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Abstract of the Dissertation

Properties of the Multivariate Cauchy Estimator

by

Yu Bai

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2016

Professor Jason L. Speyer, Chair

In this dissertation, the fundamental structure of a multivariate discrete-time state estima-

tor with Cauchy distributed process noise and measurement noise is discussed in depth.

The characteristic function (CF) of the unnormalized conditional probability density func-

tion (ucpdf) is found to be a sum of elements that increases at each update of the current

measurement. Each term in this sum is composed of a coefficient term which contains the

measurement history operating on an exponential term composed of a sum of absolute val-

ues whose argument is the inner product of a direction vector with the spectral variable.

The objective is to understand the structure of the CF so as to simplify this sum. We

shows that directions in the terms of the CF-s are co-aligned only along certain directions

which are functions of a unique fundamental basis. Based on the knowledge of combining

co-aligned directions, an indexing scheme, called “S” matrix, is developed to indicate which

exponential terms can be combined without the necessity of numerical comparison. The S

matrix is invariant for systems of the same dimension regardless of the system parameters.

The coefficient terms are also restructured and simplified by eliminating all the redundant

zero elements. For two-state systems, we show that there are no more than three non-zero

elements in each layer of any new coefficient term. Furthermore, with these newly uncov-

ered properties the Cauchy estimator is implemented efficiently using a pre-computational

technique. The simulations of three-state and four-state systems illustrate the performance

of Cauchy estimator compared with the Kalman Filter.
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CHAPTER 1

Introduction

1.1 Overview

A multivariate state estimator for linear systems with additive Cauchy noise is studied in this

work. Many uncertainties in nature, engineering systems, finance and other fields have been

found to have heavy-tailed characteristics [1] [2]. Unlike the light-tailed distributions, includ-

ing the most common Gaussian distributions, heavy-tailed uncertainties are very impulsive,

hence can hardly be described by any light-tailed probability density function (pdf). Under

many practical circumstances, the traditional Kalman Filter cannot obtain desired perfor-

mance in the presence of heavy-tailed noises. A state estimator developed for heavy-tailed

uncertainties has significant research potential.

Cauchy distribution has heavy tail which upper bounds many distribution densities. It

has closed form probability density function (pdf) and characteristic function (CF), which

enables us to develop the estimation problem under Cauchy distributed uncertainties. Unlike

Gaussian distribution, Cauchy has undefined mean and infinite second moment. However,

we show that the conditional mean given the measurement history is well-defined, and the

conditional variance given the measurements is finite.

In [3], [4], [5] and [6], scalar, multivariate, and two-state Cauchy estimators with additive

Cauchy noise was developed in a recursive, closed form that in the Cauchy environment

produces the conditional mean and finite conditional variance. This Cauchy estimator is the

only algorithm besides the Gaussian to have a recursive, closed-form. It was shown to have

almost as good performance as the Kalman Filter when the process noise and measurement

1



noise are Gaussian distributed. In addition, in the presence of Cauchy distributed uncertain-

ties, the Cauchy estimator outperforms the Kalman Filter. Therefore, although physically

there does not exist Cauchy noise, we hypotheses that the Cauchy estimator is robust in

many noise environments. The major challenge of the multivariate Cauchy estimator is the

computational efficiency and memory requirement, due to the complexity of the estimator

structure.

The goal of this dissertation is to uncover several important fundamental properties of

the multivariate Cauchy estimator structure, and provide an offline - online technique which

allows the estimator to process a large sequence of measurement data. Aligned with [4] [5] and

[6], the CF approach is used. In other words, the CF of the conditional pdf of the state given

the measurement history at each step is propagated and updated, from which the conditional

mean and conditional variance is evaluated. These newly found fundamental properties as

well as the pre-computational technique presented in this dissertation is demonstrated to

have enhanced the computational efficiency of the estimator significantly.

1.2 Cauchy Distribution

The Cauchy distribution is included in the symmetric α-stable (SαS) distributions, which is

a class of heavy-tailed distributions [7]. It is defined by its characteristic function (CF) as,

φ(ν) = exp (jµν − γα|ν|α) (1.1)

where α ∈ (0, 2] is the stability parameter, γ ∈ (0,∞) is the scale parameter, and µ ∈

(−∞,∞) is the location parameter, and the median. When α > 1, µ is the mean. When

α ≤ 1, the mean is undefined. In addition, when α = 2, equation (1.1) describes a Gaussian

distribution, with the variance well-defined to be 2γ2. When α < 2, the random variable has

infinite second moment.

The Cauchy distribution can be described by equation (1.1) when α = 1. Cauchy dis-

tribution has undefined mean and infinite second moment. The probability density function

2



(pdf) of a random variable X ∼ Cauchy(µ, γ) is expressed as,

f(x) =
γ/π

(x− µ)2 + γ2
, −∞ < x <∞ (1.2)

The probability density functions of SαS distribution for different cases of Cauchy distribu-

tions compared with Gaussian distribution is shown in Figure 1.1.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Probability Density Function

 

 
α = 1, γ = 0.5 (Cauchy)
α = 1, γ = 1 (Cauchy)
α = 1, γ = 2 (Cauchy)
α = 2, γ = 1 (Gaussian)

Figure 1.1: SαS probability density functions

1.3 Problem Statement

Consider the linear state space system,

xk+1 = Φxk + Γwk (1.3)

zk = Hxk + vk (1.4)

The state vector is xk ∈ Rn and zk is the scalar measurement. The state transition matrix

Φ ∈ Rn×n, the process noise matrix Γ ∈ Rn×m, and the measurement matrix H ∈ R1×n are

known. The process noise wk and the measurement noise vk are assumed to be independent

Cauchy distributed random variables. In the following of this work, we study the vector case

3



particularly, based on which the solutions and results are presented. Although not necessary,

for convenience we let m = 1 for the rest of this dissertation. And let wk and vk have zero

medians and a scale parameter β and γ, respectively, i.e. the characteristic function of wk and

vk is φW (ν̄) = exp(−β|ν̄|) and φV (ν̄) = exp(−γ|ν̄|). ν̄ is a scalar spectral variable. k is the

stage time. The elements of the initial state vector x1 is assumed to be independent, Cauchy

distributed, with a zero median and scale parameters αi, i = 1, 2, ..., n. The characteristic

function of the initial state vector is φX1(ν) = exp
(
−
∑n

i=1 αi |eiν|+ ju1
1
T
ν
)

, where the

spectral vector ν ∈ Rn, the unit directions e1 = [1 0 ... 0], ..., en = [0 0 ... 1], and

the median of the distribution of the initial state x1 is u1
1 ∈ Rn.

1.4 Estimator Structure

State estimators with additive Cauchy noise was developed in [4] [5] and [6] which is recursive

and in closed form. The estimator structure was established on characteristic functions (CF)

of the conditional probability density functions (cpdf), instead of updating the pdf directly.

1.4.1 Propagation and Update

The multivariate Cauchy estimator in [5] is formulated by propagating and updating the

characteristic function (CF) of the conditional probability density function of the state xk

given the measurement history yk = {z1, · · · , zk} at step k. At the first measurement update,

the characteristic function is given by,

φX1|Z1(ν) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1|Z1(x1|z1)ejν

T x1dx1 (1.5)

where ν ∈ Rn. Because of Bayes’s theorem, the conditional pdf can be written as,

fX1|Z1(x1|z1) =
fV (z1 −Hx1)fX1(x1)

fZ1(z1)
(1.6)

Then the CF of the cpdf becomes,

φX1|Z1(ν) =
1

fZ1(z1)

∫ ∞

−∞
· · ·
∫ ∞

−∞
fV (z1 −Hx1)fX1(x1)ejν

T x1dx1 (1.7)
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and the CF of the unnormalized conditional probability density function (ucpdf) at step

k = 1 was defined in [5] as,

φ̄X1|Z1(ν) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fV (z1 −Hx1)fX1(x1)ejν

T x1dx1 (1.8)

This integral, shown in Appendix A in [5], can be expressed by utilizing the property of

Fourier transforms, as

φ̄X1|Z1(ν) =
1

2π

∫ ∞

−∞
φX1(ν −HTη)φV (−η)ejz1ηdη (1.9)

This integral is solved using Appendix B in [5]. Note that the solution of Appendix B in [5]

is summarized and presented in Appendix A for the readers’ reference.

The CF of the ucpdf was propagated and updated at every step in a recursive manner.

If starting from the CF of the ucpdf φ̄Xk|Yk(ν) at step k where Yk is the random variable

of the measurement history, then after time propagation according to the equation xk+1 =

Φxk + Γwk from step k to step k + 1, the CF was derived in Appendix C in [5] as,

φ̄Xk+1|Yk(ν) = φ̄Xk|Yk(Φ
Tν)φW (ΓTν) (1.10)

The CF of the ucpdf at the (k+ 1)th measurement update according to the equation zk+1 =

Hxk+1 + vk is updated as

φ̄Xk+1|Yk+1
(ν) =

1

2π

∫ ∞

−∞
φ̄Xk+1|Yk(ν −H

Tη)φV (−η)ejzk+1ηdη (1.11)

This integral is solved using Appendix B in [5].

The conditional mean and second moment were then evaluated by taking the first and

second derivatives of the CF of the ucpdf around the origin {0}n at each measurement step.

A constant direction ν̂ was picked a priori. Let the spectral variable ν approach the origin

{0}n along the direction of ν̂, i.e. ν = εν̂ while letting ε→ 0. As shown in [5], the conditional

mean of the state xk given the measurement sequence yk was given by,

x̂k = E [xk|yk] =
1

jfYk(yk)

(
∂φ̄Xk|Yk(εν̂)

∂(ν)

)T ∣∣∣∣∣
ε=0

(1.12)
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and the second conditional moment of xk given yk was given by,

E
[
xkx

T
k |yk

]
=

1

j2fYk(yk)

(
∂2φ̄Xk|Yk(εν̂)

∂(ν)∂(ν)T

)T ∣∣∣∣∣
ε=0

(1.13)

where fYk(yk) was determined by the value of the CF at the origin, i.e. fYk(yk) = φ̄Xk|Yk(εν̂)
∣∣
ε=0

.

1.4.2 Structure of the CF

As presented in Appendix B.1 and B.2 in [5], at each measurement update, the CF of the

ucpdf, φ̄Xk|Yk(ν), (the solution of (1.9) and (1.11)) was expressed as a sum of products of an

exponential term Ek|ki (ν) and a coefficient term G
k|k
i (ν), i.e.

φ̄Xk|Yk(ν) =

N
k|k
t∑

i=1

G
k|k
i (ν)Ek|ki (ν) (1.14)

where Yk is the random variable of the measurement history and yk is a realization of the

measurement history.

The exponential part can be expressed as,

Ek|ki (ν) = exp


−

N
k|k
ei∑

l=1

P
k|k
i,l

∣∣∣Bk|k
i,l ν

∣∣∣+ jζ
k|k
i ν


 (1.15)

where the notations P
k|k
i,l ∈ R, B

k|k
i,l ∈ R1×n, ζ

k|k
i ∈ R1×n and N

k|k
ei ∈ R are corresponding to

the original notation p
k|k
il , a

k|k
i,l

T
, b

k|k
i

T
, and n

k|k
ei , respectively, in equation (4.3) in [5]. P

k|k
i,l

are scalars. The “directions” B
k|k
i,l are row vectors. The imaginary part of the argument of

the exponential, ζ
k|k
i , is also a row vector that contains the measurements. At step k, the

number of directions in the ith term is denoted as N
k|k
ei , and there are a total of N

k|k
t terms

in the characteristic function.

The coefficient part G
k|k
i (ν) were described as layers of fractional forms in equation (4.2)

in [5].

G
k|k
i (ν) = g

k|k
i

(
y
k|k
gi (ν)

)

=
1

2π



g
k−1|k−1

r
k|k
i

(
y
k|k
gi1(ν) + h

k|k
i

)

jc
k|k
i + d

k|k
i + y

k|k
gi2(ν)

−
g
k−1|k−1

r
k|k
i

(
y
k|k
gi1(ν)− hk|ki

)

jc
k|k
i − d

k|k
i + y

k|k
gi2(ν)


 (1.16)
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where

y
k|k
gi (ν) =

n
k|k
ei∑

l=1

q
k|k
il sgn

(
B
k|k
i,l ν

)
∈ Rk (1.17)

The coefficient functions g
k|k
i (·) was determined by the parameters including c

k|k
i , d

k|k
i , the

offsets h
k|k
i and the index r

k|k
i of the parent term. y

k|k
gi (·) and q

k|k
il are k-dimensional vectors.

y
k|k
gi (·) breaks down to two components: the first k − 1 components of y

k|k
gi (·) constructs

y
k|k
gi1(·), while the last component of y

k|k
gi (·) comprises the scalar y

k|k
gi2(·). The derivations for

these parameters were given in Appendix B1 - B2 in [5]. These parameters were all obtained

recursively from the last measurement update.

In [5], for the first time a multivariate state estimator with Cauchy distributed uncer-

tainties was expressed in a recursive, closed form. The form of the CF of the ucpdf was

described by a sum of terms, composed of a product of exponential and coefficient elements,

shown in equation (1.14). For systems of a given dimension, the number of terms in this

sum, N
k|k
t , grows as k gets large. Furthermore, there were significantly more terms in the

CF of a higher-order system than a lower-order system. Due to the complexity of the esti-

mator structure, processing speed and storage requirement becomes large when time step k

or dimension n increases. This is the essential difficulty that needs to be overcome to make

the Cauchy estimator a practical algorithm.

[6] developed an efficient recursive estimator structure for two-state systems. This struc-

ture reduced substantially the number of terms, i.e. N
k|k
t , that were needed to propagate and

update the CF. Moreover, the estimator was computationally simplified by truncating the

measurement sequence by a “sliding window” approximation allowing an unlimited number

of measurements to be processed while maintaining good performance. This structure was

derived based on some special properties that are only valid for two-state systems. We try

to generalize the special structure of the two-state estimator to higher-order systems, but

only partial results have been obtained.
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1.5 Objectives

The objective of this research is to break down the fundamental structure of the multivariate

Cauchy estimator, and seek appropriate techniques so that the computational efficiency of

the estimator can be largely enhanced. In this dissertation, several interesting properties

behind this estimator structure are newly uncovered.

Firstly, not all of the directions, i.e. B
k|k
i,l , are distinct: many of them are co-aligned.

These co-aligned directions have to be combined to avoid singularity [5]. The reduction of the

total number of directions due to this combination can also simplify the estimator structure.

Let us call the directions in earlier steps as “parent” directions, and the directions in later

steps which are produced from those parent directions as “child” directions. Analytically, it

is proven in this dissertation that parent directions of a certain form can produce co-aligned

child directions. All co-aligned child directions are functions of a unique fundamental basis.

This is presented in Chapter 2.

Secondly, Chapter 3 shows that many of exponential terms in the sum of the CF have the

same argument analytically and can be combined. For two-state systems, this property is

summarized by two rules for term combination. It is also shown that there exists only such

two rules which indicate how the argument of the exponential terms can be combined. For

three-state systems, four such rules are found. These term combination rules start to reveal

the fundamental properties of analytically combining exponential terms for more general

higher-order cases.

Thirdly, the way that repeated exponential terms are a priori combined is represented by

an indexing matrix, called “S” matrix, discussed in Chapter 4. It determines which terms

to be combined without the need of online comparison. For two-state case, particularly, a

recursive structure of the S matrix is derived analytically, given that the term combination

rules for two-state systems are fully uncovered. For higher-order cases, the S matrix can

always be obtained numerically.

Fourthly, Chapter 5 proposes a new structure of the coefficient terms that reduces the
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memory requirement by eliminating all the redundant zeros, and makes the offline - online

separation implementable. The coefficient terms have multiple layers of offsets and sign

functions. However, many of these offsets are zero, because the integral solved in Appendix B

in [5] artificially introduces zero elements for consistency. This results in many zero elements

in many layers of the G terms. An alternative structure for the G terms is proposed in order

to avoid these artificial zeros. A comprehensive study on two-state system shows that for

new terms, there are at most three non-zero elements in each layer of the G terms.

Finally, in Chapter 6 we develop a pre-computational technique to separate the compo-

nent of the estimator structure that is independent of the measurements (offline), with the

component that is dependent upon the measurements (online). By storing the results of the

offline stage as a priori data, the actual online processing efficiency is significantly enhanced.

The implementations for a three and four state system in both Cauchy and Gaussian simula-

tions compared to the Kalman Filter are discussed in Chapter 7. Conclusions are presented

in Chapter 8.
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CHAPTER 2

Co-Alignment of Directions

As mentioned earlier in Chapter 1, many directions B
k|k
i,l are co-aligned with each other

and hence can be combined. This fact was observed in [5] where it was found that it was

necessary to make these combinations. In this chapter, analytically we explain when and how

such direction co-alignment occurs. Firstly, three distinct parent directions being linearly

dependent is proven to be the necessary and sufficient condition for their two child directions

to be co-aligned. Next, it is shown that these co-aligned child directions can be determined

by functions of a fundamental basis matrix. The analytic form of the fundamental basis

is found so far to be unique for systems up to five-state. By induction, it can be inferred

that co-aligned directions in general case are all in forms of fundamental basis, and such a

fundamental basis is unique. This property helps to simplify the estimator structure and

hence contribute to the computational efficiency.

2.1 A Necessary and Sufficient Condition for Co-Alignment

In order to investigate how the directions are co-aligned, we need to explicitly write down

the form of the child directions in terms of its parent directions in a recursive manner. At

step k, suppose an exponential term is expressed as,

Ek|k(ν) = exp


−

N
k|k
ei∑

i=1

P
k|k
i

∣∣∣Bk|k
i ν

∣∣∣+ jζk|kν


 (2.1)
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Then at step k + 1, the lth child term is given by,

Ek+1|k+1
l (ν) = exp


−

N
k|k
ei∑

i=1,i 6=l

P
k|k
i

∣∣∣Bk|k
i ΦTHT

∣∣∣
∣∣∣∣∣
B
k|k
i ΦTν

B
k|k
i ΦTHT

− B
k|k
l ΦTν

B
k|k
l ΦTHT

∣∣∣∣∣+ jζ
k+1|k+1
l ν




(2.2)

This derivation is presented by Appendix A, referring to Appendix B.1 and B.2 in [5].

Then the child direction B
k+1|k+1
i,l at step k + 1 in terms of the parent directions B

k|k
i and

B
k|k
l at step k can be rewritten as follow.

B
k+1|k+1
i,l =

B
k|k
i ΦT

B
k|k
i ΦTHT

− B
k|k
l ΦT

B
k|k
l ΦTHT

=
HΦ

(
B
k|k
l

T
B
k|k
i −B

k|k
i

T
B
k|k
l

)
ΦT

(B
k|k
i ΦTHT )(B

k|k
l ΦTHT )

(2.3)

One can immediately notice that the child direction B
k+1|k+1
i,l is in the form of HC, where

C is a rank two skew-symmetric matrix, i.e. CT = −C. This can be stated as the following

lemma.

Lemma 2.1.1. Any two non-zero parent directions at step k will produce a child direction

in the form of HC at step k + 1, where C is a rank two skew-symmetric matrix.

Proof. Recall equation (2.3). The matrix C can be written as C =
Φ

(
B
k|k
l

T
B
k|k
i −B

k|k
i

T
B
k|k
l

)
ΦT

(B
k|k
i ΦTHT )(B

k|k
l ΦTHT )

,

then the child direction is B
k+1|k+1
i,l = HC. It is obvious that C = −CT . In addition,

rank(C) = rank(B
k|k
l

T
B
k|k
i − B

k|k
i

T
B
k|k
l ) ≤ rank(B

k|k
l

T
B
k|k
i ) + rank(B

k|k
i

T
B
k|k
l ) = 2, while

C cannot be rank 1. Therefore C is skew-symmetric rank two matrix.

A necessary and sufficient condition on the co-alignment of directions within a term is

presented next. With the direction update being explicitly defined in (2.3), we will look at

three parent directions at step k, and consider under what conditions the child directions at

step k + 1 are co-aligned.
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Theorem 2.1.2 (Co-Alignment Condition). Suppose at step k, b1, b2 and b3 ∈ R1×n are

three directions in one term. b1, b2 and b3 are not co-aligned with each other. And at step

k + 1, the child directions can be written as,

c1,2 = HΦ(bT1 b2 − bT2 b1)ΦT (2.4)

and

c1,3 = HΦ(bT1 b3 − bT3 b1)ΦT (2.5)

Then c1,2 and c1,3 are co-aligned if and only if the matrix M =




b1

b2

b3


 ∈ R3×n is not full row

rank.

Proof. 1. Necessity

If the matrix M is not full row rank, then there exist a scalar α ∈ R, such that the linear

combination b2 +αb3 is co-aligned with b1. Normalize them using ΦTHT , assuming b1ΦTHT

(or (b2 + αb3)ΦTHT ) is non-zero. Therefore,

b2 + αb3

(b2 + αb3)ΦTHT
=

b1

b1ΦTHT
(2.6)

Then

(b1ΦTHT )(b2 + αb3)ΦT = (b2 + αb3)ΦTHT · b1ΦT (2.7)

Rearrange equation (2.7) to obtain the following equation.

HΦbT1 (b2 + αb3)ΦT = HΦ(b2 + αb3)T b1ΦT (2.8)

Expand both side of the equation,

HΦbT1 b2ΦT + αHΦbT1 b3ΦT = HΦbT2 b1ΦT + αHΦbT3 b1Φ (2.9)

HΦ(bT1 b2 − bT2 b1)ΦT = −αHΦ(bT1 b3 − bT3 b1)ΦT (2.10)

or

c1,2 = −α · c1,3 (2.11)
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In this case, c1,2 and c1,3 are co-aligned.

2. Sufficiency

Suppose c1,2 and c1,3 are co-aligned, then there exists α such that equation (2.11) holds.

Reversing the proof for necessity, it can be concluded that b1 and (b2 + αb3) are co-aligned.

This implies that the matrix M is not full row rank.

Theorem 2.1.2 shows the necessary and sufficient condition for directions to be co-aligned

in general case. Using this theorem, the rest of this chapter investigates what types of parent

directions can produce co-aligned child directions, and what those co-aligned child directions

look like. These pieces provide us adequate information to uncover the direction co-alignment

process analytically.

2.2 Parent Directions, Child Directions, and Fundamental Basis

According to Lemma 2.1.1, only three linearly dependent parent directions can produce co-

aligned child directions. As discussed in [5] in detail, each parent term at step k produces

many child terms at step k+ 1. Generating different child terms involves different pairing of

those parent directions at step k. For instance, the directions in the jth child term involves

the operation between the jth parent direction bjΦ
T with all the rest of the parent directions.

The last child term is called the “old term”. The last parent direction after time propagation

is the zero vector {0}n, which can be found in [5]. The rest of the child terms are called

“new terms”. As a result of Lemma 2.1.1, for a new term, most of the directions are in

the HC form, and only one (the last) direction is not. Furthermore, for an old term, some

directions are of the HCΦθT form instead, where the positive integer θ represents how old

the term is. The form of HC (or HCΦθT ) is special, because when b1, b2 and b3 are all in

the HC (or HCΦθT ) form where C is skew-symmetric matrix, it is possible that the child

directions are co-aligned, resulting from Theorem 2.1.2. This is due to the fact that for any
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skew-symmetric matrix C, HCHT = 0 for any n-dim row vector H. Thus, H is already in

the null space of M in Theorem 2.1.2. In addition, the co-aligned directions are always in a

form of a unique fundamental basis.

2.2.1 Two-State Case

Many interesting properties, although somewhat specialized, are obtained for this case. Con-

sider the argument of the exponential term of a two-state system. Generally, a new term

with p elements in the exponential argument has the directions in the forms of [b1, b2, ..., bp],

where bi ∈ R1×2 for i = 1, 2, · · · , p. Starting from this term, the 1-step old child term has

the directions [b1ΦT , b2ΦT , ..., bpΦ
T ,ΓT ]. Furthermore, for a general θ-step old term, the di-

rections are in the forms of [b1ΦTθ, b2ΦTθ, ..., bpΦ
Tθ,ΓTΦT (θ−1), ...,ΓT ]. What we now show is

how in the next update these p elements collapse.

A necessary and sufficient condition for the child directions to be co-aligned is that

the three parent directions are not full row rank, according to Theorem 2.1.2. The two-

state systems is special in that the direction co-alignment will always occur from any parent

directions, regardless of new parent terms or old parent terms. This is because M in Theorem

2.1.2 becomes a 3 by 2 matrix and can never be full row rank. As a consequence, all child

directions that are produced from any two non-zero directions in a parent term will co-align.

Then, any new term for a two-state system will have only two directions and will not increase

as time goes on. In other words, for any new term, the number of elements in the argument

of the exponential is p = 2. This is stated in the following theorem,

Theorem 2.2.1. For two-state systems, any new term has only two directions (or elements)

in the argument of the exponential term.

In fact, repeated child directions in different terms can be co-aligned to common direction

that is a function of a unique fundamental basis. In order to show the uniqueness, let

b1 = [β1 β2], b2 = [α1 α2], where β1, β2, α1 and α2 are arbitrary scalars. Construct
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a matrix b = [bT2 bT1 ] =


α1 β1

α2 β2


 ∈ R2×2. Suppose b1 and b2 are any two independent

directions at step k, then after time propagation and measurement update, at step k + 1,

the child direction that will be produced from b1 and b2 is denoted as c with the scaling

coefficients neglected, as seen in (2.3).

c = HΦ
(
bT2 b1 − bT1 b2

)
ΦT (2.12)

= HΦ




α1

α2



[
β1 β2

]
−


β1

β2



[
α1 α2

]

ΦT

= HΦ




 0 α1β2 − α2β1

α2β1 − α1β2 0




ΦT

= (α1β2 − α2β1)HΦAΦT (2.13)

where

A =


 0 1

−1 0


 (2.14)

Because,

ΦAΦT =


φ11 φ12

φ21 φ22




 0 1

−1 0




φ11 φ21

φ12 φ22




=


−φ12 φ11

−φ22 φ21




φ11 φ21

φ12 φ22




=


 0 φ11φ22 − φ12φ21

φ12φ21 − φ11φ22 0




= det(Φ) ·A (2.15)

and

(α1β2 − α2β1) = det




α1 β1

α2 β2




 = det(b)
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Therefore, the child direction c that is produced from b1 and b2 in equation (2.12) is,

c = det(Φ) · det(b) ·A (2.16)

b1 and b2 here are set to be arbitrary, meaning that they can be either new parent

directions or old parent directions. There is no necessity to discuss new parent and old

parent separately. The child directions of any two non-zero parent directions in any term

will be aligned onto the HA direction. A is the fundamental basis for two-state problem.

The form of A is unique, if ignoring the scaling factor. This result can be summarized into

the following theorem,

Theorem 2.2.2. For two-state systems, all the co-aligned directions can only be combined

along the direction of HA, where A =


 0 1

−1 0


 is the fundamental basis.

2.2.2 Three-State Case

Consider three-state systems. A parent term at the kth measurement update can produce

several child terms at the (k + 1)th measurement update. Certain directions (or elements in

the argument of the exponential part) in some of the child terms are co-aligned. The new

parent terms and the old parent terms are discussed separately.

2.2.2.1 From New Parent Terms

First, let’s look at the directions in a new parent term at step k. Suppose there are in total

Ne = p+ 1 directions in this term. Derived from Lemma 2.1.1, the directions can be written

as [HC1, HC2, ..., HCp, b], where Ci’s are skew-symmetric matrices, and b is a single direction

that cannot be expressed in HC form.

From Theorem 2.1.2 in section 2.1, we understand that whenever two child-directions

are co-aligned, their three parent-directions have to be linearly dependent. For a new term,

this will happen when the three parent direction all have the form of HC, where C ∈ R3×3
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is an anti-symmetric matrix. This is because of one property of anti-symmetric matrices

C ∈ Rn×n, HCHT = 0 holds for any H ∈ R1×n. Then MHT = {0}3. Hence M is not full

row rank.

In fact, this is also the only scenario that can produce co-aligned child directions, since

the parent directions other than HCi’s is merely b. During time propagation, the directions

of this term will become HCiΦ
T , bΦT and ΓT . It is assumed that bΦT and ΓT are generically

linearly independent with each other and with all the HCi directions. In order for the matrix

M in the statement to be not full row rank, each row of M has to be in the form of HC

before time propagation.

This can be stated in the following theorem,

Theorem 2.2.3. For new parent terms of the three-state systems, only the parent direc-

tions in the forms of H multiplied by a skew-symmetric matrix can produce co-aligned child

directions.

Furthermore, if the two parent directions in a new term, b1 and b2, at step k are,

b1 = H(α1A12 + α2A13 + α3A23) (2.17)

and

b2 = H(β1A12 + β2A13 + β3A23) (2.18)

where Aij is defined to be Aij = eTi ej − eTj ei, for i, j = 1, 2, 3, and i 6= j. Thus b1 and b2 are

two arbitrary directions that are in the form of HC where C = −CT .

Then at step k + 1, using equation (2.3), the child direction is given by,

c =
b1ΦT

b1ΦTHT
− b2ΦT

b2ΦTHT
=
HΦ(bT2 b1 − bT1 b2)ΦT

(b1ΦTHT )(b2ΦTHT )
(2.19)

Ignoring the denominator (b1ΦTHT ) and (b2ΦTHT ) since they are scalars, and looking
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at the numerator, the child direction becomes as follows,

c = HΦ[(α1A21 + α2A31 + α3A32)HTH(β1A12 + β2A13 + β3A23) (2.20)

− (β1A21 + β2A31 + β3A32)HTH(α1A12 + α2A13 + α3A23)]ΦT (2.21)

= HΦ(σB)ΦT (2.22)

where

B = HeT1A23 +HeT2A31 +HeT3A12 (2.23)

and

σ = HeT1 [α1β2 − α2β1] +HeT2 [α1β3 − α3β1] +HeT3 [α2β3 − α3β2] (2.24)

Therefore, the possible form of co-aligned child directions that are produced from a

new parent term can be expressed exactly as HΦBΦT . This form is unique. Aligned with

Theorem 2.2.2, this important finding of three-state systems can be concluded in Theorem

2.2.4.

Theorem 2.2.4. For three-state systems, all the co-aligned directions in new terms can

only be combined along the direction of HΦBΦT , where B = HeT1A23 +HeT2A31 +HeT3A12,

Aij = eTi ej − eTj ei, i, j = 1, 2, 3, i 6= j. B is the unique fundamental basis.

2.2.2.2 From Old Parent Terms

Next, consider what the directions look like for an old term. Every old term at step k + 1

is the last child term of its parent term at step k. If a parent term is “new”, meaning that

the directions in its parent term can be written as [HC1, HC2, ..., HCp, b], then we can write

down the directions of its old child term (the last child term) as,

[HC1ΦT , HC2ΦT , ..., HCpΦ
T , bΦT ,ΓT ] (2.25)

We call this old term as the “newest old” term, or “1-step old” term.
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Let the above term be a parent term. Then the directions of the last child term of the above

term at the next measurement update becomes,

[HC1ΦT2, HC2ΦT2, ..., HCpΦ
T2, bΦT2,ΓTΦT ,ΓT ] (2.26)

This is the form of the directions of a “2-step old” term.

More generally, for a “θ-step old” term, the directions can be expressed by induction.

[HC1ΦTθ, HC2ΦTθ, ..., HCpΦ
Tθ, bΦTθ,ΓTΦT (θ−1), ...,ΓT ] (2.27)

Look at θ-step backward from equation (2.27), the original parent term is a new parent

term with the number of HCi’s as p. And at current measurement update the number of

directions is (p+ 1 + θ).

Unlike those in new terms, some of the directions in the old terms are not in the form

of HCi, but in the form of HCiΦ
Tθ, where Ci ∈ R3×3 is a skew-symmetric matrix and θ

is a positive integer. Generically, the one and the only situation to produce two co-aligned

child directions is that the three parent directions are in the form of HCiΦ
Tθ in order to

form a new anti-symmetric matrix at the next measurement update. The matrix M that

is defined in Theorem 2.1.2 constructed by HCiΦ
Tθ’s is not full row rank. This is because

HCiΦ
Tθ(Φ−TθHT ) = 0, i.e. Φ−TθHT is in the null space of all HCiΦ

Tθ directions. The rest

of the directions, for example b and ΓTΦTθ, are generically linearly independent with each

other and the HCiΦ
Tθ’s. In other words,

Theorem 2.2.5. For old parent terms of three-state systems, only the parent directions in

the forms of HCiΦ
Tθ where Ci is a skew-symmetric matrix and θ a positive integer can

produce co-aligned child directions.

Similarly, suppose two arbitrary parent directions of an old term which have the form of

HCiΦ
Tθ are,

b1 = H(α1A12 + α2A13 + α3A23)ΦTθ (2.28)
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and

b2 = H(β1A12 + β2A13 + β3A23)ΦTθ (2.29)

At the (k + 1)th measurement update, consider the numerator of the child direction,

c = HΦ[Φθ(α1A21 + α2A31 + α3A32)HTH(β1A12 + β2A13 + β3A23)ΦTθ

− Φθ(β1A21 + β2A31 + β3A32)HTH(α1A12 + α2A13 + α3A23)ΦTθ]ΦT

= HΦθ+1(σB)ΦT (θ+1) (2.30)

and

σ = HeT1 [α1β2 − α2β1] +HeT2 [α1β3 − α3β1] +HeT3 [α2β3 − α3β2] (2.31)

This σ is the same with that of the new terms.

Analog to what has been concluded for new parent terms, Theorem 2.2.6 is stated as

follow.

Theorem 2.2.6. For the three-state systems, all the co-aligned directions in old terms can

only be combined along the direction of HΦθ+1(σB)ΦT (θ+1), where Aij = eTi ej − eTj ei, i, j =

1, 2, 3, i 6= j, θ is a positive integer, and B = HeT1A23 + HeT2A31 + HeT3A12 is the unique

fundamental basis.

Theorem 2.2.3 to Theorem 2.2.6 shows that for three-state systems, the co-aligned direc-

tions will only appear in the forms of HΦ(θ+1)BΦT (θ+1), where θ = 0, 1, 2, ... is non-negative

integer. In particular, when the parent term is a new term, the repeated directions of its

child terms fall into the case when θ = 0. When the parent term is an old term, then θ > 0,

and θ depends on how old the parent term is. That term is called a θ-step old term. In

addition, the number of terms with fundamental directions θ > 0 is fairly rare, because next

time through in the new terms it will became HΦBΦT again. We summarize this conclusion

into the following corollary.

Corollary 2.2.7. For three-state systems, only the parent directions in the forms of HCiΦ
Tθ

where Ci is a skew-symmetric matrix and θ is a non-negative integer can produce co-aligned
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child directions. All the co-aligned directions can only be combined along the direction of

HΦθ+1(σB)ΦT (θ+1), where Aij = eTi ej − eTj ei, and B = HeT1A23 + HeT2A31 + HeT3A12 is the

fundamental basis. Furthermore, the structure of B is unique.

Corollary 2.2.7 is important because it analytically provides complete information of di-

rection for co-alignment for three-state systems. With this corollary, one is able to explicitly

determine the directions, especially when and how to combine them. Unlike the two-state

systems where the fundamental basis A is fairly straightforward, the one additional dimen-

sion for three state systems results in structural complexity. Using Corollary 2.2.7, the

directions of three-state systems can be combined analytically without the necessity of nu-

merical comparison during implementation. It saves tremendous amount of computation

time. In addition, the studies on other component of the estimator structure, including the

term combination and the coefficient terms, are established heavily on the understanding

of direction co-alignment. Through these theorems and corollary additional fundamental

simplifications of the estimator structure can be deduced.

2.2.3 Higher-Order Cases

Similar properties have been observed for higher-order cases as well. For four and five-state

systems, the form of such fundamental basis exist and is unique. Since it has higher dimen-

sion, there are more freedom in the child directions. If we still want to reach a stationary

child direction like we did for HA in two-state case and HΦBΦT for three-state case, we

need more update. Take the directions in the new child terms for instance. For two-state

case, it takes one update to reach HA. For three-state case, it takes two update to reach

HΦBΦT . It has been demonstrated numerically that for four-state case, it takes three up-

dates to reach HΦ2CΦ2T , where C is the fundamental basis matrix. And for five-state case,

it takes four updates to reach HΦ3DΦ3T , where D is the fundamental basis.

The analytic form of the fundamental basis C for four-state system is found to be in the
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following form,

C =




0 −β34 β24 −β23

β34 0 −β14 β13

−β24 β14 0 −β12

β23 −β13 β12 0




(2.32)

where

βil =
(
HeTi

) (
HΦeTl

)
−
(
HeTl

) (
HΦeTi

)
, 1 ≤ i, l ≤ 4, i 6= l (2.33)

For five-state system, the fundamental basis D is in the following form,

D =




0 β345 −β245 β235 −β234

−β345 0 β145 −β135 β134

β245 −β145 0 β125 −β124

−β235 β135 −β125 0 β123

β234 −β134 β124 −β123 0




(2.34)

where

βijk =
(
HeTi

) [
(HΦeTj )(HΦ2eTk )− (HΦeTk )(HΦ2eTj )

]

+
(
HeTj

) [
(HΦeTk )(HΦ2eTi )− (HΦeTi )(HΦ2eTk )

]

+
(
HeTk

) [
(HΦeTi )(HΦ2eTj )− (HΦeTj )(HΦ2eTi )

]
, 1 ≤ i, j, k ≤ 5, i 6= j 6= k

(2.35)

For detail derivations of C and D, refer to Appendix B .

We have proved the existence and uniqueness of the fundamental basis for two and three-

state systems analytically, and have found the form of A and B. For four and five-state case,

we have observed the same properties, and also found the form of the fundamental basis C

and D. Using the same technique, by induction one can reach the following conclusion,

Corollary 2.2.8. For multivariate systems, the co-aligned child direction can be reached

within finite update. In particular, for n-state system, this direction co-alignment can be

obtained in (n− 1) updates. Co-aligned directions are along a direction that is a function of

a fundamental basis matrix. This fundamental basis is unique.
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2.2.4 Additional Properties of the Fundamental Basis

The fundamental basis has a special structure. In this subsection, some interesting properties

of the fundamental basis are raised. Suppose an n-dim state space dynamic system. Its

fundamental basis is denoted as F.

Theorem 2.2.9. The fundamental basis F of an n-dim state space dynamic system is always

rank 2.

Proof. F is obtained by vT1 v2−vT2 v1, where v1 and v2 are n-dim row vectors. rank(vT1 v2) = 1.

Then rank(M) ≤ rank(vT1 v2) + rank(−vT2 v1) = 1 + 1 = 2. But F cannot be rank 1, since

the diagonal elements of F are all zeros. Therefore the rank of F is 2.

Theorem 2.2.10. The dimension of the null space of F is n − 2, spanned by a set of

vectors associated with the measurement matrix H and the transition matrix Φ, i.e. N(F) =

sp{HT , (HΦ)T , · · · , (HΦn−3)T}.

In particular, for a two-state case, the fundamental basis A is full rank, and the null space

is empty. For three-state case, it can be shown analytically that B and H are orthogonal,

i.e. BHT = {0}3. Because the matrix B is rank 2, the null space N(B) is 1-dim, and

N(B) = sp
{
HT
}

. Similarly, for a four-state case, it can be shown that CHT = {0}4 and

C (HΦ)T = {0}4. We know that the matrix C is rank 2. Hence the null space N(C) is 2-dim,

and N(C) = sp
{
HT , (HΦ)T

}
. For a five-state case, it can be shown that DHT = {0}5,

D (HΦ)T = {0}5 and D (HΦ2)
T

= {0}5. The matrix D is rank 2. Hence, the null space

N(D) is 3-dim, and N(D) = sp
{
HT , (HΦ)T , (HΦ2)

T
}

.
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CHAPTER 3

Term Combination Rules

Many exponential terms are identical in the sum of equation (1.14) at each measurement

update. For a given state dimension, some exponential terms are functionally the same with

respect to any system parameters including Φ, H, Γ, α, β, γ and with respect to any spectral

variable ν. Hence they can be combined so that the total number of exponential terms can

be largely reduced. In other words, equation (1.14) can be rewritten as,

φ̄Xk|Yk(ν) =

Ñ
k|k
t∑

i=1






Ñ
k|k
t,i∑

l=1

G
k|k
i,l (ν)


 Ek|ki (ν)


 (3.1)

where Ñ
k|k
t is the total number of distinct exponential terms, and Ñ

k|k
t,i is the number of

coefficient terms associated with each distinct exponential. Because certain exponential

terms Ek|ki (ν) are combined, the number of distinct exponential terms, Ñ
k|k
t , is much less

than the total number of terms originally before the term combination, i.e. N
k|k
t in equation

(1.14). This reduction of the number of exponential terms enhances the computational

efficiency significantly. Numerical simulations are conducted in latter chapters. Take a three-

state system for instance, it will be shown later that at step k = 7, the offline computation

can save about 99% if repeated exponential terms are combined using equation (3.1).

In this chapter, the argument of certain exponential terms are shown to have the same

expression analytically. For two-state systems, we find two rules for combining terms by

comparing the exponential terms analytically. Using these two rules, total number of distinct

exponential terms and the number of new distinct exponential terms are derived in a recursive

matrix form. This matrix form exactly matches the empirical results in [6]. Therefore, it is

concluded that there are only such two rules for combining terms for two-state systems. In
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addition, some term combination rules for three-state systems are also uncovered, implying

that for higher-order cases in general certain exponential terms can be combined due to their

identical expressions.

3.1 Rules for Two-State Case

This section derives two rules for term combination for two-state systems. Starting from

the grandparent term Ek|ki at step k which contains m elements in the argument of the

exponential, the combination rules study the grandchild term Ek+2|k+2
i,l,r at step k + 2. Note

that the notation Ek+2|k+2
i,l,r has three subscripts. It represents the rth grandchild term at step

k + 2 from the lth child term Ek+1|k+1
i,l at step k + 1. The first combination rule shows that

the first grandchild terms at step k + 2 from all new child terms at step k + 1 will always

combine. This also brings up the notion of “invariance” of the exponential terms. The second

combination rule states that the grandchild term Ek+2|k+2
i,l,2 and Ek+2|k+2

i,m+2,l for 1 ≤ l ≤ m + 1

can be combined. Based on these rules, the recursive structure on the number of distinct

exponential terms Ñ
k|k
t and the number of new distinct exponential terms, denoted as Ñ

k|k
t,new,

is found analytically. This recursion matches the empirical results of number of terms shown

in [6] exactly, which also indicates that we have exhausted the combination rules for two-state

systems.

3.1.1 Combination Rule for the First Grandchild Terms

In this section we show that the exponentials from the first grandchild terms are always

combined. In addition, these terms are independent of the initial condition parameters.

