms segments of LFP from baseline sessions. 
BMI estimates are based on the 500 ms following the go cue for successful trials. 
(A) Distribution of Granger causality estimates across baseline (gray) and BMI 
(purple) recording days. All interactions are significantly above the estimate of 
spurious interactions obtained by comparing LFP across session types (two-
sample t-test, Bonferroni corrected). (B) Directed functional connectivity graphs 
for BMI control (top) and baseline (bottom) in which the direction and width of 
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arrows represents the mean direction and magnitude of significant interactions 
across days. The mean magnitude for each interaction across all recording 
sessions is also indicated next to the corresponding arrow.  

Gain in Directed Functional Connectivity   

Cortico-cortical and cortico-striatal interactions involving M1, DLPFC, and Cd are 
involved in several planning, control, and learning processes (Haber, 2003, 2016). 
Reciprocal interactions between all pairs of regions were significantly above chance in 
both baseline and BMI control (Figure 3.8). To assess directed functional connectivity 
that is relevant to BMI control, we calculated the gain in Granger causality from 
baseline (see Methods for details) within each recording day (Figure 3.9A). Calculating 
the gain in Granger causality compares the interactions during BMI control to the 
interaction during baseline and accounts for variability across days. A Granger 
causality gain greater than zero indicates an increase from baseline, while a Granger 
causality gain less than zero indicates a decrease from baseline. The average Granger 
causality gain across days is depicted by the magnitude and direction of the arrows in 
Figure 3.9B. There is an increase in directed functional connectivity from DLPFC to M1 
and Cd to M1, while directed functional connectivity decreases from M1 to Cd in both 
monkeys. There was also an increase from Cd to DLPFC for Monkey H and a decrease 
from DLPFC to Cd for Monkey Y. 
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Figure 3.9. Gain in directed functional connectivity from baseline. Baseline 
estimates are based on 500 ms segments of LFP from baseline sessions. BMI 
estimates are based on the 500 ms following the go cue for successfully initiated 
trials. (A) Distribution of the gain in Granger causality estimates above baseline 
across recording days. Granger causality gain estimates that are significantly 
different from zero are indicated with an asterisk (One-sample t-test, Bonferroni 
corrected). (B) Mean gain in directed functional connectivity from baseline. 
Magnitude of arrows represents the mean magnitude gain in interactions from 
baseline to BMI across days.  
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Direction of Information Flow  

Because reciprocal interactions all demonstrated opposite changes from baseline as 
indicated by the sign of the Granger causality gain, we took the difference between 
them to measure the magnitude of the change in direction of information flow from 
baseline to BMI (Figure 3.10). We subtracted the Granger causality gain in 
M1→DLPFC from DLPFC→M1, M1→ Cd from Cd → M1, and DLPFC→ Cd from Cd → 
DLPFC. We found that information flow significantly increased from DLPFC to M1, Cd 
to M1, and Cd to DLPFC in the 500 ms period after the go cue of successfully initiated 
trials during BMI control (Figure 3.10A, C).  

 

Figure 3.10. Difference in gain in directed functional connectivity from baseline 
for reciprocal interactions. Baseline estimates are based on 500 ms segments of 
LFP from baseline sessions. BMI estimates are based on the 500 ms following 
the go cue for successful trials (A, C) or the 500 ms before target acquisition (B, 
D). (A) Distribution of the difference in gain in Granger causality estimates above 
baseline between reciprocal interactions across recording days. Differences that 
are significantly different from zero are indicated with an asterisk (One-sample t-
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test, Bonferroni corrected). (B) Same as (A) but for 500 ms prior to successful 
target acquisition during BMI control. (C) Direction and width of arrows 
represents the mean direction and magnitude of gain in information flow from 
baseline to BMI control 500 ms after the go cue on successfully initiated trials. 
The mean magnitude for each interaction across all recording sessions is also 
indicated next to the corresponding arrow scaled within each monkey. (D) Same 
as (C) but for 500 ms prior to successful target acquisition during BMI control. 

The previously described Granger causality analyses were all performed using 
the 500 ms period following the go cue of successfully initiated trials. We 
repeated the analyses using the average LFP in the 500 ms preceding target 
achievement on successful BMI trials and found similar results to the period after 
the go cue (Figure 3.10B, D). There was an increase in information flow above 
baseline from DLPFC to M1 and Cd to M1 for both monkeys, and an increase in 
information flow from Cd to DLPFC in Monkey H. The increase in information flow 
from Cd to DLPFC was not present at the period prior to successful target 
acquisition for Monkey Y.  

Overall, we find evidence of changes in directed functional connectivity between 
Cd, DLPFC, and M1 during neuroprosthetic control relative to baseline. 
Information flow increases from Cd to M1 and from DLPFC to M1 during both 
periods when the monkeys are engaged in neuroprosthetic control relative to a 
baseline period, suggesting that Cd and DLPFC also play a role in neuroprosthetic 
control.  

3.4 Discussion   

In this chapter, we demonstrate that a large-scale semi-chronic microdrive can be used 
to simultaneously record neural activity from cortical and subcortical regions during the 
real-time control of a motor cortical BMI. We leveraged these simultaneous recordings 
to characterize spectral power and directed functional connectivity within DLPFC, Cd, 
and M1 that are associated with BMI control.  

Typical motor BMIs rely on chronically implanted microelectrode arrays, such as the 
Utah array. These recording devices have been used extensively for more than twenty 
years in nonhuman primates and people (Capogrosso et al., 2016; Collinger et al., 
2013; Hochberg et al., 2012; Pandarinath et al., 2015; Sussillo et al., 2016; Velliste et 
al., 2008). Microelectrode arrays typically have a large number of electrodes 
distributed evenly across a few square millimeters of brain tissue at a fixed depth of 
only 1-2 mm, enabling the recording from hundreds of neurons with minimal set-up 
time post-implantation. While these arrays are excellent for obtaining stable, chronic 
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recordings for control of a BMI, they are not useful for recording from deep structures 
such as the striatum. Furthermore, if a unit is lost, the electrode placement is fixed and 
cannot be moved to find a new unit.  

Linear multi-electrode probes, such as the Plexon V-Probe, are a popular alternative 
for studies requiring simultaneous recordings from large populations of neurons 
(Chiang et al., 2022; Knudsen & Wallis, 2021; Lara et al., 2009). These probes contain 
multiple channels along a single shank and can sample cells at different depths within 
the same region. The depth can be adjusted such that they can be used to record from 
surface areas or deeper structures. However, these probes are not ideal for BMI, as 
they are fragile and require several hours for insertion and tissue settling prior to every 
experiment. If the tissue is not given enough time to settle, the cells can drift from 
channel to channel, posing a difficult problem for a BMI decoder. Additionally, it is 
nearly impossible to record from the same cells from day to day.  

