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ABSTRACT OF THE DISSERTATION
Properties of the Multivariate Cauchy Estimator
by

Yu Bai
Doctor of Philosophy in Mechanical Engineering
University of California, Los Angeles, 2016

Professor Jason L. Speyer, Chair

In this dissertation, the fundamental structure of a multivariate discrete-time state estima-
tor with Cauchy distributed process noise and measurement noise is discussed in depth.
The characteristic function (CF) of the unnormalized conditional probability density func-
tion (ucpdf) is found to be a sum of elements that increases at each update of the current
measurement. Each term in this sum is composed of a coefficient term which contains the
measurement history operating on an exponential term composed of a sum of absolute val-
ues whose argument is the inner product of a direction vector with the spectral variable.
The objective is to understand the structure of the CF so as to simplify this sum. We
shows that directions in the terms of the CF-s are co-aligned only along certain directions
which are functions of a unique fundamental basis. Based on the knowledge of combining
co-aligned directions, an indexing scheme, called “S” matrix, is developed to indicate which
exponential terms can be combined without the necessity of numerical comparison. The S
matrix is invariant for systems of the same dimension regardless of the system parameters.
The coefficient terms are also restructured and simplified by eliminating all the redundant
zero elements. For two-state systems, we show that there are no more than three non-zero
elements in each layer of any new coefficient term. Furthermore, with these newly uncov-
ered properties the Cauchy estimator is implemented efficiently using a pre-computational
technique. The simulations of three-state and four-state systems illustrate the performance

of Cauchy estimator compared with the Kalman Filter.
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CHAPTER 1

Introduction

1.1 Overview

A multivariate state estimator for linear systems with additive Cauchy noise is studied in this
work. Many uncertainties in nature, engineering systems, finance and other fields have been
found to have heavy-tailed characteristics [1] [2]. Unlike the light-tailed distributions, includ-
ing the most common Gaussian distributions, heavy-tailed uncertainties are very impulsive,
hence can hardly be described by any light-tailed probability density function (pdf). Under
many practical circumstances, the traditional Kalman Filter cannot obtain desired perfor-
mance in the presence of heavy-tailed noises. A state estimator developed for heavy-tailed

uncertainties has significant research potential.

Cauchy distribution has heavy tail which upper bounds many distribution densities. It
has closed form probability density function (pdf) and characteristic function (CF), which
enables us to develop the estimation problem under Cauchy distributed uncertainties. Unlike
Gaussian distribution, Cauchy has undefined mean and infinite second moment. However,
we show that the conditional mean given the measurement history is well-defined, and the

conditional variance given the measurements is finite.

In [3], [4], [5] and [6], scalar, multivariate, and two-state Cauchy estimators with additive
Cauchy noise was developed in a recursive, closed form that in the Cauchy environment
produces the conditional mean and finite conditional variance. This Cauchy estimator is the
only algorithm besides the Gaussian to have a recursive, closed-form. It was shown to have

almost as good performance as the Kalman Filter when the process noise and measurement



noise are Gaussian distributed. In addition, in the presence of Cauchy distributed uncertain-
ties, the Cauchy estimator outperforms the Kalman Filter. Therefore, although physically
there does not exist Cauchy noise, we hypotheses that the Cauchy estimator is robust in
many noise environments. The major challenge of the multivariate Cauchy estimator is the
computational efficiency and memory requirement, due to the complexity of the estimator

structure.

The goal of this dissertation is to uncover several important fundamental properties of
the multivariate Cauchy estimator structure, and provide an offline - online technique which
allows the estimator to process a large sequence of measurement data. Aligned with [4] [5] and
6], the CF approach is used. In other words, the CF of the conditional pdf of the state given
the measurement history at each step is propagated and updated, from which the conditional
mean and conditional variance is evaluated. These newly found fundamental properties as
well as the pre-computational technique presented in this dissertation is demonstrated to

have enhanced the computational efficiency of the estimator significantly.

1.2 Cauchy Distribution

The Cauchy distribution is included in the symmetric a-stable (SaS) distributions, which is

a class of heavy-tailed distributions [7]. It is defined by its characteristic function (CF) as,

¢(v) = exp (juv —vy*|v|?) (1.1)

where o € (0,2] is the stability parameter, v € (0,00) is the scale parameter, and p €
(—00,00) is the location parameter, and the median. When « > 1, p is the mean. When
a < 1, the mean is undefined. In addition, when o = 2, equation (1.1) describes a Gaussian
distribution, with the variance well-defined to be 272. When « < 2, the random variable has

infinite second moment.

The Cauchy distribution can be described by equation (1.1) when o = 1. Cauchy dis-

tribution has undefined mean and infinite second moment. The probability density function



(pdf) of a random variable X ~ Cauchy(p, ) is expressed as,

= 7/’”— — 0o T (0.¢}
f(z) = R <z< (1.2)

The probability density functions of SaS distribution for different cases of Cauchy distribu-

tions compared with Gaussian distribution is shown in Figure 1.1.

Probability Density Function
0.7 \ T T \ \

a=1,y=0.5(Cauchy

06 : ,\ a=1,y=1(Cauchy) ||
' a =1, y=2 (Cauchy)

') o =2,y=1 (Gaussian

0.5F R

0.4r b

0.3 /\ i

0.2f b

L N

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1.1: SasS probability density functions

1.3 Problem Statement

Consider the linear state space system,

2 = H&?k + Uk (14)

The state vector is x;, € R™ and z; is the scalar measurement. The state transition matrix
® € R™", the process noise matrix I' € R™™_ and the measurement matrix H € R'*" are
known. The process noise w;, and the measurement noise v are assumed to be independent

Cauchy distributed random variables. In the following of this work, we study the vector case



particularly, based on which the solutions and results are presented. Although not necessary,
for convenience we let m = 1 for the rest of this dissertation. And let w; and v, have zero
medians and a scale parameter § and 7, respectively, i.e. the characteristic function of w;, and
vk is ow () = exp(—pF|7|) and ¢y (v) = exp(—~|r|). 7 is a scalar spectral variable. k is the
stage time. The elements of the initial state vector x; is assumed to be independent, Cauchy
distributed, with a zero median and scale parameters «;, ¢ = 1,2,....,n. The characteristic
function of the initial state vector is ¢x,(rv) = exp <— Yo ey —l—ju%Ty>, where the
spectral vector v € R™, the unit directions e; =[1 0 .. 0], ..,e,=1[0 0 .. 1], and

the median of the distribution of the initial state z; is u € R".

1.4 Estimator Structure

State estimators with additive Cauchy noise was developed in [4] [5] and [6] which is recursive
and in closed form. The estimator structure was established on characteristic functions (CF)

of the conditional probability density functions (cpdf), instead of updating the pdf directly.

1.4.1 Propagation and Update

The multivariate Cauchy estimator in [5] is formulated by propagating and updating the
characteristic function (CF) of the conditional probability density function of the state xy
given the measurement history yr = {21, - , zx } at step k. At the first measurement update,

the characteristic function is given by,

Ox112: (V) :/ / Fxaz (@12 ™ day (1.5)

where v € R”. Because of Bayes’s theorem, the conditional pdf can be written as,

fv(z1 — Hay) fx, (1)

fxi1z,(v1]|21) = (1) (1.6)
Then the CF of the cpdf becomes,
1 (o) o0 o
Oxyz, (V) = / / fv(z1 — Hry) fx, (z1)e” " day (1.7)
fZI (Zl) —0o0 —0oo



and the CF of the unnormalized conditional probability density function (ucpdf) at step
k =1 was defined in [5] as,

Ox1z (V) = /_OO /_Oo fo(z1 — Hay) f, () ™ day (1.8)

This integral, shown in Appendix A in [5], can be expressed by utilizing the property of

Fourier transforms, as

bz 0) = 5 [ om (v = HTmou(-n)e™dy (19

This integral is solved using Appendix B in [5]. Note that the solution of Appendix B in [5]

is summarized and presented in Appendix A for the readers’ reference.

The CF of the ucpdf was propagated and updated at every step in a recursive manner.
If starting from the CF of the ucpdf Q_SXk‘Yk(V) at step k where Y}, is the random variable
of the measurement history, then after time propagation according to the equation x;; =

Oy, 4+ Twy from step k to step k + 1, the CF was derived in Appendix C in [5] as,

Oxiae (V) = dx, i (T V)dw (T ) (1.10)
The CF of the ucpdf at the (k + 1) measurement update according to the equation 2z, =
Hzxp1 + v is updated as

_ 1 oo _ .
¢Xk+1|yk+1(y) - %/ ¢Xk+1|yk (V - HT??WV(—??)@JZ'““WU (1'11)

This integral is solved using Appendix B in [5].

The conditional mean and second moment were then evaluated by taking the first and
second derivatives of the CF of the ucpdf around the origin {0}, at each measurement step.
A constant direction v was picked a priori. Let the spectral variable v approach the origin
{0},, along the direction of 7, i.e. v = €0 while letting e — 0. As shown in [5], the conditional
mean of the state x; given the measurement sequence y, was given by,

1 (ad)xkyk(ea))T

T o) (1.12)

T = Efag|yn] =

e=0



and the second conditional moment of xj given 3, was given by,

1 (82<5Xkyk(€ﬁ) ) !
7% (ye) \ 9(v)o(v)"
where fy, (yx) was determined by the value of the CF at the origin, i.e. fy, (yx) = ¢x, v (€7) ’e:o'

E [zz) lyi] = (1.13)

e=0

1.4.2 Structure of the CF

As presented in Appendix B.1 and B.2 in [5], at each measurement update, the CF of the
ucpdf, ¢x, v, (v), (the solution of (1.9) and (1.11)) was expressed as a sum of products of an

exponential term £ (1) and a coefficient term GY¥ (1), i.c.

km
Gy, (V ZG’“"“ MR ) (1.14)

where Y} is the random variable of the measurement history and y; is a realization of the

measurement history.

The exponential part can be expressed as,
£ (1) = exp ZPZka ‘Bk'k ‘ﬂck‘k (1.15)

where the notations P; |k € R, Bk|k € R, C-k‘k € R and Nekl-‘k € R are corresponding to

k\k k\kT bk|kT
il zl ()

. . . . |k
the original notation p . and n"!*. respectively, in equation (4.3) in [5]. PN|

B’L ?
are scalars. The “directions” Bf’ lk are row vectors. The imaginary part of the argument of
the exponential, (; -klk, is also a row vector that contains the measurements. At step k, the

number of directions in the it" term is denoted as N*/*

i , and there are a total of Ntk * terms

in the characteristic function.

The coefficient part Gf‘k(y) were described as layers of fractional forms in equation (4.2)

in [5].
G w) = g™ (i)

AT (i) +Rf") gh™ (k) = i)
_ 1 o (1.16)

.kk: k|\k k|k . klk k|k k|k
21 | gl a4y () g — a4y ()




where
klk klk |k
ygl! (v) = Zqill sgn (BZ} l/> € RF (1.17)
I=1

The coefficient functions gf ‘k() was determined by the parameters including ck‘k, dm, the

7 i

offsets hf'k and the index rf * of the parent term. y’;!k(-) and qZ'k are k-dimensional vectors.

y;lk() breaks down to two components: the first & — 1 components of ylgi‘k() constructs

y;llf(), while the last component of y];l'k() comprises the scalar y];lk() The derivations for

these parameters were given in Appendix B1 - B2 in [5]. These parameters were all obtained

recursively from the last measurement update.