Suppose at step k, the exponential of any two terms are expressed as,

Ek|ki (ν) = exp
(
−P1 |b1ν| − P2 |b2ν| − ...− Pm |bmν|+ jζki ν

)
(3.2)

Ek|kp (ν) = exp
(
−Q1 |c1ν| −Q2 |c2ν| − ...−Qn |cnν|+ jζkp ν

)
(3.3)
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where b, c and ζ are 2-dim row vectors. Note that ζ in equation (3.2) and (3.3) represents

the imaginary part of the argument in the exponential terms. We are going to show the

first combination rule by analytically showing that for any i ≤ Ñ
k|k
t and p ≤ Ñ

k|k
t , and

l = 1, 2, · · · ,m+ 1, q = 1, 2, · · · , n+ 1,

Ek+2|k+2
i,l,1 = Ek+2|k+2

p,q,1 (3.4)

Remark 3.1.1. Here, we are only interested in the real component of the argument, because

we have found out numerically that whenever the argument of the exponential of two terms

are identical, the imaginary parts always match too. In latter derivations, the imaginary

parts, ζ, will be omitted.

At step k + 1, Ek|ki has (m+ 2) child terms while Ek|kp has (n+ 2) child terms. The first

(m+1) child terms from Ek|ki and the first (n+1) child terms from Ek|kp only have 2 elements

in the argument of the exponential, according to Theorem 2.2.1. Take Ek|ki for instance.

After time propagation to step k + 1, the exponential term becomes,

Ek+1|k
i (ν) = exp

(
−P1

∣∣b1ΦTν
∣∣− P2

∣∣b2ΦTν
∣∣− ...− Pm

∣∣bmΦTν
∣∣

−β
∣∣ΓTν

∣∣+ jζ
k+1|k
i ν

)
(3.5)

Then, at step k + 1, the child terms are derived from the solution of the update integral

shown as follow,

φ̄k+1|k+1(ν) =

∫ +∞

−∞

Ñ
k|k
t∑

i=1







Ñ
k|k
t,i∑

l=1

G
k+1|k
i,l (ν −HTη)


 · exp

(
−P1

∣∣b1ΦTHT
∣∣
∣∣∣∣
b1ΦTν

b1ΦTHT
− η
∣∣∣∣− ...

−Pm
∣∣bmΦTHT

∣∣
∣∣∣∣
bmΦTν

bmΦTHT
− η
∣∣∣∣− β

∣∣ΓTHT
∣∣
∣∣∣∣

ΓTν

ΓTHT
− η
∣∣∣∣

−γ |η|+ jzk+1η + jζ
k+1|k
i (ν −HTη)

)}
dη (3.6)

where Ñ
k|k
t is the number of distinct exponential terms at step k, and Ñ

k|k
t,i is the number of

coefficient terms that are associated with the ith distinct exponential term.

At step k + 1, the lth child term when 1 ≤ l ≤ m has the following exponential terms,

using the form of the solution given in Appendix A of this dissertation. The method was
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provided in Appendix B in [5]. Note that the notation l here is different from the index l

that appears in the inner sum of the coefficient terms G
k+1|k
i,l .

Ek+1|k+1
i,l (ν) = exp

(
−P1

∣∣b1ΦTHT
∣∣
∣∣∣∣
b1ΦTν

b1ΦTHT
− blΦ

Tν

blΦTHT

∣∣∣∣− ...

− Pm
∣∣bmΦTHT

∣∣
∣∣∣∣
bmΦTν

bmΦTHT
− blΦ

Tν

blΦTHT

∣∣∣∣

− β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− blΦ

Tν

blΦTHT

∣∣∣∣

−γ
∣∣∣∣
blΦ

Tν

blΦTHT

∣∣∣∣+ jζ
k+1|k+1
i,l ν

)
(3.7)

Define Bl,i =
[
bTl bTi

]
∈ R2×2, and Cl =

[
Φ−1Γ bTl

]
∈ R2×2. Then,

Ek+1|k+1
i,l (ν) = exp

(
− P1

|blΦTHT |
|det (Φ) · det (Bl,1)| · |HAν| − ...

− Pm
|blΦTHT |

|det (Φ) · det (Bl,m)| · |HAν|

− β

|blΦTHT |
|det (Φ) · det (Cl)| · |HAν|

− γ

|blΦTHT |
∣∣blΦTν

∣∣+ jζ
k+1|k+1
i,l ν

)
(3.8)

Combine the first m elements, which are all along the direction of HA.

Ek+1|k+1
i,l (ν) = exp


−
|det (Φ)| ·

[(∑m
q=1,q 6=l Pq |det (Bl,q)|

)
+ β |det (Cl)|

]

|blΦTHT |
|HAν|

− γ

|blΦTHT |
∣∣blΦTν

∣∣+ jζ
k+1|k+1
i,l ν

)
, 1 ≤ l ≤ m (3.9)

Similarly, the exponential part of the (m+ 1)th child term at step k+ 1 can be expressed

as,

Ek+1|k+1
i,m+1 (ν) = exp

(
−P1

∣∣b1ΦTHT
∣∣
∣∣∣∣
b1ΦTν

b1ΦTHT
− ΓTν

ΓTHT

∣∣∣∣− ...

−Pm
∣∣bmΦTHT

∣∣
∣∣∣∣
bmΦTν

bmΦTHT
− ΓTν

ΓTHT

∣∣∣∣− γ
∣∣∣∣

ΓTν

ΓTHT

∣∣∣∣+ jζ
k+1|k+1
i,m+1 ν

)
(3.10)
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With Cl defined earlier, we have,

Ek+1|k+1
i,m+1 (ν) = exp

(
− P1

|ΓTHT |
|det (Φ) · det (C1)| · |HAν| − ...

− Pm
|ΓTHT |

|det (Φ) · det (Cm)| · |HAν| − γ

|ΓTHT |
∣∣ΓTν

∣∣+ jζ
k+1|k+1
i,m+1 ν

)
(3.11)

Combine the first m elements.

Ek+1|k+1
i,m+1 (ν) = exp


−
|det (Φ)| ·

(∑m
q=1 Pq |det (Cq)|

)

|ΓTHT |
|HAν| − γ

|ΓTHT |
∣∣ΓTν

∣∣

+jζ
k+1|k+1
i,m+1 ν

)
(3.12)

Equation (3.9) gives the general form of the exponentials of the first m child terms from

the parent term Ek|ki , and equation (3.12) describes the (m + 1)th child term at step k + 1.

They are all the new child terms at step k + 1 from Ek|ki . Observing equation (3.9) and

(3.12), one can see that all new child terms of any parent term only have two elements in

the argument of the exponential. This fact aligns with Theorem 2.2.1 in Chapter 2. For

convenience of further derivation of the first combination rule, rewrite the exponential part

of any new term in the following general form,

Ẽk+1|k+1(ν) = exp

(
−P1 |HAν| − γ

|bHT |
|bν|+ jζν

)
(3.13)

where the fundamental basis A =


 0 1

−1 0


, and b can be any 2-dim row vector. Note that

for convenience, the subscript is neglected, and the new notation Ẽk+1|k+1 is used.

After time propagation to step k + 2, this exponential term becomes,

Ẽk+2|k+1(ν) = exp

(
−P1

∣∣HAΦTν
∣∣− γ

|bHT |
∣∣bΦTν

∣∣− β
∣∣ΓTν

∣∣+ jζΦTν

)
(3.14)

Deriving from the update integral, the 1st child term at step k + 2 is

Ẽk+2|k+2
1 (ν) = exp

(
− γ

|bHT |
∣∣bΦTHT

∣∣
∣∣∣∣
bΦTν

bΦTHT
− HAΦTν

HAΦTHT

∣∣∣∣

− β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HAΦTν

HAΦTHT

∣∣∣∣

−γ
∣∣∣∣
HAΦTν

HAΦTHT

∣∣∣∣+ jζ
k+2|k+2
1 ν

)
(3.15)
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Because,

ATHT b− bTHA = −(bHT ) ·A (3.16)

and

ATHTΓTΦ−T − Φ−1ΓHA = −(ΓTΦ−THT ) ·A (3.17)

Substitute (3.16) and (3.17) back to (3.15).

Ẽk+2|k+2
1 (ν) = exp

(
− γ · |det(Φ)|
|HAΦTHT |

|HAν| −
β ·
∣∣ΓTΦ−THT

∣∣ · |det(Φ)|
|HAΦTHT |

|HAν|

− γ

|HAΦTHT |
∣∣HAΦTν

∣∣+ jζ
k+2|k+2
1 ν

)
(3.18)

Combine the first 2 elements,

Ẽk+2|k+2
1 (ν) = exp

(
−
(
γ + β ·

∣∣ΓTΦ−THT
∣∣) · |det(Φ)|

|HAΦTHT |
|HAν| − γ

|HAΦTHT |
∣∣HAΦTν

∣∣

+jζ
k+2|k+2
1 ν

)
(3.19)

Remark 3.1.2. It is interesting to notice that the form in (3.19) is not in terms of P1 anymore;

instead, it is only related to the system parameters, including H, Φ, Γ, γ and β. Therefore,

the first child exponential term of any 2-element parent exponential term should be in exactly

the same form in (3.19), which can be combined.

This leads to the first term combination rule, expressed as,

Ek+2|k+2
i,l,1 = Ek+2|k+2

p,q,1 , 1 ≤ l ≤ m+ 1, 1 ≤ q ≤ n+ 1, for any i, p (3.20)

Remark 3.1.3. Equation (3.19) also brings out the notion of “invariance” in exponential

terms. Since Ẽk+2|k+2
1 in (3.19) is not a function of P1 nor the initial conditions any more,

it indicates that the first child term at step k + 3 will have the same real component of the

argument of the exponential as well. There exists an invariant form for these first child terms

as k increases. This will be discussed later in section 3.3.

In the next section, we discuss the second combination rule.
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3.1.2 Second Rule for Term Combination

Consider the grandchild terms Ek+2|k+2
i,l,2 and Ek+2|k+2

i,m+2,l from the same grandparent term Ek|ki
which has m elements. We show that Ek+2|k+2

i,l,2 = Ek+2|k+2
i,m+2,l for 1 ≤ l ≤ m + 1. For different

value of l, the exponential terms are derived analytically in the following subsections.

3.1.2.1 Case 1: 1 ≤ l ≤ m

First, consider the case when 1 ≤ l ≤ m. Start with Ek+1|k+1
i,j for 1 ≤ j ≤ m expressed in

(3.9). After time propagation to step k + 2, the argument of the exponential becomes,

Ek+2|k+1
i,l (ν) = exp


−
|det (Φ)| ·

[(∑m
q=1,q 6=l Pq |det (Bl,q)|

)
+ β |det (Cl)|

]

|blΦTHT |
∣∣HAΦTν

∣∣

− γ

|blΦTHT |
∣∣blΦ2Tν

∣∣− β
∣∣ΓTν

∣∣+ jζ
k+2|k+1
i,l ν

)
(3.21)

After measurement update derived from the update integral, the 2nd child term at step k+2

is,

Ek+2|k+2
i,l,2 (ν) = exp


−
|det (Φ)| ·

[(∑m
q=1,q 6=l Pq |det (Bl,q)|

)
+ β |det (Cl)|

]

|blΦTHT |
∣∣HAΦTHT

∣∣

·
∣∣∣∣
HAΦTν

HAΦTHT
− blΦ

2Tν

blΦ2THT

∣∣∣∣− β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− blΦ

2Tν

blΦ2THT

∣∣∣∣

−γ
∣∣∣∣
blΦ

2Tν

blΦ2THT

∣∣∣∣+ jζ
k+2|k+2
i,l,2 ν

)
(3.22)

From simple algebra, we have,

ΦbTl HA−ATHT blΦ
T =

(
HΦbTl

)
·HA (3.23)

Also, define

Dl =
[
Φ−2Γ bTl

]
∈ R2×2 (3.24)
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Note that the determinant of the product equals to the product of the determinant. Using

all these properties and definitions to simplify the argument of the exponential in (3.22).

Ek+2|k+2
i,l,2 (ν) = exp


−
|det (Φ2)| ·

[(∑m
q=1,q 6=l Pq |det (Bl,q)|

)
+ β |det (Cl)|

]

|blΦ2THT |
|HAν|

−β |det (Φ2) · det (Dl)|
|blΦ2THT |

|HAν| − γ

|blΦ2THT |
∣∣blΦ2Tν

∣∣+ jζ
k+2|k+2
i,l,2 ν

)
(3.25)

Combine the first two elements in (3.25):

Ek+2|k+2
i,l,2 (ν) = exp


−
|det (Φ2)| ·

[(∑m
q=1,q 6=l Pq |det (Bl,q)|

)
+ β |det (Cl)|

|blΦ2THT |

+β |det (Dl)|] · |HAν| − γ

|blΦ2THT |
∣∣blΦ2Tν

∣∣+ jζ
k+2|k+2
i,l,2 ν

)
(3.26)

where 1 ≤ l ≤ m.

We consider Ek+2|k+2
i,m+2,l for 1 ≤ l ≤ m and show that it is identical to equation (3.26). Start

with the form of Ek+1|k+1
i,m+2 as the old child term at step k + 1,

Ek+1|k+1
i,m+2 (ν) = exp

(
−P1

∣∣b1ΦTν
∣∣− ...− Pm

∣∣bmΦTν
∣∣− β

∣∣ΓTν
∣∣+ jζ

k+1|k+1
i,m+2 ν

)
(3.27)

The lth child term for 1 ≤ l ≤ m at step k+2 has the argument of the exponential as follows.

Ek+2|k+2
i,m+2,l (ν) = exp

(
−P1

∣∣b1Φ2THT
∣∣
∣∣∣∣
b1Φ2Tν

b1Φ2THT
− blΦ

2Tν

blΦ2THT

∣∣∣∣− ...

− Pm
∣∣bmΦ2THT

∣∣
∣∣∣∣
bmΦ2Tν

bmΦ2THT
− blΦ

2Tν

blΦ2THT

∣∣∣∣

− β
∣∣ΓTΦTHT

∣∣
∣∣∣∣

ΓTΦTν

ΓTΦTHT
− blΦ

2Tν

blΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− blΦ

2Tν

blΦ2THT

∣∣∣∣− γ
∣∣∣∣
blΦ

2Tν

blΦ2THT

∣∣∣∣+ jζ
k+2|k+2
i,m+2,l ν

)
(3.28)

And,

H
(
Φ2bTl bqΦ

2T − Φ2bTq blΦ
2T
)

= det (Bl,q) · det(Φ2) ·HA (3.29)

H
(
Φ2bTl ΓTΦT − ΦΓblΦ

2T
)

= det (Cl) · det(Φ2) ·HA (3.30)

H
(
Φ2bTl ΓT − ΓblΦ

2T
)

= det (Dl) · det(Φ2) ·HA (3.31)

31



where Bl,q, Cl and Dl have been defined earlier.

Substitute (3.29) - (3.31)into (3.28), and combine the first (m + 1) elements. One can

obtain the following form,

Ek+2|k+2
i,m+2,l (ν) = exp


−
|det (Φ2)| ·

[(∑m
q=1,q 6=l Pq |det (Bl,q)|

)
+ β |det (Cl)|

|blΦ2THT |

+β |det (Dl)|] · |HAν| − γ

|blΦ2THT |
∣∣blΦ2Tν

∣∣+ jζ
k+2|k+2
i,m+2,l ν

)
(3.32)

where 1 ≤ l ≤ m.

Again, as what has been mentioned earlier, numerical simulations have shown that when-

ever the real parts of two exponential terms combine, the imaginary parts match too. There-

fore for the case when 1 ≤ l ≤ m, the two grandchild terms Ek+2|k+2
i,l,2 in equation (3.26) and

Ek+2|k+2
i,m+2,l in equation (3.32) are identical.

3.1.2.2 Case 2: l = m+ 1

Next, consider the case when l = m + 1. Starting from equation (3.12), the (m + 1)th child

term at step k + 1 has the exponential term as,

Ek+1|k+1
i,m+1 (ν) = exp


−
|det (Φ)| ·

(∑m
q=1 Pq |det (Cq)|

)

|ΓTHT |
|HAν| − γ

|ΓTHT |
∣∣ΓTν

∣∣

+jζ
k+1|k+1
i,m+1 ν

)
(3.33)

After time propagation to step k + 2, it becomes,

Ek+2|k+1
i,m+1 (ν) = exp


−
|det (Φ)| ·

(∑m
q=1 Pq |det (Cq)|

)

|ΓTHT |
∣∣HAΦTν

∣∣− γ

|ΓTHT |
∣∣ΓTΦTν

∣∣

−β
∣∣ΓTν

∣∣+ jζ
k+2|k+1
i,m+1 ν

)
(3.34)
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The 2nd child term at step k + 2 has the argument of the exponential as follows.

Ek+2|k+2
i,m+1,2 (ν) = exp


−
|det (Φ)| ·

(∑m
q=1 Pq |det (Cq)|

)

|ΓTHT |
∣∣HAΦTHT

∣∣
∣∣∣∣
HAΦTν

HAΦTHT
− ΓTΦTν

ΓTΦTHT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− ΓTΦTν

ΓTΦTHT

∣∣∣∣−
γ

|ΓTΦTHT |
∣∣ΓTΦTν

∣∣+ jζ
k+2|k+2
i,m+1,2 ν

)

(3.35)

For any row vector v, vTHA−ATHTv =
(
HvT

)
·HA holds. Let v = ΓT . Then,

ΓHA−ATHTΓT = (HΓ) ·HA (3.36)

Define E =
[
Γ ΦΓ

]
∈ R2×2, then,

H
(
ΦΓΓT − ΓΓTΦT

)
= − det(E) ·HA (3.37)

Substitute equation (3.36) and (3.37) back into equation (3.35).

Ek+2|k+2
i,m+1,2 (ν) = exp


−
|det (Φ2)| ·

(∑m
q=1 Pq |det (Cq)|

)

|ΓTΦTHT |
|HAν|

− β |det(E)|
|ΓTΦTHT |

|HAν| − γ

|ΓTΦTHT |
∣∣ΓTΦTν

∣∣+ jζ
k+2|k+2
i,m+1,2 ν

)
(3.38)

Combine the first two elements which are co-aligned onto the HA direction. Then one can

obtain the exponential term of the second child term at step k + 2 from Ek+1|k+1
i,m+1 ,

Ek+2|k+2
i,m+1,2 (ν) = exp


−
|det (Φ2)| ·

(∑m
q=1 Pq |det (Cq)|

)
+ β |det(E)|

|ΓTΦTHT |
|HAν|

− γ

|ΓTΦTHT |
∣∣ΓTΦTν

∣∣+ jζ
k+2|k+2
i,m+1,2 ν

)
(3.39)

Next, starting from Ek+1|k+1
i,m+2 expressed in equation (3.27). Using the same approach, at

step k + 2, the exponential term becomes,

Ek+2|k+2
i,m+2,m+1(ν) = exp

(
−P1

∣∣b1Φ2THT
∣∣
∣∣∣∣
b1Φ2Tν

b1Φ2THT
− ΓTΦTν

ΓTΦTHT

∣∣∣∣− ...

− Pm
∣∣bmΦ2THT

∣∣
∣∣∣∣
bmΦ2Tν

bmΦ2THT
− ΓTΦTν

ΓTΦTHT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− ΓTΦTν

ΓTΦTHT

∣∣∣∣− γ
∣∣∣∣

ΓTΦTν

ΓTΦTHT

∣∣∣∣+ jζ
k+2|k+2
i,m+2,m+1ν

)
(3.40)
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Because,

H
(
ΦΓblΦ

2T − Φ2bTl ΓTΦT
)

= det(Cl) · det(Φ2) ·HA (3.41)

H
(
ΦΓΓT − ΓΓTΦT

)
= − det(E) ·HA (3.42)

Substitute equation (3.41) and (3.42) into (3.40).

ε
k+2|k+2
m+2,m+1(ν) = exp

(
−−P1 |det(C1) · det(Φ2)|

|ΓTΦTHT |
|HAν| − ...

− −Pm |det(Cm) · det(Φ2)|
|ΓTΦTHT |

|HAν|

− β |det(E)|
|ΓTΦTHT |

|HAν| − γ

|ΓTΦTHT |
∣∣ΓTΦTν

∣∣+ jζ
k+2|k+2
i,m+2,m+1ν

)
(3.43)

Combine the first (m + 1) elements to obtain the (m + 1)th child term at step k + 2 from

Ek+1|k+1
i,m+2 ,

Ek+2|k+2
i,m+2,m+1(ν) = exp


−
|det (Φ2)| ·

(∑m
q=1 Pq |det (Cq)|

)
+ β |det(E)|

|ΓTΦTHT |
|HAν|

− γ

|ΓTΦTHT |
∣∣ΓTΦTν

∣∣+ jζ
k+2|k+2
i,m+2,m+1

)
(3.44)

where E =
[
Γ ΦΓ

]
∈ R2×2.

Observe equation (3.39) and (3.44), these two types of grandchild terms also have identical

form for the case when l = m+ 1.

In sum, the second term combination rule for two-state system can be expressed as

follows,

Ek+2|k+2
i,l,2 = Ek+2|k+2

i,m+2,l , for 1 ≤ l ≤ m+ 1 (3.45)

Remark 3.1.4. As it turns out later, the two combination rules of equation (3.20) and (3.45)

are all the rules and as shown in the next section, the number of terms can be computed.

3.1.3 Number of Terms after Term Combination

In this section, the term combination rules proposed earlier are to utilized to theoretically

derive the number of distinct exponential terms after term combination. It turns out that
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this theoretical model of the total number of distinct exponential terms matches the empirical

structure in [6]. The fact that this theoretical model predicts the right number of terms,

implies that there exists only two such rules for two-state systems.

Figure 3.1 illustrates how a general term withm elements at step k−1 produces grandchild

terms at step k+1. Let us consider different types of exponential terms at (k+1)th update. All

the terms with 2 elements will be the (j, 1), (j, 2), (j, 3), (m+2, 1), (m+2, 2), ..., (m+2,m+2)

terms, where j can be anything between 1 and m + 1. For different grandparent term at

step k − 1, there can be different grandchild terms. However, all the grandchild terms at

step k + 1 must belong to one of these types.

kth update 
(Any term with Ne = m) 

1st child 2nd child … … (m+1)th 
child 

(m+2)th child 
(old) 

(k+1)th update 

First (m+1) terms: Ne = 2 Last 1 term: Ne = m+1 

(k+2)th update 
(m+2,1)  (m+2,j)  (m+2,m+1)  (m+2,m+2)  (m+2,m+3)  

… 

jth child at step k+1 
 ( j =1,2,…,m+1 ) 

(j,1)  (j,2) (j,3) (j,4) (1,1)  (1,2) (1,3) (1,4) 

First 3 terms: Ne = 2 
Last child: Ne = 3 

(m+1,1)  (m+1,2) (m+1,3) (m+1,4) 

First 3 terms: Ne = 2 
Last child: Ne = 3 

First 3 terms: Ne = 2 
Last child: Ne = 3 

First (m+2) terms: Ne = 2 
Last child: Ne = m+2 

… … … … … 

Figure 3.1: Term combination rules for 2-state systems

For two-state systems, exponential terms that contains more than two elements are always

old child terms being produced from their parent terms. Any two distinct parent terms will

produce different old child terms. Therefore, none of the child terms with more than two

elements will combine with each other. All the new terms have two elements; and all the

2-element terms starting from the 2nd measurement update are new terms.

Now, recall the definition of Ñ
k|k
t as the number of distinct exponential terms after

combination at step k, and Ñ
k|k
t,new as the number of new distinct exponential terms after
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combination at step k. Also define Ñ
k|k
t,old to be the number of old distinct exponential terms

after combination at step k. The relation of the three quantities can be written as,

Ñ
k|k
t = Ñ

k|k
t,new + Ñ

k|k
t,old (3.46)

The first rule for term combination is expressed as Ek+2|k+2
i,l,1 = Ek+2|k+2

p,q,1 , for 1 ≤ l ≤ m+1,

1 ≤ q ≤ n + 1, and for any i, p. Suppose the number of new distinct exponential terms is

Ñ
k+1|k+1
t,new at step k + 1, then each of the new parent terms at step k + 1 produces the first

child term of the (j, 1) type at step k + 2, which are colored in green in Figure 3.1. These

(j, 1) type of grandchild terms at step k + 2 will combine to one single exponential term.

Therefore, there are at most 1 exponential term of (j, 1) type at step k + 2.

The second rule for combining terms says that Ek+2|k+2
i,l,2 = Ek+2|k+2

i,m+2,l , for 1 ≤ l ≤ m + 1.

These two types of terms are colored in red in fig 3.1. Consider the 2-element child terms at

step k + 2 which come from a new parent term at step k + 1. At step k + 2, there are at

most Ñ
k+1|k+1
t,new terms of (j, 2) type; and at most Ñ

k+1|k+1
t,new terms of (j, 3) type, where

1 ≤ j ≤ m+ 1.

Now consider the 2-element child terms at step k + 2 which come from an old parent

term at step k + 1. At step k + 2, according to the second combination rule, the (m+ 2, j)

type of terms will combine with the (j, 2) type of terms, where 1 ≤ j ≤ m + 1. And all the

old terms at step k + 1 can be referred to the “(m+ 2)th child” at step k + 1 in Figure 3.1.

Therefore, all the (m + 2, j), where 1 ≤ j ≤ m + 1 types of terms will combine with the

corresponding (j, 2) counterparts which have the same grandparent term with them.

Now the only left type of 2-element terms is the (m+2,m+2) type. If there are Ñ
k+1|k+1
t,old

old terms at step k + 1, then there will be in total Ñ
k+1|k+1
t,old terms of (m + 2,m + 2)

type at step k + 2.

In sum, counting all types of 2-element terms together at step k+2, one obtains the upper

limit of the total number of new distinct exponential terms at step k + 2 after conducting
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the two combination rules.

Ñ
k+2|k+2
t,new ≤ 1 + Ñ

k+1|k+1
t,new + Ñ

k+1|k+1
t,new + Ñ

k+1|k+1
t,old (3.47)

Because,

Ñ
k+1|k+1
t = Ñ

k+1|k+1
t,new + Ñ

k+1|k+1
t,old (3.48)

Substitute (3.48) back into (3.47),

Ñ
k+2|k+2
t,new ≤ 1 + Ñ

k+1|k+1
t,new + Ñ

k+1|k+1
t (3.49)

Also because the number of old term at step k + 2 equals to the total number of terms at

step k + 1, i.e.,

Ñ
k+2|k+2
t,old = Ñ

k+1|k+1
t (3.50)

Then one can write down the total number of distinct exponential terms at step k + 2 as,

Ñ
k+2|k+2
t = Ñ

k+2|k+2
t,new + Ñ

k+2|k+2
t,old

≤
(

1 + Ñ
k+1|k+1
t,new + Ñ

k+1|k+1
t

)
+ Ñ

k+1|k+1
t

≤ 1 + Ñ
k+1|k+1
t,new + 2Ñ

k+1|k+1
t (3.51)

Rewrite the inequalities (3.49) and (3.51) into matrix form,

Ñ

k+2|k+2
t

Ñ
k+2|k+2
t,new


 ≤


2 1

1 1




Ñ

k+1|k+1
t

Ñ
k+1|k+1
t,new


+


1

1


 (3.52)

The inequality in equation (3.52) provides an upper limit for the number of distinct

exponential terms as well as new terms for two state cases. In [6], an equality with exactly the

same matrix structure was verified through empirical simulations. Therefore, the statement

of (3.52) can be stronger.

Theorem 3.1.5. For two-state systems, the number of distinct exponential terms and new

distinct exponential terms satisfies the following equality,

Ñ

k+1|k+1
t

Ñ
k+1|k+1
t,new


 =


2 1

1 1




 Ñ

k|k
t

Ñ
k|k
t,new


+


1

1


 , for k ≥ 2 (3.53)
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Remark 3.1.6. Theorem 3.1.5 were already brought up in [6], discovered by observing the

empirical data. In this dissertation, it is better understood from an analytic viewpoint.

In addition, Theorem 3.1.5 implies that no other exponential terms except what has been

discussed in this chapter can be combined. We have exhausted all the term combination rules

for two-state systems. This conclusion can be summarized in the following theorems.

Theorem 3.1.7. For two-state systems, suppose at step k, the exponential term Ek|ki has m

elements in the argument of the exponential, and Ek|kp has n elements in the argument of the

exponential, then there exists only 2 combination rules,

(a) Ek+2|k+2
i,l,1 = Ek+2|k+2

p,q,1 , 1 ≤ l ≤ m+ 1, 1 ≤ q ≤ n+ 1, for any i, p (3.54)

(b) Ek+2|k+2
i,l,2 = Ek+2|k+2

i,m+2,l , for 1 ≤ l ≤ m+ 1 (3.55)

3.2 Three-State Case

Similarly, the argument of some exponential terms for three-state systems also has the same

functional expression. As known, in two-state problems, there are only two elements in

the argument of the exponential for any new term, and only those 2-element exponential

terms are involved in term combination rules. However, for three-state case, the minimum

number of elements in the argument of the exponential term is four, while other terms have

more elements, as time step k increases. We observe that some exponential terms with the

same number of elements could be combined, which are not limited to 4-element terms. In

this section, we show four combination rules for three-state systems, illustrated in Figure

3.2. Each rule is highlighted by different color and shape in the figure. These colored dots

(combined terms) covers all the scenarios of 4-element exponential terms which are produced

from a new grandparent term. For those exponential terms with more than four elements,

and for those terms that are produced from old grandparent terms, combination rules are

still to be discovered. Although these four rules proven in this section are not sufficient to

fully describe all exponential terms that can be combined, the three-state study reveals that
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the argument of some exponential terms are functionally the same and can be combined for

general higher-order systems.

kth update 
(Any  new term with Ne = m) 

1st child 2nd child … … (m+1)th child (m+2)th child 
(old) 

(k+1)th update 

First (m-1) terms: Ne = 4 Last 3 terms: Ne = m+1 

(k+2)th update 

jth child at step k+1 
 ( j =1,2,…,m-1 ) 

(1,1)  
(1,2) 
(1,3) 
(1,4) 

First 3 terms: Ne = 4 
Last 3 terms: Ne = 5 

… … … … 

  mth child (m-1)th child 

(m,1)  

(m,j)  

(m,m-1)  

(m,m+2)  

…
 

First m terms: Ne = 4 
Last 3 terms: Ne = m+2 

…
 

(m+2,1)  

First (m-1) terms: Ne = 5 
Last 4 terms: Ne = m+2 

(1,5) 
(1,6) 

(j,1)  
(j,2) 
(j,3) 
(j,4) 
(j,5) 
(j,6) 

(m-1,1)  
(m-1,2) 
(m-1,3) 
(m-1,4) 
(m-1,5) 
(m-1,6) 

(m,m)  
(m,m+1)  

(m,m+3)  

(m+1,1)  

(m+1,j)  

(m+1,m-1)  

(m+1,m+2)  

…
 

…
 

(m+1,m)  
(m+1,m+1)  

(m+1,m+3)  

(m+2,m+3)  

…
 

Figure 3.2: Some combination rules for three-state systems: 4-element grandchild terms from

a new grandparent term

3.2.1 Derivation of Ek+2|k+2
i,l,1 = Ek+2|k+2

p,q,1

Analog to the two-state case, here we show that the first child term of all 4-element parent

terms can be combined, which is highlighted by green circles in Figure 3.2.

Consider the first child term of each of the parent term after the 3rd update which has

4 elements, i.e. Nparent
e = 4. All exponential terms with four elements is a new term,

when it is during or after the 3rd measurement update. This is because all terms at the 2nd

measurement update have four elements. When they get propagated and updated to the

step k = 3, 5 elements are produced in the argument of the exponential. But some of the

new child terms will produce co-aligned directions and the number of elements Ne will be

reduced to 4. On the contrary, an old parent term will produce child terms with at least
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5 elements. This is because old child terms does not involve directions co-alignment. Old

terms will have one more element than their parent terms. The minimal number of elements

in a new term is four, thus there are at least 5 elements in the argument of the exponential

for an old term. Starting from the 3rd measurement update, all four-element terms will be

one of the first several child terms from a new parent term at the last step.

At step k, the exponential of any new parent term can be written as,

Ek|ki (ν) = exp
(
−P1|HC1ν| − P2|HC2ν| − ...− Pm−1|HCm−1ν| − Pm|b1ν|+ jζ

k|k
i ν

)
(3.56)

where Cq, q = 1, 2, ...,m − 1, are skew-symmetric matrices, and b1 is a 3-dim row vector

which cannot be expressed in the HC form.

The number of elements of this term Eki is m. At step k+ 1, the first (m− 1) child terms

will have 4 elements, i.e. Ne = 4. The lth child at step k + 1 when 1 ≤ l ≤ m − 1 has the

argument of the exponential as follow,

Ek+1|k+1
i,l (ν) = exp


−

(∑m−1
q=1,q 6=l Pq|HCqA21C

T
l H

T |
)

|HClΦTHT | · |HeT3 |
|HΦBΦTν|

−
γ

|b1HT |

|HClΦTHT |
|HΦDlΦ

Tν| − β

|HClΦTHT |
|HΦElΦ

Tν|

− γ

|HClΦTHT |
|HClΦTν|+ jζ

k+1|k+1
i,l ν

)
(3.57)

where

Dl = CT
l H

T b1 − bT1HTCl, El = CT
l H

TΓTΦ−T − Φ−1ΓHCl (3.58)

For detail derivation, see Appendix C.1.1.

Equation (3.57) is regarded as the general form of a parent term with four elements, i.e.

Nparent
e = 4, at step k+1 when k ≥ 3. Starting from parent terms of such form at step k+1,

the first child terms at step k + 2 has the exponential term expressed as follows,

Ek+2|k+2
i,l,1 (ν) = exp

(
−

γ
|b1HT | |HΦDlΦ

TA21ΦBTΦTHT |+ β|HΦElΦ
TA21ΦBTΦTHT |

|HClΦTHT | · |HΦBΦ2THT | · |HeT3 |
|HΦBΦT ν|

− γ

|HΦBΦ2THT |
|HΦ2BΦ2T ν| − β

|HΦBΦ2THT |
|H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν|

− γ

|HΦBΦ2THT |
|HΦBΦ2T ν|+ jζ

k+2|k+2
i,l,1 ν

)
(3.59)
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As defined earlier, Dl = CT
l H

T b1 − bT1HTCl and El = CT
l H

TΓTΦ−T − Φ−1ΓHCl.

In equation (3.59), the argument of the exponential consists of four elements, each of

which has a coefficient (the quantity outside the absolute value) and a direction (the quantity

inside the absolute value). This grandchild term Ek+2|k+2
i,l,1 at step k + 2 is updated from the

term Ek+1|k+1
i,l at step k + 1. Besides the system parameters Φ, Γ, H, γ, and β, the value of

the term Ek+1|k+1
i,l also relies on the value of Pl, Cl and b1. However, the child term Ek+2|k+2

i,l,1

expressed in equation (3.59) are independent of the value of Pl, Cl and b1, but only functions

of Φ, Γ H, γ, and β. We show this fact by observation and by numerical checks.

Firstly, one can immediately notice that all of the four directions, HΦBΦT , HΦ2BΦ2T ,

H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
, and HΦBΦ2T in the child term Ek+2|k+2

i,l,1 are independent

with the value of Pl, Cl and b1, but only functions of system parameters. Moreover, the

second, third, and fourth coefficients in the grandchild term Ek+2|k+2
i,l,1 are also uniquely de-

termined by only system parameters and not the initial value of Pl, Cl or b1.

Next, look at the coefficient of the first element in equation (3.59). Although it is ex-

pressed in terms of Cl and b1, the value is actually independent of Cl and b1. The first

coefficient is uniquely determined by system parameters as well. It is not obvious, but it

has been verified by simple numerical computations. Later, it will be shown that this first

child term will stay invariant as k grows, which analytically proves that the expression of

this exponential term is independent of the value of its parent terms. Later in Section 3.3,

this invariance property of the argument of the exponential of first child terms is further

discussed.

Therefore, the elements including both the coefficients and the directions in the 1st child

term Ek+2|k+2
i,l,1 at step k + 2 are uniquely determined by system parameters. All of the first

child terms at step k + 2 from all parent terms with Nparent
e = 4 at (k + 1)th update when

k ≥ 3 will combine universally, no matter which particular parents they comes from, i.e.

Ek+2|k+2
i,l,1 = Ek+2|k+2

p,q,1 (3.60)
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where Ek|ki and Ek|kp are new terms at step k with m and n elements in the argument of the

exponential term respectively, 1 ≤ l ≤ m− 1 and 1 ≤ q ≤ n− 1.

3.2.2 Derivation of Ek+2|k+2
i,l,2 = Ek+2|k+2

i,m,l from a New Grandparent Term Ek|ki with

Nk
e = m for 1 ≤ l ≤ m− 1

Consider a new term at step k which has m elements in the argument of the exponential.

Then the exponential can be expressed as,

Ek|ki = exp

(
−P1|HC1ν| − P2|HC2ν| − ...− Pm−1|HCm−1ν| −

γ

|b1HT |
|b1ν|+ jζk|kν

)

(3.61)

where Ci, i = 1, 2, ...,m − 1, are skew-symmetric matrices, and b1 is another vector which

cannot be expressed in the HC form.

At the (k + 1)th measurement update, the lth child term Ek+1|k+1
i,l for 1 ≤ l ≤ m − 1

has four elements; while the mth child term Ek+1|k+1
i,m has (m + 1) elements. Then, at the

(k + 2)th measurement update, the 2nd child term Ek+2|k+2
i,l,2 from the parent term Ek+1|k+1

i,l

has four elements. And the lth child term Ek+2|k+2
i,m,l from the parent term Ek+1|k+1

i,m also has

four elements.

In this section, we show that Ek+2|k+2
i,l,2 = Ek+2|k+2

i,m,l , for 1 ≤ l ≤ m− 1. In Figure 3.2, these

exponential terms are colored in red.

From Appendix C.1.1, the lth child term Ek+1|k+1
i,l for 1 ≤ l ≤ m− 1 at step k + 1 is,

Ek+1|k+1
i,l (ν) = exp


−

(∑m−1
q=1,q 6=l Pq ·

∣∣HCqA21C
T
l H

T
∣∣
)

|HClΦTHT | ·
∣∣HeT3

∣∣
∣∣HΦBΦT ν

∣∣−
γ

|b1HT |

|HClΦTHT |
∣∣HΦDlΦ

T ν
∣∣

− β

|HClΦTHT |
∣∣HΦElΦ

T ν
∣∣− γ

|HClΦTHT |
∣∣HClΦT ν

∣∣+ jζ
k+1|k+1
i,l ν

)
(3.62)

where

Dl = CT
l H

T b1 − bT1HCl and El = CT
l H

TΓTΦ−T − Φ−1ΓHCl (3.63)

Next, from Appendix C.2.2, the 2nd child term at step k+2 from Ek+1|k+1
i,l has the exponential
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term as follow,

Ek+2|k+2
i,l,2 (ν) = exp

(
−ρ1

∣∣HΦBΦTν
∣∣

− γ

|HΦDlΦ2THT |
∣∣HΦ2DlΦ

2Tν
∣∣

− β

|HΦDlΦ2THT |
∣∣H
(
Φ2DT

l ΦTHTΓT − ΓHΦDlΦ
2T
)
ν
∣∣

− γ

|HΦDlΦ2THT |
∣∣HΦDlΦ

2Tν
∣∣+ jζ

k+2|k+2
i,l,2 ν

)
(3.64)

where

ρ1 =

(∑m−1
q=1,q 6=l Pq ·

∣∣HCqA21C
T
l H

T
∣∣
)

|HClΦTHT | · |HeT3 |

∣∣HΦDlΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦDlΦ2THT |

+
β

|HClΦTHT |

∣∣HΦDlΦ
TA21ΦET

l ΦTHT
∣∣

|HeT3 | · |HΦDlΦ2THT |
(3.65)

and Dl and El has been defined earlier.

Again, from Appendix C.1.2, at the (k + 1)th update, the mth child term Ek+1|k+1
i,m is

expressed as,

Ek+1|k+1
i,m = exp

(
− P1

|b1ΦTHT |
∣∣HΦD1ΦTν

∣∣− ...− Pm−1

|b1ΦTHT |
∣∣HΦDm−1ΦTν

∣∣

− β

|b1ΦTHT |
∣∣HΦDgbΦ

Tν
∣∣− γ

|b1ΦTHT |
∣∣b1ΦTν

∣∣+ jζ
k+1|k+1
i,m ν

)
(3.66)

where

Dl = −bT1HCl + CT
l H

T b1, l = 1, ...,m− 1 (3.67)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (3.68)

Next, at the (k + 2)th measurement update, the lth child term has the exponential term as

follows. For detail derivations, please refer to Appendix C.2.4.

Ek+2|k+2
i,m,l (ν) = exp

(
−ρ2

∣∣HΦBΦTν
∣∣

− γ

|HΦDlΦ2THT |
∣∣HΦ2DlΦ

2Tν
∣∣

− β

|HΦDlΦ2THT |
∣∣H
(
Φ2DT

l ΦTHTΓT − ΓHΦDlΦ
2T
)
ν
∣∣

− γ

|HΦDlΦ2THT |
∣∣HΦDlΦ

2Tν
∣∣+ jζ

k+2|k+2
i,m,l ν

)
(3.69)
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where

ρ2 =

(∑m−1
q=1,q 6=l Pq ·

∣∣HΦDqΦ
TA21ΦDT

l ΦTHT
∣∣
)

|b1ΦTHT | |HΦDlΦ2THT | |HeT3 |
+

β ·
∣∣HΦDgbΦ

TA21ΦDT
l ΦTHT

∣∣
|b1ΦTHT | |HΦDlΦ2THT | |HeT3 |

(3.70)

Now compare Ek+2|k+2
i,l,2 in equation (3.64) with Ek+2|k+2

i,m,l in equation (3.69). Both of them

have four elements. It is obvious by first glance that the second, third and fourth elements of

Ek+2|k+2
i,l,2 and Ek+2|k+2

i,m,l are identical to each other, respectively. Moreover, the first direction

of both two terms is HΦBΦT . Hence, one will just need to consider the first coefficients,

i.e., ρ1 in equation (3.65), and ρ2 in equation (3.70).

By looking at the structure of ρ1 and ρ2, we can tell that the sufficient conditions for

ρ1 = ρ2 are,

∣∣HCqA21C
T
l H

T
∣∣ ·
∣∣HΦDlΦ

TA21ΦBTΦTHT
∣∣

|HClΦTHT | · |HeT3 |
=

∣∣HΦDqΦ
TA21ΦDT

l ΦTHT
∣∣

|b1ΦTHT |
(3.71)

and ∣∣HΦDlΦ
TA21ΦET

l ΦTHT
∣∣

|HClΦTHT |
=

∣∣HΦDgbΦ
TA21ΦDT

l ΦTHT
∣∣

|b1ΦTHT |
(3.72)

where

Dq = CT
q H

T b1 − bT1HCq, q = 1, ...,m− 1 (3.73)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (3.74)

El = CT
l H

TΓTΦ−T − Φ−1ΓHCl (3.75)

Numerical results show that for arbitrary skew-symmetric matrices Cq, Cl ∈ R3×3, l 6= i

and arbitrary 3-dim vector b1, equation (3.71) and equation (3.72) always hold. Therefore

ρ1 = ρ2.