In this study, we used a large-scale semi-chronic microdrive to obtain simultaneous 
recordings from cortical and subcortical structures while an animal controlled a BMI 
using a largely stable population of units recorded from motor cortex. These 
microdrives have been used to study of large-scale networks (Dotson et al., 2017; Qiao 
et al., 2016) but had not been used for BMI control. While these microdrive systems 
enabled semi-chronic simultaneous recordings from structures at different depths, they 
also have several limitations. In these experiments, a large fraction of electrodes broke 
when penetrating the dura (Monkey H, n = 0.36; Monkey Y, n = 0.48). While a 
durotomy may have improved this issue, it also leads to a higher risk of infection. We 
used a combination of platinum-iridium (Pt-Ir) and glass-coated tungsten (W) 
electrodes. An important note for future studies is that our Pt-Ir electrodes had a 
higher success rate in terms of penetrating the dura, however, the signal quality of the 
recordings obtained from these electrodes when compared to the W electrodes was 
significantly lower for both monkeys (Both Monkeys p < 1e-5, two-sample t-test). Due 
to the lack of single- and multi- unit recordings obtained in our regions of interest, 
particularly in Cd where most electrodes were Pt-Ir, we focused our analyses on LFP 
recordings.  

Using the simultaneous recordings obtained during a BMI control task, manual control 
task, and baseline period, we identified control type relevant differences in spectral 
power across multiple frequency bands and multiple regions of interest. We trained 
and tested linear classifiers to distinguish power features from BMI control, manual 
control, and baseline. These analyses were repeated at the go cue and at target 
acquisition for successful BMI and manual trials. At the go cue, beta power tended to 
predict control type more accurately than any other individual frequency band (Figure 
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3.4A, B). In contrast, no single frequency band tended to outperform the others at 
target acquisition (Figure 3.5C, D). Beta oscillations have been implicated in top-down 
control (Buschman & Miller, 2007; Siegel et al., 2012), which may be evoked during 
the action selection processes that occur at the go cue. Furthermore, cortical beta 
power decreases during movement preparation and initiation (Leventhal et al., 2012; 
Pfurtscheller et al., 2003; Zhang et al., 2008). Thus, the higher classification accuracy 
of beta power features relative to other frequency bands at the go cue may be 
indicative of action selection and initiation strategies that are more dissociable 
between control types. At both the go cue and target acquisition, combining power 
features from all frequency bands led to higher classification accuracies (Figure 3.4). 
This result suggests that different frequency bands may carry non-overlapping or 
complementary information specific to the different control types.  

When comparing classification accuracies between regions at the go cue, we found 
that power features from M1 and DLPFC were better predictors of control type than 
Cd (Figure 3.5). Furthermore, combining power features from M1 and DLPFC led to 
higher classification accuracy than either region individually. The classification accuracy 
obtained from this model was not significantly different from the model using power 
features from all three regions. DLPFC has been implicated in the implementation of 
behavioral rules, goal-directed behavior, and action planning (Boussaoud & Wise, 
1993; Buschman & Miller, 2007; di Pellegrino & Wise, 1993; Fuster, 2000; Goldman-
Rakic, 1996; Hoshi, 2006; Krämer et al., 2013; Miller & Cohen, 2001; Saito et al., 2005; 
Tanji et al., 2007; Tanji & Hoshi, 2008). These executive function processes are 
involved in the initiation and selection of movement that occurs at the go cue in center-
out task under both manual and BMI control. The information contained in DLPFC 
power features was predictive of control type, suggesting that there are differential 
top-down cognitive strategies between BMI control, manual control, and a baseline 
rest period. In contrast, the classifier using power features from M1 performed 
significantly better than either the classifier using power features from DLPFC or Cd at 
target acquisition (Figure 3.5). Thus, there is more information about control type in M1 
than either other region at this event. After the initial action selection and initiation, 
DLPFC may become less involved in BMI control or the activity in DLPFC may be less 
distinguishable between the different control types.  

The main misclassifications occurred between BMI and manual power features, 
suggesting that power features during BMI and manual control are more similar to one 
another than either are to baseline (Figure 3.7). Furthermore, classification 
performance was greater at the go cue than at target acquisition for models using 
power features from DLPFC, Cd, and all three regions combined (Figure 3.6). Thus, 
there is less confusion between BMI and manual at the go cue than at target 
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acquisition which supports the hypothesis that the DLPFC and Cd are involved in 
action planning and selection and that neural representations of these processes are 
distinct during BMI control and manual control. Interestingly, this difference in 
classification accuracy at different task events was not true for the classifier using 
power features from M1 alone (Figure 3.6). This suggests that the control execution 
strategy implemented by the motor cortex is distinct at all task events, whereas the 
top-down action planning and selection strategies implemented by DLPFC and Cd is 
more distinct at the go cue than at target acquisition.  

We also investigated how M1, DLPFC, and Cd interact during BMI control and 
baseline. All three regions showed significant reciprocal interactions with one another 
when compared to chance (Figure 3.8). To determine which interactions were 
important for BMI control, we found the gain in each interaction in BMI control relative 
to baseline and identified changes in directed functional connectivity. Reciprocal 
interactions tended to differ from baseline in opposite directions, so we measured the 
difference between them to quantify the magnitude of the change in the direction of 
information flow. We found that information flow increases from Cd to M1 and from 
DLPFC to M1 during neuroprosthetic control relative to baseline. Information flow also 
increased from Cd to DLPFC at the go cue for both monkeys and at target acquisition 
for Monkey H (Figure 3.10).  

An important note is that granger causality reflects directed functional, and not 
anatomical, connectivity. Thus, these results indicate that there is increased 
information flow from Cd to M1, DLPFC to M1, and Cd to DLPFC during BMI control 
relative to baseline, and we make no claims about the mechanism of this increase in 
information flow. Despite both M1 and DLPFC projecting directly to Cd (Haber 2003), 
we see that information flows in the opposite direction. The cortex and basal ganglia 
are interconnected in cortico-striatal ‘loops’ (Delong et al., 1984; Kimura & Graybiel, 
1995; Middleton & Strick, 2002). These cortico-striatal loops have been implicated in 
several aspects of goal-directed behaviors and control of volitional movements, 
including movement initiation, action selection, strategic planning, and motivation 
(Haber, 2003, 2016). Our findings that information flows from Cd to cortex align with 
results from previous studies demonstrating that Cd trains the cortex (Antzoulatos & 
Miller, 2014; Pasupathy & Miller, 2005). These studies found that task-relevant 
information was detected in Cd prior to cortex and that the direction of functional 
connectivity was from Cd to cortex. Cd activity has been implicated in action selection 
and control of volitional movement (Graybiel et al., 1994; Graybiel, 1998; Graybiel & 
Grafton, 2015; Hikosaka et al., 2000; Packard & Knowlton, 2002). Thus, it is likely that 
this information flow from Cd to cortex represents task-relevant information. 
Information flow also increased between cortical regions, from DLPFC to M1. This 
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further supports the hypothesis that DLPFC is involved in the top-down selection of 
neuroprosthetic actions.  