In [5], for the first time a multivariate state estimator with Cauchy distributed uncer-
tainties was expressed in a recursive, closed form. The form of the CF of the ucpdf was
described by a sum of terms, composed of a product of exponential and coefficient elements,
shown in equation (1.14). For systems of a given dimension, the number of terms in this
sum, Ntk ‘k, grows as k gets large. Furthermore, there were significantly more terms in the
CF of a higher-order system than a lower-order system. Due to the complexity of the esti-
mator structure, processing speed and storage requirement becomes large when time step &
or dimension n increases. This is the essential difficulty that needs to be overcome to make

the Cauchy estimator a practical algorithm.

[6] developed an efficient recursive estimator structure for two-state systems. This struc-
ture reduced substantially the number of terms, i.e. Ntk|k, that were needed to propagate and
update the CF. Moreover, the estimator was computationally simplified by truncating the
measurement sequence by a “sliding window” approximation allowing an unlimited number
of measurements to be processed while maintaining good performance. This structure was
derived based on some special properties that are only valid for two-state systems. We try
to generalize the special structure of the two-state estimator to higher-order systems, but

only partial results have been obtained.



1.5 Objectives

The objective of this research is to break down the fundamental structure of the multivariate
Cauchy estimator, and seek appropriate techniques so that the computational efficiency of
the estimator can be largely enhanced. In this dissertation, several interesting properties

behind this estimator structure are newly uncovered.

Firstly, not all of the directions, i.e. ij ‘lk, are distinct: many of them are co-aligned.
These co-aligned directions have to be combined to avoid singularity [5]. The reduction of the
total number of directions due to this combination can also simplify the estimator structure.
Let us call the directions in earlier steps as “parent” directions, and the directions in later
steps which are produced from those parent directions as “child” directions. Analytically, it
is proven in this dissertation that parent directions of a certain form can produce co-aligned
child directions. All co-aligned child directions are functions of a unique fundamental basis.

This is presented in Chapter 2.

Secondly, Chapter 3 shows that many of exponential terms in the sum of the CF have the
same argument analytically and can be combined. For two-state systems, this property is
summarized by two rules for term combination. It is also shown that there exists only such
two rules which indicate how the argument of the exponential terms can be combined. For
three-state systems, four such rules are found. These term combination rules start to reveal
the fundamental properties of analytically combining exponential terms for more general

higher-order cases.

Thirdly, the way that repeated exponential terms are a prior: combined is represented by
an indexing matrix, called “S” matrix, discussed in Chapter 4. It determines which terms
to be combined without the need of online comparison. For two-state case, particularly, a
recursive structure of the S matrix is derived analytically, given that the term combination
rules for two-state systems are fully uncovered. For higher-order cases, the S matrix can

always be obtained numerically.

Fourthly, Chapter 5 proposes a new structure of the coefficient terms that reduces the



memory requirement by eliminating all the redundant zeros, and makes the offline - online
separation implementable. The coefficient terms have multiple layers of offsets and sign
functions. However, many of these offsets are zero, because the integral solved in Appendix B
in [5] artificially introduces zero elements for consistency. This results in many zero elements
in many layers of the G terms. An alternative structure for the GG terms is proposed in order
to avoid these artificial zeros. A comprehensive study on two-state system shows that for

new terms, there are at most three non-zero elements in each layer of the G terms.

Finally, in Chapter 6 we develop a pre-computational technique to separate the compo-
nent of the estimator structure that is independent of the measurements (offline), with the
component that is dependent upon the measurements (online). By storing the results of the
offline stage as a priori data, the actual online processing efficiency is significantly enhanced.
The implementations for a three and four state system in both Cauchy and Gaussian simula-
tions compared to the Kalman Filter are discussed in Chapter 7. Conclusions are presented

in Chapter 8.



CHAPTER 2

Co-Alignment of Directions

As mentioned earlier in Chapter 1, many directions ij yC are co-aligned with each other
and hence can be combined. This fact was observed in [5] where it was found that it was
necessary to make these combinations. In this chapter, analytically we explain when and how
such direction co-alignment occurs. Firstly, three distinct parent directions being linearly
dependent is proven to be the necessary and sufficient condition for their two child directions
to be co-aligned. Next, it is shown that these co-aligned child directions can be determined
by functions of a fundamental basis matrix. The analytic form of the fundamental basis
is found so far to be unique for systems up to five-state. By induction, it can be inferred
that co-aligned directions in general case are all in forms of fundamental basis, and such a
fundamental basis is unique. This property helps to simplify the estimator structure and

hence contribute to the computational efficiency.

2.1 A Necessary and Sufficient Condition for Co-Alignment

In order to investigate how the directions are co-aligned, we need to explicitly write down
the form of the child directions in terms of its parent directions in a recursive manner. At
step k, suppose an exponential term is expressed as,

K|k

EFF() =exp [ — Z Pik‘k ‘Bf'ku‘ + j¢Mky (2.1)

=1
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Then at step k + 1, the [t child term is given by,

k|k

glk+1|k+1<1/) —exp | — Z Pik|k ‘Bqu)THT‘
i=1,i#

klk &1 klk &T

Broryr  pergr| Y

(2.2)

This derivation is presented by Appendix A, referring to Appendix B.1 and B.2 in [5].
Then the child direction Bf, ;rl\kﬂ at step k + 1 in terms of the parent directions Bf * and

Blklk at step k can be rewritten as follow.

Bl _ Bf‘k@T - Blklkq)T
s pikgrypr  pkgryr
T T
He (B* Bl — B pt) o

— 2.3
(Bflk@THT)(Bf\kq)THT) ( )

One can immediately notice that the child direction Bf, lH'kH is in the form of HC', where

C is a rank two skew-symmetric matrix, i.e. CT = —C. This can be stated as the following

lemma.

Lemma 2.1.1. Any two non-zero parent directions at step k will produce a child direction

in the form of HC at step k + 1, where C' is a rank two skew-symmetric matriz.

> Bl’“"“TB’.“"“—B’.“"“TBl’“"“)M
Proof. Recall equation (2.3). The matrix C' can be written as C' = Gty e
then the child direction is Bf, ;r”kﬂ = HC. 1t is obvious that C = —C7. In addition,

T T T T
rank(C) = 7“cml€(Blk|]C Bf‘k - Bf'k Blk‘k) < 7"(mk(Blk|’C By 4 mnk(BW Bf‘k) = 2, while

3 7

C cannot be rank 1. Therefore C' is skew-symmetric rank two matrix. m

A necessary and sufficient condition on the co-alignment of directions within a term is
presented next. With the direction update being explicitly defined in (2.3), we will look at
three parent directions at step k, and consider under what conditions the child directions at

step k£ + 1 are co-aligned.

11



Theorem 2.1.2 (Co-Alignment Condition). Suppose at step k, by, by and by € R™™ are
three directions in one term. by, by and by are not co-aligned with each other. And at step

k+ 1, the child directions can be written as,

cro = H®(b{ by — bIby)®" (2.4)
and
c13 = H®(b b3 — bl b, )" (2.5)
by
Then c15 and c13 are co-aligned if and only if the matriz M = |p,| € R3*™ is not full row
bs
rank.

Proof. 1. Necessity

If the matrix M is not full row rank, then there exist a scalar o € R, such that the linear
combination by + abs is co-aligned with b;. Normalize them using ®7 H”| assuming b, ®7 HT
(or (by + abs)®T HT) is non-zero. Therefore,

b2 + Ckbg bl

— 2.6
(by + abg)®THT — b ®THT (2.6)
Then
(i ®THT)(by + ab3)®" = (by + abs)®" HT - by dT (2.7)
Rearrange equation (2.7) to obtain the following equation.
HOb! (by + abs)®” = Hd(by + abs) b ®T (2.8)
Expand both side of the equation,
HOb b, dT + a HOb 030" = HOLS by &7 + o HPbL by d (2.9)
HO(b by — b2 ,)®" = —aH®(b] by — b3 by ) DT (2.10)
or
Clp = —Q-C13 (211)
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In this case, c; 2 and ¢; 3 are co-aligned.

2. Sufficiency

Suppose ¢; 2 and ¢ 3 are co-aligned, then there exists « such that equation (2.11) holds.
Reversing the proof for necessity, it can be concluded that b; and (bs + ab3) are co-aligned.

This implies that the matrix M is not full row rank. O

Theorem 2.1.2 shows the necessary and sufficient condition for directions to be co-aligned
in general case. Using this theorem, the rest of this chapter investigates what types of parent
directions can produce co-aligned child directions, and what those co-aligned child directions
look like. These pieces provide us adequate information to uncover the direction co-alignment

process analytically.

2.2 Parent Directions, Child Directions, and Fundamental Basis

According to Lemma 2.1.1, only three linearly dependent parent directions can produce co-
aligned child directions. As discussed in [5] in detail, each parent term at step k produces
many child terms at step £+ 1. Generating different child terms involves different pairing of
those parent directions at step k. For instance, the directions in the j** child term involves
the operation between the j™ parent direction b;®” with all the rest of the parent directions.
The last child term is called the “old term”. The last parent direction after time propagation
is the zero vector {0}, , which can be found in [5]. The rest of the child terms are called
“new terms”. As a result of Lemma 2.1.1, for a new term, most of the directions are in
the HC form, and only one (the last) direction is not. Furthermore, for an old term, some
directions are of the HC®T form instead, where the positive integer 6 represents how old
the term is. The form of HC (or HC®T) is special, because when by, by and by are all in
the HC (or HC®T) form where C' is skew-symmetric matrix, it is possible that the child

directions are co-aligned, resulting from Theorem 2.1.2. This is due to the fact that for any

13



skew-symmetric matrix C, HCHT = 0 for any n-dim row vector H. Thus, H is already in
the null space of M in Theorem 2.1.2. In addition, the co-aligned directions are always in a

form of a unique fundamental basis.

2.2.1 Two-State Case

Many interesting properties, although somewhat specialized, are obtained for this case. Con-
sider the argument of the exponential term of a two-state system. Generally, a new term
with p elements in the exponential argument has the directions in the forms of [by, bo, ..., b,
where b; € RY™?2 for 4 = 1,2,--- ,p. Starting from this term, the 1-step old child term has
the directions [b1®7, by®”, ..., b,®7, T7]. Furthermore, for a general f-step old term, the di-
rections are in the forms of [b; ®7¢ by®T% ... b, TTOTE-D _ TT]. What we now show is

how in the next update these p elements collapse.

A necessary and sufficient condition for the child directions to be co-aligned is that
the three parent directions are not full row rank, according to Theorem 2.1.2. The two-
state systems is special in that the direction co-alignment will always occur from any parent
directions, regardless of new parent terms or old parent terms. This is because M in Theorem
2.1.2 becomes a 3 by 2 matrix and can never be full row rank. As a consequence, all child
directions that are produced from any two non-zero directions in a parent term will co-align.
Then, any new term for a two-state system will have only two directions and will not increase
as time goes on. In other words, for any new term, the number of elements in the argument

of the exponential is p = 2. This is stated in the following theorem,

Theorem 2.2.1. For two-state systems, any new term has only two directions (or elements)

in the argument of the exponential term.

