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Abstract

Existing results on the properties and performance of forecast combinations
have been derived in the context of mean squared error loss. Under this
loss function empirical studies have generally found that estimates of opti-
mal forecast combination weights lead to higher losses than equally-weighted
combined forecasts which in turn outperform the best individual predictions.
We show that this and other results can be overturned when asymmetries
are introduced in the loss function and the forecast error distribution is
skewed. We characterize the optimal combination weights for the most com-
monly used alternatives to mean squared error loss and demonstrate how
the degree of asymmetry in the loss function and skews in the underlying
forecast error distribution can significantly change the optimal combination
weights. We also propose estimation methods and investigate their small

sample properties in simulations and in an inflation forecasting exercise.

*We wish to thank seminar participants at Bocconi and Emory University and the 2001 NBER
conference on macroeconomics and forecasting, particularly Frank Diebold, Carlo Favero, Mas-
similiano Marcellino and Paul Ruud, for helpful comments and suggestions. Carlos Capistran
provided excellent research assistance. We are grateful for financial support from the NSF under
grant SES 0111238.



1. Introduction

Economic decision makers are often presented with numerous competing forecasts
generated by different economic models or forecasting services with access to differ-
ent information sets. A decision maker who needs a forecast could choose a single
set of forecasts from a method that has historically performed well according to
a particular loss function, or some combination of the available forecasts could be
considered. If a combination of forecasts proves to be superior to its individual
components, a better model should be available by pooling the information sets
used to form the various forecasts. In practice all the basic information sets are
not available, so this is not a feasible approach. Combining forecasts becomes an
attractive strategy in this situation and combinations have indeed proven empiri-
cally to lead to substantial improvements over the forecasts produced by the best
single model.!

Both the theoretical results on forecast combination weights and empirical find-
ings on the performance of forecast combinations have almost exclusively assumed a
symmetric, quadratic loss function. However, in economics and finance forecasting
performance is increasingly evaluated under more general loss functions that ac-
count for asymmetries; see, e.g., Christofferson and Diebold (1997), Diebold (2001),
Granger and Newbold (1986), Granger and Pesaran (2000) and West, Edison and
Choi (1996). For example, financial forecasting performance is often measured
through the Sharpe ratio which divides mean returns over the standard deviation
of returns on a portfolio constructed on the basis of forecasting information.? Sim-
ilarly, it is common to have a value at risk (VaR) objective to account for the
disproportionately high costs associated with large losses. This leads to a loss
function that puts particular emphasis on draws from the left tail of the forecast

error distribution. Central Banks may also have asymmetric preferences which will

1See, e.g., the extensive survey by Clemen (1989). More recently Chen, Stock and Watson
(1999), Dunis et al (2001), Marcellino (2002), Newbold and Harvey (2001) and Stock and Watson
(1998, 1999) have found evidence that combined forecasts often outperform forecasts from the best
individual model. Reasons offered for the empirical success of forecast combinations include model
misspecification, changes in the underlying parameters, different models’ use of heterogenous
information and shrinkage estimation effects. See Hendry and Clements (2002) for a discussion

of these points.
2Hence even if the mapping from forecasts to portfolio weights is linear, there will be a highly

nonlinear mapping from the forecasts to the performance metric.



affect their optimal policies, c.f. Peel and Nobay (1998).

This paper offers a comprehensive treatment of forecast combination under
general loss functions and forecast error distributions. We extend the existing lit-
erature on optimal forecast combinations by generalizing the set of loss functions
from the standard symmetric class to allow for arbitrary asymmetries and contin-
uously differentiable as well as non-differentiable functions. Similarly, we consider
general forecast error densities and establish new results when this density is ellip-
tically symmetric or generated by a general mixture distribution that can capture
arbitrary shapes of the forecast error density and nests the normal distribution
as a special case. We establish the factors that determine the optimal weights in
population; numerical examples are then used to demonstrate the extent to which
the degree of asymmetry in the loss function interacts with the skew and kurtosis
of the underlying forecast errors from the individual models in determining optimal
combination weights.

Under elliptical symmetry, our paper shows that the forecast combination weights
(other than the constant term) are identical for (almost) all loss functions regard-
less of the values chosen to parameterize these. This invariance result follows since
for any set of forecast combination weights, the constant can be adjusted to choose
the bias that optimally trades off the bias and variance of the forecast error. The
weights on the forecasts are left free to minimize the variance and can thus be
found as the solution to a standard quadratic optimization problem. Under ellip-
tical symmetry, for arbitrarily asymmetric loss functions the problem of optimally
determining combination weights thus reduces to simply examining the optimal
bias.

This result has strong practical implications. Since the forecast combination
weights are the same as those under Mean Squared Error (MSE) loss, the estimation
problem reduces to a simple two-stage procedure: Least squares estimation of the
optimal combination weights followed by estimation of the constant term which
controls the optimal bias. Only the latter depends on the shape of the loss function
so the search is over a single parameter. This simplifies the estimation problem
greatly since typical estimation procedures require search methods which can be
difficult if the dimensions of the parameter vector is large.

An often quoted ‘folk theorem’ in the forecast combination literature is that



using average as opposed to optimal weights often works better in practice.> The
reason is of course that it can be difficult to precisely estimate the optimal forecast
combination weights. Equal-weighted forecast combinations may be biased but
they also reduce the forecast error variance by not relying on estimated combination
weights that depend on second moments of forecast errors. This finding depends,
however, on the trade-off between forecast error bias and variance (as well as higher
order moments in the case of asymmetric forecast errors) which in turn depends on
the shape of the loss function. Consequently this ‘folk theorem’ can be overturned
under asymmetric loss functions and non-Gaussian forecast errors. We find that the
larger the asymmetry in the loss function, the larger the gains from using optimally
estimated combination weights over the equal-weighted combination.

We finally address estimation of optimal combination weights in a much more
general context than the existing literature. For general differentiable loss functions
such as linex we propose to estimate the forecast combination weights using M
estimation. For loss functions such as linlin that are not everywhere differentiable,
we show that estimation can be cast in the context of a quantile regression problem
and we exploit the insights that this provides. For asymmetric quadratic loss, we
propose an iterated weighted least squares estimation approach. The performance
of these and other estimators is examined in Monte Carlo simulations.

The plan of the paper is as follows. Section 2 reviews results for the standard
case with mean squared error loss. Section 3 provides theoretical results for the
general case with arbitrary loss function and forecast error distribution. Section 4
considers three commonly used asymmetric loss functions and Section 5 investigates
forecast combinations in the context of Gaussian mixture distributions. Section 6
discusses estimation of the optimal combination weights, while Section 7 presents
Monte Carlo simulation results. Section 8 provides an empirical application to

inflation forecasting and Section 9 concludes.

2. Forecast Combination Under Mean Squared Error Loss

Suppose a decision maker is interested in forecasting some variable, y;, on the basis
of an m—vector of forecasts of this variable §;. FEach element of ¥, is determined

ex ante and is adapted to an expanding sequence of information sets, 2;, which

3See, e.g., Granger (1989), Stock and Watson (1999) and Fildes and Ord (2001).



constitutes a standard filtration. Hence ¥; is adapted to €,_;, whereas v, is not.*
), 1 comprises y; ; in addition to other variables used to predict y,. We will

assume that y; and §, have joint distribution P((y; ¥;)’) with finite first and second

(5) =) '
w(i)= (3 %) ®

To keep the notation simple, we suppress the dependence of the joint distribution

moments

and

and moments on §%_1, simply using P(.), £[.] and Var(.) in place of P(.|%_1), E[.|%_1]
and Var(.|Q_1).

Motivated by the seminal paper of Bates and Granger (1969), the forecast
combination literature has studied the class of linear forecast combinations, w® +
W'y, where w is an m—vector of combination weights and w® is a scalar constant.’

This gives rise to a forecast error, e;, from the combination,
C !~
G =Y —wWw —WwWys. (3)
Under the assumed moment structure, e; has first and second moments

pe = py—w'—w'p

i O'z + W¥pw —2wW'os,. (4)

Assuming the loss is quadratic and symmetric in the forecast error, L(e;) = 2,

the objective is to minimize the following expression:

E [(yt —w'— w'yt)ﬂ = (g, — W’ —W'p)’ 4+ 0, + WBpw — 2oy, (5)

Differentiating with respect to w® and w, we obtain the first order conditions

OF [(y: — w* — w'§1)’]
Ow®

OF [(y: — w* — w'§1)’]
Ow

4Thus we are only ruling out the uninteresting case where y; is perfectly predictable.
SLinearity in the combination weights is not a particularly restrictive assumption at least in

= —(py—w —'p) =0,

= 2%5w — 209 — 2u(p, — W' —w'p) =0,

the sense that higher order powers of the forecasts are easily included in this setup simply by

expanding the space of forecasting signals that are being combined.

4



The optimal population values of the constant and the vector of combination

weights, wf and wyq, are thus

c /
Wo = lu’y_wl'l’

Wy = 22_210'21. (6)

The sample analog of these weights is of course the usual least squares estimator
for the outcomes regressed on a constant and the vector of forecasts (Granger and
Ramanathan (1984)). Notice the dichotomy of this solution: the optimal constant
depends on the biases in the forecasts but not on the variance-covariance matrix. In
contrast, the vector of combination weights depends only on the variance-covariance
matrix of the outcome and predictions. The inclusion of a constant ensures that
the combined forecast is unbiased since the choice of w ensures that p, = 0. This

is clearly optimal under MSE loss.