Our studies focused on changes in LFP related to BMI control. Future work 
investigating how these differences evolve over learning must be done to understand 
how this neuroprosthetic control is learned over time. Neuroprosthetic skill learning is 
thought to rely on multiple parallel learning mechanisms: (1) the fast reinforcement of 
cortical activity that permits the re-entrance of particular cortical population dynamics 
that naturally produce desired outcomes, and (2) slower reinforcement that leads to 
the refinement of cortical population dynamics and a more reliable production of 
neural trajectories to drive skillful behavior on-demand (Athalye et al., 2020; Zippi, You 
et al., 2021). Previous work has demonstrated differential cortico-striatal plasticity 
during fast and slow motor skill learning (Costa et al., 2004) and different regions may 
play important roles in these neural reinforcement processes. Furthermore, M1, 
DLPFC, and Cd exist within larger cortico-basal ganglia-thalamic loops (Parent & 
Hazrati, 1995). Thus, these processes likely involve different nodes within this larger 
circuitry. Understanding how these regions interact together to learn and implement 
neuroprosthetic control will be important for understanding how neural activity 
facilitates and constrains learning and may be useful for developing neurobiologically 
informed neuroprosthetic devices.  
 

 

  



 

 60 

Chapter 4: Modulation of Value Encoding in Caudate and 
Anterior Cingulate Cortex through Caudate Microstimulation 

The ability to evaluate options and use these values to inform choices is indispensable 
for adaptive, healthy decision-making behavior. Dysfunctional decision-making and 
reward processing are associated with a multitude of neuropsychiatric disorders, 
including anxiety, depression, and addiction. Multiple areas of the brain are involved in 
the neural processing of information related to decision-making, including the caudate 
(dorsomedial striatum) and the anterior cingulate cortex (ACC). The head of the 
caudate (Cd) is a region that contains flexible representations of value and receives 
value-related information from multiple cortical structures, as well as modulatory 
dopaminergic input from ventral striatum. The ACC also contains value and error 
information and is particularly implicated in flexible decision-making. In this chapter, 
we record neural activity in both brain areas during a two-armed bandit task and 
investigate how neural representations of task variables are modulated when Cd 
microstimulation is administered. Microstimulation delivered during the deliberation 
period of forced-choice trials to a particular stimulus significantly increases the 
likelihood of selecting that option in free-choice trials, and we find that the neural 
correlates of value signals reflect this bias. These results suggest that stimulation-
based therapies may be used to regulate valuation of choices in neuropsychiatric 
patients. This work was done in collaboration with Samantha R. Santacruz, Joni Wallis, 
and Jose M. Carmena.  

4.1 Introduction  

Value-based decision-making involves an assessment of value associated with 
available items and the actions required to obtain them. The inability to appropriately 
evaluate one's options and use these values to inform their decisions is associated with 
a number of neuropsychiatric disorders (Hartley & Phelps, 2012; Paulus & Yu, 2012; 
Shepherd, 2013). Difficulties in finding effective behavioral or pharmaceutical 
treatments for these disorders has led to the exploration of alternative methods, such 
as deep brain stimulation (Holtzheimer et al., 2017; Holtzheimer & Mayberg, 2011; 
Insel, 2012; Kessler et al., 2005; Mayberg et al., 2005). Many of these stimulation-
based approaches target the frontolimbic cortex, whose dysfunction has been 
associated with neuropsychiatric disorders (Fernando & Robbins, 2011).  

Several studies have demonstrated that the caudate nucleus of the striatum (Cd) and 
the anterior cingulate cortex (ACC) encode task-relevant values for decision-making 
and action-selection (Kennerley et al., 2009; Kennerley & Wallis, 2009; Kennerley & 
Walton, 2011; Lau & Glimcher, 2008; Samejima, 2005). These brain regions are 
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essential in mediating how sensory information, experience, and motivation guide 
choice-behavior. In particular, Cd encodes values of alternative choices prior to 
selection (Balewski et al., 2022; H. F. Kim & Hikosaka, 2013; Lau & Glimcher, 2008; 
Samejima, 2005) and has been implicated in orienting value-guided fixations (Hikosaka 
et al., 2006; Watanabe & Hikosaka, 2005). ACC has been shown to play an important 
role in reinforcement-guided behavior by monitoring the history of action outcomes 
(Kennerley et al., 2006; Monosov, 2017; Walton et al., 2007). Previous work has 
shown that Cd microstimulation paired with a particular stimulus causally increases 
the likelihood of selecting that stimulus during a value-based decision-making task 
(Santacruz et al., 2017). This effect was shown to be stimulus-dependent and action-
independent, indicating that Cd microstimulation can change the value of an associated 
stimulus. Electrical microstimulation is known to induce neural plasticity (Jackson et al., 
2006; Madhavan et al., 2007). Thus, it is possible that electrical stimulation of Cd 
alters the neural representation of value.  

In this work, we investigate the neural representation of value information during 
flexible decision-making behavior. Due to the prominent roles that Cd and ACC have in 
decision-making, we record neural activity in these nuclei while nonhuman primate 
(NHP) subjects perform a two-arm bandit decision-making task. The work leverages 
previous work in which it was demonstrated that electrical stimulation in the Cd of 
NHP subjects can preferentially increase the value of an associated choice (Santacruz 
et al., 2017). Here, we investigate the neural correlates of this functional change in 
behavior. We find that Cd microstimulation recruits more neurons to represent task-
relevant stimulus values. These results further our understanding of the neural 
circuitry underlying value-based decision-making and support potential future 
applications of microstimulation to correct maladaptive plasticity underlying 
dysfunctional decision-making. 

4.2 Methods  

4.2.1 Surgery 

Two rhesus macaques were implanted unilaterally with custom-machined recording 
chambers enabling access to caudate (Cd) and anterior cingulate cortex (ACC). 
Chamber positions were calculated based on images obtained from 1.5-T magnetic 
resonance imaging (MRI) scans of each subject’s brain. For Monkey L, we used multi-
channel electrodes (V-Probes, Plexon, Dallas, TX) along with standard methods for 
acute neurophysiology for neural recording. Single-channel stimulation electrodes 
were lowered into the neural tissue for Monkey L following the same techniques as 
multi-channel electrodes. For Monkey M, we used a custom semi-chronic microdrive 
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array to record and stimulate from moveable single microelectrodes that were 
chronically implanted (Gray Matter Research, Bozeman, MT). Two Platinum-Iridium 
microelectrodes (Alpha Omega; Microprobes) were used to administer stimulation in a 
bipolar manner. For Monkey L, on each experimental day electrodes were lowered 
manually using custom-built microdrives to a target depth in the head of the caudate. 
For Monkey M, electrodes were positioned in the caudate chronically. 