In fact, repeated child directions in different terms can be co-aligned to common direction
that is a function of a unique fundamental basis. In order to show the uniqueness, let

by = [f1 o], ba = [ agl, where 1, P2, a; and g are arbitrary scalars. Construct

14



a; B

a matrix b = [bf bT] = € R**2. Suppose b; and by are any two independent

ay o

directions at step k, then after time propagation and measurement update, at step k& + 1,

the child direction that will be produced from b; and by is denoted as ¢ with the scaling

coefficients neglected, as seen in (2.3).

where

Because,

and

c=H® (bJby — b by) T

aq ﬂl
=Ho [51 ﬁz} - [@1 042} ol
_042 52
0 _
_ 0 P2 — aof &7
_04251 — a3 0
= (04152 - 04251) HOAD"
0 1
A_ p—
-1 0

DAGT — d11 Pz | O 1| |o o=
(921 P22 |1 O] |f12 a2
B -—¢12 oui| [o11 P
- | —02 ¢a1| [Pz P2
_ _ 0 P11¢22 — P12¢21
- | 12021 — G112 0
— det(®) - A
(01fs— anBy) = det | | P ) = qern)
ay o
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Therefore, the child direction ¢ that is produced from b; and by in equation (2.12) is,

c = det(®) - det(b) - A (2.16)

by and by here are set to be arbitrary, meaning that they can be either new parent
directions or old parent directions. There is no necessity to discuss new parent and old
parent separately. The child directions of any two non-zero parent directions in any term
will be aligned onto the HA direction. A is the fundamental basis for two-state problem.
The form of A is unique, if ignoring the scaling factor. This result can be summarized into

the following theorem,
Theorem 2.2.2. For two-state systems, all the co-aligned directions can only be combined

1
along the direction of HA, where A = 1s the fundamental basis.
-1 0

2.2.2 Three-State Case

Consider three-state systems. A parent term at the k' measurement update can produce
several child terms at the (k + 1) measurement update. Certain directions (or elements in
the argument of the exponential part) in some of the child terms are co-aligned. The new

parent terms and the old parent terms are discussed separately.

2.2.2.1 From New Parent Terms

First, let’s look at the directions in a new parent term at step k. Suppose there are in total
N, = p+ 1 directions in this term. Derived from Lemma 2.1.1, the directions can be written
as [HCy, HC,, ..., HC,, b], where C;’s are skew-symmetric matrices, and b is a single direction

that cannot be expressed in HC' form.

From Theorem 2.1.2 in section 2.1, we understand that whenever two child-directions
are co-aligned, their three parent-directions have to be linearly dependent. For a new term,

this will happen when the three parent direction all have the form of HC, where C' € R3*3
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is an anti-symmetric matrix. This is because of one property of anti-symmetric matrices
C € R™", HCH" = 0 holds for any H € R"". Then MH” = {0},. Hence M is not full
row rank.

In fact, this is also the only scenario that can produce co-aligned child directions, since
the parent directions other than HC;’s is merely b. During time propagation, the directions
of this term will become HC;®T, b®T and I'?. It is assumed that b®7 and I'" are generically
linearly independent with each other and with all the HC); directions. In order for the matrix
M in the statement to be not full row rank, each row of M has to be in the form of HC'

before time propagation.

This can be stated in the following theorem,

Theorem 2.2.3. For new parent terms of the three-state systems, only the parent direc-
tions in the forms of H multiplied by a skew-symmetric matrix can produce co-aligned child

directions.

Furthermore, if the two parent directions in a new term, b; and by, at step k are,
b1 = H(OélAlQ + CY2A13 -+ C¥3A23) (217)

and

by = H(B1 A1z + B2 A1z + B3As3) (2.18)
where A;; is defined to be A;; = el'e; — ejTei, for i,7 =1,2,3, and 7 # j. Thus b; and by are
two arbitrary directions that are in the form of HC where C' = —C7.
Then at step k + 1, using equation (2.3), the child direction is given by,

Cn®T 0®T HO(WEb — bby) 8T 2.19)
CTOTHT T 0, 0THT | (5,07 HT)(0,dTHT) ‘

Ignoring the denominator (by®THT) and (by®T HT) since they are scalars, and looking
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at the numerator, the child direction becomes as follows,

c= H®[(a1 Ay + anAgy + azAsy) H H(ByArs + BoArs + BsAgs) (2.20)
— (B1Ao1 + BoAs + BsAs) H  H(ar Arz + apArs + a3 Ags) |07 (2.21)
= Hd(oB)®” (2.22)
where
B = Hel Ays + Hel Agy + Hel Ay, (2.23)
and
o= Hella1Bs — anf] + Hed a1 Bs — asfBi] + Hel [anfBs — azfBs] (2.24)

Therefore, the possible form of co-aligned child directions that are produced from a
new parent term can be expressed exactly as H®B®”. This form is unique. Aligned with

Theorem 2.2.2; this important finding of three-state systems can be concluded in Theorem

2.24.

Theorem 2.2.4. For three-state systems, all the co-aligned directions in new terms can
only be combined along the direction of H® B®T | where B = Hel Aoz + Hel Ay + Hel Ao,
Ay =elej—ele;, i,j=1,2,3,1%#j. Bis the unique fundamental basis.

2.2.2.2 From Old Parent Terms

Next, consider what the directions look like for an old term. Every old term at step k + 1
is the last child term of its parent term at step k. If a parent term is “new”, meaning that
the directions in its parent term can be written as [HCy, HCs, ..., HC), b], then we can write

down the directions of its old child term (the last child term) as,

[HC, 0", HC,®" | ..., HC,®"  b®" T (2.25)

We call this old term as the “newest old” term, or “l1-step old” term.
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Let the above term be a parent term. Then the directions of the last child term of the above

term at the next measurement update becomes,

[HC,®™2 HC,®™?, ..., HC,®"2 v TToT T (2.26)

This is the form of the directions of a “2-step old” term.

More generally, for a “f-step old” term, the directions can be expressed by induction.

[HC,®™ HC,®™ ... HC,®" p@™? TTTE-1 77 (2.27)

Look at @-step backward from equation (2.27), the original parent term is a new parent
term with the number of HC;’s as p. And at current measurement update the number of

directions is (p+ 1 + 0).

Unlike those in new terms, some of the directions in the old terms are not in the form
of HC;, but in the form of HC;®T?, where C; € R**? is a skew-symmetric matrix and 6
is a positive integer. Generically, the one and the only situation to produce two co-aligned
child directions is that the three parent directions are in the form of HC;®"% in order to
form a new anti-symmetric matrix at the next measurement update. The matrix M that
is defined in Theorem 2.1.2 constructed by HC;®7%’s is not full row rank. This is because
HC®T(®~1°HT) = 0, i.e. @ THT is in the null space of all HC;®? directions. The rest
of the directions, for example b and I'7®”%  are generically linearly independent with each

other and the HC;®%’s. In other words,

Theorem 2.2.5. For old parent terms of three-state systems, only the parent directions in
the forms of HC;®T% where C; is a skew-symmetric matriz and 0 a positive integer can

produce co-aligned child directions.

Similarly, suppose two arbitrary parent directions of an old term which have the form of
HC;®™ are,
bl = H(OélAlg + CY2A13 + OégAQg)q)Te (228)
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and

by = H((1A12 + foArs + 53A23)‘I)T9 (2.29)
At the (k + 1) measurement update, consider the numerator of the child direction,

c = HP[® (a1 A1 + anAz + asAz) H H(B1Arg + BaAyz + BaAgz)d?
- ‘I)e(ﬁlAzl + B Ag1 + 53A32)HTH(041A12 + a3 + 043A23)(I)T9](I)T

= HO (oB)®TO+Y (2.30)

and

0= H€1T[04152 —af] + Heg[alﬁg —asf] + Heg[%ﬁ:s — 3] (2.31)
This o is the same with that of the new terms.

Analog to what has been concluded for new parent terms, Theorem 2.2.6 is stated as

follow.

Theorem 2.2.6. For the three-state systems, all the co-aligned directions in old terms can
only be combined along the direction of H®'+' (o B)®TO+Y)  where Aij=¢ele; — e]Tei, 1,] =

1,2,3, i # j, 0 is a positive integer, and B = Hel Ays + Hel Az + Hel Ay, is the unique

fundamental basis.

Theorem 2.2.3 to Theorem 2.2.6 shows that for three-state systems, the co-aligned direc-
tions will only appear in the forms of H®@TVBOTO+ where §# = 0, 1,2, ... is non-negative
integer. In particular, when the parent term is a new term, the repeated directions of its
child terms fall into the case when 6 = 0. When the parent term is an old term, then 6 > 0,
and 6 depends on how old the parent term is. That term is called a #-step old term. In
addition, the number of terms with fundamental directions 6 > 0 is fairly rare, because next
time through in the new terms it will became H®B®” again. We summarize this conclusion

into the following corollary.

Corollary 2.2.7. For three-state systems, only the parent directions in the forms of HC;®™?

where C; 15 a skew-symmetric matriz and 0 is a non-negative integer can produce co-aligned
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child directions. All the co-aligned directions can only be combined along the direction of

HO" Y (o B)®TO+Y " where A;j = el'e; — eje;, and B = He{ Ays + Hej Az + Hej Ay is the

2

fundamental basis. Furthermore, the structure of B is unique.

Corollary 2.2.7 is important because it analytically provides complete information of di-
rection for co-alignment for three-state systems. With this corollary, one is able to explicitly
determine the directions, especially when and how to combine them. Unlike the two-state
systems where the fundamental basis A is fairly straightforward, the one additional dimen-
sion for three state systems results in structural complexity. Using Corollary 2.2.7, the
directions of three-state systems can be combined analytically without the necessity of nu-
merical comparison during implementation. It saves tremendous amount of computation
time. In addition, the studies on other component of the estimator structure, including the
term combination and the coefficient terms, are established heavily on the understanding
of direction co-alignment. Through these theorems and corollary additional fundamental

simplifications of the estimator structure can be deduced.

2.2.3 Higher-Order Cases

Similar properties have been observed for higher-order cases as well. For four and five-state
systems, the form of such fundamental basis exist and is unique. Since it has higher dimen-
sion, there are more freedom in the child directions. If we still want to reach a stationary
child direction like we did for HA in two-state case and H®B®” for three-state case, we
need more update. Take the directions in the new child terms for instance. For two-state
case, it takes one update to reach HA. For three-state case, it takes two update to reach
H®B®T. It has been demonstrated numerically that for four-state case, it takes three up-
dates to reach H®2C®?”| where C is the fundamental basis matrix. And for five-state case,

it takes four updates to reach H®3D®3" where D is the fundamental basis.

The analytic form of the fundamental basis C for four-state system is found to be in the
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following form,

0 B Pu —523_
C— B34 0 —Bu i3 (2.32)
—B2s Pua 0 —Bi

L ﬁ23 _513 512 0

where

By = (Hel) (HPe]) — (Hel) (HPe!), 1<i,1<4, i#l (2.33)

For five-state system, the fundamental basis D is in the following form,

0 Bass —Doss  Dass —5234-
—fBas 0 Brs  —biss Pisa
D= fus —fus 0 Pras  —Bi24 (2.34)
—fPass  Bizs —Pas 0 P23
| B2za —Pisa Biaa —Pras 0

where

Bk = (Hel) [(H®e)(HD?e]) — (HPef)(HP?e])]
+ (Hel) [(H®ep)(HD?e] ) — (HPe] ) (HD?ef)]
+ (Hep) [(H®e] )(H®?e)) — (HPe] )(HP?e] )|, 1<i,j. k<5, i#j#k
(2.35)

For detail derivations of C and D, refer to Appendix B .