3. Forecast Combination under General Loss Functions and Forecast

Error Distributions

While the Mean Squared Error loss function has proved to be a useful approx-
imation in many cases, a large volume of work has recently been interested in
extending the results to allow for more general asymmetric loss functions. Tay
and Wallis (2000) provide several references to this literature. Christoffersen and
Diebold (1997) develop the theory for optimal bias adjustment in the case of com-
monly used asymmetric loss functions when the moments of the underlying error
distribution vary over time, such as under volatility clustering, but maintain the
assumption that (conditionally) the forecast errors follow a Gaussian distribution.

None of these results have been extended to the forecast combination literature.
To fill out this gap, this section develops results for optimal forecast combinations
under general loss functions and forecast error distributions. We then explore
the significance of the factors determining the optimal combination weights for the
most commonly used asymmetric loss functions such as linlin, linex and asymmetric

quadratic loss.



3.1. The Loss Function

We will be concerned with loss functions that only depend on the forecast error
and thus take the form L(e;). Granger (1999) provides an outline of the basic

properties such loss functions are required to have:

2. Min L(e) = 0, so L(e) = 0;
3. L(e) is monotonic nondecreasing as e moves away from zero:

L(ey) > L(eg) if e; > eo > 0 and if e; < ey < 0.

In addition to these properties, the loss function may also be symmetric (L(—e) =
L(e)), homogenous (L(ae) = h(a)L(e) for some positive function h(a)) and differ-
entiable up to some order.

The decision maker’s problem is to find the optimal forecast combination weights

and a constant that minimize expected loss:
Arg min /L(et)dF(et). (7)

where F(e;) is the cumulated density of e;.

It is clear from this generic optimization problem that the optimal forecast
combination weights generally depend on the shapes of both the loss function and
the forecast error distribution. The joint effect of the moments of the forecast
errors and the loss function can perhaps best be demonstrated in the context of a
Taylor series expansion of the loss function around the bias of the forecast error,

t. = Ele;]. Under general conditions we have the following result:
Proposition 1. Suppose that
1. the expected loss is finite;

2. the loss function is analytic except for possibly at a finite number of points

(occurring with probability zero) at which it is continuous;

3. all conditional moments of the forecast error distribution up to the highest
non-zero derivative of the loss function with respect to the forecast combina-

tion weights exist.



Then the optimal combination weights solve the expression

: ]' n 1 m 1,,7
Arg min {L(ue) + 5L Ellee — o)’ + Z Ly ZOWE[ #e]}-

Lﬁe in the proposition represents the k' derivative of L(.) evaluated at p,, i.e.
O*L(e;)/0"w|c,—p,, . The result follows from noting that, at the points where L(.) is
analytic, it lends itself to a Taylor-series expansion around p,:

/ 1 " —, 1
L(et) = L(:ue) + Lue(et - :ue) 2Lu ( ILLe)Z + Z(E)Lﬁe (et - :ue)k'
k=3 "

Taking expectations, the finite number of points where L(.) is not analytic can be
ignored since they are assumed to occur with probability zero. We therefore get
the expected loss:

Bl = Dln)+ 3B Flle - nf)+ G L Bllec— )"

:L%Hywu;%+i;ﬁz()kﬂ

1
= L(pe) + 5L El(e +Z ueZ ey~ ).

Notice that the second assumption does not rule out loss functions such as
lin-lin which are non-differentiable at a single point. Furthermore, when the loss
function is not linear or quadratic, higher order moments of the forecast error
distribution such as the skew generally matter. Finally for the expected loss to
exist, the moment generating function of the forecast errors must be such that
all moments exist for which the corresponding derivative of the loss function with
respect to the forecast error is non-zero. This is a strong requirement and rules out

many potential combinations of loss functions and forecast error distributions.®

6For example, combining a t—distribution with three degrees of freedom with a loss function
whose fourth derivative is non-zero will result in a non-existing expected loss. Another example
comes from the linex loss function, whose higher order derivatives are all non-zero. All moments
of the forecast error distribution must therefore exist to ensure that the expected loss is well
defined.



3.2. FElhptically Symmetric Data

An important special case arises when the expected loss function depends only on
the first two moments of the forecast errors. For this case, only the constant (w®)
depends on the shape of the loss function, while the forecast combination weights

are unaltered from the case with MSE loss:

Proposition 2. Suppose that the expected loss can be written as E[L(e;)] =
g(pe, 0?) and let p* be the optimal value for p,. Then if the partial derivative
g(uz,a?)/00? is nonzero,

(i) wo = X3 001;

(ii) wg is the solution to dg(u:,0?)/0u, = 0.

Proposition 2 is straightforward to prove. Since w® only appears in pu,, the

optimal value for this parameter solves
Og(pe,02) _ 09(pte02) O Og(pe, 02)

owe  Op, Owe  Op, 0

This is the result in part (ii) of the proposition. This choice for w® sets p, at

its optimal point (u*). The optimal value for w therefore solves

Og(ps,02)  Og(ps,o?) do? 0
ow 002 Odw

Furthermore, % = 2 (Ygow — 0°91) so the solution is as stated so long as %ng) #+
0. It is easy to show that the second order condition is satisfied as long as thee loss
function satisfies conditions (1) - (3) in Granger (1999). Section 4 shows how to
verify the primitive conditions of Proposition 2 for a set of standard asymmetric
loss functions.

There are numerous cases where the expected loss takes the form assumed in
Proposition 2. Most obviously, if the forecast error distribution is Gaussian then
the expected loss depends only on the mean and variance and the optimal forecast
combination weights are identical to the MSE weights.” This is true regardless of

the degree of asymmetry in the loss function.® In contrast, the constant term is

"Obviously the parameters of the loss function also matter but these are typically assumed to

be known constants in applications.
8This implication is closely related to the result in finance that the distribution of a portfolio

is determined by the mean and variance in these situations, see Chamberlain (1993).



determined to ensure that the optimal bias reflects the asymmetry of the loss func-
tion. The same is true for any marginal distribution of forecast errors that depends
only on the first two moments of the forecast errors. The general class of distribu-
tions for which this is true is for P((y; ¥;)") elliptically symmetric. The multivariate
normal is a special case of this family, as is the multivariate t-distribution. We shall
for simplicity refer to distributions satisfying the assumptions of Proposition 2 as
elliptically symmetric.

Proposition 2 has two important implications. First, estimation of forecast
combination weights under asymmetric loss simplifies to a two-stage procedure of
first employing the MSE combination weights to the vector of forecasts and then
bias adjusting (which requires estimating a single parameter, w§). These weights
are simple to compute regardless of the form of the loss function, e.g. by running
a least squares regression and then estimating the mean conditional on the OLS
estimates and forecasts that are to be combined.

The second implication is that departures from elliptical symmetry are needed
to drive the forecast combination weights away from their solution under MSE loss.
If, under elliptical symmetry, a forecast adds information (in the sense that it has
a non-zero combination weight) under MSE loss, it will also add information under
arbitrarily asymmetric loss functions. The converse also holds - if the forecast is
not useful under MSE loss then it will not be useful for any other loss function:

Corollary 1. Suppose that the conditions of Proposition 2 hold. Then a fore-
cast gets assigned a non-zero weight in the combined forecast under a general loss

function if and only if its weight under MSE loss is non-zero.

The proof is immediate from Proposition 2, since the combination weights are
identical irrespective of the assumed form of the loss function provided that the
forecast errors are elliptically symmetric. This result stands in stark contrast to
the results we obtain under general (non-elliptical) forecast error distributions.
For sufficient deviation from elliptical symmetry (particularly when there is skew
in the forecast errors) the weights on the forecasts will depend on the loss function.
However, our result says that under elliptically symmetric forecast errors, decision

makers agree on the value of prediction signals irrespective of their loss function.’

9Notice also the relationship between Corollary 1 and the result in Diebold, Gunther and

Tay (1998) that decision makers with different loss functions cannot generally agree in their



They could well disagree about the need to include an intercept as this depends on
the shape of the loss function.

When elliptical symmetry is abandoned, a particular forecast or subset of fore-
casts may contain information under MSE loss but not under asymmetric loss.
The converse may also hold: a forecast could be assigned a non-zero weight under
asymmetric loss but not under MSE loss. We state this result in Corollary 2 which
is the natural converse of the result in Corollary 1 which was established under

elliptical symmetry:

Corollary 2. Suppose that the conditions of Proposition 2 hold. Then

(1) a forecast may contain information under MSE loss but not under alternative
(asymmetric) loss functions;

(ii) a forecast may contain information under asymmetric loss but not under
MSE loss.

Corollary 2 is easy to prove by examining the first order conditions of an asym-
metric loss function (e.g., linex loss) under, say, a Gaussian mixture distribution

and noting that these generally do not simplify to the formulas in equation (6).

3.3. Forecast Encompassing Tests

An alternative to the strategy of forecast combination is to simply use a single
forecast. This situation arises when the forecast produced by one model, B, does
not add anything to the forecast from another model, A. In this situation, model
A is said to forecast encompass model B. Under MSE loss usually this is tested by

least squares estimation of the equation

Yip1 = @+ 5A37£i1 + ﬁB@EH + Ei41- (8)

If the joint hypothesis that 5, = 1, 35 = 0 cannot be rejected, model A forecast
encompasses model B.