4.2.2 Stimulation 

The stimulation parameters used in this study were the same as those described in 
Santacruz et al., 2017 and are consistent with previous studies using electrical 
stimulation in nonhuman primates (Ditterich et al., 2003; Hanks et al., 2006; Nakamura 
& Hikosaka, 2006; Santacruz et al., 2017; Williams & Eskandar, 2006). 
Microstimulation pulse trains consisted of a series of charged-balanced biphasic pulses 
with no inter-pulse interval and a cathodal leading phase. Each phase was 200 μs in 
duration and the pulse frequency was 200 Hz. Stimulation current amplitude in the 
range of 100 – 250 μA. Stimulation trains lasted the duration of the center-hold period, 
1000, during forced-choices trials as described in the behavioral task. This design 
ensured that the subject had negligible movement during the stimulation epoch.  

4.2.3 Behavioral Task 

The behavioral task has been described in detail elsewhere (Santacruz et al., 2017). 
Briefly, two subjects (Monkey L and Monkey M) used a joystick to control a computer 
cursor and select colored circular targets on a computer screen positioned in front of 
them. The color of each target was associated with the probability of reward. The 
colors changed each session and could appear on either side of the screen.  

This task consisted of two trial types: (1) free-choice trials and (2) instructed trials. In 
free-choice trials, during the center-hold period the subjects held the cursor in the 
center target for 1000 ms. Two peripheral, colored targets were shown during this 
time. At the end of a successful hold, the subject freely moved the cursor to the target 
of choice and then completed a target-hold to indicate their selection for another 1000 
ms. In instructed trials, only one peripheral target was presented during the center-
hold period. After a successful hold, the subject moved the cursor to that target and 
completed a target-hold. A trial was considered successful if the subject completed 
the 1000 ms center-hold followed by holding at a peripheral target for 1000 ms within 
a 10 s period. The same trial was repeated up to 10 times until it was successfully 
completed and the subject advanced to the next trial. 
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Monkey L was trained in a two-target version of the task with the low-value target 
being assigned 40% likelihood of reward and high-value target being assigned 80% 
likelihood of reward. Monkey M was trained in a three-target version of the task in 
which the low-value target was assigned 35% likelihood of reward, the medium-value 
target was assigned 60% likelihood of reward, and the high-value target was assigned 
85% likelihood of reward. In both versions, only two target options were displayed at 
once and the animals learned the relative probabilities over the course of the 
experiment.  

4.2.4 Reinforcement Learning Models 

The subjects’ free-choice behavior was modeled using Q-learning, a model-free 
reinforcement learning (RL) algorithm. The learning rate, 𝛼, estimates how much the 
value of a choice is updated by new information at each time step. The inverse 
temperature, 𝛽, estimates how much expected rewards affect the probability of 
selecting a stimulus. The standard Q-learning algorithm (Sutton & Barto, 1998) 
consists of the following value update equations: 

𝑄(𝑡) 	= 	𝑄(𝑡 + 1) 	+ 	𝛼𝛿(𝑡) 

𝛿(𝑡) = 	𝑟(𝑡) − 𝑄(𝑡 − 1) 

Using a soft-max decision rule, the probability of selecting the low-value (𝑎>? ) target 
over the high-value (𝑎@?) target is: 

𝑃(𝑎>?)(𝑡)X𝑄>?(𝑡), 𝑄@?(𝑡)0 = 	
1

1 + exp	(𝛽[𝑄@?(𝑡) − 𝑄>?(𝑡)])
 

where the variables 𝑄>?(𝑡) and 𝑄@?(𝑡) represent the values of the low-value and high-
value targets at time t, respectively. The value update equations were updated on both 
instructed and free-choice trials, but the decision rule was only simulated for free-
choice trials. The values obtained from the value update equations were used to 
assess neural correlates (see next section).  

4.2.5 Neural Correlates 

Single-unit neuron activity was recorded throughout the decision-making task from Cd 
and ACC. This neural activity was recorded in naïve conditions, as well as with high-
frequency electrical stimulation intervention where stimulation was delivered to Cd. 
We used multiple linear regression to determine how the activity of all recorded, well-
isolated units co-varied with value, as well as movement variables (i.e., movement 
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time and reaction time), reward, and choice. The responses of individual neurons were 
fit using the following multiple linear regression:  

𝑦	 = 	𝛽5𝑅	 +	𝛽A𝐶 + 𝛽B𝑀𝑇	 +	𝛽C𝑅𝑇	 +	𝛽D𝑄>? 	+ 	𝛽E𝑄<? 	+ 	𝛽F𝑄@? 

where y is the firing rate in the window [0,400) ms following target presentation, 𝑅 is 
for the presence or absence of reward, 𝐶 is the chosen target color, 𝑀𝑇 is the 
movement time, and 𝑅𝑇 is the reaction time. The variables 𝑄>?, 𝑄<?, and 𝑄@? represent 
the dynamic stimulus values estimates for the low-value, medium-value, and high-
value target colors as determined by Q-learning value update equations. For Monkey L, 
there was no medium-value target and the 𝑄<? variable was excluded from the above 
equation. Statistical significance of regressors was determined using incremental F-
statistic with a significance level of 0.05. Units were classified as value-coding if their 
activity co-varied with any Q value, regardless of whether they also co-varied with 
other regressors. Reward, choice, movement time, and reaction time neurons were 
categorized by the associated regressor with the largest slope. Units that did not 
significantly co-varying with any of these regressors were labeled as non-coding. 

4.2.6 Quantification & Statistical Analyses  

All analyses were performed in Python using custom-written routines that utilize 
publicly available Python libraries. Bar charts report averages and standard error of the 
mean across sessions. Pie charts report the fraction of units within the recorded 
population averaged across sessions. Two-sample t-tests were used to compare 
distributions across stimulation sessions (Monkey L, n = 8 sessions; Monkey M, n = 10 
sessions) and sham sessions (Monkey L, n = 12 sessions; Monkey M, n = 11 sessions).  

