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Abstract 

Breaking reciprocity lies in the heart of modern electromagnetic devices such as circulators , 

isolators, filters, and antennas. Generally, breaking reciprocity can be realized by biasing the 

device with a physical quantity that is odd symmetric under time-reversal. Conventionally, such 

response has been achieved by magnetically biasing ferromagnetic compounds and garnets. In the 

past decade, magnetless approaches based on nonlinear responses, spatiotemporal modulation, 

drifting electrons, and opto-mechanical effects have been explored across the electromagnetic 

spectrum. Recently, circular dichroism has been demonstrated to be an efficient tool to break 

reciprocity in 2D materials due to the optically-driven non-degenerate valleys. 

In this thesis, I propose a novel method to break reciprocity in 2D materials based on the use 

of circularly polarized light and strain engineering. To this purpose, I review and calculate the 

optical conductivity of graphene under uniform strain and discussed the impact of non-uniform 

strain on graphene. The results show a close resemblance between pseudomagnetic field and the 

effect of non-uniform strain. The utilization of non-uniform strain gives rise to energy level 

quantization in graphene and thus provides easily addressable optical transition between discrete 

energy levels using optical pump.  I review the formalism and algorithm of a rigorous theoretical 

framework able to deal with Bloch equations regarding the population of different energy levels. 

The incorporation of some scattering mechanisms also closely reproduces what happens to the 

carrier population in picosecond time scale after the presence of an optical pump. The results show 

the population imbalance in the two non-degenerate valleys in graphene which indicates the broken 

reciprocity. This approach of breaking reciprocity unleashes large non-reciprocal response in 

graphene using magnetless implementations. 
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In a related context, the field of plasmonics has opened new possibilities to control and 

manipulate light beyond the diffraction limit and has enabled countless applications in areas such 

as sensing, spectroscopy, and healthcare. The emerge of ultrathin metasurfaces and 2D materials 

have provided new knobs to excite, process, and route SPPs, while also enabling unexpected 

possibilities to manipulate and enhance nonreciprocal responses. Unfortunately, the design of 

quasi-optimal nonreciprocal metasurfaces is usually quite challenging and require significant 

computational resources. 

This thesis unveils the fundamental limits of linear and nonreciprocal plasmonic 

metasurfaces in terms of isolation and loss. The proposed bounds are related to surface waves and 

only depend on the nonreciprocal material employed within the metasurface, thus being 

independent of geometrical considerations and the presence of other materials. We apply these 

fundamental limits to explore two different platforms, namely drift-biased and magnetically-

biased graphene metasurfaces. For each platform, we first analytically derive the upper bounds in 

terms of graphene conductivity. Then, we explore devices proposed in the literature and 

benchmark their response against their upper bounds. Results highlight that drift-biased hyperbolic 

metasurfaces exhibit outstanding performance in the mid-infrared region, whereas magnetically-

biased devices are better suited for the low terahertz band. More broadly, our bounds allow to 

quickly assess the performance of nonreciprocal plasmonic metasurfaces with respect to their 

fundamental limit, thus streamlining the device design process and preventing that significant 

efforts are dedicated to marginal performance improvements. The proposed bounds pave the way 

toward the development of quasi-optimal nonreciprocal metasurfaces, with important applications 

in sensing, imaging, communications, and nonlinear optics, among many others. 
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1. Introduction 

1.1 Breaking electromagnetic reciprocity 

The propagation of electromagnetic (EM) waves, from radio frequencies to the visible, is 

governed by the Lorentz reciprocity theorem based on the invariance of Maxwell’s equations under 

time-reversal. It dictates that if EM waves can travel from point A to point B, they can also travel 

from point B to point A with the same properties [1]. This law prohibits nonreciprocal propagation 

of EM waves in linear platforms, which in turn limits various possibilities to manipulating waves 

hence the functionality of numerous photonic devices. For instance, breaking reciprocity allows 

transmitting a signal without worrying about the interference with incoming signals or back 

reflections. Therefore, breaking reciprocity has been lying in the heart of modern photonic devices 

such as circulators [2]-[5], isolators [6]-[8], filters [9], [10], and antennas [11]-[13]. 

For decades, there has been tremendous efforts seeking ways to break reciprocity in the 

propagation of EM waves. Generally, breaking reciprocity can be realized by biasing the 

transmission channel with a physical quantity that is odd-symmetric under time-reversal [1]. The 

most common approach in such a scheme is based on magneto-optical phenomena by magnetically 

biasing ferromagnetic compounds and garnets [14], [15]. Although this method is effective in 

several scenarios, it has important disadvantages because such systems tend to be bulky, lossy, and 

incompatible with integrated circuits due to the lattice mismatch between ferrite crystals and most 

semiconductor materials [1]. Another drawback lies in the fact that magneto-optical phenomena 

fade at higher frequencies, making it less effective in photonic technologies [16]. Those issues 

hence trigger the interests in magnetless nonreciprocity, i.e., nonreciprocity with no magnets nor 

ferromagnetic materials. This is why alternative approaches such as nonlinearity [17]-[19], 
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optomechanical interactions [20]-[21], and spatiotemporal modulation [22]-[27] have attracted 

enormous attention in the last decades. Among these approaches, nonlinearity is potentially useful 

and has been extensively studied in optical applications [28], [29]. However, it can only be 

employed under certain power levels and in devices excited only through one port at a time, hence 

exhibits limited possibilities in those scenarios when the linearity of the signals is required, such 

as RF [30] and full-duplex communications [31]. Although passive, bias-free nonreciprocal 

devices based on 𝜒(3) nonlinearity may overcome the power range constraints, however they are 

mostly restricted to pulsed and periodic source applications due to the restrictions imposed by 

dynamic reciprocity on passive nonlinear devices [32], [33]. Nonreciprocal responses provided by 

opto-mechanical resonators are complex to implement, somewhat narrowband, and relatively 

weak [34], [35]. The latter approach, spatiotemporal modulation, is very well suited for RF and 

microwave frequencies [36], [37]. However, as frequency increases toward the terahertz (THz) 

and far-infrared (IR) bands, it requires hundreds of gating pads to impart high modulation 

frequencies able to impart linear or angular momentum to the devices, thus demanding very 

complicated fabrication process and feeding networks [38], [39]. In addition, as frequency further 

increases, the challenges to modify the properties of materials operating with enough speed also 

increase [22]. 

In a related context, graphene has emerged as an promising candidate to manipulate THz and 

IR plasmonics, enabling graphene-based nanophotonic devices with unusual properties of strong 

field confinement, relatively low propagation loss, high mobility, and reconfigurability through a 

gate bias [40], [41], [42]. The tunable plasmons supported by graphene at THz have indeed shined 

light on the so-called THz gap because for a long time there has been a lack of practical 

technologies to generate, manipulate, and detect THz radiation [43]. Such characteristics have 
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trigger new venues to develop THz and IR sources, components, and detectors based on graphene 

plasmonics [44], [45]. Additionally, there has been an increasing interest to manipulate and boost 

the graphene electromagnetic behavior by enforcing the interaction of this 2D material with 

external agents such as magnetic fields, optical pumps, and mechanical strain [40]. From a more 

theoretical perspective, the electromagnetic response of graphene has usually been modelled by 

applying the Kubo formalism [46]. Briefly, the Kubo formula accounts for all possible electron 

transitions and contributions in the electronic momentum space that will give rise to the 

electromagnetic conductivity. This formalism brings a powerful link between microscopy (i.e., 

electrons behavior in graphene, modelled through quantum mechanics) and macroscopy (i.e., 

electric conductivity tensor employed in Maxwell’s equations) worlds, provided that accurate 

Hamiltonian are available to describe graphene perturbated with external fields.  

The very first application of graphene to break electromagnetic reciprocity occurred in 2011, 

when Faraday rotation (FR) at THz was experimentally demonstrated in magnetically-biased  

graphene [47], [51]-[53]. Faraday rotation is one of the most important phenomena arising from 

breaking time–reversal symmetry (TRS). It is the nonreciprocal rotation of EM waves’ polarization 

after passing through a media. The media is commonly subjected to a magnetic field along the 

direction of light propagation, which causes a polarization rotation of the propagating waves. The 

rotation handedness flips sign when changing direction of propagation and thus can be utilized in 

optical isolation. Faraday rotation in graphene was enhanced soon after by nanopatterning the 

material [53]-[55]. The reason for such studies being so important is that graphene is the thinnest 

material ever to show Faraday rotation. The record high angle exceeding 0.1 rad (~6° ) was 

achieved in single layer graphene in lab environment with magnetic field of 7 T [47]. Graphene’s 

strong nonreciprocal responses under magnetic bias appears due to the cyclotron effect and inter-
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Landau level transitions, and it is a very promising building block for the development of magneto-

optical devices [47]. Despite such promising response, it still requires large magnetic field which 

is not practical without sophisticate lab setups. 

Electromagnetic nonreciprocity based on spatio-temporal modulation can be implemented  

using 2D materials at terahertz and infrared frequencies by modulating their conductivity in space 

and time. To this purpose, a single graphene layer can be loaded with various gating pads 

underneath. The pads are biased with time-dependent voltages with different phases. Spatio-

temporally modulated graphene has been proposed to enable a large number of nonreciprocal 

electromagnetic functionalities and devices, ranging from plasmonic isolators and leaky-wave 

antennas [60] to nanophotonic devices based on different types of photonic transitions [61]. The 

main challenge of this technology relies on its somewhat complex configuration, as it requires the 

patterning of many pads that should be biased and independently controlled. Even though edge 

effects close to the pads are expected to have a small influence [62], fabrication challenges have 

hindered the development of this approach in practice. 

Despite these advances, there is still a clear need to achieve nonreciprocal responses at 

terahertz and infrared frequencies without relying on magnetic fields. This thesis explores different 

approaches base on 2D materials, with emphasis on optical pumping and strain engineering, to 

meet this technological challenge. Another scope of this thesis is to explore the fundamental limit  

that can be achieved in practice using nonreciprocal devices. Specifically, we noticed that while 

the fundamental limit of nonreciprocal components operating in the far-field has been clearly 

determined [63],[64], this limit remains unsolved for plasmonics. This thesis will set up a metric 

for evaluating plasmonic nonreciprocal metasurfaces in the near field, which will help benchmark 

the isolation and loss performance of such devices. 
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1.2 Optical pump & strain engineering in 2D materials 

Circularly polarized (CP) optical pumps have provided an alternative venue to induce Hall 

conductivity in gapped graphene and other 2D materials [71]-[74], and thus to break TRS. 2D 

materials such as gapped graphene and transition metal dichalcogenides (TMDs) −which lack 

inversion symmetry− have opposite Berry curvature in their two valleys ensured by TRS [40], 

[75], [76]. In such systems, TRS also imposes the spin splitting to have different sign on these 

valleys [77]-[78], leading to valley-dependent optical selection rules, in which RHCP light couples 

to interband transitions in one valley, and LHCP light couples to the other one. This all-optical 

approach can give rise to valley-Hall conductivity in the absence of external magnetic field. The 

light-induced Hall effect has already been observed in graphene at DC [79] and somewhat weak 

all-optical nonreciprocity have been demonstrated in TMDs at visible [80]. Additionally, several 

studies have suggested that amplification (i.e., optical gain) at THz and IR frequencies is possible 

in graphene subjected to linearly polarized laser beams [69], [70]. Such optical amplification effect 

(optical gain) is due to the interband population inversion arising from optical pumping. With 

sufficient large pump intensity, the interband transitions may prevail to intraband transitions. This 

behavior has recently been exploited to manipulate the THz and IR properties of graphene with 

optical beams [81]. THz wave amplifiers could be disruptive components to contribute closing the 

terahertz gap. Unfortunately, optical gain using graphene has not yet been demonstrated. In all 

cases, the main challenge is that very high-power optical beams are required to modify graphene’s 

properties without leading to optical damage, which is not realistic in practical applications.  

Another interesting possibility worth to explore in aid of enhancing nonreciprocal responses 

in graphene is strain engineering. When a uniform mechanical strain acts on graphene, it does not 

break the sublattice symmetry but rather shifts the two distinct valleys of graphene in opposite 
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directions [40],[82]. Such shift is analogous to the momentum shift of graphene under external 

magnetic fields. The existence of pseudomagnetic field in graphene has been demonstrated to have 

a bearing on non-uniform strain fields [83],[84]. However, unlike uniform magnetic field acting 

on graphene in the physical space, pseudomagnetic fields induced by non-uniform strains have 

opposite sign but same modulus for the two valleys. The combination of these responses cancels 

out and, as a result, elastic deformations do not violate TRS in graphene [82]-[88]. Similar 

conclusions can also be drawn for other 2D materials [89]. The experimental demonstration of 

Landau quantization and pseudo–magnetic fields equivalent to bias fields larger than 300 Teslas 

in graphene nanobubbles [84] has triggered intense research in this field, aiming to study carriers 

dynamics in previously inaccessible high magnetic field regimes and to break reciprocity through 

non-uniform strain engineering.  

During the development of this project, a theoretical work appeared suggesting that large 

Faraday rotation can be obtained by applying small magnetic fields on strained graphene [90]. It 

shows that by applying a sub-Tesla external magnetic field to uniformly strained graphene, it yields 

giant FR which is impossible to obtain only by external magnetic field. It points out the role of 

non-uniform strain as being a huge pseudomagnetic field acting in reciprocal space. This work 

shows the possibility of lifting the restrictions of using magnetic field to achieve Faraday rotation. 

It also proposes a practical method to realize scalable uniform pseudomagnetic field in graphene 

by placing it on periodically nanohole array in dielectric substrate and provides a theory to 

effectively correlate the dimensions and periodicity of it with the magnitude of the pseudomagnetic 

field.  

In this context, one of the main goals of the thesis is to assess these two mechanisms and 

merge them to optimize nonreciprocal responses using a magnet-less platform. It is also important 
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to find a mutual theoretical framework under which both mechanisms can be formulated, evaluated, 

and combined. This would be very critical for the future development of integrated, nonreciprocal 

platform based on 2D materials.  

1.3 Fundamental limits of nonreciprocal plasmonics 

In a related context, the field of plasmonics has opened new possibilities to control and 

manipulate light beyond the diffraction limit [90] and has enabled countless applications in areas 

such as sensing, spectroscopy, and healthcare [92]-[94]. Surface plasmon polaritons (SPPs) are 

electromagnetic modes confined to two-dimensional (2D) interfaces that possess evanescent fields 

in the direction perpendicular to the interface. For instance, SPPs are supported by dielectric-metal 

interfaces at infrared (IR) and visible frequencies [95] and by graphene and other 2D materials 

[96]-[99] in the terahertz (THz) and IR bands. The emerge of ultrathin metasurfaces [100] and 2D 

materials [101] have provided new knobs to excite, process, and route SPPs, while also enabling 

unexpected possibilities to manipulate and enhance nonreciprocal responses [102]-[104] 

Nonreciprocal plasmonics lead to strong light-matter interactions [105], useful in areas as 

nonlinear wave generation, sensing, and communications, among others. Unfortunately, the design 

of quasi-optimal nonreciprocal metasurfaces is usually quite challenging and require significant 

computational resources. Given the abundant choice of materials and large degree of freedoms for 

geometrical shapes and dimensions, it would be highly desirable to determine the optimal response 

that can be achieved by a metasurface loaded with a specific nonreciprocal material. This would 

allow to (i) streamline the design process, by assessing the performance of a given device with 

respect to the fundamental bounds; and (ii) prevent that significant efforts are dedicated to 

marginally improve the device performance while leading to unnecessarily complex structures.  
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The fundamental limits and trade-offs between isolation and loss of a waveguide junction 

filled with an arbitrary dielectric was derived in the 50s [63]. More specifically, when a two-port 

network containing a nonreciprocal magnetic material is magnetized by an external field, there are 

upper bounds only associated with the magnetic material. Such bounds determine a figure of merit 

(FoM) for the entire device performance, are independent of geometrical considerations and the 

presence of other materials, and lead to a clear trade-off between isolation and loss. This elegant 

result is readily applicable to modulators and can easily be extended to nonreciprocal devices 

working with propagative waves. Based on this work, the fundamental limits of a realistic optical 

switching device showed that its dynamic performance is only subjected to the tunable material 

employed within the device [63]. In 2014, this approach was applied to determine the fundamental 

limits of magnetically-biased graphene-based devices interacting with waves propagating in free-

space [64]. Several configurations, including isolators and Kerr rotators, were investigated for 

random planar device geometries within a large parametric space. It was shown that some specific 

devices, with tailored nanostructures made of graphene and metals, can reach performances very 

close to the upper fundamental limits offered by magnetically-biased graphene. To date, 

fundamental bounds of nonreciprocal devices are limited to propagative waves and cannot be 

applied within the field of plasmonics.  

The emerge of vast variety of metasurface structures and nonreciprocal plasmonic devices 

associated with them have demanded significant computational resources. Therefore, it would be 

highly desirable to determine the optimal performance of a nonreciprocal plasmonic devices in the 

near field. As a result, extending the above mentioned FoM for propagative waves to the field of 

plasmonics is critical and can pave the way to the development of plasmonic nonreciprocal devices 

with optimal isolation and minimal loss. 
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1.4 Scope of this thesis 

This thesis is divided into two main goals. The first one aims to sets the foundations of a 

transformative magnetless nonreciprocal paradigm through unexplored approaches that combine 

optical pumping and strain engineering in 2D materials. The schematic of the proposed approach 

is shown in Fig. 1.1. To this purpose, Chapter 2 starts with calculating the conductivity of pristine 

graphene as well as magnetically-biased graphene using Kubo formalism. The vanishing off-

diagonal term of the conductivity tensor of pristine graphene indicates its close bound to the 

unbroken time reversal symmetry. The discussion focuses next on the calculation of the Hall 

conductivity of optically-pumped gapped Dirac systems, specifically graphene with a fixed energy 

gap which guarantees a broken inversion symmetry and thus leading to finite Hall conductivity. 

Then, Chapter 3 discusses the band structure, conductivity and pseudo-magnetic field induced by 

different kind of strain field, mainly focusing on uniform and non-uniform strain. This chapter 

concludes with that only non-uniform can generate pseudomagnetic field which would quantize 

graphene band structure, allowing opposite optical transitions within the two valleys. This would 

lift the restriction of using gapped graphene to create broken inversion symmetry, which in practice 

is very difficult to obtain. Finally, Chapter 4 conceptualizes a novel approach to magnetless 

nonreciprocity by starting with formulating optical pumping, carrier-carrier scattering mechanism 

under a common density matrix formalism. By assuming pseudomagnetic field with same 

magnitude but opposite signs induced by some unknown non-uniform strain field, the resulting 

distinct optical selection rules lead to different carrier dynamics and as a result imbalanced 

population of same energy levels within the two valleys. The possibility of a transient 

nonreciprocal response and the feasibility of achieving magnetless nonreciprocity combining 

optical pump and strain engineering in 2D materials will be discussed. 
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The second main goal of this thesis is to unveil the fundamental bounds and trade-offs 

between isolation and loss of linear, nonreciprocal plasmonic devices. To this purpose, Chapter 5 

proposes to define a new metric to evaluate the performance of nonreciprocal plasmonic 

metasurfaces in terms of isolation and loss. Without loss of generality, we focus on two types of 

nonreciprocal plasmonic platforms, i.e., drift- and magnetically- biased graphene metasurfaces, 

and we analytically derived their fundamental bounds. This information is of paramount 

importance for the development of quasi-optimal nonreciprocal devices. Finally, conclusions and 

future work are described in Chapter 6. 

Figure 1.1 Breaking time-reversal symmetry by pumping circularly polarized light to strained 2D materials. (a) 

Equivalence between the proposed platform and magnetically-biased 2D materials. (b) SEM image of graphene 

transferred onto a perforated dielectric [106]. 
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2. Optically-pumped gapped 2D materials 

The objective of this chapter is to calculate the optical conductivity of gapped graphene when 

it is optically pumped with linearly- and circularly-polarized (LP/CP) laser beams, aiming to 

demonstrate nonreciprocal responses at THz and IR frequencies. To this end, we will first describe 

the microscopy electronic properties of pristine graphene using the Hamiltonian of this 2D material 

and then connect it with a tensorial conductivity that models the macroscopy electromagnetic 

behavior of graphene. This link is provided by the Kubo formalism [5] and the resulting 

conductivity can be directly employed within the Maxwell’s equations to design and model 

photonic and plasmonic devices. The essential components in Kubo formula, such as the electron 

wavefunctions and energy, can be determined solving the Dirac-like Schrodinger equation (Dirac 

equation). As described in further detail below, this approach opens the door to modelling 

graphene’s response when it is subjected to external factors, such as optical pumps. Next, we 

review the conductivity tensor of graphene under magnetic field and elaborate how off-diagonal 

conductivity terms give rise to common nonreciprocal responses and Faraday rotation. We 

introduce then the concept of negative dynamic conductivity and how it is potentially possible to 

achieve optical amplification (optical gain) in optically-pumped graphene using linearly polarized 

laser beams.  

Our next step focuses on optical valley selection rule in gapped graphene, and studies the 

imbalanced population in different valleys of the gapped 2D material under circularly polarized 

light by solving the steady state solution of von Neumann equation. We remark that the approach 

followed here focused on gapped graphene can only be extended to gapped Dirac systems, such as 

monolayer transition metal dichalcogenides (TMDCs). The broken inversion symmetry of gapped 

graphene is essential for some exotic phenomena. One of the most notable properties of gapped 
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graphene is a topological resonance, which produces non-vanishing valley polarization upon 

optical exciation of circularly polarization, which is absent in pristine graphene [6]. This chapter 

will calculate the conductivity tensor of gapped graphene following a previous work on chiral 

plasmons in gapped Dirac systems as well as using the Kubo formalism and compare these results 

for a good match. The limits of the previous method will be pointed out and the Kubo formalism 

is proven to be a comprehensive approach to evaluate the conductivity tensor for both pristine and 

gapped graphene. 

This chapter will conclude by describing the details of the fabrication process and 

characterization of graphene transistors, future experiment set-up of pump-probe THz time-

domain spectroscopy (THz-TD) system, as well as the approach employed to calculate Faraday 

rotation using Malus’s law. One has to notice that it is practically very challenging to engineer 

bandgap in graphene with a desired value. Even though several methods can be used to generate a 

band gap though, for example, by placing graphene on hexagonal boron nitride or silicon carbide 

substrates [7],[8], still the presence of the gap significantly limits the feasibility of this approach 

in practice. Chapter 4 will propose a different technique to overcome this challenge and achieve 

nonreciprocity combining optically-pumped and strained graphene and other gapless 2D materials.  

2.1 Graphene and 2D materials 

The findings of fullerene and carbon nanotubes (CNTs) led to the research advancement of 

2D materials. Physicists had predicted the unprecedented optoelectronic, magneto-optical, and 

mechanical properties of graphene. However, it was not until the early 21st century that scientists 

exfoliated the first flake of one-atom thick graphene from graphite successfully in laboratory [4].  

Since then, this methodology of isolation has been applied intensively to other bulk materials to 

acquire their 2D counterparts. Following the discovery of graphene, scientists have unveiled the 
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existence and fabricated the graphene family, 2D dichalcogenides, and 2D oxides one after another, 

opening door to a great variety of new physics and the emergence of nanodevices based on 2D 

materials [9], [10]. 

In this section, we will introduce the quantum mechanical formulations of graphene needed 

to calculate its optical conductivity. The magneto-optical responses of graphene will also be 

presented and discussed.  

2.1.1 Hamiltonian 

Graphene is the 2D version of graphite and can be isolated from it, as shown in Fig. 2.1(a) 

for a single layer of graphene. Layers of graphene within graphite are bonded by van der Waals 

forces originated from the 𝜎 bond [40]. Graphene is comprised of two triangular sublattices of 

carbon atom A and B which reside in different surroundings (see Fig. 2.1(b)). Graphene’s 

electronic properties are mainly determined by the 𝜋  and 𝜋∗  bands originated from 𝑠𝑝2 

hybridization which can bond with the neighboring atoms thus accounting most of the electronic 

properties of graphene, whereas the 𝜎 bands are irresponsible for the majority of the low energy 

Figure 2.1 (a) A single layer graphene sheet. (b) Two-unit cells of graphene with lattice constant a = 1.42 Å (x axis 

pointed along the zigzag direction) in the physical space. (c) Reciprocal lattice (momentum space) showing the first 

Brillouin zone with high symmetry points. 
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effects due to a large energy gap exceeding 10 eV [11]. To study the electronic properties, it is 

important to acquire the band structure of graphene in the reciprocal space. To construct the 

reciprocal space, the physical lattice unit vectors are given first to form the physical lattice (as 

depicted in Fig. 2.1(b)): 

 𝒂1 =
𝑎

2
(3, √3),          𝒂2 =

𝑎

2
(3, −√3), (2.1) 

where the x axis is along armchair direction and y axis along zigzag direction. The unit vectors in 

the reciprocal space satisfy the relation 𝒂𝑖 ⋅ 𝒃𝑗 = 2𝜋𝛿𝑖𝑗 where 𝛿𝑖𝑗 represents the Kronecker delta. 

The reciprocal lattice is bounded by the lines bisecting the reciprocal unit vectors 𝒃𝑗. Specifically, 

the one that is bounded by the lines bisecting the vectors to the nearest reciprocal lattice points is 

usually called the First Brillouin Zone (FBZ). The FBZ (see Fig. 2.1(c)) contains all the possible 

electron momenta. There are also second, third, etc. Brillouin zones which are just the replica of 

the FBZ in the momentum space that do not provide additional information. The six vertices of 

FBZ are called the Dirac points and denoted by and 𝐾 and 𝐾′. These points are placed alternately 

on the six vertices of the hexagon in the reciprocal lattice. The center point between 𝐾 and 𝐾′ is 

called the 𝑀  point and the point where 𝒌 = 𝟎  is called the Γ  point where 𝒌  is the electron 

momentum. In Fig. 2.1 the x axis in the physical space is pointed along the armchair direction, and 

as a result the 𝑘𝑥 axis aligns with the zigzag direction in the reciprocal lattice. The choice of a 

given coordinate is a matter of simplicity and does not change the physical properties of graphene. 

The single-particle energy is calculated within the tight-binding approximation approach [40]. The 

Hamiltonian for a pristine graphene layer considers only the nearest-neighbor hopping. Such an 

approximation is sufficient to characterize the low energy properties [12]. The Hamiltonian can be 

expressed as [13]: 
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 𝐻 = (
0 𝛥𝒌

𝛥𝒌
∗ 0

), (2.2) 

where 𝛥𝒌 = −𝑡 ∑ 𝑒𝑖𝒌⋅𝜹𝑙3
𝑙=1   stems from the nearest-neighbor hopping and 𝑡 is the hopping integral 

and typically set to 3.09 eV [14]. The kinetic energy of the electron allows the hopping between 

neighboring sites. 𝜹𝑙 represent the hopping vectors connecting a carbon atom to its three nearest 

neighbors. By solving the graphene Hamiltonian, one can obtain the eigen energy: 

 ℰ𝒌 = ±√3 + 2 cos(√3𝑘𝑦𝑎) + 4 cos (
√3𝑘𝑦𝑎

2
)cos (

3𝑘𝑦𝑎

2
) , (2.3) 

 where the + sign represents the energy for conduciton band (𝜋∗ band, 𝑐 band) and the – sign the 

energy for valence band (𝜋 band, 𝑣 band). The two bands are plotted in Fig. 2.2. In the hexagonal 

unit cell, there are 6 atoms with each shared by 3 neighboring cells, which equals to 2 atoms in 

Figure 2.2 Band structure of gapless pristine graphene. The inset shows the linear dispersion close to Dirac points. 
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one cell. Each atom will provide one valence electron so there are two valence electron in one cell.  