An implication of the previous two propositions and corollaries is the following

ranking of misspecified predictive density models. Provided that the forecast errors are elliptically
symmetric, our result says that decision makers can agree about what is regarded as a useful
forecast even if the forecasts are individually misspecified.

10



Proposition 3. Suppose that the assumptions of Proposition 2 hold. Then if
model A forecast encompasses model B under MSE loss, model A also encompasses
model B for any other loss function.

Conversely, if these assumptions do not hold, it is possible that model A forecast
encompasses model B under MSE loss but not under an alternatie loss function or
that model A does not forecast encompass model B under MSFE loss, but does so

under the alternative loss function.

When forecast errors are not generated by an elliptically symmetric distribution,
it follows that it is not possible to set up a universal encompassing test since the
outcome will depend on the specific loss function. Effectively the comparison of
the forecasting performance of the individual models depends on the parameters

of the loss function.

4. Results for Specific Loss Functions

To demonstrate the general results from the previous section, this section considers
three commonly entertained asymmetric loss functions, namely linex, lin-lin and
asymmetric quadratic loss. To provide a first impression of the significance of
adopting an asymmetric loss function, Figure 1 uses the lin-lin and asymmetric
quadratic loss functions to show three very different types of loss aversion. There
is a single parameter, 6, that controls the degree of asymmetry. In the first panel
(0 = 0.1) very little weight is put on negative forecast errors, while a large weight
is put on positive forecast errors. The second panel covers the special case where
the loss function is symmetric (@ = 0.5). In the third panel, large weight is put on

negative forecast errors and small weight on positive forecast errors.

4.1. Linex Loss

We first characterize the solution to the optimal (population) forecast combination
weights for the most popular differentiable asymmetric loss function, namely linex

loss. This loss function is given by
L(e;) = exp(ae;) — aey — 1. 9)

The parameter a controls the extent of asymmetry. If a > 0, there are large losses

from positive forecast errors and the losses are higher the larger the value of a. If

11



a < 0, large losses result from negative forecast errors and the losses are larger, the
smaller is a. The expected loss is

BIL(e))] = M.(a) — a1, (10)

where M. (a) is the moment generating function of the forecast errors and thus
depends on their marginal distribution. Equation (10) shows that the expected
linex loss only exists when the forecast error distribution has an infinite number of
moments.'? Differentiating the expected loss with respect to w® and w yields the
first order conditions

OE[L(e)]  OM.Ja)

% } aT(C) o

OF|L(e; OM,(a

a—w = o +ap = 0. (11)

These equations fully characterize the solution to the optimal weights as a
function of the parameters of the underlying forecast error distribution and of the
loss function. The parameter a which controls the asymmetry in the loss function
plays a prominent role in the first order conditions.

In common with most other asymmetric loss functions, the expression is gen-
erally a highly nonlinear function in the forecast combination weights and simple
closed form solutions are typically not available. An exception arises when the
forecast errors are normally distributed. In this case M.(a) = exp {a,ue + %O’Z} )

and the optimal constant is given by

c __ / g 2
wO_My_w0“+ O

Under normality of the forecast errors, the optimal population bias from the

combined forecasts is y, = —%02. This is the optimal bias derived in Christoffersen

and Diebold (1997) for the univariate “mean-only” linex forecasting problem. The
expression has an intuitive interpretation: when a > 0, large losses follow from

positive forecast errors and it is optimal to choose a positive constant so that

10T his follows from Proposition 1 since all derivatives of the linex loss function are nonzero.

The primitive condition in Proposition 2 requires that

2

= ao. exp {aue + %(T?} # 0.

OM,(a)
oo,

This is always satisfied, except in the trivial case with perfect forecasts (o, = 0).

12



the forecast errors have a negative mean. The forecast error distribution is hence
biased towards negative losses to avoid the high penalties associated with positive
losses. The reverse is true when the decision maker tries to avoid negative losses
(i.e. @ < 0). In both cases, the larger is a the larger the penalty so the larger
the bias. The larger the variance of the forecast errors the higher the chance of
large forecast errors and hence the more the combination gets biased to reduce the

chance of large losses.

4.2. Lin-lin Loss

A popular way of capturing asymmetries in the loss function is to let losses take
one form for forecast errors over and above a certain threshold, x, and another

form for forecast errors below this value:

Lie)) = Ly (et) ?f e > K |
Lo(er) ifep <k

where L;(k) = Lo(k) ensures continuity. Asymmetries are typically associated
with different losses for positive and negative forecast errors so that x = 0 is the

threshold. If we further assume that L(.) is piece-wise linear, we get the linlin loss

function:
if e, > 0
Lie) =4 ol Te=0 (12)
ble;] ife; <0
where a and b are non-negative scalars. Defining 6§ = a%b, this can be written as
L(e;) = (a+b){—0+ 1,50} €. (13)

Minimizing this expression over the constant and combination weights is equivalent
to solving the problem

Argmin {—0 + 1¢,50} €.

This differs from the original loss function only by a positive scaling factor that
is independent of the weights. Hence the two loss functions are in the same
homogenous class and the expected loss to be minimized, L*(.) can equivalently be

written as

B(L ()] = [ eudFer) - Op.

13



where we recall that F'(e;) is the cumulative density function of the forecast error.
To evaluate the objective function, we express e; as e; = p,+0.2;, where z; is simply
the centered and standardized forecast error with density f.(.) and cumulative

density F.(z). Using this transformation the expected loss can be written as

E[L*(e)] = . (1 ol (—&» o, /°° 2dF(z). (14)

0-6 _:u‘e/Ue

The form of this expected loss function means that the derivatives of L*(.) with
respect to w® and w are difficult to interpret and not very useful since, in many
cases, the marginal distribution F(.) will itself depend on (w® w). An exception
to this occurs when e; is Gaussian and, using Leibnitz’ rule of integration, the first

order condition for the constant simplifies to

1—9—q><—&>=0,
0-8

where ®(.) is the cumulative density of a standard normal variate.
Recalling that p1, = p, — w® — wyp and using symmetry of ®(.) we obtain a

closed-form solution for the scalar intercept term:!!

=y — whp—o, 2 (0). (15)

Again we can evaluate the direction of the bias, using that u, = 0.®7'(6). For
6 = 0.5, the loss function is symmetric and the error from the combined forecast
is unbiased. For 6 < 1/2; higher weight is placed on positive errors as b is small
relative to a. ®7!(0) is therefore negative and so the optimal combination has
a negative mean for all possible variance-covariances of the forecasts that enter

into the combination. Again, to avoid the high weight placed on positive forecast

" The assumption of Proposition 2 can be verified under symmetry of the forecast errors by

differentiating the expected loss with respect to ., evaluated at p :

8 e}
S ElLe)] = / ARG

Beloe

thF Zf / thFz(Zt)
MC/GC H‘c/ot’

= / thF Zt 0,
wh

/oe

by symmetry of dF,(.) around zero.

14



errors the optimal combination biases the mean forecast error to be negative. The
reverse is true when 6 > 0.5. As with linex loss, the size of the bias increases as

the variance of the forecasts errors rises, to better avoid high loss outcomes.

4.3. Asymmetric Squared Loss

The asymmetric squared loss function is given by
9 -
o= ey "
where a,b are non-negative scalars. Alternatively, this can be written as
Lies) = (a+b) {0 — (20 — 1)1.,50} €,
where again 6 = a%b Minimizing this expression over w is equivalent to solving
Arg min {6 — (20 — 1)1¢,50} €2. (17)

This differs from the original loss function only by a positive scaling factor that is
independent of w® and w. Hence the two loss functions are in the same homogenous
class.

Again we can write e, = u, + 0.2 and change variables in the expression for

the expected loss:
E[L(e)] = 6(c7+p2)— (20 —1) {2 (1 = F. (=p. /o))

+o? [ o FAF(2) 4 210 / ztsz(zt)}. (18)

7“6/06

Taking derivatives of the expected loss with respect to w yields the first order

condition!?

do? O op? e > pe\ 0 [ pe
e{aw+a—w}—<29—1>{a—w(1‘Fz<‘;>>"“‘8Z(‘?)at(‘a_)

12Here we used the relations

%/zdez(zt) = —meZ(m)
a%/ztsz(zt) = —mf.,(m).

15



%2 urge) ot (<05) 1 () 55 (-52)

O Pe\ g (_He) O (ke
+2u 88 /ztdF (2t) + 20— &u 2 dF, (z) — 2041, (06> 2 < O'e> E ( 08)}
0.

Canceling out the terms involving f, (—%) and using that %Z? = 2(Xpw — 09),

0o _ 1 902 Op, _
Ow ~ 206 Ow ' Ow

—p this simplifies to

0 =4 (222@7 — O09] — ,U,e[,l,) (19)
(20— 1) {—,u / (1o + 002 AF (%) + —(Saow — o) / (4, + (rezt)ztsz(zt)} ,

O¢

where the integrals run from (—pu,/o.) to co. The first order condition for the

constant term takes the complicated form

c __ (29 - 1)Uef o)Oe thFz(Zt)
T TR T TR ) (1 - F (~pfon)

(20)

This term does not simplify nicely even in the Gaussian case. Only when
0 = 0.5, do we get the closed-form solution wy = X3;09; and wf = fhy — WO,
which is identical to the MSE result from Section 2. For all other cases, the above
formulas do not provide a closed-form solution to w{ since p, is itself a function of

this constant and one must again resort to solution methods.