We have proved the existence and uniqueness of the fundamental basis for two and three-
state systems analytically, and have found the form of A and B. For four and five-state case,
we have observed the same properties, and also found the form of the fundamental basis C

and D. Using the same technique, by induction one can reach the following conclusion,

Corollary 2.2.8. For multivariate systems, the co-aligned child direction can be reached
within finite update. In particular, for n-state system, this direction co-alignment can be
obtained in (n — 1) updates. Co-aligned directions are along a direction that is a function of

a fundamental basis matrix. This fundamental basis is unique.
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2.2.4 Additional Properties of the Fundamental Basis

The fundamental basis has a special structure. In this subsection, some interesting properties
of the fundamental basis are raised. Suppose an n-dim state space dynamic system. Its

fundamental basis is denoted as F'.

Theorem 2.2.9. The fundamental basis F of an n-dim state space dynamic system is always

rank 2.

Proof. F is obtained by vT vy — v vy, where vy and vy are n-dim row vectors. rank(vivy) = 1.
Then rank(M) < rank(v{vy) + rank(—viv;) = 14+ 1 = 2. But F cannot be rank 1, since

the diagonal elements of F' are all zeros. Therefore the rank of F is 2. O

Theorem 2.2.10. The dimension of the null space of F is n — 2, spanned by a set of

vectors associated with the measurement matriz H and the transition matriz ®, i.e. N(F) =

sp{HT (H®)T, ... (H®"3)T}.

In particular, for a two-state case, the fundamental basis A is full rank, and the null space
is empty. For three-state case, it can be shown analytically that B and H are orthogonal,
ie. BH" = {0},. Because the matrix B is rank 2, the null space N(B) is 1-dim, and
N(B) = sp{H"}. Similarly, for a four-state case, it can be shown that CH” = {0}, and
C (H®)" = {0},. We know that the matrix C is rank 2. Hence the null space N(C) is 2-dim,
and N(C) = sp {HT, (HCD)T}. For a five-state case, it can be shown that DHT = {0},
D (H®)" = {0}, and D (H®?)" = {0}.. The matrix D is rank 2. Hence, the null space
N(D) is 3-dim, and N(D) = sp {HT, (H®)", (H@?)T}.
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CHAPTER 3

Term Combination Rules

Many exponential terms are identical in the sum of equation (1.14) at each measurement
update. For a given state dimension, some exponential terms are functionally the same with
respect to any system parameters including ®, H, I', «, 3, v and with respect to any spectral
variable v. Hence they can be combined so that the total number of exponential terms can
be largely reduced. In other words, equation (1.14) can be rewritten as,
s [ (s
o) =D || G0 | &) (3.1)
i=1 =1
where Nf'k is the total number of distinct exponential terms, and Ntlf lk is the number of
coefficient terms associated with each distinct exponential. Because certain exponential
terms Eflk(y) are combined, the number of distinct exponential terms, N} * is much less
than the total number of terms originally before the term combination, i.e. Nf'k in equation
(1.14). This reduction of the number of exponential terms enhances the computational
efficiency significantly. Numerical simulations are conducted in latter chapters. Take a three-
state system for instance, it will be shown later that at step k£ = 7, the offline computation

can save about 99% if repeated exponential terms are combined using equation (3.1).

In this chapter, the argument of certain exponential terms are shown to have the same
expression analytically. For two-state systems, we find two rules for combining terms by
comparing the exponential terms analytically. Using these two rules, total number of distinct
exponential terms and the number of new distinct exponential terms are derived in a recursive
matrix form. This matrix form exactly matches the empirical results in [6]. Therefore, it is

concluded that there are only such two rules for combining terms for two-state systems. In
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addition, some term combination rules for three-state systems are also uncovered, implying
that for higher-order cases in general certain exponential terms can be combined due to their

identical expressions.

3.1 Rules for Two-State Case

This section derives two rules for term combination for two-state systems. Starting from

the grandparent term Ef * at step k which contains m elements in the argument of the

k+2|k+2
gi,l,r

exponential, the combination rules study the grandchild term at step k + 2. Note

that the notation £%"2*"2 has three subscripts. It represents the r** grandchild term at step

il
k + 2 from the [** child term 5: l“‘kﬂ at step k 4+ 1. The first combination rule shows that
the first grandchild terms at step k& + 2 from all new child terms at step k + 1 will always
combine. This also brings up the notion of “invariance” of the exponential terms. The second
combination rule states that the grandchild term 52.]? l+ 22‘k+2 and 6': :pilg?? forl<li<m+1
can be combined. Based on these rules, the recursive structure on the number of distinct
exponential terms Nf'k and the number of new distinct exponential terms, denoted as N:Lkew,
is found analytically. This recursion matches the empirical results of number of terms shown
in [6] exactly, which also indicates that we have exhausted the combination rules for two-state

systems.

3.1.1 Combination Rule for the First Grandchild Terms

In this section we show that the exponentials from the first grandchild terms are always
combined. In addition, these terms are independent of the initial condition parameters.

Suppose at step k, the exponential of any two terms are expressed as,

Szk‘k(y) = eXp (_Pl ‘b1V| — P2 |bQV’ — e T I |me| +]Czkl/) (32)

Eflk(l/) = exp (—Q1 lerv| — Qo lcov| — ... — Qn |env| + jC;fV) (3.3)
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where b, ¢ and ( are 2-dim row vectors. Note that ¢ in equation (3.2) and (3.3) represents
the imaginary part of the argument in the exponential terms. We are going to show the
first combination rule by analytically showing that for any i < N, FIF and p < N k‘k and
[=1,2,--- - m+1,¢q=1,2--- n+1,

E4+20k4+2  ok+2|k+2
giJ,l - gp q,1 (3-4)

Remark 3.1.1. Here, we are only interested in the real component of the argument, because
we have found out numerically that whenever the argument of the exponential of two terms
are identical, the imaginary parts always match too. In latter derivations, the imaginary

parts, ¢, will be omitted.

At step k + 1, Efw has (m + 2) child terms while S;f'k has (n + 2) child terms. The first
(m+1) child terms from €l-k|k and the first (n+ 1) child terms from €1 only have 2 elements
in the argument of the exponential, according to Theorem 2.2.1. Take Ef * for instance.
After time propagation to step k + 1, the exponential term becomes,

€l-k+1|k(1/) = exp (—P1 ‘b1<I>TV‘ — P ‘bg@TV‘ —...— P, ‘bm(I)Tl/‘
=B |TTw| + j¢i ) (3.5)
Then, at step k 4 1, the child terms are derived from the solution of the update integral

shown as follow,

k\k k\k
09 k+1\k 7o | 0@ty
Dr1fer1 (v Z ZG )| exp | =Py [y ®THT| botar | T
b, ®Tv
77| Om T 77T
- m‘bmq) H ‘ b, ®THT - ‘ ﬁ‘r H } FTHT _7]'
—y 0] + jarean + 3¢ (v —HTn))}dn (3.6)

where ]\thkm is the number of distinct exponential terms at step k, and Nf lk is the number of

coefficient terms that are associated with the i*" distinct exponential term.

At step k + 1, the [*" child term when 1 < [ < m has the following exponential terms,

using the form of the solution given in Appendix A of this dissertation. The method was
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provided in Appendix B in [5]. Note that the notation [ here is different from the index [
that appears in the inner sum of the coefficient terms G,ﬁf”k.

b ®Ty b dTv
b®THT by dTHT
b,, ®Tv bdTv
b, ®THT b ®THT
'y b®Tv
I'THT by ®THT

+ ¢ 1lk+1u> (3.7)

g (v) = exp (—P1 b d" HT |

— P [0, @ H'|

B[]

_ bl(DTV
T peTHT

Define B;; = [bIT bﬂ € R?>*2 and ) = [(I)*lI‘ blT] € R?>*2. Then,

P
Sf;rllkﬂ(u) =exp <—W |det (@) - det (By1)| - |[HAV| — ...

~ ot g 40t () - det (Bum)| - [HAY]

B

_WVH” |0, " | + j(f;r1|k+11/> (3.8)

Combine the first m elements, which are all along the direction of HA.

et (@) | (s g P ldet (Big)| ) + 8 ldet (C)

8k+1|k+1 _
(v) =exp BT HT]

il

|HAvV|

gl k1 k41
_W\blqﬂqﬂgj'*u), 1<i<m (3.9)

Similarly, the exponential part of the (m + 1) child term at step k+ 1 can be expressed

as,
T T
k+1k+1, \ 7| 1@V v
Eimi1 (V) =exp (—Pl 0,07 H| DT TTIT|
b, ®Tv '’y '’y
T 17T m . k+1|k+1
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With C) defined earlier, we have,
P
85;;1’;“@) = exp ( \FTHT| |det (®) - det (C1)| - |HAV| —

g et (@) - det (Cu)l - [HAY| - 07| + cf;i'i“u) (3.11)

P,
~TTHT yFTHT|

Combine the first m elements.

det (®)[ - (D202, Py [det
ety _ g 190 (i) Pyldet (C)))
| TTHT|

|HAv| — 70|

§
TTHT|
HiCE ) (3.12)

Equation (3.9) gives the general form of the exponentials of the first m child terms from
the parent term & *and equation (3.12) describes the (m + 1) child term at step k + 1.
They are all the new child terms at step k£ + 1 from Ef I Observing equation (3.9) and
(3.12), one can see that all new child terms of any parent term only have two elements in
the argument of the exponential. This fact aligns with Theorem 2.2.1 in Chapter 2. For
convenience of further derivation of the first combination rule, rewrite the exponential part

of any new term in the following general form,

EFHIFL(L) = exp (—Pl |HAvV| — |bHT| |br| + jCV) (3.13)
1

where the fundamental basis A = , and b can be any 2-dim row vector. Note that
-1 0

for convenience, the subscript is neglected, and the new notation EF1F+1 is used.

After time propagation to step k + 2, this exponential term becomes,

EFHAHL (1) = exp (—P1 |HA® V| — b0 | — BTy +jC(I>TI/) (3.14)

\bH 7
Deriving from the update integral, the 1% child term at step k + 2 is
T T
Sk20k+2, N b v HAd' v
b)) =exp <_ bOTHT ~ HASTHT
'’y HA®Ty

0" H™|

/‘)/
|bHT]

T r7T
_B}F H | FTHT_HACI)THT
HA®TyY
=t 4 jokake2 ) (3.15)
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Because,
ATHT —b"HA = —(bH") - A (3.16)
and
ATHTT®™ T — o 'THA = (I TH") - A (3.17)

Substitute (3.16) and (3.17) back to (3.15).