Till now, we have shown that the two grandchild terms Ek+2|k+2
i,l,2 and Ek+2|k+2

i,m,l from a new

grandparent term Ek with Nk
e = m for 1 ≤ i ≤ m− 1 are equal, i.e.,

Ek+2|k+2
i,l,2 = Ek+2|k+2

i,m,l (3.76)
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3.2.3 Derivation of Ek+2|k+2
i,l,3 = Ek+2|k+2

i,m+1,l from a New Grandparent Term Ek|ki with

Nk
e = m for 1 ≤ l ≤ m− 1

Again, consider a new term at step k which has m elements in the argument of the expo-

nential,

Ek|ki (ν) = exp

(
−P1|HC1ν| − P2|HC2ν| − ...− Pm−1|HCm−1ν| −

γ

|b1HT |
|b1ν|+ jζ

k|k
i ν

)

(3.77)

where Cq, q = 1, 2, ...,m − 1, are skew-symmetric matrices, and b1 is another vector which

cannot be expressed in the HC form. In this section we show that Ek+2|k+2
i,l,3 = Ek+2|k+2

i,m+1,l for

1 ≤ l ≤ m− 1. These terms are colored in blue in Figure 3.2.

The number of elements Nk
e = m, then at the (k+1)th measurement update, the lth child

term Ek+1|k+1
i,l for 1 ≤ l ≤ m − 1 has four elements; while the (m + 1)th child term Ek+1|k+1

i,m+1

has (m+ 1) elements. Refer to Appendix C.1.1, the lth child term Ek+1|k+1
i,l for 1 ≤ l ≤ m−1

at step k + 1 is,

Ek+1|k+1
i,l (ν) = exp


−

(∑m−1
q=1,q 6=l Pq ·

∣∣HCqA21C
T
l H

T
∣∣
)

|HClΦTHT | · |HeT3 |
∣∣HΦBΦTν

∣∣−
γ

|b1HT |

|HClΦTHT |
∣∣HΦDlΦ

Tν
∣∣

− β

|HClΦTHT |
∣∣HΦElΦ

Tν
∣∣− γ

|HClΦTHT |
∣∣HClΦTν

∣∣ jζk+1|k+1
i,l ν

)
(3.78)

where

Dl = CT
l H

T b1 − bT1HCl and El = CT
l H

TΓTΦ−T − Φ−1ΓHCl (3.79)

According to Appendix C.2.3, at step k + 2, the 3nd child term from Ek+1|k+1
i,l has the

exponential term written as,

Ek+2|k+2
i,l,3 (ν) = exp

(
−ρ1

∣∣HΦBΦTν
∣∣

− γ

|HΦElΦ2THT |
∣∣HΦ2ElΦ

2Tν
∣∣

− β

|HΦElΦ2THT |
∣∣H
(
Φ2ET

l ΦTHTΓT − ΓHΦElΦ
2T
)
ν
∣∣

− γ

|HΦElΦ2THT |
∣∣HΦElΦ

2Tν
∣∣+ jζ

k+2|k+2
i,l,3 ν

)
(3.80)
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where

ρ1 =

(∑m−1
q=1,q 6=l Pq ·

∣∣HCqA21C
T
l H

T
∣∣
)

|HClΦTHT | · |HeT3 |

∣∣HΦElΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦElΦ2THT |

+

γ
|b1HT |

|HClΦTHT |

∣∣HΦDlΦ
TA21ΦET

l ΦTHT
∣∣

|HeT3 | · |HΦElΦ2THT |
(3.81)

and Dl and El has been defined earlier.

At the (k + 1)th measurement update, refer to Appendix C.1.3, the (m+ 1)th child term

Ek+1|k+1
i,m+1 is expressed as,

Ek+1|k+1
i,m+1 = exp

(
− P1

|ΓTHT |
∣∣HΦE1ΦTν

∣∣− ...− Pm−1

|ΓTHT |
∣∣HΦEm−1ΦTν

∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦDgbΦ

Tν
∣∣− γ

|ΓTHT |
∣∣ΓTν

∣∣+ jζ
k+1|k+1
i,m+1 ν

)
(3.82)

where

Eq = Φ−1ΓHCq − CT
q H

TΓTΦ−T , q = 1, ...,m− 1 (3.83)

and

Dgb = Φ−1Γb1 − bT1 ΓTΦ−T (3.84)

Next, at the (k + 2)th update, the lth child term from Ek+1|k+1
i,m+1 has the exponential term

expressed as follows, refer to Appendix C.2.6.

Ek+2|k+2
i,m+1,l (ν) = exp

(
−ρ2

∣∣HΦBΦTν
∣∣

− γ

|HΦElΦ2THT |
∣∣HΦ2ElΦ

2Tν
∣∣

− β

|HΦElΦ2THT |
∣∣H
(
Φ2ET

l ΦTHTΓT − ΓHΦElΦ
2T
)
ν
∣∣

− γ

|HΦElΦ2THT |
∣∣HΦElΦ

2Tν
∣∣+ jζ

k+2|k+2
i,m+1,l ν

)
(3.85)

where

ρ2 =

(∑m−1
q=1,q 6=l Pq ·

∣∣HΦEqΦ
TA21ΦET

l ΦTHT
∣∣
)

|ΓTHT | |HΦElΦ2THT | |HeT3 |
+

γ ·
∣∣HΦDgbΦ

TA21ΦET
l ΦTHT

∣∣
|b1HT | · |ΓTHT | · |HΦElΦ2THT | · |HeT3 |

(3.86)
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Now compare Ek+2|k+2
i,l,3 in equation (3.80) with Ek+2|k+2

i,m+1,l in equation (3.85). Both of them

have four elements. The second, third and fourth elements of Ek+2|k+2
i,l,3 and Ek+2|k+2

i,m+1,l are

identical to each other, respectively. Moreover, the first direction of both two terms is

HΦBΦT . Hence, one will just need to consider the first coefficients, i.e., ρ1 in equation

(3.81), and ρ2 in equation (3.86). The sufficient conditions for ρ1 = ρ2 are,
∣∣HCqA21C

T
l H

T
∣∣

|HClΦTHT |

∣∣HΦElΦ
TA21ΦBTΦTHT

∣∣
|HeT3 |

=

∣∣HΦEqΦ
TA21ΦET

l ΦTHT
∣∣

|ΓTHT |
(3.87)

and ∣∣HΦDlΦ
TA21ΦET

l ΦTHT
∣∣

|HClΦTHT |
=

∣∣HΦDgbΦ
TA21ΦET

l ΦTHT
∣∣

|ΓTHT |
(3.88)

where

Dl = CT
l H

T b1 − bT1HCl (3.89)

Eq = Φ−1ΓHCq − CT
q H

TΓTΦ−T , q = 1, ...,m− 1 (3.90)

Dgb = Φ−1Γb1 − bT1 ΓTΦ−T (3.91)

Numerical results show that for arbitrary skew-symmetric matrices Cq, Cl ∈ R3×3, q 6= l

and arbitrary 3-dim vector b1, equation (3.87) and equation (3.88) always hold. Therefore

ρ1 = ρ2.

We just showed that the two grandchild terms Ek+2|k+2
i,l,3 and Ek+2|k+2

i,m+1,l from a new grand-

parent term Ek with Nk
e = m for 1 ≤ l ≤ m− 1 are equal, i.e.,

Ek+2|k+2
i,l,3 = Ek+2|k+2

i,m+1,l (3.92)

3.2.4 Derivation of Ek+2|k+2
i,m,m = Ek+2|k+2

i,m+1,m from a New Grandparent Term Ek|k with

Nk
e = m

This is the last scenario of 4-element terms that are produced from a new grandparent term.

A new term at step k which has m elements in the argument of the exponential can be

expressed as,

Ek|ki (ν) = exp

(
−P1|HC1ν| − P2|HC2ν| − ...− Pm−1|HCm−1ν| −

γ

|b1HT |
|b1ν|+ jζ

k|k
i ν

)

(3.93)
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where Cq, q = 1, 2, ...,m − 1, are skew-symmetric matrices, and b1 is another vector which

cannot be expressed in the HC form. Because Nk
e = m, at the (k+1)th measurement update,

the mth child term Ek+1|k+1
i,m and the (m + 1)th child term Ek+1|k+1

i,m+1 have (m + 1) elements.

Then, at the (k + 2)th measurement update, the mth child terms from both Ek+1|k+1
i,m and

Ek+1|k+1
i,m+1 must have 4 elements. This section shows that Ek+2|k+2

i,m,m = Ek+2|k+2
i,m+1,m . These terms

are colored in purple in Figure 3.2.

From Appendix C.1.2, at the (k + 1)th update, the mth child term Ek+1|k+1
i,m is expressed

as,

Ek+1|k+1
i,m (ν) = exp

(
− P1

|b1ΦTHT |
∣∣HΦD1ΦTν

∣∣− ...− Pm−1

|b1ΦTHT |
∣∣HΦDm−1ΦTν

∣∣

− β

|b1ΦTHT |
∣∣HΦDgbΦ

Tν
∣∣− γ

|b1ΦTHT |
∣∣b1ΦTν

∣∣+ jζ
k+1|k+1
i,m ν

)
(3.94)

where

Dq = −bT1HCq + CT
q H

T b1, q = 1, ...,m− 1 (3.95)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (3.96)

Next, refer to Appendix C.2.5, Ek+2|k+2
i,m,m can be written as,

Ek+2|k+2
i,m,m (ν) = exp

(
−
∑m−1

q=1

(
Pq
∣∣HΦDqΦ

TA21ΦDT
gbΦ

THT
∣∣)

|b1ΦTHT | · |HΦDgbΦ2THT | · |HeT3 |
∣∣HΦBΦTν

∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦ2DgbΦ

2Tν
∣∣

− β

|HΦDgbΦ2THT |
∣∣H
(
Φ2DT

gbΦ
THTΓT − ΓHΦDgbΦ

2T
)
ν
∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦDgbΦ

2Tν
∣∣+ jζ

k+2|k+2
i,m,m ν

)
(3.97)

where

Dq = −bT1HCq + CT
q H

T b1, q = 1, ...,m− 1 (3.98)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (3.99)

At the (k + 1)th measurement update, the (m + 1)th child term Ek+1|k+1
i,m+1 is expressed as
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follow, refer to Appendix C.1.3.

Ek+1
i,m+1(ν) = exp

(
− P1

|ΓTHT |
∣∣HΦE1ΦTν

∣∣− ...− Pm−1

|ΓTHT |
∣∣HΦEm−1ΦTν

∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦDgbΦ

Tν
∣∣− γ

|ΓTHT |
∣∣ΓTν

∣∣+ jζ
k+1|k+1
i,m+1 ν

)
(3.100)

where

El = Φ−1ΓHCl − CT
l H

TΓTΦ−T , l = 1, ...,m− 1 (3.101)

Dgb = Φ−1Γb1 − bT1 ΓTΦ−T (3.102)

Next, refer to Appendix C.2.7, the mth child term at step k + 2 can be written as,

Ek+2|k+2
i,m+1,m (ν) = exp

(
−
∑m−1

q=1

(
Pq
∣∣HΦEqΦ

TA21ΦDT
gbΦ

THT
∣∣)

|ΓTHT | · |HeT3 | · |HΦDgbΦ2THT |
∣∣HΦBΦTν

∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦ2DgbΦ

2Tν
∣∣

− β

|HΦDgbΦ2THT |
∣∣H
(
Φ2DT

gbΦ
THTΓT − ΓHΦDgbΦ

2T
)
ν
∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦDgbΦ

2Tν
∣∣+ jζ

k+2|k+2
i,m+1,mν

)
(3.103)

where

Eq = Φ−1ΓHCq − CT
q H

TΓTΦ−T , q = 1, ...,m− 1 (3.104)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (3.105)

Compare Ek+2|k+2
i,m,m in equation (3.97) with Ek+2|k+2

i,m+1,m in equation (3.103). Both of them have

four elements. The second, third and fourth elements of Ek+2|k+2
i,m,m and Ek+2|k+2

i,m+1,m are identical to

each other, respectively. Moreover, the first direction of both two terms is HΦBΦT . Again,

we just need to consider the first coefficients.

By comparing the structure of the two terms, we can tell that Ek+2|k+2
i,m,m = Ek+2|k+2

i,m+1,m if

∣∣HΦDqΦ
TA21ΦDT

gbΦ
THT

∣∣
|b1ΦTHT |

=

∣∣HΦEqΦ
TA21ΦDT

gbΦ
THT

∣∣
|ΓTHT |

(3.106)

holds, where

Dq = CT
q H

T b1 − bT1HCq, q = 1, ...,m− 1 (3.107)
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Eq = CT
q H

TΓTΦ−T − Φ−1ΓHCq, q = 1, ...,m− 1 (3.108)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (3.109)

Numerical checks show that for any skew-symmetric matrices Cq ∈ R3×3 and any 3-dim

vector b1, equation (3.106) always holds. Therefore Ek+2|k+2
i,m,m = Ek+2|k+2

i,m+1,m .

So far, the term combination rules for 4-element terms that are produced from new

grandparent terms for three-state systems are shown, highlighted in Figure 3.2. Not as special

as the two-state cases, three state cases involve more scenarios of term combination. Rules

for 4-element terms that are from old grandparent terms are still to be found. Furthermore,

terms with more than 4 elements in the argument of the exponential also have the chance

to be combined. Referred to Prof. Moshe Idan’s numerical results, for a three-state case,

at step k = 5 for example, 2512 4-element exponential term are combined to be only 97

distinct terms; 1408 5-element exponential terms are combined to be 93 distinct terms;

672 6-element exponential terms are combine to be 80 terms; and 848 7-element exponential

terms are combined to be 262 terms. Although more such combination rules are still puzzles,

this investigation of three-state systems starts to uncover the properties from a more general

perspective that certain exponential terms have the same functional structure. They can be

combined in order to reduce the amount of computation required.

3.3 Invariance

The first combination rule for both two-state and three-state systems indicates that the first

grandchild term Ek+2|k+2
i,l,1 from the first several parent term Ek+1|k+1

i,l that are produced from

any new grandparent term Ek|ki at step k can be combined universally. It can be expressed

by a form that only depends on system parameters including H, Φ, Γ, α, β and γ, and is

independent with any particular value of Ek|ki .

At step k + 1, the term Ek+1|k+1
i,l is also a new term. Suppose this term at step k + 1 has

Nk+1
e elements in the argument of the exponential. Then, at step k + 3, its corresponding
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grandchild term Ek+3|k+3
i,l,p,1 where p ≤ Nk+1

e −1 should also be independent with any particular

value of its grandparent term Ek+1|k+1
i,l . This implies that the exponential term Ek+3|k+3

i,l,p,1 at

step k+ 3 and the exponential term Ek+2|k+2
i,l,1 at step k+ 2 have the same real component of

the argument of the exponential. Note that the imaginary component of the exponential is

associated with all measurement data, hence will be different after one more measurement

update. Moreover, if we let p = 1, then Ek+3|k+3
i,l,1,1 and Ek+2|k+2

i,l,1 has the same real component

of the argument of the exponential.

Therefore, for two-state and three-state cases, the real component of the argument of the

exponential of first child terms will remain an invariant form as k gets larger. In particular,

for two-state cases, it is obvious that this invariant exponential term is expressed only with

respect to system parameters, as shown in equation (3.19). For three-state systems, the

expression of the invariant exponential term, (3.59), still contains the quantity of Ci, although

it is independent of its value. Inspired by the invariance property, one is able to eliminate

the expression of Ci by deriving its first child term at step k + 3. Refer to Appendix C.3.1,

the exponential term of the first child term Ek+3|k+3
i,l,1,1 can be written as,

Ek+3|k+3
i,l,1,1 (ν) = exp

(
−
ρ1

∣∣HΦ2BΦ2TA21ΦBTΦTHT
∣∣+ ρ2

∣∣HCA21ΦBTΦTHT
∣∣

|HΦBΦ2THT | · |HeT3 |
∣∣HΦBΦTν

∣∣

− ρ3

∣∣HΦ2BΦ2Tν
∣∣− β

|HΦBΦ2THT |
∣∣H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν
∣∣

− γ

|HΦBΦ2THT |
∣∣HΦBΦ2Tν

∣∣+ jζ
k+3|k+3
i,l,1,1 ν

)
(3.110)

where

ρ1 = ρ3 =
γ

|HΦBΦ2THT |
, ρ2 =

β

|HΦBΦ2THT |
(3.111)

Here we introduce a lemma,

Lemma 3.3.1. Let b ∈ R1×3 be an arbitrary row vector, C ∈ R3×3 be any skew-symmetric

matrix, and B be the fundamental basis of three-state systems. Then,
∣∣∣∣∣
HΦ

(
CTHT b− bTHC

)
ΦTA21ΦBTΦTHT

bHT ·HCΦTHT

∣∣∣∣∣ =

∣∣∣∣
HΦ2BΦ2TA21ΦBTΦTHT

HΦBΦ2THT

∣∣∣∣ (3.112)
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Proof. This algebraic result has been verified numerically.

Then one can obtain the following two equalities,

γ
|b1HT | |HΦDlΦ

TA21ΦBTΦTHT |
|HClΦTHT |

=
γ|HΦ2BΦ2TA21ΦBTΦTHT |

|HΦBΦ2THT |
(3.113)

and

β|HΦElΦ
TA21ΦBTΦTHT |

|HClΦTHT |
=
β|H

(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
A21ΦBTΦTHT |

|HΦBΦ2THT |

=
β|HΦ2BΦ2TA21ΦBTΦTHT |

|HΦBΦ2THT |
· |ΓTΦ−THT | (3.114)

Equation (3.113) and (3.114) show that the real component of the argument of the

exponential term Ek+3|k+3
i,l,1,1 in (3.110) and Ek+2|k+2

i,l,1 in (3.59) are the same. Furthermore, let

us define a coefficient σ as,

σ =
|HΦ2BΦ2TA21ΦBTΦTHT |
|HΦBΦ2THT |2 · |HeT3 |

(3.115)

Then equation (3.110) can be rewritten as,

Ek+3|k+3
i,l,1,1 (ν) = exp

[
−σ
(
γ + β|ΓTΦ−THT |

)
|HΦBΦTν| − γ

|HΦBΦ2THT |
|HΦ2BΦ2Tν|

− β

|HΦBΦ2THT |
|H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν|

− γ

|HΦBΦ2THT |
|HΦBΦ2Tν|+ jζ

k+3|k+3
i,l,1,1 ν

]
(3.116)

Equation (3.116) provides an alternative expression for the first child term from any

parent term with four elements during or after the third measurement update.
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CHAPTER 4

S Matrix

It has been discussed in detail that certain exponential terms can be combined analytically

in the last chapter. In this chapter, the “S” matrix is constructed as an indexing scheme to

keep track of how exponential terms are repeated functionally. Furthermore, for the same

system dimension, an S matrix stays invariant regardless of different system parameters. As

brought up in chapter 1, all the analytic solutions presented in this dissertation is based on

the assumption that none of the directions can be orthogonal to H. If some directions are

orthogonal toH, the solution can also be obtained, but will have a slightly different form. The

special case of the orthogonality was discussed in [5]. Finally, the explicit recursive structure

of the S matrix for the two-state dynamic systems is determined and proved analytically.

For higher order systems, it appears that the S matrix can always be computed. The S

matrix allows for combination of terms without the need of numerical comparison during

the estimation process. This saves a tremendous amount of implementation time.

4.1 General Structure of S Matrix

Suppose at step k − 1, there are Ñ
k−1|k−1
t distinct exponential terms in the CF of the ucpdf

described in (3.1). The ith exponential term at step k − 1 has N
k−1|k−1
ei elements in the

argument of the exponential and Ñ
k−1|k−1
t,i coefficient terms. Each exponential term at step

k− 1 might have a different number of elements depending on how many directions combine

at each measurement update. Hence, different terms at step k − 1 can produce a different

number of child terms at step k. Each parent term at step k can produce at most (k + n)

child terms at step k + 1. Define a matrix S at step k to have (k + n) rows and Ñ
k−1|k−1
t
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columns.

Sk =




s1,1 s1,2 ... s
1,Ñ

k−1|k−1
t

s2,1 s2,2 ... s
2,Ñ

k−1|k−1
t

...

sk+n,1 sk+n,2 ... s
k+n,Ñ

k−1|k−1
t




(4.1)

Each element in matrix Sk, sij, is an identifier for the ith child term at step k of the jth

parent term at step k− 1, represented by a non-negative integer. All the elements in matrix

S provide complete information of the numbering system of all children terms at step k. If

sij = skl, then the argument of the exponential of the ith child term (at step k) of the jth

parent term (at step (k−1)) and that of the kth child term (at step k) of the lth parent term

(at step k − 1) are functionally the same. They are numbered and stored as the sij
th term

at step k. The parent terms at step (k − 1), that has directions less than (k + n − 2), will

not produce as many as (k + n) child terms at step k. The elements for their child terms

are also aligned on the specific column of Sk from the top. For the last few places in that

column where there is a lack of child terms, zero is placed to indicate that there is no child

term at that specific place.

To be more explicit, let the capital letter S∗ and So represents the matrix to be examined,

and the lower case s∗i,j and soi,j represents the (i, j)th element of S∗ and So. The (i, j)th

exponential term is expressed as the functional form of the particular functions that comprise

the estimation process, denoted as Ei,j = f(Φ,Γ, H, α, β, γ; ν), where f(•) is a function of

all the system parameters as well as the spectral variable, structured in (1.15). If two such

expressions Ei,j = El,m for all Φ, H, Γ, α, β, γ and ν, then the two exponential terms can be

combined. With these notations, let us define viable S matrix as shown in Definition 4.1.1.

Definition 4.1.1. A matrix S∗ is a viable S matrix when the following statement holds:

s∗i,j = s∗l,m ∈ N implies Ei,j = El,m for all system parameters Φ, H, Γ, α, β, γ and for all

spectral variable ν.
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From the above definition, one can see that viable S matrix is not unique. Furthermore,

we define the minimal S matrix to be a viable S matrix that has the minimum number of

distinct terms by making the statement a necessary and sufficient condition.

Definition 4.1.2. A matrix So is the minimal S matrix when the following statement holds:

soi,j = sol,m ∈ N if and only if Ei,j = El,m for all system parameters Φ, H, Γ, α, β, γ and

for all spectral variable ν.

The definition of a viable S matrix is important. It provides the minimum requirement

for a S matrix to store the terms combination information. By definition it states that if

si,j = sl,m, then Ei,j = El,m must hold for all parameters and ν. However, when si,j 6= sl,m,

it is not necessary that Ei,j 6= El,m. In fact, during update processing, when the program

looks up the S matrix to decide which term to combine, it does not cause any issue when it

computes the repeated exponential term twice; however, it will raise problems if two distinct

exponential terms were combined by mistake. The notion of the viable S matrix defines

all possible constructions of S matrix that will not cause such computation problems. If

making the one-side statement stronger by a necessary and sufficient condition, one will

get the special viable S that contains the minimum number of distinct exponential terms

analytically, as brought up in Definition 4.1.2. In further content, the viable S matrix is also

named S matrix for short.

4.2 Invariance of S Matrix

The viable S matrix stays invariant for systems of the same dimension, regardless of different

values of the system parameters Φ, H, Γ, α, β and γ. This is because analytically, a viable

S matrix is obtained by comparing the functional expressions Ei,j of the exponential terms.

Only if Ei,j = El,m for all system parameters p = {Φ, H,Γ, α, β, γ} and for all ν, we say

that these two exponential terms can be combined analytically. If there exists some values

of system parameters p1 = {Φ1, H1,Γ1, α1, β1, γ1} and p2 = {Φ2, H2,Γ2, α2, β2, γ2}, such

that Ei,j(p1) = El,m(p1) but Ei,j(p2) 6= El,m(p2), it means that these two exponential can
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only be combined under special numerical cases. Hence, the terms are not considered to be

combined analytically. In this case, si,j 6= sl,m. Now, we have seen that only terms with

the same analytic expressions are considered to have the same si,j in the S matrix. In other

words, these repeated exponential terms which are indicated by the same integer element in

the S matrix, should be equal with each other with respect to all system parameters p =

{Φ, H,Γ, α, β, γ} and for all ν. For systems of same dimension, the S matrix is independent

of the particular values of parameters.

4.3 Analytic Recursive Structure of S for Two-State Case

In this section, for two-state system we present an analytic recursive structure of the S

matrix. This recursion is derived by examining different part of S in an order such that

given Sk, the form of Sk+1 can be uniquely determined.

The recursive structure is described explicitly as follows. As a proper initialization, there

are 3 terms at the first measurement update. They are all distinct. The S matrix at step

k = 1 is expressed as,

Sk=1 =




1

2

3


 (4.2)

At the second measurement update, the S matrix is,

Sk=2 =




1 1 2

2 3 3

4 5 6

7 8 9




(4.3)
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Suppose at step k, where k = 2, 3, ..., the S matrix for a two-state dynamics is known as,

Sk =




s1,1 s1,2 ... s
1,Ñ

k−1|k−1
t

s2,1 s2,2 ... s
2,Ñ

k−1|k−1
t

...

sk+2,1 sk+2,2 ... s
k+2,Ñ

k−1|k−1
t



∈ N(k+2)×Ñk−1|k−1

t (4.4)

where Ñ
k−1|k−1
t stands for the number of distinct exponential terms at step k − 1. This

notation is consistent with equation (3.1). Sk has a “staircase”-shape structure, with its

bottom left corner to be all zeros. This property will be elaborated in detail in latter

subsections. The staircase part of the array is denoted as S∗k,new, shown in equation (4.5).

The asterisk in the superscript means that this is not a rectangular matrix in the most

common sense.
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S
∗ k,
n
ew

=

                    

sk 1
,1
··
·

sk 1
,Ñ

k
−
1
|k
−
1

t,
n
e
w

sk 1
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
1
··
·

sk 1
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

sk 1
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

+
1
··
·

sk 1
,Ñ

k
−
1
|k
−
1

t

sk 2
,1
··
·

sk 2
,Ñ

k
−
1
|k
−
1

t,
n
e
w

sk 2
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
1
··
·

sk 2
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

sk 2
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

+
1
··
·

sk 2
,Ñ

k
−
1
|k
−
1

t

sk 3
,1
··
·

sk 3
,Ñ

k
−
1
|k
−
1

t,
n
e
w

sk 3
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
1
··
·

sk 3
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

sk 3
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

+
1
··
·

sk 3
,Ñ

k
−
1
|k
−
1

t

N
a
N
··
·

N
a
N

sk 4
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
1
··
·

sk 4
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

sk 4
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

+
1
··
·

sk 4
,Ñ

k
−
1
|k
−
1

t

N
a
N
··
·

N
a
N

N
a
N

··
·

N
a
N

sk 5
,Ñ

k
−
1
|k
−
1

t,
n
e
w

+
Ñ
k
−
2
|k
−
2

t,
n
e
w

+
1
··
·

sk 5
,Ñ

k
−
1
|k
−
1

t

. . .
. . .

. . .
. . .

. . .
. . .

N
a
N
··
·

N
a
N

N
a
N

··
·

N
a
N

N
a
N

··
·

sk k
+

1
,Ñ

k
−
1
|k
−
1

t

                    

(4
.5

)
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Then, at step k + 1, Sk+1 ∈ N(k+3)×Ñk|k
t is expressed as,

Sk+1

=




1 ... 1

2 ... Ñ
k|k
t,new + 1 S∗k,new + [1]∗

Ñ
k|k
t,new + 2 ... 2Ñ

k|k
t,new + 1

Ñ
k+1|k+1
t,new + 1 ... Ñ

k+1|k+1
t,new + Ñ

k|k
t,new 2Ñ

k|k
t,new + 2 ... ...

0 ... 0 Ñ
k+1|k+1
t,new + Ñ

k|k
t,new + 1 ...

...
...

0 ...

0 ... ... ... Ñ
k+1|k+1
t,new

0 ... ... ... Ñ
k+1|k+1
t




(4.6)

where S∗k,new + [1]∗ means adding 1 to each of the entry in S∗k,new, described in equation

(4.7).

59



S
∗ k,
n
e
w

+
[1

]∗
=

                   sk 1
,1

+
1
··
·

sk 1
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

sk 1
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

+
1
··
·

sk 1
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

sk 1
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

+
1
··
·

sk 1
,Ñ

k
−

1
|k
−

1
t

+
1

sk 2
,1

+
1
··
·

sk 2
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

sk 2
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

+
1
··
·

sk 2
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

sk 2
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

+
1
··
·

sk 2
,Ñ

k
−

1
|k
−

1
t

+
1

sk 3
,1

+
1
··
·

sk 3
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

sk 3
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

+
1
··
·

sk 3
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

sk 3
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

+
1
··
·

sk 3
,Ñ

k
−

1
|k
−

1
t

+
1

N
a
N

··
·

N
a
N

sk 4
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
1

+
1
··
·

sk 4
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

sk 4
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

+
1
··
·

sk 4
,Ñ

k
−

1
|k
−

1
t

+
1

N
a
N

··
·

N
a
N

N
a
N

··
·

N
a
N

sk 5
,Ñ

k
−

1
|k
−

1
t
,n
e
w

+
Ñ
k
−

2
|k
−

2
t
,n
e
w

+
1

+
1
··
·

sk 5
,Ñ

k
−

1
|k
−

1
t

+
1

. . .
. . .

. . .
. . .

. . .
. . .

N
a
N

··
·

N
a
N

N
a
N

··
·

N
a
N

N
a
N

··
·

sk k
+

1
,Ñ

k
−

1
|k
−

1
t

+
1

                   

(4
.7

)

60



For the rest of Section 4.3, the recursive formulation of the S matrix for two-state systems

is proved. We break down the S matrix into different parts. By showing what each part

of S looks like in a sequential manner, the S structure is uniquely determined. This is also

verified by numerical experiments, though not presented here. While this structure seems to

be a complicated algorithm, in fact, the implementation is very efficient and straightforward.

This recursion contributes to the computational efficiency significantly, since it provides a

practical implementation that can a priori combine terms without the need of numerical

comparison.

4.3.1 Part 1: The First Child Terms from New Parent Terms

Starting from this subsection, we prove the recursive structure by dividing the S matrix into

seven different parts. First, consider the first child terms form new parent terms. From the

first term combination rule for two-state systems described in equation (3.20), the first child

terms at step k + 1 of all new parent terms at step k can be combined. These terms are

stated in Sk+1 as the first row of the first Ñ
k|k
t,new columns. Accordingly, let us assign these

entries to be 1 in Sk+1, meaning that they will be combined and stored as the 1st term at

step k + 1 after term combination.

Hence, the Sk+1 becomes,

Sk+1 =




1 1 ... 1 s
1,Ñ

k|k
t,new+1

... s
1,Ñ

k|k
t

s2,1 s2,2 ... s
2,Ñ

k|k
t,new

s
2,Ñ

k|k
t,new+1

... s
2,Ñ

k|k
t

...
...

sk+3,1 sk+3,2 ... s
k+3,Ñ

k|k
t




(4.8)

where Sk+1 ∈ N(k+3)×Ñk|k
t .

4.3.2 Part 2: The Second Child Terms from New Parent Terms

Here we consider the second row of the first Ñ
k|k
t,new columns. We have exhausted combination

rules for two-state case, where none of the second child terms from new parent terms can be
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combined. In the matrix Sk+1, those terms are represented as the first Ñ
k|k
t,new entries of the

second row. We assign the indices of those terms from 2 to Ñ
k|k
t,new + 1. Then rewrite Sk+1

more specifically as,

Sk+1 =




1 1 ... 1 s
1,Ñ

k|k
t,new+1

... s
1,Ñ

k|k
t

2 3 ... Ñ
k|k
t,new + 1 s

2,Ñ
k|k
t,new+1

... s
2,Ñ

k|k
t

...
...

sk+3,1 sk+3,2 ... s
k+3,Ñ

k|k
t




(4.9)

where Sk+1 ∈ N(k+3)×Ñk|k
t .

4.3.3 Part 3: The First Child Terms from the First Ñ
k−1|k−1
t,new Old Parent Terms

At step k, the number of old distinct exponential terms is Ñ
k|k
t,old = Ñ

k−1|k−1
t = Ñ

k−1|k−1
t,new +

Ñ
k−1|k−1
t,old . Consider the first row from the (Ñ

k|k
t,new + 1)th column to the (Ñ

k|k
t,new + Ñ

k−1|k−1
t,new )th

column. These entries represent the first child terms from the first Ñ
k−1|k−1
t,new old parent terms

at step k.

Rewrite Sk+1 in more detail. The first Ñ
k|k
t,new columns of Sk+1 represent all child terms

at step k + 1 from new parent terms at step k, denoted as Sk+1(:, 1 : Ñ
k|k
t,new).

Sk+1(:, 1 : Ñ
k|k
t,new) =




1 1 ... 1

2 3 ... Ñ
k|k
t,new + 1

...
...

sk+3,1 sk+3,2 ... s
k+3,Ñ

k|k
t,new+1



∈ N(k+3)×Ñk|k

t,new (4.10)

The last Ñ
k|k
t,old = Ñ

k−1|k−1
t columns of Sk+1 represent all child terms at step k + 1 from
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old parent terms at step k, shown as follow.

Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t )

=




s
1,Ñ

k|k
t,new+1

... s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
1,Ñ

k|k
t

s
2,Ñ

k|k
t,new+1

... s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
2,Ñ

k|k
t

...
...

s
k+3,Ñ

k|k
t,new+1

... s
k+3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

s
k+3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
k+3,Ñ

k|k
t




(4.11)

where Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t ) ∈ N(k+3)×Ñk−1|k−1

t .

In Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t ), the first Ñ

k−1|k−1
t,new columns represent the grandchild terms

from new grandparent terms at step k− 1, and the rest columns of Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t )

represents the grandchild terms from old grandparent terms at step k − 1.

Recall the second combination rules expressed in (3.45),

Ek+1|k+1
i,l,2 = Ek+1|k+1

i,N
k−1|k−1
e,i +2,l

, for 1 ≤ l ≤ N
k−1|k−1
e,i + 1 (4.12)

where N
k−1|k−1
e,i is the number of elements of the ith grandparent term at step k − 1.

Consider the first child terms at step k + 1 from the first Ñ
k−1|k−1
t,new old parent terms at

step k. It is obvious that the first Ñ
k−1|k−1
t,new old parent terms at step k are the old child terms

of all the new terms at step k − 1. In other words, these first Ñ
k−1|k−1
t,new old terms at step k

are “1-step” old.

Therefore, in this case, the grandparent term has only 2 elements, i.e. N
k−1|k−1
e,i = 2.

Then the combination rule can be written as,

Ek+1|k+1
i,l,2 = Ek+1|k+1

i,4,l , i = 1, 2, ..., Ñ
k−1|k−1
t,new (4.13)

Let l = 1. Then

Ek+1|k+1
i,1,2 = Ek+1|k+1

i,4,1 , i = 1, 2, ..., Ñ
k−1|k−1
t,new (4.14)

Look at the left hand side of the equation. Because the grandparent terms at step k − 1

are all new terms, the parent term at step k, Ek|ki,1 , where i = 1, 2, ..., Ñ
k−1|k−1
t,new will always
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combine according to the first combination rule. Recall equation (4.8), we already assign

them to be 1 in Sk. Hence, the term Ek+1|k+1
i,1,2 where i = 1, 2, ..., Ñ

k−1|k−1
t,new is represented by

s2,1 = 2 in the matrix Sk+1.

Remark 4.3.1. A trick is used here to convert the three-subscript system of Ek+1|k+1
i,1,2 into the

two-subscript system of s2,1 in Sk+1. The first subscripts system is for exponential terms. The

first letter i represents the ith grandparent term at step k− 1. i can be very large, according

to the specific term. The second subscript “1” represents the first child at step k. The third

subscript “2” represents the second child at step k + 1. The second subscripts system is for

the element in the S matrix. Therefore, the first two subscripts (i, 1) in Ek+1|k+1
i,1,2 corresponds

to the second subscript “1” of s2,1 in Sk+1. The third subscript “2” in Ek+1|k+1
i,1,2 corresponds

to the first subscript of s2,1 in Sk+1. This trick is frequently used in latter subsections.

Now consider the right hand side of equation (4.14). The term Ek|ki,4 at step k for i =

1, 2, ..., Ñ
k−1|k−1
t,new are represented from s4,1 = Ñ

k|k
t,new+1 through s

4,Ñ
k−1|k−1
t,new

= Ñ
k|k
t,new+Ñ

k−1|k−1
t,new

in the matrix Sk. The reason to count these terms from Ñ
k|k
t,new+1 is trivial – there are Ñ

k|k
t,new

new distinct exponential terms at step k and s4,1 represents the first old term. There-

fore, the child terms Ek+1|k+1
i,4,1 where i = 1, 2, ..., Ñ

k−1|k−1
t,new are represented from s

1,Ñ
k|k
t,new+1

to

s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

in the matrix Sk+1.

We can conclude at this stage that in the matrix Sk+1,

s
1,Ñ

k|k
t,new+1

= · · · = s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

= s2,1 = 2 (4.15)

The last Ñ
k|k
t,old columns of Sk+1 is,

Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t ) (4.16)

=




2 ... 2 s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
1,Ñ

k|k
t

s
2,Ñ

k|k
t,new+1

... s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
2,Ñ

k|k
t

...
...

s
k+3,Ñ

k|k
t,new+1

... s
k+3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

s
k+3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
k+3,Ñ

k|k
t




where Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t ) ∈ N(k+3)×Ñk−1|k−1

t
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4.3.4 Part 4: The Second Child Terms from the First Ñ
k−1|k−1
t,new Old Parent Terms

Consider the second row from the (Ñ
k|k
t,new + 1)th column to the (Ñ

k|k
t,new + Ñ

k−1|k−1
t,new )th column.

These entries represent the second child terms from the first Ñ
k−1|k−1
t,new old parent terms at

step k.

Again, look at equation (4.13). For the second child terms at step k + 1 from the first

Ñ
k−1|k−1
t,new old parent term at step k, let l = 2. Then,

Ek+1|k+1
i,2,2 = Ek+1|k+1

i,4,2 , i = 1, 2, ..., Ñ
k−1|k−1
t,new (4.17)

Look at the left hand side of equation (4.17). The term Eki,2 for i = 1, 2, ..., Ñ
k−1|k−1
t,new at step

k are represented from s2,1 = 2 through s
2,Ñ

k−1|k−1
t,new

= Ñ
k−1|k−1
t,new +1 in the matrix Sk. Then the

term Ek+1|k+1
i,2,2 at step k+1 are represented from s2,2 = 3 through s

2,Ñ
k−1|k−1
t,new +1

= Ñ
k−1|k−1
t,new +2

in the matrix Sk+1, refer to equation (4.10). Again, the trick described in Remark 4.3.1 is

used here to convert the three-subscript system for exponential terms to the two-subscript

system for elements in the S matrix.

Now look at the right hand side of equation (4.17). The term Eki,4 at step k for i =

1, 2, ..., Ñ
k−1|k−1
t,new at step k are represented from s4,1 = Ñ

k|k
t,new + 1 through s

4,Ñ
k−1|k−1
t,new

=

Ñ
k|k
t,new + N

k−1|k−1
t,new in the matrix Sk. Then the term Ek+1|k+1

i,4,2 at step k + 1 are represented

from s
2,Ñ

k|k
t,new+1

through s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

in the matrix Sk+1. Then,

s
2,Ñ

k|k
t,new+1

= 3 (4.18)

· · ·

s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

= Ñ
k−1|k−1
t,new + 2 (4.19)

Or,

s
2,Ñ

k|k
t,new+l

= 2 + l, l = 1, 2, ..., Ñ
k−1|k−1
t,new (4.20)
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Therefore, equation (4.16) can be rewritten as,

Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t )

=




2 ... 2 s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
1,Ñ

k|k
t

3 ... Ñ
k−1|k−1
t,new + 2 s

2,Ñ
k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
2,Ñ

k|k
t

...
...

s
k+3,Ñ

k|k
t,new+1

... s
k+3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

s
k+3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... s
k+3,Ñ

k|k
t




(4.21)

where Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t ) ∈ N(k+3)×Ñk−1|k−1

t .

4.3.5 Part 5: Last Two Child Terms from All Parent Terms

The combination rules show that none of the last two child terms from any two distinct parent

terms can be combined. Also, since we already exhausted the combination rules for the two-

state case, all the non-zero entries in equation (4.21) except for the last 2 non-zero entries

in each column will be the same with some entries in the second row of Sk+1(:, 1 : Ñ
k|k
t,new)

described in equation (4.10). This is illustrated in Fig. 3.1. In other words, no new integers

will show up in the top right corner of the matrix Sk+1.

In addition, for the S matrix to have a simple and implementable recursion, one approach

is to pile all the old terms to the end of the new terms. Newer terms come first, and older

terms come after the newer ones. By giving the old child terms a consecutive sequence, the

order of these child terms is kept exactly the way what their several-step old parent terms

were.

Since no new integers show up in the top right corner of Sk+1, and we need to point

the old child terms continuously, the indexing method for this part of S matrix becomes

straightforward.

Let us assign the (3, 1) entry in the matrix Sk+1 to be Ñ
k|k
t,new + 2, and assign the rest

of the second last non-zero entry of each column sequentially by adding 1. Finally, assign

the last non-zero entry of each column sequentially starting from the first column of Sk+1 by

adding 1 sequentially as well.
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After these indexing, equation (4.10) and equation (4.21) can be rewritten in more detail.

Sk+1(:, 1 : Ñ
k|k
t,new) =




1 1 ... 1

2 3 ... Ñ
k|k
t,new + 1

Ñ
k|k
t,new + 2 Ñ

k|k
t,new + 3 ... 2Ñ

k|k
t,new + 1

Ñ
k+1|k+1
t,new + 1 Ñ

k+1|k+1
t,new + 2 ... Ñ

k+1|k+1
t,new + Ñ

k|k
t,new

0 ... 0
...

...

0 ... 0




(4.22)

where Sk+1(:, 1 : Ñ
k|k
t,new) ∈ N(k+3)×Ñk|k

t,new . Note that only the top four rows of Sk+1(:, 1 : Ñ
k|k
t,new)

have non-zero entries. For convenience, write the rest columns of S matrix in two parts, and

fill in the last two child terms with ascending integers.

Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t,new + Ñ

k−1|k−1
t,new )

=




2 ... 2

3 ... Ñ
k−1|k−1
t,new + 2

s
3,Ñ

k|k
t,new+1

... s
3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new

2Ñ
k|k
t,new + 2 ... 2Ñ

k|k
t,new + Ñ

k−1|k−1
t,new + 1

Ñ
k+1|k+1
t,new + Ñ

k|k
t,new + 1 ... Ñ

k+1|k+1
t,new + Ñ

k|k
t,new + Ñ

k−1|k−1
t,new

0 ... 0
...

...

0 ... 0




(4.23)
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where Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t,new + Ñ

k−1|k−1
t,new ) ∈ N(k+3)×Ñk−1|k−1

t,new . And

Sk+1(:, Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 1 : Ñ

k|k
t )

=




s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
1,Ñ

k|k
t

s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
2,Ñ

k|k
t

s
3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
3,Ñ

k|k
t

s
4,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
4,Ñ

k|k
t

2Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 2 ... ... ...