5. Mixture Distributions

Section 3 showed that departures from elliptical symmetry are needed to get com-
bination weights that differ from the standard MSE weights. To examine the effect
of such departures, this section considers a setup similar to that studied by Marron
and Wand (1992) where the joint distribution of the outcomes and the forecasts,
P((y: §;)'), is a mixture of k& normals. Such mixture distributions are capable of

closely approximating a very wide family of distributions.’®> The forecast error

13Marron and Wand (1992) show how such mixtures can be used to generate a wide assortment
of distributional shapes. While in principle one could extend this class of Gaussian mixture
densities to include mixtures of elliptical distributions (including t¢-distributions), these can in
most cases be approximated by mixtures of normals so that not much generality is obtained this

way.
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density takes the form
k
f(et|wcvw) = Zpigbai(et - ,uz')v
i=1

Y= 1, 0<p <1 (21)

2

where pu;, = p, — w® — w'p,, 07 = 022”- + Ww'Ygw — 2w'o9y; are the state-specific

Yi
mean and variance and ¢, is the normal density with mean zero and standard

deviation o;. For example, when k = 2, with probability p; P((y: ¥;)') takes the

(yt) ~ N (/@1) ‘7131 oH1
Vi 231 ’ o211 X991 ’

while with probability (1 — p1), P((y: §;)) takes the form

(yt) ~ N (Myz) (7132 TH1s
Vi 125 ’ O212 922

From the moment generating function of a normal variable, the Taylor series

form

expansion in Proposition 1 takes a particularly simple form under the Gaussian

mixture distribution:

k o 1 o™
Argmin S p Lo L™ () ——— it 22
o Yo ) + 20 .

m=2

The summation over m only includes even powers.

There are many advantages to considering this class of Gaussian mixtures.
First, in many economic applications, the underlying mixtures correspond to eco-
nomic states such as recessions and expansions with the benefit that this offers
in terms of interpretation of the optimal combination weights in different states.
Second, mixture distributions are easy to generalize to the multivariate case, since
only the mixing probabilities, means and covariances need to be extended when
additional forecasts are considered. Third, it is easy to introduce skew and kurtosis
while controlling the first and second moments. Finally, many elliptically symmet-
ric distributions can be obtained as a special case of the mixtures. Let X; be an
m X 1 vector which has a multivariate normal mixture distribution (u;, ;) with

i = 1,...,k states. Then if p, = p and ¥; = ~,% for some scalar v, then X; is
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elliptical. To see this, notice that for an elliptical distribution we need to be able

to write the joint density as
f(x) = (V)" g((x —a) V™ (x — a)). (23)

The joint density for X, is

k

FO) = Soplen) ™ (S exp { S (x = ) B x )}

7=1
1/2 k Vi
= =) pesp { - L - 'S - )
=1

thus the result is shown for V.= % a = p, h(V) = 27" V|, g(s) = =&, pi7y, exp {—1213}. When
there exists at least one pair, ¢ # j, for which p; # pu;, the mixture generally falls

outside the elliptically symmetric family.

5.1. An Ezample

To illustrate the effect of skewness and kurtosis on the optimal forecast combination
weights under asymmetric loss, we follow Marron and Wand (1992) in separately
considering a model with skew and a model with kurtosis. In both cases we mix
models with variance-covariance matrices that are of different scales. For the skew
model there is also a difference in the means between the two states.

The precise specification of the mixture models is as follows. Both models have

two states. The skew model assumes the first state has a probability of 0.6 with

distribution
m 0 1 0.2 0.15
gt | ~ N 0|,] 02 025 0.125
Yot 0 0.15 0.125 0.2

In state two the means are all assumed to be 0.5 and the variance-covariance matrix
is identical to the one in state 1 but divided by 10:

Ye : 0.l 0.02 0.015
gie |~N{| 5 |,| 002 0025 0.0125
Yot : 0.015 0.0125 0.02

Effectively the second state is shifted to the right and more tightly distributed

around its mean.
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The kurtosis mixture assumes that the probability of the first state is 0.2 with

a joint distribution

n 1 1 0.2 0.15
gt | ~N 1 {,] 02 025 0.125
Ut 1 0.15 0.125 0.25

In state two the means are the same as for state one and the variance covariance

matrix is scaled by dividing by 15:

Yt 1 0.067 0.013 0.01
i | ~ N 11, 0.013 0.017 0.008
Yo 1 0.01 0.008 0.017

This ensures a zero skew as is clear from the following table which gives the mo-

ments of each of the variables:

outcome 1st forecast 2nd forecast
skew  kurtosis skew  kurtosis skew  kurtosis
model 1 -0.574 3.722 -0.901 2.466 -0.942 2.213
model 2 0.000  9.515 0.000  9.515 0.000  9.515

Model 1 has negative skew for all three variables but little or no excess kurtosis.
Model 2 has strong kurtosis but no skew and is thus an example of a non normal
model that is nonetheless elliptically symmetric.

For the skewed mixture model the effect on the population weights of varying 0
is shown in Figure 2 (for asymmetric quadratic and lin-lin loss, respectively). The
extent of the asymmetry clearly matters for the optimal combination weights. In
contrast and consistent with Proposition 2, the combination weights derived under
the kurtotic mixture model shown in Figure 3 are independent of 6.

It is not surprising that asymmetry in the loss function interacts with asym-
metry in the underlying distributions of the outcomes and forecasts that are being
combined. Suppose that 6 < 0.5, so the decision maker dislikes positive forecast
errors more than negative ones. Now consider moving mass of the distribution to
the right, so the underlying distribution is positively skewed. This skewness must

come from either the outcome variable or the forecasts, presumably from both in
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practice. The loss function prefers lower probability of positive forecast errors
when choosing the combination weights. The extent of the asymmetry in the loss
function drives the size of this effect. Hence the combination weights are clearly a
function of the parameters of the loss function. Figures 2 and 3 also show that 6 has
a large effect on the optimal constant. When € is very small and negative forecast
errors are preferred to positive ones, the constant is large and positive, guarantee-
ing that the forecast error distribution has a negative bias and is centered to the
left of zero. In contrast, for large positive values of @, positive forecast errors are
preferred to negative ones and the constant is large and negative, ensuring that the

forecast error distribution is centered to the right of zero.

6. Estimation of Forecast Combination Weights

So far we have considered the population values of the optimal forecast combina-
tion weights. In practice, forecast combination weights must be estimated from
past data. This involves assumptions as to the stability over time of the joint
distribution of the predicted variable and prediction signals. A survey of the em-
pirical evidence of employing estimation methods based largely on least squares is
provided in Clemen (1989) and further discussed by Diebold and Lopez (1996).
Here we consider two strategies for estimation. If it is known that the forecast
errors are elliptically symmetric, or suspected that they are close to elliptically
symmetric, Proposition 2 showed that forecast combination weights are invariant
under a large set of loss functions. We show in this section that this insight greatly
simplifies estimation. The remainder of the section treats the general estimation

problem when elliptical symmetry does not hold.

6.1. Estimation under Elliptical Symmetry

When the forecast errors are elliptically symmetric, a simple two stage procedure

is suggested by our theoretical results in Section 3:
(i) Estimate @ by OLS, regressing y; on a constant and y;

(ii) Use the constructed variable y; — @'y, to estimate &° based on the relevant
loss function.

Under linex and lin-lin loss closed form solutions are available for the second
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stage estimates when the forecast errors have a Gaussian distribution in which
case the estimation problem is extremely simple. From the first stage we obtain
estimates {fi,, i, @,52}. These are used in the second stage estimation. For

example, in the case of linex loss,

while under lin-lin loss

The results for asymmetric quadratic loss are a little more difficult as there is no
closed form solution for @°. But even in this case the estimation problem is much
simpler since the optimization procedure only has to search over a one dimensional
parameter space regardless of the number of forecasts we are combining.

When P((y: ¥;)') is not believed to be elliptically symmetric, it is more compli-
cated to estimate the combination weights. We first discuss estimators for general
loss functions and then show how these apply to the three loss functions considered

in Section 4.

6.2. Moment Estimators

In general we are interested in choosing the constant and the combination weights
w® w that minimize the expected loss. The realized loss in period ¢, which we

denote by Q;(w®, w), can be written as
Qt(wcu w) = L(WC7 w|yt7 ytu 9)7

where @ are the parameters of the loss function. w® and w can be obtained as an

M-estimator based on the sample analog of E[Q] using n observations {y;, y; }7,:'*
Q(w,w) =n"" Z Qi (W, w).
=1

An alternative estimator that is available when we can interchange the expec-

tation operator and the derivative of @; with respect to w® and w,'® 9Q,/d((w®

14 Other examples of estimators of this form include maximum likelihood estimators, where @

is replaced by minus one times the log-likelihood.
5This assumption obviously imposes a restriction on the distribution of the forecast error.
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Ww')) = Q}, selects w®,w to satisfy the first order condition
E[Qi(w*, w)] = 0.

The corresponding sample analog is the average over the n observations. One
problem with this method is that it can give rise to multiple solutions even when
the M-statistic is regular.

A second method is related to instrumental variables estimation of a nonlinear
regression and can therefore be handled in a GMM framework. The GMM approach

estimates w by minimizing the quadratic form

V= (i Qi (w", W)),A_l (til Qi (w", w)> (24)

where A is some positive definite matrix. As with any GMM problem, we can
easily determine the optimal weighting matrix.