4.3 Results 

Two rhesus macaques (Monkey L and Monkey M) performed a probabilistic reward 
decision-making task in which they learned to choose between colored targets 
associated with unique reward probabilities (Figure 4.1) while neural activity was 
recorded from Cd and ACC. New target colors were selected and arbitrarily assigned 
reward probabilities in each session (see Methods for details). In each trial, each target 
could be presented on the left or right of the screen, requiring subjects to learn to 
associate the target color and not the action with a specific reward probability. Both 
subjects quickly learned to select the higher-value target with greater frequency than 
the lower-value target on free-choice trials; however, neither subject exclusively 
selected the higher-value target color after initial learning.  
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The task was divided into three blocks: Block A, Block B, and Block A’ (Figure 4.1D). In 
Block A, subjects were presented with a mix of free-choice trials and instructed trials. 
In free-choice trials, subjects were presented with two options and needed to decide 
which target to select after a brief deliberation or hold period. In instructed trials, 
subjects were presented with a single option during the hold period. Instructed trials 
could be to any of the available targets and the targets could appear on either side of 
the screen. In Block B, subjects were given only instructed trials. On stimulation days, 
Cd microstimulation was administered during the hold period of trials to the low-value 
target for Monkey L and the medium-value target for Monkey M during this block. On 
sham days, no electrical stimulation was delivered during any of the trials. Finally, in 
Block A’, subjects were presented with a mix of free-choice and instructed trials again. 
On stimulation days, Cd microstimulation was delivered on the instructed trials to the 
low-value or middle-value target for Monkey L and Monkey M, respectively, during this 
block. There was no stimulation delivered during sham days.  

 
Figure 4.1. Probabilistic reward task structure. (A) Task schematic depicting the 
both trial types encountered by the subject in the probabilistic reward choice task: 
free-choice (top) and instructed (bottom). Target colors randomly alternate sides 
of presentation so that the subjects must learn to associate color, not spatial 
location, with reward probability. Panels correspond to the center hold, go cue, 
target hold, and probabilistic juice reward. (B) Timeline of the task. (C) Reward 
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probabilities associated with the two versions of the task. (D) Description of task 
structure within the three blocks.  

4.3.1 Caudate Microstimulation Biases Target Selection  

To assess whether electrical stimulation significantly biased the decision-making 
policy towards the option paired with stimulation, we compared the probability of 
selecting the lower-value target on free-choice trials in Block A’ (Figure 4.2). For 
Monkey L, stimulation was always paired with the low-value target. The likelihood of 
selecting this target on trials after stimulation was significantly higher than on trials 
after a sham control. For Monkey M, stimulation was paired with the middle-value 
target. On trials where the animal was presented with the middle-value and high-
value targets, the middle-value target is the lower-value choice. Electrical stimulation 
increased the likelihood of selecting the middle-value target on these trials. In contrast, 
on trials where the animal was presented with the middle-value and low-value 
targets, the middle-value target represented the higher-value choice and electrical 
stimulation decreased the likelihood of selecting the middle value target, or lower-
value option, on these trials. Overall, when given two options with unique reward 
probabilities, stimulation paired with a particular option increased the likelihood of 
selecting that option when compared to a sham control.  

 
Figure 4.2. Caudate microstimulation paired with a particular option increases 
the likelihood of selecting that option. (A) The probability of selecting the lower-
value target on free-choice trials after stimulation (orange) when stimulation is 
paired with the lower-value target or a sham control (teal). For Monkey L, 
stimulation was paired with the low-value (LV) target. The probability of 
selecting the lower-value target represents the probability that he selected the 
LV target over the high-value (HV) target on free-choice trials. For Monkey M, 
stimulation was paired with the middle-value (MV) target. On trials between the 
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MV and HV target and between the LV and MV target, the probability of selecting 
the lower-value target represents the probability of selecting the MV and LV 
target, respectively.  

4.3.2 Value Encoding in Caudate and ACC  

We recorded neural activity in Cd and ACC during the choice task and isolated 
individual units (Monkey L: n = 637 Cd units, n = 464 ACC units; Monkey M: n = 162 Cd 
units, n = 151 ACC units). Because Cd microstimulation paired with a particular 
stimulus resulted in an increased likelihood of selecting that stimulus, we hypothesized 
that this stimulation affects the neural computations of value. To test this theory, we 
first estimated the trial-by-trial value associated with each target using a Q-learning 
algorithm fit to the subject’s decision-making behavior (see Methods for details). To 
ensure that the values had been learned, the last two-thirds of trials from Block A and 
trials from Block B (i.e., 133 trials for Monkey L and 200 trials for Monkey M) were 
used to fit the value update equations and estimate internal representations of value.  

Linear regression of neural firing rates at the time of the presentation of the targets 
from each unit was performed using the values derived for each target from the Q-
learning model as regressors. Additionally, we included reward (i.e., presence or 
absence), choice (i.e., chosen value), and motor covariates, including reaction time (RT) 
and movement time (MT), in the regression. We considered a unit to be value-coding if 
its firing rate co-varied with any target value, regardless of whether it also co-varied 
with other regressors. Reward-coding, choice-coding, MT-coding, and RT-coding units 
were categorized according to the largest significant coefficient. Units were considered 
non-coding if their firing rate activity did not significantly co-vary with any of the 
regressors. Statistical significance of regressors was determined using incremental F-
statistic. We found that neural activity in both ACC and Cd encodes all stimulus values 
(Figure 4.3). We identified that 17.11% of Cd units and 14.44% of ACC units Monkey L 
and 24.69% of Cd units and 28.48% of ACC units in Monkey M encoded value, 
supporting the idea that these regions are involved in representing task-relevant 
values.   
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Figure 4.3. Neural correlates of task-relevant variables in Cd and ACC. (A) 
Percentage of units in Cd whose firing rate is significantly modulated by reward, 
choice, movement time (MT), reaction time (RT), or value based on linear 
regression analysis for Monkey L (left, N = 637) and Monkey M (right, N = 162). 
(B) Percentage of units in ACC whose firing rate is significantly modulated by 
each variable for Monkey L (left, N = 464) and Monkey M (right, N = 151). 
Statistical significance of regressors was determined using incremental F-statistic 
with a significance level of 0.05.  

Within the value-coding units, units could encode individual target values or multiple 
target values. The distribution of value-coding neurons (i.e., the dark yellow section in 
Figure 4.3) is depicted in Figure 4.4. Though many units’ firing rates co-varied with the 
values of multiple stimuli, it was more common for them to be correlated with a single 
target value. Furthermore, each individual target-value is represented by more than a 
quarter of value-coding neurons.  
 



 

 69 

 
Figure 4.4. Distributions of specific target-value associated units from value-
coding units in Cd and ACC. These pie charts expand upon the value-coding 
portion of the pie charts from Figure 4.3 in which neurons could be responsive to 
any individual or combination of target values. (A) Percentage of value-coding 
units in Cd whose firing rate co-varies with Qlow, Qmed, and Qhigh, and combinations 
thereof for Monkey L (left) and Monkey M (right). (B) Same as A but for value-
coding units in ACC. 

4.3.3 Recruitment of Value Encoding Units with Caudate Microstimulation  

To test the hypothesis that value-coding during the deliberation hold time is 
modulated by Cd microstimulation, we compared the fraction of units encoding value 
before and after stimulation and before and after the sham control (Figure 4.5). The 
same multiple linear regression analysis described previously was performed 
separately for Block A and Block A’ from each session. If a unit’s firing rate significantly 
co-varied with the value of a particular target, it was considered to encode that value. 