Here, we will restrict our analysis with electrons with low/moderate energy less than 1 eV. In this 

scenario, it is meaningful to address graphene’s unique band structure near a Dirac point 𝑲. A 

Dirac points is where the conduction and valence bands touch. By a change of variable 𝒌− 𝑲 →

𝒌 and making a Taylor expansion [40] around 𝒌, we can obtain a linear form of Hamiltonian for 

grahene as: 

where we have chosen the x axis along the zigzag direction, ℏ  is the reduced Planck constant, 

𝑣𝑓 ≈ 𝑐/300 ~106 𝑚 ⋅ 𝑠−1 is the Fermi velocity of graphene whose value is associated with the 

electron kinetic energy which equals the Fermi energy 𝐸𝐹 (chemical potential 𝜇𝑐) by solving 𝐸𝐹 =

1

2
𝑚𝑣𝑓

2, and 𝜑 is a geometric phase. This phase stems from the Taylor expansion of the Hamiltonian 

and is different for the six Dirac points. Besides, 𝜏 = 1 for 𝐾 and 𝜏 = −1 for 𝐾′. From Eq. 2.4, it 

can be observed that particles near 𝐾 and 𝐾′ possess different chirality. Additional insights about 

the significance of 𝐾 and 𝐾′ Dirac points for optical selection will be discussed later in this thesis. 

By solving the eigen problem, we get the low energy band structure of graphene: 

 ℰ𝒌 ≈ ±ℏ𝑣𝑓|𝒌|. (2.5) 

The dispersionless band structure is shown by the inset of Fig. 2.2. According to this energy-

momentum relation, carriers in gapless pristine graphene are usually called massless Dirac 

Fermions because they travel at a constant speed same as Fermi velocity regardless of their 

momentum. The wavefunctions can be obtained from the eigenvectors [13] as 

 𝐻 = ℏ𝑣𝑓 (
0 𝑒𝑖𝜑(𝑘𝑥 − 𝑖𝜏𝑘𝑦)

𝑒−𝑖𝜑(𝑘𝑥 + 𝑖𝜏𝑘𝑦) 0
), (2.4) 
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 𝜓𝜐𝒌 =
1

√2
(

1

𝜐𝑒−𝑖𝜑(𝑘𝑥 + 𝑖𝜏𝑘𝑦)

|𝒌|

), (2.6) 

where 𝜐 = 𝑐, 𝑣 denotes the band index for conduction and valence bands. To facilitate the analysis 

and numerical calculations, we introduce here a polar coordinate system to simplify the form of 

the wavefunction. The polar coordinate is set with the origin sitting at each of the six Dirac points 

respectively and we plot one of such configurations in Fig. 2.3. In that case, the wavefunction for 

pristine graphene takes the form: 

 𝜓𝜐𝒌 =
1

√2
(

1
𝜐𝑒−𝑖𝜑𝑒𝑖𝜃𝒌

), (2.7) 

where 𝜃𝒌  is the polar angle of a wavevector with respect to the Dirac point and the 𝜑 is a geometric 

phase resulting from Taylor expansion of the Hamiltonian. 

2.1.2 Kubo formalism and optical conductivity 

Let us study the optical responses of graphene dictated by its optical conductivity, which can 

be modeled by 2 × 2 conductivity tensor [15] 

Figure 2.3 Polar coordinate configuration at one Dirac point. 
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 𝝈̅ = (
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑦𝑥 𝜎𝑦𝑦

). (2.8) 

The induced surface current 𝑱 still obeys Ohm’s law but with the conductivity tensor replacing the 

commonly used scalar conductivity, i.e., 

 𝑱 = 𝝈̅ ⋅ 𝑬. (2.9) 

In the absence of external factors such as magnetic bias, optical pumps, etc., the off -diagonal 

elements vanish adopting an appropriate coordinate system. The conductivity tensor elements can 

be calculated using a wavenumber-resolved Kubo formula [18]:  

 

𝜎𝛼𝛽 = −𝑖
𝑔𝑠ℏ𝑒

2

(2𝜋)2
∑ ∫𝑑𝒌

𝑓(ℰ𝑠𝒌) − 𝑓(ℰ𝑠′𝒌′ )

ℰ𝑠𝒌 − ℰ𝑠′𝒌′𝑠𝑠′

×
⟨𝜓𝑠𝒌|𝑣̂𝛼|𝜓𝑠′𝒌′⟩⟨𝜓𝑠′𝒌′|𝑣̂𝛽|𝜓𝑠𝒌⟩

ℰ𝑠𝒌 −ℰ𝑠′ 𝒌′ + ℏ𝜔 + 𝑖𝜂
, 

(2.10) 

where 𝑔𝑠 = 2 accounts for the spin degeneracy, 𝑠, 𝑠′ = 𝑐, 𝑣 denotes the band index, 𝜂 = ℏ𝜏−1  is 

the damping energy with 𝜏  being the scattering time and 𝑓(𝐸) = 1 (1 + 𝑒
𝜀−𝜇𝑐
𝑘𝐵𝑇 )⁄  is the Fermi-

Dirac (FD) distribution with 𝑘𝐵 being the Boltzmann constant. The electron wavefunction 𝜓𝑠𝒌 , 

the velocity operator 𝑣̂𝛼 = ℏ−1𝜕𝑘𝛼
𝐻 with  𝛼, 𝛽 = 𝑥, 𝑦 and the electron energy ℰ𝑠𝒌  can be acquired 

from the graphene Hamiltonian. In this expression, we have not taken into account nonlocal 

phenomena so that 𝒌′ = 𝒌. Nonlocal extensions are indeed possible [18] but are out of the context 

of this work. Note that the conductivity is generally complex-valued due to damping effects. The 

integral of Eq. (2.10) is numerically calculated within the FBZ, taking into account interband and 

intraband transitions shown schematically in Fig. 2.4. The incoming light excites one electron in 
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the occupying state and into a vacant state either in the same band or different band, creating an  

electron-hole pair which contributes to the conducting current. That is the physical origin of the 

electrical conductivity of graphene. In the Kubo formula, ⟨𝜓𝑠𝒌 |𝑣̂𝛼|𝜓𝑠′ 𝒌′⟩⟨𝜓𝑠′𝒌′|𝑣̂𝛽|𝜓𝑠𝒌⟩  is the 

contribution from the electron velocity in different directions. An interpretation of the first term 

within the integral is also shown in Fig. 2.4. With large incoming photon energy, this term is 

inversely proportional to the slope of the dashed green line in the Fermi distribution plot. When 

the photon energy is small, this term grows large because the green line becomes less steep, and it 

reaches maximum at the Fermi energy. The first term turns into a derivative 𝜕𝑓(𝐸) 𝜕𝐸⁄  associated 

with the tangential solid green line. This explains why the selection rules only allow most of the 

intraband transitions happen near the Fermi energy and the interband transitions become negligible. 

It is important to use the momentum-resolved Kubo formula to obtain the conductivity because in 

the presence of external fields, the electron wavefunction and eigenstates are modified, and the 

Figure 2.4 Intraband and interband transitions in graphene. The Fermi distribution is also shown and aligned with 

the Dirac cone. The chemical potential is set to 𝜇𝑐 = 0.2 𝑒𝑉. 
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perturbed Hamiltonian will allow us to incorporate these changes into the Kubo formula. This will 

enable us to calculate the conductivity under different external perturbation such as magnetic fields, 

optical pumps, or mechanical deformations, etc. 

From Eq. 2.5 and the band structure plotted in Fig. 2.2, it is clear that the linear dispersion 

between the energy and the momentum of electrons is conical when this relation is plotted in 𝒌 

space, that is why it is called the Dirac cone. The rotational symmetry of this dispersion allows us 

to rewrite the Kubo formula with respect to the energy [15]: 

 

𝜎(𝜔,𝜇𝑐 , 𝜏, 𝑇) =
−𝑖𝑒2(𝜔 + 𝑖𝜏−1)

𝜋ℏ2
[

1

(𝜔 + 𝑖𝜏−1)2
∫ 𝜀 (

𝜕𝑓(𝜀)

𝜕𝜀
−
𝜕𝑓(−𝜀)

𝜕𝜀
)

∞

0

𝑑𝜀

− ∫
𝑓(−𝜀) − 𝑓(𝜀)

(𝜔 + 𝑖𝜏−1)2 −4(𝜀 ℏ⁄ )2

∞

0

𝑑𝜀], 

(2.11) 

where 𝜔  is the angular frequency of the incoming light, 𝜇𝑐  is the chemical potential, 𝜏  is the 

phenomenological relaxation time which generally account for the average time between two 

consecutive scattering events, and 𝑒 is the electron charge. The conductivity is a function of 

temperature, and it is set to 300 K in all calculations shown here for simplicity. Qualitatively, an 

intuitive way to understand and identify each term in this equation can be provided. Since the 

conductivity describes the collective behaviors of carriers, the first term in the square bracket 

which evaluates two derivatives with respect to energy are related to intraband contributions to 

the current. 𝜕𝑓(𝜀) characterizes the probability of an electron with energy 𝜀 within the energy 

range of 𝜕𝜀 to contribute to an electron current, if multiplied by electron charge and velocity within 

one band. Hence, the  𝜕𝑓(−𝜀) term is the corresponding hole current in valence band with the 

same kinetic energy, but having a negative sign due to the negative charge of electron. The second 

term in the square bracket is the interband contribution. Supposing the optical frequency to be 
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2𝜀 ℏ⁄ , the interband transition probability for this energy would be [𝑓(−𝜀)− 𝑓(𝜀)] due to Pauling 

blocking. The intraband and interband transitions are schematically shown in Fig. 2.4. Fig. 2.5a 

shows the conductivity of pristine graphene versus frequency computed from Kubo formula with 

respect to the momentum and the energy respectively. The associated impedance can be calculated 

by 𝑍 = 𝜎−1 and is shown in Fig. 2.5(b). We can see that at frequencies much lower than 𝜏−1, 

graphene behaves mostly like a resistor because of a nearly real conductivity. This range extends 

from DC to microwaves. From THz to IR regions, the imaginary becomes larger and gradually 

dominates while the interband transition is still negligible. This region is typically called plasmonic 

region due to fact that graphene acts like a plasma. When the optical frequency grows larger such 

Figure 2.5 The conductivity of pristine graphene computed from Kubo formula with respect to momentum (Eq. 

2.10) and energy (Eq. 2.11). Other parameters are 𝜇𝑐 = 0.2 𝑒𝑉 and 𝜏 = 30 𝑓𝑠 . 
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that ℏ𝜔 > 2𝜇𝑐 , the Fermi distribution guarantees a larger possibility of interband transitions thus 

it is called the interband region.  

The two integrals in the Kubo formula can be evaluated individually to obtain the intraband 

and interband conductivity. The former has an analytical expression: 

 𝜎𝑖𝑛𝑡𝑟𝑎 =
𝑖𝑒2𝑘𝑇

𝜋ℏ2(𝜔 + 𝑖𝜏−1)
𝑙𝑛 (2 + 2cosh (

𝜇𝑐

𝑘𝑇
)). (2.12) 

The interband integral can have a closed-form expression when 𝜇𝑐 ≫ 𝑘𝑇 . Under this 

approximation, the interband contribution becomes: 

 𝜎𝑖𝑛𝑡𝑟𝑎 ≈
𝑒2|𝜇𝑐|

𝜋ℏ2(𝜔 + 𝑖𝜏−1)
, (2.13) 

which agrees well with the classical Drude model [15]. Here, we also study the dependence of 

graphene conductivity on chemical potential and scattering time in terahertz regime. The Drude 

model of Eq. 2.12 is used to account for the intraband transitions which is accurate enough to 

characterize the optical responses at THz and far/mid-IR frequencies because interband transitions 

Figure 2.6 Dependence of graphene conductivity on various (a) chemical potential 𝜇𝑐 with 𝜏 = 30 𝑓𝑠 and (b) 

scattering time 𝜏 with 𝜇𝑐 = 0.2 𝑒𝑉. 
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are negligible there.  As shown in Fig. 2.6, an increased chemical potential leads to larger carrier 

density. An increased scattering time causes lower transition frequency to plasmonic region. These 

facts imply a wide tunability in graphene conductivity. In experiments, electrostatic biasing can 

change graphene’s chemical potential while impurity doping can modify its scattering time. 

 2.1.3 Magnetic-biased graphene 

When a graphene layer is biased by a perpendicular magnetic field, the Hamiltonian is 

modified in a way that the momentum 𝒑 is replaced with 𝒑− 𝑒A, where A is the magnetic vector 

potential. Solving the resulting Hamiltonian is a relatively standard process as with that of a 

quantum harmonic oscillator [19]. Therefore, the energy will be quantized rather than being 

continuous due to the quantization of cyclotron orbits of electron under magnetic field . The 

resulting quantized energy levels are called Landau levels [20] which are schematically shown in 

Fig. 2.7 [21]. The optical selection rules will only favor those transitions with the quantum number 

satisfying 𝑛𝑖 −𝑛𝑓 = ±1 [21], as denoted by red arrowheads in Fig. 2.7.  

Figure 2.7 Landau levels under magnetic field with the Fermi distribution showing the selection rules [21]. 
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Electrons will acquire a transverse velocity by virtue of the presence of the magnetic field, 

thus leading to non-vanishing values of the off-diagonal elements in the conductivity tensor. In 

this case, the diagonal and off-diagonal terms are given by [21]: 

 

𝜎𝑥𝑥 (𝜔,𝐵0) =
𝑒2𝑣𝑓

2|𝑒𝐵0|

𝑖𝜋
∑ {

1

𝐸𝑛+1 − 𝐸𝑛

∞

𝑛=0

×
𝑓(𝐸𝑛) − 𝑓(𝐸𝑛+1) + 𝑓(−𝐸𝑛+1) − 𝑓(−𝐸𝑛)

(𝐸𝑛+1 −𝐸𝑛)
2 −ℏ2(𝜔 + 𝑖𝜏−1)2

+ (𝐸𝑛 → −𝐸𝑛)}, 

𝜎𝑦𝑥(𝜔,𝐵0) = −
𝑒2𝑣𝑓

2𝑒𝐵0

𝜋
∑ {[𝑓(𝐸𝑛) − 𝑓(𝐸𝑛+1) − 𝑓(−𝐸𝑛+1) + 𝑓(−𝐸𝑛)]

∞

𝑛=0

× [
1

(𝐸𝑛+1 − 𝐸𝑛)
2 − ℏ2(𝜔 + 𝑖𝜏−1)2

+ (𝐸𝑛 → −𝐸𝑛)]}, 

(2.14) 

where 𝐵0 is the magnetic field and 𝐸𝑛 is the quantized energy level. Notice that in the conductivity 

tensor, the off-diagonal terms satisfy the relation of 𝜎𝑥𝑦 = −𝜎𝑦𝑥 . Under small magnetic field, we 

can assume the intervals between adjacent Landau levels are small, i.e. the energy can be seen as 

quasi-continuous. Under such low-magnetic approximations, the summation can be approximated 

by integration of diagonal element in Eq. 2.14 while the off-diagonal element yields: 

In addition, assuming that 𝜇𝑐  is much larger than the energy intervals, this equation will only take 

into account the intraband transitions and agrees well with the semiclassical Lorentz-Drude model: 

 

 

𝜎𝑥𝑦 (𝜇𝑐 ,𝐵0) = −
𝑒2𝑣𝑓

2𝑒𝐵0

𝜋ℏ2
[

1

(𝜔 + 𝑖𝜏−1)2
∫ (

𝜕𝑓(𝜀)

𝜕𝜀
+

𝜕𝑓(−𝜀)

𝜕𝜀
)

∞

0

𝑑𝜀

+∫
1

(𝜔 + 𝑖𝜏−1)2 −4(𝜀 ℏ⁄ )2

∞

0

𝑑𝜀]. 

(2.15) 
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where 

 is the DC conductivity of graphene, and 𝜔𝑐 =
𝑒𝐵0𝑣𝑓

2

𝜇𝑐
 is the cyclotron frequency. This parameter 

quantifies the frequency of carriers’ circular movement under the perpendicular magnetic field. 

For the sake of illustration, Fig. 2.8 plots the conductivity computed from the quantum (Landau) 

 𝜎𝑥𝑥(𝜔, 𝐵0) = 𝜎0
1 − 𝑖𝜔𝜏

(𝜔𝑐𝜏)
2 + (1 − 𝑖𝜔𝜏)2

,  𝜎𝑦𝑥(𝜔,𝐵0) = 𝜎0
𝜔𝑐𝜏

(𝜔𝑐𝜏)
2 + (1− 𝑖𝜔𝜏)2

 , (2.16) 

 𝜎0 =
2𝑒2𝜏

𝜋ℏ2
𝑘𝑇𝑙𝑛 (2cosh

𝜇𝑐

2𝑘𝑇
)  (2.17) 

Figure 2.8 Diagonal and off-diagonal conductivity of graphene computed from quantum and Lorentz-Drude models 

showing both real and imaginary parts. Other parameters are 𝜇𝑐 = 0.2 𝑒𝑉    and  𝜏 = 30 𝑓𝑠 .. 
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and Lorentz-Drude models under small and magnetic fields. Results show that under small field, 

two models provide good agreement and for larger magnetic fields they start to deviate, and the 

quantum model gives the most accurate results.  

The non-vanishing off-diagonal elements of the conductivity tensor will give rise to a magneto-

optical phenomenon called Faraday effect [22] which was discovered by Michael Faraday. The 

most relevant consequence is that under magnetic field biasing the TRS is broken, enabling 

different rotation of polarization direction of electromagnetic wave propagating in opposite ways. 

The Faraday rotation angle 𝜃𝐹  (see Fig. 2.9) for graphene on dielectric substrate is obtained by 

applying Maxwell’s equations (derivation from [21]) and is given by: 

 𝜃𝐹 = tan−1 (
𝜂0𝜎𝑦𝑥

1 + 𝑛 + 𝜂0𝜎𝑥𝑥
) , (2.18) 

where 𝜂0  is the free space impedance and 𝑛 is the dielectric constant of the substrate.  

In addition to modifying the external magnetic bias, graphene offers a variety of ways to 

manipulate Faraday rotation, such as chemical doping, electrostatic biasing, and using 

Figure 2.9 Graphene under magnetic bias showing the rotation angle. 𝐸𝑖 , 𝐸𝑟 , 𝐸𝑡  are the electric field of the incident, 

reflected and transmitted waves. 
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nanostructured configurations [23], [24]. We plotted the rotation angle for various values of 𝐵0, 

𝜇𝑐  and 𝜏 respectively in Fig. 2.10 using the accurate quantum model.  

 We can see that the external magnetic field can shift the peak of rotation angle and increase 

the angle. On the other hand, increasing chemical potential can boost the rotation angle while has 

negligible effect on moving the position where the rotation happens. Changing the scattering time 

can drastically increase the rotation angle but changing the peak from broadband to very narrow 

Figure 2.10 Faraday rotation (in degrees) versus various perpendicular magnetic fields, chemical potential, and 

relaxation scattering times. When not changing, the parameters are set as 𝐵0 = 7 𝑇, 𝜇𝑐 = 0.4 𝑒𝑉, τ = 30 𝑓𝑠. 
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band. Notice that 𝐵0 =23 𝑇 is almost impossible to achieve in practice, however, huge local 

magnetic field greater than 300 Tesla has been measured in graphene nanobubbles [25] which hold 

promise on achieving effectively large Faraday rotation without magnetic field in the near future. 

2.2 Negative dynamic conductivity 

An exciting direction of graphene under optical pump is to have negative dynamic 

conductivity in a wide spectrum range over terahertz frequencies which could lead to the 

development of active devices exhibiting gain in the THz and IR bands, including oscillators, 

modulators, sensors, etc. [26]-[30]. Negative conductivity has theoretically been shown to be 

tunable over terahertz frequencies upon a relatively weak pump owing to fast intraband relaxation 

channels such as Auger recombination, carrier-carrier (C-C) interactions and optical phonons (OP), 

etc. [31]-[33]. Stimulated emission, associated with the interband transitions have been 

demonstrated due to the inverted population of near the Dirac cones under optical pump, showing 

the possibility of turning conductivity from positive to negative in graphene [34].  A superluminal 

plasmonic platform is proposed in population inverted bilayer graphene with resonant gain [35]. 

An ultrafast, optically tunable thin film graphene modulator has been experimentally demonstrated 

based on negative dynamic conductivity [36]. Negative dynamic conductivity has also been 

theoretically explored in graphene metasurfaces with enhanced resonances to boost the plasmonic 

responses exhibiting the reconfigurable properties at terahertz frequencies [37]-[39].  

Population inversion describes the phenomenon in a two-level system, where most of the 

particles in the system stay in the excited state than that remain in the ground state. This 

phenomenon is very unlikely to take place in semiconductors in thermal equilibrium because 

carriers governed by Fermi-Dirac distribution tend to stay in the lower energy bands and it requires 

high energy photons that usually exceed the bandgap to bring them to excited states. 
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Thanks to the gapless features of graphene, the populations at the band edges satisfy 𝑓𝑒(0) =

𝑓ℎ(0) = 0.5. Therefore, with even small injection it should theoretically be possible to flip the 

carrier-to-hole occupation in the two bands near the Dirac points. The creation of population 

inversion is required for spontaneous emission and stimulated emission, the latter being essential 

for optical amplification. Even more promising is the fact that the frequencies for optical 

amplification in graphene range from terahertz regime all the way to the IR due to its zero bandgap. 

Even though there have been experiments demonstrating the amplification of terahertz signals in 

graphene during the fast relaxation to recombination process through THz TDS [41],[42], optical 

gain at THz remains a significant technological challenge. 

With only optical interband excitation, the photogenerated carriers will at best achieve a 

steady-state occupation of one half at the excited states under continuous pumping. However, when 

coupled to phonons with appropriate energy and momentum, photoexcited carriers can relax to 

lower energy levels accompanied by a cascade of phonon emission [43]. There are also other 

channels that would assist the photoexcited carriers to relax to the lower energy levels of the bands 

Figure 2.11 (a) Schematic illustrating the possible negative conductivity for photon energy smaller than 2𝜇𝑐. (b) The 

real part of interband conductivity versus the optical frequency for several quasi-Fermi energies. 
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[32]. Because of a lower density of states (DOS) and a relatively long interband recombination 

time compared to the relaxation times, there will be an accumulation of pockets of carriers toward 

the band edges. The entire process is schematically shown in Fig. 2.11(a) where we assume 

graphene has reached a quasi-equilibrium state under symmetrical interband optical pump which 

implies that quasi-Fermi energies for the two bands satisfy 𝜇𝑣 = −𝜇𝑐 . The real part of the 

interband conductivity, calculated from Fermi golden rule, is given by [70]:  

 𝑅𝑒[𝜎𝑖𝑛𝑡𝑒𝑟] =
𝑒2

ℏ
[𝑓𝑣 (−

ℏ𝜔

2
) − 𝑓𝑐 (

ℏ𝜔

2
)]. (2.19) 

One can readily find that for photon with energy  ℏ𝜔 < 2𝜇𝑐 , it is possible to have negative 

conductivity. The interband conductivity as a function of the optical frequency for several quasi-

fermi energies is plotted in Fig. 2.11(b). One can see that the bandwidth broadens when quasi-

Fermi energy gets higher. Quasi-Fermi energy is associated with pumping light photon energy ℏΩ, 

larger the frequency Ω, higher the quasi-Fermi energy. This allows us to dynamically tune the 

bandwidth of negative conductivity. Note that this calculation has not taken into account details of 

relaxation and assumes quasi-Fermi energies for the two bands. 

2.3 Light-induced Faraday rotation 

The objective of this section is to overview nonreciprocal responses of gapped graphene 

under CP light. The reason for using gapped graphene is that in gapped Dirac system where 

inversion symmetry is broken owing to the two inequivalent sublattices, the optical transitions at 

the two distinct valleys couple exclusively to optical excitations of opposite CP [44],[45]. We will 

first review the concept of valley-dependent optical selection. Then we go over the theoretical 

framework based on quantum Liouville’s theorem and obtain a steady-state solution for population 
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under CP light pump. Finally, we will study Berry curvature and compute the Hall conductivity 

using both Berry curvature method and Kubo formula.  

2.3.1. Valley-dependent optical selection 

Modern semiconductor technology is mostly based on the manipulation of electron charge. 

However, there are still other degrees of freedom such as spin and valley. Over recent decades, 

there has been intensive explorations on spintronics using the spin degree of freedom of electrons. 

Because of its demonstrated ability and efficiency of data processing and storage, there are ever 

increasing interest and speculation of its possible future applications, in areas such as quantum 

computing [31] and spin-based transistors [46]. Moreover, the field of valleytronics - which uses 

another degree of freedom of electrons - has revived following the blossoming and experimental 

demonstration of 2D materials and their exotic properties.  