Ñ
k+1|k+1
t,new + Ñ

k|k
t,new + Ñ

k−1|k−1
t,new + 1 ... ... ...

0 ... ... ...

...

0 ... ... Ñ
k+1|k+1
t,new

0 ... ... Ñ
k+1|k+1
t




(4.24)

where Sk+1(:, Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 1 : Ñ

k|k
t ) ∈ N(k+3)×(Ñ

k|k
t −Ñ

k|k
t,new−Ñ

k−1|k−1
t,new ).

Look at equation(4.24). Newer old parent terms at step k produce less child terms at

step k + 1, and older old parent terms produce more child terms. These old parent terms

are already in an order that older terms always come after newer terms. Hence the non-zero

entries form a “staircase” shape. The entries at the bottom left corner are all zeros. Those

at the top right corner are positive integers less than or equal to Ñ
k|k
t,new + 1. Between the

2 corners are these 2 “staircase”-shape rows, indicating the second last child terms and the

old child terms at step k + 1. Fig. 4.1 put together all parts of Sk+1 and illustrates the

“staircase” shape in the middle of the matrix.

4.3.6 Part 6: The Third Last Child Terms from All Old Parent Terms

In this subsection, consider the third last row of the last Ñ
k|k
t,old colomuns in Sk+1.

For all the Ñ
k−1|k−1
t terms at step k − 1, suppose in the ith term at step k − 1, there are

N
k−1|k−1
e,i elements in the argument of the exponential.
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Recall the second term combination rule for two-state case described in equation (3.45).

At step k + 1,

Ek+1|k+1
i,l,2 = Ek+1|k+1

i,N
k−1|k−1
e,i +2,l

, for 1 ≤ l ≤ N
k−1|k−1
e,i + 1 (4.25)

Look at the right hand side of the equation (4.25). Its parent term, Ek|k
i,N

k−1|k−1
e,i +2

, is the

ith old term at step k, which has (N
k−1|k−1
e,i + 1) elements. At step k + 1, it will produce

(N
k−1|k−1
e,i + 3) child terms. The third last child terms from all old parent terms at step k

are the Ek+1|k+1

i,N
k−1|k−1
e,i +2,N

k−1|k−1
e,i +1

. This is the case when l in equation (4.25) is equal to,

l = N
k−1|k−1
e,i + 1 (4.26)

When 1 ≤ i ≤ Ñ
k−1|k−1
t , the term Ek|k

i,N
k−1|k−1
e,i +2

is represented as s
N
k−1|k−1
e,i +2,i

= Ñ
k|k
t,new + i

in the matrix Sk, in equation (4.22). Then at step k + 1, the term Ek+1|k+1

i,N
k−1|k−1
e,i +2,N

k−1|k−1
e,i +1

is

represented as s
N
k−1|k−1
e,i +1,Ñ

k|k
t,new+i

in the matrix Sk+1. These are exactly the third last child

terms of all old parent terms in sequence, and occupy the third last non-zero entries of each

of the last Ñ
k−1|k−1
t columns in Sk+1.

Now look at the left hand side of equation (4.25). At step k, the parent term Ek|k
i,N

k−1|k−1
e,i +1

is represented as s
N
k−1|k−1
e,i +1,i

= Ñ
k−1|k−1
t,new +1+i in the matrix Sk, from equation (4.22) – (4.24).

Then at step (k+1), the term Ek+1|k+1

i,N
k−1|k−1
e,i +1,2

is represented as s
2,Ñ

k−1|k−1
t,new +i+1

= Ñ
k−1|k−1
t,new +i+2

in the matrix Sk+1, from equation (4.22).

Therefore, combine the understanding of both sides of equation (4.25), we can get the

third last non-zero entries of the last Ñ
k−1|k−1
t columns in the matrix Sk+1 at step k + 1.

s
N
k−1|k−1
e,i +1,Ñ

k|k
t,new+i

= Ñ
k−1|k−1
t,new + i+ 2, 1 ≤ i ≤ Ñ

k−1|k−1
t (4.27)
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With this knowledge, Sk+1 can be rewritten as,

Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t,new + Ñ

k−1|k−1
t,new )

=




2 ... 2

3 ... Ñ
k−1|k−1
t,new + 2

Ñ
k−1|k−1
t,new + 3 ... 2Ñ

k−1|k−1
t,new + 2

2Ñ
k|k
t,new + 2 ... 2Ñ

k|k
t,new + Ñ

k−1|k−1
t,new + 1

Ñ
k+1|k+1
t,new + Ñ

k|k
t,new + 1 ... Ñ

k+1|k+1
t,new + Ñ

k|k
t,new + Ñ

k−1|k−1
t,new

0 ... 0
...

...

0 ... 0




∈ N(k+3)×Ñk−1|k−1
t,new (4.28)

And

Sk+1(:, Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 1 : Ñ

k|k
t )

=




s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
1,Ñ

k|k
t

s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
2,Ñ

k|k
t

s
3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
3,Ñ

k|k
t

2Ñ
k−1|k−1
t,new + 3 ... ... s

4,Ñ
k|k
t

2Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 2 ... ... ...

Ñ
k+1|k+1
t,new + Ñ

k|k
t,new + Ñ

k−1|k−1
t,new + 1 ... ... ...

...

... Ñ
k−1|k−1
t,new + Ñ

k−1|k−1
t + 2

0 ... ... Ñ
k+1|k+1
t,new

0 ... ... Ñ
k+1|k+1
t




(4.29)

∈ N(k+3)×(Ñ
k|k
t −Ñ

k|k
t,new−Ñ

k−1|k−1
t,new )

Refer to equation (3.49),

Ñ
k|k
t,new = Ñ

k−1|k−1
t + Ñ

k−1|k−1
t,new + 1, k ≥ 2 (4.30)
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Hence,

Ñ
k−1|k−1
t,new + Ñ

k−1|k−1
t + 2 = Ñ

k|k
t,new + 1 (4.31)

Then equation (4.29) is,

Sk+1(:, Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 1 : Ñ

k|k
t )

=




s
1,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
1,Ñ

k|k
t

s
2,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
2,Ñ

k|k
t

s
3,Ñ

k|k
t,new+Ñ

k−1|k−1
t,new +1

... ... s
3,Ñ

k|k
t

2Ñ
k−1|k−1
t,new + 3 ... ... s

4,Ñ
k|k
t

2Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 2 ... ... ...

Ñ
k+1|k+1
t,new + Ñ

k|k
t,new + Ñ

k−1|k−1
t,new + 1 ... ... ...

...

... Ñ
k|k
t,new + 1

0 ... ... Ñ
k+1|k+1
t,new

0 ... ... Ñ
k+1|k+1
t




∈ N(k+3)×(Ñ
k|k
t −Ñ

k|k
t,new−Ñ

k−1|k−1
t,new ) (4.32)

4.3.7 Part 7: The “Top Right Corner” of Sk+1

One should realize that the only thing left to be determined is the top right corner of Sk+1,

i.e. the upper region of Sk+1(:, Ñ
k|k
t,new + Ñ

k−1|k−1
t,new + 1 : Ñ

k|k
t ) in equation (4.32). As we

introduced this notion earlier, the Sk+1 can be split into different areas, illustrated in Fig.

4.1. In particular, the last two child terms at step k + 1 of each of the parent terms at step

k form a “staircase”-shape, which split the rest of the S matrix into its bottom left corner

and top right corner. The bottom left corner should be all zeros. Regarding the top right

corner of Sk+1 at step k+ 1, suppose that the ith term at step k− 1 have N
k−1|k−1
e,i elements.

Each of them produces an old term at step k, and contain (N
k−1|k−1
e,i + 1) elements. Then at

step k + 1, it produce (N
k−1|k−1
e,i + 3) child terms. The top right corner of Sk+1 represents

the first (N
k−1|k−1
e,i + 1) child terms.
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According to the second combination rule, these terms at the last Ñ
k−1|k−1
t columns of the

top right corner will combine with the terms at the second row of the first Ñ
k|k
t,new columns

in Sk+1|k+1. Note that the total number of columns of Sk+1 is Ñ
k−1|k−1
t + Ñ

k|k
t,new = Ñ

k|k
t .

Therefore, all the numbers in the top right corner of Sk+1 should be greater than or equal

to 2, and less than or equal to Ñ
k|k
t,new + 1.

Next, we need to introduce the following lemma.

Lemma 4.3.2. Consider the exponential part of the ith term, Ek−1|k−1
i , at step k − 1 and

the mth term, Ek−1|k−1
m at step k − 1, then the lth child term at step k of Ek−1|k−1

i and the

pth child term at step k of Ek−1|k−1
m can be combined if and only if the lth grandchild term at

step k + 1 of the old child term Ek|ki,old at step k and the pth grandchild term at step k + 1 of

the old child term Ek|km,old at step k can be combined, i.e.

Ek|ki,l = Ek|km,p if and only if Ek+1|k+1
i,old,l = Ek+1|k+1

m,old,p (4.33)

The proof is straightforward, shown in the Appendix D.

Lemma 4.3.2 indicates that for which ever terms that can be combined at step k, the

corresponding child terms at step k+ 1 of its old parent terms combine. If any two numbers

in Sk are the same, then in Sk+1, the top right corner starting from the (Ñ
k|k
t,new +1)th column

will show the same pattern: the two numbers at the corresponding places in Sk+1 are also

the same.

Observe equation (4.22), (4.28), and (4.32) closely. Only the top right corner in equation

(4.32) is unknown. The known integers in the top right corner of Sk+1 already cover all

integers from 2 to Ñ
k|k
t,new + 1. Hence every unknown integer in part 7 of the S matrix must

be identical with some integers that has been determined in part 1 to part 6 in earlier

subsections. Then, our statement can be stronger. Not only that the two numbers at the

corresponding places in Sk+1 are the same, but also we can uniquely determine the integers

at each unknown places in part 7.
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Note that the top 3 rows of Sk+1(:, Ñ
k|k
t,new + 1 : Ñ

k|k
t,new + Ñ

k−1|k−1
t,new ) is really copying the

pattern of the top 3 rows in Sk(:, 1 : Ñ
k−1|k−1
t,new ) by adding 1 on each entry. Let us assume that

the last Ñ
k−2|k−2
t columns of the top right corner in Sk copy Sk−1 except its last non-zero

entry at each column by adding 1. Then the last Ñ
k−1|k−1
t columns of the top right corner in

Sk+1 copy Sk except its last non-zero entry at each column by adding 1 as well. Since these

entries are the only entries left to be determined, this assumption is proved immediately by

itself in a recursive manner.

Up till now, we have analytically derived the recursive structure for S matrix for two-state

systems.

Remark 4.3.3. This approach to derive the two-state case S matrix recursion is tricky in the

sense that each part of the S matrix is constructed sequentially. The proof of the parts of

S in earlier subsections turns out to be the premise of the proof presented in its following

subsections.
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S
k
+
1
=

                          
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2Ñ
k
|k

t,
n
e
w
+
Ñ
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2
Figure 4.1: The “staircase” shape of S matrix
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CHAPTER 5

G Terms

In this chapter, the G terms, i.e. the coefficient terms G
k|k
i (ν) in equation (1.14) are recon-

structed. As described in [5], the G terms were found to be in a fractional form, of which

each layer contains an imaginary and a real component. The real component is determined

by a sum of real scalars, so called “offsets”, and some sign functions scaled by coefficients.

The real component is independent of the measurements, while the imaginary component

is a function of the measurements. The new structure of G terms updates the offsets and

the sign functions as well as the imaginary component in a recursive manner as k increases.

Many zeros are added artificially into the structure due to the update integral discussed in

[5]. By introducing this new structure, we are able to eliminate all the redundant zeros,

hence reduce the computing and memory requirement. Next, a comprehensive study of the

G terms for two-state case is presented, revealing the interesting property that in each layer

of G of a new term, there are at most three non-zero elements in the real component. Fur-

thermore, this approach of breaking down the G terms provides the separation of the part

of structure that is independent of the measurement history with the part that is relevant

to the measurements. This allows the offline - online implementation, presented later in

Chpater 6.

5.1 General Structure of G Terms

In this section, a general structure of the G terms is proposed. Recall the recursive form of

the G terms in equation (1.16). The coefficient functions g
k|k
i (·) at step k are functions of

g
k−1|k−1

r
k|k
i

(·) at step k− 1, where r
k|k
i is the index of the parent terms. If we rewrite g

k−1|k−1

r
k|k
i

(·)
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with respect to the coefficient functions at earlier steps and keep expanding the numerator

of the functional form of G, eventually equation (1.16) can be expressed as a multi-layer

structure, shown as follow,

Gk|k =
1

(2π)k





1

jIm(1)+R
(1)
k,1

− 1

jIm(1)+R
(1)
k,2

...

−···

jIm(k−1)+R
(k−1)
k,1

− · · ·

jIm(k) +R
(k)
k,1

−

···
jIm(k−1)+R

(k−1)
k,3

− ···
jIm(k−1)+R

(k−1)
k,4

jIm(k) +R
(k)
k,2





(5.1)

The notation R
(m)
k,l represents the real part of the corresponding denominator, and Im(m)

represents the imaginary part. The superscript (m) represents the mth layer from the top.

The subscript k means this term is at step k. The second subscript of R
(m)
k,l represents

the lth element in the sequence. Each scalar R
(m)
k,l is a linear combination of the offsets

and coefficients that multiply sign functions. The real part of the G terms, R
(m)
k , can be

formulated as the product of a vector ρ
(m)
k and a matrix F

(m)
k , i.e.

R
(m)
k =

[
R

(m)
k,1 , R

(m)
k,2 , · · ·

]
= ρ

(m)
k · F (m)

k (5.2)

where the dimension varies with specific term.

Separate ρ and F into the offset component ρo, Fo and the sign function component ρc,

Fc. Let ,

ρ
(m)
k =

[
ρ

(m)
ok | ρ

(m)
ck

]
, F

(m)
k =




F
(m)
ok

−−−

F
(m)
ck


 , (5.3)

The offset component, F
(m)
ok , is a matrix that contains only 1 and -1. The sign function

component, F
(m)
ck , is in the following,

F
(m)
ck =




s1 · · · s1

...
...

sq · · · sq


 , 1 ≤ q ≤ Nk|k

e (5.4)
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where si = sgn
(
B
k|k
i ν

)
, 1 ≤ i ≤ q.

The imaginary part of each layer Im(m) will not change from step to step. Once they are

produced during a certain step, they stay fixed as functions of the measurement sequence.

At each layer for any particular term, all the imaginary parts are the same.

There are three major benefit from restructuring the G terms into this form and, in par-

ticular, the split of the offset component and the sign function component in the real part

of each G layer. First, the emphasis on the real part R and the imaginary part Im in each

layer allows separation of the component of the estimator structure, that is independent of

the measurement data, from the component that is dependent on the measurements. This

contributes to a pre-computational technique set-up, aimed at improving online computa-

tional efficiency, which will be discussed in a later section. Second, the split of the offset

and sign function successfully eliminates all the zeros that have been artificially added into

the offsets during the update process. These artificial zeros were brought into the coefficient

of the exponential so as to simplify the integration formula in [5]. Therefore, many of the

offsets are zero, and those zeros cannot be distinguished from non-zero offsets treated via the

existing method. Third, the G terms discussed in this section provides a better understand-

ing of the fundamental structure. One interesting property is that for a two-state system,

for any new term, there are at most 3 non-zero elements in the sequence ρ = [ρo | ρc].

This fact is uncovered by derivations of recursive update of the G terms using the proposed

new structure, presented in the following section which concludes this chapter.

5.2 A Comprehensive Study on Two-State Case

In this section, the recursion of ρ and F for two-state systems is completely analyzed. For

two-state systems, there are no more than three non-zero elements in the sequence of ρ in

any layer of any new term. To show this property, the sequence ρ and the matrix F are not

split apart. However, they will be split into the offset part and the sign function part when

implemented in the offline - online structure in latter sections. We first present the update
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at k = 1 in Section 5.2.1 and for k = 2 in Section 5.2.2. Then by induction, the general

form of G is obtained in Section 5.2.3 for new terms and Section 5.2.4 for old terms. Then

a recursion is developed starting in Section 5.2.5 to Section 5.2.7. The interesting property

that no more than three non-zero elements in the sequence of ρ in any layer of any new term

is presented in Section 5.2.8.

5.2.1 1st Measurement Update

Refering to [5], the CF is obtained from the update integral at step k = 1.

φ̄X1|Z1(ν) =
1

2π

∫ ∞

−∞
φX1(ν −HTη)φV (−η)ejz1ηdη

=
1

2π

∫ ∞

−∞
exp

(
−α1

∣∣e1H
T
∣∣
∣∣∣∣
e1ν

e1HT
− η
∣∣∣∣− α2

∣∣e2H
T
∣∣
∣∣∣∣
e2ν

e2HT
− η
∣∣∣∣

−γ |−η|+ jz1η) dη

=
3∑

i=1

G
1|1
i (ν) · E1|1

i (ν) (5.5)

There are 3 terms at step k = 1. The exponential part of these three terms are,

E1|1
1 = exp

(
− α2

|e1HT |
|HAν| − γ

∣∣∣∣−
e1ν

e1HT

∣∣∣∣+ jζ
1|1
1 ν

)
(5.6)

E1|1
2 = exp

(
− α1

|e2HT |
|HAν| − γ

∣∣∣∣−
e2ν

e2HT

∣∣∣∣+ jζ
1|1
2 ν

)
(5.7)

E1|1
3 = exp

(
−α1 |e1ν| − α2 |e2ν|+ jζ

1|1
3 ν
)

(5.8)
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The G part are as follows.

G
1|1
1 =

1

2π





1

jz1 + α1 |e1HT |+ α2 |e2HT | sgn
(

e2ν
e2HT − e1ν

e1HT

)
+ γsgn

(
0− e1ν

e1HT

)

− 1

jz1 − α1 |e1HT |+ α2 |e2HT | sgn
(

e2ν
e2HT − e1ν

e1HT

)
+ γsgn

(
0− e1ν

e1HT

)





=
1

2π





1

jz1 + α1 |e1HT |+ α2 |e2HT | sgn (e1HT · e2HT ) sgn (HAν) + γsgn
(
− e1ν
e1HT

)

− 1

jz1 − α1 |e1HT |+ α2 |e2HT | sgn (e1HT · e2HT ) sgn (HAν) + γsgn
(
− e1ν
e1HT

)



 (5.9)

G
1|1
2 =

1

2π





1

jz1 + α2 |e2HT |+ α1 |e1HT | sgn
(

e1ν
e1HT − e2ν

e2HT

)
+ γsgn

(
0− e2ν

e2HT

)

− 1

jz1 − α2 |e2HT |+ α1 |e1HT | sgn
(

e1ν
e1HT − e2ν

e2HT

)
+ γsgn

(
0− e2ν

e2HT

)





=
1

2π





1

jz1 + α2 |e2HT |+ α1 |e1HT | sgn (−e1HT · e2HT ) sgn (HAν) + γsgn
(
− e2ν
e2HT

)

− 1

jz1 − α2 |e2HT |+ α1 |e1HT | sgn (−e1HT · e2HT ) sgn (HAν) + γsgn
(
− e2ν
e2HT

)





(5.10)
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G
1|1
3 =

1

2π





1

jz1 + γ + α1 |e1HT | sgn
(

e1ν
e1HT − 0

)
+ α2 |e2HT | sgn

(
e2ν
e2HT − 0

)

− 1

jz1 − γ + α1 |e1HT | sgn
(

e1ν
e1HT − 0

)
+ α2 |e2HT | sgn

(
e2ν
e2HT − 0

)





=
1

2π





1

jz1 + γ + α1 |e1HT | sgn
(

e1ν
e1HT

)
+ α2 |e2HT | sgn

(
e2ν
e2HT

)

− 1

jz1 − γ + α1 |e1HT | sgn
(

e1ν
e1HT

)
+ α2 |e2HT | sgn

(
e2ν
e2HT

)



 (5.11)

Rewrite the G parts in the following form.

G
1|1
i =

1

2π

{
1

jz1 +R
(1)
1,1(i)

− 1

jz1 +R
(1)
1,2(i)

}
(5.12)

where R is the real component of the denominator, structured as,

R
(1)
1 (i) =

[
R

(1)
1,1(i), R

(1)
1,2(i)

]
= ρ

(1)
1 (i) · F (1)

1 (i) (5.13)

Now look at the three terms at step k = 1. When i = 1,

R
(1)
1,1(i = 1) = α1

∣∣e1H
T
∣∣+ α2

∣∣e2H
T
∣∣ sgn

(
e1H

T · e2H
T
)
sgn (HAν) + γsgn

(
− e1ν

e1HT

)
(5.14)

and

R
(1)
1,2(i = 1) = −α1

∣∣e1H
T
∣∣+ α2

∣∣e2H
T
∣∣ sgn

(
e1H

T · e2H
T
)
sgn (HAν) + γsgn

(
− e1ν

e1HT

)
(5.15)

If we let s1 = sgn(HAν), s2 = sgn(− e1ν
e1HT ) and let the sequence ρ

(1)
1 (i = 1) and the matrix

F
(1)
1 (i = 1) be,

ρ
(1)
1 (i = 1) =

[
α1

∣∣e1H
T
∣∣ , α2

∣∣e2H
T
∣∣ · sgn(e1H

T · e2H
T ), γ

]

=
[
α1

∣∣e1H
T
∣∣ , α2

(
e2H

T
)
· sgn(e1H

T ), γ
]

(5.16)

F
(1)
1 (i = 1) =




1 −1

s1 s1

s2 s2


 , (5.17)
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then

R
(1)
1 (i = 1) =

[
R

(1)
1,1(i = 1), R

(1)
1,2(i = 1)

]
= ρ

(1)
1 (i = 1) · F (1)

1 (i = 1) (5.18)

Similarly, when i = 2, from equation (5.10), one obtains,

ρ
(1)
1 (i = 2) =

[
α2

∣∣e2H
T
∣∣ , α1

∣∣e1H
T
∣∣ · sgn(−e1H

T · e2H
T ), γ

]

=
[
α2

∣∣e2H
T
∣∣ , α1

(
e1H

T
)
· sgn(−e2H

T ), γ
]

(5.19)

F
(1)
1 (i = 1) =




1 −1

s1 s1

s2 s2


 (5.20)

where s1 = sgn(HAν), s2 = sgn(− e2ν
e2HT ).

Finally, when i = 3, from equation (5.11), one gets,

ρ
(1)
1 (i = 3) =

[
γ, α1

(
e1H

T
)
, α2

(
e2H

T
)]

(5.21)

F
(1)
1 (i = 3) =




1 −1

s1 s1

s2 s2


 (5.22)

where s1 = sgn(e1ν), s2 = sgn(e2ν).

5.2.2 2nd Measurement Update

Consider the ith term at the first measurement update, and express it in the following form.

E1|1
i = exp

(
−P 1|1

i,1

∣∣∣B1|1
i,1 ν
∣∣∣− P 1|1

i,2

∣∣∣B1|1
i,2 ν
∣∣∣+ jζ

1|1
i ν
)

(5.23)

G
1|1
i =

1

2π

{
1

jz1 +R
(1)
1,1(i)

− 1

jz1 +R
(1)
1,2(i)

}
(5.24)

R
(1)
1 (i) =

[
R

(1)
1,1(i), R

(1)
1,2(i)

]
= ρ

(1)
1 (i) · F (1)

1 (i) (5.25)

ρ
(1)
1 (i) =

[
ρ

(1)
1,1(i), ρ

(1)
1,2(i), ρ

(1)
1,3(i)

]
(5.26)
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F
(1)
1 (i) =




1 −1

s1(i) s1(i)

s2(i) s2(i)


 (5.27)

where s1(i) = sgn(B1ν), s2(i) = sgn(B2ν).

At the 2nd measurement update, each parent term will produce 4 child terms. The lth

child term has the G part expressed in the following form.

G
2|2
i,l =

1

(2π)2





1

jz1+R
(1)
2,1(i,l)

− 1

jz1+R
(1)
2,2(i,l)

j(z2 − ζ2|1
i HT ) +R

(2)
2,1(i, l)

−
1

jz1+R
(1)
2,3(i,l)

− 1

jz1+R
(1)
2,4(i,l)

j(z2 − ζ2|1
i HT ) +R

(2)
2,2(i, l)



 (5.28)

5.2.2.1 The First Child Term i = 1

Using the first child term as an example, we will show how the sequence of R in the denom-

inators are updated.

At step k = 1, the first and the only layer of the ith term has the sequence R as follows.

The notation omits the “(i)” for simplicity.

R
(1)
1,1 = ρ

(1)
1,1 + ρ

(1)
1,2 · s1 + ρ

(1)
1,3 · s2 (5.29)

R
(1)
1,2 = −ρ(1)

1,1 + ρ
(1)
1,2 · s1 + ρ

(1)
1,3 · s2 (5.30)

At step k = 2, the fractional form now has two layers as shown in (5.28). The first (top)

layer R
(1)
2 at step k = 2 is updated from the layer R

(1)
1 at step k = 1 as

R
(1)
2 =

[
R

(1)
2,1, R

(1)
2,2, R

(1)
2,3, R

(1)
2,4

]
= ρ

(1)
2 · F

(1)
2 (5.31)

and

R
(1)
2,1 =ρ

(1)
1,1 + ρ

(1)
1,2sgn

(
B

1|1
1 ΦTHT

)

+ ρ
(1)
1,3sgn

(
B

1|1
2 ΦTHT

)
· sgn

(
B

1|1
2 ΦTν

B
1|1
2 ΦTHT

− B
1|1
1 ΦTν

B
1|1
1 ΦTHT

)
(5.32)

where ρ
(1)
1,2sgn

(
B

1|1
1 ΦTHT

)
in the above equation is the new offset. The reason why there

is a sign function sgn
(
B

1|1
1 ΦTHT

)
is that in the update integral, the variable (ν − HTη)
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extracts the factor
(
B

1|1
1 ΦTHT

)
out of the absolute value, and leaves the direction in the

form of
B

1|1
1 ΦT

B
1|1
1 ΦTHT

for further operations.

From Chapter 2, the direction

(
B

1|1
2 ΦT

B
1|1
2 ΦTHT

− B
1|1
1 ΦT

B
1|1
1 ΦTHT

)
will be align with the direction of

HA, i.e.,

B
1|1
2 ΦT

B
1|1
2 ΦTHT

− B
1|1
1 ΦT

B
1|1
1 ΦTHT

= c ·HA (5.33)

where c is a scalar. However, c can be either positive or negative.

HA serves as the fundamental direction in the two-state case. Whenever we have co-

aligned directions, we always want to represent them in the HA format by scaling that

direction appropriately. If we want to “convert” the sign function in equation (5.32) into

sgn(HAν), we must deal with the sign of c. One way to represent the sign of c is to compare

the first element of direction

(
B

1|1
2 ΦT

B
1|1
2 ΦTHT

− B
1|1
1 ΦT

B
1|1
1 ΦTHT

)
and the first element of the direction

HA, i.e.,

sgn(c) = sgn




(
B

1|1
2 ΦT

B
1|1
2 ΦTHT

− B
1|1
1 ΦT

B
1|1
1 ΦTHT

)
eT1

(HA)eT1


 (5.34)

Define sgn(c) to be a scalar t1, i.e. t1 = sgn(c). Looking at (5.32),

R
(1)
2,1 = ρ

(1)
1,1 + ρ

(1)
1,2sgn

(
B

1|1
1 ΦTHT

)
+ ρ

(1)
1,3sgn

(
B

1|1
2 ΦTHT

)
· t1 · sgn (HAν) . (5.35)

Conducting similar analysis, we can obtain the rest of the R sequence as

R
(1)
2,2 = −ρ(1)

1,1 + ρ
(1)
1,2sgn

(
B

1|1
1 ΦTHT

)
+ ρ

(1)
1,3sgn

(
B

1|1
2 ΦTHT

)
· t1 · sgn (HAν) , (5.36)

R
(1)
2,3 = ρ

(1)
1,1 − ρ

(1)
1,2sgn

(
B

1|1
1 ΦTHT

)
+ ρ

(1)
1,3sgn

(
B

1|1
2 ΦTHT

)
· t1 · sgn (HAν) , (5.37)

R
(1)
2,4 = −ρ(1)

1,1 − ρ
(1)
1,2sgn

(
B

1|1
1 ΦTHT

)
+ ρ

(1)
1,3sgn

(
B

1|1
2 ΦTHT

)
· t1 · sgn (HAν) . (5.38)

Organize the R sequences into the form of ρ · F . Then,

ρ
(1)
2 =

[
ρ

(1)
2,1, ρ

(1)
2,2, ρ

(1)
2,3

]

=
[
ρ

(1)
1,1, ρ

(1)
1,2 · sgn(B

1|1
1 ΦTHT ), ρ

(1)
1,3 · sgn(B

1|1
2 ΦTHT ) · t1

]
(5.39)
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F
(1)
2 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1


 (5.40)

where s1 = sgn(HAν).

The second (bottom) layer is,

R
(2)
2 =

[
R

(2)
2,1, R

(2)
2,2

]
= ρ

(2)
2 · F

(2)
2 (5.41)

Again, look at the first element of the R
(2)
2 sequence.

R
(2)
2,1 = P

1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣+ P
1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ sgn
(

B
1|1
2 ΦTν

B
1|1
2 ΦTHT

− B
1|1
1 ΦTν

B
1|1
1 ΦTHT

)

+ β
∣∣ΓTHT

∣∣ sgn
(

ΓTΦTν

ΓTHT
− B

1|1
1 ΦTν

B
1|1
1 ΦTHT

)
+ γsgn

(
0− B

1|1
1 ΦTν

B
1|1
1 ΦTHT

)
(5.42)

Define,

t2 = sgn




(
ΓT

ΓTHT − B
1|1
1 ΦT

B
1|1
1 ΦTHT

)
eT1

(HA)eT1


 , s2 = sgn

(
− B1ΦTν

B1ΦTHT

)
(5.43)

Then equation (5.42) becomes,

R
(2)
2,1 = P

1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣+ P
1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ · t1 · sgn (HAν)

+ β
∣∣ΓTHT

∣∣ · t2 · sgn (HAν) + γsgn

(
− B

1|1
1 ΦTν

B
1|1
1 ΦTHT

)

= P
1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣+
(
P

1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ · t1 + β
∣∣ΓTHT

∣∣ · t2
)
· sgn (HAν)

+ γsgn

(
− B

1|1
1 ΦTν

B
1|1
1 ΦTHT

)

= P
1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣+
(
P

1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ · t1 + β
∣∣ΓTHT

∣∣ · t2
)
· s1 + γ · s2 (5.44)

Similarly,

R
(2)
2,2 = −P 1|1

1

∣∣∣B1|1
1 ΦTHT

∣∣∣+
(
P

1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ · t1 + β
∣∣ΓTHT

∣∣ · t2
)
· s1 + γ · s2 (5.45)
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Therefore, the second layer of the R sequence can be organized in the following manner.

ρ
(2)
2 =

[
ρ

(2)
2,1, ρ

(2)
2,2, ρ

(2)
2,3

]

=
[
P

1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣ , P
1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ · t1 + β
∣∣ΓTHT

∣∣ · t2, γ
]

(5.46)

F
(2)
2 =




1 −1

s1 s1

s2 s2


 (5.47)

Till now, we have obtained the G part of the first child term at step k = 2 given by

equation (5.28). The R sequences of each layer in the fractional form can be recursively

updated. In the following sections, we will omit the intermediate process but present the

necessary analytic results.

5.2.2.2 The Second Child Term i = 2

When i = 2, the first layer of the second child term is, same as equation (5.31),

R
(1)
2 =

[
R

(1)
2,1, R

(1)
2,2, R

(1)
2,3, R

(1)
2,4

]
= ρ

(1)
2 · F

(1)
2 (5.48)

Unlike the first child term, in this case the element ρ
(1)
1,3 · sgn(B

1|1
2 ΦTHT ) becomes the

new offset.

Define

t1 = sgn




(
B

1|1
1 ΦT

B
1|1
1 ΦTHT

− B
1|1
2 ΦT

B
1|1
2 ΦTHT

)
eT1

(HA)eT1


 , t2 = sgn




(
ΓT

ΓTHT − B
1|1
2 ΦT

B
1|1
2 ΦTHT

)
eT1

(HA)eT1


 (5.49)

Then,

ρ
(1)
2 =

[
ρ

(1)
2,1, ρ

(1)
2,2, ρ

(1)
2,3

]

=
[
ρ

(1)
1,1, ρ

(1)
1,3 · sgn(B

1|1
2 ΦTHT ), ρ

(1)
1,2 · sgn(B

1|1
1 ΦTHT ) · t1

]
(5.50)
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F
(1)
2 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1


 (5.51)

where s1 = sgn(HAν).

The second layer is,

R
(2)
2 =

[
R

(2)
2,1, R

(2)
2,2

]
= ρ

(2)
2 · F

(2)
2 (5.52)

ρ
(2)
2 =

[
ρ

(2)
2,1, ρ

(2)
2,2, ρ

(2)
2,3

]

=
[
P

1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ , P
1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣ · t1 + β
∣∣ΓTHT

∣∣ · t2, γ
]

(5.53)

F
(2)
2 =




1 −1

s1 s1

s2 s2


 (5.54)

where s2 = sgn
(
− B2ΦT ν
B2ΦTHT

)
.

5.2.2.3 The Third Child Term i = 3

When i = 3, define

t1 = sgn




(
B

1|1
1 ΦT

B
1|1
1 ΦTHT

− ΓT

ΓTHT

)
eT1

(HA)eT1


 , t2 = sgn




(
B

1|1
2 ΦT

B
1|1
2 ΦTHT

− ΓT

ΓTHT

)
eT1

(HA)eT1


 (5.55)

The first layer of the third child term is,

R
(1)
2 =

[
R

(1)
2,1, R

(1)
2,2, R

(1)
2,3, R

(1)
2,4

]
= ρ

(1)
2 · F

(1)
2 (5.56)

ρ
(1)
2 =

[
ρ

(1)
2,1, ρ

(1)
2,2, ρ

(1)
2,3

]

=
[
ρ

(1)
1,1, 0, ρ

(1)
1,2 · sgn(B

1|1
1 ΦTHT ) · t1 + ρ

(1)
1,3 · sgn(B

1|1
2 ΦTHT ) · t2

]
(5.57)
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F
(1)
2 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1


 (5.58)

where s1 = sgn(HAν).

Note that a zero offset is added in ρ
(1)
2 in equation (5.57). This is because at step k = 1,

the real part of the denominator at the top layer looks like R
(1)
1,1 = ρ

(1)
1,1 + ρ

(1)
1,2 · s1 + ρ

(1)
1,3 · s2.

If we consider the third child, the coefficient of the third sign function will be pulled out as

the new offset in ρ
(1)
2 , and that is a zero.

The second layer is,

R
(2)
2 =

[
R

(2)
2,1, R

(2)
2,2

]
= ρ

(2)
2 · F

(2)
2 (5.59)

ρ
(2)
2 =

[
ρ

(2)
2,1, ρ

(2)
2,2, ρ

(2)
2,3

]

=
[
β
∣∣ΓTHT

∣∣ , P
1|1
1

∣∣∣B1|1
1 ΦTHT

∣∣∣ · t1 + P
1|1
2

∣∣∣B1|1
2 ΦTHT

∣∣∣ · t2, γ
]

(5.60)

F
(2)
2 =




1 −1

s1 s1

s2 s2


 (5.61)

where s1 = sgn(HAν), s2 = sgn
(
− ΓT ν

ΓTHT

)
.

5.2.2.4 The Fourth Child Term i = 4

When i = 4, the fourth child term is the old term. In this case, zero offsets are added to the

ρ sequence.

The first layer of this old child term is,

R
(1)
2 =

[
R

(1)
2,1, R

(1)
2,2, R

(1)
2,3, R

(1)
2,4

]
= ρ

(1)
2 · F

(1)
2 (5.62)

ρ
(1)
2 =

[
ρ

(1)
2,1, ρ

(1)
2,2, ρ

(1)
2,3, ρ

(1)
2,4

]

=
[
ρ

(1)
1,1, 0, ρ

(1)
1,2, ρ

(1)
1,3

]
(5.63)
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F
(1)
2 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1

s2 s2 s2 s2




(5.64)

where s1 = sgn
(
B

1|1
1 ΦTν

)
, and s2 = sgn

(
B

1|1
2 ΦTν

)
.

Note that in this case, we also have a new zero offset being added in the sequence of

ρ
(1)
2 in equation (5.63). The reason is similar. The new offset should come from the fourth

coefficient of the sign function s4. However, s4 is really added as a dummy zero before the

update integral. Therefore the new offset in ρ
(1)
2 is a zero.

The second layer is,

R
(2)
2 =

[
R

(2)
2,1, R

(2)
2,2

]
= ρ

(2)
2 · F

(2)
2 (5.65)

ρ
(2)
2 =

[
ρ

(2)
2,1, ρ

(2)
2,2, ρ

(2)
2,3, ρ

(2)
2,4

]

=
[
γ, P

1|1
1

(
B

1|1
1 ΦTHT

)
, P

1|1
2

(
B

1|1
2 ΦTHT

)
, β

(
ΓTHT

)]
(5.66)

F
(2)
2 =




1 −1

s1 s1

s2 s2

s3 s3




(5.67)

where s1 = sgn
(
B

1|1
1 ΦTν

)
, s2 = sgn

(
B

1|1
2 ΦTν

)
, s3 = sgn

(
ΓTν

)
.

From the solutions shown above, it is obvious that, for new terms up to step k = 2, there

are at most three non-zero elements in the sequence of ρ at each layer. In the rest of this

analysis for the G terms of two-state case, it will be shown that the number of non-zero

elements will not be more than three as well.

5.2.3 General Forms of G for New Terms at Step k

We already understand that starting from the second measurement update, any new term

at step k has the exponential part that can be written as,
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Ek|k = exp
(
−P1 |HAν| − P2 |B2ν|+ jζk|kν

)
(5.68)

There are k (number of) layers in the G part in (5.1). Since this is a new term, only the

last (bottom) layer will involve 2 different sign functions s1 = sgn(HAν) and s2 = sgn(B2ν).

All the other layers only contain s1 in the sum of the sign functions. And s1 is invariant

across all the new terms in every step.

To better describe R
(m)
k at the mth layer as R

(m)
k = ρ

(m)
k · F (m)

k , when 1 ≤ m ≤ k − 1,

ρ
(m)
k =

[
ρ

(m)
k,1 , ρ

(m)
k,2 , · · · , ρ

(m)
k,k+2−m

]
(5.69)

F
(m)
k =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+2−m)×2(k+1−m)

(5.70)

When m = k, the bottom layer is,

ρ
(k)
k =

[
ρ

(k)
k,1, ρ

(k)
k,2, ρ

(k)
k,3

]
, F

(k)
k =




1 −1

s1 s1

s2 s2


 ∈ R3×2 (5.71)

where ρ
(m)
k for 1 ≤ m ≤ k only contains at most three non-zero elements. This is shown in

the rest of this chapter and summarized in Theorem 5.2.1 in Section 5.2.8.

5.2.4 General Forms of G for Old Terms at Step k

There are two types of old terms. Firstly, most of the old terms come from new parent terms

if tracked several steps back. They can be expressed in a general form. They are called

“type-I” old terms. Secondly, there are three old terms that are originated from the three

old parent terms at step k = 2. These three old terms are the “oldest” terms, since they

never had a new parent. They are called “type-II” old terms. The general forms of G for

both types of old terms are presented as follows.
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5.2.4.1 Old Terms: Type I

Old terms of type I refer to those terms that are originated from a new parent term at certain

step k > 1. Let us find the general form for an θ-step old term at step k. Then at step k− θ,

notated as p, i.e. p = k − θ, the original parent term is a new term.

The general form of any new term at step p can be found from equation (5.68), (5.1),

(5.69) - (5.71).

“1-step old” term (θ = 1) is the old child term at step (p+ 1) from a new parent term at

step p. The exponential part of this 1-step old child term becomes,

Ep+1|p+1 = exp
(
−P1

∣∣HAΦTν
∣∣− P2

∣∣B2ΦTν
∣∣− β

∣∣ΓTν
∣∣+ jζp+1|p+1ν

)
(5.72)

The G part is in the structure in (5.1), with the parameters s1 = sgn
(
HAΦTν

)
, s2 =

sgn
(
B2ΦTν

)
, s3 = sgn

(
ΓTνT

)
. The real part R at each layer m is the product of the

sequence ρ and the matrix F , i.e. R
(m)
p+1 = ρ

(m)
p+1 · F

(m)
p+1 , 1 ≤ m ≤ p+ 1.

When 1 ≤ m ≤ p− 1

ρ
(1)
p+1 =

[
ρ

(1)
p,1, ρ

(1)
p,2, · · · , · · · , ρ(1)

p,p, 0, ρ
(1)
p,p+1

]
(5.73)

ρ
(2)
p+1 =

[
ρ

(2)
p,1, ρ

(2)
p,2, · · · , ρ

(2)
p,p−1, 0, ρ(2)

p,p

]
(5.74)

...

ρ
(p−1)
p+1 =

[
ρ

(p−1)
p,1 , ρ

(p−1)
p,2 , 0, ρ

(p−1)
p,3

]
(5.75)

or equivalently,

ρ
(m)
p+1 =

[
ρ

(m)
p,1 , ρ

(m)
p,2 , · · · , ρ

(m)
p,p+1−m, 0, ρ

(m)
p,p+2−m

]
(5.76)

and

F
(m)
p+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(p+3−m)×2(p+2−m)

(5.77)
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When m = p

ρ
(p)
p+1 =

[
ρ

(p)
p,1, 0, ρ

(p)
p,2, ρ

(p)
p,3

]
, F

(p)
p+1 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1

s2 s2 s2 s2



∈ R4×4 (5.78)

When m = p+ 1

ρ
(p+1)
p+1 =

[
γ, P1

(
HAΦTHT

)
, P2

(
B2ΦTHT

)
, β

(
ΓTHT

)]
(5.79)

F
(p+1)
p+1 =




1 −1

s1 s1

s2 s2

s3 s3



∈ R4×2 (5.80)

By looking at how the ρ sequences for each layer are updated, one can see that at step

p+ 1, a zero is added to the ρ sequence of the top p layers, being the last offset that occurs

before the coefficients of sign functions, as shown in equation (5.76) and (5.78). Therefore,

the number of non-zero elements in the ρ sequence of the top p layers does not increase; still

at most 3 of these elements are non-zero.

For the bottom layer m = p+ 1, all 4 elements are non-zero. The first element, γ, is the

only offset. The rest 3 elements are the coefficients of sign functions s1, s2, and s3.