An advantage of the M-estimator is that there are a wealth of results available
for consistency and asymptotic normality of the estimated weights. A similar

result is true for the GMM estimator.

6.2.1. Linex Loss

These estimation methods can be demonstrated for the linex loss function. For
this case, Q¢(w®, w) takes the form

Qi(w,w) =exp (a(yy — w’ — W'yy)) —alyy —w’ —W'y;) — 1.

GMM estimation is based on the derivative, Q}:

Q. = (—aexp(a(y, —w’—w'y)) +a) ( 1 )
Y

. 1
= a(l—exp(a(y, —w—w'yy))) ( ) ) : (25)
Yi
The solution to this is equivalent to the IV estimator obtained from running the

nonlinear regression
1= exp{a(y; —w — w'§)} +w

using (1,y;) as instruments.
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6.2.2. Lin-lin Loss

Estimation of the combination weights for the lin-lin loss function can be trans-
formed into a quantile regression problem through use of homogenous classes of

loss functions. Recall that the lin-lin loss can be written

Lie:) = aledle,50 + bler|le,<o
= (a+b){(1—0)|esle,>0 + Oler|le,<0}s

where 6 = b(a + b)~!. Since (a +b) > 0, the loss function
L*(er) = {(1 = 0)[es|le>0 + Oler|le <o} (26)

is in the same homogenous class as L(e) and the vector (w®, w’)’ minimizing either
is the same. We can therefore focus on L*(e;). This is precisely the loss function
associated with the quantile regression problem (see, e.g., Koenker and Basset
(1978), Buchinsky (1992)).

Assuming independent and identically distributed forecast errors, the function

to be minimized becomes

1 A c N
Qt(wc,w)zf{(l—Q) Z ’yt—wc—w/}’t‘jLe Z |y, —w _WIYt’}'

{tyt>we+w'yge} {tiyt<w+w'ys}

Buchinsky (1992) shows that this can be rewritten to fit in a method of moments
framework. Define the sign function s(\) = 1,59 — la<o. Then the objective

function takes the form

1 L1 1
Qt(‘—") = ? ; {5 -0+ 53(% —w’ — W’S’t)} (yt —w’ — W’f’t)- (27)

Differentiating with respect to (w®, w), the first order conditions are

IST 1 gy Loyl Wl
Q= ITZTt_l iz lzs(yt Cj L:JAYt)}A —0, (28)
fztzl{i—e"‘is(?ﬁ—w —wyt)}}’t

which again fits into the GMM Framework. Buchinsky (1992) shows that the

parameters can efficiently be solved for using the simplex method.

23



6.2.3. Asymmetric Squared Loss

The asymmetric squared loss function can be written as

L(e;) = aeflet>0+beflet§0

= (a+b){(1=0)¢/1en0+ 06} 1< }
Since (a + b) > 0, the loss function,
L*(er) = [1 = 0 — Le,<olef (29)

is in the same homogenous class as L(e;) and the solution (w° w’)’ minimizing the
two is the same. L*(e;) is the loss function associated with an observation for the
“expectile” regression problem examined in Newey and Powell (1987).

We choose the constant and forecast combination weights (w®, w’)’ to minimize

1 E .
Qt(wc,W) = T Z \1 —0— 1yt§w6+w'yt\(yt —w = W/Yt)2- (30)

t=1

This function is continuously differentiable and iterated weighted least squares can
therefore be used to estimate the forecast combination weights. The estimator at
iteration n becomes

-1

T T
W, = <Z kt,nli’ti’{:) <Z kt,nlg’tyt) (31)
t=1 t=1
where y, = (1 §;)" and the scalar weights k,,,_; are constructed according to

ki =]1—60—1 (32)

yt<‘:);,1§’/t ‘ :

6.3. OLS Weights with Bias Correction

An alternative strategy to estimating all of the parameters of the model along the
lines of the preceding subsections is to estimate the forecast combination weights
by OLS and only use the optimal loss function for estimating the constant term.
The justification for this is that under elliptical symmetry, this would yield a con-
sistent estimator of the optimal population weights and also greatly simplifies the
estimation (and testing) problem. In practice, most of the methods above require
iterative techniques which raise problems of potential lack of convergence of the

parameter estimates.
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This strategy would also make sense if the data does not diverge too far from
elliptical symmetry or if the dimension of the forecast combination problem is large
as in all cases the search procedure gets reduced to a one dimensional search. We
will analyze this strategy along with the ones discussed above in a Monte Carlo

simulation experiment.

7. Monte Carlo Results

This section reports the performance of the various estimation procedures applied
to the linex, lin-lin and asymmetric quadratic loss functions under the two mix-
ture models. In each case we combine two forecasts and assume that a sample of
100 observations is available to estimate the combination weights. All results are
based on 5,000 Monte Carlo simulations. We study both the biases in the various

estimators as well as the average losses associated with using these estimators.

7.1. Biases in the Estimators

To assess the performance of the estimators, Tables 1 through 3 show both popula-
tion values and the bias in the estimates arising from various estimation methods.
The first column shows the value assumed for the asymmetry parameter in the loss
function (a in the case of linex loss, # for lin-lin and asymmetric quadratic loss).
The next three columns show the population values of the optimal weights. Then
follows the bias in the estimates from the preferred estimation method and the bias
arising from ordinary least squares estimation. The final column reports the bias
in the constant term when the forecast combination weights are estimated by OLS
followed by GMM estimation of the constant.

For the linex loss function Table 1 shows that the biases in the M estimator are
very small for all values of a. Under the skewed mixture model the OLS estimates
of combination weights are sometimes heavily biased and the bias increases in the
degree of asymmetry in the loss function. Using the OLS forecast combination
weights and estimating the constant term by nonlinear IV also leads to estimates
of the constant that are quite biased. Under the kurtotic mixture model, consistent
with Proposition 2 the biases in the OLS estimates of the forecast combination
weights are small. However, OLS estimation leads to a large bias in the constant

term.
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For the lin-lin loss function, the preferred estimation method is quantile regres-
sion. Table 2 shows that this estimation method only introduces very minor biases
in the estimated forecast combination weights and the constant term, irrespective
of whether the data generating process is the skewed or kurtotic mixture model
and even under very large degrees of asymmetry in the loss function. The OLS
estimator, optimal when 6 = 0.5, is quite heavily biased even for small departures
from symmetric loss. The biases in the constant are mitigated to a large extent
when estimating the forecast combination weights by OLS followed by quantile es-

t.16 Nevertheless, the estimates have a bias of around 10%

timation of the constan
for the most asymmetric loss functions and skewed data.

Under asymmetric quadratic loss (Table 3), the iterative WLS estimates are
largely unbiased for both the skewed and kurtotic data generating processes. Under
the skewed mixture model the OLS estimates of the weights are not consistent and
this is reflected in the biases in the Monte Carlo experiment. Estimating the
forecast combination weights by OLS followed by WLS estimation of the constant
term reduces but does not eliminate the bias in the constant. In the elliptically
symmetric mixture model, the OLS estimates are again consistent for the forecast
combination weights, but not for the constant term. When the constant term is

estimated by WLS, once again we obtain estimates with small biases.

7.2. FEaxpected Losses

Tables 4 through 6 examine the expected loss associated with these estimation
results. We report the ratio of the expected loss under the estimated weights

relative to the loss under the optimal population weights:

ElL(e|w)]
E[L(e|wor)]

Results are shown for each of the estimation methods considered in Tables 1-3.
As in these tables the first column reports the value of the asymmetry parameter of
the loss function. The second column gives the expected loss using the population
weights. The third column evaluates the expected loss when the forecast combina-
tion weights and the constant is based on the preferred estimation method, OLS

estimation and OLS estimation of the weights followed by estimation of the con-

16This reduces to a simple LAD estimation problem.
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stant term, respectively.!” We also show the expected loss under an equal-weighted
combination. Once again we report separate results for the skewed and kurtotic
mixture models.

Results for the linex loss function are contained in Table 4. Under the skewed
mixture the M estimator, which provided good estimates of the weight parameters,
leads to an increase in the expected loss betwen 5 and 8 percent over the loss under
the population parameters. Losses using the OLS estimates are much larger and
grow when the asymmetry in the loss function rises. If the forecast combination
weights are estimated by OLS while the constant term is estimated by nonlinear IV,
the expected loss is significantly lower than that under the ‘full” OLS procedure, but
it still exceeds the expected loss from M estimation. These results suggest that
using suboptimal OLS estimates of the forecast combination weights (which are
simple to compute) and then estimating the constant using the optimal procedure
is a relatively efficient way to go.

In the elliptically symmetric model the OLS estimator is consistent for the
weights on the forecasts but not for the constant. Compared with the results for
the skewed mixture, the increase in expected loss due to using OLS estimates is
much smaller for the kurtotic mixture model even for values of 6 reflecting large
asymmetries in the loss function. Using the OLS combination weights and the
optimal estimator for the constant term leads to only slightly higher average loss
than under M estimation.

When the asymmetry in the loss function is small (Ja] ~ 0), using equal-
weighted forecast combination weights lead to losses that are quite similar to those
resulting from OLS estimation. However, as the asymmetry in the loss function
rises, the forecast performance of the equal-weighted combination clearly deterio-
rates relative to the other estimation methods.