TFH-T 7T
Sht2lk+2, 7 - |det ()| B- |F T H ‘ [ det(®)]
51 (l/) =exp (-m |HAI/| — ’HA(I)THT’ |HAV|
Y T k+2\k+2
Combine the first 2 elements,
SEH20k4+2, (’Y+5 ‘FT(I) THTD |det(®)] Y T
51 (V)—GXp( |HA(I)THT| ’HAI/‘—mlHA(I) I/|
4 Ck+2|k+2 ) (3.19)

Remark 3.1.2. It is interesting to notice that the form in (3.19) is not in terms of P; anymore;
instead, it is only related to the system parameters, including H, ®, I', v and . Therefore,
the first child exponential term of any 2-element parent exponential term should be in exactly

the same form in (3.19), which can be combined.
This leads to the first term combination rule, expressed as,

k+2|k+2 k+2|k+2
5+|+ _5+|+

i1 pal s 1<I<m+1, 1<qg<n+1, foranyi,p (3.20)

Remark 3.1.3. Equation (3.19) also brings out the notion of “invariance” in exponential

crlR2 n (3.19) is not a function of P, nor the initial conditions any more,

terms. Since &
it indicates that the first child term at step k& + 3 will have the same real component of the
argument of the exponential as well. There exists an invariant form for these first child terms

as k increases. This will be discussed later in section 3.3.

In the next section, we discuss the second combination rule.
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3.1.2 Second Rule for Term Combination

k+2|k+2 and gk+2|k+2
i,m-+2,1

which has m elements. We show that Szk l+22|k+2 = Slk;%y;f for 1 <1 < m+ 1. For different

k|k

Consider the grandchild terms &; from the same grandparent term &;

value of [, the exponential terms are derived analytically in the following subsections.

3.1.2.1 Casel: 1< <m

k+1|k+l

First, consider the case when 1 < [ < m. Start with 5 for 1 < 5 < m expressed in

(3.9). After time propagation to step k + 2, the argument of the exponential becomes,

1det ()] [ (S g P ldet (Buy)) + 3 [det ()]

k+2lk+1, \
5¢,l (v) =exp b T HT|

|HA® v

_M)Z_HTl\blqﬂTy\ BIDTy| + ity ) (3.21)

After measurement update derived from the update integral, the 2"¢ child term at step k + 2
is,

et (@) | (371 40 P ldet (Buy)l ) + B |det (C)
k+2|k+2 . q=1,q#! q T 17T
51,1,2 (v) =exp | — T HT| ‘HA<I> H ‘

HA®Ty b, d*Ty '’y NRORENY:

: - — pITTHT —
HAPTHT b ®2THT 5‘ } I'THT  p®?THT
bl(I)QTI/ . k+2lk
- ’blq)QTHT +jCi7;,_22| Py (3.22)
From simple algebra, we have,
dbf HA — ATH"p, 0" = (HOb) - HA (3.23)
Also, define
D, = [cp—zp bﬂ € R¥? (3.24)
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Note that the determinant of the product equals to the product of the determinant. Using

all these properties and definitions to simplify the argument of the exponential in (3.22).

€k+2\k+2( ) |det (®2)] - [(Zq 1.g1 Py |det (qu)|> + B |det (Cz)q
0,027 HT |

0,2

|HAV|

=exp

_ Bldet (®?) - det (D)

|
HAv| —
b, P27 HT | | v|

g oT - k42|k+2
b, ®2T HT | b2 ] + G V) (3.25)

Combine the first two elements in (3.25):

[det (@2)] - | (X g Paldet (Buy)l) + 8 |det ()
b, ®2THT |

55;22|k+2(y) =exp | —

+5 |det (Dy)]]

|HAv| — 02T w| + ¢y ) (3.26)

B (I)QTHT|
where 1 <[ <m.

We consider €k+i|];r2 for 1 <1 < m and show that it is identical to equation (3.26). Start

with the form of Elk zﬂgﬂ as the old child term at step k + 1,

5.k+1|k+1(1/) = exp <—P1 |b1CI>TV| —...— P, |bm‘I)TV‘ -8 ‘FTV‘ +jgf;ﬂ’;+ly> (3.27)

i, m—+2

The [*" child term for 1 <1 < m at step k+2 has the argument of the exponential as follows.

b, ®*T'y b &2 Ty
b, ®2T HT o b, ®2T HT o
by @71 IRORENY
b, ®2T HT o b &2 HT
oy RORENY

Ef;ﬂg?(y) =exp <—P1 |0:9*" H|

- P, ’bmq)ZTHT|

-8 }FT(I)THT| IITeTHT b ®2THT
01| e — |~ | ) G2
And,
H (96 b,@*" — 0], 9*") = det (By,) - det(P?) - HA (3.29)
H (2°0/TT®" — oT'p ") = det (C)) - det(9?) - HA (3.30)
H (@ TT —Tp9°") = det (D) - det(®) - HA (3.31)
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where B;,, C; and D; have been defined earlier.

Substitute (3.29) - (3.31)into (3.28), and combine the first (m + 1) elements. One can

obtain the following form,

[det (@2)] - [ (s g P ldet (Bl ) + 1det (C1)

ght2lk+2
(v) b, @27 HT |

imt2,1 V) =€Xp | —

+ﬁ |det (Dl)H . |HAV| .

o*y| + jg‘jfﬂﬁj%) (3.32)

|y 2T HT| :
where 1 <[ < m.

Again, as what has been mentioned earlier, numerical simulations have shown that when-

ever the real parts of two exponential terms combine, the imaginary parts match too. There-

k+2|k+2

fore for the case when 1 <[ <m, the two grandchild terms & in equation (3.26) and

k+2|k
ght2lk+2

i mio) i equation (3.32) are identical.

3.1.2.2 Case2: l=m-+1

Next, consider the case when [ = m + 1. Starting from equation (3.12), the (m + 1) child

term at step k + 1 has the exponential term as,

[det (@)]- (7L, Pyldet (C,)])
E+1lk+1 _ 9= v T
Eimr1 (v) =exp | — TTHT| |HAv| — |F y}

HicE ) (3.33)
After time propagation to step k + 2, it becomes,

(det (@)] - (S, Py Idet (C,))
k+2]k+1 - q=
Eimt1 (v)=exp | — TTHT| ‘HACI)TV‘ —

—B 07| + ¢ ) (3.34)
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The 2" child term at step k 4+ 2 has the argument of the exponential as follows.

det (@)]- (7L, Pyldet (C,)])

gi,m+1,2 (V) =eXp | — |FTHT| |HAq) H ‘ HA®PTHT TITHTHT
'y r'’oTy
T 17T T T k42| k+2
_ﬁ’F H ‘ I'THT TTHTHT| |FT(I)THT| |F ® ‘+ Cm+12 )
(3.35)
For any row vector v, v" HA — A"H"v = (Hv") - HA holds. Let v = I'". Then,
FHA — ATH'TT = (HT) - HA (3.36)
Define F = [F (I)F} € R?*2 then,
H (®IT" —IT7®") = —det(E) - HA (3.37)
Substitute equation (3.36) and (3.37) back into equation (3.35).
ialies [det (@2)] - (7, Py ldet (1))
Eimr1 (V) =exp | — QT AT |HAv|
Bldet(E)| THT k+2[k+-2
_W—THHIHAV‘_W‘P d V|+ m+1,2 1% (338)

Combine the first two elements which are co-aligned onto the HA direction. Then one can

obtain the exponential term of the second child term at step k£ + 2 from Slk;ﬂ’fﬂ,

gh2lk+2 |det (%)] - (Z;n:1 Py |det (Cq)|) + B |det(E)|

i,m+1,2 (v) =exp | — TTOTHT| |HAv|

. k+2|k+2
T TTOTHT TR0 0] + 5 V) (3.39)

Next, starting from Szk ;ﬂg“ expressed in equation (3.27). Using the same approach, at

step k + 2, the exponential term becomes,
b, ®*Ty o’y
b, ®THT  TTOTHT

Eimamm (V) = exp (—H [0, H |

b,, ®*Tv e’y

2T 17T
— P ’meI) H | b, ®2T HT  TTHTHT
'ty e’y e’y
T 7T . k42|k+2
_ﬁ |F H ’ FTHT - FT¢THT -7 W + j(i,m—l—Q,m—f—lV) (340)
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Because,

H (®I'y,@*" — &°b/TT®") = det(C)) - det(@?) - HA (3.41)
H (®IT" —IT"®") = —det(E) - HA (3.42)

Substitute equation (3.41) and (3.42) into (3.40).

— Py |det(CY) - det(P?)]
k+2|k+2 _ 1 1
Emtzmi1 (V) =€xXp (— o {7 | HAv| — ...
—P,, |det(C,,) - det(®?)]
- HA
ITTTHT| |HAv|
pldet(E)| 2 Ta&T - kt2lk42
~ g HAY ~ rgrge [T + iy ) (649)
Combine the first (m + 1) elements to obtain the (m + 1) child term at step k + 2 from
k1|41
5@',’2—&24— )
2\ . (ym
gripen M@ (S B Cl) £ BB
i,m+2,m+1 |FT®THT|
g - k+2lk
- 7T HT| ‘FT(I)TV‘ + ]Ci,:li—Q:;f—i—l) (3.44)

where F = [F @F} € R?*2,

Observe equation (3.39) and (3.44), these two types of grandchild terms also have identical

form for the case when [ = m + 1.

In sum, the second term combination rule for two-state system can be expressed as
follows,
ELIIE = P2 for 1 <1<m+1 (3.45)

Remark 3.1.4. As it turns out later, the two combination rules of equation (3.20) and (3.45)

are all the rules and as shown in the next section, the number of terms can be computed.

3.1.3 Number of Terms after Term Combination

In this section, the term combination rules proposed earlier are to utilized to theoretically

derive the number of distinct exponential terms after term combination. It turns out that
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this theoretical model of the total number of distinct exponential terms matches the empirical
structure in [6]. The fact that this theoretical model predicts the right number of terms,

implies that there exists only two such rules for two-state systems.

Figure 3.1 illustrates how a general term with m elements at step k—1 produces grandchild
terms at step k+1. Let us consider different types of exponential terms at (k+1)" update. All
the terms with 2 elements will be the (4, 1), (J,2), (4,3), (m+2,1), (m+2,2), ..., (m+2, m+2)
terms, where j can be anything between 1 and m + 1. For different grandparent term at
step k — 1, there can be different grandchild terms. However, all the grandchild terms at

step k + 1 must belong to one of these types.

(Any term with Ne = m)

ktt update

(k+1)tt update 2nd child

1%t child (m+2)th child

(old)

Last 1 term: Ne = m+1 ‘

} Y child
': ‘ First (m+1) terms: Ne = 2 ‘
1
1

&+ jt child at step k+1
Vo (j=1,2,...,m+1)

o AN NN S

(1,1)(1,2)(1,3)(1,4) G,0G,2G,3 G4 (n+1,1) (m+1,2) (m+1,3) (m+1,4)  (m+2,1)  (m+2,j) (m+2,m+1) (m+2,m+2) (m+2,m+3)
First 3 terms: Ne = 2 First 3 terms: Ne = 2 First 3 terms: Ne = 2 First (m+2) terms: Ne = 2
Last child: Ne = 3 Last child: Ne = 3 Last child: Ne =3 Last child: Ne = m+2

Figure 3.1: Term combination rules for 2-state systems

For two-state systems, exponential terms that contains more than two elements are always
old child terms being produced from their parent terms. Any two distinct parent terms will
produce different old child terms. Therefore, none of the child terms with more than two
elements will combine with each other. All the new terms have two elements; and all the

2-element terms starting from the 2"¢ measurement update are new terms.