Next, examine the old child term (θ = 2) at step p+ 2 from the old parent term at step

p+ 1. The exponential part becomes,

Ep+2|p+2 = exp
(
−P1

∣∣HAΦ2Tν
∣∣− P2

∣∣B2Φ2Tν
∣∣− β

∣∣ΓTΦTν
∣∣

−β
∣∣ΓTν

∣∣+ jζp+2|p+2ν
)

(5.81)

The real part R at each layer m is the product of the sequence ρ and the matrix F . Let

s1 = sgn
(
HAΦ2Tν

)
, s2 = sgn

(
B2Φ2Tν

)
, s3 = sgn

(
ΓTΦTνT

)
, s4 = sgn

(
ΓTνT

)
.
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When 1 ≤ m ≤ p− 1

ρ
(1)
p+2 =

[
ρ

(1)
p+1,1, ρ

(1)
p+1,2, · · · , · · · , ρ

(1)
p+1,p+1, 0, ρ

(1)
p+1,p+2

]

=
[
ρ

(1)
p,1, ρ

(1)
p,2, · · · , ρ(1)

p,p, 0, 0, ρ
(1)
p,p+1

]
(5.82)

ρ
(2)
p+2 =

[
ρ

(2)
p+1,1, ρ

(2)
p+1,2, · · · , ρ

(2)
p+1,p, 0, ρ

(2)
p+1,p+1

]

=
[
ρ

(2)
p,1, ρ

(2)
p,2, · · · , ρ

(2)
p,p−1, 0, 0, ρ(2)

p,p

]
(5.83)

...

ρ
(p−1)
p+2 =

[
ρ

(p−1)
p+1,1, ρ

(p−1)
p+1,2, ρ

(p−1)
p+1,3, 0, ρ

(p−1)
p+1,4

]

=
[
ρ

(p−1)
p,1 , ρ

(p−1)
p,2 , 0, 0, ρ

(p−1)
p,3

]
(5.84)

or equivalently,

ρ
(m)
p+2 =

[
ρ

(m)
p,1 , ρ

(m)
p,2 , · · · , ρ

(m)
p,p+1−m, 0, 0, ρ

(m)
p,p+2−m

]
(5.85)

and

F
(m)
p+2 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(p+4−m)×2(p+3−m)

(5.86)

When m = p

ρ
(p)
p+2 =

[
ρ

(p)
p+1,1, ρ

(p)
p+1,2, 0, ρ

(p)
p+1,3, ρ

(p)
p+1,4

]

=
[
ρ

(p)
p,1, 0, 0, ρ

(p)
p,2, ρ

(p)
p,3

]
(5.87)
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F
(p)
p+2 =




1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 1 1 1 −1 −1 −1 −1

s1 s1 s1 s1 s1 s1 s1 s1

s2 s2 s2 s2 s2 s2 s2 s2




∈ R5×8 (5.88)

When m = p+ 1

ρ
(p+1)
p+2 =

[
ρ

(p+1)
p+1,1, 0, ρ

(p+1)
p+1,2, ρ

(p+1)
p+1,3, ρ

(p+1)
p+1,4

]

=
[
γ, 0, P1

(
HAΦTHT

)
, P2

(
B2ΦTHT

)
, β

(
ΓTHT

)]
(5.89)

F
(p+1)
p+2 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1

s2 s2 s2 s2

s3 s3 s3 s3




∈ R5×4 (5.90)

When m = p+ 2

ρ
(p+2)
p+2 =

[
γ, P1

(
HAΦ2THT

)
, P2

(
B2Φ2THT

)
, β

(
ΓTΦTHT

)
, β

(
ΓTHT

)]
(5.91)

F
(p+2)
p+2 =




1 −1

s1 s1

s2 s2

s3 s3

s4 s4




∈ R5×2 (5.92)
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Repeat this approach to find the general form of an θ-step old term at step k. There are

in total (θ + 2) elements in the argument of the exponential.

Ek|k = exp
(
−P1

∣∣HAΦTθν
∣∣− P2

∣∣B2ΦTθν
∣∣− β

∣∣ΓTΦT (θ−1)ν
∣∣

− · · · − β
∣∣ΓTν

∣∣+ jζk|kν
)

(5.93)

R
(m)
k = ρ

(m)
k · F (m)

k , 1 ≤ m ≤ k (5.94)

Let s1 = sgn
(
HAΦTθν

)
, s2 = sgn

(
B2ΦTθν

)
, s3 = sgn

(
ΓTΦT (θ−1)ν

)
, · · · , sθ+2 =

sgn
(
ΓTν

)
.

When 1 ≤ m ≤ p− 1

ρ
(m)
k =

[
ρ

(m)
p,1 , ρ

(m)
p,2 , · · · , ρ

(m)
p,p+1−m, 01, 02, · · · , 0θ, ρ

(m)
p,p+2−m

]
(5.95)

The total number of zero elements in equation (5.95) is θ. The subscripts of the zeros

are for convenience. No matter what the subscripts are, they all represent scalar zeros. As

child terms get older (θ becomes larger), these zeros are always inserted as offsets, in front

of the last entry of the ρ sequence.

F
(m)
k =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+2−m)×2(k+1−m)

(5.96)

When m = p

ρ
(p)
k =

[
ρ

(p)
p,1, 01, · · · , 0θ, ρ

(p)
p,2, ρ

(p)
p,3

]
(5.97)
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Again, number of zeros in equation (5.97) is θ.

F
(p)
k =




1 −1 ...

1 1 ...
...

1 1 ...

s1 s1 ...

s2 s2 ...




∈ R(θ+3)×2(θ+1)

(5.98)

When p+ 1 ≤ m ≤ k − 1

ρ
(m)
k =

[
γ, 01, · · · , 0k−m, P1

(
HAΦT (m−p)HT

)
, P2

(
B2ΦT (m−p)HT

)
,

β
(
ΓTΦT (m−p−1)HT

)
, · · · , β

(
ΓTHT

)]
(5.99)

Unlike the previous cases, the zeros in equation (5.99) are added behind the first entry

of the ρ sequence. The number of zeros in equation (5.99) is (k−m). There are (θ+ 3) rows

in F
(p)
k . The total number of columns in F

(p)
k is 2(θ+3)−(m+2−p) = 2θ−m+p+1 = 2k−m+1.

F
(p)
k =




1 −1 ...

1 1 ...
...

1 1 ...

s1 s1 ...
...

sm+2−p sm+2−p ...




∈ R(θ+3)×2k+1−m
(5.100)

When m = k (The bottom layer)

ρ
(m)
k =

[
γ, P1

(
HAΦTθHT

)
, P2

(
B2ΦTθHT

)
, β
(
ΓTΦT (θ−1)HT

)
, · · · , β

(
ΓTHT

)]
(5.101)

95



There are (θ + 3) rows in F
(k)
k as well. The total number of columns in F

(k)
k is 2. Sign

functions are from s1 to sθ+2.

F
(k)
k =




1 −1

s1 s1

...

sθ+2 sθ+2



∈ R(θ+3)×2 (5.102)

5.2.4.2 Old Terms: Type II

Old terms of type I cover the majority of old terms at a general measurement step k.

However, at each step there are 3 old terms that cannot be described by (5.93). They are

the old descendants from the 3 terms at the 1th measurement update in (5.6) - (5.8). We

call these three old descendants as “Type II” old terms.

Recall the fourth child terms at step k = 2. There are two layers in the G part. The real

part R of each layer m is a product of a row vector ρ and the matrix F as

ρ
(1)
2 =

[
ρ

(1)
1,1, 0, ρ

(1)
1,2, ρ

(1)
1,3

]
(5.103)

ρ
(2)
2 =

[
γ, P

1|1
1

(
B

1|1
1 ΦTHT

)
, P

1|1
2

(
B

1|1
2 ΦTHT

)
, β

(
ΓTHT

)]
(5.104)

F
(1)
2 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1

s2 s2 s2 s2



, F

(2)
2 =




1 −1

s1 s1

s2 s2

s3 s3




(5.105)

where s1 = sgn
(
B

1|1
1 ΦTν

)
, s2 = sgn

(
B

1|1
2 ΦTν

)
, s3 = sgn

(
ΓTν

)
.

These 3 terms will keep producing old child terms as k becomes large. At each step there

will be 3 of them. The form of such “oldest” child terms at step k can be easily derived.
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At step k, the argument of the exponential has the form of,

Ek|k = exp
(
−P 1|1

1

∣∣∣B1|1
1 ΦT (k−1)ν

∣∣∣− P 1|1
2

∣∣∣B1|1
2 ΦT (k−1)ν

∣∣∣− β
∣∣ΓTΦT (k−2)ν

∣∣

− · · · − β
∣∣ΓTν

∣∣+ jζk|kν
)

(5.106)

When m = 1

ρ
(1)
k =

[
ρ

(1)
1,1, 01, · · · , 0k−1, ρ

(1)
1,2, ρ

(1)
1,3

]
(5.107)

When 2 ≤ m ≤ k − 1

ρ
(m)
k =

[
γ, 01, · · · , 0k−m, P

1|1
1

(
B

1|1
1 ΦT (m−1)HT

)
,

P
1|1
2

(
B

1|1
2 ΦT (m−1)HT

)
, β

(
ΓTΦT (m−2)HT

)
, · · · , β

(
ΓTHT

)]
(5.108)

When m = k

ρ
(k)
k =

[
γ, P

1|1
1

(
B

1|1
1 ΦT (k−1)HT

)
, P

1|1
2

(
B

1|1
2 ΦT (k−1)HT

)
,

β
(
ΓTΦT (k−2)HT

)
, · · · , β

(
ΓTHT

)]
(5.109)

Every layer has (k + 2) elements such that

F
(m)
k =




1 · · ·
...

1 · · ·

s1 · · ·
...

sm+1 · · ·




∈ R(k+2)×2k+1−m
, 1 ≤ m ≤ k (5.110)

5.2.5 The Recursion: New Terms at Step k to Child Terms at Step k + 1

Consider the exponential part of a new term at step k in equation (5.68). During time

propagation at k + 1, the exponential part becomes,

Ek+1|k = exp
(
−P1

∣∣HAΦTν
∣∣− P2

∣∣B2ΦTν
∣∣− β

∣∣ΓTν
∣∣+ jζk|kΦTν

)
(5.111)
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At step k + 1, this term will produce four child terms. The first three child terms are

new terms, and the last child term is an old child term. The four child terms are examined

as follows.

5.2.5.1 The First Child Term at Step k + 1

Let us look at each layer m of the fractional form separately.

When 1 ≤ m ≤ k − 1, consider equation (5.69). Each of the first (k − 1) layers of the

fractional form from the top contains a sequence of offsets and one coefficient of sign function

s1, if any. The first child term extracts that one coefficient at step k and has it as the last

offset at step (k + 1). In the mean time, because there is only one row of sign function s1

in F
(m)
k and two zero will be added to complete the update integral, it will produce a zero

coefficient for s1 at step (k + 1). This means that the top (k − 1) layer does not contain

sign functions any more. And if they do not have sign functions, any newly added offset

in the future will be zero. Therefore they become “invariant” as time proceeds. Only the

bottom 2 layers contain sign functions. This property of “invariance” aligns with our earlier

findings that the real component of the argument of exponential of the first child terms stay

invariant, presented in Chapter 3.3.

Therefore, the real part of the denominators R
(m)
k+1 = ρ

(m)
k+1 · F

(m)
k+1 will be updated as,

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , ρ

(m)
k,2 , · · · , ρ

(m)
k,k+1−m, ρ

(m)
k,k+2−m · sgn

(
HAΦTHT

)
, 0
]

(5.112)

F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

(5.113)
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When m = k, consider equation (5.71). At step k + 1, there will be 2 offsets and 1

coefficient of sign function. The last offset at step k+1 will be the coefficient of the first sign

function s1 at step k. The real part of the denominators R
(k)
k+1 = ρ

(k)
k+1 · F

(k)
k+1 will be updated

as,

ρ
(k)
k+1 =

[
ρ

(k)
k,1, ρ

(k)
k,2 · sgn

(
HAΦTHT

)
, ρ

(k)
k,3 · sgn

(
B2ΦTHT

)
· t1
]

(5.114)

F
(k)
k+1 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1


 ∈ R3×4 (5.115)

where

t1 = sgn




(
B2ΦT

B2ΦTHT − HAΦT

HAΦTHT

)
eT1

(HA) eT1


 , s1 = sgn (HAν) (5.116)

For two-state system, any two non-zero parent directions will produce a child direction

that is aligned with HA. The reason we have t1 in (5.114) is for convenience of direction

combination, such that the sign function s1 in F
(k)
k+1 in (5.115) can be always normalized to

sgn(HAν).

When m = k + 1, this layer is the bottom layer of the fractional form. Its offsets and

coefficients at step k+ 1 should directly come from the exponential part at step k. The real

part of the denominators R
(k+1)
k+1 = ρ

(k+1)
k+1 · F

(k+1)
k+1 at step (k + 1) is,

ρ
(k+1)
k+1 =

[
P1

∣∣HAΦTHT
∣∣ , P2

∣∣B2ΦTHT
∣∣ · t1 + β

∣∣ΓTHT
∣∣ · t2, γ

]
(5.117)

where t1 has already been defined earlier and t2 is defined as,

t2 = sgn




(
ΓT

ΓTHT − HAΦT

HAΦTHT

)
eT1

(HA) eT1


 (5.118)
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where again, t1 and t2 here are for the convenience of elements combination. And we also

have,

F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2


 ∈ R

3×2 (5.119)

s1 = sgn (HAν) , s2 = sgn

(
− HAΦTν

HAΦTHT

)
(5.120)

5.2.5.2 The Second Child Term at Step k + 1

Similarly, consider the second child term at step k + 1. Again, consider the mth layer of the

fractional form separately, where 1 ≤ m ≤ k + 1.

When 1 ≤ m ≤ k − 1, consider equation (5.70). There is only one row of sign function

in F
(m)
k , i.e. the coefficient of a second sign function s2 is zero. Hence, the second child term

at step (k + 1) will have a new zero offset in the real part of the denominators. The process

of obtaining zero offsets is similar.

Define

t1 = sgn




(
HAΦT

HAΦTHT − B2ΦT

B2ΦTHT

)
eT1

(HA) eT1


 (5.121)

Then, the real part of the denominators R
(m)
k+1 = ρ

(m)
k+1 · F

(m)
k+1 becomes,

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, 0, ρ

(m)
k,k+2−m · sgn

(
HAΦTHT

)
· t1
]

(5.122)

F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

(5.123)
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When m = k, consider equation (5.71). At step k + 1, there will be 2 offsets and 1

coefficient of sign function. The last offset at step (k + 1) will be the second coefficient of

the sign function, s2, at step k.

The real part of the denominators R
(k)
k+1 = ρ

(k)
k+1 · F

(k)
k+1 will be updated as,

ρ
(k)
k+1 =

[
ρ

(k)
k,1, ρ

(k)
k,3 · sgn

(
B2ΦTHT

)
, ρ

(k)
k,2 · sgn

(
HAΦTHT

)
· t1
]

(5.124)

F
(k)
k+1 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1


 ∈ R3×4 (5.125)

where s1 = sgn (HAν).

When m = k + 1, this layer is the bottom layer. The real part of the denominators

R
(k+1)
k+1 = ρ

(k+1)
k+1 · F

(k+1)
k+1 at step (k + 1) is,

ρ
(k+1)
k+1 =

[
P2

∣∣B2ΦTHT
∣∣ , P1

∣∣HAΦTHT
∣∣ · t1 + β

∣∣ΓTHT
∣∣ · t2, γ

]
(5.126)

t2 = sgn




(
ΓT

ΓTHT − B2ΦT

B2ΦTHT

)
eT1

(HA) eT1


 (5.127)

and,

F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2


 ∈ R

3×2 (5.128)

s1 = sgn (HAν) , s2 = sgn

(
− B2ΦTν

B2ΦTHT

)
(5.129)
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5.2.5.3 The Third Child Term at Step k + 1

Consider the third child term at step k + 1. Look at the mth layer of the fractional form

separately, where 1 ≤ m ≤ k + 1. The method is similar with the second child term.

Define

t1 = sgn




(
HAΦT

HAΦTHT − ΓT

ΓTHT

)
eT1

(HA) eT1


 , t2 = sgn




(
B2ΦT

B2ΦTHT − ΓT

ΓTHT

)
eT1

(HA) eT1


 (5.130)

When 1 ≤ m ≤ k − 1, the real part of the denominator is,

R
(m)
k+1 = ρ

(m)
k+1 · F

(m)
k+1 (5.131)

where

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, 0, ρ

(m)
k,k+2−m · sgn

(
HAΦTHT

)
· t1
]

(5.132)

F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

(5.133)

When m = k , consider equation (5.71). At step k + 1, there will be 2 offsets and 1

coefficient of sign function. The second offset at step k + 1 will be the third coefficient of

the sign function at step k, which is zero.

The real part of the denominators R
(k)
k+1 = ρ

(k)
k+1 · F

(k)
k+1 will be updated as,

ρ
(k)
k+1 =

[
ρ

(k)
k,1, 0, ρ

(k)
k,2 · sgn

(
HAΦTHT

)
· t1 + ρ

(k)
k,3 · sgn

(
B2ΦTHT

)
· t2
]

(5.134)
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F
(k)
k+1 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1


 ∈ R3×4 (5.135)

where s1 = sgn (HAν).

When m = k + 1, the real part of the denominators R
(k+1)
k+1 = ρ

(k+1)
k+1 · F

(k+1)
k+1 at step

(k + 1) is,

ρ
(k+1)
k+1 =

[
β
∣∣ΓTHT

∣∣ , P1

∣∣HAΦTHT
∣∣ · t1 + P2

∣∣B2ΦTHT
∣∣ · t2, γ

]
(5.136)

F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2


 ∈ R

3×2 (5.137)

where s1 = sgn (HAν), and s2 = sgn
(
− ΓT ν

ΓTHT

)
.

5.2.5.4 The Fourth Child Term at Step k + 1

The fourth child term is the old term. Zero offsets are added to each layer of the fractional

form. Explicitly,

When 1 ≤ m ≤ k − 1

R
(m)
k+1 = ρ

(m)
k+1 · F

(m)
k+1 (5.138)

where

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, 0, ρ

(m)
k,k+2−m · sgn

(
HAΦTHT

)]
(5.139)
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F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

(5.140)

and s1 = sgn
(

HAΦT ν
HAΦTHT

)
.

When m = k

R
(k)
k+1 = ρ

(k)
k+1 · F

(k)
k+1 (5.141)

where

ρ
(k)
k+1 =

[
ρ

(k)
k,1, 0, ρ

(k)
k,2 · sgn

(
HAΦTHT

)
, ρ

(k)
k,3 · sgn

(
B2ΦTHT

)]
(5.142)

and

F
(k)
k+1 =




1 −1 1 −1

1 1 −1 −1

s1 s1 s1 s1

s2 s2 s2 s2



∈ R4×4 (5.143)

where

s1 = sgn

(
HAΦTν

HAΦTHT

)
, s2 = sgn

(
B2ΦTν

B2ΦTHT

)
(5.144)

When m = k + 1, the real part of the denominators R
(k+1)
k+1 = ρ

(k+1)
k+1 · F

(k+1)
k+1 at step

(k + 1) is,

ρ
(k+1)
k+1 =

[
γ, P1

(
HAΦTHT

)
, P2

(
B2ΦTHT

)
, β

(
ΓTHT

)]
(5.145)
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F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2

s3 s3



∈ R4×2 (5.146)

where s1 = sgn
(
HAΦTν

)
, s2 = sgn

(
B2ΦTν

)
, and s3 = sgn

(
ΓTν

)
.

It is interesting to notice that for the first, second and third child term at step k+ 1, the

number of non-zero elements in the sequence ρ at each layer does not increase. There are at

most three non-zero elements.

5.2.6 The Recursion: From Type-I Old Parent Terms

In this section, the scenarios of old parent terms producing child terms will be evaluated.

We start with the general form of an arbitrary θ-step old term at step k. There are (θ + 2)

elements in the argument of the exponential. Hence, at step k + 1, (θ + 4) child terms will

be produced, among which the first (θ + 3) of them are new, and the last one is old.

5.2.6.1 The First Child Term at Step k + 1

At step k + 1, the child term has (k + 1) layers in the G part. Since this is the first child

term, the two child directions at step k + 1 become HA and − HAΦT (θ+1)

HAΦT (θ+1)HT , i.e.

s1 = sgn (HAν) , s2 = sgn

(
− HAΦT (θ+1)

HAΦT (θ+1)HT

)
(5.147)
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The F matrix is also in a simple form,

F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

, 1 ≤ m ≤ k (5.148)

F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2


 ∈ R3×2 (5.149)

Since R
(m)
k+1 = ρ

(m)
k+1 × F

(m)
k+1, next we are going to find the sequence ρ

(m)
k+1 for each layer m.

When 1 ≤ m ≤ p − 1, recall equation (2.27). In the G part of the first child term at

step k+ 1, a new offset is added into the ρ sequence, and the only coefficient of sign function

s1 becomes 0, for the case when 1 ≤ m ≤ p− 1.

ρ
(1)
k+1 =

[
ρ

(1)
p,1, ρ

(1)
p,2, · · · , ρ(1)

p,p, 01, · · · , 0θ,

ρ
(1)
p,p+1 · sgn

(
HAΦT (θ+1)HT

)
, 0

]
(5.150)

ρ
(2)
k+1 =

[
ρ

(2)
p,1, ρ

(2)
p,2, · · · , ρ

(2)
p,p−1, 01, · · · , 0θ,

ρ(2)
p,p · sgn

(
HAΦT (θ+1)HT

)
, 0

]
(5.151)

...

ρ
(p−1)
k+1 =

[
ρ

(p−1)
p,1 , ρ

(p−1)
p,2 , 01, · · · , 0θ,

ρ
(p−1)
p,3 · sgn

(
HAΦT (θ+1)HT

)
, 0

]
(5.152)
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Equivalently,

ρ
(m)
k+1 =

[
ρ

(m)
p,1 , ρ

(m)
p,2 , · · · , ρ

(m)
p,p+1−m, 01, · · · , 0θ,

ρ
(m)
p,p+2−m · sgn

(
HAΦT (θ+1)HT

)
, 0

]
(5.153)

There are θ zeros in the middle of (5.153), and a zero at the last entry.

When m = p. Starting from the pth layer, there are more than one sign function in the

F matrix. The number of zero offsets start to vary as well.

ρ
(p)
k+1 =

[
ρ

(p)
p,1, 01, · · · , 0θ, ρ

(p)
p,2 · sgn

(
HAΦT (θ+1)HT

)
,

ρ
(p)
p,3 · sgn

(
B2ΦT (θ+1)HT

)
· t1
]

(5.154)

where

t1 = sgn




(
B2ΦT (θ+1)

B2ΦT (θ+1)HT − HAΦT (θ+1)

HAΦT (θ+1)HT

)
eT1

(HA)eT1


 (5.155)

When p+ 1 ≤ m ≤ k, start with the (p+ 1)th layer,

ρ
(p+1)
k+1 =

[
γ, 01, · · · , 0θ−1, P1

(
HAΦTHT

)
· sgn

(
HAΦT (θ+1)HT

)
, q1

]
(5.156)

where

q1 = P2

(
B2ΦTHT

)
· sgn

(
B2ΦT (θ+1)HT

)
· t1 + β

(
ΓTHT

)
· sgn

(
ΓTΦTθHT

)
· t2 (5.157)

t1 is defined in equation (5.155), and,

t2 = sgn




(
ΓTΦTθ

ΓTΦTθHT − HAΦT (θ+1)

HAΦT (θ+1)HT

)
eT1

(HA)eT1


 (5.158)

107



The (p+ 2)th layer is,

ρ
(p+2)
k+1 =

[
γ, 01, · · · , 0θ−2, P1

(
HAΦ2THT

)
· sgn

(
HAΦT (θ+1)HT

)
, q2

]
(5.159)

where

q2 =P2

(
B2Φ2THT

)
· sgn

(
B2ΦT (θ+1)HT

)
· t1 + β

(
ΓTΦTHT

)
· sgn

(
ΓTΦTθHT

)
· t2

+ β
(
ΓTHT

)
· sgn

(
ΓTΦT (θ−1)HT

)
· t3 (5.160)

t1 and t2 is defined in equation (5.155) and (5.158). t3 is defined as follow.

t3 = sgn




(
ΓTΦT (θ−1)

ΓTΦT (θ−1)HT − HAΦT (θ+1)

HAΦT (θ+1)HT

)
eT1

(HA)eT1


 (5.161)

Keep doing this until we find the ρ’s for the kth layer.

ρ
(k)
k+1 =

[
γ, P1

(
HAΦTθHT

)
· sgn

(
HAΦT (θ+1)HT

)
, q3

]
(5.162)

where

q3 =P2

(
B2ΦTθHT

)
· sgn

(
B2ΦT (θ+1)HT

)
· t1

+ β
(
ΓTΦT (θ−1)HT

)
· sgn

(
ΓTΦTθHT

)
· t2

+ β
(
ΓTΦT (θ−2)HT

)
· sgn

(
ΓTΦT (θ−1)HT

)
· t3 + · · ·

+ β
(
ΓTHT

)
· sgn

(
ΓTΦTHT

)
· tθ+1 (5.163)

where the scalar tl when 2 ≤ l ≤ θ + 1 is defined to be,

tl = sgn




(
ΓTΦT (θ+2−l)

ΓTΦT (θ+2−l)HT − HAΦT (θ+1)

HAΦT (θ+1)HT

)
eT1

(HA)eT1


 (5.164)

Note that in (5.156), there are (θ− 1) zeros. In (5.159), there are (θ− 2) zeros. For each

layer downward, there will be one less zero in the ρ sequence. At the kth layer, there is no

zero at all, see equation (5.162).

In summary, when p+ 1 ≤ m ≤ k,

ρ
(m)
k+1 =

[
γ, 01, · · · , 0k−m, P1

(
HAΦT (m−p)HT

)
· sgn

(
HAΦT (θ+1)HT

)
, q4

]
(5.165)
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Especially, when m = k, the subscript of the zero is k −m = 0. This means that there are

no zeros in ρ
(k)
k+1.

q4 =P2

(
B2ΦT (m−p)HT

)
· sgn

(
B2ΦT (θ+1)HT

)
· t1

+ β
(
ΓTΦT (m−p−1)HT

)
· sgn

(
ΓTΦTθHT

)
· t2

+ β
(
ΓTΦT (m−p−2)HT

)
· sgn

(
ΓTΦT (θ−1)HT

)
· t3 + · · ·

+ β
(
ΓTHT

)
· sgn

(
ΓTΦT (k−m+1)HT

)
· tm−p+1 (5.166)

or, written as a sum,

q4 =P2

(
B2ΦT (m−p)HT

)
· sgn

(
B2ΦT (θ+1)HT

)
· t1

+ β ·
m−p∑

l=1

(
ΓTΦT (m−p−l)HT

)
sgn

(
ΓTΦT (θ+1−l)HT

)
tl+1 (5.167)

The Bottom Layer where m = k + 1 is directly derived from the exponential part in

equation (5.93).

ρ
(k+1)
k+1 =

[
P1

∣∣HAΦT (θ+1)HT
∣∣ , q5, γ

]
(5.168)

Like q4, the quantity q5 again should be a sum. This is due to the element combination

which are co-aligned onto the HA direction.

q5 =P2

∣∣B2ΦT (θ+1)HT
∣∣ · t1 + β

∣∣ΓTΦTθHT
∣∣ · t2 + β

∣∣ΓTΦT (θ−1)HT
∣∣ · t3 + · · ·

+ β
∣∣ΓTΦTHT

∣∣ · tθ+1 (5.169)

or, as a sum,

q5 =P2

∣∣B2ΦT (θ+1)HT
∣∣ · t1 + β ·

θ+1∑

l=1

∣∣ΓTΦT (θ+2−l)HT
∣∣ tl (5.170)
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5.2.6.2 The ith Child Term when 2 ≤ i ≤ θ + 3

Recall the θ-step old term at step k in equation (5.93). For convenience, rewrite the expo-

nential term as,

Ek|k = exp
(
−P k|k

1

∣∣∣Bk|k
1 ν

∣∣∣− P k|k
2

∣∣∣Bk|k
2 ν

∣∣∣− · · · − P k|k
θ+2

∣∣∣Bk|k
θ+2ν

∣∣∣+ jζk|kν
)

(5.171)

where,

P
k|k
l =




Pl l = 1, 2

β 3 ≤ l ≤ θ + 2
, B

k|k
l =





HAΦTθ l = 1

B2ΦTθ l = 2

ΓTΦT (θ+2−l) 3 ≤ l ≤ θ + 2

(5.172)

Furthermore, define the sign of the difference between two parent directions.

tl = sgn




(
B
k|k
l ΦT

B
k|k
l ΦTHT

− B
k|k
i ΦT

B
k|k
i ΦTHT

)
eT1

(HA) eT1


 , l < i (5.173)

tl = sgn




(
B
k|k
l+1ΦT

B
k|k
l+1ΦTHT

− B
k|k
i ΦT

B
k|k
i ΦTHT

)
eT1

(HA) eT1


 , l ≥ i (5.174)

At step k+ 1, since the ith child term when 2 ≤ i ≤ θ+ 3 is new, the F matrix is simply

constructed.

F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

, 1 ≤ m ≤ k (5.175)

F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2


 ∈ R3×2 (5.176)
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where

s1 = sgn (HAν) , s2 = sgn

(
− B

k|k
i ΦT

B
k|k
i ΦTHT

)
(5.177)

Now, consider each layer of the ith child term at step (k + 1).

When 1 ≤ m ≤ p − 1, the top (p − 1) layer at step k only has one sign function.

Therefore, starting from the second child term, a zero offset will be added to the ρ sequence

at step k + 1.

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , ρ

(m)
k,2 , · · · , ρ

(m)
k,k+1−m, 0, ρ

(m)
k,k+2−msgn

(
B
k|k
1 ΦTHT

)
· t1
]

(5.178)

In particular, if we substitute in the quantities that we already know in equation (5.95),

the ρ sequence is,

ρ
(m)
k+1 =

[
ρ

(m)
p,1 , · · · , ρ

(m)
p,p+1−m, 01, · · · , 0θ, 0θ+1,

ρ
(m)
p,p+2−msgn

(
HAΦT (θ+1)HT

)
· t1
]

(5.179)

Look at the above expression, we see that the number of nonzero entries in ρ
(m)
k+1 does not

increase compared to the prior sequence ρ
(m)
p from its original parent at step p.

When p ≤ m ≤ p− 3 + i, only if p ≤ p− 3 + i. At step k, starting from the pth layer,

there are more than one sign functions in the sequence. In fact, the ρ sequence at step k for

layers p ≤ m ≤ k can be summarized as,

ρ
(m)
k =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, ρ

(m)
k,k+2−m, · · · , ρ

(m)
k,θ+3

]
, p ≤ m ≤ k (5.180)

The specific value of each ρ has already been defined earlier in equation (5.97) and (5.99).

The first (k+1−m) elements in ρ
(m)
k are offsets, while the rest of the elements are coefficients

associated with the sign functions. Except for the first offset, all the other offsets are zero,

i.e. ρ
(m)
k,2 = ρ

(m)
k,3 = · · · = ρ

(m)
k,k+1−m = 0. As m increases by 1, the number of offsets will

decrease by 1 and the number of sign functions will increase by 1. The total number of
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entries in ρ
(m)
k for p ≤ m ≤ k is always θ + 3. Hence, for the ith sign function si, the first

(p−3+ i) layers do not contain si, and si start to appear from layer (p−2+ i). For example,

when i = 2, the first (p − 3 + i = p − 3 + 2 = p − 1) layers do not have s2. The pth layer

and lower layers contain s2. Similarly, the third sign function s3 does not appear until the

(p+ 1)th layer. This is the reason why to split the case of p ≤ m ≤ k into two scenarios.

Note that this subsection only apply to the scenario when p ≤ p−3 + i, i.e. i ≥ 3. When

i = 2, the rest subsections already exhaust the recursion of all the layers.

For the mth layer where p ≤ m ≤ p− 3 + i, the new offset at step k + 1 is zero.

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, 0, q1

]

=
[
ρ

(m)
k,1 , 01, · · · , 0k−m, 0k−m+1, q1

]
,

p ≤ m ≤ p− 3 + i, i ≥ 3 (5.181)

q1 = ρ
(m)
k,k+2−msgn

(
B
k|k
1 ΦTHT

)
· t1 + ρ

(m)
k,k+3−msgn

(
B
k|k
2 ΦTHT

)
· t2 + · · ·

+ ρ
(m)
k,θ+3sgn

(
B
k|k
m+2−pΦ

THT
)
· tm+2−p

=

m+2−p∑

l=1

ρ
(m)
k,k+1−m+lsgn

(
B
k|k
l ΦTHT

)
· tl (5.182)

In the ρ sequence at step k+1 in (5.181), there are (k+3−m) entries. The first (k+2−m)

entries are offsets. Only ρ
(m)
k+1,1 = ρ

(m)
k,1 is non-zero. All the rest offsets are zero. There are in

total two non-zero entries in the sequence of ρ
(m)
k+1 for p ≤ m ≤ p− 3 + i, one of which is an

offset, while the other one is a coefficient of the sign function s1.

When p − 2 + i ≤ m ≤ k. From layer p − 2 + i to layer k, every layer contains the

sign function si. A non-zero offset will be introduced to the ρ sequence, and there will be a
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coefficient of the sign function s1 as well.

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, ρ

(m)
k,k+1−m+isgn

(
B
k|k
i ΦTHT

)
, q2

]

=
[
ρ

(m)
k,1 , 01 · · · , 0k−m, ρ

(m)
k,k+1−m+isgn

(
B
k|k
i ΦTHT

)
, q2

]
, p− 2 + i ≤ m ≤ k

(5.183)

where

q2 = ρ
(m)
k,k+2−msgn

(
B
k|k
1 ΦTHT

)
· t1 + ρ

(m)
k,k+3−msgn

(
B
k|k
2 ΦTHT

)
· t2 + · · ·

+ ρ
(m)
k,k−m+isgn

(
B
k|k
i−1ΦTHT

)
· ti−1 + ρ

(m)
k,k−m+2+isgn

(
B
k|k
i+1ΦTHT

)
· ti

+ · · ·+ ρ
(m)
k,θ+3sgn

(
B
k|k
m+2−pΦ

THT
)
· tm+1−p

=
i−1∑

l=1

ρ
(m)
k,k+1−m+lsgn

(
B
k|k
l ΦTHT

)
· tl +

m+1−p∑

l=i

ρ
(m)
k,k+2−m+lsgn

(
B
k|k
l+1ΦTHT

)
· tl (5.184)

The sequence in (5.183) has three non-zero entries.

The Bottom Layer where m = k + 1 has the ρ sequence updated as,

ρ
(k+1)
k+1 =

[
P
k|k
i

∣∣∣Bk|k
i ΦTHT

∣∣∣ , q3, γ
]

(5.185)

where

q3 =
i−1∑

l=1

P
k|k
l

∣∣∣Bk|k
l ΦTHT

∣∣∣ tl +
θ+1∑

l=i

P
k|k
l+1

∣∣∣Bk|k
l+1ΦTHT

∣∣∣ tl (5.186)

Therefore the bottom also contain 3 elements. They are all non-zero.

5.2.6.3 The Last Child Term i = θ + 4 (old)

The last child term is the old one. It preserves the general structure of an old term that was

derived in Section 5.2.4.

113



5.2.7 The Recursion: From Type-II Old Parent Terms

Recall the general form of type-II old term at step k, described in equation (5.106) - (5.110).

At step k, there are (k + 1) elements in the argument of the exponential. Therefore, at step

k + 1, there will be (k + 3) child terms. The approach is similar. Rewrite equation (5.106)

in the following form for convenience.

Ek|k = exp
(
−P k|k

1

∣∣∣Bk|k
1 ν

∣∣∣− P k|k
2

∣∣∣Bk|k
2 ν

∣∣∣− · · · − P k|k
k+1

∣∣∣Bk|k
k+1ν

∣∣∣+ jζk|kν
)

(5.187)

where

P
k|k
l =




Pl l = 1, 2

β 3 ≤ l ≤ k + 1
, B

k|k
l =




B

1|1
i ΦT (k−1) l = 1, 2

ΓTΦT (k+1−l) 3 ≤ l ≤ k + 1
(5.188)

Let P
k|k
k+2 = β and B

k|k
k+2 = ΓTΦ−T . Also define the sign of the difference between two

parent directions.

tl = sgn




(
B
k|k
l ΦT

B
k|k
l ΦTHT

− B
k|k
i ΦT

B
k|k
i ΦTHT

)
eT1

(HA) eT1


 , l < i (5.189)

tl = sgn




(
B
k|k
l+1ΦT

B
k|k
l+1ΦTHT

− B
k|k
i ΦT

B
k|k
i ΦTHT

)
eT1

(HA) eT1


 , l ≥ i (5.190)

At step (k + 1), the ith child terms when 1 ≤ i ≤ k + 2 are new child terms. The F

matrix for those cases can be constructed as follows.

F
(m)
k+1 =




1 −1 1 −1 1 −1 1 −1 · · · · · ·

1 1 −1 −1 1 1 −1 −1 · · · · · ·
...

1 1 1 · · · −1

s1 s1 · · · s1




∈ R(k+3−m)×2(k+2−m)

, 1 ≤ m ≤ k (5.191)
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F
(k+1)
k+1 =




1 −1

s1 s1

s2 s2


 ∈ R3×2 (5.192)

where

s1 = sgn (HAν) , s2 = sgn

(
− B

k|k
i ΦT

B
k|k
i ΦTHT

)
(5.193)

Now, consider each layer of the ith child term at step k + 1.

5.2.7.1 New Child Terms When 1 ≤ i ≤ k + 2

Under some circumstances, a zero offset will be introduced into ρ sequence while sometimes

a non-zero offset is produced. According to the value of m, the layers will be discussed in

three different scenarios.

When 1 ≤ m ≤ i− 2, only if i ≥ 3. The sequence ρ at step k is,

ρ
(m)
k =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, ρ

(m)
k,k+2−m, · · · , ρ

(m)
k,k+2

]
, 1 ≤ m ≤ k (5.194)

where ρ
(m)
k,2 = ρ

(m)
k,3 = · · · = ρ

(m)
k,k+1−m = 0.

In the first (i − 2) layers, the coefficients associated with si are zero. At step k + 1, ρ

becomes,

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, 0, q1

]
, 1 ≤ m ≤ i− 2, i ≥ 3

=
[
ρ

(m)
k,1 , 01, · · · , 0k−m+1, q1

]
(5.195)

where

q1 =
m+1∑

l=1

ρ
(m)
k,k+1−m+lsgn

(
B
k|k
l ΦTHT

)
· tl (5.196)

Thus there are only two nonzero elements (not even three) in the sequence of ρ
(m)
k+1.
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When i− 1 ≤ m ≤ k, every layer contains a non-zero coefficient of the sign function si.

Therefore, a non-zero offset will be introduced into the ρ sequence at step k + 1, and there

will be a coefficient of the sign function s1 as well.

Because ρ
(m)
k,2 = ρ

(m)
k,3 = · · · = ρ

(m)
k,k+1−m = 0, ρ

(m)
k+1 only has 3 non-zero entries.

ρ
(m)
k+1 =

[
ρ

(m)
k,1 , · · · , ρ

(m)
k,k+1−m, ρ

(m)
k,k+1−m+isgn

(
B
k|k
i ΦTHT

)
, q2

]

=
[
ρ

(m)
k,1 , 01, · · · , 0k−m, ρ

(m)
k,k+1−m+isgn

(
B
k|k
i ΦTHT

)
, q2

]
(5.197)

where

q2 =
i−1∑

l=1

ρ
(m)
k,k+1−m+lsgn

(
B
k|k
l ΦTHT

)
· tl +

m∑

l=i

ρ
(m)
k,k+2−m+lsgn

(
B
k|k
l+1ΦTHT

)
· tl (5.198)

When m = k + 1, consider the bottom layer. The sequence ρ is updated as,

ρ
(k+1)
k+1 =

[
P
k|k
i

∣∣∣Bk|k
i ΦTHT

∣∣∣ , q3, γ
]

(5.199)

where

q3 =
i−1∑

l=1

P
k|k
l

∣∣∣Bk|k
l ΦTHT

∣∣∣ tl +
k+2∑

l=i

P
k|k
l+1

∣∣∣Bk|k
l+1ΦTHT

∣∣∣ tl (5.200)

5.2.7.2 Old Child Term when i = k + 3

At step k + 1, the formula of the old child term is consistent with previous discussions in

equation (5.93) - (5.102), hence omitted.

5.2.8 Properties

The recursive structure of G layers uncovers an interesting property:

Theorem 5.2.1. Consider the two-state case. For any new term, there are no more than

three non-zero elements in ρ sequence of each layer of G.
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Proof. This theorem is proven by induction.

1. Examine the ρ sequence of each layer of G at step k = 2 for new terms. The first three

child terms at step k = 2 from each of the three parent terms are new terms. The G

term of each one has two layers. Check the ρ sequence expressed in equation (5.39)

(5.46) (5.50) (5.53) (5.57) and (5.60). Each layer at step k = 2 only has three elements

in ρ.

2. Assume the theorem statement holds at step k, we show that the number of non-zero

elements does not increase at step k + 1.

(a) Consider the new child terms at step k + 1 that are produced from new parent

terms at step k. In this case, the first three child terms at step k + 1 are new.

i. For the first child term at step k + 1, look at equation (5.112) (5.114) and

(5.117). Particularly, compare (5.112) with (5.69). One zero element is intro-

duced into ρ
(m)
k+1 for 1 ≤ m ≤ k − 1 after propagated and updated from ρ

(m)
k .

Therefore, there should be still no more than three non-zero elements in the

ρ sequence at step k + 1 for this scenario.

ii. For the second child term at step k + 1, look at equation (5.122) (5.124)

and (5.126). Again, compare (5.122) with (5.69). One zero element is intro-

duced into ρ
(m)
k+1 for 1 ≤ m ≤ k − 1 after propagated and updated from ρ

(m)
k .

Therefore, there should be still no more than three non-zero elements in the

ρ sequence at step k + 1 for this scenario.

iii. For the third child term at step k + 1, look at equation (5.132) (5.134) and

(5.136). Compare (5.132) with (5.69). One zero element is introduced into

ρ
(m)
k+1 for 1 ≤ m ≤ k − 1 after propagated and updated from ρ

(m)
k . Therefore,

there should be still no more than three non-zero elements in the ρ sequence

at step k + 1 for this scenario.

(b) Consider the new child terms at step k + 1 that are produced from type-I old
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parent terms at step k. In this case, the first (θ+ 3) child terms at step k+ 1 are

new, where θ indicates how old this term is, formulated earlier in Section 5.2.4.

i. For the first child term at step k+ 1, look at equation (5.153) (5.154) (5.165)

and (5.168). Compare (5.153) with (5.69). (θ+ 1) zero element is introduced

into ρ
(m)
k+1 for 1 ≤ m ≤ p− 1 after propagated and updated from ρ

(m)
p at step

p. Therefore, there should be still no more than three non-zero elements in

the ρ sequence at step k + 1 for this scenario.

ii. For the ith child term when 2 ≤ i ≤ θ + 3 at step k + 1, look at equation

(5.179) (5.181) (5.183) and (5.185). There should be no more than three

non-zero elements in the ρ sequence at step k + 1 for this scenario.