In solid state physics, the local extrema of the electronic band structure are called valleys. In 

graphene and many other 2D materials, there are two distinct valleys 𝐾 and 𝐾′ where the electrons 

within each possess different physical properties [47]. These properties opens up to a new field 

called ‘valleytronics’ as opposed to electronics as it provides schemes to address each valley with 

external fields, thus can be used to store and process information [48], [48]. One of the most 

significant perspectives of valleytronics is the valley-dependent optical selection, where circularly-

polarized light with different handedness will interact more with one valley than another, giving 

rise to circular dichroism based on materials with broken inversion symmetry [49]. Promising 

candidates are gapped graphene and transition metal dichalcogenides (TMD) [50], [51]. Moreover, 

the spin and valley coupling can even enable stable valley locking [52]. This optically-induced 

phenomenon has completely different mechanism with optical activity in birefringent materials 
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since the former breaks TRS but the latter does not [53]. To demonstrate this in short, let us 

consider Hamiltonian of gapped graphene following the same linear approximation as in [54]: 

 𝐻 = ℏ𝑣𝑓 (
𝛿 2⁄ 𝑒𝑖𝜑(𝑘𝑥 − 𝑖𝜏𝑘𝑦)

𝑒−𝑖𝜑(𝑘𝑥 + 𝑖𝜏𝑘𝑦) −𝛿 2⁄
), (2.20) 

where 𝛿 is the energy bandgap. Solving the above Hamiltonian, we obtain the band structure which 

is plotted in Fig. 2.12(a). Using the electron wavefunctions we are able to evaluate the transition 

dipole matrix elements as 

 𝑹𝑗𝑗′ (𝒌) =
𝑖

2
∫𝜓𝑗

∗(𝒌)𝜕𝒌 𝜓𝑗′ (𝒌)𝑑𝒓+ ℎ. 𝑐., (2.21) 

where 𝑗, 𝑗 ′ = {𝜐, 𝜏} is the complex index of a given band. Consider a right-handed circularly-

polarized (RHCP) incoming light with photon energy ℏΩ = 𝛿 and Jones vector 𝑬0 = 𝐸0(𝒆𝑥 +

𝑖𝒆𝑦)/√2. The matrix element is the dipole moment corresponding to the two transition levels. The 

matrix element for interband transition corresponding to the band edge modes is calculated as: 

Figure 2.12 (a) Band structure of gapped graphene with bandgap ∆= 0.5 𝑒𝑉. (b) Schematic of valley-dependent 

optical selection rules. Each handedness can only couple with one valley. 
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 𝑅𝑐𝑣
𝐾,𝐾′

(𝒌) = −
2ℏ𝑣𝑓

3√𝛽𝒌
𝜏
(
𝑖𝜏
1
), (2.22) 

where 𝛽𝒌
𝜏 = 4ℰ𝑐𝒌

𝜏 2 and ℰ𝑐𝒌
𝜏  is the band energy. The dipole moment in a certain valley has a specific 

chirality. If we multiply the vectorial part of 𝑅𝑐𝑣
𝐾 (𝒌) and that of the electric field of RHCP light, it 

comes to 𝑖(1 + 𝜏)  which yields a finite value at 𝐾  but zero at 𝐾′ . Therefore, a right-handed 

circularly-polarized (RHCP) light with photon energy ℏΩ = 𝛿  is only able to interact with 

electrons residing at 𝐾 points while LHCP light can interact with another. This so-called circular 

dichroism is schematically shown in Fig. 2.12(b).  Based on this working principle, breaking TRS 

using 2D material has been demonstrated [50], [55], [56], providing alternative angles to non-

reciprocity in the absence of magnetic field. In Ref. [55], TMD is experimentally demonstrated to 

have valley-selective response pumped by CP light due to the valley-selective exciton population. 

The Hall conductivity is measured as a good match with the theoretical calculations in Ref. [71]. 

However, the optical gain is not discussed in the experiment and nonreciprocal responses are 

somewhat weak.  

2.3.2 Quantum Liouville’s theorem 

In order to understand the optical responses of 2D materials with broken inversion symmetry 

(here we use gapped graphene) under circularly-polarized light, we need to study the dynamics of 

the carrier distribution. Under the perturbation of external fields, the system will deviate from its 

thermal equilibrium state. Instead of describing the system with the time-evolving wave functions, 

the density matrix offers comprehensive information about the system especially when wave 

function fails depicting mixed states. The time-evolution of density matrix is governed by the 

quantum Liouville’s equation, also known as von Neumann equation given, following [57]: 
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 𝑖ℏ𝜕𝑡𝜌 = [𝐻 + 𝑉̂, 𝜌], (2.23) 

where 𝐻 is the Hamiltonian of gapped graphene shown in Eq. (2.), 𝑉̂ = −𝑒𝑬 ⋅ 𝒓 is the  perturbation 

term from the electromagnetic field, and 𝜌 stands for the density operator. Evaluating the above 

equation in the momentum representation, we can obtain the dynamics of the populations and 

coherences corresponding to the diagonal and off-diagonal matrix elements, respectively [50]: 

 

𝜕𝜌𝑗𝑗′

𝜕𝑡
+
𝑒

ℏ
𝑬 ⋅

𝜕𝜌𝑗𝑗′

𝜕𝒌
= −

𝑖

ℏ
𝜌𝑗𝑗′ [ℰ𝑗(𝒌)− ℰ𝑗′ (𝒌)] +

𝑖𝑒

ℏ
𝑬 

⋅∑[𝑹𝑗𝑗′′ (𝒌)𝜌𝑗′′𝑗′ − 𝜌𝑗𝑗′′ 𝑹𝑗′′𝑗′ (𝒌)],

𝑗′′

 

(2.24) 

where the 𝑗 = {𝜐, 𝜏} denotes the quantum number. By introducing a phenomenological relaxation 

time to the population and using rotating wave approximation(RWA) [50], the above equations 

can be solved for their steady state solutions where a set of four coupled equations are acquired 

for 𝜌𝑐
𝐾, 𝜌𝑣

𝐾, 𝜌𝑐
𝐾′

 and 𝜌𝑣
𝐾′

 corresponding to the distributions in 𝐾 and 𝐾′ valleys: 

 𝜌𝜐
𝜏 = 𝛽𝜏(𝜌𝜐

𝑒𝑞,𝜏 + 𝛾𝜌𝜐
𝜏′ + 𝛼𝐾𝜌𝜐′

𝜏 ), (2.25) 

where 𝜌𝜐
𝑒𝑞,𝜏  stands for the Fermi-Dirac distribution in thermal equilibrium, 𝛽𝜏 = 1 (1 + 𝛼𝜏 + 𝛾)⁄ , 

𝛾 = 𝜏0 𝜏1⁄  accounts for the intervalley scattering rate with 𝜏0  and 𝜏1being the phenomenological 

carrier relaxation time and intervalley scattering time, and 𝛼𝐾 characterizes the interaction strength 

with the electromagnetic field and is given by 

 𝛼𝜏 =
2𝑒2𝜏0𝜏𝑑 |𝑬0 ⋅ 𝑹𝑐𝑣

𝜏 |2

ℏ2(𝜏𝑑
2(𝜔− 𝜔𝑐𝑣

𝜏 )2 + 1)
, (2.26) 
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where 𝜏𝑑  is the dephasing time, and 𝜔𝑐𝑣
𝜏 = (ℰ𝑐𝒌

𝜏 −ℰ𝑣𝒌
𝜏 ) ℏ⁄  is the interband transition energy. 

Although the acquisition of Eq. (2.25) comes with tedious math derivation and several reasonable 

approximations, a qualitative understanding of it can be obtained. The steady state solution for the 

perturbed distribution is the average of distributions that interact with it and the thermal equilibrate 

state of itself weighted by the corresponding interaction strengths. Under continuous RHCP light 

pumping, we plotted the electron populations in the upper and lower bands in FBZ along the path 

from 𝐾 and 𝐾′ in Fig. 2.13. We can see that under RCHP light pumping, there is a population 

imbalance between 𝐾 and 𝐾′ valleys, indicating valley-dependent circular dichroism. Notice that 

the population is rotational symmetric with respect to the Dirac points. The symmetric contour of 

the carrier population in momentum space, implies that population as a function of momentum can 

reduce to a function of energy. Similarly, one expects to see a more populated 𝐾′  valley in 

graphene if it is illuminated by a LHCP light.  

Figure 2.13 (a) Population along the path from 𝐾 to 𝐾′  in k-space; (b) Population for the conduction band in the 

entire FBZ. 
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2.3.3 Berry curvature and Faraday rotation.  

In 1879, E. H. Hall conducted his famous experiment where an electric current was “pressed” 

to one side of the conductor when subject to a perpendicular magnetic field [58]. Then in his later 

publication [59], he reported several times larger of this effect in ferromagnetic iron than that in 

other nonmagnetic materials. This strong effect in ferromagnetic materials discovered by Hall 

came to be famous as anomalous Hall effect (AHE). 

Unique properties were demonstrated in light-driven quantum solids such as photoexcited 

superconductivity [60], [61] and light-induced topological phases [79], [62], [63]. Under some 

circumstances, like the one we have mentioned where circularly-polarized light is applied to 2D 

materials with broken inversion symmetry, anomalous Hall effect can be observed [64], [65]. This 

is due to the presence of valley-contrasting optical selection and a sizable Berry curvature in 

gapped Dirac system given by [48]: 

The Berry curvature arises from the adiabatic evolving of Bloch band electrons through a cyclic 

path, and it behaves just like a pseudomagnetic field acting in the momentum space. Fig. 2.13(a) 

shows the Berry curvature distribution in the FBZ. Therefore, under electric fields, the electron 

gains an anomalous velocity transverse to its trajectory. With linear-polarized light the 

contributions from the two valleys cancel with each other due to the sign change in their Berry 

curvatures thus showing zero net current. However, with circularly-polarized light pumping, we 

can observe anomalous Hall effect originated from the population imbalance between the two 

valleys. To calculate the Hall conductivity (off-diagonal element 𝜎𝑥𝑦 ) we use the following 

equation [66] 

 Ω𝜏,𝒌 = 𝜏
2ℏ2𝑣𝑓

2𝛿

(𝛿2 +4ℏ2𝑣𝑓
2𝑘2)

3 2⁄
. (2.27) 
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where the factor of 2 accounts for both conduction and valence bands. The contributions from the 

two 𝐾 valleys to the DC conductivity are plotted in Fig. 2.13(b) using a pump energy of ℏΩ = 𝛿 

and with varying intensity. The effectiveness of Kubo formula is also validated by comparing its 

calculation on 𝜎𝑥𝑦  with that of Berry curvature method. Here, using Kubo formula, we also plotted 

the frequency responses of 𝜎𝑥𝑥  and 𝜎𝑥𝑦  without pump and under RHCP light pump with electric 

field 𝐸0 = 108 𝑉/𝑚, respectively. We can see that the real and imaginary parts of 𝜎𝑥𝑦  vary 

slightly with frequency due to the dominated interband transitions over intraband transitions within 

the range we are interested, i.e., ℏ𝜔 ≪ ∆ . The diagonal conductivity increases significantly 

because the near-resonant field at the Dirac points continuously pumps the electrons close to the 

top of valence band to the bottom of conduction band which saturate that point and energy states 

nearby. The quasi Fermi energy stays just at the bottom of conduction band. Notice that the laser 

intensity used to calculate Fig 2.13(b) and 2.14 is high and a large 𝜏0  is used indicating a high 

 𝜎𝑥𝑦 =
2𝑒2

ℏ
∫ 𝜌𝑐 ,𝜏(𝒌)Ω𝑐,𝜏 (𝒌)𝑑𝒌, (2.28) 

Figure 2.13 (a) Berry curvature for conduction band in FBZ. (b) 𝜎𝑥𝑦  for 𝐾 and 𝐾′  valleys computed as a function of 

pumping intensity. 
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quality of graphene sheet. Previous approaches present some challenges to calculate the 

conductivity of optically-pumped graphene. First, as described above, the optical gain and 

nonreciprocal responses are treated separately. Second, the laser energy is fixed to match the 

energy gap of the system resulting in a near resonant excitation at the band edges which in practice 

is very difficult to be satisfied. Third, the relaxation mechanisms are only considered up to a 

phenomenological level while the full carrier dynamics which would provide a more accurate 

model is yet not considered. As a result, it is critical to find a comprehensive theoretical frame 

work enable to calculate the full carrier dynamics and thus population, taken into account essential 

Figure 2.14 Frequency responses of graphene (a), (b) without pump and (c), (d) under RHCP light pump with 𝐸0 =

108  𝑉/𝑚 The parameters used are 𝜏0 = 𝜏𝑑 = 1 𝑝𝑠 , 𝐸𝑔 = 0.5 𝑒𝑉 , 𝜇𝑐 = 0. 
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scattering mechanisms under arbitrary optical excitation for 2D materials not limited to gapped 

Dirac systems. 

2.4  Graphene devices 

 This section briefly describes some initial cleanroom experiments and testing results 

towards the graphene Hall devices. The goal of this fabrication process is to develop a chip that 

acts as a substrate and testbed for high quality graphene. The end goal is to successfully test a four 

terminal hall effect device for the measurement of both diagonal and off diagonal conductivity in 

graphene at DC, infrared, and THz. The following section describes the incremental advances 

made towards achieving this goal and the detailed process that was implemented.  

To isolate CVD graphene such that it can be transferred to a target substrate, the wet transfer 

process was used originally described in reference [69]. The wet transfer process is described in 

additional detail in many of the experiments [70]-[76]. First, the silicon wafer is cleaned and a 

layer of silicon dioxide with 150nm thickness is deposited on it using HDPCVD. A lithography 

process is done to define the electrode area. The exposed area is developed and then deposited 

with 10nm of Chrome followed by 200nm of gold in an evaporator. The substrate is then soaked 

in hot acetone for a complete lift-off. Second, the PMMA-recoated hBN and graphene on copper 

foil are cut into approximately 1 × 1  𝑚𝑚2  square pieces. They are floated and bathed in 

ammonium sulfate solution under 60 degrees for about 1 hour to fully remove the copper. The 

PMMA-supported 2D materials are then transferred into DI water dishes for three times until 

external impurities from the copper or the solution are largely eliminated. The chip made in the 

first step is diced into individual transistor devices and ozone treated for 150 seconds before the 

transfer of 2D materials. This treatment can make sure the blank device surface is hydrophilic so 

that it is easy to scoop 2D materials. Finally, the hBN is scooped out first and manipulated by 
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tweezers to the channel region. The devices are naturally dried overnight and then heated on 

hotplate with 150 degrees. They are put into acetone/IPA/DI water dishes to fully remove the 

PMMA. The devices are the used to scoop the graphene out followed by the same drying and heat 

cure procedures. The devices are wire-bonded using a ball bonder. The surface can be hydrophobic 

again after several times organic immersion, so it is suggested to be the bonding after another 

ozone treatment of 90 seconds. The device can be further annealed in a vacuum oven with nitrogen 

atmosphere under 220 degrees for 4 hours to remove more impurities and improve performance. 

We use the diamond cutter to scratch one corner of the device piece to expose the silicon surface 

for gate probe. The process is schematically illustrated in Fig. 2.15. Final devices are either tested 

by probing or wire-bonded to PCBs. The wire-bonded device and the electrode configuration are 

shown in Fig. 2.16.  

Figure 2.15 Graphene device fabrication process. Step 1: PECVD deposition of silicon oxide. Step 2: Electrodes 

deposition using gold E-beam evaporation. Step 3: Wet transfer of hBN and removal of PMMA. Step 4: Wet 

transfer of graphene. Step 5: Scatch off oxide to expose silicon for gating. Step 6: Wirebonding to electrode for 

desired measurement. 



52 

 

When graphene is supported by silicon dioxide as a substrate, the carrier mobility is limited  

due to scattering from surface states, impurities, substrate surface roughness, and silicon dioxide 

surface phonons [77]. Hexagonal Boron Nitride (hBN) has a similar hexagonal lattice to graphene 

(1.7% lattice mismatch), is inert and insulating, and has no dangling bonds. and provide an 

excellent dielectric substrate for graphene [77]. The 𝐼𝑑-𝑉𝑔 tests of graphene devices with/without 

hBN are plotted in Fig. 2.17, the current is getting significantly increased due to the presence of 

Figure 2.17 Graphene transconductance measurement showing Dirac point. The red/blue lines show the devices with 

and without hBN. The hBN/graphene devices show much higher current and better resolved Dirac point.  

Figure 2.16 (a) Device image with source and drain and two side electrodes and four gate contacts. (b) A zoomed in 

microscope image in the channel region with the red dashed frame showing the graphene. (c) Wire -bonded graphene 

device. 
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hBN as an layer of isolation from the substrate. One of the best performed devices is plotted in Fig. 

2.18 together with its mobility calculated following Bolotin’s method [78]. The result shows that 

a mobility of around 2500 is obtained which is reasonably good considering the larger area CVD 

graphene used in the experiment.  

2.5 Conclusions and future work 

This chapter builds up a powerful theoretical framework based on Kubo formalism which is 

able to calculate the optical conductivity of graphene either with or without optical pump and even 

under other perturbations such as strain field. Specifically, the optical conductivity of gapped 

graphene is calculated using the population obtained from evaluating the quantum Liouville’s 

equation. The response is shown to match that obtained from calculated from Berry curvature. 

There are several on-going research lines that appeared as a result of this work and that are 

currently being explored by our group. The goal of the remainder of this section is to describe such 

efforts. On the theory part, we propose to use the quantum Liouville’s theorem, specifically, the 

von Neumann equation, to study the temporal evolution of the carrier population with explicit form 

of some relaxation mechanisms such as optical phonons. Our goal is to adapt this formalism to 

Figure 2.18 (a) The best performed devices after annealing with a  Dirac voltage at around 20 V. (b) The mobility 

calculated using Bolotin’s method. 
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determine the properties of inverted carrier populations (i.e., gain) and nonreciprocal responses 

versus the properties of the incoming circularly polarized light pumps. For the experimental part, 

the final objective is to validate theoretical results using a THz TDS equipment and to demonstrate 

active, nonreciprocal THz components.  

2.5.1 Future work: Theory 

  In laboratory, lasers are powerful light sources commonly used for optical pumping. 

Previous theoretical works on CP light pumped graphene only focused on revealing nonreciprocal 

responses [71], [72] and assumed certain restrictions on the laser energy. However, lasers feed 

intensive energy to graphene and it is important to determine if nonreciprocal responses get 

amplified under this scheme as illustrated in Fig. 2.19. Being one of the most efficient relaxation 

mechanisms, electron-phonon coupling (EPC), the process of energy and momentum exchange 

between photogenerated electrons and optical phonons, is enough to invert the population near the 

Dirac points even under weak pumping intensities [62], [67]. Here, we reformulate Eq. 2.29 in the  

case of conduction band population and add general scattering events [33]: 

 

𝜕𝜌𝑐𝑐
𝜕𝑡

+
𝑒

ℏ
𝑬 ⋅

𝜕𝜌𝑐𝑐
𝜕𝒌

= 

+
𝑖𝑒

ℏ
𝑬 ⋅ [𝑹𝑐𝑣(𝒌)𝜌𝑣𝑐 −𝜌𝑐𝑣𝑹𝑣𝑐(𝒌)]+ Γ𝒌

𝑖𝑛(1− 𝜌𝑐𝑐) − Γ𝒌
𝑜𝑢𝑡𝜌𝑐𝑐 , 

(2.29) 

Figure 2.19 Schematic showing inverted population. 
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where the scattering rate Γ𝒌
𝑖𝑛/𝑜𝑢𝑡

 accounts for all possible mechanisms including C-C scatterings, 

optical phonons, which will enable the photoexcited carriers to relax and accumulate at lower 

energy levels. The possible relaxation mechanisms are schematically shown in Fig. 2.20(a). 

Previous approaches only used a phenomenological relaxation time 𝜏,  and thus they are not able 

to capture carrier relaxation from highly populated energy levels to lower, under-occupied energy 

levels. Therefore, these approaches cannot capture phenomena such as optical gain. Due to the 

lack of DOS near the bottom of the conduction band and a relatively slow interband recombination 

rate, it is possible for photoexcited carriers to have population inversion through the momentum 

and energy exchange with other scattering agents. The ultimate goal of this on-going theoretical 

work is to develop a comprehensive formalism able to calculate the frequency-dependent graphene 

Figure 2.20 (a) Schematic of optical pumping and carrier relaxation and accumulation. (b) Time evolution of 

population at the excited energy level as functions of time and pump fluence. (c) Time evolution in conduction band 

at several moments. Figures reproduced from [33]. 
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conductivity tensor versus the features of the incoming light in terms of intensity, energy, and 

polarization, thus unveiling active nonreciprocal responses at THz and IR frequencies.  

Once the formalism is completed, it will be applied to investigate resonant-like 

configurations and metasurface to boost and manipulate nonreciprocal responses while amplifying 

terahertz signals, thus addressing one of the major bottlenecks of current technology. 

2.5.2 Future work: Experiments 

The ultimate goal of this on-going experiment is to measure the Faraday rotation of terahertz 

waves with possible optical gain after passing through graphene samples pumped by circularly 

polarized laser beam. To this purpose, we will fabricate two different types of graphene samples. 

The first sample is a pristine graphene layer. The graphene sample will be fabricated starting with 

depositing CVD grown graphene sheet on dielectric layer grown on silicon wafer. Metallic 

electrodes will be fabricated on top of graphene sample. The second case is a nanopatterned 

graphene sample which can provide a large local field enhancement at 780 nm of the incident laser. 

Several configurations, including strip, patches, and bow-type resonators will be explored.  
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The proposed experiment setup is schematically depicted in Fig. 2.21. A picture showing 

the on-going setup is shown in Fig. 2.22. The graphene sample is pumped by a circularly polarized 

light from the side which only offsets slightly from the optic axis. The THz emitter together with 

linearly polarizer (LP1) creates a linearly polarized terahertz wave is then focused onto the 

graphene on dielectric sample. Note that the focused beam must be smaller than the pump beam. 

The transmitted beam is then collimated to pass the second linearly polarizer (LP2) and received 

and processed by the spectrometer. Both LP1 and LP2 are mounted on mechanical rotators 

controlled by Matlab program. Both can rotate 360° with a precision of 0.05°. LP1 and LP2 are 

collimated before experiment to guarantee maximum signal to be received by the receiver without 

placing the sample. We presume that the incident terahertz is subject to a polarization rotation by 

the sample thus there will be an off-axis (polarization of LP1) angle corresponding to 𝜃𝑖 that we 

need to measure. To retrieve the Faraday rotation, we will apply the so-call Malus’s law [52], 

which reads:  

Figure 2.22 Current experimental setup. 

Figure 2.23 (a) Extraction of rotation angle by fitting of data and Malus’s law [52]. (b) Test of attenuation of THz 

beam by rotating analyzer (LP2). 
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where 𝐼0 is the intensity of the incoming linearly polarized light and 𝜃𝑖 is the rotation angle of 

polarization after transmitted through an analyzer. The law dictates that when completely linearly 

polarized light is impinging on the analyzer, the intensity 𝐼 of the transmitted light is proportional 

to the square of cos 𝜃𝑖 . The extraction of this angle is illustrated in Fig. 2.23(a). By rotating LP2, 

we can plot the transmitted beam power at the receiver versus the rotation angle of LP2. According 

to Malus’s law, there will be two peaks because of the cosine square relation. Then one can fit the 

measured power plot with that calculated from Eq. 2.30. The attenuation of THz signal according 

to Malus’s law and the fitting are plotted in Fig. 2.23(b) within half a circle using our experiment  

setup. If there is no rotation after transmission, the peaks should be located at 0° and 180°. But 

when there is rotation, the peaks will deviate from the original direction in which LP1 and LP2 are 

polarized. The measured Faraday rotation will be compared and matched with COMSOL 

Multiphysics simulations and our theoretical prediction. If the terahertz wave cannot be captured 

and the experiment is unsuccessful, a backup plan will be an IR measurement using the signal 

generated by an FTIR system. Another experiment is to time resolve the transient carrier dynamics 

within the relaxation time scale using the lock-in amplifier. The laser beam path will send a 

linearly/circularly polarized light upon graphene sample and the photoinduced carriers will be 

collected and read by a transimpedance amplifier and a lock-in amplifier. This experiment will 

help us understand and identify intraband and interband transitions and various types of relaxation 

mechanisms.  

 𝐼 = 𝐼0𝑐𝑜𝑠
2𝜃𝑖 , (2.30) 
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3. Graphene in strain fields 

In this chapter, we delve into the examination of strain effects on graphene. Our focus lies in 

the exploration of both uniform and non-uniform strains applied to graphene. In the context of 

uniform strain, we introduce the strain tensor and the Hamiltonian by leveraging a combination of 

tight-binding models and linear elastic theory. We also present an analysis of lattice distortion 

under various types of uniform strain, providing a specific example with the calculation of the 

displacement of Dirac points for armchair uniaxial strain. Furthermore, we calculate the optical 

conductivity of uniformly-strained graphene. Moving on, we study the intriguing realm of non-

uniform strain within graphene. We focus into the band structure, density of states, and the causal 

relationship that links lattice displacement to a pseudomagnetic field in graphene. This 

comprehensive exploration lays the foundation for the forthcoming chapter, where we aim to 

manipulate nonreciprocity in graphene by combining optical pumping and non-uniform strain. 

3.1 Introduction 

Recently, there has been extensive interest in the use of graphene electronics [1], thermal, 

and transport properties [3] upon mechanical deformation for the development of new photonic 

and IR applications [4], [5]. Graphene provides a relatively large mechanical tunability – owing to 

a noteworthy 25% strain which a monolayer graphene can withstand without breaking [5]. 

Remarkably, both theoretical and experimental investigations have revealed the existence of 

strain-induced pseudomagnetic fields in graphene. As large as 300 Tesla magnetic field was 

measured using scanning tunneling microscopy on graphene nanobubbles at the nanoscale [6]. The 

demonstration of such extreme pseudomagnetic, localized, field embraces the possibility of 

studying carrier dynamics in high magnetic field regimes which were previously inaccessible. 

Additionally, it has been shown that designed non-uniform strain or strain gradient can generate 
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uniform pseudomagnetic fields exceeding 10 Tesla [7]. A report also shows stretching along 

graphene’s three crystallographic directions can create measurable large-scale uniform 

pseudomagnetic field near the center of the deformation [8]. This suggests a facile approach to 

launch uniform pseudomagnetic field distributions with profiled surfaces. In general, all these 

strain-induced homogeneous pseudomagnetic fields exhibit positive/negative responses on 

localized regions that cancel out when the entire physical geometry is considered. As a result, 

strain engineering is unable to break time-reversal symmetry.  

3.2 Graphene in uniform strain fields  

3.2.1 Lattice distortion 

In mechanics, the deformation of a body subject to external forces is usually characterized 

by the mechanical strain [9]. In 2D materials, the strain is represented mathematically by a 2 × 2 

tensor: 

Figure 3.1 Vector deformation in physical lattice and reciprocal lattice in graphene under an armchair uniaxial strain. 
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 𝝐 = (
𝜖𝑥𝑥 𝜖𝑥𝑦
𝜖𝑦𝑥 𝜖𝑦𝑦

). (3.1) 

In the specific case of graphene, its bond lengths are subject to change under strain. If 𝒂 represents 

a generally vector in the physical lattice (see Fig. 3.1(a)), then its strained counterpart becomes 

𝒂′ = (𝑰 + 𝝐) ⋅ 𝒂, where 𝑰 is the identity matrix. Several lattice transformations (blue dashed lines) 

under various types of strain are plotted in Fig. 3.2(a) considered a strain strength of 𝜖 = 10%. 

The figure also shows the undistorted lattices (black solid lines) as a reference. Correspondingly, 

a general vector 𝒃 in the reciprocal space (see Fig. 3.1(b)) suffers a transformation governed by 

𝒃′ = (𝑰 + 𝝐)−1 ⋅ 𝒃. The Brillouin zone is bounded by the lines bisecting the reciprocal lattice 

vectors. The six vertexes of the distorted FBZ are called high-symmetry points (HSP). Fig. 3.2(b) 

shows the distorted (blue dashed lines) and undistorted (black solid lines) FBZ. It is important to 

note that HSPs redefine the limits of the FBZ.  