Now, recall the definition of ]\~ftk * as the number of distinct exponential terms after

combination at step k, and N HE as the number of new distinct exponential terms after

t,new
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combination at step k. Also define Nflﬁd to be the number of old distinct exponential terms

after combination at step k. The relation of the three quantities can be written as,

N = N+ N (3.46)

t,new

The first rule for term combination is expressed as Ef ﬁ'kw = 55 ﬁlkﬂ, for1 <l <m+1,

1 <q<n+1, and for any 7,p. Suppose the number of new distinct exponential terms is

rk+1|k+1
Nt,new

at step k + 1, then each of the new parent terms at step k£ + 1 produces the first
child term of the (j,1) type at step k + 2, which are colored in green in Figure 3.1. These
(7,1) type of grandchild terms at step k + 2 will combine to one single exponential term.

Therefore, there are at most 1 exponential term of (j,1) type at step k + 2.

k+2|k+2 k+2|k+2

The second rule for combining terms says that &5 =& pany »for 1 <1 <m+1.

These two types of terms are colored in red in fig 3.1. Consider the 2-element child terms at

step k + 2 which come from a new parent term at step £+ 1. At step k + 2, there are at

most Nfi@lu‘,ml terms of (j,2) type; and at most ]\th’f:eikﬂ terms of (j,3) type, where
1<j<m+l.

Now consider the 2-element child terms at step k 4+ 2 which come from an old parent
term at step k + 1. At step k + 2, according to the second combination rule, the (m + 2, j)
type of terms will combine with the (j,2) type of terms, where 1 < j < m+ 1. And all the
old terms at step k + 1 can be referred to the “(m + 2)% child” at step k + 1 in Figure 3.1.
Therefore, all the (m + 2,7), where 1 < j < m + 1 types of terms will combine with the

corresponding (j,2) counterparts which have the same grandparent term with them.
Now the only left type of 2-element terms is the (m+2, m+2) type. If there are Ntk ;ykﬂ

rhA1k+1
Ny oa

old terms at step k£ + 1, then there will be in total terms of (m + 2,m + 2)

type at step £k + 2.

In sum, counting all types of 2-element terms together at step k+2, one obtains the upper

limit of the total number of new distinct exponential terms at step k + 2 after conducting
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the two combination rules.

REI? < 1 4 R | Rl | et (.47
Because,
NI = N g N (3.48)
Substitute (3.48) back into (3.47),
Nf:ezllukﬁ <1 +N::@1u\)k+1 M vaslas (3.49)

Also because the number of old term at step k + 2 equals to the total number of terms at
step K+ 1, i.e.,

ShA2lk+2  ghllk+1
Nt,oldl = N, | (3.50)
Then one can write down the total number of distinct exponential terms at step k + 2 as,

Th2lk+2  rk42|k+2 Thk+2|k+2
Nt - Nt,ne’w + Nt,old

< <1+Nk+1|k+1 +Ntk+1|k+1> _I_Ntk;ﬂ\k-s-l

t,new

<14 NP 4 g Nttt (3.51)

t,new

Rewrite the inequalities (3.49) and (3.51) into matrix form,

Ntk+2|k+2 < 9 1 Ntk+1|k+1 N 1 552
NG ] Ve

The inequality in equation (3.52) provides an upper limit for the number of distinct
exponential terms as well as new terms for two state cases. In [6], an equality with exactly the
same matrix structure was verified through empirical simulations. Therefore, the statement

of (3.52) can be stronger.

Theorem 3.1.5. For two-state systems, the number of distinct exponential terms and new

distinct exponential terms satisfies the following equality,

Nthrl\kJrl 2 1 Ntk\k 1
T e | T ,for k> 2 (3.53)
Nt,:zretL " L1 Nt,7|ww 1
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Remark 3.1.6. Theorem 3.1.5 were already brought up in [6], discovered by observing the

empirical data. In this dissertation, it is better understood from an analytic viewpoint.

In addition, Theorem 3.1.5 implies that no other exponential terms except what has been
discussed in this chapter can be combined. We have exhausted all the term combination rules

for two-state systems. This conclusion can be summarized in the following theorems.

Theorem 3.1.7. For two-state systems, suppose at step k, the exponential term é'ik|k has m
elements in the argument of the exponential, and é}’f'k has n elements in the argument of the

exponential, then there exists only 2 combination rules,

(a) 5:;12‘“2 = 5;21“”2, 1<i<m+1, 1<qg<n+1, foranyi,p (3.54)
() ELFMTP =M for1<i<m+1 (3.55)

3.2 Three-State Case

Similarly, the argument of some exponential terms for three-state systems also has the same
functional expression. As known, in two-state problems, there are only two elements in
the argument of the exponential for any new term, and only those 2-element exponential
terms are involved in term combination rules. However, for three-state case, the minimum
number of elements in the argument of the exponential term is four, while other terms have
more elements, as time step k increases. We observe that some exponential terms with the
same number of elements could be combined, which are not limited to 4-element terms. In
this section, we show four combination rules for three-state systems, illustrated in Figure
3.2. Each rule is highlighted by different color and shape in the figure. These colored dots
(combined terms) covers all the scenarios of 4-element exponential terms which are produced
from a new grandparent term. For those exponential terms with more than four elements,
and for those terms that are produced from old grandparent terms, combination rules are
still to be discovered. Although these four rules proven in this section are not sufficient to

fully describe all exponential terms that can be combined, the three-state study reveals that
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the argument of some exponential terms are functionally the same and can be combined for

general higher-order systems.

(Any new term with Ne = m)

kth update
(Ic+ D)% update 1st child @ 2 child " (1)t child | m™ child (mr+1)th child ’ (m+2)* child
] Y T t Y t  (old)
. 1 1 1
: First (m-1) terms: Ne = 4, ‘ 1 Last 3 te;rmsi Ne = m+1 ‘ 1
1 T 1 1 1
1 {43t child at step k+1 : 1 :
: : (j=1,2,..., m-f' ) . ‘l !
v v v v v v
re® (m1 @ (m+1,1) @ (mt+2,1)
CINCRY ® Gy 0 (1D A (m) A (1) :
1,2 j,2 -1,2 : :
(k+2)t update ® 2 A (lf ) 8 (r12 B (mml) B (m+1,m1) @ (m+2,m+3)
o (1,3 A (3 B (wr13) R R
""" A 0 (mm) ® (mtl,m)
o (1.4 ® (.4 @ (m1,9)
3 @ (mm+l) @ (m+1,m+1)
® (1,5 ® (5 @ (1,5
® (16 P ® (16 @ (mmt2) @ (m+1,m+2)
’ : s L ® mu+d) L@ (utlm+d)
L J L J
T T
First 3 terms: Ne = 4 First m terms: Ne = 4 First (m-1) terms: Ne = 5
Last 3 terms: Ne = & Last 3 terms: Ne = m+2 Last 4 terms: Ne = m+2

Figure 3.2: Some combination rules for three-state systems: 4-element grandchild terms from

a new grandparent term

.. Ek+2[k42 k+2|k42
3.2.1 Derivation of &, Z+1| 2= 5p;1| "

Analog to the two-state case, here we show that the first child term of all 4-element parent

terms can be combined, which is highlighted by green circles in Figure 3.2.

Consider the first child term of each of the parent term after the 3"¢ update which has
4 elements, i.e. NP = 4 All exponential terms with four elements is a new term,
when it is during or after the 3"¢ measurement update. This is because all terms at the 27¢
measurement update have four elements. When they get propagated and updated to the
step k = 3, 5 elements are produced in the argument of the exponential. But some of the
new child terms will produce co-aligned directions and the number of elements N, will be

reduced to 4. On the contrary, an old parent term will produce child terms with at least
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5 elements. This is because old child terms does not involve directions co-alignment. Old
terms will have one more element than their parent terms. The minimal number of elements
in a new term is four, thus there are at least 5 elements in the argument of the exponential
for an old term. Starting from the 3¢ measurement update, all four-element terms will be

one of the first several child terms from a new parent term at the last step.
At step k, the exponential of any new parent term can be written as,
M (1) = exp (—P1|H01y| — BJHC| — .. — Py |[HCy1v| — P|byt/] +j(f"“y) (3.56)
where Cy, ¢ = 1,2,...,m — 1, are skew-symmetric matrices, and b; is a 3-dim row vector
which cannot be expressed in the HC' form.

The number of elements of this term £F is m. At step k+ 1, the first (m — 1) child terms
will have 4 elements, i.e. N, = 4. The [*" child at step kK 4+ 1 when 1 <[ < m — 1 has the

argument of the exponential as follow,

(Sl Pl HC A CPHT) )

=1,g#1
EFI ) =exp [ HOBO”
i W) =exp HCOTHT] - (H V]
BT B
— m|H@Dl@TV| — mlH@El@TV|
gl :
_myﬁaqﬂuy + jcjjl"“+1u> (3.57)
where
Dy =ClH"b —bTHTC), E =CIH'TT®dT -0 'THC, (3.58)

For detail derivation, see Appendix C.1.1.

Equation (3.57) is regarded as the general form of a parent term with four elements, i.e.
Nparent — 4 at step k+1 when k > 3. Starting from parent terms of such form at step k+1,

the first child terms at step k£ + 2 has the exponential term expressed as follows,

e ﬁW@D@TAm@BT@THT\+B|H<I>EIQ>TA21@BT<I>THT|‘H(I)Bq)T |
il TSP |HC,®THT| - [HOBYTHT|- [Hel| Y
i 2§27 p 2npT&T 7T 1T 2T
- |H®*BO* | - —————|H (#*B' o' H'T" ~-TH®B®
HeBOT AT VI = TreBer T ( )V
g . k42|k+2
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As defined earlier, D; = CF H'b, — bT HTC) and E, = CTH'TT®~T — o~'THC,.

In equation (3.59), the argument of the exponential consists of four elements, each of
which has a coefficient (the quantity outside the absolute value) and a direction (the quantity

inside the absolute value). This grandchild term Sf l+ 12|k+2 at step k + 2 is updated from the

term 5;6?1“9“ at step k + 1. Besides the system parameters ®, I', H, v, and [, the value of

k+2|k+2

the term &5 also relies on the value of P, C; and b;. However, the child term &'

il

expressed in equation (3.59) are independent of the value of P, C; and by, but only functions

of ®, I' H, v, and 8. We show this fact by observation and by numerical checks.

Firstly, one can immediately notice that all of the four directions, H®B®T, HP?*BdH*T,

H (*B"®TH™TT —~ THO®B®?T), and HPB®*" in the child term &;7**? are independent

with the value of P, C; and by, but only functions of system parameters. Moreover, the
k42| k+2

second, third, and fourth coefficients in the grandchild term &) are also uniquely de-

termined by only system parameters and not the initial value of P, C; or b;.

Next, look at the coefficient of the first element in equation (3.59). Although it is ex-
pressed in terms of C) and by, the value is actually independent of C; and b;. The first
coefficient is uniquely determined by system parameters as well. It is not obvious, but it
has been verified by simple numerical computations. Later, it will be shown that this first
child term will stay invariant as k& grows, which analytically proves that the expression of
this exponential term is independent of the value of its parent terms. Later in Section 3.3,
this invariance property of the argument of the exponential of first child terms is further

discussed.