(c) Consider the new child terms at step k + 1 that are produced from type-II old

parent terms at step k. In this case, the first (k + 2) child terms at step k + 1

are new terms. Consider equation (5.195) (5.197) and (5.199). There are at most

three non-zero elements in ρ sequence at step k + 1.

By exhausting all scenarios of new terms at step k + 1, we have shown that there are at

most three non-zero elements in ρ sequence.

Remark 5.2.2. For old terms, there are more than three non-zero entries for certain layers.

However, among those non-zero entries, only one of them is the offset, while the rests are

all associated with the sign functions. When this old term produces new child terms, the

number of non-zero entries in the new ρ will again collapse to at most three, due to the

direction combination aligned with HA.

Furthermore, this comprehensive analysis on the real component of the G terms for two-

state systems also shows the fundamental mechanism of how zeros are introduced into the

G structure. In the update integral, two zeros are added artificially in order to complete

the integral properly. Now we understand analytically that these added zeros in the integral

appear as offsets of each layer in G. Based on this understanding, the structure for a general

multi-dimensional system is simplified by splitting the offset ρo, Fo and coefficient ρc, Fc
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apart, as proposed up front in Chapter 5.1. This technique will stop adding zeros into the

structure anymore, which potentially enhances the computational efficiency.
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CHAPTER 6

A Pre-Computational Technique

In the estimator structure, much of the computation is independent of the measurement

data. According to the analysis in the previous chapter, the argument of the exponential

part, i.e. P
k|k
i,j and B

k|k
i,j in (1.15), are not functions of the measurement sequence. In the G

terms, the real component of each layer, R
(m)
k,l , does not depend on the measurements. They

can be pre-computed “offline” and stored a priori. This makes the “online” process easier

because all the directions along with their coefficients in the argument of the exponential

term collapse into a single scalar. Furthermore, all the offsets and sign functions in each

denominator of the G term also become a scalar by a priori picking the spectral variable

ν. An offline - online separation of the estimator structure allows a significant amount of

computational efficiency. From our analysis of the two and three state systems, and our

numerical experiments with four state system, it appears that the S matrix, in general, is

not only independent of the measurements, but also independent of system parameters. It

has been shown numerically that the offline efficiency is greatly enhanced by utilizing the S

matrix to combine exponential terms without comparison at each step.

Based on these observations, a pre-computational implementation for the Cauchy esti-

mator is proposed as follows.

6.1 The Offline Stage

Recall the form of the characteristic function described in (3.1). In order to express the

imaginary part of the exponential term ζk|k more explicitly, rewrite it as ζk|k = ykQ
k|k
1 +
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u1
1
T
Q
k|k
2 , where u1

1 is the median of the initial states, Q
k|k
1 ∈ Rk×n, and Q

k|k
2 ∈ Rn×n. Also,

rewrite the imaginary part of each G layer at step k as Im
(m)
k = ykN

(m)
1k − u1

1
T
N

(m)
2k , and

when m = k, N
(k)
1k ∈ Rk×1, N

(k)
2k ∈ Rn×1. Altogether, during the offline stage, the parameters

P k|k, Bk|k, ρ
(m)
ok , ρ

(m)
ck , F

(m)
ok , F

(m)
ck , Q

k|k
1 , Q

k|k
2 , N

(m)
1k and N

(m)
2k are computed recursively from

step to step. These parameters are independent of the measurements.

6.1.1 Initialization

At the first measurement update, there are (n+ 1) terms. For the ith term where 1 ≤ i ≤ n,

the exponential term can be written as,

E1|1
i (ν) = exp

{
−

n∑

l=1,l 6=i

αl
|eiHT |

|HAilν| − γ
∣∣∣∣−

eiν

eiHT

∣∣∣∣

+j

[
z1

eiν

eiHT
+ u1

1
T
(
I − HT ei

eiHT

)]
ν

}
(6.1)

where Ail are defined as Ail = eTi el − eTl ei and ei are the unit row vectors. This form is

obtained by solving the update integral in Appendix B in [5]. Hence, the P 1|1’s are the

corresponding coefficients αl
|eiHT | and γ, and the directions Bk|k’s are HAil and − eiν

eiHT . The

imaginary part of the exponential is expressed by Q
1|1
1 (i) = eiν

eiHT and Q
1|1
2 (i) = I−HTQ

1|1
1 (i).

Next, consider the G terms of the first n terms at step k = 1. Again, by taking the

update integral and organizing the form into the proposed structure in (5.1) - (5.4), one can

obtain,

ρ
(1)
o1 (i) =

[
αi
∣∣eiHT

∣∣] (6.2)

ρ
(1)
c1 (i) =

[
α1

(
e1H

T
)
sgn(eiH

T ) · sgn(HAi1ν),

· · · , αi−1

(
ei−1H

T
)
sgn(eiH

T ) · sgn(HAi(i−1)ν),

αi+1

(
ei+1H

T
)
sgn(eiH

T ) · sgn(HAi(i+1)ν),

· · · , αn
(
enH

T
)
sgn(eiH

T ) · sgn(HAinν),
]

(6.3)
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F
(1)
o1 (i) =

[
1 −1

]
, F

(1)
c1 (i) =




s1 s1

...

sn sn


 (6.4)

where the sign functions are s1 = sgn(HAi1ν), ..., si−1 = sgn(HAi(i−1)ν), si = sgn(HAi(i+1)ν),

..., sn−1 = sgn(HAinν), sn = sgn(− eiν
eiHT ). The imaginary component of the G term consists

of N
(1)
1 (i) = 1 and N

(1)
2 (i) = HT .

For the (n+ 1)th term, initialize the parameters as below.

E1|1
n+1(ν) = exp

(
−

n∑

l=1

αl |elν|+ ju1
1
T
ν

)
(6.5)

ρ
(1)
o1 (i = n+ 1) = γ, ρ

(1)
c1 (i = n+ 1) =

[
α1

(
e1H

T
)
, · · · , αn

(
enH

T
)]

(6.6)

F
(1)
o1 (i = n+ 1) =

[
1 −1

]
, F

(1)
c1 (i = n+ 1) =




s1 s1

...

sn sn


 (6.7)

where s1 = sgn(e1ν), s2 = sgn(e2ν),..., sn = sgn(enν). Let Q
1|1
1 (i = n + 1) = {0}1×n,

Q
1|1
2 (i = n+ 1) = In×n, N

(1)
1 (i = n+ 1) = 1, N

(1)
2 (i = n+ 1) = HT .

6.1.2 Update

Suppose at the kth measurement update, the parameters to construct a complete charac-

teristic function are known. The goal, then, is to derive the parameters P k+1|k+1, Bk+1|k+1,

ρ
(m)
o(k+1), ρ

(m)
c(k+1), F

(m)
o(k+1), F

(m)
c(k+1), Q

k+1|k+1
1 , Q

k+1|k+1
2 , N

(m)
1(k+1) and N

(m)
2(k+1) for 1 ≤ m ≤ k + 1,

as a recursive function of their value at step k.

First, look at the exponential term. Consider (3.1), (1.15) at step k. Define P
k|k
i,Ne+1 = β

and B
k|k
i,Ne+1 = ΓTΦ−T . At step k + 1, the exponential part of the rth child term can be
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expressed as,

Ek+1|k+1
i,r (ν) = exp


−

N
k+1|k+1
ei∑

l=1,l 6=r

P
k|k
i,l

∣∣∣Bk|k
i,l ΦTHT

∣∣∣

·

∣∣∣∣∣
B
k|k
i,l ΦTν

B
k|k
i,l ΦTHT

−
B
k|k
i,r ΦTν

B
k|k
i,r ΦTHT

∣∣∣∣∣+ jζ
k+1|k+1
i,r ν

)
(6.8)

The coefficients P
k|k
i,l

∣∣∣Bk|k
i,l ΦTHT

∣∣∣ forms the new P ’s and the absolute value of the differ-

ences of parent directions forms the new B’s. Some directions are co-aligned, recall Chapter

2. Note that P k+1|k+1 and Bk+1|k+1 are obtained after directions are combined.

The imaginary part is constructed as ζ
k+1|k+1
i,r = yk+1Q

k+1|k+1
1 + u1

1
T
Q
k+1|k+1
2 . From

equation (3.43b) in [5] and be consistent with the notation in this dissertation,

ζ
k+1|k+1
i,r =

(
zk+1 −HΦζ

k|k
i

T
) B

k|k
i ΦTν

B
k|k
i ΦTHT

+ ζ
k|k
i ΦT (6.9)

Substitute ζ
k|k
i = ykQ

k|k
1 + u1

1
T
Q
k|k
2 where yk =

[
z1 z2 · · · zk

]
into equation (6.9).

Then,

ζ
k+1|k+1
i,r = zk+1

B
k|k
i ΦT ν

B
k|k
i ΦTHT

+ ζ
k|k
i ΦT

(
I −HT B

k|k
i ΦT ν

B
k|k
i ΦTHT

)

= zk+1
B
k|k
i ΦT ν

B
k|k
i ΦTHT

+ ykQ
k|k
1 ΦT

(
I −HT B

k|k
i ΦT ν

B
k|k
i ΦTHT

)
+ u1

1
T
Q
k|k
2 ΦT

(
I −HT B

k|k
i ΦT ν

B
k|k
i ΦTHT

)

= yk+1



Q
k|k
1 ΦT (I −HT B

k|k
i ΦT ν

B
k|k
i ΦTHT

)

B
k|k
i ΦT ν

B
k|k
i ΦTHT


+ u1

1
T
Q
k|k
2 ΦT

(
I −HT B

k|k
i ΦT ν

B
k|k
i ΦTHT

)

def
= yk+1Q

k+1|k+1
1 + u1

1
T
Q
k+1|k+1
2 (6.10)

Therefore,

Q
k+1|k+1
1 =



Q
k|k
1 ΦT (I −HT B

k|k
i ΦT ν

B
k|k
i ΦTHT

)

B
k|k
i ΦT ν

B
k|k
i ΦTHT


 (6.11)

Q
k+1|k+1
2 = Q

k|k
2 ΦT

(
I −HT B

k|k
i ΦTν

B
k|k
i ΦTHT

)
(6.12)

Next, consider the G term. Suppose at step k, the G terms are described in equation

(5.1)-(5.4). There are three different scenarios depending upon which child term i is exam-
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ined.

• When 1 ≤ i ≤ q

The offset component of the top k layer can be written as,

ρ
(m)
o(k+1) =

[
ρ

(m)
ok , ρ

(m)
ck,isgn

(
B
k|k
i ΦTHT

)]
(6.13)

F
(m)
o(k+1) =




F
(m)
ok | F

(m)
ok

−−−− + −−−−

1 · · · 1 | −1 · · · − 1


 (6.14)

where 1 ≤ m ≤ k.

The offset component of the bottom layer ((k+ 1)th layer) can be expressed as follows:

ρ
(k+1)
o(k+1) =

[
P
k|k
i

∣∣∣Bk|k
i ΦTHT

∣∣∣
]
, F

(k+1)
o(k+1) =

[
1 −1

]
(6.15)

The sign function component of the top k layer can be calculated as,

ρ
(m)
c(k+1) =

[
ρ

(m)
ck,1sgn

(
B
k|k
1 ΦTHT

)
, · · · , ρ

(m)
ck,i−1sgn

(
B
k|k
i−1ΦTHT

)
,

ρ
(m)
ck,i+1sgn

(
B
k|k
i+1ΦTHT

)
, · · · , ρ

(m)
ck,qsgn

(
Bk|k
q ΦTHT

)]
(6.16)

F
(m)
c(k+1) =




s1 s1 · · · s1

s2 s2 · · · s2

...

sq−1 sq−1 · · · sq−1




(6.17)

where 1 ≤ m ≤ k.

For the bottom layer, the sign function component is expressed as,

ρ
(k+1)
c(k+1) =

[
P
k|k
1

∣∣∣Bk|k
1 ΦTHT

∣∣∣ , · · · , P k|k
i−1

∣∣∣Bk|k
i−1ΦTHT

∣∣∣ ,

P
k|k
i+1

∣∣∣Bk|k
i+1ΦTHT

∣∣∣ , · · · , P k|k
Ne+1

∣∣∣Bk|k
Ne+1ΦTHT

∣∣∣ , γ
]

(6.18)
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F
(k+1)
c(k+1) =




s1 s1

s2 s2

...

sNe+1 sNe+1




(6.19)

s1 through sNe+1 in (6.17) and (6.19) are the sign function of the first Ne + 1 child

directions multiplied by the variable ν. Note that ρ
(m)
c(k+1) and F

(m)
c(k+1) in (6.16)-(6.19)

at each layer should also be refined by combining the co-aligned directions in the con-

sistent way as the exponential term. If q = 1 for the mth layer at step k, the ρ
(m)
c(k+1)

and F
(m)
c(k+1) is empty.

• When q + 1 ≤ i ≤ Ne + 1

In this case, the offset component of the top k layer is,

ρ
(m)
o(k+1) = ρ

(m)
ok , F

(m)
o(k+1) =

[
F

(m)
ok | F

(m)
ok

]
(6.20)

where 1 ≤ m ≤ k.

The offset component of the bottom layer is in the same form as the 1 ≤ i ≤ q case,

i.e.

ρ
(k+1)
o(k+1) = P

k|k
i

∣∣∣Bk|k
i ΦTHT

∣∣∣ , F
(k+1)
o(k+1) =

[
1 −1

]
(6.21)

Similarly, the sign function component of the top k layer is,

ρ
(m)
c(k+1) =

[
ρ

(m)
ck,1sgn

(
B
k|k
1 ΦTHT

)
, · · · , ρ

(m)
ck,qsgn

(
Bk|k
q ΦTHT

)]
(6.22)

F
(m)
c(k+1) =




s1 s1 · · · s1

s2 s2 · · · s2

...

sq sq · · · sq




(6.23)
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where 1 ≤ m ≤ k. And the sign function component of the bottom layer is,

ρ
(k+1)
c(k+1) =

[
P
k|k
1

∣∣∣Bk|k
1 ΦTHT

∣∣∣ , · · · , P
k|k
i−1

∣∣∣Bk|k
i−1ΦTHT

∣∣∣ ,

P
k|k
i+1

∣∣∣Bk|k
i+1ΦTHT

∣∣∣ , · · · , P
k|k
Ne+1

∣∣∣Bk|k
Ne+1ΦTHT

∣∣∣ , γ
]

(6.24)

F
(k+1)
c(k+1) is given in (6.19). Again, s1 through sNe+1 are the sign function of the first

Ne + 1 child directions multiplied by the variable ν. Finally, co-aligned directions at

step k + 1 must be combined to find ρ
(m)
c(k+1) and F

(m)
c(k+1) for all m.

• When i = Ne + 2

The offset component of the top k layer is,

ρ
(m)
o(k+1) = ρ

(m)
ok , F

(m)
o(k+1) =

[
F

(m)
ok | F

(m)
ok

]
(6.25)

The offset component of the bottom layer is,

ρ
(k+1)
o(k+1) = γ, F

(k+1)
o(k+1) =

[
1 −1

]
(6.26)

The sign function component of the top k layer is,

ρ
(m)
c(k+1) = ρ

(m)
ck , F

(m)
c(k+1) =

[
F

(m)
ck | F

(m)
ck

]
(6.27)

And the sign function component of the bottom layer is,

ρ
(k+1)
c(k+1) =

[
P
k|k
1

(
B
k|k
1 ΦTHT

)
, · · · , P

k|k
Ne

(
B
k|k
Ne

ΦTHT
)
, β
(
ΓTHT

)]
(6.28)

where F
(k+1)
c(k+1) is given by (6.19).

The sign functions are s1 = sgn
(
B1ΦTν

)
, s2 = sgn

(
B2ΦTν

)
, ..., sNe = sgn

(
BNeΦ

Tν
)
,

sNe+1 = sgn
(
ΓTν

)
. In this case, child directions will not be co-aligned.

Finally, let’s construct the imaginary part of each layer in the G terms. Still consider step

k+1. The update process will not change the imaginary part of the top k layers, i.e. Im
(m)
k+1 =

126



Im
(m)
k , 1 ≤ m ≤ k. For the bottom layer, construct Im

(k+1)
k+1 = yk+1N

(k+1)
1,k+1 − u1

1
T
N

(k+1)
2,k+1 .

According to Appendix B.1 and B.2 in [5], Im
(k+1)
k+1 = zk+1 − ζ

k|k
i ΦTHT . Substitute the

expression of ζ
k|k
i , then one can obtain the recursion of N

(k+1)
1,k+1 and N

(k+1)
2,k+1 in the following

form.

N
(k+1)
1,k+1 =


−Q

k|k
1 ΦTHT

1


 , N

(k+1)
2,k+1 = Q

k|k
2 ΦTHT (6.29)

Remark 6.1.1. Certain directions are co-aligned and hence need to be combined in order

to implement this algorithm. That involves equation (6.16) – (6.19) and (6.22) – (6.24).

Generally, this combination process can all be done by numerically comparing the directions.

However, for two-state and three-state case, it has been fully uncovered how to combine the

directions analytically without the need of numerical comparison. This is developed from

the extensive studies of directions co-alignment in Chapter 2.

The explicit, analytic form of updating R in each layer of G terms without numerically

comparing directions for two-state and three-state cases are provided in Appendix E and F.

6.1.3 Construction of the Offline Stage

During the offline stage, the parameters P , B, Q1, Q2, ρo, ρc, Fo, Fc, N1 and N2 of each

term are updated and stored according to the S matrix scheme. They are computed inside

the offline loop, providing complete information for estimator update. However, not all of

them are passed to the online stage directly. In order to improve the online efficiency, some

of the parameters can be combined.

First, pick a priori ν as ν̂. ν̂ can be randomly chosen, as long as it is not orthogonal

with any directions B
k|k
i . Define ai as a n-dim column vector,

a
k|k
i = −

N
k|k
ei∑

l=1

P
k|k
i sgn

(
B
k|k
i ν̂

)
B
k|k
i

T

, (6.30)

which is related to the real part of the exponential term in (1.15), and is used in the online

stage.
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Also, compute the real part of each layer in the G terms. This manipulation simplifies

the online computation by reducing the sequences of the parameters, ρ’s and F ’s, into single

scalars R
(m)
k as

R
(m)
k =

[
ρ

(m)
ok | ρ

(m)
ck

]
·




F
(m)
ok

−−−

F
(m)
ck


 (6.31)

As a result, for the exponential part, a
k|k
i , Q

k|k
1 and Q

k|k
2 will be passed onto the online

stage in a reduced form. For the G part, Rk|k, N
(m)
1,k and N

(m)
2,k will be passed onto the online

stage.

6.2 The Online Stage

During the online stage, the conditional mean and conditional variance given the measure-

ment data is determined by taking derivatives of the characteristic function with respect to

a picked spectral variable ν̂ and evaluating at the origin. [5] gives closed form expressions

for the derivatives.

To determine the online values of the conditional mean and conditional variance, the

following parameters are determined. a
k|k
i is received directly from the offline stage. Define

the column vector b
k|k
i ∈ Rn to be,

b
k|k
i = ζk|k

T
= Q

k|k
1

T
· yTk +Q

k|k
2

T
· u1

1 (6.32)

Also define c
k|k
i and d

k|k
i to be the real and imaginary parts of each G term, G

k|k
i (ν̂)

G
k|k
i (ν) = G

k|k
i (ν̂)

def
= c

k|k
i + jd

k|k
i (6.33)

where c
k|k
i and d

k|k
i are scalars. At each layer, the imaginary component equals Im

(m)
k =

ymN
(m)
1,k − u1

1
T
N

(m)
2,k . With the real component R

(m)
k and the imaginary component Im

(m)
k

in each layer of G as deterministic scalars, c
k|k
i and d

k|k
i can be obtained by algebraically

computing the value of all the layers.
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Let M1 = a
k|k
i a

k|k
i

T
−bk|ki b

k|k
i

T
, M2 = a

k|k
i b

k|k
i

T
+b

k|k
i a

k|k
i

T
be n by n matrices. Starting with

the equation (5.29) and (5.32) in [5] and utilizing our definition of a
k|k
i , b

k|k
i , c

k|k
i and d

k|k
i ,

the conditional mean x̂k and second moment E
[
xkx

T
k |Yk

]
can be rewritten in the following

form.

x̂k =

∑N
k|k
t

i=1 (d
k|k
i a

k|k
i + c

k|k
i b

k|k
i )

∑n
k|k
t
i=1 c

k|k
i

(6.34)

E
[
xkx

T
k |Yk

]
=

∑N
k|k
t

i=1

[
c
k|k
i M1 − dk|ki M2

]

−
∑N

k|k
t

i=1 cik|k
(6.35)

The conditional error variance is E
[
eke

T
k |Yk

]
= E

[
xkx

T
k |Yk

]
− x̂kx̂Tk .

The pre-computational technique is illustrated in Figure 6.1.

…
 

• System Parameters: H, Φ, Γ 
• Noises: β, γ 
• Initial Conditions: α1, …, αn  

Offline Stage at Step k 

(For each term) 
Exp: P, B, Q1, Q2; 
G Layer: ρ, F, N1, N2. 

Conditional Mean 
and Conditional 
Variance at step k 

“S” 
Matrix 

Offline Stage at Step k+1 

…
 

Online Stage at Step k+1 
Conditional Mean 
and Conditional 
Variance at step k+1 

The Offline Stage The Online Stage 

Measurement: z 

(For each term) 
Exp: P, B, Q1, Q2; 
G Layer: ρ,F,N1, N2. 

Online Stage at Step k 

(Each term) 
Exp: a, Q1, Q2 

G Layer: R, N1, N2 

(for each term) 
ak, bk, ck, dk   

 (Each term) 
Exp: a, Q1, Q2 

G Layer: R, N1, N2 

(for each term) 
ak+1, bk+1, ck+1, dk+1   

 

Figure 6.1: The pre-computational technique
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6.3 Finite Approximation

The size of the estimator structure, i.e. the number of terms in the characteristic function,

grows significantly as more measurement history data is processed. However, not all mea-

surements have the same influence on the estimates. It has been shown that as time goes

on, the measurement from the distant past, as well as the uncertainties of the initial state,

has less and less influence on the current estimates. We use a “sliding window” method to

process a fixed number of recent measurements. This approximation keeps a finite estimator

structure.

To implement this finite approximation, first initialized the “sliding window” with ap-

propriate initial mean of the state at step k, defined earlier as u1
1, which matches the es-

timated conditional mean x̂k propagated by the transition matrix Φ, i.e. let u1
1 = Φx̂k.

Then, by inputting the initial mean of the window, as well as the measurement sequence

y∗k+L = [zk+1 · · · zk+L] with a sliding window size of L into the offline characteristic func-

tion structure at step k = L, the algorithm produces the approximated estimate at step

k + L. The performance of the Cauchy estimator with the sliding window approximation is

demonstrated numerically by various examples, presented in the next chapter.
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CHAPTER 7

Simulation Results

7.1 A Three-State System

For a three-state system, the system dynamics are chosen to be,

Φ =




1.5374 −0.9874 0.4924

1.1026 −0.3642 0.5942

0.3853 −0.8192 1.3268


 , Γ =




0.1

0.3

1




H =
[
1 0.5 0.2

]
(7.1)

The eigenvalues of Φ are 0.90 and 0.80 ± 0.55j. Process noise, measurement noise and

initial states are all assumed to be Cauchy distributed with β = 0.2, γ = 0.2, α1 = 0.2,

α2 = 0.2, α3 = 0.2, u1
1 = {0}3. The simulation runs 101 steps with a sliding window size of

L = 7.

Fig. 7.1 shows the estimates error and standard deviation of the Cauchy estimator under

Cauchy-type process noise and measurement noise. The correlation of the estimates is shown

in fig. 7.2. “KF” in the figure stands for the Kalman Filter, whose parameters are chosen to

least square fit the system’s Cauchy pdfs as discussed in [3]. The Cauchy estimator performs

well compared to the standard Kalman Filter. The Cauchy state estimate error stays within

the 1-σ range generated in the Cauchy estimator implementation, as shown in the figure by

dashed lines. When there is an impulsive fluctuation in either the process or measurement

noise, the Cauchy estimator yields a smaller estimation error and converges faster than the

Kalman Filter.
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Figure 7.1: Three state estimation error with window size of 7 compared with a standard

Kalman Filter, Cauchy noises

In Gaussian noise environment, the Cauchy Estimator also functions well, matching the

performance of a standard Kalman Filter. Fig. 7.3 shows the estimation error and the

standard deviation of Cauchy Estimator compared with the Kalman Filter, under Gaussian-

distributed process noise and measurement noise. The correlation is shown in fig. 7.4. It

is interesting to observe that, the multivariate Cauchy estimator, though developed using

heavy-tailed noise profile, also has good estimation performance under light-tailed noise cir-

cumstances. Since the tail of Cauchy distribution upper bounds many practical uncertainties,

the fact that the Cauchy estimator performs well under both Cauchy noise environment and

Gaussian noise environment indicates its robustness under various noise environment.

In terms of computational efficiency, on our machine with the CPU at 2.40 GHz and

132



−0.5

0

0.5

1

ρ
1
2

Correlation

 

 

CE
KF

−0.5

0

0.5

1

ρ
1
3

 

 

CE
KF

−0.5

0

0.5

1

Time Steps (k )

ρ
2
3

 

 

CE
KF

Figure 7.2: Three state estimation correlation with window size of 7 compared with a stan-

dard Kalman Filter, Cauchy noises

memory of 8 GB, the offline stage at step k = 7 takes around 164 seconds, while the online

computation takes 89 seconds per step with a window size of L = 7. The online computation

roughly save 65% of the total time consumption. In addition, without the use of S matrix,

the offline computation itself takes around 14,000 seconds at step k = 7. However, it only

takes 164 seconds if using the S matrix. The S matrix technique is able to save nearly 99%

of the offline computation. The computation time per step is shown in Table 7.1
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Figure 7.3: Three state estimation error with window size of 7 compared with a standard

Kalman Filter, Gaussian noises

7.2 A Four-State System

Considers a four-state system with parameters:

Φ =




2.0014 −1.4605 0.8927 −1.2017

0.3075 −0.5191 1.7812 −1.1497

1.1703 −1.3713 1.4875 −1.0113

0.6122 −0.6357 0.5183 0.3302



, Γ =




0.1

0.1

0.1

1



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Figure 7.4: Three state estimation correlation with window size of 7 compared with a stan-

dard Kalman Filter, Gaussian noises

H =
[
1 0.1 0.1 0.1

]
(7.2)

The eigenvalues of Φ are 0.75±0.60j and 0.90±0.30j. Process noise, measurement noise

and initial states are all assumed to be Cauchy distributed as β = 0.2, γ = 0.2, α1 = 0.2,

α2 = 0.2, α3 = 0.2, α4 = 0.2, u1
1 = {0}4. The simulation runs 101 steps with a window size

of L = 6.

Similar to the three-state example, the Cauchy estimator obtains reasonably good per-

formance under Cauchy-distributed process noise and measurement noise, as shown in Fig.

7.5. When the estimation error of the Cauchy estimator becomes larger, the dashed line of

standard deviation also opens up, which implies that the Cauchy estimator understands and

handles that uncertainty well. This performance cannot be observed from a Kalman Filter.

The correlation of the states from the Cauchy estimator somewhat matches that from the

Kalman Filter, illustrated in fig. 7.6. When both process noise and measurement noise are
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Stage Step Without S Matrix With S Matrix

Offline k = 1 0.0014 sec 0.0025 sec

k = 2 0.0200 sec 0.0325 sec

k = 3 0.0785 sec 0.1127 sec

k = 4 0.6618 sec 0.3880 sec

k = 5 9.2660 sec 2.8333 sec

k = 6 ∼ 282 sec 20.7938 sec

k = 7 ∼ 14000 sec 164.3458 sec

Online LL = 5 - 1.2 sec

LL = 6 - 10.2 sec

LL = 7 - 88.6 sec

Table 7.1: Computation time per step for three-state case

Gaussian-distributed, the Cauchy Estimator performs well too, see the estimation error in

fig. 7.7 and the correlation in fig. 7.8.

Again, implemented on our machine with the CPU at 2.40 GHz and memory of 8 GB,

the offline stage at step k = 6 takes around 87 seconds, while the online computation takes

37 seconds per step with a window size of L = 6. The online computation roughly save 70%

of the total time consumption, illustrated in Table 7.2.

The successful implementation of four-state example shows that the pre-computational

technique of the Cauchy estimator proposed in this dissertation is to a large extent general for

linear systems of different dimension. But the implementation is also tailored to the specific

system order, by a priori combining directions onto fundamental basis, and combining terms

using the S matrix for the particular system dimension. Furthermore, the online computation

is simplified by a priori picking ν̂, such that the G structure is large reduced. The numerical

illustrations in this chapter show the significant computational efficiency enhancement for

the three-state system, and for the first time makes the four-state system implementable.
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Figure 7.5: Four state estimation error with window size of 6 compared with a standard

Kalman Filter, Cauchy noises

Stage Step Time per Step

Offline k = 5 8.7750 sec

k = 6 86.8517 sec

Online LL = 5 3.2 sec

LL = 6 37.4 sec

Table 7.2: Computation time per step for four-state case
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Figure 7.6: Four state correlation with window size of 6 compared with a standard Kalman

Filter, Cauchy noises
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Figure 7.7: Four state estimation error with window size of 6 compared with a standard

Kalman Filter, Gaussian noises
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Figure 7.8: Four state correlation with window size of 6 compared with a standard Kalman

Filter, Gaussian noises
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

This dissertation aims at understanding and developing the fundamental structure of the

multivariate Cauchy estimator. Established on the newly uncovered properties, it then

presents an implementation of the Cauchy estimator that is able to significantly enhance the

computational efficiency. In particular, this dissertation has the following contribution.

1. It is uncovered that three parent directions that are linearly dependent can produce

co-aligned child directions. These co-aligned child directions can always be expressed

as a function of a unique fundamental basis matrix. For two-state case, any two parent

directions can produce a co-aligned child direction alongHA, where A is the fundamen-

tal basis. For three-state case, any two parent directions that are in the form of HCΦTθ

where C = −CT can produce a co-aligned child direction along HΦθ+1BΦT (θ+1), where

B is the fundamental basis. The analytic form of the fundamental basis is derived for

up to five-state systems.

2. Based on the properties of directions co-alignment, certain exponential terms are shown

to have the same functional form and hence can be combined. For two-state case, all

identical exponential terms can be combined using only two combination rules. For

three-state case, several rules are presented as it starts to reveal the term combination

property for multi-dimentional case in general. This combination is analytic, regardless

of system parameters.

141



3. An indexing scheme, S matrix, is constructed to allow for terms combination without

numerical comparison during the estimation process. The recursion of the S matrix for

two-state case is derived analytically in closed form. For the first time we are able to a

priori describe which exponential terms to combine. By utilizing S matrix to combine

identical exponential terms, the (offline) computation saves roughly 99% of the time

consumption if not using S matrix to combine terms.

4. The coefficient terms, i.e. G terms, is reconstructed into a recursive structure. This

structure reduce the memory requirement by completely eliminating all the artificial

zeros in the formulas. Particularly, this new structure helps to prove that for two-state

case, there are no more than three non-zero elements in the real component of each layer

of any new term. Furthermore, this new structure provides an approach to separate

the intermediate parameters that are independent of the measurement history from

those that are relevant to the measurements. It makes the offline - online separation

implementable.

5. Finally, the Cauchy estimator is implemented through a pre-computational technique.

This technique separates the part of the estimator structure that is independent of the

measurements, from the part of the estimator that is dependent upon the measure-

ments. A sliding window method is used to truncate the complexity of the structure

and provides a reasonable approximation. For the first time the Cauchy estimator can

be implemented efficiently on three and four state systems. Cauchy estimator performs

well under both Cauchy and Gaussian environment compared with a standard Kalman

Filter. This indicates the robustness of the Cauchy estimator.

8.2 Future Work

There are several potential directions in the future, established on the current understanding

of the Cauchy estimator.
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1. The combination of G terms.

Many exponential terms are shown to have the same functional form regardless of the

system parameters and hence can be combined. However, the number of G terms

are not reduced the same way. Instead, the G terms that are associated with the

same exponential term are grouped and stored as multiple individual G terms. One

potential research direction is to seek to combine or simplify the group of G terms that

are associated with the same exponential term. The G terms have layers of divisions,

each of which are constructed by the product of ρ sequence and F matrix, as well as

the imaginary component. We observe that the ρ and F among different individual G

terms are very similar, varying by only some elements or the sequential order. Once

the G terms that are associated with the same exponential term can be combined, the

algorithm can be significantly simplified.

2. The analytic form of S matrix for higher order cases.

For two-state case, the analytic form of S matrix is derived in a recursive manner.

That is because we know all the combination rules for exponential terms. However,

for higher order cases, the S matrix is obtained numerically. When the dimension gets

higher, the computational S matrix may become more sensitive to the tolerance. One

direction is to find the analytic recursive structure of S matrix for higher order cases,

or a scheme that can better indicate the term combination.

3. Convergence of the sliding window approximation.

In the numerical experiments, a sliding window approximation is applied to process

only a fixed number of the most recent measurements so that the estimator can proceed

the implementation for longer time sequence. It has been observed that the initial

conditions of the states have less and less influence on the current conditional mean and

conditional variance as time goes on. It can be inferred that the estimator needs only

some recent measurements to obtain reasonable performance. We check the sensitivity

of the current estimates to the initial conditions by various approach numerically to
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support our infer. In the future, one direction is to show this convergence of the sliding

window estimations analytically.

4. Parallel computation

Another potential research direction is parallel computation. The Cauchy estimator

structure is very suitable for distributed computation, because each measurement up-

date contains a large number of terms. These terms are independent of each other.

For each distinct exponential term, the multiple G terms are independent of each other

as well. One approach of parallel implementation is to distribute the terms at each

measurement update to different processors during the online stage, obtain the in-

termediate parameters a
k|k
i , b

k|k
i , c

k|k
i , d

k|k
i of each term in different processors using

equation (6.30) (6.32) and (6.33), and collect all these values together to evaluate the

conditional mean and conditional second moment using equation (6.34) and (6.35). In

Chapter 7, the simulations are timed via regular sequential computing in Matlab. If

the algorithm is implemented by parallel computation technique, e.g. GPU, it is very

promising that the computational efficiency may be enhanced to nearly real-time.
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APPENDIX A

Solutions of Update Integral Formula

This chapter of appendix summarizes the solution of the update integral formula that is

proved in Appendix B in [5], for the readers’ convenience to refer to when necessary.

A.1 Exponent-only integral

In the first measurement update, the update integral is in the exponent-only form,

I =

∫ ∞

−∞
exp

[(
−

n∑

l=1

ρl |ξl − η|

)
+ jzη

]
dη (A.1)

where z is the measurement, ρl-s are positive constants, and the ξl-s are variables linear in

ν.

The integral was solved by assuming a particular order of ξl-s, according to [5]. The

solution is in the following form,

I =
n∑

i=1

gi

(
n∑

l=1,l 6=i

ρlsgn(ξl − ξi)

)
exp

[(
−

n∑

l=1,l 6=i

ρl|ξl − ξi|

)
+ jzξi

]
, (A.2)

where

gi

(
n∑

l=1,l 6=i

ρlsgn(ξl − ξi)

)

=
1

jz + ρi +
∑n

l=1,l 6=i ρlsgn(ξl − ξi)
− 1

jz − ρi +
∑n

l=1,l 6=i ρlsgn(ξl − ξi)
(A.3)
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A.2 Generalized integral

In the second and subsequent measurement update steps, the more general integral form is

involved,

I =

∫ ∞

−∞
g

(
n∑

l=1

%lsgn(ξl − η)

)
exp

[(
−

n∑

l=1

ρl |ξl − η|

)
+ jzη

]
dη (A.4)

The solution of this integral was solved in [5] as,

I =
n∑

i=1

Gi

(
n∑

l=1,l 6=i

%lsgn(ξl − ξi),
n∑

l=1,l 6=i

ρlsgn(ξl − ξi)

)
exp

[(
−

n∑

l=1,l 6=i

ρl|ξl − ξi|

)
+ jzξi

]
,

(A.5)

where

Gi

(
n∑

l=1,l 6=i

%lsgn(ξl − ξi),
n∑

l=1,l 6=i

ρlsgn(ξl − ξi)

)

=
g
(
%i +

∑n
l=1,l 6=i %lsgn(ξl − ξi)

)

jz + ρi +
∑n

l=1,l 6=i ρlsgn(ξl − ξi)
−
g
(
−%i +

∑n
l=1,l 6=i %lsgn(ξl − ξi)

)

jz − ρi +
∑n

l=1,l 6=i ρlsgn(ξl − ξi)
(A.6)
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APPENDIX B

Fundamental Basis for Higher-Order Systems

For two-state case, the co-aligned direction becomes HA immediately after one update. For

three-state case, repeated directions align with HΦBΦT in two updates. Similarly, it can be

deduced that three updates are needed for four-state cases, and four updates are needed for

five-state cases, to obtain the fundamental basis. This update process has been verified by

numerical simulations. It has been demonstrated numerically that such fundamental basis

exists and is unique for four-state and five-state cases. Based on the fact that the form of

the fundamental basis is unique, the analytic structure for four-state and five-state system

can be derived as follows.

B.1 Four-State Case

Suppose B1, B2, and B3 to be arbitrary 4-by-4 skew-symmetric matrices. Define D1 and D2

as,

D1 = BT
1 H

THB2 −BT
2 H

THB1 (B.1)

D2 = BT
1 H

THB3 −BT
3 H

THB1 (B.2)

Consider the parent directions at step k. Then B1, B2, and B3 represent the child

directions at step k + 1, due to the skew-symmetry. The formulation of D1 and D2 stands

for the child directions at step k+ 2. Next, the differences of the outer product will produce

the fundamental basis C for four-state case at step k + 3, i.e.

σC = DT
2 ΦTHTHΦD1 −DT

1 ΦTHTHΦD2 (B.3)
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Substitute (B.1) and (B.2) into equation (B.3),

σC =
(
BT

1 H
THB3 −BT

3 H
THB1

)T
ΦTHTHΦ

(
BT

1 H
THB2 −BT

2 H
THB1

)

−
(
BT

1 H
THB2 −BT

2 H
THB1

)T
ΦTHTHΦ

(
BT

1 H
THB3 −BT

3 H
THB1

)
(B.4)

Expand (B.4) further,

σC =BT
3 H

THB1ΦTHTHΦBT
1 H

THB2 −BT
3 H

THB1ΦTHTHΦBT
2 H

THB1

−BT
1 H

THB3ΦTHTHΦBT
1 H

THB2 +BT
1 H

THB3ΦTHTHΦBT
2 H

THB1

−BT
2 H

THB1ΦTHTHΦBT
1 H

THB3 +BT
1 H

THB2ΦTHTHΦBT
1 H

THB3

+BT
2 H

THB1ΦTHTHΦBT
3 H

THB1 −BT
1 H

THB2ΦTHTHΦBT
3 H

THB1 (B.5)

Then,

σC =
(
HB1ΦTHT

)
· [
(
HB1ΦTHT

)
·
(
BT

3 H
THB2 −BT

2 H
THB3

)

+
(
HB2ΦTHT

)
·
(
BT

1 H
THB3 −BT

3 H
THB1

)

+
(
HB3ΦTHT

)
·
(
BT

2 H
THB1 −BT

1 H
THB2

)
] (B.6)

The fundamental basis C is a priori matrix regardless the value of B1, B2, and B3.

Hence, by choosing specific values of B1, B2, and B3, the form of C can be solved.

Pick

B1 =




0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0



, B2 =




0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0



, B3 =




0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0




(B.7)

Then,

BT
3 H

THB2 −BT
2 H

THB3 =




0 0 −h1h4 h1h3

0 0 0 0

h1h4 0 0 −h2
1

−h1h3 0 h2
1 0




(B.8)
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BT
1 H

THB3 −BT
3 H

THB1 =




0 h1h4 0 −h1h2

−h1h4 0 0 h2
1

0 0 0 0

h1h2 −h2
1 0 0




(B.9)

BT
2 H

THB1 −BT
1 H

THB2 =




0 −h1h3 h1h2 0

h1h3 0 −h2
1 0

−h1h2 h2
1 0 0

0 0 0 0




(B.10)

where the lower case of h’s represent the elements of theH matrix, i.e. H =
[
h1 h2 h3 h4

]
.

Also,

HB1ΦTHT = (−h2) (HΦe1) + h1 (HΦe2) (B.11)

HB2ΦTHT = (−h3) (HΦe1) + h1 (HΦe3) (B.12)

HB3ΦTHT = (−h4) (HΦe1) + h1 (HΦe4) (B.13)

Now define

βil = hi (HΦel)− hl (HΦei) , 1 ≤ i, l ≤ 4, i 6= l (B.14)

Substitute (B.7) - (B.14) back into (B.6). And let σ =
(
HB1ΦTHT

)
· h2

1. Then the funda-

mental basis C is,

C =




0 −β34 β24 −β23

β34 0 −β14 β13

−β24 β14 0 −β12

β23 −β13 β12 0




(B.15)

The form of C described in (B.15) has been proved numerically.
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B.2 Five-State Case

For five-state case, consider the fundamental basis D to be obtained through four updates

at step k + 4.

σD = ET
1 Φ2THTHΦ2E2 − ET

2 Φ2THTHΦ2E1 (B.16)

E1 = CT
1 ΦTHTHΦC2 − CT

2 ΦTHTHΦC1 (B.17)

E2 = CT
1 ΦTHTHΦC3 − CT

3 ΦTHTHΦC1 (B.18)

where E1 and E2 are produced at step k+ 3, and C1, C2 and C3 are produced at step k+ 2.

Substitute (B.17) (B.18) back to (B.16),

σD =(CT
2 ΦTHTHΦC1 − CT

1 ΦTHTHΦC2)Φ2THTHΦ2

· (CT
1 ΦTHTHΦC3 − CT

3 ΦTHTHΦC1)

− (CT
3 ΦTHTHΦC1 − CT

1 ΦTHTHΦC3)Φ2THTHΦ2

· (CT
1 ΦTHTHΦC2 − CT

2 ΦTHTHΦC1) (B.19)

Expanding every elements in (B.19) is tedious, not to mention that even the Ci’s are

produced from matrices Bj’s in the directions at step k + 1. One will need to trace back

even further. Hence, let us just write down the first element in equation (B.19).

CT
2 ΦTHTHΦC1Φ2THTHΦ2CT

1 ΦTHTHΦC3

=
(
HΦC1Φ2THT

) (
HΦ2CT

1 ΦTHT
)
CT

2 ΦTHTHΦC3 (B.20)

C1, C2, and C3 are produced at step k + 2. In particular, define,

C1 = BT
1 H

THB2 −BT
2 H

THB1 (B.21)

And consider the coefficient in equation (B.20),

HΦC1Φ2THT = HΦ
(
BT

1 H
THB2 −BT

2 H
THB1

)
Φ2THT

= (HΦBT
1 H

T )(HB2Φ2THT )− (HΦBT
2 H

T )(HB1Φ2THT ) (B.22)
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Now, pick

B1 =




0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, B2 =




0 0 1 0 0

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




(B.23)

Then,

HΦBT
1 H

T = h1(HΦe2)− h2(HΦe1) (B.24)

HΦBT
2 H

T = h1(HΦe3)− h3(HΦe1) (B.25)

HB1Φ2THT = h1(HΦ2e2)− h2(HΦ2e1) (B.26)

HB2Φ2THT = h1(HΦ2e3)− h3(HΦ2e1) (B.27)

where the lower case of h’s represent the elements of theH matrix, i.e. H =
[
h1 h2 h3 h4 h5

]
.