 𝑡𝑛
′ = 𝑡𝑒[−𝛽(|𝜹𝑛

′ | 𝑎⁄ −1)] , (3.2) 

Figure. 3.2 (a) Lattice distortion and (b) reciprocal lattice distortion under four different types of strain. 𝜖 = 10%  

and Poisson’s ratio is 𝜐 = 0.165. 
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An immediate consequence after applying strain on graphene is the change of hopping 

energy which follows an exponential decay [10]: 

where 𝛽 = −𝜕𝑙𝑛𝑡/𝜕𝑙𝑛𝑎  is called the Grüneisen parameter describing the relative change of 

hopping energy with respect to the bond length, 𝜹𝑛
′ = (𝑰 + 𝝐) ⋅ 𝜹𝑛  are the strained hopping vectors 

and 𝑛 runs over all three bonds connecting to the nearest carbon atoms. Then the strained graphene 

Hamiltonian can be written as [10]: 

 𝐻𝑠 = −∑ 𝑡𝑛
′

3

𝑛=1

( 0 𝑒−𝑖𝒌⋅𝜹𝑛
′

𝑒𝑖𝒌⋅𝜹𝑛
′

0
). (3.3) 

Solving equation ℰ(𝒌) = |∑ 𝑡𝑛
′ 𝑒−𝑖𝒌⋅𝜹𝑛

′3
𝑛=1 | = 0 one can find local extrema of bands which are the 

Dirac points, as they exhibit zero energy points in the band structure for gapless graphene. 

Surprisingly, the Dirac points in strained graphene shift away from the HSPs whereas they coincide 

in unstrained graphene, as shown schematically in Fig. 3.3. This evokes the impact on charge 

carriers caused by a magnetic field B applied perpendicularly to the graphene plane. As a case 

Figure 3.3 The distorted HSP, Dirac point and the Dirac cone. Reproduced from  [11]. 
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study, we plotted the distorted FBZ and the calculated Dirac points in Fig. 3.4 for armchair uniaxial 

strain.  

3.2.2 Optical conductivity of uniformly strained graphene  

The optical conductivity of uniformly strained graphene can be calculated using the Kubo 

formalism by integrating over the entire deformed FBZ due to mechanical strain. The Hamiltonian  

in low energy can be approximated as [12]: 

 𝐻𝑠 ≅ ℏ𝑣𝑓𝝈 ⋅ (𝑰 + 𝝐 − 𝛽𝝐) ⋅ 𝒌′ , (3.4) 

where 𝝈 = (𝜎𝑥 , 𝜎𝑦)  and 𝜎𝑥 , 𝜎𝑦  are two Pauli matrices and 𝒌′  is the wavevector in deformed 

reciprocal space. A direct consequence of solving this Hamiltonian is that the band structure is 

deformed. In pristine graphene, the Dirac cone is circular. Given an energy level, the iso-energy 

Figure. 3.4 Unstrained (black solid) and strained (blue dashed) FBZ, strained Dirac points (green dots) and 

displacement of Dirac points (red arrows). The strain type is Armchair uniaxial strain with a magnitude of 5%. 
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contour in the reciprocal space is circular. However, the new iso-energy contour is deformed in 

reciprocal space and has the relation with that of unstrained graphene by:  

 𝒌 = (𝑰 + 𝝐 − 𝛽𝝐) ⋅ 𝒌′ , (3.5) 

so the iso-energy contour may not be circular and depending on the strain type it can be elliptical 

under uniaxial strain and remains circular under isotropic strain. The electron wavefunction 

velocity operators are also deformed in reciprocal space and is essential in our calculation of 

strained graphene. Here we compute the contributions to the Hall conductivity from 𝐾 and 𝐾′ 

valleys individually and their sums as a function of frequency under armchair (upper panels) and 

zigzag (lower panels) uniaxial strain for three strain magnitudes and plot them in Fig. 3.5. For 

armchair strain, both real and imaginary parts of the two valleys increase as strain magnitude 

increases. The values from two valleys have opposite signs but the same modulus. When summed 

up, their total contribution to Hall conductivity vanished as shown in Fig. 3.5(c), which implies 

Figure 3.5 Frequency dependence of Hall conductivity computed from 𝐾 valley and 𝐾′  valleys and their sums 

under (a)-(c) armchair and (d)-(f) zigzag uniaxial strain for several strain magnitudes. The parameters used are 

𝜇 = 0.2 𝑒𝑉, 𝜏 = 0.1 𝑝𝑠 . 
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that uniform strain does not violate TRS. Both real and imaginary parts of the two valleys decrease 

as strain magnitude increases but not as much as they increase for armchair strain. The change 

upon strain is slightly for zigzag so that we will potentially use armchair strain to engineering the 

Hall conductivity of graphene in the future. We also plot the diagonal conductivity 𝜎𝑥𝑥  and 𝜎𝑦𝑦  as 

a function of frequency for several strain magnitudes in Fig. 3.6. Results show that 𝜎𝑥𝑥  increases 

with strain magnitude but 𝜎𝑦𝑦  decreases, thus leading to an effectively anisotropic surface.  

Figure 3.6 Frequency dependence of diagonal conductivities under (a) and (b) Armchair and (c) and (d) Zigzag 

uniaxial strain for several different strain magnitudes. Parameters used are 𝜇𝑐 = 0.2 𝑒𝑉, 𝜏 = 0.1 𝑝𝑠 . 
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3.3 Graphene in non-uniform strain 

As we discussed in the previous section, when mechanical strain changes smoothly over 

distances comparable to interatomic spacing, it maintains sublattice symmetry and instead distorts 

the Brillouin zone in a manner that results in the displacement of the graphene's Dirac cones 

situated at 𝐾 and 𝐾′ points in opposite directions. However, the application of non-uniform strain 

to graphene has emerged as a powerful tool to tailor its band structure and explore novel physical 

phenomena. Non-uniform strain refers to strain distributions that are spatially varying, as opposed 

to uniform strain applied uniformly. Non-uniform strain in graphene introduces a rich panorama 

of effects, including the emergence of pseudomagnetic fields, localized electronic states, and the 

potential to engineer topological phases. Among them, the existence of pseudomagnetic fields, as 

has been proved by experiments [16], transforms the linear dispersion and continuous energy states 

to discretized Landau levels, strongly mimicking the behavior of real magnetic fields. However, 

as opposed to the effect of real magnetic fields which break time-reversal symmetry, a 

pseudomagnetic field rather shifts the two Dirac cones in opposite directions, which can be 

captured by opposite pseudo-vector potentials. The implication of this is the unbroken time-

reversal symmetry of under non-uniform strain, since the net Hall effect induced by the opposite 

pseudomagnetic field cancels out in 𝐾 and 𝐾′ valley.  

Understanding the interplay between strain and electronic properties in non-uniformly 

strained graphene holds great promise for the development of advanced electronic and 

optoelectronic devices. This section primarily delves into the connection between non-uniform 

strain applied to graphene and the pseudomagnetic fields generated as a result of this strain, 

shedding light on the innovative possibilities it offers for engineering and the realization of novel 

nonreciprocal phenomena.  
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3.3.1 Strain-induced pseudomagnetic fields 

The strain tensor induced by structural deformation in graphene is characterized by 

 𝜖𝑖𝑗(𝒓) =
1

2
(𝜕𝑖𝑢𝑗(𝒓)+ 𝜕𝑗𝑢𝑖(𝒓) + 𝜕𝑖ℎ(𝒓)𝜕𝑗ℎ(𝒓)), (3.7) 

where 𝒖(𝒓) and ℎ(𝒓) are the in-plane and out-of-plane deformation fields, respectively, 𝒓 denotes 

the position in the 𝑥 − 𝑦 plane. The deformation fields can be determined by high-resolution 

atomic force microscopy (AFM). If we mainly focus on the out-of-plane deformation induced by 

nanostructures that induce vertical lattice distortion much bigger than in-plane lattice distortion, 

the strain components can be calculated as: 

 𝜖𝑥𝑥 =
1

2
(
𝜕ℎ(𝒓)

𝜕𝑥
)

2

, (3.8) 

 
𝜖𝑦𝑦 =

1

2
(
𝜕ℎ(𝒓)

𝜕𝑦
)

2

, (3.9) 

 
𝜖𝑥𝑦 =

1

2

𝜕ℎ(𝒓)

𝜕𝑥

𝜕ℎ(𝒓)

𝜕𝑦
. (3.10) 

The pseudo-gauge field or vector potential 𝑨 originated from the strain field is expressed as 

 𝑨 =
𝛽

𝑎
(
𝜖𝑥𝑥 − 𝜖𝑦𝑦
−2𝜖𝑥𝑦

), (3.11) 

where 𝑎 is the lattice constant and 𝛽 = −𝜕ln𝑡/𝜕ln𝑎 is the Grüneisen parameter. The resulting 

pseudomagnetic field 𝐵𝑠from this vector potential 𝑨  can be expressed in terms of the strain 

components: 
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 𝐵𝑠 =
𝛽

𝑎
(𝜕𝑦𝜖𝑥𝑥 (𝑥,𝑦) − 𝜕𝑦𝜖𝑦𝑦 (𝑥, 𝑦) + 2𝜕𝑥𝜖𝑥𝑦 (𝑥, 𝑦)). (3.12) 

An immediate observation from the above equation is that with uniform strain fields 𝑨 = const, 

which yield zero 𝐵𝑠. Therefore, pseudomagnetic field can only be created by non-uniform strain. 

It is easy to show that a uniform pseudomagnetic field can be implemented by the following two-

dimensional displacement fields in its polar coordinate representation [13] 

 𝑢(𝒓,𝜃) = (
𝑢𝑟

𝑢𝜃
) = (𝑐𝑟

2 sin 3𝜃
𝑐𝑟2 cos 3𝜃

),  (3.13) 

where 𝑐 is a constant determining the strength of the displacement field. In the following, the x-

axis is chosen to be the zigzag direction of the graphene honeycomb lattice. To visualize how 

graphene is distorted with the above displacement field, we use a graphene disc which is shown in 

Fig. 3.7 and apply the field 𝑢(𝒓, 𝜃)  in Eq. 3.13. We can clearly see that the graphene disc is 

stretched towards the three equivalent crystallographic directions 〈100〉. The resulting uniform 

Figure 3.7 A graphene circular disc with mesh points (blue dots) and the distorted lattice (red dots) with the 

displacement field given by Eq. 3.13. The inset shows the orientation of a single graphene hexagonal lattice. 
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pseudomagnetic field is readily calculated to be 𝐵𝑠 =
8𝛽𝑐

𝑎
 using the polar form of Eq. 3.7 and 3.12.  

However, to generate such displacement fields, the needed realistic applied forces on the graphene 

disc still have to be investigated. It is demonstrated that such distortion can be generated by in-

plane forces only at the perimeter [13] 

 𝐹𝑥(𝜃) ∝ 𝜇 sin 2𝜃 , 𝐹𝑥(𝜃) ∝ 𝜇 cos 2𝜃, (3.14) 

where 𝜇 is the shear modulus. The forces applied at the perimeter of graphene disc is shown in Fig. 

3.8. It is difficult to create such strain experimentally because it involves tangential forces and both 

compression and stretching simultaneously.  

On the other hand, it has been shown that when graphene is placed on metasurfaces, it can 

likewise give rise to pseudomagnetic fields. There are a variety of metasurfaces that could be 

potential candidates. To analyze the local strain distribution, we utilized the example of strained 

graphene on nanopillars array from Ref. [14], as shown in the SEM image in Fig. 3.9(a). The 

topology of two-unit cells is reconstructed in Fig. 3.9(b). In this representation, the brightest areas 

Figure 3.8 The distribution of external forces applied at the perimeter of the graphene disc (black arrows) that 

would induce the distortion in Fig. 3.7. 
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correspond to a height of 300 nm, while the darkest areas signify a height of 0 nm. The lateral 

dimensions of the nanopillars are approximately 300 nm. Due to the pronounced structural 

deformation around the sharp corners and edges of the nanopillars, a significant tensile strain of 

approximately 6.5% is observed at the atomic scale. By decomposing the strain distribution into 

its x and y components, illustrated in the Fig. 3.9(c) (𝜖𝑥𝑥 ) and Fig. 3.9(d) (𝜖𝑦𝑦 ), respectively, we 

observed that 𝜖𝑦𝑦  is nearly negligible where 𝜖𝑥𝑥  is maximized. However, since the 

pseudomagnetic fields are only generated on the sharp edges of the nanopillars, it is still difficult 

to resolve the carrier properties in those regions for some optical systems. Therefore, it is highly 

desirable to obtain uniform pseudomagnetic field over a large area using simple straining 

approaches.  

A facile and effective way to achieve extreme pseudomagnetic fields with uniform 

distributions across a large planar graphene sheet is through uniaxial stretching [15]. Notice that 

the uniaxial stretching we are discussing here would result in some strain gradient along a specific 

graphene crystallographic direction instead of uniform strain which would lead to zero 

pseudomagnetic field that we mentioned in previous section. Assuming a uniform pseudomagnetic 

Figure 3.9 (a) Tilted view of SEM image of strained graphene sheet on nanopillar array. (b) reconstructed topology 

of two nanopillar unit cells from AFM data. (a) and (b) adapted from Ref. [14]. 
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field can be obtained through a specific uniaxial strain. The stress tensor components 𝜎𝑖𝑗 are 

correlated with the strain tensor components 𝜖𝑖𝑗  in the form of 

 𝜎𝑥𝑥 =
𝐸

1− 𝜈2
(𝜖𝑥𝑥 + 𝜈𝜖𝑦𝑦), (3.14) 

 𝜎𝑦𝑦 =
𝐸

1− 𝜈2
(𝜖𝑦𝑦 + 𝜈𝜖𝑦𝑦), (3.15) 

 𝜎𝑥𝑦 = 2𝜇𝜖𝑥𝑦 , (3.16) 

where 𝐸𝑔  is graphene Young’s modulus, 𝜈 is Poisson’s ratio and correlated with the shear modulus 

𝜇 by 𝜇 =
𝐸

2(1+𝜈)
. The stress equilibrium requires that 

 
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
= 0  and   

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
= 0. (3.17) 

For uniaxial strain along graphene armchair direction, there is 𝜖𝑥𝑥 = −𝜈𝜖𝑦𝑦. Therefore, we can 

solve Eq. 3.14-3.17 and obtain 

 
𝜕𝜖𝑥𝑦
𝜕𝑦

= 0,
𝜕𝜖𝑥𝑦
𝜕𝑥

= −(1 + 𝜈)
𝜕𝜖𝑦𝑦
𝜕𝑦

, (3.18) 

Substituting Eq. 3.18 into Eq. 3.12 we arrive to the following equation which dictates the general 

requirements for generating a uniform pseudomagnetic field 

 𝐵𝑠 =
3𝛽

𝑎
(1 + 𝜈)

𝜕𝜖𝑦𝑦
𝜕𝑦

. (3.19) 
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The above equation reveals that uniform pseudomagnetic field can be realized using uniaxial strain 

in graphene. For example, a constant strain gradient 𝜕𝜖𝑦𝑦/𝜕𝑦, i.e., a linear tensile strain along the 

armchair direction of the honeycomb lattice can generate a uniform pseudomagnetic field across a 

large area in graphene.  

Let us now consider a tapered graphene ribbon as depicted in Fig. 3.10(a). Note that our 

analysis holds for geometries beyond trapezoidal. The ribbon basal width is set to be 𝑊0  and length 

𝐿. The wrist width at a given point 𝑦 is described by a function 𝑊 = 𝑓(𝑦)𝑊0 . Let us assume that 

the external forces are applied evenly at the top and bottom edges.  When the length is much larger 

than the wrist 𝐿, it is reasonable to assume that the strain 𝜖𝑦𝑦  stays constant along any cross-section 

cut in 𝑥 direction except in the vicinity of the corners. Following the stress-strain relation, the 

forces balance along any cross-section cut of the graphene nanoribbon in 𝑥 direction requires 

Figure 3.10 (a) The schematic of the graphene nanoribbon. (b)  Designed graphene nanoribbon that would generate 

uniform pseudomagnetic field over large area. (c) The relation between the intensity of pseudomagnetic field and 

graphene nanoribbon length for several global uniaxial strain intensity of 𝜖𝑎𝑝𝑝 = 5%, 10%  and 15% . 
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 𝐹 = 𝐸𝑔𝜖𝑦𝑦𝑓(𝑦)𝑊0ℎ, (3.20) 

where 𝐹 is the force applied at the two parallel sides to generate the tensile strain and ℎ = 0.34 nm 

is the thickness of the graphene monolayer. Rearranging the two sides of Eq. 3.20 and take the 

derivative of both sides with respect to 𝑦 leads to 

 
𝜕𝜖𝑦𝑦
𝜕𝑦

= −
𝐹

𝐸𝑔𝑊0ℎ

1

𝑓2

𝜕𝑓

𝜕𝑦
. (3.21) 

For a linear distribution of 𝜖𝑦𝑦  along 𝑦 direction, i.e., 
𝜕𝜖𝑦𝑦

𝜕𝑦
= const, there is the relation for the 

wrist function 𝑓 

 
1

𝑓2

𝜕𝑓

𝜕𝑦
= 𝐶, (3.22) 

where 𝐶 is a constant. Using the boundary conditions 𝑓(0) = 1 and 𝑓(𝐿) = 𝑓𝐿 , the solution of the 

wrist function is given by 

 𝑓(𝑦) =
𝑓𝐿𝐿

𝑓𝐿 (𝐿 − 𝑦) + 𝑦
, (3.23) 

and  

 𝐶 =
𝑓𝐿 − 1

𝑓𝐿𝐿
. (3.24) 

From the above equations, one can engineer uniform pseudomagnetic fields by properly designing 

the shape of the graphene nanoribbon. The shape of a graphene nanoribbon with parameters 𝐿 =
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25 nm, 𝑊0 = 10 nm, 𝑓𝐿 = 0.3 is drawn in Fig. 3.10(b). The applied force can be related with the 

global deformation by 

 ∫ 𝜖𝑦𝑦𝑑𝑦 = Δ𝐿,
𝐿

0

 (3.25) 

where Δ𝐿 is related to the global uniaxial strain 𝜖𝑎𝑝𝑝  by 𝜖𝑎𝑝𝑝 = Δ𝐿/𝐿. Solving Eq. 3.25 give rise 

the solution of 𝐹 

 𝐹 =
2Δ𝐿𝐸𝑔𝑓𝑟𝑊0ℎ

(1 + 𝑓𝑟)𝐿
. (3.26) 

Substituting Eq. 3.26 and 3.23 into Eq. 3.21 gives 

 𝐵𝑠 =
6𝛽

𝑎

𝜖𝑎𝑝𝑝 (1 − 𝑓𝑟)

𝐿(1 + 𝑓𝑟)
(1 + 𝜈). (3.27) 

A parametric study informs that the intensity of the pseudomagnetic field is linear proportional to 

the applied uniaxial strain 𝜖𝑎𝑝𝑝  inversely proportional to the graphene nanoribbon length. This can 

be seen from the plot in Fig. 3.10(c). 

3.3.2 Electronic band structure of graphene under non-uniform strain 

Recent theoretical research suggests that when graphene layers experience strain, it generates 

a pseudomagnetic field, resulting in observable Landau levels. In a study conducted by Levy and 

colleagues [16], scanning tunneling microscopy was employed to investigate the energy states of 

graphene grown on a platinum surface, forming highly strained "nanobubbles." This strain is 

equivalent to exposing the material to extremely high magnetic fields, surpassing 300 Tesla. 
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Consequently, the application of strain is shown to effectively alter the electronic properties of 

graphene. 

Non-uniform strain causes the energy-momentum relation near the Dirac points to deviate 

from the ideal linear dispersion, and this deviation can be described as the generation of 

pseudomagnetic fields. The strain-induced pseudomagnetic field gives rise to "pseudo-Landau 

levels" within each valley which is schematically shown in Fig 3.11 where only five Landau levels 

are drawn. These levels in strained graphene behave similarly to the Landau levels in real magnetic 

fields [14]. The strength and orientation of the pseudomagnetic field can be different for the K and 

K' valleys. This implies that the two valleys can exhibit distinct responses to the same strain profile, 

resulting in intriguing electronic and transport properties, while the time-reversal symmetry (TRS) 

remains intact, much like in the case of uniform strain.  

In this scenario, the density of states (DOS) transitions from a linear relationship with respect 

to energy to a spectrum in which the density is accumulated on discrete Landau levels. Such 

response is governed by the relation [14] 

Figure 3.11 Five pseudo-Landau levels in 𝐾 and 𝐾′  valleys in graphene under non-uniform strain. 
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 DOS(𝐸) =
1

𝜋
∑

𝛾

(𝐸 −𝐸𝑛)
2 + 𝛾2

𝑛

, (3.13) 

where 𝛾 = 7 𝑚𝑒𝑉 is the broadening factor of Laudau level. Figure 3.12 shows the calculated DOS 

for strained graphene under various pseudo-magnetic field conditions (10, 40 and 80 T). 

3.4 Exploiting pseudo-magnetic fields with low-B  

As described above, certain types of nonuniform strain can behave as pseudomagnetic field 

acting on different valleys in the reciprocal space. The contributions to Hall conductivity from 𝐾 

and 𝐾′  valleys cancel out yielding zero net Hall conductivity and overall TRS is not broken. 

Effectively, we have 𝐵𝑝𝑠  in 𝐾  valley and −𝐵𝑝𝑠  in 𝐾′  valley. Notice that this only happens in 

reciprocal space rather than physical space. An external magnetic field acts in physical space, it 

renders the same value everywhere in reciprocal space. Thus, the total magnetic field in 𝐾 valley 

is 𝐵𝑝𝑠 +𝐵𝑒 while in 𝐾′  valley we have −𝐵𝑝𝑠 +𝐵𝑒 and they do not cancel each other out and will 

Figure 3.12 The Density of States is calculated for strained graphene under pseudo-magnetic fields of 10 T (black), 

40 T (red), and 80 T (blue). These calculations employ the broadening parameter γ = 7 meV. 



85 

 

give rise to large FR nearly the cyclotron frequency mainly determined by 𝐵𝑝𝑠. The amplitude 

largely depends on 𝐵𝑒 and 𝜏.  

To obtain the Hall conductivity for strained graphene under a magnetic field, we follow the 

approach outlined in [17] based on mathematical fitting the Kubo formula under magnetic field as 

present in Eq. 2.14. The Hall conductivity for strained graphene calculated from 𝐾 and 𝐾′ valleys 

are fitted by Eq. 2.14 individually to correlate with an effective pseudomagnetic field ±𝐵𝑝𝑠
𝑒𝑓𝑓 . The 

total effective magnetic field in presence of an external magnetic field will be 𝐵𝑒±𝐵𝑝𝑠
𝑒𝑓𝑓for 𝐾 and 

𝐾′ valleys respectively. Therefore, the total Hall conductivity can be obtained by: 

Figure 3.13 Hall conductivity computed considering 𝐾 and 𝐾′  valleys respectively and the corresponding Faraday 

rotation of strained graphene and of strained graphene under a small magnetic field . 𝜏 = 1 𝑝𝑠 , 𝜇𝑐 = 0.35 𝑒𝑉, 𝐵𝑝𝑠 =

5 𝑇 , 𝐵𝑒𝑥𝑡 = 0.5 𝑇. 
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 𝜎𝑥𝑦 (𝜔,𝐵𝑒) = 𝜎𝑥𝑦,𝐾(𝜔, 𝐵𝑒+𝐵𝑝𝑠
𝑒𝑓𝑓)+ 𝜎𝑥𝑦 ,𝐾′ (𝜔, 𝐵𝑒−𝐵𝑝𝑠

𝑒𝑓𝑓). (3.6) 

To illustrate the idea, we plot the Hall conductivity and the corresponding Faraday rotation 

angle in Fig. 3.13 under an effective pseudomagnetic field which mimics the role of strain with 

and without a small external magnetic field to break the reciprocity. In Fig. 3.13(a), with only 

strain being applied, the contributions from 𝐾 and 𝐾′ valleys are large but their sum is zero so that 

the reciprocity is not broken. However, in Fig. 3.13(b), when a small external magnetic field is 

applied, it breaks the balance between the opposite pseudomagnetic field  in the two valley such 

that the spectra of the conductivity from 𝐾 and 𝐾′ valleys shift in opposite direction thus creating 

a large Faraday rotation angle. The increasing strain magnitude does boost the diagonal 

conductivity from 𝐾 and 𝐾′ valleys. Graphene strain engineering opens up ways to obtain non-

reciprocity combining different TRS-breaking techniques, alleviating the need of large magnetic 

field.  

3.5 Conclusions and future work 

This chapter has explored uniform and non-uniform strain on pristine graphene. The uniform 

strain does not break TRS and the overall Hall conductivity remains zero after graphene is strained. 

In contrast, non-uniform strain profoundly modifies the band structure of graphene. The 

continuous energy dispersion is quantized with non-equidistant spacings which would possibly 

open up opportunity of separately optically addressing those transitions associated with them. The 

strain-induced pseudomagnetic field further indicates that the optical transitions in 𝐾  and 𝐾′ 

valleys would follow distinct selection rules, which if combined with optical pumping of CP light, 

could contribute to conceptualizing a novel approach to the realization of magnetless 

nonreciprocity in 2D materials. 
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Future works following the theoretical investigation of strain-induced pseudomagnetic field 

include the experimental demonstration of such field. This could be carried out by Hall 

measurement. There are several possibilities to generate non-uniform strain in graphene. For 

instance, one can strain engineer graphene using commercialized strain cells [19]. This is 

illustrated in Fig. 3.14(a) where a sample with graphene on top of a silicon chip is either contracted 

or compressed uniaxially by two sets of piezoelectric stacks of a strain cell. Another approach 

relies on placing graphene on a set of dielectric substrates perforated with periodic nanohole arrays 

as shown in Fig. 3.14(b).  
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4. Optically pumped strained graphene  

Chapter 2 focused on optically-pumped gapped graphene and derived techniques to calculate 

the population and conductivity of this 2D material. The underlying reason for this choice is that, 

in order to obtain net Hall effect, it is required to have a 2D material with hexagonal lattice structure 

that possesses distinct optical selection rules for its two valleys (K and K’). The use of rotating 

wave approximation (RWA) adds another drawback to the same method, restricting it from being 

applicable to a large number of systems beyond gapped Dirac systems. From the discussion of 

Chapter 3, we are enlightened with the idea that strained-induced pseudomagnetic field can be 

used to enable distinct optical selection rules within the two valleys, lifting the restriction of using 

gapped Dirac systems.  In this chapter, a more accurate theory will be considered to model the 

carrier dynamics in optically-pumped strained pristine graphene and other 2D systems. The carrier 

dynamics in strained graphene considering the carrier-carrier scattering after optical excitation is 

thoroughly investigated using density matrix formalism. No certain strain scenario is presumed, 

and therefore a Landau quantized graphene attributed to a non-uniform pseudomagnetic field 

caused by some unknown strain profile is considered. We first start by re-evaluating the tight-

binding model for Laudau-quantized graphene. The optical selection rules are revisited using an 

optical matrix element approach different from the dipole matrix element approach described in 

Chapter two. For carrier relaxation mechanism, we focus on the carrier-carrier scattering and 

investigate its dominant role in the carrier redistribution after optical excitation and before thermal 

equilibrium. To calculate the imbalanced population in strained graphene upon optical pump of a 

circularly polarized light, we assume opposite magnetic field in the graphene K and K’ valleys. 