Therefore, the elements including both the coefficients and the directions in the 1% child
term 5: :12‘“2 at step k + 2 are uniquely determined by system parameters. All of the first
child terms at step k + 2 from all parent terms with NP = 4 at (k + 1)"* update when

k > 3 will combine universally, no matter which particular parents they comes from, i.e.

E+20k+2  ok+2)k+2
gi,l,l - gp,qJ (3-60)
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where Sl-lg'k and Sllf * are new terms at step k with m and n elements in the argument of the
exponential term respectively, 1 <[ <m—1land1<¢qg<n-—1.
3.2.2 Derivation of Eik l+22|k+2 = Zk :ﬁ‘kw from a New Grandparent Term 5f|k with

Nfszorlglgm—l

Consider a new term at step k which has m elements in the argument of the exponential.

Then the exponential can be expressed as,

gf‘k = exp (—P1|H01V| — P2|HCQV| — ... m_1|HCm_1V| — ﬁwl]A _|_j<'k|ky)
1
(3.61)
where C;, 1 = 1,2,...,m — 1, are skew-symmetric matrices, and b; is another vector which

cannot be expressed in the HC form.

At the (k + 1) measurement update, the [ child term 572“'“1 for 1 <1 <m-1

k+1|k+1
gl

has four elements; while the m®™ child term has (m + 1) elements. Then, at the

(k + 2)" measurement update, the 2"¢ child term Ef ;22|k+2 from the parent term Sf l+ Het1

has four elements. And the I*" child term £FF2F+2 also has

E+1lk+1
i7m7l gz,m

from the parent term

four elements.

: : ke+2|k+2 k42| k+2
In this section, we show that &, 2' =& l'

,for 1 <1 <m—1. In Figure 3.2, these
exponential terms are colored in red.

From Appendix C.1.1, the [** child term Sffr”kﬂ for 1 <1 <m—1 atstep k+ 1 is,

m—1 T 7T
g7 ) =exp | - (Zqzﬁgézjﬂl’;icqg@; ) |HoB® v| - mc’,’ll;’fTTHT' |HS D0 v |
IHCzéHT! |HOE®Tv| — m |HC | + jgffl"”lu) (3.62)
where
Dy =CIH"b —bHC, and E,=ClH'TT® T - & 'THC, (3.63)
k+1]k+1

Next, from Appendix C.2.2, the 2" child term at step k+2 from &;

5 has the exponential
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term as follow,

55:22‘“2@) =exp (—p1 |[HOPBO V|

" 21y $2T
- Tmeperrar P
B 2T T T 7T o7
B |HOD,®?THT | ‘H(Cb Do H'I" —TH®D® )]/‘
,y .
_|H<bDl(I>2THT| }H@qu)2TV| _i_JC:ZrQZIkHV) (3.64)

where

m—1
(05t P+ [HC, AnCTHT | ) | 19 D,07 A,y ®BT 07 T |

L= |HC,®THT| - [Hel| |Hel| - [HOD, 92T HT |
N 3 |HO D 9" Ay @ET O HT | (3.65)
|HC,®THT| |Hel| - |H®D,®2THT| ’
and D; and E; has been defined earlier.
Again, from Appendix C.1.2, at the (k + 1)"* update, the m child term é’f;”kﬂ is
expressed as,
P, P,_
gkt _ - _|H®D;®Tv| — ... — — 2 _|H®D,, o7
im exp b, OTHT| | 127V 0, ST HT| | 127V
B T gl T kA 1]k41
_W ’H(I)ngq) l/| — W ‘blq) V‘ +]Ci,m 14 (366)
where
Dy=—-blHC,+CIH by, 1=1,...,m—1 (3.67)
Dy =bTT®" T — &'y, (3.68)

Next, at the (k + 2)" measurement update, the [!* child term has the exponential term as

follows. For detail derivations, please refer to Appendix C.2.4.

gf:fl‘k+2(y) =exp (—p2 ‘H(I)B@Ty‘
i

2 2T
" [HOD, T HT| [HO* D, ®* v |
B 2T ®T 7T T oT
B |HO D, DT HT | ‘H(q; D/ "H'I" —TH®D® )y‘
_|H<I>DIZI>2THT| [HO D@ | +j<{‘f;?l"f“y> (3.69)

43



where

m—1
(05 st P+ [HOD,@ A3 @ DF ST HT) ) | B:|HOD, " A ®D] 0" H' |
b, 0T HT| [HO D&% HT| [Hel| b, OTHT | [HO D, HT| [Hel)|

p2 = (3.70)

k+2lk+2 . . 1 ok2lk42
Now compare &; in equation (3.64) with &

in equation (3.69). Both of them

have four elements. It is obvious by first glance that the second, third and fourth elements of

k+2|k+2 k42lk+2
gh+2l and &2

012 imi  are identical to each other, respectively. Moreover, the first direction

of both two terms is H®B®T. Hence, one will just need to consider the first coefficients,

i.e., p1 in equation (3.65), and py in equation (3.70).

By looking at the structure of p; and p, we can tell that the sufficient conditions for

P1 = p2 are,
|HC AnCPHT |- |HOD®T Ay ®BT®THT|  |HOD @ Ay ® DI T HT | (3.71)
|HC;®THT| - |Hel| B |by®THT| '
and
|HO DT A ®E[ ®THT|  |HO®Dg®" Ay ® DI T HT | (3.72)
|HC;®THT | B b, ®T HT | ‘
where
Dy=ClH"by —b{HCy, q=1,....,m—1 (3.73)
Dy =b{TT®"" — &7 'Th, (3.74)
E=CclH T T - o 'THC, (3.75)

Numerical results show that for arbitrary skew-symmetric matrices Cy, C; € R3[| # i
and arbitrary 3-dim vector by, equation (3.71) and equation (3.72) always hold. Therefore

P1 = p2-

k4-2|k+2 k42| k42
and SLWJ

Till now, we have shown that the two grandchild terms &5 from a new

grandparent term ¥ with N¥* = m for 1 <i < m — 1 are equal, i.e.,

k+2k+2  ok+2)k+2
Eira = Eim (3.76)
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s k+2[k+2 k42|42 klk .
3.2.3 Derivation of &; l+3| =g :%L‘J from a New Grandparent Term Sl-| with

Nf:mforlglgm—l

Again, consider a new term at step k£ which has m elements in the argument of the expo-

nential,

glk“g(]/) = exXp <—P1|H01V| — P2|HOQV| — ... — m—1|HCm_1V| — _|b ,YHT| |b1V| +]Czk|ky>
1
(3.77)
where Cy, ¢ = 1,2,...,m — 1, are skew-symmetric matrices, and b; is another vector which
kt2lkt2 _ okt2kt2 oo

cannot be expressed in the HC' form. In this section we show that &3 i mll

1 <1 <m — 1. These terms are colored in blue in Figure 3.2.

The number of elements N = m, then at the (k+ 1) measurement update, the I** child
term gffr”kﬂ for 1 <1 < m — 1 has four elements; while the (m + 1) child term Sf;ﬂ’f“

has (m+ 1) elements. Refer to Appendix C.1.1, the (" child term 55?1“9“ for1 <l <m-—1

at step k + 1 is,

>t P }HCquCzTHT’) o]
g () = —< = HOBO | — — | oD 0T
i, (V) exp |HO;<I>THT| . |H63T| | V} |HClCI)THT| | ! V‘
s g .
e 1R~ g (HO® G (3.78)
where
Dy =CI'H"b —bHC, and E; =CIH'TT® T - o 'THC, (3.79)

According to Appendix C.2.3, at step k + 2, the 3" child term from 8: ;rllkﬂ has the

exponential term written as,

55;32‘“2@) =exp (—p1 |[HPBO v

v 2 2T
— |HcI)El(I)2THT| |HCI) EZCI) 1%

ﬁ 2T xT 17T 1T o
 |HOE,®THT| |H(‘I) E/ " H' I —THOED )u}

v .
|H®E,®*THT| [HOE®* v| + i1y 'MV) (3.80)
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where

(05t a P [HC, AnCTHT|) | o 2,07 Ay, 0BT 07 HT|
|[HC/®THT| - |He]| |Hel| - |[HOE,®THT|
o |HOD®T Ay @Bl T HT |

|[HC,®THT| |He}|- |HOE®2THT|

P1 =

+

(3.81)

and D; and E; has been defined earlier.

At the (k + 1) measurement update, refer to Appendix C.1.3, the (m + 1) child term

k1k+1 .
Eimr1 18 expressed as,

P

g _ oxpy (—% |HOE, & v| — |FTHT\ |HOE,, 19" v|
| HT| 7‘FTHT| [H®Dgy®"v| — |FTHT, v +j§fﬁ+“i“”) (3.82)
where
E,=® 'THC,—CJH'T"® ", ¢=1,..,m—1 (3.83)
and
Dy =® 'Th — b TT0~ T (3.84)

Next, at the (k + 2)"* update, the [** child term from Ef ;ﬂ?“ has the exponential term

expressed as follows, refer to Appendix C.2.6.

5.’€+2‘k+2(y) = exp (—pg ‘H(I)B(I)Tl/‘

i,m—+1,1
- 1 |HO2E, 02"
|HOE,®2T HT| e
B 20T ;T gT 1T 2T
~ HOEGTHT] |H (*E/®"H'TT —TH®E®*) v
gl 27 k+2|k+2
_]HQDElq)?THT| |H®Elq) ’/| + JCmirr V > (3.85)
where
m—1
(TP |HOE,®T Ay ET ST HT ) .0 |HOD, " Ay E @7 T
2= ICTHT||H®E,®*THT| [Hel| b HT|- [[THT| - |[HOE,®2THT| - |Hel|
(3.86)
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Now compare 55:;'“2 in equation (3.80) with 55 ;ﬁl?? in equation (3.85). Both of them

have four elements. The second, third and fourth elements of ghtalkt2 anq ghraiks2

0,3 i,m—+1,1 are

identical to each other, respectively. Moreover, the first direction of both two terms is
H®B®T. Hence, one will just need to consider the first coefficients, i.e., p; in equation

(3.81), and ps in equation (3.86). The sufficient conditions for p; = py are,
|HC AnCPHT | |HPE DT Ay @B " HY|  |HOE,®" Ap @B ©" H” |

3.87
|HC;®T HT | |Hel ITTHT| (387)
and
[HO DT Ay ®ET ®THT|  [HODgp®" Ay PE/ O HT | (3.88)
|HC,®THT | ITTHT| '

where
Dy =CIH b, — bl HC, (3.89)
E,=® 'THC,—CIH'T"® ", ¢=1,..,m—1 (3.90)
Dy = ®7'Thy —b{TTd~T (3.91)

Numerical results show that for arbitrary skew-symmetric matrices C,, C; € R¥3 g #£ 1

and arbitrary 3-dim vector by, equation (3.87) and equation (3.88) always hold. Therefore
P1 = P2-
We just showed that the two grandchild terms 55;?'“2 and Ef ;ﬁ'ﬁQ from a new grand-

parent term EF with N* =m for 1 <1 <m — 1 are equal, i.e.,

k+2k+2  ok+2)k+2
57;,1,3 = 5i,m+1,z (3.92)

— k+2[k+2 k-+2k+2 .
3.2.4 Derivation of SHJ;HLLJF =& ;Jlltn from a New Grandparent Term & with

Nk =m

This is the last scenario of 4-element terms that are produced from a new grandparent term.
A new term at step k which has m elements in the argument of the exponential can be

expressed as,

&' (v) = exp (—Plchwl = PAHC| = o = Pua| HOpav| = o] +jd“"“v)
1
(3.93)
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where Cy, ¢ = 1,2,...,m — 1, are skew-symmetric matrices, and b; is another vector which
cannot be expressed in the HC form. Because N¥ = m, at the (k+1) measurement update,

the mt child term &FF*+1

im and the (m + 1) child term Ef ;fyfﬂ have (m + 1) elements.