 

 70 

Thus, units with firing rates that co-varied with multiple target values were included in 
the fraction of value-coding units for all the corresponding targets.   

 
Figure 4.5. Recruitment of value-coding units. (A) Fraction of units in Cd whose 
firing rate is significantly predicted by stimulus-value for Monkey L (left) and 
Monkey M (right) in Block A and Block A’. Stimulation sessions are represented 
in orange and sham sessions are represented in teal. Block A is represented by 
lighter colors and Block A’ is represented by darker colors. (B) Peri-stimulus time 
histogram (PSTH) from an example Cd unit from Monkey L whose firing rate was 
not modulated by either target before stimulation but became modulated by the 
LV target after stimulation. (C) Fraction of units in ACC whose firing rate is 
significantly predicted by stimulus-value for Monkey L (left) and Monkey M (right) 
in Block A and Block A’. (D) PSTH from example ACC unit in same conditions 
described in (B).  

We compared the fraction of value-coding units associated with each of the possible 
target values within Cd and ACC before and after Cd stimulation and before and after 
a sham control (Figure 4.4). While there tends to be an increase in the fraction of 
value-coding units in Block A’ compared to Block A after Cd stimulation is 
administered during the hold period of Block B, the increase from Block A to Block A’ 
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was only statistically significant for the Cd units encoding the low-value target across 
stimulation sessions in Monkey L. The mean and standard error of the fraction of units 
encoding value for each target value in each block, as well as the results comparing 
Block A and Block A’ are listed in Table 4.1 for Cd and Table 4.2 for ACC for both 
Monkey L and Monkey M.  

 
Monkey L Monkey M 

LV HV LV MV HV 

Stim 

Block A 0.11 ± 0.02 0.08 ± 0.02 0.08 ± 0.03 0.06 ± 0.01 0.12 ± 0.03 

Block A’ 0.36 ± 0.07 0.22 ± 0.08 0.10 ± 0.02 0.09 ± 0.02 0.08 ± 0.02 

T-Statistic -3.01 
(p=0.020) 

-1.13 
(p=0.295) 

-0.35 
(p=0.733) 

-1.11 
(p=0.300) 

1.01 
(p=0.339) 

Sham 

Block A 0.09 ± 0.02 0.08 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 

Block A’ 0.08 ± 0.01 0.07 ± 0.02 0.18 ± 0.08 0.16 ± 0.08 0.149 ± 0.08 

T-Statistic 0.70 
(p=0.500) 

0.76 
(p=0.514) 

-1.32 
(p=0.215) 

-1.18 
(p=0.265) 

-1.11 
(p=0.293) 

Table 4.1. Comparison of the fraction of Cd units encoding value before and 
after stimulation or sham control. Values represent the mean and standard error 
rounded to the nearest hundredth. Comparisons made using a two-sample paired 
t-test between Block A and Block A’ for each target.  

 
Monkey L Monkey M 

LV HV LV MV HV 

Stim 

Block A 0.10 ± 0.03 0.11 ± 0.04 0.06 ± 0.00 0.10 ± 0.02 0.10 ± 0.03 

Block A’ 0.30 ± 0.09 0.21 ± 0.08 0.12 ± 0.03 0.11 ± 0.03 0.122 ± 0.03 

T-Statistic -1.95 
(p=0.092) 

-0.71 
(p=0.502) 

-1.79 
(p=0.107) 

-0.27 
(p=0.794) 

-0.45 
(p=0.662) 

Sham 

Block A 0.16 ± 0.08 0.06 ± 0.01 0.06 ± 0.01 0.08 ± 0.02 0.09 ± 0.01  

Block A’ 0.16 ± 0.08 0.08 ± 0.03 0.18 ± 0.08 0.18 ± 0.08 0.18 ± 0.08 

T-Statistic -0.28 
(p=0.783) 

-0.76 
(p=0.464) 

-1.47 
(p=0.172) 

-1.1 
(p=0.296) 

-1.02 
(p=0.330) 

Table 4.2. Comparison of the fraction of ACC units encoding value before and 
after stimulation or sham control. Values represent the mean and standard error 
rounded to the nearest hundredth. Comparisons made using a two-sample paired 
t-test between Block A and Block A’ for each target.  

On average, there was an increase in the fraction of value-coding units across all 
target-values after Cd stimulation. However, this effect was only statistically 
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significant for Cd units encoding the LV target stimulus value in Monkey L. Example 
peri-stimulus time histograms for units whose activity was not modulated at the center 
hold prior to stimulation and became modulated after stimulation are shown in Figure 
4.4B and Figure 4.4D for a Cd and ACC unit, respectively.  

4.4 Discussion 

In this chapter, we demonstrate that Cd microstimulation paired with a particular 
stimulus in a flexible decision-making task altered value-based choice behavior. In one 
animal, there was a significant increase in the fraction of the neural population 
recorded from Cd that encoded the subjective stimulus value of the stimulus paired 
with this microstimulation. Across both animals, we observed an increase in the 
fraction of units in both Cd and ACC encoding task-relevant stimulus values, though 
these changes were not statistically significant. This work leveraged large-scale 
ensemble electrophysiology, electrical microstimulation, and behavior with the goal of 
elucidating neural mechanisms involved in the representation of stimulus value for 
decision-making behavior. 

Value computations used to guide flexible decision-making behavior can be modulated 
by a number of factors, including risk and uncertainty (Rangel et al., 2008). Past work 
has found that increases in ACC activity are associated with increased levels of 
uncertainty, task difficulty, or probability of making an error (Behrens et al., 2007; 
Johnston et al., 2007). Similarly, an increased activation of both Cd and ACC was found 
during task-switching (Premereur et al., 2018), which requires flexibly shifting from 
one set of rules to another in response to changing environmental contingencies and 
may also contribute to an increased probability of making an error. Thus, it is possible 
that this increase in activity is the result of a larger proportion of the neural population 
in both Cd and ACC being modulated by task-relevant value information under periods 
of increased uncertainty or task difficulty.  

Value has also been demonstrated to play a critical role in guiding attention 
(Anderson, 2016). When stimuli are associated with a promising reward outcome, they 
are given attentional priority. For example, if visual aspects of specific stimuli, such as 
color or orientation, are sufficient to differentiate value, robust value-driven attentional 
biases towards the reward-relevant stimulus occur (Anderson et al., 2011; Anderson & 
Yantis, 2012; Laurent et al., 2015). The basal ganglia has been implicated in guiding 
saccades to rewarded targets (Hikosaka et al., 2006) and reconfiguring attention to 
enhance it towards reward-relevant stimuli (Boroujeni et al., 2020). A recent study 
also found that activity in Cd aligns with value-guided saccades and is predictive of 
value-based choice behavior (Balewski et al., 2022). Thus, Cd microstimulation may 
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modify value computations used to guide decision-making by manipulating value-
driven attentional biases.   