Under linlin and linex loss (Tables 5 and 6), we obtain results that are qual-
itatively very similar to those from the linex case. Under both the skewed and
kurtotic mixture models, the quantile regression and WLS estimators produce ex-
pected losses that are 3-16% higher than the expected loss under population pa-
rameter values. In the case of the skewed mixture model, use of the suboptimal
OLS weights can entail an increase in average loss of more than 100 percent rel-

ative to the loss under population parameter values. This additional loss grows

I"The expectation is taken with respect to the true distribution of the forecast errors.
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as the degree of asymmetry in the loss function increases. The loss from using
OLS estimates remains large in the elliptically symmetric model due to the use of
an inconsistent estimator of the constant term. However, use of the OLS weights
with the LAD or weighted least squares estimate of the constant entails a fairly
small loss over using the optimal estimator and sometimes even has a better small
sample performance.'®

For completeness, and to demonstrate that these results also carry over to data
that simultaneously displays skew and kurtosis, Table 7 shows results for a mixture
model that sets p; = ps = 0.5 has the same covariance matrices as in the kurtosis
mixture model, zero means in state 1 and means of -0.25 in state 2. This model
matches more closely the moments of the empirical data in the next section. To
preserve space we only report results for the asymmetric quadratic loss function
but the results are very similar for linex and lin-lin loss. Under asymmetric loss
OLS continues to generate substantial biases in the parameter estimates and this
leads to a large increase in the expected loss. In contrast the weighted least squares
estimator or the bias-adjusted least squares method produce only small biases and
relatively modest values of the expected loss.

The following general conclusions emerge from these results. For linex loss,
the M estimator works well even in small samples. For linlin loss the quantile
regression estimator is suggested. For the asymmetric quadratic loss function the
weighted least squares approach of Newey and Powell (1987) works well. For all
three loss functions these estimation methods significantly outperform OLS estima-
tion. The two-stage bias correction method (OLS followed by optimal estimation
of the constant) works very well for the kurtotic mixture but typically leads to
higher losses than the optimal estimation methods under the skewed mixture.

Finally the average losses under different estimation methods can be compared
to those reported for the equal-weighted forecast combination. While the simple

OLS weights lead to higher average losses than even weights, the optimal estimators

8Part of the reason for this is that the ‘optimal bias’ in the constant term adjusts for the
non-optimal estimation of the combination weights. Note that under the ‘constant adjustment’
strategy the estimated forecast combination weights, and hence the relevance of the individual
forecasts in the construction of the combined forecast, are the same. This means that if one uses
this method (which is generally simpler in practice and also less dependent on the exact form
of the loss function and parameter chosen) then the usefullness of the individual forecasts rests

entirely on their usefulness in the mean square error loss forecast combination.
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that account for the shape of the loss function work much better than even weights.
There is only one exception to this, namely when the loss function is symmetric
(0 = 0.5). The ‘folk theorem’ on the superiority of using even weights seems to

mainly hold in the context of symmetric loss.

8. Empirical Application to Inflation Forecasting

To demonstrate the theoretical ideas developed in the previous sections, we briefly
consider an application that combines predictions of changes in the consumer price
index (CPI) from a simple autoregressive time-series model with survey predictions.
The source of the latter is the Livingston Survey data base maintained by the
Federal Reserve Bank of Philadelphia.'® This provides a time series of predictions
of the consumer price index (C'PI) six months ahead in time over the period 1946:1
to 2001:1. From this we define the inflation rate as the log-difference, ACPI.
The forecasts are likely to be based on diverse information sets that comprise a
much larger set of public and private information than is typically considered in
econometric models.

We combine the aggregate survey predictions?® with predictions from a sim-
ple autoregressive forecasting model. Schwarz’s information criterion supported a
simple first-order autoregressive (AR(1)) model which we use to predict inflation
one-step, or six-months, ahead. One-step-ahead forecasts from the autoregressive
model are computed on the basis of the recursively updated parameters estimated
from the autoregressive model.?!

Figure 4 plots the time series of forecast errors from the autoregressive model
and the survey data. Clearly the two sets of forecast errors share a common compo-
nent even though they are based on very different information sets. The estimated
correlation between the two series is 0.63 over the full sample. While high, this
estimate only reflects the linear correlation between the two sets of forecast errors.
A more complete picture of the difference between the two sets of forecast errors is

provided in Figure 5 which (in the upper window) plots the density of the forecast

9This survey data has previously been used in numerous studies. For a comprehensive list, see

the web site maintained by the Federal Reserve Bank of Philadelphia.
20These are computed as the arithmetic mean of the individual forecasters’ predictions.
21Two observations are used to define the first-difference of the logarithm of the CPI and its

lagged value and we use the first 10 observations as an initial sample for parameter estimation.
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errors from the AR(1) model and (in the lower window) from the Livingston survey
data against the normal distribution curve with the same mean and spread. Rela-
tive to the normal curve, the two forecast error distributions have more probability
mass in the center and in the tails, thus indicating leptokurtosis. However, the
shapes of the forecast error densities from the two models are very different. The
density generated by the autoregressive model has more probability mass in the
right shoulder and tail than the density associated with the Livingston data which
has a thicker left shoulder, particularly for forecast errors between -2.5 and -3.5
percent.

Table 8 presents another indication that the two sets of forecasts contain very
different information. Using asymmetric quadratic loss, this table examines the
expected losses for various values of 6. For small values of 6 the Livingston forecasts
strongly outperform the AR(1) forecasts. As 6 gets larger, this difference declines.
When 6 is 0.7 or larger the AR(1) forecasts outperform the Livingston forecasts in
terms of the average loss over the sample.

To explore the importance the loss function plays in determining the optimal
combination weights, we varied the asymmetry parameter, 6, between 0.1 and
0.9. This moves us from strong aversion against large positive forecast errors via
a symmetric loss function towards strong aversion against large negative forecast
errors. The optimal combination weights as a function of § are shown in the upper
window of Figure 6. Under standard, symmetric loss, the optimal weight on the
AR(1) forecast is close to zero. However as the loss function becomes increasingly
asymmetric (in either direction), it becomes optimal to put a non-zero weight on
the time-series forecast. For small values of 6 a positive weight is put on both
the AR(1) forecasts and the density forecasts. For large values of 0, the optimal
weight on the AR(1) forecasts becomes negative while the weight on the Livingston
data increases. Strong aversion against positive forecast errors thus means assigning
positive combination weights to both the autoregressive and Livingston predictions.
Under strong aversion against negative forecast errors the combination weight on
the autoregressive model is strongly negative while the weight on the Livingston
prediction is strongly positive. The lower window of Figure 6 repeats this exercise
for the asymmetric quadratic loss function. The actual estimates for the weights
differ somewhat but the story is basically the same as under lin-lin loss.

To better understand these results, we plot in Figure 7 the forecast error densi-
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ties corresponding to the optimal combined forecasts for three values of 6, namely
0 = 0.1 (strong aversion to large positive forecast errors), # = 0.5 (symmetric loss)
and 6 = 0.9 (strong aversion to large negative forecast errors). When 6 = 0.1, the
forecast error density is centered to the left of zero, corresponding to a negative
bias, a result of aversion against large positive forecast errors. In addition the
left tail of the forecast error distribution is quite fat while, conversely, the right
shoulder and tails of this distribution are thin. Under symmetric loss, the forecast
error density is also more symmetric and centered closer to zero. When 6 = 0.9,
the forecast error distribution is centered to the right of zero and now has a very
thin left shoulder and tail but a thick right shoulder and tail. These results clearly
demonstrate the effect of asymmetric loss, not just on the forecast error bias, but
on the shape of the entire forecast error distribution. Even simple linear combina-
tions of two forecasts can thus give rise to a complete change in the shape of the
forecast error density as the loss asymmetry is varied.

Since the forecast combination weights are very sensitive to the parameters of
the loss function, we expect that the distribution of the forecast errors (and indeed
the individual forecasts as well as the change in inflation) are far from symmetric.
Figure 5 already suggested this finding. In Table 9 we provide formal results based
on Jarque-Bera tests of normality for each of the underlying variables as well as the
forecast errors for three values of . As expected we strongly reject normality for
the individual forecasts and the actual time series while normality is only rejected
for the forecast error distribution when # = 0.1. Notice also the shift from left to
right skew as # increases from 0.1 to 0.9.

Finally, an implication of the Monte Carlo results in Section 7 is that simply
getting the constant correct (imposing the correct bias) is a major part of the battle
in terms of obtaining linearly combined forecasts that perform relatively well. In
the numerical work we confirmed that simply using the OLS weights on the actual
forecasts with the ‘optimal’ method for estimating the constant entailed only minor
additional losses. Table 10 examines this possibility with the inflation rate data
using out-of-sample forecast errors under asymmetric quadratic loss. Except when
0 = 0.9, the average loss from using OLS forecast combination weights and WLS
to estimate the constant is very similar to the loss based on the iterative WLS
estimates. When 6 = 0.9 the weighted least squares estimation method does lead

to better results.
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8.1. Disaggregated Survey Predictions

The Livingston survey data lists predictions according to the forecasters’ affiliation
in broad categories. The most frequent affiliations are nonfinancial business (‘indus-
try’), academic institution (‘academic’) and commercial and investment banking
(‘banking’). Figure 8 shows the forecast error densities for each of these groups.
Although the three forecasts are strongly correlated, there are also some significant
differences. Notably, the forecast error density associated with the ‘banking’ pro-
fessionals has a wider, flatter peak than those produced by academics and industry
professionals.