The population imbalance between the two valleys will be presented together with the resulting 

conductivity calculated by summing up the perturbed Landau levels within the Kubo formalism. 
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Due to the high complexity involved in this coupled system of differential equations employed to 

model these responses, achieving an analytical solution is unfeasible in most scenarios. 

Consequently, our findings are obtained through the numerical evaluation of these differential 

equations. Our results suggest that merging strain engineering and optical pump will open new 

possibilities to break and manipulate electromagnetic nonreciprocity.  

4.1 Tight-binding model for Landau-quantized graphene 

To calculate the dispersion relation of Landau-quantized graphene, let us first write down 

the graphene Hamiltonian in the low-energy regime [1] as 

 𝐻 = 𝑣𝐹𝝈𝜉 ⋅ 𝒑 = 𝑣𝐹 (
0 𝜉𝑝𝑥 − 𝑖𝑝𝑦

𝜉𝑝𝑥 + 𝑖𝑝𝑦 0
), (4.1) 

where 𝒑 = (𝑝𝑥 , 𝑝𝑦) is the momentum and 𝜉 = ±1 is the valley index. Using the substitution of 

momentum 𝒑 → 𝝅 = 𝒑+ 𝑒𝑨(𝒓) to account for an external magnetic field, the Hamiltonian can be 

formulated as [1] 

 𝐻𝐵 = 𝑣𝐹𝝈𝜏 ⋅ 𝝅 = 𝑣𝐹 (
0 𝜏𝜋𝑥 − 𝑖𝜋𝑦

𝜏𝜋𝑥 + 𝑖𝜋𝑦 0
). (4.2) 

For simplicity, the ladder operators are defined as  

 𝑎† =
𝑙𝐵

√2ℏ
(𝜋𝑥 + 𝑖𝜋𝑦), 𝑎 =

𝑙𝐵

√2ℏ
(𝜋𝑥 − 𝑖𝜋𝑦), (4.3) 

where 𝑙𝐵 = √ℏ/(𝑒𝐵) is the magnetic length. The relations 𝑎†|𝑛⟩ = √𝑛 + 1|𝑛+ 1⟩  and 𝑎|𝑛⟩ =

√𝑛|𝑛 − 1⟩  define the number operator 𝑁 = 𝑎†𝑎 . Then, the Hamiltonian for electrons in 

graphene’s 𝐾 and 𝐾′ valleys are simplified to 
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 𝐻𝐵
𝐾 = ℏ𝜔𝑐 (

0 𝑎
𝑎† 0

),     𝐻𝐵
𝐾′

= −ℏ𝜔𝑐 (
0 𝑎†

𝑎 0
), (4.4) 

where 𝜔𝑐 = √2𝑣𝐹/𝑙𝐵 is the cyclotron frequency. Then, the Schrodinger equation 𝐻𝐵
𝜏|𝝍⟩ = ℰ|𝝍⟩ 

is solved, which allows to determine electron’s energy and wave function as [2]-[3] 

 ℰ𝑛
𝜆 = 𝜆√𝑛ℏ𝜔𝑐 = 𝜆𝑣𝐹√2𝑛ℏ𝑒0𝐵, (4.5) 

         |𝝍⟩ =
𝛼𝑛

√2
(

|𝑛⟩

𝜉𝜆|𝑛 − 1⟩
) , 𝛼𝑛 = {√2, 𝑛 = 0

0, 𝑛 ≠ 0
,  (4.6) 

where 𝜆 = ±1 is the band index. The Landau-quantized energy levels are not equidistant spaced 

as compared to conventional two-dimensional electron gases due to the graphene’s intrinsic linear 

dispersion. The first few Landau levels are plotted as a function of magnetic field in Fig. 4.1. We 

can see that the spacing of the adjacent energy level grows following a square root relation with 

respect to the magnetic field. Note that the external magnetic field can also interact with the 

magnetic moment due to the electron spin, which would give rise to the phenomena called the 

Zeeman effect where each Landau level splits into two distinct energy branches with different spin 

states. However, as can be seen in Fig. 3.12, the Landau level broadening caused by electron-

impurity scattering actually superimposes with Zeeman splitting. However, this effect is small and 

will be neglected in the scenarios considered in this Thesis. 

In graphene under a magnetic or pseudomagnetic field, each Landau level is indeed 

degenerate, and the quantum number that distinguishes the states within a single Landau level is 

the magnetic quantum number, often denoted as 𝑚 . This quantum number arises from the 

quantization of the orbital motion of electrons in a magnetic field. In the context of the Landau 

level quantization, the magnetic quantum number 𝑚  corresponds to different states within the 
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same Landau level that have the same energy but differ in their momentum or position in the 

cyclotron orbit. These states are degenerate because they are energetically equivalent in the 

presence of a uniform magnetic field. Therefore, while the Landau level index 𝑛 determines the 

energy level in the magnetic field, the magnetic quantum number 𝑚 differentiates between the 

degenerate states within each of these energy levels. This degeneracy is a key characteristic of the 

quantum Hall effect observed in graphene and other two-dimensional electron systems. To this 

end, the wavefunction described by Eq. 4.6 needs to take into account this quantum number 𝑚, 

which can be expressed as 

 |𝝍⟩ =
𝛼𝑛

√2
(

|𝑛,𝑚⟩

𝜉𝜆|𝑛 − 1,𝑚⟩
). (4.7) 

Figure 4.1 The dispersion of Laudau-quantized graphene under a homogeneous magnetic field as a function of the 

magnetic field with the first few Landau levels shown. 



94 

 

Therefore, the momentum degree of freedom in the absence of an external magnetic field is then 

replaced by the quantum numbers 𝑛 and 𝑚 in the presence of an external magnetic field. The area 

of a cyclotron orbit is given by the uncertainty [3] 

 ∆𝑋∆𝑌 = 2𝜋𝑙𝐵
2 . (4.8) 

As a result, the degeneracy of each Landau level is given by [3] 

 𝑁𝐵 =
𝐴

∆𝑋∆𝑌
=

𝐴𝑒0𝐵

2𝜋ℏ
, (4.9) 

where 𝐴 is the area of the graphene sheet and the quantum number 𝑚 may assume integer number 

from 0 to 𝑁𝐵 − 1. 

Analogue to the case in the absence of a magnetic field, the wavefunction in the presence of 

a magnetic/pseudo-magnetic field can also be described by a superposition of the wavefunctions 

at the two sublattices [3], 

 Ψ(𝒓,𝜆𝑛,𝑚, 𝜉) =
1

√𝑁
∑ ∑𝑐𝑙(𝒓,𝜆𝑛,𝑚, 𝜉)𝑒𝑖𝜉𝑲⋅𝑹𝑙

𝑹𝑙

𝜙(𝒓 − 𝑹𝑙),

𝑙∈{𝐴,𝐵}

 (4.10) 

where 𝑹𝑙 represents the coordinate of the two sublattices 𝐴 and 𝐵. The coefficient 𝑐𝑙 is the spatial 

representation of the wavefunction in Eq. 4.10 using the relation ⟨𝑹|𝝍⟩ = (𝑐𝐴, 𝑐𝐵), and yields 

 

𝑐𝐴(𝒓,𝜆𝑛,𝑚, 𝜉) =
𝛼𝑛

√2
⟨𝑹|𝑛,𝑚⟩, 

𝑐𝐵(𝒓,𝜆𝑛,𝑚, 𝜉) =
𝛼𝑛

√2
𝜉𝜆⟨𝑹|𝑛 − 1,𝑚⟩. 

(4.11) 
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The wavefunction is normalized using ⟨Ψ(𝒓,𝜆′𝑛′ , 𝑚′ , 𝜉′)|Ψ(𝒓,𝜆𝑛,𝑚, 𝜉)⟩ = 𝛿𝜆,𝜆′𝛿𝑛,𝑛′𝛿𝑚,𝑚′𝛿𝜉,𝜉′ 

and the explicit form of ⟨𝑹|𝑛,𝑚⟩ is given by 

 ⟨𝑹|𝑛,𝑚⟩ = √𝑁𝐵𝑖
|𝑛−𝑚|√

min(𝑛,𝑚)!

max(𝑛,𝑚)!
, (4.12) 

with the vector 𝑹 = (𝑅, 𝜑)  in expressed in polar coordinates, and 𝑅̃ = 𝑅2/2𝑙𝐵
2  and 𝐿𝑛

𝛼  the 

generalized Laguerre polynomials, respectively. 

4.2 Optical matrix element 

The optical matrix element is a crucial concept in the study of light-matter interactions, 

especially in the context of optical transitions in materials such as semiconductors or graphene 

[3],[7]. It is a fundamental component in calculating the probability of transitions between different 

quantum states of a system due to the absorption or emission of photons. In the case of optical 

transitions, the Hamiltonian typically involves the electric dipole interaction, which can be 

approximated as [3] 

 𝑯𝑖𝑛𝑡 = 𝑖ℏ
𝑒0
𝑚0

∑𝑴𝑖𝑓 ⋅ 𝑨(𝑡)𝑎𝑓
†
𝑎𝑖

𝑖 ,𝑓

, (4.13) 

where 𝑒0 and 𝑚0 are the electron charge and mass, (𝑖, 𝑓) denote the initial and final states, 𝑨(𝑡) is 

the vector potential of the incident electromagnetic wave. The optical matrix element is central to 

determining the transition rate or the absorption/emission coefficients, as dictated by Fermi's 

Golden Rule, which states that the probability of a transition is proportional to the square of the 

magnitude of the optical matrix element [8],[9]. In simpler terms, it gives a measure of how 

"strongly" a particular electronic transition is coupled to the electromagnetic field of the incoming 

light. In quantum mechanics, the optical matrix element is defined as the matrix element of the 
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interaction Hamiltonian (or perturbation) between the initial and final states of the system. 

Mathematically, it is represented as [4]: 

 𝑴𝑖𝑓 = ∫𝑑𝒓Ψ𝑓
∗(𝒓)∇Ψ𝑖(𝒓), (4.14) 

where Ψ𝑖(𝒓) and Ψ𝑓(𝒓) are the initial (ground state) and final state (excited state) of the electronic 

transition of unperturbed graphene. Within the tight-binding model basis, the optical matrix 

element can be calculated as [4] 

 𝑴𝑖𝑓 = 𝑖𝛿𝜉𝑖,𝜉𝑓
𝛿𝑚𝑖,𝑚𝑓

𝛼𝑛𝑖
𝛼𝑛𝑓

𝑚0𝑣𝐹

2√2ℏ
[𝜆𝑖𝝐̂

−𝛿𝑛𝑓,𝑛𝑖−1 + 𝜆𝑓 𝝐̂
+𝛿𝑛𝑓,𝑛𝑖+1], (4.15) 

where 𝑚0 is the mass of the free electron and 𝝐̂± = (𝒆̂𝑥 ∓ 𝑖𝒆̂𝑦)/√2 denote the Jones vectors of 

left and right-handed circularly polarized light. The polarization of the external electric field is 

decomposed in circularly polarized basis, defined in such a way that the angular momentum of the 

photon of 𝜎+ -polarization (𝜎− -polarization) is parallel (anti-parallel) to the magnetic field. 

Figure 4.2 Allowed interband optical transitions in Landau-quantized graphene for 𝜎+ and 𝜎− polarizations with the 

only first few Landau levels sketched. 
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Assuming the light travels in the same direction as the magnetic field, both oriented along the z-

axis (i.e., perpendicular to the graphene sheet), 𝜎+ and 𝜎− polarizations of light correspond to left 

(𝝐̂+) and right (𝝐̂−) circular polarizations, respectively, with the polarization being defined from 

the perspective of the observer. The allowed interband optical transitions in Landau-quantized 

graphene for 𝜎+ and 𝜎− polarizations are sketched in Fig. 4.2.  

 The Kronecker Delta 𝛿𝜉𝑖,𝜉𝑓
 dictates the conserving nature of the optical selection rules on 

valley degree of freedom. The Kronecker Deltas 𝛿𝑛𝑓,𝑛𝑖±1 express that the optical transition can 

only happen between Landau levels with ∆𝑛 = ±1. The quantum number 𝑚 is connected to the 

cyclotron orbit of electrons under magnetic fields. The Kronecker Delta 𝛿𝑚𝑖,𝑚𝑓
 prohibits the 

transfer of electrons in distinct cyclotron orbits. In the presence of a magnetic field, the concept of 

momentum conservation is modified due to the influence of the magnetic force on charged 

particles. In quantum mechanics, in the context of electrons in a magnetic field (as in the case of 

Landau levels), the relevant quantum number that dictates the behavior of the system under these 

conditions is not directly the usual linear momentum quantum number, but rather quantum 

numbers (𝑛,𝑚 ) and the angular momentum 𝑚𝑧 = 𝑛 −𝑚 . Since the Kronecker Delta 𝛿𝑚𝑖,𝑚𝑓
 

restricts any change from 𝑚𝑖 to 𝑚𝑓 during optical transitions, the Landau level quantum number 

𝑛 directly reflects ∆𝑚𝑧, which corresponds to an angular momentum transfer of ∆𝑚𝑧 = ±1. 

4.3 Optical pump 

Following the derivation developed by Wendler et al. [4], the optical excitation is 

mathematically expressed using the time dependent magnetic vector potential (expressed in the 

same xy plane as the graphene layer) as [5] 
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 𝑨(𝑡) = 𝐴𝑒𝑛𝑡(𝑡) [𝐴0
+ (

cos 𝜔𝑡
sin 𝜔𝑡

) + 𝐴0
− (

cos 𝜔𝑡
−sin 𝜔𝑡

)], (4.16) 

where 𝐴0
± ≠ 0 ∧ 𝐴0

∓ = 0 (𝐴0
+ = 1, 𝐴0

− = 0 or 𝐴0
+ = 0, 𝐴0

− = 1) represents circular polarization, 

𝐴0
+ = 𝐴0

− linear polarization, and elliptical polarization appears for any other case. The envelope 

function 𝐴𝑒𝑛𝑡 (𝑡) regulates the amplitude of the vector potential.  

In laboratory settings, pulsed waves are often preferred over continuous waves for several 

compelling reasons, particularly in applications involving precision measurements, material 

processing, and scientific research. One primary advantage is the higher peak power that pulsed 

waves can achieve. Unlike continuous waves that transport energy steadily, pulsed waves 

concentrate energy into short bursts, allowing them to reach significantly higher peak intensities. 

This characteristic is crucial for applications like laser-induced breakdown spectroscopy or pulsed 

laser deposition, where high energy density is required to interact with materials effectively. 

Furthermore, pulsed waves minimize thermal damage to the target materials. Pulsed waves, with 

their brief bursts of energy, reduce the overall heat exposure, making them ideal for delicate 

materials or processes. Pulsed waves also offer better temporal resolution, which is vital in time-

resolved spectroscopy and other applications where understanding the dynamics of fast processes 

is essential. The ability to produce extremely short pulses, sometimes in the femtosecond range, 

allows researchers to observe and measure rapid phenomena that would be impossible with 

continuous wave illumination. In the context of this Thesis, the carrier relaxation mechanisms 

immediately after the optical excitation are of utmost interest so that the choice of pulsed waves is 

essential and study of graphene carrier dynamics upon illumination of pulsed waves has to be 

thoroughly investigated.  

The form of envelope function for a Gaussian pulse is described by 
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 𝐴𝑒𝑛𝑣(𝑡) = (𝜎𝑡√2𝜋)
−1
𝑒−𝑡2 /2𝜎𝑡

2
, (4.17) 

where 𝜎𝑡 regulates the Gaussian pulse width and has a definite relation with the experimental 

accessible quantity full width at half maximum (FWHM) 𝜎FWHM . The pre-factor (𝜎𝑡√2𝜋)
−1

 

guarantees that the envelope function is normalized to 1, i.e., ∫ 𝑑𝑡
∞

−∞
𝐴𝑒𝑛𝑣(𝑡) = 1.  

In order to assign values to the width and amplitude of the envelope function 𝐴𝑒𝑛𝑣(𝑡), the 

relation between the experimental settings and the pulse parameters has to be given. In experiment, 

usually the width of the pulse intensity 𝐼(𝑡) is measured to characterize the broadening of the pulse 

and an 𝜖𝑝𝑓  to identify the pump fluence. The pulse intensity, which indicates the optical power 

transfer per unit area, can be determined by according to 𝐼(𝑡) = 𝜖0𝑐|𝑬(𝑡)|
2 . The electric field 

𝑬(𝑡) = −𝜕𝑡𝑨(𝑡)  is calculated using the magnetic vector potential in Eq. 4.16 for circular 

polarization as  

 
𝑬±(𝑡) = −

𝐴0
±

𝜎𝑡√2π
𝑒
−

𝑡2

2𝜎𝑡
2
[𝜔(

− sin 𝜔𝑡
± cos 𝜔𝑡

) −
𝑡

𝜎𝑡
2
(
cos 𝜔𝑡
±sin 𝜔𝑡

)]. (4.18) 

Usually for Gaussian pulses, the condition 𝜎𝑡 ≫ 𝑇 (the period of sinusoidal oscillating part of the 

electric field) always holds. Therefore, there is 𝑡/𝜎𝑡
2 ≪ 𝜔, namely, the second item of the electric 

field is negligible comparing to the first item. Thus, the FWHM of the pulse intensity satisfies 

𝑒−𝜎FWHM 
2 /2𝜎𝑡

2
= 1/2  which resolves 𝜎FWHM = 2√2ln2𝜎𝑡 . The presumed condition 𝜎𝑡 ≫ 𝑇  is 

then use throughout the thesis. 

The integration of the intensity over time gives rise to the optical energy transfer per unit 

area 
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𝜖𝑝𝑓 = ∫ 𝑑𝑡

∞

−∞

𝐼(𝑡). (4.19) 

For circular polarization, using only the first part of electric field in Eq. 4.18 and 𝐼(𝑡) = 𝜖0𝑐|𝑬(𝑡)|
2 , 

it reads 

 𝜖𝑝𝑓 =
𝜖0𝑐(𝐴0

±)
2
𝜔2

2√π𝜎𝑡
. (4.20) 

Therefore, the amplitude of the vector potential 𝐴0
± can be expressed in terms of the pump fluence 

𝜖𝑝𝑓  by  

 

𝐴0
± =

1

𝜔
√
2√𝜋𝜎𝑡𝜖𝑝𝑓

𝜖0𝑐
. (4.21) 

Finally, the amplitude 𝐴0
± is redefined and included into the envelope function of the pulse 𝐴𝑒𝑛𝑣(𝑡) 

using 𝜎FWHM = 2√2ln2𝜎𝑡 as 

 

𝐴𝑒𝑛𝑣(𝑡) =
1

𝜔
√

2√ln2𝜖𝑝𝑓

√𝜋𝜖0𝑐𝜎FWHM 

𝑒
−

2ln2𝑡2

(𝜎FWHM )
2
, (4.22) 

where 𝐴0
± is defined to be 0 or 1. Therefore, the vector potential of a circularly polarized Gaussian 

pulse can be rewritten as 

 𝑨±(𝑡) = 𝐴𝑒𝑛𝑡(𝑡) (
cos 𝜔𝑡
±sin 𝜔𝑡

), (4.23) 
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with the envelope function 𝐴𝑒𝑛𝑣(𝑡) given by Eq. 4.22 and the condition 𝜎𝑡 ≫ 𝑇. The x and y 

components of a left-handed circularly polarized Gaussian pulse are plotted in Fig. 4.3 with a pump 

fluence 𝜖𝑝𝑓 = 0.01 μJcm−2 and width 𝜎FWHM = 1 ps. The photon energy is 74.4 meV, which is 

in resonance with the transition between the first two Landau levels 𝐿𝐿0  and 𝐿𝐿+1  under a 

homogeneous magnetic field 𝐵 = 4.0 T. The amplitude of the fast-oscillating cosine part of the 

vector potential is modulated by a Gaussian profile. If the width of the Gaussian profile function 

is large enough to an extent that the spectrum of the modulated signal is narrow as to the off -

resonant transitions among the higher Landau levels are least addressed, such pumping condition 

would be considered ideal. If the pulse is narrow in the time domain (small width), it will have a 

broad spectrum in the frequency domain. This broadening is due to the Fourier transform 

relationship, where a shorter pulse has a wider range of frequency components. However, for 

realistic experimental settings, the pulse width has to be traded off between the spectrum 

broadening with a high temporal resolution and minimized spectrum at a cost of delivering too 

Figure 4.3 (a) The x and y components of the vector potential and (b) the spectrum of the x component of a left -

handed circularly polarized Gaussian pulse with a pump fluence 𝜖𝑝𝑓 = 0.01 μJcm−2 and width 𝜎FWHM = 1 ps. The 

photon energy is 74.4 meV, which is in resonance with the transition between the first two Landau levels 𝐿𝐿0  and 

𝐿𝐿+1  under a magnetic field 𝐵 = 4.0 T. 
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much energy to the materials. Therefore, it is crucial to investigate the spectrum of the optical 

pulse by taking the Fourier transform of the vector potential. The spectrum of the x component of 

the vector potential for the same Gaussian-modulated cosine pulse is plotted in Fig. 4.3. With the 

pulse width on picosecond timescales, the spectrum spreads narrow compared to the spacing 

between Landau levels 𝐿𝐿0 and 𝐿𝐿+1 and is of the same order as the Landau level broadening 

induced by the carrier-impurity scattering. Therefore, it is reasonable to neglect the couplings 

between the off-resonant frequency components in the spectrum and the optical transitions among 

the higher Landau levels and thus using a Gaussian pulse as short as picosecond timescales is 

considered to be safe.  

The optical energy density is also calculated by integrating the pulse intensity 𝐼(𝑡)  over the 

pulse duration using Eq. 4.19. For circular polarization, using the vector potential in Eq. 4.23, the 

building up of energy density over time is illustrated in Figure. 4.4.  

Figure 4.4 The building up of energy density with a total pumping fluence  𝜖𝑝𝑓 = 0.01 μJcm−2 and pulse width 

𝜎FWHM = 1 ps. 
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4.4 Light-carrier interactions 

Combining the free energy and light-carrier interaction, the Hamiltonian of electrons in 

Landau-quantized graphene is given by [2] 

 𝐻 = ∑𝜖𝑖𝑎𝑖
†𝑎𝑖 + 𝑖ℏ

𝑒0
𝑚0

𝑖

∑𝑴𝑖𝑓 ⋅ 𝑨(𝑡)

𝑖 ,𝑓

𝑎𝑓
†𝑎𝑖 , (4.24) 

where 𝜖𝑖 ≈ 2.8 𝑒𝑉 is the is the hopping integral. The microscopic polarization 𝑝𝑖𝑓 = 〈𝑎𝑓
†𝑎𝑖〉(𝑡) is 

the off-diagonal matrix element of the density operator and is a measure of the transition 

probability from the initial state 𝑖  to the final state 𝑓 with an initial value of zero, while 𝜌𝑖 =

〈𝑎𝑖
†
𝑎𝑖〉(𝑡) is the occupation of state 𝑖 which in thermal equilibrium is given by the Fermi-Dirac 

distribution. The above Hamiltonian is used to obtain the microscopic equations of motion (or 

Bloch equations) for the density matrix elements as [3] 

 
𝑝̇𝑖𝑓 =

𝑖

ℏ
(𝜖𝑓 − 𝜖𝑖)𝑝𝑖𝑓 +

𝑒0
𝑚0

∑[𝑴𝑙𝑖𝑝𝑙𝑓 − 𝑴𝑓𝑙𝑝𝑖𝑙] ⋅ 𝑨(𝑡)

𝑙

, (4.25) 

Using the relation 𝑴𝑖𝑓 = −𝑴𝑓𝑖
∗  obtained from Eq. 4.15 and considering that the polarization only 

couples to itself or occupation 𝜌𝑖 = 𝑝𝑖𝑖, two separates yet coupled equations of motion (EOM) can 

be derived from Eq. 4.25 for polarizations and occupations [3]: 

 𝜌̇𝑖|light = −2∑Re[Ω𝑖𝑙𝑝𝑖𝑙]

𝑙

, (4.26) 

 𝑝̇𝑖𝑓|light
= 𝑖Δ𝜔𝑖𝑓𝑝𝑖𝑓 − Ω𝑖𝑓

∗ (𝜌𝑓 − 𝜌𝑖). (4.27) 
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The energy difference ℏΔ𝜔𝑖𝑓 = 𝜖𝑓 − 𝜖𝑖 is the difference between the final and initial states and 

describes the inherent oscillating part of the polarization 𝑝𝑖𝑓 due to the free energy part of the 

Hamiltonian. The Rabi frequency Ω𝑖𝑓 = (𝑒0/𝑚0)𝑴𝑖𝑓 ⋅ 𝑨(𝑡) is a fundamental concept in quantum 

mechanics and quantum optics, particularly relevant in the context of two-level systems interacting 

with an electromagnetic field. It quantifies the rate of oscillation (transition) between two states 

under the influence of an external oscillating field, like a laser or a microwave. The frequency of 

the electromagnetic field is typically close to the resonance frequency (energy difference) between 

the two states. Under the influence of the field, the quantum system undergoes oscillations between 

the two states, known as Rabi oscillations. The probability of finding the system in a particular 

state oscillates sinusoidally at this frequency.  