Substitute (B.24) - (B.27) back into (B.22).

HΦC1Φ2THT =(h1(HΦe2)− h2(HΦe1))(h1(HΦ2e3)− h3(HΦ2e1))

− (h1(HΦe3)− h3(HΦe1))(h1(HΦ2e2)− h2(HΦ2e1)) (B.28)

Then,

HΦC1Φ2THT =h2
1

[
(HΦe2)(HΦ2e3)− (HΦe3)(HΦ2e2)

]

+ h1h2

[
(HΦe3)(HΦ2e1)− (HΦe1)(HΦ2e3)

]

+ h1h3

[
(HΦe1)(HΦ2e2)− (HΦe2)(HΦ2e1)

]
(B.29)

Take this form, and define a set of quantities as,

βijk = hi
[
(HΦej)(HΦ2ek)− (HΦek)(HΦ2ej)

]

+ hj
[
(HΦek)(HΦ2ei)− (HΦei)(HΦ2ek)

]

+ hk
[
(HΦei)(HΦ2ej)− (HΦej)(HΦ2ei)

]
, 1 ≤ i, j, k ≤ 5, i 6= j 6= k (B.30)
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Finally, the fundamental basis D can be constructed as follows.

D =




0 β345 −β245 β235 −β234

−β345 0 β145 −β135 β134

β245 −β145 0 β125 −β124

−β235 β135 −β125 0 β123

β234 −β134 β124 −β123 0




(B.31)

Numerical results show that the D matrix described in (B.31) is the fundamental basis

for five-state case.
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APPENDIX C

Some Derivations of Term Combination Rules for

3-State Cases

Consider a new term at step k. The exponential term is expressed as,

Ek|k = exp
(
−P1|HC1ν| − P2|HC2ν| − ...− Pm−1|HCm−1ν| − Pm|b1ν|+ jζk|kν

)
(C.1)

where Ci, i = 1, 2, ...,m−1, are skew-symmetric matrices, and b1 is another row vector which

cannot be expressed in the HC form.

C.1 Child Terms at step k + 1

After time propagation, the exponential term becomes,

Ek+1|k = exp
(
−P1|HC1ΦTν| − P2|HC2ΦTν| − ...− Pm−1|HCm−1ΦTν|

−Pm|b1ΦTν| − β|ΓTν|+ jζk+1|kν
)

(C.2)

Then at step k + 1, the CF is obtained from the update integral.

φ̄k+1(ν) =

∫ +∞

−∞
G · exp

(
−P1

∣∣HC1ΦTHT
∣∣
∣∣∣∣
HC1ΦTν

HC1ΦTHT
− η
∣∣∣∣− cdots

− Pm−1

∣∣HCm−1ΦTHT
∣∣
∣∣∣∣
HCm−1ΦTν

HCm−1ΦTHT
− η
∣∣∣∣− Pm

∣∣b1ΦTHT
∣∣
∣∣∣∣
b1ΦTν

b1ΦTHT
− η
∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− η
∣∣∣∣− γ |η|+ jzk+1η + jζk+1|k (ν −HTη

))
dη (C.3)
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C.1.1 Ek+1|k+1
i when 1 ≤ i ≤ m− 1

The ith child term when 1 ≤ i ≤ m− 1 has the exponential term expressed as,

Ek+1|k+1
i = exp

(
−P1

∣∣HC1ΦTHT
∣∣
∣∣∣∣
HC1ΦTν

HC1ΦTHT
− HCiΦ

Tν

HCiΦTHT

∣∣∣∣− · · ·

− Pm−1

∣∣HCm−1ΦTHT
∣∣
∣∣∣∣
HCm−1ΦTν

HCm−1ΦTHT
− HCiΦ

Tν

HCiΦTHT

∣∣∣∣

− Pm
∣∣b1ΦTHT

∣∣
∣∣∣∣
b1ΦTν

b1ΦTHT
− HCiΦ

Tν

HCiΦTHT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HCiΦ

Tν

HCiΦTHT

∣∣∣∣− γ
∣∣∣∣
HCiΦ

Tν

HCiΦTHT

∣∣∣∣+ jζ
k+1|k+1
i ν

)
(C.4)

For two 3-dim row vectors b1 = HC1 and b2 = HC2, bT2 b1 − bT1 b2 = σB, and σ =
b1A21bT2
HeT3

.

Then,

Ek+1|k+1
i = exp

(
−
P1 ·

∣∣HC1A21C
T
i H

T
∣∣

|HCiΦTHT | · |HeT3 |
∣∣HΦBΦTν

∣∣− · · ·

−
Pm−1 ·

∣∣HCm−1A21C
T
i H

T
∣∣

|HCiΦTHT | · |HeT3 |
∣∣HΦBΦTν

∣∣

− Pm
|HCiΦTHT |

∣∣HΦ
(
CT
i H

T b1 − bT1HCi
)

ΦTν
∣∣

− β

|HCiΦTHT |
∣∣HΦ

(
CT
i H

TΓTΦ−T − Φ−1ΓHCi
)

ΦTν
∣∣

− γ

|HCiΦTHT |
∣∣HCiΦTν

∣∣+ jζ
k+1|k+1
i ν

)
(C.5)

Combine the first (m− 2) elements. Then,

Ek+1|k+1
i = exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |
∣∣HΦBΦTν

∣∣− Pm
|HCiΦTHT |

∣∣HΦDiΦ
Tν
∣∣

− β

|HCiΦTHT |
∣∣HΦEiΦ

Tν
∣∣− γ

|HCiΦTHT |
∣∣HCiΦTν

∣∣+ jζ
k+1|k+1
i ν

)
(C.6)

where

Di = CT
i H

T b1 − bT1HCi and Ei = CT
i H

TΓTΦ−T − Φ−1ΓHCi (C.7)
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C.1.2 Ek+1|k+1
m

At step k + 1, the mth child term has the exponential term expressed as,

Ek+1|k+1
m = exp

(
−P1

∣∣HC1ΦTHT
∣∣
∣∣∣∣
HC1ΦTν

HC1ΦTHT
− b1ΦTν

b1ΦTHT

∣∣∣∣− · · ·

− Pm−1

∣∣HCm−1ΦTHT
∣∣
∣∣∣∣
HCm−1ΦTν

HCm−1ΦTHT
− b1ΦTν

b1ΦTHT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− b1ΦTν

b1ΦTHT

∣∣∣∣− γ
∣∣∣∣
b1ΦTν

b1ΦTHT

∣∣∣∣+ jζk+1|k+1
m ν

)
(C.8)

Then,

Ek+1|k+1
m = exp

(
− P1

|b1ΦTHT |
∣∣HΦ

(
bT1HC1 − CT

1 H
T b1

)
ΦTν

∣∣− · · ·

− Pm−1

|b1ΦTHT |
∣∣HΦ

(
bT1HCm−1 − CT

m−1H
T b1

)
ΦTν

∣∣

− β

|b1ΦTHT |
∣∣HΦ

(
bT1 ΓTΦ−T − Φ−1Γb1

)
ΦTν

∣∣− γ

|b1ΦTHT |
∣∣b1ΦTν

∣∣+ jζk+1|k+1
m ν

)

(C.9)

As defined earlier, Di = CT
i H

T b1− bT1HCi, i = 1, ...,m− 1. Also define Dgb = bT1 ΓTΦ−T −

Φ−1Γb1. Then Ek+1|k+1
m can be rewrite as follows.

Ek+1|k+1
m = exp

(
− P1

|b1ΦTHT |
∣∣HΦD1ΦTν

∣∣− · · · − Pm−1

|b1ΦTHT |
∣∣HΦDm−1ΦTν

∣∣

− β

|b1ΦTHT |
∣∣HΦDgbΦ

Tν
∣∣− γ

|b1ΦTHT |
∣∣b1ΦTν

∣∣+ jζk+1|k+1
m ν

)
(C.10)

C.1.3 Ek+1|k+1
m+1

At step (k + 1), the (m+ 1)th child term has the exponential term expressed as,

Ek+1|k+1
m+1 = exp

(
−P1

∣∣HC1ΦTHT
∣∣
∣∣∣∣
HC1ΦTν

HC1ΦTHT
− ΓTν

ΓTHT

∣∣∣∣− · · ·

− Pm−1

∣∣HCm−1ΦTHT
∣∣
∣∣∣∣
HCm−1ΦTν

HCm−1ΦTHT
− ΓTν

ΓTHT

∣∣∣∣

− γ

|b1HT |
∣∣b1ΦTHT

∣∣
∣∣∣∣
b1ΦTν

b1ΦTHT
− ΓTν

ΓTHT

∣∣∣∣− γ
∣∣∣∣

ΓTν

ΓTHT

∣∣∣∣+ jζ
k+1|k+1
m+1 ν

)
(C.11)
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Then,

Ek+1|k+1
m+1 = exp

(
− P1

|ΓTHT |
∣∣HΦ

(
Φ−1ΓHC1 − CT

1 H
TΓTΦ−T

)
ΦTν

∣∣− · · ·

− Pm−1

|ΓTHT |
∣∣HΦ

(
Φ−1ΓHCm−1 − CT

m−1H
TΓTΦ−T

)
ΦTν

∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦ

(
Φ−1Γb1 − bT1 ΓTΦ−T

)
ΦTν

∣∣

− γ

|ΓTHT |
∣∣ΓTν

∣∣+ jζ
k+1|k+1
m+1 ν

)
(C.12)

As defined earlier, El = CT
l H

TΓTΦ−T − Φ−1ΓHCl, l = 1, ...,m − 1 and Dgb = bT1 ΓTΦ−T −

Φ−1Γb1. Then Ek+1|k+1
m+1 can be rewrite as follows.

Ek+1|k+1
m+1 = exp

(
− P1

|ΓTHT |
∣∣HΦE1ΦTν

∣∣− ...− Pm−1

|ΓTHT |
∣∣HΦEm−1ΦTν

∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦDgbΦ

Tν
∣∣− γ

|ΓTHT |
∣∣ΓTν

∣∣+ jζ
k+1|k+1
m+1 ν

)
(C.13)

Furthermore, look at the exponential terms at step k + 1 in equation (C.6), (C.10) and

(C.13), one can find the value of Pm in equation (C.1), as Pm = γ
b1HT .

C.2 Grandchild Terms at step k + 2

C.2.1 From Ek+1|k+1
i , 1 ≤ i ≤ m− 1 to Ek+2|k+2

i,1

Consider equation (C.6) at step k + 1. Then, after time propagation, the exponential term

becomes,

Ek+2|k+1
i = exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |
∣∣HΦBΦ2Tν

∣∣−
γ

b1HT

|HCiΦTHT |
∣∣HΦDiΦ

2Tν
∣∣

− β

|HCiΦTHT |
∣∣HΦEiΦ

2Tν
∣∣− γ

|HCiΦTHT |
∣∣HCiΦ2Tν

∣∣− β
∣∣ΓTν

∣∣+ jζ
k+2|k+1
i ν

)

(C.14)
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The CF is obtained from the update integral.

φ̄k+2(ν) =

∫ +∞

−∞
G · exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |
∣∣HΦBΦ2THT

∣∣
∣∣∣∣
HΦBΦ2Tν

HΦBΦ2THT
− η
∣∣∣∣

−
γ

b1HT

|HCiΦTHT |
∣∣HΦDiΦ

2THT
∣∣
∣∣∣∣
HΦDiΦ

2Tν

HΦDiΦ2THT
− η
∣∣∣∣

− β

|HCiΦTHT |
∣∣HΦEiΦ

2THT
∣∣
∣∣∣∣
HΦEiΦ

2Tν

HΦEiΦ2THT
− η
∣∣∣∣

− γ

|HCiΦTHT |
∣∣HCiΦ2THT

∣∣
∣∣∣∣
HCiΦ

2Tν

HCiΦ2THT
− η
∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− η
∣∣∣∣− γ |η|+ jzk+2η + jζ

k+2|k+2
i

(
ν −HTη

))
dη (C.15)

Then the first child term at step k + 2 has the exponential term expressed as follow.

Ek+2|k+2
i,1 = exp

(
−

γ
b1HT

|HCiΦTHT |
∣∣HΦDiΦ

2THT
∣∣
∣∣∣∣
HΦDiΦ

2Tν

HΦDiΦ2THT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣

− β

|HCiΦTHT |
∣∣HΦEiΦ

2THT
∣∣
∣∣∣∣
HΦEiΦ

2Tν

HΦEiΦ2THT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣

− γ

|HCiΦTHT |
∣∣HCiΦ2THT

∣∣
∣∣∣∣
HCiΦ

2Tν

HCiΦ2THT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣+ jζ
k+2|k+2
i,1 ν

)
(C.16)

Note that for two 3-dim row vectors b1 = HC1 and b2 = HC2, bT2 b1 − bT1 b2 = σB, and

σ =
b1A21bT2
HeT3

. In addition, simple algebra shows that

A21H
THΦB−BTΦTHTHA12 = (HΦA21H

T )B (C.17)

where B is the fundamental basis.

Because of linearity, it must hold that for any 3 by 3 skew-symmetric matrix C

CTHTHΦB−BTΦTHTHC = (HΦCTHT )B (C.18)

which has also been verified numerically.
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Therefore, this exponential term can be written as,

Ek+2|k+2
i,1 = exp

(
−

γ
b1HT

|HCiΦTHT | · |HΦBΦ2THT |

∣∣∣∣HΦ

(
HΦDiΦ

TA21ΦBTΦTHT

HeT3

)
BΦTν

∣∣∣∣

− β

|HCiΦTHT | · |HΦBΦ2THT |

∣∣∣∣HΦ

(
HΦEiΦ

TA21ΦBTΦTHT

HeT3

)
BΦTν

∣∣∣∣

− γ

|HCiΦTHT | · |HΦBΦ2THT |
∣∣HCiΦTHT ·HΦ2BΦ2Tν

∣∣

− β

|HΦBΦ2THT |
∣∣H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν
∣∣

− γ

|HΦBΦ2THT |
∣∣HΦBΦ2Tν

∣∣+ jζ
k+2|k+2
i,1 ν

)
(C.19)

Combine the first 2 elements.

Ek+2|k+2
i,1 = exp

(
−

γ
|b1HT | |HΦDiΦ

TA21ΦBTΦTHT |+ β|HΦEiΦ
TA21ΦBTΦTHT |

|HCiΦTHT | · |HΦBΦ2THT | · |HeT3 |
|HΦBΦTν|

− γ

|HΦBΦ2THT |
|HΦ2BΦ2Tν| − β

|HΦBΦ2THT |
|H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν|

− γ

|HΦBΦ2THT |
|HΦBΦ2Tν|+ jζ

k+2|k+2
i,1 ν

)
(C.20)

Di and Ei are defined earlier.

C.2.2 From Ek+1|k+1
i , 1 ≤ i ≤ m− 1 to Ek+2|k+2

i,2

Consider the CF of step k + 2 in equation (C.15). Then the second child term at step k + 2

has the argument of the exponential,

Ek+2|k+2
i,2 = exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | ·
∣∣HeT3

∣∣
∣∣HΦBΦ2THT

∣∣
∣∣∣∣
HΦBΦ2T ν

HΦBΦ2THT
− HΦDiΦ

2T ν

HΦDiΦ2THT

∣∣∣∣

− β

|HCiΦTHT |
∣∣HΦEiΦ

2THT
∣∣
∣∣∣∣
HΦEiΦ

2T ν

HΦEiΦ2THT
− HΦDiΦ

2T ν

HΦDiΦ2THT

∣∣∣∣

− γ

|HCiΦTHT |
∣∣HCiΦ2THT

∣∣
∣∣∣∣
HCiΦ

2T ν

HCiΦ2THT
− HΦDiΦ

2T ν

HΦDiΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓT ν

ΓTHT
− HΦDiΦ

2T ν

HΦDiΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦDiΦ

2T ν

HΦDiΦ2THT

∣∣∣∣+ jζ
k+2|k+2
i,2 ν

)
(C.21)

Because
∣∣∣∣
HΦBΦ2Tν

HΦBΦ2THT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣ =

∣∣HΦDiΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦBΦ2THT | · |HΦDiΦ2THT |

∣∣HΦBΦTν
∣∣

(C.22)
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∣∣∣∣
HΦEiΦ

2Tν

HΦEiΦ2THT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣ =

∣∣HΦDiΦ
TA21ΦET

i ΦTHT
∣∣

|HeT3 | · |HΦEiΦ2THT | · |HΦDiΦ2THT |
∣∣HΦBΦTν

∣∣

(C.23)

And from simple algebra,

DT
i ΦTHTHCi − CT

i H
THΦDi = −

(
HCiΦ

THT
)
·Di (C.24)

Then,

Ek+2|k+2
i,2 = exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |

∣∣HΦDiΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦDiΦ2THT |

∣∣HΦBΦTν
∣∣

− β

|HCiΦTHT |

∣∣HΦDiΦ
TA21ΦET

i ΦTHT
∣∣

|HeT3 | · |HΦDiΦ2THT |
∣∣HΦBΦTν

∣∣

− γ

|HΦDiΦ2THT |
∣∣HΦ2DiΦ

2Tν
∣∣

− β

|HΦDiΦ2THT |
∣∣H
(
Φ2DT

i ΦTHTΓT − ΓHΦDiΦ
2T
)
ν
∣∣

− γ

|HΦDiΦ2THT |
∣∣HΦDiΦ

2Tν
∣∣+ jζ

k+2|k+2
i,2 ν

)
(C.25)

Combine the first 2 elements.

Ek+2|k+2
i,2 = exp

(
−ρ1

∣∣HΦBΦTν
∣∣

− γ

|HΦDiΦ2THT |
∣∣HΦ2DiΦ

2Tν
∣∣

− β

|HΦDiΦ2THT |
∣∣H
(
Φ2DT

i ΦTHTΓT − ΓHΦDiΦ
2T
)
ν
∣∣

− γ

|HΦDiΦ2THT |
∣∣HΦDiΦ

2Tν
∣∣+ jζ

k+2|k+2
i,2 ν

)
(C.26)

where

ρ1 =

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |

∣∣HΦDiΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦDiΦ2THT |

+
β

|HCiΦTHT |

∣∣HΦDiΦ
TA21ΦET

i ΦTHT
∣∣

|HeT3 | · |HΦDiΦ2THT |
(C.27)

and as defined earlier,

Di = CT
i H

T b1 − bT1HCi and Ei = CT
i H

TΓTΦ−T − Φ−1ΓHCi (C.28)
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C.2.3 From Ek+1|k+1
i , 1 ≤ i ≤ m− 1 to Ek+2|k+2

i,3

Again, consider the CF of step k + 2 in equation (C.15). Then the third child term at step

k + 2 has the argument of the exponential,

Ek+2|k+2
i,3 = exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | ·
∣∣HeT3

∣∣
∣∣HΦBΦ2THT

∣∣
∣∣∣∣
HΦBΦ2T ν

HΦBΦ2THT
− HΦEiΦ

2T ν

HΦEiΦ2THT

∣∣∣∣

−
γ

|b1HT |

|HCiΦTHT |
∣∣HΦDiΦ

2THT
∣∣
∣∣∣∣
HΦDiΦ

2T ν

HΦDiΦ2THT
− HΦEiΦ

2T ν

HΦEiΦ2THT

∣∣∣∣

− γ

|HCiΦTHT |
∣∣HCiΦ2THT

∣∣
∣∣∣∣
HCiΦ

2T ν

HCiΦ2THT
− HΦEiΦ

2T ν

HΦEiΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓT ν

ΓTHT
− HΦEiΦ

2T ν

HΦEiΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦEiΦ

2T ν

HΦEiΦ2THT

∣∣∣∣+ jζ
k+2|k+2
i,3 ν

)
(C.29)

Because

∣∣∣∣
HΦBΦ2Tν

HΦBΦ2THT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣ =

∣∣HΦEiΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦBΦ2THT | · |HΦEiΦ2THT |

∣∣HΦBΦTν
∣∣

(C.30)∣∣∣∣
HΦDiΦ

2Tν

HΦDiΦ2THT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣ =

∣∣HΦDiΦ
TA21ΦET

i ΦTHT
∣∣

|HeT3 | · |HΦEiΦ2THT | · |HΦDiΦ2THT |
∣∣HΦBΦTν

∣∣

(C.31)

And

ET
i ΦTHTHCi − CT

i H
THΦEi = −

(
HCiΦ

THT
)
· Ei (C.32)

Substitute equation (C.30) (C.31) and (C.32) back to equation (C.29).

Ek+2|k+2
i,3 = exp


−

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |

∣∣HΦEiΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦEiΦ2THT |

∣∣HΦBΦTν
∣∣

−
γ

|b1HT |

|HCiΦTHT |

∣∣HΦDiΦ
TA21ΦET

i ΦTHT
∣∣

|HeT3 | · |HΦEiΦ2THT |
∣∣HΦBΦTν

∣∣

− γ

|HΦEiΦ2THT |
∣∣HΦ2EiΦ

2Tν
∣∣

− β

|HΦEiΦ2THT |
∣∣H
(
Φ2ET

i ΦTHTΓT − ΓHΦEiΦ
2T
)
ν
∣∣

− γ

|HΦEiΦ2THT |
∣∣HΦEiΦ

2Tν
∣∣+ jζ

k+2|k+2
i,3 ν

)
(C.33)
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Combine the first 2 elements, then,

Ek+2|k+2
i,3 = exp

(
−ρ1

∣∣HΦBΦTν
∣∣

− γ

|HΦEiΦ2THT |
∣∣HΦ2EiΦ

2Tν
∣∣

− β

|HΦEiΦ2THT |
∣∣H
(
Φ2ET

i ΦTHTΓT − ΓHΦEiΦ
2T
)
ν
∣∣

− γ

|HΦEiΦ2THT |
∣∣HΦEiΦ

2Tν
∣∣+ jζ

k+2|k+2
i,3 ν

)
(C.34)

where

ρ1 =

(∑m−1
l=1,l 6=i Pl ·

∣∣HClA21C
T
i H

T
∣∣
)

|HCiΦTHT | · |HeT3 |

∣∣HΦEiΦ
TA21ΦBTΦTHT

∣∣
|HeT3 | · |HΦEiΦ2THT |

+

γ
|b1HT |

|HCiΦTHT |

∣∣HΦDiΦ
TA21ΦET

i ΦTHT
∣∣

|HeT3 | · |HΦEiΦ2THT |
(C.35)

As defined earlier,

Di = CT
i H

T b1 − bT1HCi and Ei = CT
i H

TΓTΦ−T − Φ−1ΓHCi (C.36)

C.2.4 From Ek+1|k+1
m to Ek+2|k+2

m,i for 1 ≤ i ≤ m− 1

At step k + 1, consider the exponential term Ek+1|k+1
m expressed in equation (C.10). After

time propagation, this term becomes,

Ek+2|k+1
m = exp

(
− P1

|b1ΦTHT |
∣∣HΦD1Φ2Tν

∣∣− ...− Pm−1

|b1ΦTHT |
∣∣HΦDm−1Φ2Tν

∣∣

− β

|b1ΦTHT |
∣∣HΦDgbΦ

2Tν
∣∣− γ

|b1ΦTHT |
∣∣b1Φ2Tν

∣∣− β
∣∣ΓTν

∣∣+ jζk+2|k+1
m ν

)

(C.37)
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Then at the (k + 2)th measurement update, the CF is obtained from the update integral.

φ̄k+2(ν) =

∫ +∞

−∞
G · exp

(
− P1

|b1ΦTHT |
∣∣HΦD1Φ2THT

∣∣
∣∣∣∣
HΦD1Φ2Tν

HΦD1Φ2THT
− η
∣∣∣∣− · · ·

− Pm−1

|b1ΦTHT |
∣∣HΦDm−1Φ2THT

∣∣
∣∣∣∣
HΦDm−1Φ2Tν

HΦDm−1Φ2THT
− η
∣∣∣∣

− β

|b1ΦTHT |
∣∣HΦDgbΦ

2THT
∣∣
∣∣∣∣
HΦDgbΦ

2Tν

HΦDgbΦ2THT
− η
∣∣∣∣

− γ

|b1ΦTHT |
∣∣b1Φ2THT

∣∣
∣∣∣∣
b1Φ2Tν

b1Φ2THT
− η
∣∣∣∣− β

∣∣ΓTHT
∣∣
∣∣∣∣

ΓTν

ΓTHT
− η
∣∣∣∣

−γ |η|+ jzk+2η + jζk+2|k+1
m

(
ν −HTη

))
dη (C.38)

Next, find the exponential term of the ith child term at step k + 2 for 1 ≤ i ≤ m − 1, and

denoted as Ek+2|k+2
m,i .

Ek+2|k+2
m,i = exp

(
− P1

|b1ΦTHT |
∣∣HΦD1Φ2THT

∣∣
∣∣∣∣
HΦD1Φ2Tν

HΦD1Φ2THT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣− · · ·

− Pm−1

|b1ΦTHT |
∣∣HΦDm−1Φ2THT

∣∣
∣∣∣∣
HΦDm−1Φ2Tν

HΦDm−1Φ2THT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣

− β

|b1ΦTHT |
∣∣HΦDgbΦ

2THT
∣∣
∣∣∣∣
HΦDgbΦ

2Tν

HΦDgbΦ2THT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣

− γ

|b1ΦTHT |
∣∣b1Φ2THT

∣∣
∣∣∣∣
b1Φ2Tν

b1Φ2THT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦDiΦ

2Tν

HΦDiΦ2THT

∣∣∣∣+ jζ
k+2|k+2
m,i ν

)
(C.39)

Because for l = 1, 2, ...,m− 1, l 6= i,

ΦDT
i ΦTHTHΦDlΦ

T − ΦDT
l ΦTHTHΦDiΦ

T =
HΦDlΦ

TA21ΦDT
i ΦTHT

HeT3
·B (C.40)

And

ΦDT
i ΦTHTHΦDgbΦ

T − ΦDT
gbΦ

THTHΦDiΦ
T =

HΦDgbΦ
TA21ΦDT

i ΦTHT

HeT3
·B (C.41)

In addition,

DT
i ΦTHT b1 − bT1HΦDi =

(
CT
i H

T b1 − bT1HCi
)

ΦTHT b1 − bT1HΦ
(
bT1HCi − CT

i H
T b1

)

= −
(
b1ΦTHT

)
·Di (C.42)
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Substitute equation (C.40) (C.41) and (C.42) back into equation (C.39), and combine the

first (m− 1) elements.

Ek+2|k+2
m,i = exp

(
−ρ2

∣∣HΦBΦTν
∣∣

− γ

|HΦDiΦ2THT |
∣∣HΦ2DiΦ

2Tν
∣∣

− β

|HΦDiΦ2THT |
∣∣H
(
Φ2DT

i ΦTHTΓT − ΓHΦDiΦ
2T
)
ν
∣∣

− γ

|HΦDiΦ2THT |
∣∣HΦDiΦ

2Tν
∣∣+ jζ

k+2|k+2
m,i ν

)
(C.43)

where

ρ2 =

(∑m−1
l=1,l 6=i Pl ·

∣∣HΦDlΦ
TA21ΦDT

i ΦTHT
∣∣
)

|b1ΦTHT | |HΦDiΦ2THT | |HeT3 |
+

β ·
∣∣HΦDgbΦ

TA21ΦDT
i ΦTHT

∣∣
|b1ΦTHT | |HΦDiΦ2THT | |HeT3 |

(C.44)

C.2.5 From Ek+1|k+1
m to Ek+2|k+2

m,m

At step k + 1, consider the CF expressed in equation (C.38). The mth child term at step

k + 2 has the exponential term as,

Ek+2|k+2
m,m = exp

(
− P1

|b1ΦTHT |
∣∣HΦD1Φ2THT

∣∣ ·
∣∣∣∣
HΦD1Φ2Tν

HΦD1Φ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣− · · ·

− Pm−1

|b1ΦTHT |
∣∣HΦDm−1Φ2THT

∣∣ ·
∣∣∣∣
HΦDm−1Φ2Tν

HΦDm−1Φ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣

− γ

|b1ΦTHT |
∣∣b1Φ2THT

∣∣ ·
∣∣∣∣
b1Φ2Tν

b1Φ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣

− β
∣∣ΓTHT

∣∣ ·
∣∣∣∣

ΓTν

ΓTHT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣

−γ
∣∣∣∣
HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣+ jζk+2|k+2
m,m ν

)
(C.45)

Because

∣∣∣∣
HΦDlΦ

2Tν

HΦDlΦ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣ =

∣∣HΦDlΦ
TA21ΦDT

gbΦ
THT

∣∣
|HeT3 | · |HΦDgbΦ2THT | · |HΦDlΦ2THT |

∣∣HΦBΦTν
∣∣

(C.46)

DT
gbΦ

THT b1 − bT1HΦDgb = −
(
b1ΦTHT

)
·Dgb (C.47)
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Then the exponential term can be rewritten as,

Ek+2|k+2
m,m = exp

(
−

P1

∣∣HΦD1ΦTA21ΦDT
gbΦ

THT
∣∣

|b1ΦTHT | · |HΦDgbΦ2THT | · |HeT3 |
∣∣HΦBΦTν

∣∣− · · ·

−
Pm−1

∣∣HΦDm−1ΦTA21ΦDT
gbΦ

THT
∣∣

|b1ΦTHT | · |HΦDgbΦ2THT | · |HeT3 |
∣∣HΦBΦTν

∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦ2DgbΦ

2Tν
∣∣

− β

|HΦDgbΦ2THT |
∣∣H
(
Φ2DT

gbΦ
THTΓT − ΓHΦDgbΦ

2T
)
ν
∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦDgbΦ

2Tν
∣∣+ jζk+2|k+2

m,m ν

)
(C.48)

Combine the first (m-1) elements, then,

Ek+2|k+2
m,m = exp

(
−
∑m−1

l=1

(
Pl
∣∣HΦDlΦ

TA21ΦDT
gbΦ

THT
∣∣)

|b1ΦTHT | · |HΦDgbΦ2THT | · |HeT3 |
∣∣HΦBΦTν

∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦ2DgbΦ

2Tν
∣∣

− β

|HΦDgbΦ2THT |
∣∣H
(
Φ2DT

gbΦ
THTΓT − ΓHΦDgbΦ

2T
)
ν
∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦDgbΦ

2Tν
∣∣+ jζk+2|k+2

m,m ν

)
(C.49)

where

Dl = −bT1HCl + CT
l H

T b1, l = 1, ...,m− 1 (C.50)

Dgb = bT1 ΓTΦ−T − Φ−1Γb1 (C.51)

C.2.6 From Ek+1|k+1
m+1 to Ek+2|k+2

m+1,i for 1 ≤ i ≤ m− 1

At step k + 1, consider the exponential term Ek+1|k+1
m+1 expressed in equation (C.13). After

time propagation, this term becomes,

Ek+2|k+1
m+1 = exp

(
− P1

|ΓTHT |
∣∣HΦE1Φ2Tν

∣∣− · · · − Pm−1

|ΓTHT |
∣∣HΦEm−1Φ2Tν

∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦDgbΦ

2Tν
∣∣− γ

|ΓTHT |
∣∣ΓTΦTν

∣∣− β
∣∣ΓTν

∣∣+ jζ
k+2|k+1
m+1 ν

)

(C.52)
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Then at the (k + 2)th measurement update, the CF is,

φ̄k+2(ν) =

∫ +∞

−∞
G · exp

(
− P1

|ΓTHT |
∣∣HΦE1Φ2THT

∣∣
∣∣∣∣
HΦE1Φ2Tν

HΦE1Φ2THT
− η
∣∣∣∣− · · ·

− Pm−1

|ΓTHT |
∣∣HΦEm−1Φ2THT

∣∣
∣∣∣∣
HΦEm−1Φ2Tν

HΦEm−1Φ2THT
− η
∣∣∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦDgbΦ

2THT
∣∣
∣∣∣∣
HΦDgbΦ

2Tν

HΦDgbΦ2THT
− η
∣∣∣∣

− γ

|ΓTHT |
∣∣ΓTΦTHT

∣∣
∣∣∣∣

ΓTΦTν

ΓTΦTHT
− η
∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− η
∣∣∣∣− γ |η|+ jzk+2η + jζ

k+2|k+1
m+1

(
ν −HTη

))
dη (C.53)

Find the exponential term of the ith child term at step k + 2 when 1 ≤ i ≤ m − 1, and

denoted as Ek+2|k+2
m+1,i .

Ek+2|k+2
m+1,i = exp

(
− P1

|ΓTHT |
∣∣HΦE1Φ2THT

∣∣
∣∣∣∣
HΦE1Φ2Tν

HΦE1Φ2THT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣− · · ·

− Pm−1

|ΓTHT |
∣∣HΦEm−1Φ2THT

∣∣
∣∣∣∣
HΦEm−1Φ2Tν

HΦEm−1Φ2THT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣

− γ

|b1HT | · |ΓTHT |
∣∣HΦDgbΦ

2THT
∣∣
∣∣∣∣
HΦDgbΦ

2Tν

HΦDgbΦ2THT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣

− γ

|ΓTHT |
∣∣ΓTΦTHT

∣∣
∣∣∣∣

ΓTΦTν

ΓTΦTHT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦEiΦ

2Tν

HΦEiΦ2THT

∣∣∣∣+ jζ
k+2|k+2
m+1,i ν

)
(C.54)

When l = 1, 2, ...,m− 1, l 6= i,

ΦET
i ΦTHTHΦElΦ

T − ΦET
l ΦTHTHΦEiΦ

T =
HΦElΦ

TA21ΦET
i ΦTHT

HeT3
·B (C.55)

And

ΦET
i ΦTHTHΦDgbΦ

T − ΦDT
gbΦ

THTHΦEiΦ
T =

HΦDgbΦ
TA21ΦET

i ΦTHT

HeT3
·B (C.56)

In addition,

ET
i ΦTHTΓTΦ−T − Φ−1ΓHΦEi

=
(
CT
i H

TΓTΦ−T − Φ−1ΓHCi
)

ΦTHT b1 − bT1HΦ
(
Φ−1ΓHCi − CT

i H
TΓTΦ−T

)

=
(
ΓTHT

)
·
(
CT
i H

TΓTΦ−T − Φ−1ΓHCi
)

= −
(
ΓTHT

)
· Ei (C.57)
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Substitute equation (C.55) (C.56) and (C.57) back into equation (C.54), and combine the

first (m− 1) elements.

Ek+2|k+2
m+1,i = exp

(
−ρ2

∣∣HΦBΦTν
∣∣

− γ

|HΦEiΦ2THT |
∣∣HΦ2EiΦ

2Tν
∣∣

− β

|HΦEiΦ2THT |
∣∣H
(
Φ2ET

i ΦTHTΓT − ΓHΦEiΦ
2T
)
ν
∣∣

− γ

|HΦEiΦ2THT |
∣∣HΦEiΦ

2Tν
∣∣+ jζ

k+2|k+2
m+1,i ν

)
(C.58)

where

ρ2 =

(∑m−1
l=1,l 6=i Pl ·

∣∣HΦElΦ
TA21ΦET

i ΦTHT
∣∣
)

|ΓTHT | |HΦEiΦ2THT | |HeT3 |
+

γ ·
∣∣HΦDgbΦ

TA21ΦET
i ΦTHT

∣∣
|b1HT | · |ΓTHT | · |HΦEiΦ2THT | · |HeT3 |

(C.59)

C.2.7 From Ek+1|k+1
m+1 to Ek+2|k+2

m+1,m

At step k + 1, consider the CF expressed in equation (C.53). The mth child term at step

k + 2 has the exponential term as,

Ek+2
m+1,m = exp

(
− P1

|ΓTHT |
∣∣HΦE1Φ2THT

∣∣
∣∣∣∣
HΦE1Φ2Tν

HΦE1Φ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣− · · ·

− Pm−1

|ΓTHT |
∣∣HΦEm−1Φ2THT

∣∣
∣∣∣∣
HΦEm−1Φ2Tν

HΦEm−1Φ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣

− γ

|ΓTHT |
∣∣ΓTΦTHT

∣∣
∣∣∣∣

ΓTΦTν

ΓTΦTHT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣+ jζ
k+2|k+2
m+1,m ν

)

(C.60)

Because,
∣∣∣∣
HΦElΦ

2Tν

HΦElΦ2THT
− HΦDgbΦ

2Tν

HΦDgbΦ2THT

∣∣∣∣ =

∣∣HΦElΦ
TA21ΦDT

gbΦ
THT

∣∣
|He3| · |HΦDgbΦ2THT | · |HΦElΦ2THT |

∣∣HΦBΦTν
∣∣

(C.61)

and

DT
gbΦ

THTΓTΦ−T − Φ−1ΓHΦDgb = −
(
ΓTHT

)
·Dgb (C.62)
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Then the exponential term can be rewritten as,

Ek+2|k+2
m+1,m = exp

(
−

P1

∣∣HΦE1ΦTA21ΦDT
gbΦ

THT
∣∣

|ΓTHT | · |He3| · |HΦDgbΦ2THT |
∣∣HΦBΦTν

∣∣− · · ·

−
Pm−1

∣∣HΦEm−1ΦTA21ΦDT
gbΦ

THT
∣∣

|ΓTHT | · |He3| · |HΦDgbΦ2THT |
∣∣HΦBΦTν

∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦ2DgbΦ

2Tν
∣∣

− β

|HΦDgbΦ2THT |
∣∣H
(
Φ2DT

gbΦ
THTΓT − ΓHΦDgbΦ

2T
)
ν
∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦDgbΦ

2Tν
∣∣ (C.63)

Combine the first (m− 1) elements.

Ek+2|k+2
m+1,m = exp

(
−
∑m−1

l=1

(
Pl
∣∣HΦElΦ

TA21ΦDT
gbΦ

THT
∣∣)

|ΓTHT | · |He3| · |HΦDgbΦ2THT |
∣∣HΦBΦTν

∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦ2DgbΦ

2Tν
∣∣

− β

|HΦDgbΦ2THT |
∣∣H
(
Φ2DT

gbΦ
THTΓT − ΓHΦDgbΦ

2T
)
ν
∣∣

− γ

|HΦDgbΦ2THT |
∣∣HΦDgbΦ

2Tν
∣∣ (C.64)

where

El = Φ−1ΓHCl − CT
l H

TΓTΦ−T , l = 1, ...,m− 1 (C.65)

and

Dgb = Φ−1Γb1 − bT1 ΓTΦ−T (C.66)

C.3 Terms at Step k + 3

C.3.1 From Ek+2|k+2
i,1 to Ek+3|k+3

i,1,1

Consider the term Ek+2|k+2
i,1 at step k + 2, and find its first child term Ek+3|k+3

i,1,1 at step k + 3.

For convenience, rewrite Ek+2|k+2
i,1 as,

Ek+2|k+2
i,1 = exp

(
−ρ1|HΦBΦTν| − ρ2|HΦ2BΦ2Tν| − ρ3|HCν| − ρ4|HΦBΦ2Tν|+ jζ

k+2|k+2
i,1 ν

)

(C.67)
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where

ρ1 =

γ
|b1HT | |HΦDiΦ

TA21ΦBTΦTHT |+ β|HΦEiΦ
TA21ΦBTΦTHT |

|HCiΦTHT | · |HΦBΦ2THT | · |HeT3 |
(C.68)

ρ2 = ρ4 =
γ

|HΦBΦ2THT |
(C.69)

ρ3 =
β

|HΦBΦ2THT |
(C.70)

C = Φ2BTΦTHTΓT − ΓHΦBΦ2T (C.71)

After the propagation, the exponential term becomes,

Ek+3|k+2
i,1 = exp

(
−ρ1|HΦBΦ2Tν| − ρ2|HΦ2BΦ3Tν| − ρ3|HCΦTν|

−ρ4|HΦBΦ3Tν| − β|ΓTν|+ jζ
k+3|k+2
i,1 ν

)
(C.72)

The CF can be obtained from the update integral.

φ̄k+3(ν) =

∫ +∞

−∞
G · exp

(
−ρ1

∣∣HΦBΦ2THT
∣∣
∣∣∣∣
HΦBΦ2Tν

HΦBΦ2THT
− η
∣∣∣∣

− ρ2

∣∣HΦ2BΦ3THT
∣∣
∣∣∣∣
HΦ2BΦ3Tν

HΦ2BΦ3THT
− η
∣∣∣∣− ρ3

∣∣HCΦTHT
∣∣
∣∣∣∣
HCΦTν

HCΦTHT
− η
∣∣∣∣

− ρ4

∣∣HΦBΦ3THT
∣∣
∣∣∣∣
HΦBΦ3Tν

HΦBΦ3THT
− η
∣∣∣∣− β

∣∣ΓTHT
∣∣
∣∣∣∣

ΓTν

ΓTHT
− η
∣∣∣∣

−γ|η|+ jzk+3η + jζ
k+3|k+2
i,1

(
ν −HTη

))
dη (C.73)

Then, the first child term at step k + 3 will have the exponential term expressed as,

Ek+3|k+3
i,1,1 = exp

(
−ρ2

∣∣HΦ2BΦ3THT
∣∣
∣∣∣∣
HΦ2BΦ3Tν

HΦ2BΦ3THT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣

− ρ3

∣∣HCΦTHT
∣∣
∣∣∣∣
HCΦTν

HCΦTHT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣

− ρ4

∣∣HΦBΦ3THT
∣∣
∣∣∣∣
HΦBΦ3Tν

HΦBΦ3THT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣

−β
∣∣ΓTHT

∣∣
∣∣∣∣

ΓTν

ΓTHT
− HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣− γ
∣∣∣∣
HΦBΦ2Tν

HΦBΦ2THT

∣∣∣∣+ jζ
k+3|k+3
i,1 ν

)
(C.74)
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Then,

Ek+3|k+3
i,1,1 = exp

(
− ρ2

|HΦBΦ2THT |
∣∣HΦ

(
ΦBTΦTHTHΦ2BΦ2T − Φ2BTΦ2THTHΦBΦT

)
ΦTν

∣∣

− ρ3

|HΦBΦ2THT |
∣∣HΦ

(
ΦBTΦTHTHC − CTHTHΦBΦT

)
ΦTν

∣∣

− ρ4

|HΦBΦ2THT |
∣∣HΦ2

(
BTΦTHTHΦBΦT − ΦBTΦTHTHΦB

)
Φ2Tν

∣∣

− β

|HΦBΦ2THT |
∣∣H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν
∣∣

− γ

|HΦBΦ2THT |
∣∣HΦBΦ2Tν

∣∣+ jζ
k+3|k+3
i,1 ν

)
(C.75)

Because

ΦBTΦTHTHΦ2BΦ2T − Φ2BTΦ2THTHΦBΦT =
HΦ2BΦ2TA21ΦBTΦTHT

HeT3
·B (C.76)

ΦBTΦTHTHC − CTHTHΦBΦT =
HCA21ΦBTΦTHT

HeT3
·B (C.77)

And let C in equation (C.18) equal to ΦBΦT . Hence,

BTΦTHTHΦBΦT − ΦBTΦTHTHΦB = −
(
HΦBΦ2THT

)
·B (C.78)

Substitute equation (C.76) (C.77) and (C.78) back to the exponential term expressed in

equation (C.75), and combine the first two elements.