Forecasters from the same area of business are perhaps more likely to use the
same information sets and/or models, so we next consider how the weights on
these disaggregated forecasts depend on the loss function. We compute averages
of the optimal combination weights on the AR(1) predictions and the three survey
predictions as a function of . All predictions are out-of-sample and the superscripts
AR, A, B, I refer to the autoregressive, academic, banking and industry predictions.
Table 11 shows the outcome. When the loss function assigns a very large weight to
large negative forecast errors (6 = 0.1), the academic forecasts get a zero weight.
Otherwise this weight is large and positive. The weight on the ‘banking’ inflation
forecasts is always negative and tends to be small. Most weight is put on the
forecasts produced by professionals in nonfinancial business. These consistently
receive a weight above 0.5 irrespective of the shape of the loss function. The
weight on the autoregressive forecast does not appear to change much by using
disaggregated survey data. It continues to be large and positive when 6§ = 0.1 and
large and negative when 6 = 0.9.

We finally investigated whether the often quoted finding that simple averages
of forecasts outperform estimated optimal weights depends on the shape of the
loss function. The right columns in Tables 10 and 11 present the average out-of-
sample loss associated with the estimated optimal weights and the equal weights,
respectively. The results confirm the frequent finding that equal-weights outper-
form estimated optimal weights under MSE loss. However, they also show very
clearly that this result is overturned under asymmetric loss where use of estimated

optimal weights leads to far smaller average losses out-of-sample.
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9. Conclusion

Several conclusions emerge from our analysis. If the forecast error distribution
is elliptically symmetric then the forecast combination weights are identical for a
wide range of loss functions, including the popular mean square error loss function.
This implies that if a particular forecast is informative under MSE loss, then this
forecast will be informative for a very wide range of loss functions. If there is
little departure from elliptical symmetry, then the optimal forecast combination
weights are near the standard weights derived under MSE loss. This has practical
implications since such weights are often much easier to compute.

Under departures from elliptically symmetric distributions, the optimal com-
bination weights under asymmetric loss can be very different than under mean
squared error loss. For example, if negative forecast errors are associated with
much lower losses than positive ones, then it will be optimal to select combination
weights that give rise to a much larger upward bias than under MSE loss.

Irrespective of the distribution of the forecast errors, the constant term in the
forecast combination is affected by the loss function. Our simulations suggest that
even with heavily skewed forecast errors, the loss from using MSE combination
weights (which are suboptimal) and optimally adjusting the constant results in
fairly small increases in expected loss. Since this strategy is simple and has good
small sample properties, for many applications this approach will perhaps work
well.

Our application showed that the optimal weights in a combination of inflation
survey forecasts and forecasts from a simple autoregressive model strongly depend
on the degree of asymmetry in the loss function. In the absence of loss asymmetry,
the autoregressive forecast does not add much information. However, under asym-
metric loss (in either direction), both sets of forecasts appear to contain information
in the sense that they have non-zero weights in the combined forecast.

Our inflation forecasting experiment confirmed the frequent finding that equal-
weights outperform estimated optimal weights under MSE loss. However, it also
showed very clearly that this result can be overturned under asymmetric loss where
use of estimated optimal weights led to much smaller average losses out-of-sample.

There are many directions for generalizing our results. To keep things simple,
we have not dealt with serial correlation in the forecast errors. However, as shown
by Diebold (1988) under MSE loss, this can be done by allowing the forecast er-
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rors from the combination model to follow a finite-order ARMA process. Another
interesting generalization is to allow the optimal combination weights to vary over
time, an idea that is further considered in Elliott and Timmermann (2002) in the
context of regime switching models. Finally, it would also be interesting to ex-
plore the ideas in this paper in the context of multi-step-ahead forecasting. Some
GARCH models imply that the one-step-ahead forecast errors are elliptically sym-
metric, while multi-step-ahead forecast errors are not. This raises the possibility

of letting the estimation method depend on the forecast horizon.
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Table 1: Small Sample Results for Linex Loss Function

Population Weights M Estimates OLS Estimates Optimal
Constant
a Wy W» we W W, we Wi Wy we we

Skewed Mixture

-125 073 055 -041 0.00 -001 003 -0a11 -019 041 0.07
-100 071 052 -032 0.00 -001 002 -0.09 -0.16 0.32 0.06
-0.75 069 049 -024 0.00 -001 001 -0.07r -012 0.24 0.04
0.75 055 0.25 024 000 0.00 -0.01 0.07 012 -0.24 -0.04
1.00 053 021 032 000 0.01 -002 009 015 -032 -0.06
1.25 051 0.18 041 000 0.01 -003 011 018 -041 -0.07

Kurtotic Mixture

-1.25 067 027 -0.09 -0.01 -0.01 0.04 -001 0.00 017 0.03

-1.00 067 027 -005 -0.01 -0.01 0.03 -0.01 0.00 013 0.02

-0.75 067 027 -0.02 0.00 -001 0.02 -001 0.00 0.10 0.02

0.75 0.67 027 015 -001 000 000 -001 0.00 -0.07 0.00

1.00 0.67 027 018 -001 000 -0.01 -0.01 0.00 -0.11 0.00

1.25 0.67 027 022 -001 000 -002 -001 0.00 -0.15 -0.01
Note: Thefirst column reports the value of the parameter, a, that controls the asymmetry of the loss function.
The second through fourth columns give the population val ues of the optimal forecast combination weights
and the constant. All other entries are bias estimates based on a sample of 100 observations and 5000
Monte Carlo replications.




Table 2: Small Sample Resultsfor Lin-lin Loss Function.

. . . . . Optimal
Population Weights Quantile Estimates OLS Estimates Constant
q W, Wy w° Wi W, w° Wi W, w° w°
Skewed Mixture
0.1 039 -0.02 095 000 0.03 0.00 023 039 -09 -0.12
0.2 0.45 008 059 000 001 000 017 028 -0.59 -0.10
0.3 0.51 019 036 000 001 000 011 0.18 -0.36 -0.10
0.4 0.57 028 017 000 001 000 005 008 -0.17 -0.05
0.5 0.62 037 000 000 000 000 000 0.00 0.00 0.00
0.6 0.67 046 -0.17 000 000 000 -0.05 -0.09 0.17 0.05
0.7 0.73 055 -036 000 000 000 -0.11 -0.18 0.36 0.10
0.8 0.79 065 -059 000 -001 000 -0.17 -0.29 0.59 0.13
0.9 0.85 076 -095 000 -004 000 -023 -0.39 0.95 0.11
Kurtotic Mixture

0.1 0.67 0.27 047 -001 000 002 -001 000 -0.39 0.01
0.2 0.67 027 031 -001 000 001 -001 000 -0.23 0.02
0.3 0.67 027 021 -001 000 001 -001 000 -0.13 0.01
0.4 0.67 027 014 -001 000 001 -001 0.00 -0.06 0.01
0.5 0.67 027 007 000 000 001 -001 0.00 0.01 0.01
0.6 0.67 027 000 000 -001 001 -001 0.00 0.08 0.01
0.7 0.67 0.27 -008 000 -001 001 -001 000 0.16 0.01
0.8 0.67 027 -0.18 000 000 001 -001 000 0.25 0.01
0.9 0.67 027 -034 000 -001 000 -001 000 042 0.01

Note: Thefirst column reports the value of the parameter, g, that controls the asymmetry of the loss function.
The second through fourth columns give the population values of the optimal forecast combination weights

and the constant. All other entries are bias estimates based on a sample of 100 observations and

5000 Monte Carlo replications.



Table 3: Small Sample Results for Asymmetric Quadratic Loss.

Population Weights WLS Estimates OLS Estimates Optimal
Constant
g Wy owe W' ow o w, wt ow W, wE Wy

Skewed Mixture

0.1 0.50 0.17v 067 000 0.0 -002 012 020 -0.67 -0.05
0.2 0.54 023 042 000 0.00 -001 009 014 -042 -0.04
0.3 0.57 028 026 000 0.00 -001 006 0.09 -0.25 -0.03
0.4 0.59 032 012 000 0.00 000 003 0.04 -012 -0.02
0.5 0.62 037 000 000 0.00 000 000 0.0 o0.00 0.00
0.6 0.65 041 -012 000 0.00 000 -0.02 -0.05 0.12 0.01
0.7 0.67 046 -025 000 -0.01 000 -0.05 -0.09 0.25 0.03
0.8 0.70 051 -042 000 -0.01 001 -0.08 -0.14 0.42 0.04
0.9 0.74 056 -067 000 -0.01 002 -012 -0.20 0.67 0.05

Kurtotic Mixture

0.1 0.67 027 044 -001 000 -001 -001 0.00 -0.36 0.00

0.2 0.67 027 028 -001 000 000 -001 -0.01 -0.20 0.01

0.3 0.67 027 019 -001 000 001 -001 0.00 -0.12 0.01

0.4 0.67 027 013 -001 000 001 -001 0.00 -0.05 0.01

0.5 0.67 0.27 007 -001 000 001 -001 0.00 0.01 0.01

0.6 0.67 027 001 -001 -001 001 -001 0.00 0.07 0.01

0.7 0.67 0.27 -0.06 -001 -001 002 -001 000 0.14 0.01

0.8 0.67 027 -015 -0.01 -001 0.02 -001 000 0.23 0.02

0.9 0.67 0.27 -030 -0.01 -001 0.03 -001 000 0.38 0.02
Note: Thefirst column reports the value of the parameter, g, that controls the asymmetry of the loss function.
The second through fourth columns give the popul ation values of the optimal forecast combination weights
and the constant. All other entries are bias estimates based on a sample of 100 observations and 5000
Monte Carlo replications.