4.5 Rabi oscillations in the Rotating Wave Approximation (RWA) 

The Rotating Wave Approximation (RWA) is a widely used simplification in quantum 

mechanics and quantum optics, particularly in the context of systems interacting with oscillating 

electromagnetic fields, such as in the study of atomic and molecular spectroscopy, laser physics, 

and quantum information processing. It is used to simplify the mathematical description of the 

interaction between a quantum system and an electromagnetic field. In quantum systems driven 

by an oscillating field, the Hamiltonian typically contains terms that oscillate at very high 

frequencies. The RWA simplifies this Hamiltonian by keeping only the terms that vary slowly 

over time and neglecting the ones that oscillate rapidly. This approximation is valid when the 

frequency of the driving field is close to the resonance frequency of the quantum system. The 

RWA significantly simplifies the mathematical treatment of the system. It allows for easier 

calculation of Rabi frequencies, understanding of Rabi oscillations, and analysis of quantum 

coherence and entanglement in driven systems.  
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To this end, the microscopic Bloch equations for Landau-quantized graphene without a 

dephasing term in the polarization can be solved analytically using RWA and helps understand 

how the carrier dynamics evolves under optical driving field. Using the substitution 𝑝𝑖𝑓 =

𝑝𝑖𝑓
rot𝑒𝑖Δ𝜔𝑖𝑓𝑡, Eq. 4.26 and 4.27 can be written as [3] 

 𝜌̇𝑖𝑓
rot = −2∑Re[Ω𝑖𝑙

rot𝑝𝑖𝑙
rot]

𝑙

, (4.28) 

 𝑝̇𝑖𝑓
rot = −(Ω𝑖𝑓

rot)
∗
(𝜌𝑓

rot − 𝜌𝑖
rot), (4.29) 

where the definition Ω𝑖𝑓
rot = Ω𝑖𝑓𝑒

𝑖Δ𝜔𝑖𝑓𝑡 is used. For a resonant excitation in the RWA the Rabi 

frequency can be written as 

 
𝛺𝑖𝑓

𝑟𝑜𝑡 |
𝑅𝑊𝐴

= 𝑖𝛿𝜏𝑖,𝜏𝑓
𝛿𝑚𝑖,𝑚𝑓

𝛼𝑛𝑖
𝛼𝑛𝑓

𝑒0𝑣𝐹𝐴𝑒𝑛𝑣(𝑡)

4ℏ
(𝜐𝑖𝛿𝑛𝑓,𝑛𝑖+1𝐴0

−

+ 𝜐𝑓𝛿𝑛𝑓,𝑛𝑖−1𝐴0
+) = 𝑖𝛺𝑖𝑓

𝑟𝑜𝑡 , 

(4.30) 

where the real quantity 𝛺𝑖𝑓
rot = 𝐼𝑚 [𝛺𝑖𝑓

rot|
RWA

] is used to simplify the equation of motion (EOM) 

in the RWA. Eq. 4.28 and 4.29 are written as 

 𝜌̇𝑖
𝑟𝑜𝑡 = −2∑𝑅𝑒[𝛺𝑖𝑓

𝑟𝑜𝑡𝑝𝑖𝑓
𝑟𝑜𝑡],

𝑙

 (4.31) 

 

 𝑝̇𝑖𝑓
𝑟𝑜𝑡 = 𝑖𝛺𝑖𝑓

𝑟𝑜𝑡 (𝜌𝑓
𝑟𝑜𝑡 − 𝜌𝑖

𝑟𝑜𝑡). (4.32) 
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Eq. 4.31 informs that 𝑝̇𝑖𝑓
rot is purely imaginary due to the resonant driving field and no dephasing 

in polarization. the EOM are written for the new quantities 𝑣𝑖𝑓 = 2𝐼𝑚[𝑝𝑖𝑓
rot] , and 𝑤𝑖𝑓 =

(𝜌𝑓
rot − 𝜌𝑖

rot) which yields [3] 

 𝑤̇𝑖𝑓 = ∑(𝛺𝑓𝑙
𝑟𝑜𝑡𝑣𝑓𝑙 − 𝛺𝑖𝑙′

𝑟𝑜𝑡𝑣𝑖𝑙′)

𝑙𝑙′

, (4.33) 

 𝑣̇𝑖𝑓 = 2𝛺𝑖𝑓
𝑟𝑜𝑡𝑤𝑖𝑓 . (4.34) 

The discussion is restricted to a single transition 𝑖 → 𝑓. Furthermore, the relations 𝑣𝑓𝑖 = −𝑣𝑖𝑓  and 

𝛺𝑓𝑖
rot = 𝛺 𝑖𝑓

rot are used. The resulting equation of motion (EOM) becomes 

 𝑤̇𝑖𝑓 = −2𝛺𝑖𝑓
𝑟𝑜𝑡𝑣𝑖𝑓 , (4.35) 

 𝑣̇𝑖𝑓 = 2𝛺𝑖𝑓
𝑟𝑜𝑡𝑤𝑖𝑓 . (4.36) 

We solve the above differential equations by assuming the initial conditions 𝜌𝑓
rot(𝑡 = −∞) = 0, 

𝜌𝑖
rot(𝑡 = −∞) = 1, 𝑝𝑖𝑓

rot(𝑡 = −∞) = 0  

 𝑤𝑖𝑓(𝑡) = −𝑐𝑜𝑠[𝛩𝑖𝑓(𝑡) − 𝛼], (4.37) 

 𝑣𝑖𝑓(𝑡) = − 𝑠𝑖𝑛[𝛩𝑖𝑓(𝑡) − 𝛽], (4.38) 

where the quantities 𝛼 and 𝛽 are introduced to help account for the initial conditions and have to 

be solved accordingly. The phase term 𝛩𝑖𝑓(𝑡) of a pulse refers to the initial phase angle of the 

electromagnetic wave used in the pulse. In quantum mechanics, this phase determines the axis of 
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rotation on the Bloch sphere (a geometric representation of the state space of a two-level quantum 

system). The phase can be thought of as specifying the direction in which the quantum state rotates 

when a pulse is applied and is related to the Rabi frequency by the integral  

 
𝛩𝑖𝑓(𝑡) = 2∫ 𝑑𝑡′𝛺 𝑖𝑓

𝑟𝑜𝑡(𝑡′),
𝑡

−∞
 (4.39) 

Let us consider a circularly polarized Gaussian pulse modulated by the envelope function 

described by Eq. 4.22. Then, we can substitute the expression for Rabi frequency in Eq. 6.30 into 

the integration performed in Eq. 4.39 to obtain [3] 

 

𝛩𝑖𝑓(𝑡) =
𝑒0𝑣𝐹
2ℏ𝜔

√
𝜖𝑝𝑓√𝜋𝜎𝐹𝑊𝐻𝑀

𝑒𝑥𝑝

𝜖0𝑐√𝑙𝑛2
[𝑒𝑟𝑓(

√2𝑙𝑛2

𝜎𝐹𝑊𝐻𝑀
𝑒𝑥𝑝 𝑡) + 1]. (4.40) 

Thus, one can plot the temporal evolution of microscopic polarizations and occupations with the 

help of 𝛩𝑖𝑓(𝑡) function. Such relations are given by 

 
𝜌𝑖(𝑡) =

1

2
+
1

2
𝑐𝑜𝑠[𝛩𝑖𝑓(𝑡)], (4.41) 

 
𝜌𝑓 (𝑡) =

1

2
−
1

2
𝑐𝑜𝑠[𝛩𝑖𝑓(𝑡)], (4.42) 

 
𝑝𝑖𝑓(𝑡) = −

𝑖

2
𝑠𝑖𝑛[𝛩𝑖𝑓(𝑡)]𝑒

𝑖𝛥𝜔𝑖𝑓𝑡 , (4.43) 
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when 𝛩𝑖𝑓(𝑡)  completes a 𝜋 -phase from 𝑛𝜋  to (𝑛+ 1)𝜋 , the two-level system flips state. 

Therefore, a π-pulse is defined as an electromagnetic pulse that is precisely tuned such that its 

duration and strength cause a complete transition from one quantum state to another, i.e.,  

𝛩𝑖𝑓(𝑡 = ∞) = 𝜋. It is named a π-pulse because the area of the pulse in a Rabi frequency-time plot 

is π. In other words, if a system starts in state |1⟩, a 𝜋-pulse will flip it completely to state  |2⟩ and 

vice versa. In addition to π-pulses, there are also 𝜋/2-pulses and 2𝜋-pulses. A 𝜋/2-pulse brings 

the system into a superposition of states, while a 2𝜋-pulse returns the system to its original state 

after completing two full Rabi cycles. The temporal evolution of a two-level system comprised of 

𝐿𝐿−2 and 𝐿𝐿+1 is plotted for a 𝜋-pulse in Figure. 4.5. As is seen, the system achieves population 

inversion after a 𝜋/2-pulse and ultimately reaches full inversion when 𝜋-pulse is done. After a 

second 𝜋-pulse, it will result in the returning of the two-level system back to its original state, as 

is illustrated in Figure. 4.6. After the π-pulse, if the external field continues to be applied, the 

Figure 4.5 Occupations of a two level-system 𝜌−2,  𝜌+1 and the population inversion 𝜌+1 − 𝜌−2 and the polarization 

𝑃−2,+1 over a 𝜋-pulse oscillation. The system is resonantly driven by a Gaussian pulse. 
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system can undergo further Rabi oscillations. This means that it can be excited again (or de-excited) 

depending on its current state and the characteristics of the ongoing external field. As seen from 

the second 𝜋-pulse, the two occupations start to reverse their state. It is not regarded as a direct 

result of stimulated emission as it occurs in lasers. Instead, it is a consequence of the ongoing 

interaction with the external driving field, which continues to drive Rabi oscillations. This process 

is more about the coherent absorption and re-emission of energy due to the driving field rather 

than stimulated emission due to external photons. 

4.6 The initial states 

Before the numerical investigation of the microscopic Bloch equations, one more issue needs 

to be solved, which is the initial conditions for both occupations and polarizations. It is reasonable 

to assume that the polarizations stay on zero value right before the optical excitation. However, 

Figure 4.6 Occupations of a two level-system 𝜌−2,  𝜌+1 and the population inversion 𝜌+1 − 𝜌−2 and the polarization 

𝑃−2,+1 over a 2𝜋 -pulse oscillation. The system is resonantly driven by a Gaussina pulse. 
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the initial occupation on the discrete Landau levels needs to be known. The density of states (DOS) 

of pristine graphene is govern by the linear relation with respect to the energy, given by [10][11] 

 
𝜌(𝐸) = 𝑔𝑠𝑔𝑣

|𝐸|

2𝜋ℏ2𝑣𝐹
2
, (4.44) 

where the degeneracies of spin and valley degree of freedom 𝑔𝑠  and 𝑔𝑣  have been accounted for. 

The carrier concentration can be calculated by integration of DOS with respect to the energy as 

 
𝑛𝑐(𝐸𝐹) = ∫ 𝜌(𝐸)𝑑𝐸 =

1

2

𝐸𝐹

0

𝑔𝑠𝑔𝑣

𝐸𝐹
2

2𝜋ℏ2𝑣𝐹
2
, (4.45) 

where the carrier concentration can be experimentally obtained using Hall measurements. Thus, 

the Fermi energy is readily known from the above relation. Upon applying external magnetic field, 

the DOS no longer follows the linear relation, and the carrier population has to redistributed among 

discrete Landau levels. With moderate doping, the filling factor of the zeroth Landau level is 

neither vanishing nor close to one. To begin with, the degeneracy of each Landau level at a constant 

magnetic field 𝐵 is given by [12] 

 
𝐺(𝐵) =

𝑒𝐵

ℎ
, (4.46) 

excluding the spin and valley degeneracy. For completely filled zeroth Landau level, the 

degeneracy is calculated as 4.06 × 1011cm−2  for 𝐵 = 4.0 𝑇 . For zero magnetic field, this 

corresponds to a Fermi level of 74 𝑚𝑒𝑉. Note that for undoped graphene, the filling factor for the 

zeroth Landau level 𝜌0 = 0.5 , corresponding to an intrinsic carrier concentration of 2.03 ×

1011cm−2 on this level. If an excess carrier concentration is measured to be 6 × 1010cm−2, i.e., 

the Fermi level 𝐸𝐹 = 29 𝑚𝑒𝑉 at 𝐵 = 0. Then, the filling factor at 𝐵 = 4.0 𝑇 is calculated as 𝜌0 =



111 

 

2.63 ×
1011cm−2

4.06
× 1011cm−2 = 0.648. For such initial settings, the populations of the positive 

and negative Landau level can be reasonably assumed to be 0 and 1. 

4.7 Carrier-carrier scattering 

Coulomb-induced carrier–carrier interaction refers to the interaction between charge carriers 

in a material due to the Coulombic repulsion. The interaction is described by the Hamiltonian [3] 

 
𝐻𝐶𝑜𝑢𝑙 =

1

2
∑ 𝑉𝑓𝑓′

𝑖𝑖′

𝑖𝑖′𝑓𝑓′

𝑎𝑓
𝔣 𝑎

𝑓′
𝔣 𝑎𝑖′𝑎𝑖 . (4.47) 

The definition of the ladder operators 𝑎𝑓
𝔣
, 𝑎

𝑓′
𝔣

, 𝑎𝑖′  and 𝑎𝑖 can be found in Eq. 4.3. 𝑉𝑓𝑓′
𝑖𝑖′  refers to the 

Coulomb matrix element and is used to describe the strength of the Coulombic interaction between 

two charged particles. The Fourier representation of the Coulomb matrix element from is given by 

[13] 

 𝑉34
12 = ∑𝑉𝒒

𝒒

𝛤13(𝒒)𝛤24(−𝒒), (4.48) 

 𝛤𝑖𝑓(𝒒) = ∫𝑑𝒓𝛹𝑓
∗(𝒓)𝑒𝑖𝒒𝒓𝛹𝑖(𝒓), (4.49) 

where 𝑉𝒒 = 𝑒0
2/2𝜖0𝐴|𝒒| is the Fourier transform of the Coulomb potential 𝑉𝐶𝑜𝑢𝑙 = 𝑒0

2/4𝜋𝜖0 |𝒓 −

𝒓′|. The sum over 𝒒 can be transformed into an integral using the relation 𝐴/(2𝜋)2 ∑ → ∫𝑑𝒒 =𝒒

∫𝑑𝜑 ∫𝑞𝑑𝑞An explicit expression for the Coulomb matrix element in polar coordinates 𝒒 = 

(𝑞,  𝜙)  is written as [4] 
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𝑉34

12 = 𝛼𝑛1
𝛼𝑛2

𝛼𝑛3
𝛼𝑛4

𝑒0
2𝛿𝜉1,𝜉3

𝛿𝜉2,𝜉4
32𝜋2𝜖0

∫ 𝑑𝑞∫ 𝑑𝜑
2𝜋

0

∞

0

 

× [𝜆1𝜆3⟨𝑛3 −1,𝑚3|𝑒
𝑖𝒒𝑹̂|𝑛1 −1,𝑚1⟩ + ⟨𝑛3, 𝑚3|𝑒

𝑖𝒒𝑹̂|𝑛1, 𝑚1⟩] 

× [𝜆2𝜆4⟨𝑛4 −1,𝑚4|𝑒
𝑖𝒒𝑹̂|𝑛2 −1,𝑚2⟩ + ⟨𝑛4 , 𝑚4|𝑒

𝑖𝒒𝑹̂|𝑛2, 𝑚2⟩], 

(4.50) 

with form factor ⟨𝑛3 −1,𝑚3|𝑒
±𝑖𝒒𝑹̂|𝑛1 −1,𝑚1⟩ given by [14] 

 ⟨𝑛𝑚|𝑒±𝑖𝒒𝑹̂|𝑛′𝑚′ ⟩ = (−1)𝛩(±𝑛′∓𝑛)+𝛩(±𝑚′∓𝑚)𝑒−𝑙𝐵
2𝑞2/2 

× √
𝑚𝑖𝑛(𝑚′ ,𝑚)!

𝑚𝑎𝑥(𝑚′ , 𝑚)!
(
𝑙𝐵𝑞

√2
)
|𝑚−𝑚′ |

𝑒−𝑖𝜑(𝑚′−𝑚)𝐿
𝑚𝑖𝑛(𝑚,𝑚′)

|𝑚−𝑚′ |
(
𝑙𝐵
2𝑞2

2
) 

× √
𝑚𝑖𝑛(𝑛′ , 𝑛)!

𝑚𝑎𝑥(𝑛′ ,𝑛)!
(
𝑙𝐵𝑞

√2
)
|𝑛−𝑛′ |

𝑒𝑖𝜑(𝑛′−𝑛)𝐿
𝑚𝑖𝑛(𝑛,𝑛′)

|𝑛−𝑛′ |
(
𝑙𝐵
2𝑞2

2
), 

(4.51) 

where 𝐿𝑛
𝛼  denotes the generalized Laguerre polynomial and 𝛩  stands for the Heaviside step 

function with the unambiguously defined value at zero, i.e., 𝛩(0) = 1. The exponential term 

𝑒−𝑙𝐵
2 𝑞2/2 in the form factor, often referred to as the "exponential suppression factor," is associated 

with the Coulomb interaction between charged particles. It arises from the long-range nature of 

the Coulomb potential. The exponential term restricts the allowed momentum transfers in 

scattering processes. High momentum transfers are less likely to be affected by long-range 

Coulomb interactions and are often associated with short-range processes. The calculation of the 

integral over 𝜙 give rise to the Kronecker delta 
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∫ 𝑑𝜑

2𝜋

0

𝑒−𝑖𝜑(𝑚1−𝑚3 )𝑒𝑖𝜑(𝑛1−𝑛3 )𝑒−𝑖𝜑(𝑚2−𝑚4 )𝑒𝑖𝜑(𝑛2−𝑛4 ) 

= 2𝜋𝛿𝑛1−𝑚1+𝑛2−𝑚2,𝑛3−𝑚3+𝑛4−𝑚4
, 

(4.52) 

which put another restriction over the quantum numbers 𝑛 and 𝑚 of the carriers involved in an 

scattering event. To notice, the spin degree of freedom is not taken into account in the formulism. 

To account for that, two Kronecker deltas 𝛿𝑠1,𝑠3
𝛿𝑠2,𝑠4  have to be added into Eq. 4.50 which stand 

for the conservation of spin degree of freedom in a carrier scattering event. 

4.7.1 Coulomb screening  

In general, the Coulomb interaction, which is the electrostatic force between charged 

particles, can be influenced by the presence of other charges nearby. To illustrate this, consider an 

electron and a proton, both of which attract each other due to their opposite charges according to 

Coulomb's law. In a vacuum, this attractive force can extend infinitely, so these particles would 

still be drawn to each other even if placed far apart. 

However, when other charges are in the vicinity, the interaction between the electron and the 

proton may be affected. For instance, if we introduce another electron near the proton, the original 

attraction between the electron and the proton would be partially offset by the repulsive force 

between the two electrons. Effectively, the positive charge of the proton becomes screened or 

partially shielded by the presence of the additional electron. This screening phenomenon occurs 

because the repulsion between electrons counteracts the attraction between opposite charges 

(electron and proton), leading to a modified net interaction. The screened Coulomb potential is 

modified according to [4] 
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𝑉𝒒 →

𝑉𝒒
𝜖𝑟(𝒒,𝜔)

, (4.53) 

where relative permittivity 𝜖𝑟(𝒒,𝜔)  is the wavenumber- and frequency-dependent dielectric 

function which accounts for the dynamic response of the material to the Coulomb interaction. The 

frequency 𝜔 is associated with the energy transfer of charge carriers between the initial and final 

states of a transition in a scattering event, i.e., ℏ𝜔 = 𝜖3 − 𝜖1. The relative permittivity consists of 

two components: a constant part attributed to the background 𝜖𝑏𝑔  and a momentum-dependent 

component originating from the mobile charge carriers, such as the π-bands in graphene, denoted 

as 𝜖𝑐  while the relation is dictated by 

 𝜖𝑟 (𝒒,𝜔) = 𝜖𝑏𝑔𝜖𝑐(𝒒,𝜔). (4.54) 

The background screening comes from the substrate where graphene is placed and is given by 

𝜖𝑏𝑔 = (𝜖𝑠𝑢𝑏 +1)/2. The dynamic screening from the permittivity is related to both the Coulomb 

potential and polarizability and calculated in the random phase approximation [15] 

 𝜖𝑐 (𝒒,𝜔) = 1 −𝑉𝒒𝛱
0(𝒒,𝜔), (4.55) 

where the polarizability is calculated by 

 

𝛱0(𝒒, 𝜔) = 4𝑁𝐵 ∑∑
𝑛𝐹𝐷 (𝜀𝑛

𝜆) − 𝑛𝐹𝐷 (𝜀𝑛′
𝜆′)

𝜀𝑛
𝜆 − 𝜀𝑛′

𝜆′ + ℏ𝜔 + 𝑖𝛾𝑖𝑚𝑝
𝑛𝑛′𝜆𝜆′

|𝐹𝜆𝑛,𝜆′𝑛′ (𝒒)|
2
, (4.56) 

where 𝑛𝐹𝐷 = 1/(1 + exp[(𝜖 − 𝜇𝑐)/𝑘𝐵𝑇]) stands for the standard Fermi-Dirac distribution with 

𝜇𝑐  the chemical potential and the form factor is given by [16] 
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𝐹𝜆𝑛,𝜆′𝑛′ (𝒒) = √
(1 − 𝛿𝑛,0)(1 − 𝛿𝑛′,0)

4
𝑓𝑛−1, 𝑛′−1(𝒒)

+ 𝜆𝜆′√
(1 + 𝛿𝑛,0)(1 + 𝛿𝑛′,0)

4
𝑓𝑛 , 𝑛′ (𝒒), 

(4.57) 

with 

 

𝑓𝑛 , 𝑛′ (𝒒) = 𝑒−𝑙𝐵
2 𝑞2/4√

𝑚𝑖𝑛(𝑛, 𝑛′)!

𝑚𝑎𝑥(𝑛, 𝑛′)!
(−𝑖

𝑙𝐵𝑞

2
)
|𝑛−𝑛′ |

𝐿
𝑚𝑖𝑛(𝑛,𝑛′)

|𝑛−𝑛′ |
(
𝑙𝐵
2𝑞2

2
). (4.58) 

The dynamical dielectric function can be numerical assessed in dependence of wavenumber 𝒒 for 

any possible transition with given magnetic field, chemical potential and Landau level broadening. 

To illustrate this, consider the energy transfer ℏ𝜔 = 𝜖3 − 𝜖1 involving transition from 𝐿𝐿0 to 𝐿𝐿+1 

Figure 4.7 The wavenumber dependent dielectric function accounted for Coulomb screening associated with the 

transition from 𝐿𝐿0  to 𝐿𝐿+1  using  the parameters 𝐵 = 4.0 𝑇, 𝜇𝑐 = 0 and ℏ𝛾 𝑖𝑚𝑝 = 7 𝑚𝑒𝑉. 
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with the parameter settings 𝐵 = 4 𝑇, 𝜇𝑐 = 0 and ℏ𝛾𝑖𝑚𝑝 = 7 𝑚𝑒𝑉. The wavenumber dependent 

response of the dynamic dielectric function is numerical calculated and plotted in Fig. 4.7.  

4.7.2 Scattering rates 

In this section, the damping in the population will be addressed quantitatively where the 

scattering rates due to the carrier-carrier interaction needs to be discussed in fully details. First of 

all, general Bloch equations solely account for the inward-going and outward going carriers due 

to Coulomb interaction are given by [17] 

 𝜌̇𝑖|𝐶𝑜𝑢𝑙 = 𝑆𝑖
𝑖𝑛(1− 𝜌𝑖) − 𝑆𝑖

𝑜𝑢𝑡𝜌𝑖 , (4.59) 

 𝑝̇𝑖𝑓|𝐶𝑜𝑢𝑙
= −(𝑆𝑖

𝑖𝑛 + 𝑆𝑖
𝑜𝑢𝑡 + 𝑆𝑓

𝑖𝑛 +𝑆𝑓
𝑜𝑢𝑡)𝑝𝑖𝑓 , (4.60) 

where 𝑆𝑖
𝑖𝑛/𝑜𝑢𝑡

 and 𝑆𝑓
𝑖𝑛/𝑜𝑢𝑡

 are the inward and outward scattering rates with regard to the initial and 

final states of the scattered charge carriers. Those two equations are obtained under the 

assumptions that the occupations only couple to other occupations, while the polarization only 

couple to itself and to occupations. Using the Coulomb potential discussed in last section, the 

explicit expressions of the scattering rates are given by [2] 

 
𝑆𝑓
𝑖𝑛(𝑡)|

𝐶𝑜𝑢𝑙
=

2𝜋

ℏ
∑𝑉𝑏𝑐

𝑓𝑎

𝑎𝑏𝑐

𝑉̃𝑓𝑎
𝑏𝑐(1− 𝜌𝑎)𝜌𝑏𝜌𝑐𝐿𝛤(𝛥𝐸𝑓𝑎𝑏𝑐), (4.61) 

 
𝑆𝑖
𝑜𝑢𝑡(𝑡)|𝐶𝑜𝑢𝑙 =

2𝜋

ℏ
∑𝑉𝑏𝑐

𝑖𝑎

𝑎𝑏𝑐

𝑉̃𝑖𝑎
𝑏𝑐𝜌𝑎(1 − 𝜌𝑏)(1− 𝜌𝑐)𝐿𝛤(𝛥𝐸𝑖𝑎𝑏𝑐). (4.62) 
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The abbreviation 𝑉̃𝑖𝑎
𝑏𝑐 = 𝑉𝑖𝑎

𝑏𝑐 − 𝑉𝑎𝑖
𝑏𝑐  is introduced and the terms 𝜌𝑎 (1 − 𝜌𝑏)(1− 𝜌𝑐)  or (1 −

𝜌𝑎)𝜌𝑏𝜌𝑐 describe how the scattering rates of the respective process depend on the occupation of 

the involved levels. The notation ∆𝐸𝑓𝑓′
𝑖𝑖′ = 𝜖𝑓 − 𝜖𝑖 + 𝜖𝑓′ − 𝜖𝑖′ in the Lorentzian plays the role of a 

weighting factor for the scattering rates which quantifies the difference between the two energies 

connected to the transitions of the involved charge carriers. Taking a closer look into this factor 

and considering two scattering events depicted in Fig. 4.8, the energy difference in the left panel 

is ∆𝐸𝑓𝑓′
𝑖𝑖′ = 0  while in the right panel it has a nonvanishing value ∆𝐸𝑓𝑓′

𝑖𝑖′ = 𝜖−2 − 𝜖−1 =

−30.8 𝑚𝑒𝑉. Considering a finite level broadening Γ = 7 𝑚𝑒𝑉, the Lorentzian of the right case is 

smaller than that of the left case by an order of ~20. This is crucial since it indicates that for the 

scatterings involving lower levels (low 𝑛), the Lorentzian rules out those with nonvanishing energy 

difference ∆𝐸𝑓𝑓′
𝑖𝑖′ , leaving only those with symmetric scattering like the one in the left panel. This 

selection rule becomes more dominant when the broadening weakens. Therefore, it is a good 

approximation to consider only symmetric scattering events for lower levels. the compound index 

𝑖 = (𝜆𝑖 ,𝑛𝑖 ,𝑚𝑖 , 𝜉𝑖 , 𝑠𝑖) is used which takes the band index 𝜆𝑖, landau level number 𝑛𝑖, the index 𝑚𝑖 

related to the cyclotron motion, valley and spin degrees of freedom 𝜉𝑖 and 𝑠𝑖. As mentioned in the 

Figure 4.8 Two scattering events with vanishing and nonvanishing energy difference. The graphene is Landau 

quantized with an external magnetic field 𝐵 = 4.0 𝑇. 
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previous section that the Coulomb interaction is spin and in good approximation valley conserving, 

it is convenient to use the abbreviated index 𝑖̃ = (𝜆𝑖 ,𝑛𝑖 , 𝑚𝑖) over the occupation and polarization, 

rendering 𝜌𝜆𝑖,𝑛𝑖,𝑚𝑖
=

1

2
∑ 1

2
∑ 𝜌𝑖𝑠𝑖𝜉𝑖

 and 𝜌(𝜆𝑖,𝑛𝑖,𝑚𝑖 ),(𝜆𝑓 ,𝑛𝑓 ,𝑚𝑓)
=

1

2
∑ 1

2
∑ 𝑝𝑖𝑓𝑠𝜉 . Then, the sum over the 

initial compound index is converted to the sums over the rest three quantum numbers while 

averaging over the valley and spin degrees of freedom, i.e. [3],  

 
∑𝑉𝑏𝑐

𝑓𝑎

𝑎𝑏𝑐

𝑉̃𝑓𝑎
𝑏𝑐 =

1

4
∑∑𝑉𝑏𝑐

𝑗𝑎

𝑎𝑏𝑐

𝑉̃𝑗𝑎
𝑏𝑐

𝜉𝑗 ,𝑠𝑗

, (4.63) 