Ek+3|k+3
i,1,1 = exp

(
−
ρ2

∣∣HΦ2BΦ2TA21ΦBTΦTHT
∣∣+ ρ3

∣∣HCA21ΦBTΦTHT
∣∣

|HΦBΦ2THT | · |HeT3 |
∣∣HΦBΦTν

∣∣

− ρ4

∣∣HΦ2BΦ2Tν
∣∣− β

|HΦBΦ2THT |
∣∣H
(
Φ2BTΦTHTΓT − ΓHΦBΦ2T

)
ν
∣∣

− γ

|HΦBΦ2THT |
∣∣HΦBΦ2Tν

∣∣+ jζ
k+3|k+3
i,1 ν

)
(C.79)

where

ρ2 = ρ4 =
γ

|HΦBΦ2THT |
(C.80)

ρ3 =
β

|HΦBΦ2THT |
(C.81)
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APPENDIX D

Proof of Lemma 4.3.2

When the top right corner of Sk+1 is discussed to derive the recursion of S matrix, Lemma

4.3.2 is introduced. This lemma states that,

Lemma 4.3.2 Consider the exponential part of the ith term, Ek−1|k−1
i , at step k− 1 and the

mth term, Ek−1|k−1
m at step k − 1, then the lth child term at step k of Ek−1|k−1

i and the pth

child term at step k of Ek−1|k−1
m can be combined if and only if the lth grandchild term at step

k + 1 of the old child term Ek|ki,old at step k and the pth grandchild term at step k + 1 of the

old child term Ek|km,old at step k can be combined, i.e.

Ek|ki,l = Ek|km,p if and only if Ek+1|k+1
i,old,l = Ek+1|k+1

m,old,p (D.1)

Proof. At step k − 1, consider the ith exponential term,

Ek−1|k−1
i = exp

(
−P1|B1ν| − ...− PNk−1|k−1

ei
|B

N
k−1|k−1
ei

ν|+ jζ
k−1|k−1
i ν

)
(D.2)

where N
k−1|k−1
ei is the number of elements in the argument of the exponential term.

After time propagation and measurement update, at step k, the exponential part of the

lth child term can be derived as,

Ek|ki,l = exp

(
−P1|B1ΦTHT |

∣∣∣∣
B1ΦTν

B1ΦTHT
− BlΦ

Tν

BlΦTHT

∣∣∣∣− ...

− P
N
k−1|k−1
ei

|B
N
k−1|k−1
ei

ΦTHT |

∣∣∣∣∣
B
N
k−1|k−1
ei

ΦTν

B1ΦTHT
− BlΦ

Tν

BlΦTHT

∣∣∣∣∣

−β|ΓTHT |
∣∣∣∣

ΓTν

ΓTHT
− BlΦ

Tν

BlΦTHT

∣∣∣∣− γ
∣∣∣∣−

BlΦ
Tν

BlΦTHT

∣∣∣∣+ jζ
k|k
i,l ν

)
(D.3)

and the first N
k−1|k−1
ei child directions in equation (D.3) are co-aligned with HA. According

to term combination rules, the last two child terms of Ek−1|k−1
i never combine. Thus one
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only needs to look at the first N
k−1|k−1
ei child terms, where only the parent directions in the

form of BlΦ
T ν

BlΦTHT for 1 ≤ l ≤ N
k−1|k−1
ei are being considered.

Define BT
l Bi − BT

i Bl = θi · A, BT
l ΓTΦ−T − Φ−1ΓBl = θ

N
k−1|k−1
ei +1

· HA, and define

P
N
k−1|k−1
ei +1

= β. From simple algebra, we know that HΦAΦT = det(Φ) ·HA. Combine the

directions of (D.3) except the last one, the exponential part then can be expressed as,

Ek|ki,l = exp

(
−Q1|HAν| − γ

∣∣∣∣−
BlΦ

Tν

BlΦTHT

∣∣∣∣+ jζ
k|k
i,l ν

)
(D.4)

where

Q1 =
| det(Φ)|
|BlΦTHT |





N
k−1|k−1
ei +1∑

q=1,q 6=l

Pq · |θq|



 (D.5)

Similarly, the mth exponential term at step k − 1 is expressed as,

Ek−1|k−1
m = exp

(
−M1|C1ν| − ...−MN

k−1|k−1
em

|C
N
k−1|k−1
em

ν|+ jζk−1|k−1
m ν

)
(D.6)

Write down the exponential part of the pth child term at step k of the mth term at step

k − 1 as,

Ek|km,p = exp

(
−Q2|HAν| − γ

∣∣∣∣−
ClΦ

Tν

ClΦTHT

∣∣∣∣+ jζk|km,pν

)
(D.7)

where

Q2 =
| det(Φ)|
|ClΦTHT |




N
k−1|k−1
em +1∑

q=1,q 6=l

Mq · |ϑq|



 (D.8)

and CT
l Ci−CT

i Cl = ϑi ·A, CT
l ΓTΦ−T−Φ−1ΓCl = ϑ

N
k−1|k−1
em +1

·HA, and define M
N
k−1|k−1
em +1

=

β.

There are in total N
k−1|k−1
ei + 2 child terms at step k. The last child term is the old child

term, whose exponential part is represented as Ek|ki,old. And,

Ek|ki,old = exp
(
−P1|B1ΦTν| − ...− P

N
k−1|k−1
ei

|B
N
k−1|k−1
ei

ΦTν| − β|ΓTΦTν|+ jζ
k|k
i,oldν

)
(D.9)
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Then after time propagation and measurement, at step k+ 1, the exponential part of the

lth child term is,

Ek+1|k+1
i,old,l = exp

(
−P1|B1Φ2THT |

∣∣∣∣
B1Φ2Tν

B1Φ2THT
− BlΦ

2Tν

BlΦ2THT

∣∣∣∣− ...

− P
N
k−1|k−1
ei

|B
N
k−1|k−1
ei

Φ2THT |

∣∣∣∣∣
B
N
k−1|k−1
ei

Φ2Tν

B1Φ2THT
− BlΦ

2Tν

BlΦ2THT

∣∣∣∣∣

− β|ΓTΦTHT |
∣∣∣∣

ΓTΦTν

ΓTΦTHT
− BlΦ

2Tν

BlΦ2THT

∣∣∣∣

−β|ΓTHT |
∣∣∣∣

ΓTν

ΓTHT
− BlΦ

2Tν

BlΦ2THT

∣∣∣∣− γ
∣∣∣∣−

BlΦ
2Tν

BlΦ2THT

∣∣∣∣+ jζ
k+1|k+1
i,old,l ν

)
(D.10)

Combine the first N
k−1|k−1
ei + 1 elements,

Ek+1|k+1
i,old,l = exp

(
−N1|HAν| − γ

∣∣∣∣−
BlΦ

2Tν

BlΦ2THT

∣∣∣∣+ jζ
k+1|k+1
i,old,l ν

)
(D.11)

where

N1 =
| det(Φ)|2

|BlΦ2THT |





N
k−1|k−1
ei +1∑

q=1,q 6=l

Pq · |θq|



+

β| det(Φ)| · |θ
N
k−1|k−1
ei +1

|
|BlΦ2THT |

=
| det(Φ)| · |BlΦ

THT |
|BlΦ2THT |

·Q1 +
β| det(Φ)| · |θ

N
k−1|k−1
ei +1

|
|BlΦ2THT |

(D.12)

And the grandchild term Ek+1|k+1
m,old,p is,

Ek+1|k+1
m,old,p = exp

(
−N2|HAν| − γ

∣∣∣∣−
ClΦ

2Tν

ClΦ2THT

∣∣∣∣+ jζ
k+1|k+1
m,old,p ν

)
(D.13)

where

N2 =
| det(Φ)|2

|ClΦ2THT |




N
k−1|k−1
em +1∑

q=1,q 6=l

Mq · |ϑq|



+

β| det(Φ)| · |θ
N
k−1|k−1
em +1

|
|ClΦ2THT |

=
| det(Φ)| · |ClΦTHT |
|ClΦ2THT |

·Q2 +
β| det(Φ)| · |ϑ

N
k−1|k−1
em +1

|
|ClΦ2THT |

(D.14)

Now, look at (D.4), (D.7), (D.11) and (D.13). As mentioned before, we are only interested

in the real part of the exponential terms, because the imaginary part will match whenever

the real part of two exponential terms are identical.
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If Ek|ki,l = Ek|km,p, then Q1 = Q2, and Bl and Cl are parallel, i.e. there exists a scalar s such

that Bl = sCl. Then N1 = N2, and hence Ek+1|k+1
i,old,l = Ek+1|k+1

m,old,p .

If Ek+1|k+1
i,old,l = Ek+1|k+1

m,old,p , then N1 = N2, and Bl and Cl are parallel. Therefore Q1 = Q2,

and hence Ek|ki,l = Ek|km,p.
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APPENDIX E

Updating R in Each Layer of G Terms for 2-State Case

The recursion of R in the G terms in equation (5.1) for n-state systems has been presented

in general in Chapter 2. For two-state case, this appendix chapter provides a clear algorithm

for the recursion explicitly. It is obtained utilizing the directions co-alignment and terms

combination properties that has been discussed in previous chapters. It is interesting to

notice that a large part of the recursion for two-state cases will preserve when extended to

higher-order cases. The only major difference of this recursive structure among different

system dimensions is how to combine directions onto the fundamental basis. And this only

effects the sign function part of the structure in each layer.

The implementation of layer update will be initialized at the first measurement update,

and then be generalized to step k in a recursive manner.

E.1 1st Measurement Update

At the 1st measurement update, there are 3 terms, initialized as follows.

E.1.1 The First Term i.e. i = 1

ρ
(1)
o1 (i = 1) =

[
α1

∣∣e1H
T
∣∣] , ρ

(1)
c1 (i = 1) =

[
α2

(
e2H

T
)
· sgn(e1H

T ), γ
]

(E.1)

F
(1)
o1 (i = 1) =

[
1 −1

]
, F

(1)
c1 (i = 1) =


s1 s1

s2 s2


 (E.2)

where s1 = sgn(HAν), s2 = sgn(− e1ν
e1HT ).
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E.1.2 The Second Term i.e. i = 2

ρ
(1)
o1 (i = 2) =

[
α2

∣∣e2H
T
∣∣] , ρ

(1)
c1 (i = 2) =

[
α1

(
e1H

T
)
· sgn(−e2H

T ), γ
]

(E.3)

F
(1)
o1 (i = 2) =

[
1 −1

]
, F

(1)
c1 (i = 2) =


s1 s1

s2 s2


 (E.4)

where s1 = sgn(HAν), s2 = sgn(− e2ν
e2HT ).

E.1.3 The Third Term i.e. i = 3

ρ
(1)
o1 (i = 3) = [γ] , ρ

(1)
c1 (i = 3) =

[
α1

(
e1H

T
)
, α2

(
e2H

T
)]

(E.5)

F
(1)
o1 (i = 3) =

[
1 −1

]
, F

(1)
c1 (i = 3) =


s1 s1

s2 s2


 (E.6)

where s1 = sgn(e1ν), s2 = sgn(e2ν).

E.2 From Step k to Step k + 1

At step k, assume the general form of the exponential part as follow. This term can be either

new term or an old term. The number of directions is notated as Ne.

Ek|k = exp
(
−P k|k

1

∣∣∣Bk|k
1 ν

∣∣∣− P k|k
2

∣∣∣Bk|k
2 ν

∣∣∣− · · · − P k|k
Ne

∣∣∣Bk|k
Ne
ν
∣∣∣+ jζk|kν

)
(E.7)

At each layer of the G part, the sequence ρ and the matrix F are split into two compo-

nents. ρ
(m)
ok and F

(m)
ok are associated with the offsets, and ρ

(m)
ck and F

(m)
ck are associated with

the coefficients of the sign functions.

R
(m)
k =

[
ρ

(m)
ok | ρ

(m)
ck

]
×




F
(m)
ok

−−−−

F
(m)
ck


 , 1 ≤ m ≤ k (E.8)
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Suppose ρ
(m)
ok ∈ R1×r and ρ

(m)
ck ∈ R1×q, then

F
(m)
ok =




1 −1 1 −1 · · ·

1 1 −1 −1 · · ·
...

1 1 1 1 · · ·



∈ Rr×2k+1−m

(E.9)

F
(m)
ck =




s1 · · · s1

...
...

sq · · · sq


 ∈ Rq×2k+1−m

, q ≤ Ne (E.10)

At step k + 1, there will be (k + 1) layers in the G part of the child terms. The top k

layers can be expressed in terms of the layers of its parent term at step k, while the bottom

layer directly comes from the exponential parts.

E.2.1 The Top k Layer i.e. 1 ≤ m ≤ k

The top k layers at step k + 1 are updated from the layers at step k. The offset part of

ρ
(m)
k , i.e. ρ

(m)
ok will either stay the same or add a new offset to the end of the sequence. For

two-state systems, all the child directions that are produced from any two non-zero parent

directions is co-aligned with the HA direction. Therefore, the sign function component of

ρ
(m)
k , i.e. ρ

(m)
ck for new child terms will be either empty or contain only one element.

For convenience of direction combination, define

tl = sgn




(
BlΦ

T

BlΦTHT − BiΦ
T

BiΦTHT

)
eT1

(HA)eT1


 , l < i (E.11)

and

tl = sgn




(
Bl+1ΦT

Bl+1ΦTHT − BiΦ
T

BiΦTHT

)
eT1

(HA)eT1


 , i ≤ l ≤ Ne (E.12)

Due to the propagation, BNe+1 = ΓTΦ−T , PNe+1 = β.
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E.2.1.1 The child terms when 1 ≤ i ≤ q

Consider the first q child terms. In F
(m)
ck , there are q sign functions, from s1 to sq. Hence

for the ith child term, the coefficient of si, i.e. ρ
(m)
ck,i will be pulled out to compute the new

offset. The rest coefficients of sign functions will be combined.

For two-state system, consider the any layer except the bottom one. When q = 1 this

is a new parent term. The corresponding layers of the first child term will not contain sign

function component of ρ, i.e. ρ
(m)
c(k+1) will be empty. When q > 1, this is an old parent term.

To produce new child terms, the element in ρ
(m)
ck will collapse and ρ

(m)
c(k+1) should only contain

one element.

ρ
(m)
o(k+1) =

[
ρ

(m)
ok , ρ

(m)
ck,i · sgn

(
BiΦ

THT
)]
, ρ

(m)
c(k+1) = q1 (E.13)

where

q1 =ρ
(m)
ck,1sgn

(
B1ΦTHT

)
· t1 + · · ·+ ρ

(m)
ck,i−1sgn

(
Bi−1ΦTHT

)
· ti−1 + ρ

(m)
ck,i+1sgn

(
Bi+1ΦTHT

)
· ti

+ · · ·+ ρ
(m)
ck,qsgn

(
BqΦ

THT
)
· tq−1 (E.14)

If q = 1, q1 is not valid. Hence ρ
(m)
c(k+1) is empty, i.e. ρ

(m)
c(k+1) = [ ].

The F matrix is straightforward.

F
(m)
o(k+1) =




F
(m)
ok | F

(m)
ok

−−−− + −−−−

1 · · · 1 | −1 · · · − 1


 ∈ R(r+1)×2k+2−m

(E.15)

and

F
(m)
c(k+1) =

[
s1 s1 · · · s1

]
∈ R1×2k+2−m

(E.16)

E.2.1.2 The child terms when q + 1 ≤ i ≤ Ne + 1

Because the sign function only goes from s1 to sq, the ith child term at step (k + 1) when

q + 1 ≤ i ≤ Ne + 1 will not change the offset component of ρ at step k.
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ρ
(m)
o(k+1) = ρ

(m)
ok (E.17)

and

F
(m)
o(k+1) =

[
F

(m)
ok | F

(m)
ok

]
∈ Rr×2k+2−m

(E.18)

The sign function component of ρ involves direction combination.

ρ
(m)
c(k+1) = ρ

(m)
ck,1sgn

(
B1ΦTHT

)
· t1 + · · ·+ ρ

(m)
ck,qsgn

(
BqΦ

THT
)
· tq (E.19)

And

F
(m)
c(k+1) =

[
s1 s1 · · · s1

]
∈ R1×2k+2−m

(E.20)

E.2.1.3 The child terms when i = Ne + 2 (old)

The offset component of ρ stays the same.

ρ
(m)
o(k+1) = ρ

(m)
ok , F

(m)
o(k+1) =

[
F

(m)
ok | F

(m)
ok

]
∈ Rr×2k+2−m

(E.21)

The sign function component of ρ also remain the same structure. In this case, only the

value of s1, ..., sq change.

ρ
(m)
c(k+1) = ρ

(m)
ck , F

(m)
c(k+1) =

[
F

(m)
ck | F

(m)
ck

]
∈ Rq×2k+2−m

(E.22)

where the new sign functions are s1 = sgn
(
B1ΦTν

)
, s2 = sgn

(
B2ΦTν

)
, ..., sq = sgn

(
BqΦ

Tν
)
.

E.2.2 The Bottom Layer i.e m = k + 1

For the bottom layer, we consider two scenarios separately. When 1 ≤ i ≤ Ne + 1, the ith

child term is a new term. The bottom layer will contain only three elements in ρ, among

which one is offset, the other two of them are coefficients of sign functions. When i = Ne+2,

the ith child term at step k + 1 is an old term. The number of elements in ρ for the bottom

layer will be Ne + 2.
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E.2.2.1 New child terms when 1 ≤ i ≤ Ne + 1

ρ
(k+1)
o(k+1) =

[
Pi
∣∣BiΦ

THT
∣∣
]
, ρ

(k+1)
c(k+1) =

[
q3, γ

]
(E.23)

F
(k+1)
o(k+1) =

[
1 −1

]
, F

(k+1)
c(k+1) =


s1 s1

s2 s2


 (E.24)

where the sign functions are s1 = sgn (HAν), and s2 = sgn
(
− BiΦ

T ν
BiΦTHT

)
. And

q3 =P1

∣∣B1ΦTHT
∣∣ · t1 + · · ·+ Pi−1

∣∣Bi−1ΦTHT
∣∣ · ti−1

+ Pi+1

∣∣Bi+1ΦTHT
∣∣ · ti + · · ·+ PNe+1

∣∣BNe+1ΦTHT
∣∣ · tNe (E.25)

E.2.2.2 Old child terms when i = Ne + 2

ρ
(k+1)
o(k+1) = γ, ρ

(k+1)
c(k+1) =

[
P1

(
B1ΦTHT

)
, · · · , PNe

(
BNeΦ

THT
)
, β

(
ΓTHT

)]
(E.26)

F
(k+1)
o(k+1) =

[
1 −1

]
, F

(k+1)
c(k+1) =




s1 s1

s2 s2

...

sNe+1 sNe+1




(E.27)

where the sign functions are s1 = sgn
(
B1ΦTν

)
, s2 = sgn

(
B2ΦTν

)
, ..., sNe = sgn

(
BNeΦ

Tν
)
,

sNe+1 = sgn
(
ΓTν

)
.
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APPENDIX F

Updating R in Each Layer of G Terms for 3-State Case

In this appendix chapter, an explicit, analytic structure for updating R in each layer of G

terms in equation (5.1) for three-state systems is presented. The derivation is based on the

understanding of fundamental properties of the Cauchy estimator that have been elaborated

in main chapters. In following sections, the G layer update will be initialized at the first

update, and then be generalized to step k in a recursive manner.

F.1 1st Measurement Update

The characteristic function of the unconditioned initial states φx1(ν) is,

φX1(ν) = exp [−α1 |e1ν| − α2 |e2ν| − α3 |e3ν|] (F.1)

where e1 = [1 0 0], e2 = [0 1 0], and e2 = [0 0 1].

At the 1st measurement update, the CF is,

φ̄X1|Z1(ν) =
1

2π

∫ ∞

−∞
φX1(z1 −Hx1)φV (−η)ejz1ηdη

=
1

2π

∫ ∞

−∞
exp

[
−α1

∣∣e1H
T
∣∣
∣∣∣∣
e1ν

e1HT
− η
∣∣∣∣− α2

∣∣e2H
T
∣∣
∣∣∣∣
e2ν

e2HT
− η
∣∣∣∣

−α3

∣∣e3H
T
∣∣
∣∣∣∣
e3ν

e3HT
− η
∣∣∣∣− γ |−η|+ jz1η

]
dη

=
4∑

i=1

G
1|1
i (ν) · E1|1(ν) (F.2)
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There are four terms in the sum. The exponential part of these four terms are,

E1|1
1 (ν) = exp

[
− α2

|e1HT |
|HA1ν| −

α3

|e1HT |
|HA2ν| − γ

∣∣∣∣−
e1ν

e1HT

∣∣∣∣+ jz1
e1ν

e1HT
ν

]
(F.3)

E1|1
2 (ν) = exp

[
− α1

|e2HT |
|HA1ν| −

α3

|e2HT |
|HA3ν| − γ

∣∣∣∣−
e2ν

e2HT

∣∣∣∣+ jz1
e2ν

e2HT
ν

]
(F.4)

E1|1
3 (ν) = exp

[
− α1

|e3HT |
|HA2ν| −

α2

|e3HT |
|HA3ν| − γ

∣∣∣∣−
e3ν

e3HT

∣∣∣∣+ jz1
e3ν

e3HT
ν

]
(F.5)

E1|1
4 (ν) = exp [−α1 |e1ν| − α2 |e2ν| − α3 |e3ν|] (F.6)

where Ai is produced from the initial directions e1, e2, and e3.

A1 =




0 1 0

−1 0 0

0 0 0


 , A2 =




0 0 1

0 0 0

−1 0 0


 , A3 =




0 0 0

0 0 1

0 −1 0


 (F.7)

Consider the G part of the first term.

G
1|1
1 (ν)

=
1

2π


1

jz1 + α1

∣∣e1HT ∣∣ + α2

∣∣e2HT ∣∣ sgn( e2ν

e2H
T −

e1ν

e1H
T

)
+ α3

∣∣e3HT ∣∣ sgn( e3ν

e3H
T −

e1ν

e1H
T

)
+ γsgn

(
0− e1ν

e1H
T

)

−
1

jz1 − α1

∣∣e1HT ∣∣ + α2

∣∣e2HT ∣∣ sgn( e2ν

e2H
T −

e1ν

e1H
T

)
+ α3

∣∣e3HT ∣∣ sgn( e3ν

e3H
T −

e1ν

e1H
T

)
+ γsgn

(
0− e1ν

e1H
T

)
 (F.8)

=
1

2π


1

jz1 + α1

∣∣e1HT ∣∣ + α2(e2HT )sgn
(
e1HT

)
sgn (HA1ν) + α3(e3HT )sgn

(
e1HT

)
sgn (HA2ν) + γsgn

(
− e1ν

e1H
T

)

−
1

jz1 − α1

∣∣e1HT ∣∣ + α2(e2HT )sgn
(
e1HT

)
sgn (HA1ν) + α3(e3HT )sgn

(
e1HT

)
sgn (HA2ν) + γsgn

(
− e1ν

e1H
T

)
 (F.9)

The G part of other terms can also be derived via the same procedure.

G
1|1
2 (ν) =

1

2π


1

jz1 + α2

∣∣e2HT ∣∣ + α1(e1HT )sgn
(
−e2HT

)
sgn (HA1ν) + α3(e3HT )sgn

(
e2HT

)
sgn (HA3ν) + γsgn

(
− e2ν

e2H
T

)

−
1

jz1 − α2

∣∣e2HT ∣∣ + α1(e1HT )sgn
(
−e2HT

)
sgn (HA1ν) + α3(e3HT )sgn

(
e2HT

)
sgn (HA3ν) + γsgn

(
− e2ν

e2H
T

)
 (F.10)

G
1|1
3 (ν) =

1

2π


1

jz1 + α3

∣∣e3HT ∣∣ + α1(e1HT )sgn
(
−e3HT

)
sgn (HA2ν) + α2(e2HT )sgn

(
−e3HT

)
sgn (HA3ν) + γsgn

(
− e3ν

e3H
T

)

−
1

jz1 − α3

∣∣e3HT ∣∣ + α1(e1HT )sgn
(
−e3HT

)
sgn (HA2ν) + α2(e2HT )sgn

(
−e3HT

)
sgn (HA3ν) + γsgn

(
− e3ν

e3H
T

)
 (F.11)
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G
1|1
4 (ν) =

1

2π

{
1

jz1 + γ + α1(e1HT )sgn (e1ν) + α2(e2HT )sgn (e2ν) + α3(e3HT )sgn (e3ν)

− 1

jz1 − γ + α1(e1HT )sgn (e1ν) + α2(e2HT )sgn (e2ν) + α3(e3HT )sgn (e3ν)

}

(F.12)

Rewrite the G parts in the following form.

G
1|1
i (ν) =

1

2π

{
1

jz1 +R
(1)
1,1(i)

− 1

jz1 +R
(1)
1,2(i)

}
(F.13)

Using the structure provided in Chapter 5, the R’s in each layer of G are expressed as

follows.

F.1.1 The First Term i.e. i = 1

ρ
(1)
o1 (i = 1) = α1

∣∣e1H
T
∣∣ (F.14)

ρ
(1)
c1 (i = 1) =

[
α2

(
e2H

T
)
· sgn(e1H

T ), α3

(
e3H

T
)
· sgn(e1H

T ), γ
]

(F.15)

F
(1)
o1 (i = 1) =

[
1 −1

]
, F

(1)
c1 (i = 1) =




s1 s1

s2 s2

s3 s3


 (F.16)

where s1 = sgn(HA1ν), s2 = sgn(HA2ν), s3 = sgn(− e1ν
e1HT ).

F.1.2 The Second Term i.e. i = 2

ρ
(1)
o1 (i = 2) = α2

∣∣e2H
T
∣∣ (F.17)

ρ
(1)
c1 (i = 2) =

[
α1

(
e1H

T
)
· sgn(−e2H

T ), α3

(
e3H

T
)

cot sgn(e2H
T ), γ

]
(F.18)

F
(1)
o1 (i = 2) =

[
1 −1

]
, F

(1)
c1 (i = 2) =




s1 s1

s2 s2

s3 s3


 (F.19)

where s1 = sgn(HA1ν), s2 = sgn(HA3ν), s2 = sgn(− e2ν
e2HT ).
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F.1.3 The Third Term i.e. i = 3

ρ
(1)
o1 (i = 3) = α3

∣∣e3H
T
∣∣ (F.20)

ρ
(1)
c1 (i = 3) =

[
α1

(
e1H

T
)
· sgn(−e3H

T ), α2

(
e2H

T
)
· sgn(−e3H

T ), γ
]

(F.21)

F
(1)
o1 (i = 3) =

[
1 −1

]
, F

(1)
c1 (i = 3) =




s1 s1

s2 s2

s3 s3


 (F.22)

where s1 = sgn(HA2ν), s2 = sgn(HA3ν), s2 = sgn(− e3ν
e3HT ).

F.1.4 The Fourth Term i.e. i = 4

ρ
(1)
o1 (i = 4) = [γ] , ρ

(1)
c1 (i = 4) =

[
α1

(
e1H

T
)
, α2

(
e2H

T
)
, α3

(
e3H

T
)]

(F.23)

F
(1)
o1 (i = 4) =

[
1 −1

]
, F

(1)
c1 (i = 4) =




s1 s1

s2 s2

s3 s3


 (F.24)

where s1 = sgn(e1ν), s2 = sgn(e2ν), s3 = sgn(e3ν).

F.2 From Step k to Step k + 1

At step k, assume the general form of the exponential part as follow. The number of

directions is denoted as Ne.

Ek|k = exp
(
−P k|k

1

∣∣∣Bk|k
1 ν

∣∣∣− P k|k
2

∣∣∣Bk|k
2 ν

∣∣∣− · · · − P k|k
Ne

∣∣∣Bk|k
Ne
ν
∣∣∣+ jζk|kν

)
(F.25)

The coefficient term G is expressed in equation (5.1). And

R
(m)
k =

[
ρ

(m)
ok | ρ

(m)
ck

]
×




F
(m)
ok

−−−−

F
(m)
ck


 , 1 ≤ m ≤ k (F.26)
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where the sign function component of the matrix F , F
(m)
ck , is expressed as,

F
(m)
ck =




s1 · · · s1

...
...

sq · · · sq


 , q ≤ Ne (F.27)

At step k + 1, there will be (k + 1) layers in the G part of the child terms. The top k

layers can be expressed in terms of the layers of its parent term at step k, while the bottom

layer directly comes from the exponential parts.

There are three type of terms at step k. Firstly, new terms at step k have directions

in the form of [HC1, HC2, ..., HCNe−1, b], where the 3-dim matrices Ci are anti-symmetric.

Secondly, a general old term has the directions as [HC1ΦTθ, HC2ΦTθ, ..., HCNe−θ−1ΦTθ, bΦTθ,

ΓTΦT (θ−1), ...,ΓT ]. The scalar θ indicates how old the term is. For example, if θ = 2, this

term is a 2-step old term at step k. Its parent term at step k−1 is an 1-step old term, and its

grandparent term at step k − 2 is a new term. These forms of new and old terms can cover

all the cases, except the oldest one, which does not contain directions in a HC format. This

special old term at step k is produced from the 4th term at the 1st measurement update, and

has the directions expressed as [e1ΦT (k−1), e2ΦT (k−1), e3ΦT (k−1),ΓTΦT (k−2), ...,ΓT ] for k ≥ 2.

This is the third type of terms.

To make it simpler, we do not distinguish the case between new terms and general old

terms in the following derivation. In fact, a new term at step k can be expressed by the

form of a general old term, when letting the index θ to be zero. Also notice that the last few

directions in a general old term involves ΓT , which does not appear in the direction in a new

term. We can still merge these two cases together by stating that no inverse of Φ are allowed

in the directions; when θ − 1 is negative, i.e. θ = 0, no ΓT will appear in the directions.

After all, the first several directions in the HC forms are much more important than the last

few directions in the ΓT forms. The HC directions are pivotal for term combination without

comparison, hence is one of the keys that can enhance the algorithm efficiency.
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F.2.1 The Top k Layer i.e. 1 ≤ m ≤ k

The top k layers at step k + 1 are updated from the layers at step k. The offset part of

ρ
(m)
k , i.e. ρ

(m)
ok will either stay the same or add a new offset to the end of the sequence. For

three-state systems, some child directions that are produced from 2 parent directions will be

aligned onto the HΦθ+1BΦT (θ+1) direction and others are not. It is completely predictable

when the direction combination will happen based on the previous studies on directions.

Here, let us define,

tl = sgn




(
BlΦ

T

BlΦTHT − BiΦ
T

BiΦTHT

)
eT1

(HΦθ+1BΦT (θ+1))eT1


 , l < i (F.28)

and

tl = sgn




(
Bl+1ΦT

Bl+1ΦTHT − BiΦ
T

BiΦTHT

)
eT1

(HΦθ+1BΦT (θ+1))eT1


 , i ≤ l ≤ Ne (F.29)

Due to the propagation, BNe+1 = ΓTΦ−T , PNe+1 = β.

This definition provides the convenience to combine elements in one term. This form has

a meaning only if this parent term at step k will produce some repeated child directions at

step k + 1. In addition, in order for tl to be meaningful, the two involved parent directions

should be both in HC form. Nevertheless, the above expression of tl is a superset of what

the algorithm requires and does not effect the validity of the rest parts of the program.

F.2.1.1 The child terms when 1 ≤ i ≤ q

Consider the first q child terms. In F
(m)
ck , there are q sign functions, from s1 to sq. Hence for

the ith child term, the coefficient of si, i.e. ρ
(m)
ck,i will be pulled out to compute the new offset.

And the offset part of the F matrix at step k + 1 is will be simply replication of Fo at step

k added by another one row at the bottom, representing that new offset at step k + 1.

The offset part of ρ and F can be directly transferred from two-state case. In fact,

anything in this algorithm that does not involve direction combination are general forms

and are valid for n-state case.
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The offset component of ρ and F for the top k layers of the first q child terms at step

k + 1 can be expressed as follows.

ρ
(m)
o(k+1) =

[
ρ

(m)
ok , ρ

(m)
ck,i · sgn

(
BiΦ

THT
)]
, F

(m)
o(k+1) =




F
(m)
ok | F

(m)
ok

−−−− + −−−−

1 · · · 1 | −1 · · · − 1


 (F.30)

For system of different dimensions, the sign function component of ρ and F are different.

In particular, for three-state systems, we consider three scenarios respectively.

• The 1st scenario is when q = 1. At step k, if there is only one sign function in some

layers of G term, then at step k + 1, the corresponding layers of the first child term

will not contain sign function component of ρ and F , i.e. ρ
(m)
c(k+1) and F

(m)
c(k+1) will be

empty.

• The 2nd scenario is when q 6= 1, i ≤ Ne − 1 − θ and this term is not the oldest term.

In this case, at step k, there are in total of (Ne− 1− θ) directions in HC form in the

argument of the exponential. Hence consider the ith child terms at step k+ 1, the first

(Ne− 2− θ) directions in the argument of the exponential will be co-aligned onto the

fundamental direction HΦ(θ+1)BΦ(θ+1)T . Here we need to consider two sub-scenarios.

If q > Ne − 1 − θ, it means that in that particular layer of G, there are some parent

directions that are not in the HC form. At step k + 1, the child directions will be

HΦ(θ+1)BΦ(θ+1)T , and some other HC directions. The program will need to know

which directions to combine explicitly to form ρ
(m)
c(k+1) and F

(m)
c(k+1). On the contrary, if

q ≤ Ne − 1 − θ, then all the child directions in the corresponding layer of G at step

k+ 1 are aligned with HΦ(θ+1)BΦ(θ+1)T . The program will simply combine all of them

and leave the sign function component of ρ as a scalar.

• The 3rd scenario is everything else other than the first two scenarios. In this case, a

term could be either the oldest term, or q 6= 1, i > Ne − 1 − θ. None of the child

directions can be combined.
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The recursion of the sign function component of ρ and F under each of the three scenarios

are presented below.

Scenario 1: q = 1

ρ
(m)
c(k+1) = [ ], F

(m)
c(k+1) = [ ] (F.31)

Scenario 2: q 6= 1, i ≤ Ne − 1− θ, not the oldest term

Sub-Scenario 2.1: q > Ne − 1− θ

ρ
(m)
c(k+1) =

[
q1, ρ

(m)
ck,Ne−θsgn

(
BNe−θΦ

THT
)
, · · · , ρ

(m)
ck,qsgn

(
BqΦ

THT
)]

(F.32)

where

q1 =ρ
(m)
ck,1sgn

(
B1ΦTHT

)
· t1 + · · ·+ ρ

(m)
ck,i−1sgn

(
Bi−1ΦTHT

)
· ti−1

+ ρ
(m)
ck,i+1sgn

(
Bi+1ΦTHT

)
· ti + · · ·+ ρ

(m)
ck,Ne−1−θsgn

(
BNe−1−θΦ

THT
)
· tNe−2−θ (F.33)

F
(m)
c(k+1) =




s1 s1 · · · s1

s2 s2 · · · s2

...

sq−Ne+θ+2 sq−Ne+θ+2 · · · sq−Ne+θ+2




(F.34)

where s1 through sq−Ne+θ+2 are the sign function of the first (q−Ne+θ+ 2) child directions

multiplied by the variable ν.

Sub-Scenario 2.2: q ≤ Ne − 1− θ

ρ
(m)
c(k+1) =ρ

(m)
ck,1sgn

(
B1ΦTHT

)
· t1 + · · ·+ ρ

(m)
ck,i−1sgn

(
Bi−1ΦTHT

)
· ti−1

+ ρ
(m)
ck,i+1sgn

(
Bi+1ΦTHT

)
· ti + · · ·+ ρ

(m)
ck,qsgn

(
BqΦ

THT
)
· tq−1 (F.35)

F
(m)
c(k+1) =

[
s1 s1 · · · s1

]
(F.36)

where s1 = sgn
(
HΦ(θ+1)BΦ(θ+1)Tν

)
.
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Scenario 3: not scenario 1 and 2

ρ
(m)
c(k+1) =

[
ρ

(m)
ck,1sgn

(
B1ΦTHT

)
, · · · , ρ

(m)
ck,i−1sgn

(
Bi−1ΦTHT

)
,

ρ
(m)
ck,i+1sgn

(
Bi+1ΦTHT

)
, · · · , ρ

(m)
ck,qsgn

(
BqΦ

THT
)]

(F.37)

F
(m)
c(k+1) =




s1 s1 · · · s1

s2 s2 · · · s2

...

sq−1 sq−1 · · · sq−1




(F.38)

where s1 through sq−1 are the sign function of the first (q− 1) child directions multiplied by

the variable ν.

(End of Scenarios.)

F.2.1.2 The child terms when q + 1 ≤ i ≤ Ne + 1

Because the sign function only goes from s1 to sq, the ith child term at step (k + 1) when

q + 1 ≤ i ≤ Ne + 1 will not change the offset component of ρ at step k.

ρ
(m)
o(k+1) = ρ

(m)
ok , F

(m)
o(k+1) =

[
F

(m)
ok | F

(m)
ok

]
(F.39)

Again, the number of parent directions in the HC form at step k is (Ne − 1− θ). Hence

when i ≤ Ne − 1− θ and this term is not the oldest one, because q < i ≤ Ne − 1− θ, all the

child directions will be co-aligned onto HΦ(θ+1)BΦ(θ+1)T . The sign function component of ρ

will collapse to a single scalar. On the contrary, if i > Ne − 1− θ or this is the oldest term,

no direction combination will occur at step (k+ 1) at this layer of G. The two scenarios are

stated below.

Scenario 1: i ≤ Ne − 1− θ, not the oldest term

ρ
(m)
c(k+1) = ρ

(m)
ck,1sgn

(
B1ΦTHT

)
· t1 + · · ·+ ρ

(m)
ck,qsgn

(
BqΦ

THT
)
· tq (F.40)

F
(m)
c(k+1) =

[
s1 s1 · · · s1

]
(F.41)
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where s1 = sgn
(
HΦ(θ+1)BΦ(θ+1)Tν

)
.

Scenario 2: otherwise

ρ
(m)
c(k+1) =

[
ρ

(m)
ck,1sgn

(
B1ΦTHT

)
, · · · , ρ

(m)
ck,qsgn

(
BqΦ

THT
)]

(F.42)

F
(m)
c(k+1) =




s1 s1 · · · s1

s2 s2 · · · s2

...

sq sq · · · sq




(F.43)

where s1 through sq are the sign function of the first q child directions multiplied by the

variable ν.

(End of Scenarios.)

F.2.1.3 The child terms when i = Ne + 2 (old)

Consider the old child term. The offset component is,

ρ
(m)
o(k+1) = ρ

(m)
ok , F

(m)
o(k+1) =

[
F

(m)
ok | F

(m)
ok

]
(F.44)

The sign function component of ρ also remain the same structure. In this case, only the

value of s1, ..., sq change.

ρ
(m)
c(k+1) = ρ

(m)
ck , F

(m)
c(k+1) =

[
F

(m)
ck | F

(m)
ck

]
(F.45)

where the new sign functions are s1 = sgn
(
B1ΦTν

)
, s2 = sgn

(
B2ΦTν

)
, ..., sq = sgn

(
BqΦ

Tν
)
.

F.2.2 The Bottom Layer i.e m = k + 1

For the bottom layer, when 1 ≤ i ≤ Ne+1, the ith child term is a new term. When i = Ne+2,

the ith child term at step k + 1 is an old term.

189



F.2.2.1 New child terms when 1 ≤ i ≤ q + 1

The offset component is straightforward. Define PNe+1 = β and BNe+1 = ΓTΦ−T . Then,

ρ
(k+1)
o(k+1) = Pi

∣∣BiΦ
THT

∣∣ , F
(k+1)
o(k+1) =

[
1 −1

]
(F.46)

When this term is not the oldest term, in the meanwhile i ≤ Ne − 1 − θ, the first

(Ne−2−θ) child directions at step (k+1) will be co-aligned with the fundamental direction

HΦ(θ+1)BΦ(θ+1)T . Then the number of sign functions in the bottom layer of G will be

(Ne + 1) − (Ne − 2 − θ) + 1 = θ + 4. If this is the oldest term, or i > Ne − 1 − θ, child

directions will not be co-aligned.

Scenario 1: i ≤ Ne − 1− θ, not the oldest term

ρ
(m)
c(k+1) =

[
q, PNe−θ

∣∣BNe−θΦ
THT

∣∣ , · · · , PNe+1

∣∣BNe+1ΦTHT
∣∣ , γ

]
(F.47)

where

q =P1

∣∣B1ΦTHT
∣∣ · t1 + · · ·+ Pi−1

∣∣Bi−1ΦTHT
∣∣ · ti−1

+ Pi+1

∣∣Bi+1ΦTHT
∣∣ · ti + · · ·+ PNe−θ−1

∣∣BNe−θ−1ΦTHT
∣∣ · tNe−θ−2 (F.48)

F
(m)
c(k+1) =




s1 s1

s2 s2

...

sθ+4 sθ+4




(F.49)

where s1 through sθ+4 are the sign function of the first θ + 4 child directions multiplied by

the variable ν.

Scenario 2: otherwise

ρ
(m)
c(k+1) =

[
P1

∣∣B1ΦTHT
∣∣ , · · · , Pi−1

∣∣Bi−1ΦTHT
∣∣ , Pi+1

∣∣Bi+1ΦTHT
∣∣ ,

· · · , PNe+1

∣∣BNe+1ΦTHT
∣∣ , γ

]
(F.50)
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F
(m)
c(k+1) =




s1 s1

s2 s2

...

sNe+1 sNe+1




(F.51)

where s1 through sNe+1 are the sign function of the first Ne+1 child directions multiplied by

the variable ν. In particular, these sign functions are sl = sgn
(
BlΦ

Tν
)
, for 1 ≤ l ≤ Ne + 1.

(End of Scenarios.)

F.2.2.2 Old child terms when i = Ne + 2

The offset component is,

ρ
(k+1)
o(k+1) = γ, F

(k+1)
o(k+1) =

[
1 −1

]
(F.52)

And the sign function component is,

ρ
(k+1)
c(k+1) =

[
P1

(
B1ΦTHT

)
, · · · , PNe

(
BNeΦ

THT
)
, β
(
ΓTHT

)]
(F.53)

F
(k+1)
c(k+1) =




s1 s1

s2 s2

...

sNe+1 sNe+1




(F.54)

where the sign functions are s1 = sgn
(
B1ΦTν

)
, s2 = sgn

(
B2ΦTν

)
, ..., sNe = sgn

(
BNeΦ

Tν
)
,

sNe+1 = sgn
(
ΓTν

)
.

Till now, the recursive structure for R in each layer of G terms for three-state systems is

complete.
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