Table 4: Average Lossfor Linex Loss Function.

Skewed Mixture Model Kurtotic Mixture Model
a Loss M-est OLS OLSc Ave Loss M-est OLS OLSc Ave

-1.25 044 108 136 108 1.30 020 117 121 111 112

-1.00 027 106 123 107 1.18 012 113 116 110 1.08

-0.75 015 105 114 105 1.10 006 110 112 109 1.05

0.75 015 105 114 106 1.10 006 111 112 109 1.05

1.00 027 106 123 107 1.19 012 113 116 110 1.08

1.25 044 107 136 108 131 020 117 121 111 112
Note: Thefirst column reports the value of the parameter, a, controlling asymmetry. The second column gives
the population expected loss. Other entries give average loss over the 5000 replications based on estimates of
the forecast combination weights and the constant from 100 observations. These losses are scaled by the
population loss. OLSc refers to estimation of the combination weights by OL S followed by optimal
estimation of the constant. Ave refersto the equal -weighted forecast combination.




Table 5: Average Lossfor Linlin Loss Function

Skewed Mixture Model Kurtotic Mixture Model
q Loss Quantile OLS OLSc Ave Loss Quantile OLS OLSc Ave

0.1 0.13 1.06 2.08 1.08 2.04 0.08 1.08 1.85 1.05 1.79

0.2 0.19 1.03 1.39 1.06 1.36 0.11 1.05 1.35 1.04 1.30

0.3 0.23 1.03 1.15 1.04 1.13 0.13 1.04 1.15 1.04 111

0.4 0.26 1.03 1.05 1.02 1.03 0.14 1.03 1.07 1.04 1.03

0.5 0.26 1.03 1.02 1.02 1.00 0.15 1.03 1.04 1.04 1.00

0.6 0.26 1.03 1.05 1.03 1.03 0.14 1.03 1.07 1.04 1.03

0.7 0.23 1.03 1.15 1.04 1.13 0.13 1.04 1.15 1.04 111

0.8 0.19 1.03 1.38 1.06 1.35 0.11 1.05 1.35 1.04 1.30

0.9 0.13 1.06 2.06 1.08 2.03 0.08 1.08 1.85 1.05 1.79
Note: Thefirst column reports the value of the parameter, g, controlling asymmetry. The second column gives
the population expected loss. Other entries give average loss over the 5000 replications based on estimates of
the forecast combination weights and the constant from 100 observations. Theselosses are scaled by the

population loss. OLSc refers to estimation of the combination weights by OL S followed by optimal
estimation of the constant. Ave refersto the equal -weighted forecast combination.




Table 6: Average Loss for Asymmetric Quadratic Loss Function

Skewed Mixture Model Kurtotic Mixture Model
q Loss WLS OLS OLSc Ave Loss WLS OLS OLSc Ave

0.1 0.14 1.06 1.89 1.08 1.82 0.07 1.16 1.65 1.09 1.55

0.2 0.20 1.05 1.34 1.06 1.30 0.09 111 1.29 1.08 1.22

0.3 0.24 1.04 1.15 1.05 111 0.10 1.09 1.16 1.08 1.09

0.4 0.26 1.04 1.06 1.04 1.03 0.10 1.08 1.09 1.08 1.03

0.5 0.26 1.04 1.04 1.04 1.00 0.10 1.08 1.08 1.08 1.01

0.6 0.26 1.04 1.06 1.04 1.03 0.10 1.08 1.09 1.08 1.03

0.7 0.24 1.04 1.15 1.05 111 0.10 1.09 1.16 1.08 1.09

0.8 0.20 1.05 1.34 1.06 1.29 0.09 111 1.29 1.08 1.22

0.9 0.15 1.07 1.88 1.07 1.82 0.07 1.16 1.65 1.09 1.55
Note: Thefirst column reports the value of the parameter, g, controlling asymmetry. The second column gives
the population expected loss. Other entries give average loss over the 5000 replications based on estimates of
the forecast combination weights and the constant from 100 observations. Theselosses are scaled by the

population loss. OLc refers to estimation of the combination weights by OL S followed by optimal
estimation of the constant. Ave refersto the equal -weighted forecast combination.




Table 7: Small Sample Results for Asymmetric Quadratic Loss. Mixture with skew and kurtosis matching empirical data.

Population Weights WLS Estimates OLS Estimates Optimal Average loss
Constant
q Wy W we Wi W, we Wy Wy we W Loss WLS OLS OLSc Ave

0.1 0.71 052 060 000 0.00 -0.02 -0.09 -0.16 -0.60 -0.04 0.13 1.08 1.79 1.07 1.71
0.2 0.69 048 036 000 -0.01 -001 -0.07 -0.12 -0.36 -0.03 0.18 1.06 131 1.06 1.26
0.3 0.67 044 021 000 -0.01 -001 -0.05 -0.08 -0.21 -0.02 020 1.05 114 1.05 1.09
0.4 0.64 040 010 0.00 -0.01 000 -0.02 -0.04 -0.10 -0.01 0.21 1.05 1.07 1.05 1.02
0.5 0.62 037 000 000 0.00 000 000 0.00 o0.00 0.00 0.22 1.05 1.05 1.05 1.00
0.6 0.60 033 -0.10 0.00 0.00 000 002 0.04 010 0.01 0.21 1.05 1.07 1.05 1.02
0.7 0.57 029 -021 000 0.00 000 005 0.08 021 0.02 020 1.05 114 1.05 1.10
0.8 0.55 025 -036 000 0.00 001 007 012 0.36 0.02 0.17 1.06 131 1.06 1.26
0.9 0.53 021 -060 0.00 -0.01 002 009 015 059 0.03 0.13 1.08 1.78 1.07 1.72

Note: Thefirst column reports the value of the parameter, g, that controls the asymmetry of the loss function. The second through fourth columns
give the population values of the optimal forecast combination weights and the constant. Columnsfive to eleven are bias estimates based on a sample
of 100 observations and 5000 Monte Carlo replications. Column twelve gives the popul ation expected loss. Subsequent entries give average loss over
the 5000 replications based on estimates of the forecast combination weights and the constant from 100 observations. Theseloses are scaled by the
population loss.



Table 8. Average Lossfrom AR(1) and Livingston Forecasts

q AR(1) Livingston Difference
0.1 0.079 0.038 0.041
0.2 0.074 0.040 0.034
0.3 0.070 0.042 0.028
0.4 0.065 0.044 0.021
0.5 0.060 0.046 0.014
0.6 0.055 0.049 0.006
0.7 0.050 0.051 -0.001
0.8 0.045 0.053 -0.008
0.9 0.040 0.055 -0.015

Note: Thistable reports the average
out-of-sample loss under the asymmetric

quadratic loss function when either the AR(1)
or the Livingston forecasts are used separately.




Table9: Jarque-Bera Tests for Normality of Forecast Errors

Series JB test Skew Kurtosis
Actual 25.621 1.119 4.238
AR(1) 36.217 1.237 4,769
Livingston 9.348 0.727 3.524
g=0.1 10.107 -1.028 4.080
g=0.5 3.164 -0.567 3.635
g=0.9 1.064 0.305 3.441

Note: Reported in the first column are Jarque-Bera
tests for normality. The 95% critical valueis5.99
and the test rejects for larger values. The second and
third columns are measures of skew (zero isno skew)
and kurtosis (avalue of threeis no excess kurtosis),
respectively. Thefirst three rows are for the realized
series (actual) and forecasts, respectively.
Vauesinrows marked q refer to forecast errors
estimated using weights under the asymmetric
quadratic loss function.



Table 10: Average Losses from Combined and Equal Weighted Forecast

WLS Estimates Losses
Equal
o} W Wy constant Loss  constant OLSc weights
0.1 0.594 0.595 0.006 0.028 0.013 0.028 0.034
0.5 -0.001 0.824 0.004 0.053 0.004 0.053 0.046
0.9 -0.428 0.926 0.002 0.027 -0.003 0.037 0.058

Note: WLS estimates are estimates of the parameters using the WL S method described for the asymmetric
quadratic loss function. Theloss reported is average out of sample one step ahead loss. 1nthe OL Sc case
OL Sweights are used for the forecast combination weights but the constant is estimated using WLS.
Thefinal column gives average loss for even weights on the forecasts and a zero constant.



Table 11: Average Losses from Combined and Equal -Weighted Disaggregate Forecasts

WLS Estimates Losses
R | Equal
q w wh w wP w WLS weights
0.1 0.53 0.56 0.00 -0.27 0.87 0.027 0.033
0.5 0.61 -0.03 0.30 -0.09 0.61 0.052 0.045
0.9 0.23 -0.51 0.48 -0.10 0.60 0.026 0.057

Note: Thistableisbased on combination of the autoregressive (AR), academic (A), bank (B) and
industry (1) forecasts. Loss is assumed to be asymmetric quadratic with asymmetry parameter g.
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Figure 3: Optimal combination weights and constant
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Figure 6: Forecast combination weights under different loss functions
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Figure 7: Forecast error densities from combined model
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Figure 8: Disaggregated forecast error densities
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