It is important to explicitly document the deriving process of conducting the averages over the 

valley and spin degrees of freedom since in the following chapter one may need to resolve instead 

of averaging them. Writing all the compound indices into the subscripts/superscripts and assuming 

spin-conserving and in good approximation valley-conserving, i.e., 𝑠𝑗 = 𝑠𝑏  , 𝑠𝑎 = 𝑠𝑐  and 𝜉𝑗 = 𝜉𝑏  , 

𝜉𝑎 = 𝜉𝑐  (Kronecker deltas 𝛿𝑠1,𝑠𝑗
𝛿𝑠2,𝑠4

 and 𝛿𝜉1,𝜉3
𝛿𝜉2,𝜉4

appearing in 𝑉34
12  reflecting the spin and 

valley conserving nature of Coulomb scattering), the process is presented as follows 

 1

4
∑ ∑𝑉𝑏𝑐

𝑗𝑎

𝑎𝑏𝑐

𝑉̃𝑗𝑎
𝑏𝑐

𝜉𝑗 ,𝑠𝑗

=
1

4
∑∑∑∑∑𝑉

𝑏̃,𝜉𝑏 ,𝑠𝑏  𝑐̃,𝜉𝑐 ,𝜉𝑐

𝑗̃,𝜉𝑗 ,𝑠𝑗 𝑎,𝜉𝑎 ,𝑠𝑎

𝑠𝑎𝑠𝑗𝜉𝑎𝜉𝑗𝑎𝑏̃𝑐̃

(𝑉𝑗̃,𝜉𝑗 ,𝑠𝑗 𝑎,𝜉𝑎 ,𝑠𝑎

𝑏̃,𝜉𝑏 ,𝑠𝑏  𝑐̃,𝜉𝑐 ,𝑠𝑐−𝑉𝑎,𝜉𝑎 ,𝑠𝑎  𝑗̃ ,𝜉𝑗 ,𝑠𝑗

𝑏̃,𝜉𝑏 ,𝑠𝑏  𝑐̃,𝜉𝑐 ,𝑠𝑐) 

=
1

4
∑∑∑∑∑𝛿𝜉𝑗,𝜉𝑏

𝛿𝜉𝑎 ,𝜉𝑐
𝛿𝑠𝑗,𝑠𝑏

𝛿𝑠𝑎,𝑠𝑐𝑉𝑏̃𝑐̃
𝑗̃𝑎

𝑠𝑎𝑠𝑗𝜉𝑎𝜉𝑗𝑎𝑏̃𝑐̃

× (𝛿𝜉𝑏,𝜉𝑗
𝛿𝜉𝑐,𝜉𝑎

𝛿𝑠𝑏,𝑠𝑗𝛿𝑠𝑐,𝑠𝑎
𝑉𝑗̃𝑎̃ 

𝑏̃𝑐̃ −𝛿𝜉𝑏,𝜉𝑎
𝛿𝜉𝑐,𝜉𝑗

𝛿𝑠𝑏,𝑠𝑎
𝛿𝑠𝑐,𝑠𝑗

𝑉𝑎,𝜉𝑎 ,𝑠𝑎  𝑗̃,𝜉𝑗 ,𝑠𝑗

𝑏̃,𝜉𝑏 ,𝑠𝑏  𝑐̃,𝜉𝑐 ,𝑠𝑐) 

(4.64) 
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=
1

4
∑∑∑∑∑𝑉

𝑏̃𝑐̃

𝑗̃𝑎

𝑠𝑎𝑠𝑗𝜉𝑎𝜉𝑗𝑎𝑏̃𝑐̃

(𝑉𝑗̃𝑎 
𝑏̃𝑐̃ −𝛿𝜉𝑏 ,𝜉𝑎

𝛿𝜉𝑐,𝜉𝑗
𝛿𝑠𝑏,𝑠𝑎

𝛿𝑠𝑐,𝑠𝑗
𝑉𝑎𝑗̃ 

𝑏̃𝑐̃) 

=
1

4
∑𝑉

𝑏̃𝑐̃

𝑗̃𝑎

𝑎𝑏̃𝑐̃

(16𝑉𝑗̃𝑎 
𝑏̃𝑐̃ −4𝑉𝑎̃𝑗̃ 

𝑏̃𝑐̃) = ∑𝑉
𝑏̃𝑐̃

𝑗̃𝑎(4𝑉𝑗̃𝑎̃
𝑏̃𝑐̃ −𝑉𝑎𝑗̃

𝑏̃𝑐̃)

𝑎𝑏̃𝑐̃

 

= ∑𝑉
𝑏̃𝑐̃

𝑗̃𝑎(4𝑉𝑗̃𝑎
𝑏̃𝑐̃ − 𝑉𝑗̃𝑎̃

𝑐̃𝑏̃),

𝑎𝑏̃𝑐̃

 

where we have used the relation 𝑉34
12 = 𝑉43

21 . From now on we still use 𝑖/𝑗  instead of 𝑖̃/𝑗̃ to 

represent the reduced compound index 𝑖/𝑗 = (𝜆𝑖/𝑗, 𝑛𝑖/𝑗, 𝑚𝑖/𝑗).  

4.8 Numerical investigation of microscopic Bloch equations 

4.8.1 Bloch equations without dephasing and damping 

As is mentioned in the beginning of this chapter that the complete solutions to the carrier 

dynamics have to deal with the numerical approach. As a validation to the Rabi oscillations using 

RWA, the carrier-light interaction is solely studied without considering either dephasing in 

polarizations or any damping in populations. First, a continuous wave (CW) is used with right 

handed circular polarization (𝜎−-polarized). The time evolution of the population and polarization 

in 𝐿𝐿−1 , 𝐿𝐿0  and 𝐿𝐿+1  is illustrated in Figure. 4.9. The 𝜎− -polarized continuous wave is 

constantly driving the carrier back and forth between 𝐿𝐿0 and 𝐿𝐿+1 which is the typical Rabi 

oscillation feature. The initial conditions of 𝜌+1 = 0, 𝜌0 = 0.647 and 𝜌−1 = 1 resulted from the 

calculation in Section 4.6 are presumed. An apparent trend is that the polarization is maximum 

when the occupations in the two coupled Landau levels are evenly distributed. Another conclusion  

𝜌̇𝑖|light = −2∑ Re[Ω𝑖𝑙𝑝𝑖𝑙]𝑙 ,we can draw from the figure is that the amplitude of the polarization is 

about the same as the range the population swings. The optical selection rules that are mentioned 
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in Section 4.2 indicates that a 𝜎+-polarized light would couple to the transition between 𝐿𝐿−1 and 

Figure 4.9 Rabi oscillation with a resonant driving field. The transfer of carrier between 𝐿𝐿0  and 𝐿𝐿+1is constantly 

happening under a 𝜎−-polarized continuous wave. The photon energy is 74.4 meV, which is in resonance with the 

transition between 𝐿𝐿0  and 𝐿𝐿+1 under a magnetic field 𝐵 = 4.0 T. 

Figure 4.10 Rabi oscillation with a resonant driving field. The transfer of carrier between 𝐿𝐿−1 and 𝐿𝐿0is constantly 

happening under a 𝜎+-polarized continuous wave. The photon energy is 74.4 meV, which is in resonance with the 

transition between 𝐿𝐿−1 and 𝐿𝐿0  under a magnetic field 𝐵 = 4.0 T. 
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𝐿𝐿0, which is in good agreement with the numerical results that are plotted in Fig. 4.10 where a 

𝜎+-polarized continuous wave is applied.  

Figure 4.11 Population fluctuation over a 𝜋-pulse 𝜎+-polarized excitation. The photon energy is 74.4 meV, which is 

in resonance with the transition between 𝐿𝐿−1 and 𝐿𝐿0  under a magnetic field 𝐵 = 4.0 T. The pump fluence 𝜖𝑝𝑓 =

0.005 𝜇𝐽𝑐𝑚−2. 

Figure 4.12 Population fluctuation over a 2𝜋 -pulse 𝜎+-polarized excitation. The photon energy is 74.4 meV , which 

is in resonance with the transition between 𝐿𝐿−1  and 𝐿𝐿0  under a  magnetic field 𝐵 = 4.0 T. The pump fluence 

𝜖𝑝𝑓 = 0.02 𝜇𝐽𝑐𝑚−2. 
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The carrier evolution under a resonant Gaussian 𝜋-pulse with 𝜎+ polarization is plotted in 

Fig. 4.11. The pump fluence is set to be 𝜖𝑝𝑓 = 0.005 𝜇𝐽𝑐𝑚−2 calculated by Eq. 4.40, which is 

approximately a 𝜋 -pulse and induces the population flip between 𝐿𝐿−1  and 𝐿𝐿0 . Using an 

excitation of larger pump fluence 𝜖𝑝𝑓 = 0.045 𝜇𝐽𝑐𝑚−2  induces a 2𝜋 -pulse which drives the 

carriers back to their original energy level after the population flipping as shown in Fig. 4.12. 

4.8.2 Bloch equations with finite dephasing  

When charge carriers move through graphene, they respond to the local electric field. This 

response leads to a polarization effect, where the charge carriers become displaced from their 

equilibrium positions in response to the applied electric field. When impurities or defects such as 

vacancies, grain boundaries, or dislocations are present in graphene, they introduce random 

variations in the local electrostatic potential. These variations lead to fluctuations in the electric 

field experienced by charge carriers. As a result, charge carriers undergo random phase shifts as 

they interact with these impurity-induced electric field fluctuations. The random phase shifts 

induced by impurities or defects disrupt the phase coherence of charge carriers. This loss of 

coherence is referred to as dephasing.  

Considering a finite dephasing term of polarization in the optical Bloch equations, Eq. 4.26 

and 4.27 are modified as 

 𝜌̇𝑖 = −2∑Re[Ω𝑖𝑙𝑝𝑖𝑙]

𝑙

, (4.65) 

 𝑝̇𝑖𝑓 = (𝑖Δ𝜔𝑖𝑓 − 𝛾𝑖𝑓
𝑖𝑚𝑝)𝑝𝑖𝑓 − Ω𝑖𝑓

∗ (𝜌𝑓 −𝜌𝑖), (4.66) 
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where 𝛾𝑖𝑓
𝑖𝑚𝑝

 is the impurity-induced dephasing rate and ℏ𝛾𝑖𝑓
𝑖𝑚𝑝

 can be a few 𝑚𝑒𝑉. In Eq. 4.48, the 

Figure 4.13 Temporal evolution of population and polarization involved in the optical transition from 𝐿𝐿−1  to 𝐿𝐿+2  

including a finite dephasing with a 𝜋-pulse. The photon energy is 179.6 meV , which is in resonance with the 

transition between 𝐿𝐿−1 and 𝐿𝐿+2 under a magnetic field 𝐵 = 4.0 T. The pump fluence 𝜖𝑝𝑓 = 0.029 𝜇𝐽𝑐𝑚−2. 

Figure 4.14 Temporal evolution of population and polarization involved in the optical transition from 𝐿𝐿−1  to 𝐿𝐿+2  

including a finite dephasing  with a 4𝜋 -pulse. The photon energy is 179.6 meV , which is in resonance with the 

transition between 𝐿𝐿−1 and 𝐿𝐿+2 under a magnetic field 𝐵 = 4.0 T. The pump fluence 𝜖𝑝𝑓 = 0.47 𝜇𝐽𝑐𝑚−2. 
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term −Ω𝑖𝑓
∗ (𝜌𝑓 −𝜌𝑖) builds up the polarization while −𝛾𝑖𝑓

𝑖𝑚𝑝𝑝𝑖𝑓  counteracts the optical excitation, 

thus decreasing the effective pump fluence. In Fig. 4.13, the temporal evolution of population and 

polarization involved in the optical transition from 𝐿𝐿−1 to 𝐿𝐿+2 including a finite dephasing is 

plotted using a 𝜋-pulse. As a contrast, a 𝜋-pulse doesn’t flip the population of 𝐿𝐿−1 and 𝐿𝐿+2. 

Even with a 4𝜋-pulse, the pump only induces a transient population inversion and finally levels 

off 𝐿𝐿−1 and 𝐿𝐿+2 at an equal value, as can be seen from Fig. 4.14.  

4.8.3 Bloch equations with carrier-carrier scattering 

In this section, the Bloch equations will incorporate carrier-carrier scattering. Due to the non-

equidistant Landau levels, only the transition that closely matches the optical energy of the pump 

will be disturbed the most. Assume that carrier-carrier scattering only happens in Landau level 0 

and ±1, the Bloch equations of population and polarization under optical pump of 𝜎+ polarization 

can be formulated as 

 𝜌̇−1 = −𝑅𝑒[𝛺−1→0𝑝−1→0]+𝑆−1
𝑖𝑛(1 − 𝜌−1) − 𝑆−1

𝑜𝑢𝑡𝜌−1, 

𝜌̇0 = 𝑅𝑒[𝛺−1→0𝑝−1→0] + 2𝑆0
𝑖𝑛(1− 𝜌0) − 2𝑆0

𝑜𝑢𝑡𝜌0 , 

𝜌̇1 = 𝑆1
𝑖𝑛(1 − 𝜌1) − 𝑆1

𝑜𝑢𝑡𝜌1, 

𝑝̇−1→0 = (𝑖𝛥𝜔−1→0 − 𝛾)𝑝−1→0 −𝛺−1→0
∗ (𝜌0 − 𝜌−1)

− (𝑆−1
𝑖𝑛 + 𝑆−1

𝑜𝑢𝑡 + 𝑆0
𝑖𝑛 +𝑆0

𝑜𝑢𝑡)𝑝−1→0, 

𝑝̇0→1 = (𝑖𝛥𝜔0→1 −𝛾)𝑝0→1 −𝛺0→1
∗ (𝜌1 −𝜌0) 

−(𝑆0
𝑖𝑛 +𝑆0

𝑜𝑢𝑡 + 𝑆+1
𝑖𝑛 + 𝑆+1

𝑜𝑢𝑡)𝑝0→+1 

(4.67) 
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A factor of 2  is taken into account for 𝐿𝐿0  in/out-scattering rates since the total carrier 

concentration stays constant for the three levels and the DOS for each Landau level is the same. 

The temporal evolution of population in the three involved Landau levels is plotted in Fig. 4.15. 

After the optical excitation starts, there is a quickly increase of population in 𝐿𝐿0 and depopulation 

of 𝐿𝐿−1  because they are ground and excited states of the optically-addressed transition. 

Meanwhile, a gradual increase of the population is also noticed in 𝐿𝐿+1, which has nothing to do 

directly with the optical pump. However, since there is a (1 − 𝜌1) dependence in the in-scattering 

rate and 𝜌1  dependence in the out-scattering rate, the net population increase in 𝐿𝐿+1 is more 

prominent.  

Figure 4.15 The temporal evolution of population of 𝐿𝐿+1, 𝐿𝐿0 and 𝐿𝐿−1 including carrier-carrier scattering 

machnism. The photon energy of a  𝜎+
-polarized pump is 74 meV, which is in resonance with the transition between 

𝐿𝐿−1  and 𝐿𝐿0  under a  magnetic field 𝐵 = 4.0 T. The pump fluence 𝜖𝑝𝑓 = 0.1 𝜇𝐽𝑐𝑚−2. 
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At this moment, the strategy as discussed in Section 3.3.2 will be adopted, namely, the 

pseudomagnetic field with opposite signs will be assumed for 𝐾  and 𝐾′  valleys respectively, 

without considering the specific non-uniform strain applied on graphene. As a consequence of 

reversing the sign of magnetic field, the optical selection rules are also reversed. Therefore, with 

the same polarization of the optical pump, the transition from 𝐿𝐿0 to 𝐿𝐿+1 will be addressed 

instead. The corresponding temporal evolution of the population in the three involved Landau 

levels is also plotted in Fig. 4.16. A direct consequence of reversing the pseudomagnetic field is 

that the population in the same energy level within different valleys is no longer the same, which 

is in contrast to that of applying a uniform external magnetic field with the same magnitude to 

graphene. Although the non-uniform strain field doesn’t guarantee a well-defined reciprocal space, 

the wavenumber of electrons on the same energy level within different valleys is still opposite to 

each other, giving rise to equal amount of carrier concentration on the same level within different 

Figure 4.16 The temporal evolution of population of 𝐿𝐿+1, 𝐿𝐿0 and 𝐿𝐿−1 reversing the pseudomagnetic field in the 

other valley. 
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valleys, which is bounded by TRS. However, the imbalanced population within the different 

valleys is a clear sign of broken TRS, resulting in a transient nonreciprocity in graphene. Therefore, 

we theoretically demonstrate the possibility of realizing nonreciprocity in graphene combing 

optical pump and non-uniform strain. To notice, this nonreciprocal response is transient under a 

Gaussian pump since the electron-phonon scattering is not included in this microscopic carrier 

dynamic model. But the current model is still quite accurate to capture the most prominent features 

of carrier dynamics happen within the first few picosecond after the pump starts. The incorporation 

of electron-phonon scattering will eventually bring the system back to its original thermal 

equilibrium state without further optical injection.  

4.9 Chapter conclusions 

This chapter has explored the possibility of achieving magnetless nonreciprocity combining 

optical pump with circular polarization and strain engineering. This attempt carries the assumption 

made by the last chapter that with applying certain types of non-uniform, pseudomagnetic field 

with same magnitude and opposite signs can be generated within the two distinct valleys of 

graphene, leading to Landau-quantized energy levels. However, the transitions corresponding to 

the same energy levels possesses different chirality. A numerical study of the Bloch equations 

shows that without considering damping in the population, with a given circular polarization of 

the optical pump whose energy matches a certain transition, only the transition in one valley will 

respond and the same transition in the other valley stays unperturbed. Once the carrier-carrier 

scattering is taken into account, more realistic carrier dynamics show completed different 

population of the same energy levels within the two valleys, which clearly indicates nonreciprocity 

happens in graphene. The successful demonstration of nonreciprocity in optical pumped and 

strained graphene lifts the restriction of using gapped Dirac materials for realization of 
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nonreciprocity. Further calculations of the Hall conductivity is desired to engineer nonreciprocal 

responses in graphene using modified Kubo formulism or similar approaches taking into account 

the explicit scattering mechanisms.  
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5. Fundamental limits of nonreciprocal plasmonic metasurfaces 

The previous chapters are mainly focused on conceptualizing a novel magnetless approach 

to break reciprocity in 2D materials. Based on the different biasing mechanisms, numerous 

nonreciprocal plasmonic metasurfaces can be constructed. However, the design of quasi-optimal 

devices is usually quite challenging and require significant computational resources. Given the 

abundant choice of materials and large degree of freedoms for geometrical shapes and dimensions, 

it would be highly desirable to determine the optimal response that can be achieved by a 

metasurface loaded with a specific nonreciprocal material. This chapter is devoted to study and 

unveil the fundamental bounds of linear, nonreciprocal plasmonic metasurfaces, as those 

illustrated in Fig. 5.1. These bounds only depend on the nonreciprocal material that compose the 

devices and can be obtained analytically for some configurations. The proposed approach is 

Figure 5.1 Nonreciprocal plasmonic metasurfaces based on 2D materials. The metasurfaces can be biased with an 

external momentum applied parallel (a) or perpendicular (b) to the structures. (c) Some potential degrees of freedom 

to construct plasmonic metasurfaces, including the use of multilayers of 2D materials, nanopatterning, and the 

inclusion of other materials such as metals or dielectrics. 
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general in the sense that account for different mechanisms to obtain nonreciprocity, including 

magnetic bias and nonlocality (for instance, obtained using drifting electrons). To this purpose, we 

first review the isolation equation as initially proposed in Ref. [1] and define a metric to evaluate 

the performance of nonreciprocal plasmonic metasurfaces in terms of isolation and loss. Then, we 

apply an effective medium approach (EMA) [2] to relate ultrathin metasurfaces and bulk media, 

which in turn permit us to obtain the upper bound of the structures in the non-retarded regime. 

Next, we study two different nonreciprocal plasmonic platforms: drift-biased and magnetically-

biased graphene metasurfaces. For each scenario, we derive analytical upper bounds that only 

depend on graphene’s conductivity and then we explore realistic metasurfaces studied in the 

literature and benchmark their performance against the bounds. Our study reveals that drift-biased 

hyperbolic metasurfaces have a tremendous potential for nonreciprocal plasmonics in the mid -IR, 

while magnetically-biased metasurfaces are better suited for the low THz band. More broadly, this 

approach can readily be applied to assess the performance of plasmonic metasurfaces composed 

of any nonreciprocal material, including magneto-optical [3] and 2D materials [4],[5], and paves 

the way to quick development of optimal nonreciprocal devices.  

5.1 Isolation inequality 

Let us consider a linear two-port network filled with arbitrary materials. Let us also consider 

that, upon applying any odd physical quantity (biasing), one of the materials inside of network 

becomes nonreciprocal. To evaluate the performance of the network, we employ the following 

FoM [1] 

 
𝛾𝑖𝑠𝑜𝑙(𝑆𝐴,𝑆𝐵,𝒂𝐴 , 𝒂𝐵) ≜

|𝒂𝐵
𝑇(𝑆𝐴 − 𝑆𝐵

𝑇)𝒂𝐴|
2

𝒂𝐴
𝐻(𝐼 − 𝑆𝐴

𝐻𝑆𝐴)𝒂𝐴 ⋅ 𝒂𝐵
𝐻(𝐼 − 𝑆𝐵

𝐻𝑆𝐵)𝒂𝐵

, (5.1) 
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where 𝑆𝐴,𝐵 is the scattering matrix of the network, 𝒂𝐴,𝐵  is a vector containing the excitation waves, 

𝐼 is the identity matrix, and the superscript T and H denote transpose and Hermitian transpose 

operators, respectively. Additionally, the subscripts 𝐴 and 𝐵 represent two distinct states of the 

device that are being considered to evaluate nonreciprocity. Intuitively, Eq. 5.1 provides an idea 

of the device nonreciprocal response (numerator) versus the power dissipated in these scenarios 

(denominator), i.e., a trade-off between the isolation and loss. Remarkably, the values of the FoM 

are delimited by an upper bound dictated only by the intrinsic properties of the nonreciprocal 

material filling the device. This leads to the following isolation inequality [6]: 

 𝛾𝑖𝑠𝑜𝑙 (𝑆𝐴,𝑆𝐵,𝒂𝐴 , 𝒂𝐵) ≤ 𝛾𝑚𝑎𝑥 . (5.2) 

In the common case that the electric properties of the material (i.e., its permittivity tensor 𝜀) enable 

the nonreciprocal response, the upper bound 𝛾𝑚𝑎𝑥  is the largest eigenvalue of (𝜀𝐴
𝑇 − 𝜀𝐴

∗)
−1

(𝜀𝐵
∗ −

𝜀𝐵
∗ )

−1
(𝜀𝐴 − 𝜀𝐵

𝑇)(𝜀𝐵
∗ − 𝜀𝐴

𝐻) [1]. When the network is used to maximize isolation, the incident 

waves associated to states A and B can be defined as 𝒂𝐴 = (1 0)𝑇  and 𝒂𝐵 = (0 1)𝑇, i.e., the 

device is only excited from the left or right port of the two-port network. This allows to simplify 

the FoM to 

 
𝛾𝑖𝑠𝑜𝑙 (|𝑆12|, |𝑆21 |) =

(|𝑆21| − |𝑆12 |)
2

(1 − |𝑆21|
2)(1− |𝑆12|

2)
, (5.3) 

 

where 𝑆21  and 𝑆12  are the transmission coefficients from port 1 to 2 and from port 2 to 1, 

respectively. To better illustrate the tradeoff between isolation and loss, the FoM can be expressed 

as  
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𝛾𝑖𝑠𝑜𝑙 (𝐼, 𝐿 ) =

𝐿2(1 − 𝐼)2

(1 − 𝐿2)(𝐼2 − 𝐿2)
, (5.4) 

where 𝐼 = |𝑆21|/|𝑆12| is the isolation between the network ports, and 𝐿 = |𝑆21| is associated to 

the insertion loss assuming |𝑆21| > |𝑆12 | and perfect matching. To gain physical insight into this 

concept, let us consider a set of 2-port networks, all of them loaded with an identical nonreciprocal 

material and subjected to the same momentum bias. The performance of all networks, no matter 

how complex they are and what other materials they employ, will be upper bounded by 𝛾𝑚𝑎𝑥 . This 

bound only depends on the nonreciprocal material employed in the networks and determines the 

minimum loss that can be attainable in practice to achieve an isolation level 𝐼. Then, each specific 

network will benchmark a different performance 𝛾𝑖𝑠𝑜𝑙  that shows how close its behavior is with 

respect to the fundamental limit, with 𝛾𝑖𝑠𝑜𝑙 ≤ 𝛾𝑚𝑎𝑥 . 

In order to apply these bounds to the field of plasmonics, we consider a nonlocal and 

frequency-dispersive and ultrathin metasurface characterized by a fully populated conductivity 

tensor [7]-[9] 

 
𝜎(𝜔,𝒌) = [

𝜎𝑥𝑥(𝜔, 𝒌) 𝜎𝑥𝑦 (𝜔, 𝒌)

𝜎𝑦𝑥(𝜔,𝒌) 𝜎𝑦𝑦(𝜔, 𝒌)
], (5.5) 

where 𝜔 is the angular frequency and 𝒌 is the wavevector of the supported wave. Nonlocality is 

associated to the different response that the nonreciprocal material can potentially exhibit as a 

function of the momentum of the supported waves [7],[10] and, as detailed in further detail below, 

it is key to describe nonreciprocal systems based on drifting electrons [11],[12]. Using an effective 

medium approach [13], the metasurface can also be characterized as a thin dielectric layer of 

thickness 𝑑 with a nonlocal effective permittivity tensor 𝜀,  
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 𝜀𝑧𝑧 = 𝜀0, (5.6) 

 𝜀𝑥𝑥( 𝑦𝑦)(𝜔, 𝒌) = 1− 𝑗𝜎𝑥𝑥(𝑦𝑦)(𝜔,𝒌)/(𝜔𝑑), (5.7) 

 𝜀𝑥𝑦 (𝑦𝑥)(𝜔,𝒌) = −𝑗𝜎𝑥𝑦(𝑦𝑥)(𝜔,𝒌)/(𝜔𝑑). (5.8) 

In the non-retarded regime (i.e., |𝒌| ≫ |𝒌0|, where 𝒌 and 𝒌0 are the wavevectors of the supported 

SPPs and free space, respectively), the SPPs fields are strongly confined to the metasurface and 

exhibit rapidly decaying evanescent fields. In that scenario, the upper bounds of plasmonic 

metasurfaces can effectively be determined by analyzing the fields inside the effective anisotropic 

slab and determining their upper bound 𝛾𝑚𝑎𝑥 . In the following, we apply this approach to 

comprehensively explore two different nonreciprocal plasmonic platform, namely drift - and 

magnetically- biased graphene, and to analytically derive their fundamental limits as a function of 

graphene’s properties and the applied momentum.  