In addition to the valuation of stimuli, value-based decision-making involves the 
process of selecting between these values (Rangel et al., 2008). A study investigating 
value representations in orbitofrontal cortex found activity in this region dynamically 
represents choice options, with neural representations alternating between states 
associated with each available option during a deliberation period (Rich & Wallis, 
2016). Future work investigating the effect of Cd microstimulation on deliberation time 
and the dynamic representation of available options could provide further insight into 
how value information is integrated within the corticostriatal circuitry and used to 
guide decision-making behavior. Additionally, future work investigating the temporal 
specificity of value coding in Cd and ACC and how this may change as a result of 
electrical microstimulation may also provide further insight into the mechanism by 
which Cd microstimulation alters choice behavior.  

Overall, we demonstrated that high-frequency stimulation delivered to the Cd can 
modulate decision-making processes. This change is possibly the result of changing 
underlying value representations in both Cd and ACC through the recruitment of 
value-coding neurons. Dysfunctional corticostriatal circuitry has been implicated in a 
number of neuropsychiatric disorders and has increasingly been the target of 
stimulation-based neurotherapies (Creed et al., 2015; Scangos et al., 2021; Shanechi, 
2019). An inability to appropriately evaluate stimuli and use these values to inform 
decisions lies at the core of many of these neuropsychiatric disorders (Hartley & 
Phelps, 2012; Paulus & Yu, 2012; Shepherd, 2013). Our results suggest that electrical 
stimulation may offer a therapeutic approach to help regulate valuation in patients 
with impaired decision-making abilities.  
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Chapter 5: Conclusions and Open Questions  

BMIs are an emerging technology with great promise for future clinical therapies. The 
primary motivation for this work was to develop a better understanding of the 
neurobiology of BMIs. Knowledge of how the brain interacts with these systems, 
including both the neural adaptations that occur as the user learns to control a BMI 
and the change in neural representations that occur with neural stimulation, is 
essential for improving the performance of BMI systems as clinical tools. In this 
chapter, I will first summarize the contributions made by the work presented in this 
thesis. Then, I will propose future directions for work in neuroprosthetic skill learning 
and stimulation-based neuromodulation.  

5.1 Summary of Contributions  

This work in this thesis sheds light on how the brain adapts at multiple scales to 
control a motor cortical BMI and how microstimulation modulates neural circuits 
involved in flexible decision-making. The findings presented in this work will be 
important for advancing the development of neurobiologically informed 
neuroprosthetic devices.  

In Chapter 2, we used factor analysis to compare coordinated spatiotemporal dynamics 
of subpopulations of neurons with direct input to a BMI decoder and the remaining 
recorded population. We partitioned the neural variance within the entire recorded 
population into variance arising from common, shared signals and variance arising from 
independent, private signals. We found that while the total variance increased in all 
groups of neurons and there was an overall increase in the proportion of shared 
variance, this proportional increase in shared variance was driven primarily by neurons 
with direct input to the BMI. This increase in the proportion of shared variance indicates 
an increase in coordination amongst the output-relevant neurons. We also observed 
changes in the covariance structure of both the direct and indirect subpopulations, with 
larger changes occurring in the direct subpopulation. These changes in the low-
dimensional population structure of neural firing activity were correlated with changes 
in behavioral performance. Overall, these findings shed light onto how the motor 
cortex refines cortical population dynamics for control of a novel actuator.  

In Chapter 3, we demonstrated simultaneous recordings from multiple cortical and 
subcortical brain regions as nonhuman primates (NHPs) learned to control a motor 
cortical BMI. To our knowledge, this is the first time a large-scale semi-chronic 
microdrive has been used to record neural activity for real-time BMI control. We used 
this method to investigate task-relevant activity within and outside of motor cortex. 
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We identified task-relevant changes in spectral power in both caudate and prefrontal 
cortex, as well as in motor cortex. Spectral power from all three regions can be used to 
classify BMI control, manual control, and baseline. The majority of misclassifications 
occurred between BMI control and manual control, suggesting that BMI control is more 
similar to manual control than to baseline. Furthermore, these misclassifications were 
less common at the go cue than at target acquisition. This may suggest larger 
differences in top-down strategies between BMI and manual control at the beginning 
of successful trials. Additionally, we identified task-relevant changes in directed 
functional connectivity between motor cortex, prefrontal cortex, and caudate. While 
there is a significant amount of information flow between all three regions during 
baseline and BMI control, BMI control was associated with an increase in information 
flow from caudate to motor cortex and prefrontal cortex to motor cortex above 
baseline. This work provides evidence that prefrontal cortex and caudate may play an 
important role in BMI control, especially at the go cue when top-down cognitive 
processes may guide action selection and initiation. These findings further demonstrate 
that neuroprosthetic control engages multiple cortical and subcortical brain regions.  

In Chapter 4, we investigated how behaviorally biasing microstimulation administered 
in the caudate modulates underlying value representations in the caudate and anterior 
cingulate cortex. We demonstrated that changes in choice behavior resulting from high 
frequency microstimulation paired with a particular stimulus administered in the 
caudate was accompanied by an increase in the fraction of units encoding value in both 
caudate and anterior cingulate cortex. However, the increase in the fraction of units 
encoding value was only significant for units in the caudate encoding the stimulus 
paired with electrical stimulation for one animal. In addition to increasing our 
understanding of neural value computations underlying flexible decision-making, this 
work provides further evidence that stimulation-based therapies may be used to 
regulate valuation of choices in neuropsychiatric patients. 

5.2. Open Questions and Future Directions  

The work in this thesis contributes to our understanding of how the brain adapts to 
and interacts with a BMI system; however, there remain many unanswered questions. 
In this section, I present a number of open questions and future directions that may 
help to elucidate mechanisms of neuroprosthetic skill learning and aid in the 
development of the next generation of neurobiologically informed neuroprosthetics. 
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5.2.1 Neuroprosthetic Skill Learning  

Closed-loop control of BMI systems has been shown to engage neural adaptation, a 
process referred to as neuroprosthetic learning. While many studies have investigated 
this learning process and how it relates to natural motor learning, there remain many 
unanswered questions surrounding the neural adaptations that accompany the 
acquisition of proficient BMI control. Understanding this neuroplasticity is important for 
facilitating the development of robust BMIs that integrate with the brain and are 
intuitively controlled.  

Network Credit Assignment 

Previous literature, as well as Chapter 2 of this thesis, has highlighted differences in 
neural activity associated with neuroprosthetic learning between groups of neurons 
whose activity is directly input to a BMI decoder and the remaining motor cortical 
population (Ganguly et al., 2011; Gulati et al., 2014; Koralek et al., 2013; Zippi, You et 
al., 2021). Further work is needed to understand how the brain assigns credit to 
neurons whose activity causally drives output or reinforces specific patterns of neural 
activity that produce desirable outcomes. Identifying upstream regions within the 
cortico-striatal circuits known to be involved in BMI learning and control may be an 
important first step.  