5.2 Application to drift-biased graphene plasmonics 

An effective way to achieve broadband nonreciprocal SPPs propagation is by applying drift 

current to graphene-based metasurfaces [14]-[17]. Since SPPs are collective oscillations of charges 

interacting with light, their propagation features are strongly affected by DC current. Drifting 

electrons with a velocity 𝑣𝑑  either drag or oppose the SPPs, inducing a Doppler-shifted 

wavenumber [12],[18]. As a result, SPPs effectively see different media when propagating along 

and against the drift current, leading to broadband nonreciprocity [19]. Recently, drift-biased 

graphene plasmonics have been experimentally demonstrated [10],[20] and attracted significant 

attention for various applications, including nonlinear wave generation [4] and hyperlensing [17]. 
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A drift-biased graphene platform is schematically shown in the inset of Fig. 5.2(a). Graphene 

is transferred onto a dielectric substrate (SiC [21],[22]) and two metallic electrodes (yellow bars) 

are printed to create electrical contact. By applying an external DC voltage across the metals, 

graphene is longitudinally biased by drifting electrons travelling from one electrode to the other 

with a velocity 𝑣⃗𝑑 = 𝑣𝑑𝑦̂. Such velocity depends on the distance between the electrodes as well 

as graphene properties in terms of chemical potential (𝜇𝑐) and relaxation time (𝜏), and it is always 

Fig. 2

1

Fig. 2. (a) Schematic showing z-component of electric field of dipole-excited SPP in drift-biased graphene. (b) IFC of
states supported by graphene at 1.5μm for two different velocities of drifting electrons. Points A and B show the
states effectively seen by waves traveling along and against the drift. (c) and operation wavelength (d). The
parameters used are 𝜏 = 0.1 𝑝𝑠 and 𝜇𝑐 = 0.4 𝑒𝑉 .

(a) 

𝑦

𝑥 𝐸𝑧

(c) 

 

𝐸𝑧 𝑚𝑎𝑥

𝐸𝑧
𝑚𝑎𝑥−𝐸𝑧

𝑚𝑎𝑥

(b) 

(d) 

Figure 5.2 Drift-biased graphene as a nonreciprocal plasmonic metasurface. (a) Schematic showing the z -

component of electric field excited by a z-oriented dipole (red arrow) located at 100 nm over a drift-biased 

(𝑣𝑑 = 0.5 𝑣𝐹
) graphene at 21 THz. Inset shows the device schematic. (b) Isofrequency contour of the states 

supported by graphene at 21 THz for two different velocities of drifting electrons. (c) and (d) Momentum of the 

supported states versus drift velocity and frequency, respectively. Other parameters are 𝜏 = 0.1 𝑝𝑠  and 𝜇𝑐 =

0.4 𝑒𝑉 . 
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below the Fermi velocity of electrons in graphene (𝑣𝐹 ≈ 106  m/s). In this scenario, graphene 

becomes nonlocal because its response depends on the momentum of the supported waves. Such 

response can be modelled using a conductivity tensor 𝜎 = (𝜎𝑔    0;  0  𝜎𝑑)  [12], where 𝜎𝑔  is 

graphene’s conductivity without the drift bias [23] and 𝜎𝑑(𝑣𝑑, 𝑘𝑦) =  [𝜔/(𝜔 − 𝑘𝑦𝑣𝑑)]𝜎𝑔(𝜔 −

𝑘𝑦𝑣𝑑), with 𝑘𝑦  being the wavevector component along the drift [14]. Nonreciprocity follows 

because reversing the wave travelling direction effectively means flipping the electron drifting 

direction, resuling in 𝜎𝑑(𝑣𝑑,+𝑘𝑦) ≠ 𝜎𝑑(𝑣𝑑, −𝑘𝑦). Probably the simpler approach to excite SPPs 

in this platform is to locate a z-oriented dipole in its near-field. We analyze this scenario using a 

home-made anisotropic Green’s function approach developed in Ref. [12]. The z-component of 

the SPP’s electric field excited by a dipole located at 100 nm over the metasurface is shown in Fig 

5.2(a). Results show that the dipole excites waves propagating along all directions within the plane. 

For directions transverse to drifting electrons, i.e., ±𝑥  , SPPs show a symmetric field profile. 

Nonreciprocity appears along the  𝑦  axis, i.e., along the direction of the applied DC bias. Plasmons 

traveling along +𝑦 are less confined that along other directions and travel longer with little loss. 

Remarkably, SPPs directed against the current (i.e., −𝑦) are very confined and lossy, thus quickly 

decaying. Fig. 5.2(b) shows the isofrequency contour (IFC) of the waves supported by the platform 

for two different velocities of the drifting electrons. Results confirm that, as the drift velocity 

increases, the IFC asymmetry along 𝑘𝑦 increases, thus leading to larger nonreciprocal responses. 

Points A and B in the IFC plots are associated to the wavenumber of the SPPS traveling along and 

against the current, respectively. Fig. 5.2(c)-(d) completes our analysis by providing a parametric 

study of the momentum of the supported SPPs versus drift velocity and frequency, confirming that 

nonreciprocity may appear over a large bandwidth.   
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To find the fundamental limits of drift-biased graphene-based metasurfaces, we analytically 

derive the isolation inequality as  

 𝐿2(1 − 𝐼)2

(1 − 𝐿2)(𝐼2 −𝐿2)
≤

|𝜎𝑦𝑦(𝑣𝑑 , 𝑘𝐴𝑦)− 𝜎𝑦𝑦(𝑣𝑑, 𝑘𝐵𝑦)|
2

𝜎𝑦𝑦
′ (𝑣𝑑, 𝑘𝐴𝑦)𝜎𝑦𝑦

′ (𝑣𝑑, 𝑘𝐵𝑦)
= 𝛾𝑚𝑎𝑥 . (5.9) 

where the superscript ′ denotes the real parts of the conductivity component. In Eq. 5.9, the left-

hand side is related to the performance of a given plasmonic device in terms of loss and isolation. 

The right-hand side provides the upper performance (𝛾𝑚𝑎𝑥 ) that can be attained by any metasurface 

that host drift-biased graphene with certain features (i.e., chemical potential, relaxation time, 

temperature, and velocity of drifting electrons). Remarkably, only the conductivity term associated 

to the drift (𝜎𝑦𝑦 ) appears in the bound. This is because the system is reciprocal along the x-direction, 

and thus 𝜎𝑥𝑥  does not directly contribute to the system nonreciprocity. Maximum isolation will be 

obtained between states A and B, i.e., between waves travelling along and against the drifting 

electrons. We denote the wavenumber of such waves as 𝑘𝐴𝑦  and 𝑘𝐴𝑦 , respectively. Even though 

nonreciprocity will also appear for waves propagating toward other directions, their nonreciprocal 

behavior will be weaker and thus such performance will fall within our bound. In a general scenario, 

the effective nonlocal 𝜎𝑦𝑦  conductivity of the metasurface will strongly depend on the properties 

of the supported waves, which in turn can be manipulated using metal, patterning, and different 

geometries [24],[25]. An optical metasurface structure could be designed to exploit the platform 

at their limits, i.e., when 𝑘𝐴𝑦 → 𝑘0  and when 𝑘𝐵𝑦 → ∞. In practice, graphene does not support 

waves with a confinement beyond 300𝑘0  due to intrinsic nonlocal effects [26]-[28], thus a 
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conservative value of 𝑘𝐵𝑦 ≈ 100 𝑘0 is considered here. As a result, 𝑘𝐴𝑦 = 𝑘0 and 𝑘𝐵𝑦 = 100 𝑘0 

impose the boundaries for the isolation inequality in Eq. 5.9 for an optimal structure.  

Fig. 5.3 illustrates the fundamental bounds and optimal device performance obtained by 

drift-biased graphene-based plasmonic metasurfaces at 21 THz. Panel (a) overviews the isolation-

loss plot employed to benchmark the device performance: blue area denotes the forbidden region, 

associated to a performance that surpass our bound, and white area denotes a performance that can 

be obtained by realistic metasurfaces. The dark blue circle marks the best performance that can be 

Figure 5.3 Fundamental bounds of drift-biased graphene metasurfaces. (a) Concept of isolation inequality. Any 

plasmonic device using drift-biased (𝑣𝑑 = 0.1𝑣𝑓) graphene at 21 THz will exhibit a  response in terms of loss and 

isolation within the white area of the panel. Blue area represents device performance that cannot be reached. (b) 

Isolation inequality for various drift velocities of flowing electrons for a graphene-based metasurface at 21 THz. 

Panels (c) and (d) show the isolation inequality versus frequency for drift velocities 𝑣𝑑 = 0.05𝑣𝑓 and 𝑣𝑑 = 0.5𝑣𝑓 , 

respectively. Other parameters are as in Fig. 5.2. 
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obtained with a material. This study is extended in Fig. 5.3(b) for different velocities of the drifting 

electrons. Results suggest that significant isolation levels, over 25 dB, can be obtained with 

minimal loss (<1 dB) and moderate drift-bias. The fundamental limits (isolation/loss) of this type 

of metasurfaces are parametrically explored in Fig. 5.3(c)-(d) for two different drift velocities 

versus frequency. Results confirm that this type of devices have the potential to exhibit an excellent 

performance over a broad frequency range. It should be stressed this platform exhibit better 

performance as frequency increases, and thus it is better suited to operate in the mid-IR band than 

at low THz frequencies. Additionally, it can be observed that isolation/loss trade-offs significantly 

improve as the velocity of the drifting electrons increases. The challenge now is to design quasi-

optimal plasmonic metasurfaces able to benchmark close to these bounds. In the following, we 

explore and benchmark the performance of two different platforms: a graphene-sheet employed as 

a 1D transmission line, a configuration described elsewhere [29],[30] to construct plasmonic 

devices such as switches or filters, and isotropic and hyperbolic drift-biased metasurfaces [10],[20], 

[36] excited by a dipole source. 

To gain a better understanding of the bounds of drift-biased graphene, we develop a 

transmission line (TL) [29],[30] composed of three sections of graphene in which only the center 

one is drift-biased (see Fig. 5.4). This allows to further isolate the response of drift-biased graphene 

with respect to the excitation. We model this structure in COMSOL Multiphysics [31]. To this 

purpose, we calculate the drift-biased conductivity of graphene with wavenumbers along and 

against the drift electrons, and we used them to construct two simulation models: one associated 

to forward SPP propagation (along the drift) and other for backward SPP propagation (against the 

drift). We treat the side regions of the structure as ports, and characterize them using lossless, 

unbiased, graphene. The z-components of the electric field for SPPs travelling in such TL system 
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are depicted in Fig. 5.4(a). For forward propagation (+𝑦 direction, top panel), SPPs travels through 

the drift-biased section of graphene without significant changes. However, waves propagating 

against drifting electrons (−𝑦 direction, bottom panel) undergo a change in their wavelength 

together with very significant damping. We quantified this result by calculating the 𝑆21  and 𝑆12 

coefficients of the system using TL theory [32], which are in good agreement with those found 

using COMSOL simulations. Fig. 5.4(b)-(d) report a performance study varying the length of the 

center graphene section of the structure ℓ from 0.3 to 1 𝜇𝑚. As expected, larger sections provide 

Figure 5.4 Drift-biased graphene as a 1D plasmonic isolator. (a) Numerical simulations in COMSOL Multiphysics. 

The structure is composed of two plasmonic lossless ports made of pristine graphene and one central graphene 

region of length ℓ = 0.3𝜇𝑚 that has been drift-biased along the direction indicated by the red arrow (𝑣𝑑 = 0.5𝑣𝑓 ). 

Results show SPPs propagation along forward (top) and backward (bottom) directions. (b)-(d) Device performance 

(loss/isolation) for various drift-velocities at 21 THz (blue dots). The length of the drifted section increases from 

0.3 𝜇𝑚  to 1 𝜇𝑚  in steps of 0.1 𝜇𝑚 . Cyan regions show the performance bound provided by the isolation inequality. 

Other parameters are as in Fig. 5.2. 
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larger isolation and loss. Increasing the drift-bias further increases the isolation while reducing the 

loss on the system, leading a trade-off between length and bias to achieve desired responses. 

However, the performance exhibited by this platform is in all cases well below the upper limits 

offered by drift-biased graphene. Therefore, we conclude that this platform is far from ideal to 

achieve quasi optimal nonreciprocal responses.  

A realistic approach to excite drift-biased graphene-based plasmonic metasurfaces is to use a 

dipole located in the near field of the structure. This can be implemented in practice using 

scanning-type scanning near-field optical microscopy (s-SNOM) by shining laser on a probe tip 

located above the metasurface [33]-[35]. The tip gets polarized and behaves as a dipole, scattering 

evanescent fields that couple to the metasurface in the form of SPPs. Here, we explore this 

excitation approach using a home-made Green’s function approach [12] and evaluate its 

performance and fundamental limits for two specific drift-biased platforms, namely a graphene 

sheet and a hyperbolic metasurfaces made of graphene ribbons [36].  

Fig. 5.5(a) shows the Poynting vector of SPPs excited by a z-directed dipole located 35 nm 

over a drift-biased graphene sheet for two different drift-velocities (𝑣𝑑 = 0.5𝑣𝐹 and 𝑣𝑑 = 0.85𝑣𝐹). 

Here, drifting electrons are traveling in the +𝑦 direction. We focus on nonreciprocity between the 

dipole located at 𝑟0
′ and an observer point located at 𝑟0 . In this context, isolation is defined as the 

ratio of the squared modulus of electric fields at source/observation pairs (i.e., |𝐸(𝑟0 , 𝑟0
′)/

𝐸(𝑟0
′ , 𝑟0)|

2 [12]) and loss as Im(ky). Fig. 5.5(c)-(d) evaluate the performance of this platform 

along the y-axis (i.e., where maximum isolation occurs) when the distance between source and 

observation increases from 0.3 to 1 𝜇𝑚 with steps of 0.1 𝜇𝑚. Results show a trend similar to the 

one the found in Fig. 5.4: increasing the drift bias leads to large isolation and lower loss within a 

somewhat limited range. It should be noted that losses are reduced in this scenario. We attribute 
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such response to the lack of port sections compared to the TL case, and to the overall better 

matching between the fields radiated by the dipole and graphene. Still, despite these improvements, 

Figure 5.5 Electromagnetic response of drift-biased graphene-metasurfaces excited by a z-directed dipole 

located  0 = 35 nm. Poynting vector (magnitude) of SPPs excited over a  drift-biased graphene sheet (a) and a 

drift-biased hyperbolic metasurface based on an array of graphene ribbons (b). The width and periodicity of the 

ribbons is set to W=25 nm and L=50 nm, respectively. Results are plotted for two different drift-velocities: 

𝑣𝑑 = 0.5𝑣𝑓  (central row) and 𝑣𝑑 = 0.85𝑣𝑓  (bottom row). Red arrows show the direction of the flowing 

electrons. (c) Performance in terms of loss and isolation of the metasurfaces shown above for two different 

drift-velocities, 𝑣𝑑 = 0.5𝑣𝑓  (left) and 𝑣𝑑 = 0.85𝑣𝑓 (right). The length of the drifted metasurfaces increases 

from 0.3 𝜇𝑚 to 1 𝜇𝑚  in steps of 0.1 𝜇𝑚 . Cyan regions show the performance bound provided by the isolation 

inequality. Other parameters are as in Fig. 5.2. 
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the performance of the platform is far from reaching the fundamental limits offered by drift -biased 

graphene.  

5.4 Application to magnetically-baised graphene plasmonics 

Even though many works have explored the interaction of magnetically-biased graphene 

metasurfaces with plane waves, aiming to construct Faraday rotators [37]-[39] and isolators [40], 

such structures can also be applied for nonreciprocal plasmonics. For instance, edge-modes 

propagating on graphene ribbons are nonreciprocal when the structure is combined with metals 

[41]. However, it is still unclear how optimal such devices are. In general, the vast degrees of 

freedom to design magnetically-biased graphene metasurfaces make it very challenging to 

determine if the performance of specific devices is close to the fundamental bounds offered by the 

material. This usually leads to redundant and time-consuming efforts to marginally increase the 

device performance by increasing its complexity.  

Let us consider a thin arbitrary metasurface that is somehow loaded with magnetically-biased  

graphene characterized by a conductivity tensor 𝜎 = (𝜎𝑑   𝜎𝐻;  −𝜎𝐻  𝜎𝑑) , where 𝜎𝑑  and 𝜎𝐻  

correspond to graphene’s direct and Hall conductivities component. They can be determined using 

the Kubo formalism [23]. The isolation inequality that determines the fundamental limits of this 

platform can be analytically derived as  

 𝐿2(1 − 𝐼)2

(1 − 𝐿2)(𝐼2 −𝐿2)
≤

𝜎𝐻
′′2( 𝐵0)[𝜎𝐻

′ 2(𝐵0) + 𝜎𝐻
′′2( 𝐵0)]

[𝜎𝑑
′2( 𝐵0) − 𝜎𝐻

′′2( 𝐵0)]
2

= 𝛾𝑚𝑎𝑥 , (5.10) 

where the superscripts ′ and ′′  denote the real and imaginary parts of the conductivity components, 

respectively, and 𝐵0  is the magnetic field applied in the direction perpendicular to structure. 

Similarly to the case studied above, the left-hand side of Eq. 5.10 is related to the performance 
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(isolation/loss) of a specific plasmonic device whereas the right-hand side provides the upper 

performance (𝛾𝑚𝑎𝑥). Nonreciprocity is here governed by the Hall conductivity of graphene, and 

the bound reduces to zero in case that the metasurfaces are not magnetically biased, i.e.,  𝜎𝐻 → 0 

forces that 𝛾𝑚𝑎𝑥 → 0.  

Fig. 5.6(a) shows the upper bounds (isolation/loss) of magnetically-biased graphene-based 

metasurfaces at 21 THz versus the applied magnetic field. Results show that large isolation may 

Figure 5.6 Upper bounds of magnetically-biased graphene metasurfaces. (a) Upper bounds for various magnetic 

field values applied on a given graphene sample at 21 THz. (b) Performance analysis of devices studied in the 

literature, including nonreciprocal edge modes (red diamonds [41]) and a circulator (blue triangle [42]), versus their 

upper bounds (solid lines). Insets illustrate the devices schematic. (c)-(d) show the isolation inequality versus 

frequency for applied magnetic fields B0 = 1 T and B0 = 7 T, respectively. Other parameters are as in Fig. 5.3. 
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be achieved with bias as little as 1 T but at the expense of significant loss. Upper performances are 

significantly improved when larger magnetic bias values are applied. Note that the graphene 

parameters employed in this panel are identical to those employed in Fig. 5.3 (b), which allows us 

to directly compare the performance of drift- and magnetically- biased plasmonic metasurfaces. 

Fig. 5.6(b) benchmarks the response of nonreciprocal platforms explored in the literature against 

the fundamental limits obtained using Eq. 5.10. Specifically, red data is associated to a 

nonreciprocal plasmonic system composed of a graphene ribbon that is short-circuited on one edge 

with a metal plane [41] (see inset). In the system, the ribbon has a width of 100 μm, 𝐵0 = 1 T, 

frequency is set to 2 THz, and graphene’s chemical potential and relaxation time are set to 0.37 

eV and 0.1 ps, respectively. Nonreciprocal edge plasmons appears on the graphene edge that 

interfaces with air. The response of the platform is explored changing the length of the graphene 

ribbon from 0.3 μm to 1 μm with a step of 0.1 μm (red diamonds). Even though the system 

provides large isolation, it exhibits quite significant loss and benchmarks quite far from the 

fundamental limits of the material. The other platform considered here is related to the 

magnetically-biased graphene circulator described in Ref. [42]. It is composed of a cross-shaped 

graphene pattern (see inset) printed on top of a SiO2/Si substrate and operates at 3.4 THz. The 

applied bias is set to 𝐵0 = 1.5 T and graphene’s chemical potential and relaxation time are set to 

0.15 eV and 0.9 ps, respectively. The blue triangle marker displays the performance of the device, 

which provides significant isolation (~ 50 dB) and moderate loss (~ 5 dB). Even though such 

performance is remarkable, there is still plenty of room to improve it and bringer close to the upper 

bounds offered by the magnetically-biased graphene employed in the system.  

Fig. 5.6(c)-(d) further explores the fundamental limits of magnetically-biased graphene as a 

function of frequency for two magnetic bias, 𝐵0 = 1 T and 𝐵0 = 7 T . Results show that high 
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performance in terms of isolation/loss can be obtained in the THz band (roughly from ~1 to ~ 5 

THz) using moderate bias fields. As frequency increases, the performance significantly degrades, 

and high isolation is always associated with large loss. Further enhancing the magnetic field to 

𝐵0 = 7 T allows to construct metasurfaces with excellent trade off in terms of isolation and loss 

over a large frequency band.  

5.5 Conclusions 

In conclusion, we have explored the fundamental limits of nonreciprocal metasurfaces that 

guide surface waves. Remarkably, these limits are only related to the properties of the 

nonreciprocal material employed within the device and do not depend on the presence of other 

materials such as metals or dielectrics or on geometrical considerations. Without loss of generality, 

we focused on two types of nonreciprocal plasmonic platforms, i.e., drift- and magnetically- biased 

graphene metasurfaces, and we analytically derived their fundamental bounds. In the case of drift-

biased devices, we explored 1D devices excited by surface plasmons using both transmission line 

theory and full-wave numerical simulations (COMSOL Multiphysics). Additionally, we 

investigated isotropic and hyperbolic drift-biased metasurfaces excited by electrical dipoles 

located in the near field of the device – a configuration that mimics s-SNOM microscopy. Our 

results show that most devices operate relatively far from their upper bounds, and thus their 

performance can be significantly improved. One important exception is the case of drift -biased 

hyperbolic metasurfaces, which exhibit an outstanding performance at frequencies close to the mid 

infrared band. Overall, drift-biased graphene plasmonics is an emerging and promising broadband 

technology compatible with integrated circuits. In the case of magnetically-biased graphene 

metasurfaces, we evaluated the performance of several devices studied in the literature – namely 

an isolator based on nonreciprocal edge modes and a circulator based on patterned graphene – and 
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benchmarked their response against the upper bounds. Even though these devices exhibit very 

interesting responses, they all operate relatively far from the upper bound and thus their 

performance can be further improved. Additionally, our bounds revealed that magnetically-biased 

graphene metasurfaces are well-suited (in terms of isolation/loss trade-offs) to operate in the low 

terahertz band. Recently, circular dichroism has been demonstrated to be an efficient tool to break 

reciprocity in 2D materials due to the optically-driven non-degenerate valleys [43]-[45]. As 

another nonreciprocal plasmonic platform and armed with a similar optical conductivity tensor to 

that of magnetically-biased graphene, optically-driven 2D materials can also be evaluated though 

our bounds. 

 Moving beyond, our bounds can be applied to explore the fundamental limits of many other 

nonreciprocal plasmonic metasurfaces, including those based on magneto-optic materials [46] and 

2D materials such as transition metal dichalcogenide monolayers [47]. We envision that the 

bounds derived here will be useful in the development of quasi-optimal nonreciprocal 

metasurfaces employed in areas such as communication, sensing, imaging, and nonlinear optics, 

among many others.  
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6. Conclusions  

In this thesis, I have proposed a novel approach to achieve magnetless nonreciprocity in 

graphene combining the utilization of both optical pump and strain engineering. I specifically 

reviewed the method to calculate the Hall conductivity of graphene under circularly polarized light, 

the optical conductivity under uniform strain fields and ways to generate uniform pseudomagnetic 

fields using non-uniform strain fields. The process to incorporate optical pump and strain fields 

into the Bloch equations is derived in detail. The second part of this thesis has dealt with finding 

the fundamental limits of nonreciprocal plasmonic metasurfaces. I have specifically benchmarked 

several platforms including drift current- and magnetically- baised graphene under their 

corresponding bounds and demonstrated that the drift-biased hyperbolic graphene metasurface is 

a superior platform as compared to the normal drift-biased graphene metasurface. The key findings 

of each chapters are briefly summarized below: 

In Chapter 2, I have reviewed the formulism to calculate the optical conductivity for pristine 

graphene, graphene under magnetic field and optical pump. I have then calculated the optical 

conductivity of gapped graphene when it is optically pumped with circularly-polarized waves and 

demonstrate the current efforts towards achieving nonreciprocity at THz and IR frequencies.  

In Chapter 3, I have applied the same tight-binding approach on graphene under uniform 

strain fields. I have calculated the optical conductivity of graphene under different types of strain 

and magnitude. Results show that the diagonal conductivity terms change differently among four 

types of strain, but the net Hall conductivity always vanishes. The critical point is that the uniform 

strain exerted on graphene does not break reciprocity. When it moves to non-uniform strain, there 

can be numerous types of strategy to generate pseudomagnetic field in the two non-degenerate 

valleys of graphene and within the methods I have reviewed the maximum pseudomagnetic can 
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come to close ~100 Teslas. Then, I have proposed strategies to unleash large non-reciprocal 

response in graphene combining strain engineering and external magnetic fields or optical pumps.  

In Chapter 4, I have used the knowledge gained from Chapter 2 and 3 and to propose a new 

method to realize magnet-free nonreciprocity in graphene combining the use of strain engineering 

and CP light pump. I have fully reviewed the formalism and algorithms that are required to 

evaluate the carrier dynamics and population on discrete energy levels under the influence of 

external electromagnetic fields while taking into account the relaxation due to Coulomb scattering. 

The effect of non-uniform strain is incorporated into the Bloch equation by assuming a reasonable 

pseudomagnetic field with opposite signs in the two valleys of graphene with the insight we have 

gained from Chapter 3. The results show the population imbalance in the two non-degenerate 

valleys in graphene which indicates the broken reciprocity. Successful development and validation 

of these innovative concepts will lead to a new generation of integrated isolators and devices for 

non-reciprocal wave steering and manipulation compatible with existing plasmonic and photonic 

technology. 

In Chapter 5, I have explored the fundamental limits of nonreciprocal metasurfaces that guide 

surface waves. Remarkably, these limits are only related to the properties of the nonreciprocal 

material employed within the device and do not depend on the presence of other materials such as 

metals or dielectrics or on geometrical considerations. Without loss of generality, we focused on 

two types of nonreciprocal plasmonic platforms, i.e., drift- and magnetically- biased graphene 

metasurfaces, and we analytically derived their fundamental bounds. Our results show that most 

devices operate relatively far from their upper bounds, and thus their performance can be 

significantly improved. One important exception is the case of drift-biased hyperbolic graphene 

metasurfaces, which exhibit an outstanding performance at frequencies close to the mid infrared 
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band. Overall, drift-biased graphene plasmonics is an emerging and promising broadband 

technology compatible with integrated circuits.  

The theoretical framework we have built can be employed in evaluating a broader range of 

nonreciprocal metasurfaces not limited to those based on traditional magneto-optic materials [1] 

but also what has recently become very popular, like optically-pumped transition metal 

dichalcogenide monolayers [2]. The foundational limits derived in this work have the potential to 

advance the development of near-optimal nonreciprocal metasurfaces, which are utilized in 

various fields including communication, sensing, imaging, and nonlinear optics, among others. 
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