Distributed Neural Circuits Underlying Neuroprosthetic Skill Learning  

In Chapter 3 of this thesis, we presented a new method for simultaneously recording 
from multiple cortical and subcortical structures while NHP learns to control a real-
time BMI. Our analyses focused on changes in the spectral power within prefrontal 
cortex, caudate, and motor cortex and interactions between the LFP in these regions. 
Further characterization of these interactions with single- and multi-unit recordings in 
all these regions of interest will enable better spatial and temporal resolution. 
Additionally, the cortico-cortical and cortico-striatal interactions presented in Chapter 
3, as well as the cortico-striatal interactions presented in previous work (Koralek et al., 
2012, 2013; Neely et al., 2018) are all part of a much larger cortico-basal ganglia-
thalamic loop, with many nodes participating in multiple large-scale interactions. 
Examining the role of other potentially task-relevant structures, such as the thalamus, 
will be important for characterizing the networks involved in neuroprosthetic learning 
and control. Furthermore, understanding which regions of the brain are involved in 
each aspect of neuroprosthetic learning and how they interact with one another to 
facilitate neuroprosthetic learning and control may enable us to develop BMIs that are 
more intuitive and easier to learn. Studies comparing these interactions in early and 
late learning, with new and learned decoders, and with intuitive and non-intuitive 
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mappings between neural activity and control will be useful in improving our 
understanding of their role in neuroprosthetic learning and control.  

5.2.2 Stimulation-Based Neuromodulation  

BMI systems have the ability to restore lost function to patients with neurological and 
neuropsychiatric disorders by creating novel control pathways from the brain to 
external or internal devices. Internal devices that can be controlled by a BMI include 
stimulators that modulate neural activity through the injection of electrical current. 
While the majority of work in the field of BMIs to date has focused on designing 
systems with the potential to restore lost motor function in paralyzed patients, recent 
work has demonstrated that closed-loop BMIs for mood disorders may be a promising 
clinical tool for restoring dysfunctional mood-regulation or decision-making (Sani et al., 
2018; Shanechi, 2019). Additionally, these systems will allow for researchers to probe 
the neural mechanisms involved in mood regulation and decision-making, increasing 
our understanding of the etiology of neuropsychiatric disorders. There remains much 
work to be done to improve our ability to control or regulate internal brain states via 
BMI systems.  

Characterization of Stimulation-Based Neuromodulation  

Deep brain stimulation (DBS) has set the stage for real-time causal intervention 
therapies for a number of neurological disorders. Electrical stimulation delivered via 
microelectrodes placed in specific regions has been shown to reduce subsets of 
symptoms in diseases ranging from Parkinson’s Disease to major depression 
(Goodman & Alterman, 2012; Holtzheimer & Mayberg, 2011). However, the 
mechanisms by which DBS elicits its effects remain unclear. For example, electrical 
stimulation of certain regions can elicit mixed patterns of excitation and inhibition in 
diverse cell types (Maks et al., 2009). Furthermore, several studies have demonstrated 
that the stimulation of white matter tracts can also elicit beneficial effects (Holtzheimer 
& Mayberg, 2011). Understanding how electrical stimulation of specific regions 
modulates the circuitry involved in neurological disorders will be important for our 
understanding both the etiology of the disease and the mechanism of the therapy. An 
understanding of how stimulation-based neuromodulation influences neural circuitry, 
including neural representations of emotion and mood, will allow for the development 
of better neurotherapies for neuropsychiatric disorders. In chapter 4 of this thesis, we 
investigated how caudate microstimulation modulated behavior and value encoding. 
Using a similar approach to understand how stimulation of other regions within the 
cortico-striatal and cortico-limbic networks involved in decision-making and mood-
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regulation will be important for advancing our ability to flexibly modulate internal 
brain states related to mood disorders and dysfunctional decision-making.  

Reliable Biomarkers for Closed-Loop Stimulation 

Closed-loop DBS, or adaptive DBS, depends on the identification of reliable 
biomarkers of disease states. Being able to reliably detect abnormal patterns of neural 
activity that are related to specific disease states is a crucial step in developing closed-
loop stimulation-based neurotherapies for neuropsychiatric disorders, in which 
stimulation parameters are dynamically adjusted according to a decoded signal 
(Provenza et al., 2019). Thus, developing closed-loop stimulation therapies for 
neuropsychiatric disorders, such as anxiety and depression, will rely on the 
identification of reliable biomarkers for these abnormal brain states. While some 
studies have shown that decoding mental states such a mood is possible (Sani et al., 
2018), it is challenging because mood representations involve multiple distributed 
brain regions, whose functional organization is not well understood. Furthermore, 
mood disorders may manifest dissimilarly in different people. Studies identifying 
commonalities in affective representations across individuals or methods for 
developing personalized mood decoding will be necessary for the clinical use of these 
systems.  

Neural Adaptations to Closed-Loop Stimulation 

Once reliable biomarkers have been identified and there is an understanding of how 
stimulation influences neural circuitry associated with various adaptive and 
maladaptive behaviors, closed-loop stimulation via BMI systems will allow for the 
observation and modulation of neural pathways involved in these behaviors with high 
spatio-temporal resolution. Neuropsychiatric diseases often involve specific 
maladaptive associations, such as ‘trigger’ stimuli, that elicit the symptoms (Belin et al., 
2013). Traditional psychological treatments, such as cognitive-behavioral therapy, 
often focus on these ‘triggers’ with the goal of unlearning maladaptive associations. 
BMI systems may be well suited to aid in this process by quickly disrupting the neural 
circuitry underlying the maladaptive association whenever it is triggered. For example, 
previous work has demonstrated that electrical microstimulation can reverse addiction 
in rodent models (Creed et al., 2015). Thus, disruptive electrical stimulation may aid in 
the weakening of these associations over time until they ultimately no longer exist. 
Studies investigating the neural adaptations that accompany closed-loop electrical 
stimulation will be important for characterizing the effectiveness of BMIs as a clinical 
tool for neuropsychiatric disorders.  
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5.3 Conclusions  

Directly interfacing brains with machines has opened a myriad of promising clinical and 
scientific applications. BMIs have tremendous potential to improve the quality of life for 
those with a number of cognitive and motor disabilities but have also revealed many 
challenges with understanding and interfacing with the brain. Further work 
investigating the neuroplasticity that occurs with introducing these systems to the 
brain and in neuroengineering will be critical for unlocking the full potential of BMI 
therapies. Large-scale simultaneous recording strategies provide promising new paths 
for studying the neurobiology of BMIs and may further enable us to develop 
neurobiologically information neuroprosthetic systems.  
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