Then, at the (k + 2)"" measurement update, the m'* child terms from both Sf ;MH and

k141 : : k-+2k+2 k+2/k+2
E +|1 must have 4 elements. This section shows that £°72F2 — ght2l

im,m i,m+1,m" These terms

are colored in purple in Figure 3.2.

From Appendix C.1.2, at the (k + 1)"* update, the m' child term SE;I‘kH is expressed
as,
klk+l, \ Py T P T
gi,m (V)—exp (_W‘H®D1¢ V‘ ——W‘HQDm,1® I/‘
B gl .
b ®THT| |H@D95®TV‘ T O THT| |b1<I>T1/| —l—jdf#lkﬂy (3.94)
where
Dy, =—b{HC,+CIH b, q=1,..,m—1 (3.95)
Dy =bTT®" T — &'y, (3.96)
Next, refer to Appendix C.2.5, €f :;727|5+2 can be written as,
m—1
EFHAN2 (1)) = exp Y (P, |H®D, 2" A2 ® Dy, 2" H'|) |HOB®" v
L |01 ®THT| - |[HPD,,®*THT| - |Hel|
v 2 oT
~ (D07 i |H®? Dy, @ v|
~HeD f ST |H (2D}, ®" H'TT —TH®D,,9*") v|
g
g .
 |H®D,, @ HT| | H®Dgp®*" v| + JC@‘]T;,QKHV) (3.97)
g
where
Dy=—b{HC,+CIH"by, q=1,..,m—1 (3.98)
Dy =bTT®d" T — &~ 'Th, (3.99)

At the (k + 1) measurement update, the (m + 1) child term Sﬁ Zﬂ?ﬂ is expressed as
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follow, refer to Appendix C.1.3.

P P,
k+1 . 1 T m—1 T
EXtLi(v) =exp <—|FTHT| |HOE " v| — .. — TT T |HOE,, 19" V|

i T 2 T k4141

~ T A |H®Dyd v| - TTHT] IT"w| + ¢ ,,) (3.100)
where

E,=® 'THC, - CIH'TT®™T, [=1,...m—1 (3.101)
Dy =& 'Thy —b{ T~ T (3.102)

Next, refer to Appendix C.2.7, the m'* child term at step k + 2 can be written as,

m—1
8“2'“2@) =exp —Zq:l (Pq ‘HQEqéTAzlq)Dgla@THT}) ‘H(I)B(I)Tl/
i,m+1,m |FTHT| . |He§| . |H(I>ngq)2THT|
il 2 2T
~ (G D, 87 ] |H®? Dy, v|
p T &7 17T T T
N |H®D,,®>THT| ‘H ((I)zngq) H'TT —TH®D,,®* )y|
v 2T kA 2lk+2
_ |H(I>ngq)2THT| ‘H(I)ngq) V| + -]Ci,m—i-l,m I/> (3.103)
where
Dy = b0 = &7, (3.105)

Compare 77252 i equation (3.97) with EFAR2 4 equation (3.103). Both of them have

2,m,m i,m+1,m

four elements. The second, third and fourth elements of £ FH2ARE2 g g2k

i mom i mt1.m are identical to

each other, respectively. Moreover, the first direction of both two terms is H®B®7T. Again,
we just need to consider the first coefficients.

k+2|k+2 k+2|k+2 .
€'+|+ :€'+|+ if

By comparing the structure of the two terms, we can tell that & " imaLm

|HOD T Ay DG, OTHT |  [HOE,@T Ay @D @ H |
by ®THT| ITTHT|

(3.106)

holds, where
Dy=ClH by —b{HCy, q=1,..,m—1 (3.107)
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E,=CI/H'T"® " —&~'THC,, ¢q=1,..,m—1 (3.108)
Dy =bTT®"" — &7 'Th, (3.109)

Numerical checks show that for any skew-symmetric matrices C, € R**% and any 3-dim

vector by, equation (3.106) always holds. Therefore Sf ;i‘:“ = S,f ;ﬂﬁj

So far, the term combination rules for 4-element terms that are produced from new
grandparent terms for three-state systems are shown, highlighted in Figure 3.2. Not as special
as the two-state cases, three state cases involve more scenarios of term combination. Rules
for 4-element terms that are from old grandparent terms are still to be found. Furthermore,
terms with more than 4 elements in the argument of the exponential also have the chance
to be combined. Referred to Prof. Moshe Idan’s numerical results, for a three-state case,
at step k = 5 for example, 2512 4-element exponential term are combined to be only 97
distinct terms; 1408 5-element exponential terms are combined to be 93 distinct terms;
672 6-element exponential terms are combine to be 80 terms; and 848 7-element exponential
terms are combined to be 262 terms. Although more such combination rules are still puzzles,
this investigation of three-state systems starts to uncover the properties from a more general
perspective that certain exponential terms have the same functional structure. They can be

combined in order to reduce the amount of computation required.

3.3 Invariance

The first combination rule for both two-state and three-state systems indicates that the first

k+2|k+2 k+1]k+1

grandchild term &' from the first several parent term &,

; that are produced from

any new grandparent term EZW at step k£ can be combined universally. It can be expressed
by a form that only depends on system parameters including H, ®, I', o, # and ~, and is

independent with any particular value of EZ-k'k.

At step k + 1, the term Sffl‘kﬂ is also a new term. Suppose this term at step k + 1 has

NEFL elements in the argument of the exponential. Then, at step k + 3, its corresponding

20



k+3|k+3
gh+3l

iip1  wherep <N, k+1 _1 should also be independent with any particular

grandchild term

k+3|k+3

ilpl b

. This implies that the exponential term &

value of its grandparent term Ef;rllkﬂ

step k + 3 and the exponential term Effflkw at step k + 2 have the same real component of

the argument of the exponential. Note that the imaginary component of the exponential is
associated with all measurement data, hence will be different after one more measurement
update. Moreover, if we let p = 1, then Sf ;13:|1k+3 and Sf ;12“”2 has the same real component

of the argument of the exponential.

Therefore, for two-state and three-state cases, the real component of the argument of the
exponential of first child terms will remain an invariant form as k gets larger. In particular,
for two-state cases, it is obvious that this invariant exponential term is expressed only with
respect to system parameters, as shown in equation (3.19). For three-state systems, the
expression of the invariant exponential term, (3.59), still contains the quantity of C;, although
it is independent of its value. Inspired by the invariance property, one is able to eliminate
the expression of C; by deriving its first child term at step k + 3. Refer to Appendix C.3.1,

the exponential term of the first child term Sf ;fj‘lk% can be written as,

ity _ oo (0 |HO?’B®?T Ay ®B"®THT | + p, |[HC A @B T HT | HOBOTY|
bh1,1 |HO®BO2THT| - |Hel |
— p3 |HO*B®* | — Vi @Bgﬂ AT |H (*B"®"H'T" —TH®B®*") v|
_|H(I>B;IY>QTHT| |HOBO* | + ¢t 3u) (3.110)
where
gl g

(3.111)

P2 =

PL=Ps = THeBOT HT| |[HOBO2T [T

Here we introduce a lemma,

Lemma 3.3.1. Let b € RY3 be an arbitrary row vector, C € R33 be any skew-symmetric

matriz, and B be the fundamental basis of three-state systems. Then,

H® (CTH"b — b"HC) T Ay @B ®THT
bHT - HCOTHT

(3.112)

_ |H®*BP* Ay @B o H”
N HO®B®?THT

o1



Proof. This algebraic result has been verified numerically. m

Then one can obtain the following two equalities,

G [ HOD®T Ay @B OTHT| | H3?BE2T A, dBT ST HT |
|HC,®THT| B |HOB®2T HT |

(3.113)

and

BIHOEDT Ay @B 0T HT|  p|H (9?B"®TH'TT —TH®B®?") A, @B ®TH|

|HC,®THT| |HOBO2T HT |
BIH®*BO* Ay @B O"HT| . . -
= HOBOHTHT] T THT| (3.114)

Equation (3.113) and (3.114) show that the real component of the argument of the

k+3|k+3

exponential term &7/ in (3.110) and 55;12‘“2 in (3.59) are the same. Furthermore, let

us define a coefficient o as,

|HO?B?>T Ay dBTOTHT |
o= |[HOBO2THT|? - |Hel| (3.115)
Then equation (3.110) can be rewritten as,
gflﬁg,llﬂg(’/) =exp |—o (y+BI"e"HT|) [HPBD v| — yH‘DBngHﬂ |HO*BO* v
N |H<I>B<¥>2THT| [HOBOM| + j¢11 (3.116)

Equation (3.116) provides an alternative expression for the first child term from any

parent term with four elements during or after the third measurement update.
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CHAPTER 4

S Matrix

It has been discussed in detail that certain exponential terms can be combined analytically
in the last chapter. In this chapter, the “S” matrix is constructed as an indexing scheme to
keep track of how exponential terms are repeated functionally. Furthermore, for the same
system dimension, an S matrix stays invariant regardless of different system parameters. As
brought up in chapter 1, all the analytic solutions presented in this dissertation is based on
the assumption that none of the directions can be orthogonal to H. If some directions are
orthogonal to H, the solution can also be obtained, but will have a slightly different form. The
special case of the orthogonality was discussed in [5]. Finally, the explicit recursive structure
of the S matrix for the two-state dynamic systems is determined and proved analytically.
For higher order systems, it appears that the S matrix can always be computed. The S
matrix allows for combination of terms without the need of numerical comparison during

the estimation process. This saves a tremendous amount of implementation time.

4.1 General Structure of S Matrix

Suppose at step k — 1, there are Ntk ~HEL distinet exponential terms in the CF of the ucpdf

k=

described in (3.1). The " exponential term at step k — 1 has NZ_I " clements in the

F=1 coefficient terms. Each exponential term at step

argument of the exponential and Ntkl_ !
k — 1 might have a different number of elements depending on how many directions combine
at each measurement update. Hence, different terms at step £ — 1 can produce a different

number of child terms at step k. Each parent term at step k can produce at most (k + n)

child terms at step k + 1. Define a matrix S at step & to have (k + n) rows and NF~'F~
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columns.

S1,1 51,2 Sl AR—1lk—1
Vi
S91 S99 S, k—1lk—1
k) ? 2N
Sy = Ve (4.1)
_Skz-i-n,l Sk4n,2 .-+ Sk_,'_n?]\}tk*llk*l_

Each element in matrix Sk, s;;, is an identifier for the i" child term at step k of the j™
parent term at step k — 1, represented by a non-negative integer. All the elements in matrix
S provide complete information of the numbering system of all children terms at step k. If
sij = S, then the argument of the exponential of the i child term (at step k) of the j™
parent term (at step (k—1)) and that of the k™ child term (at step k) of the [ parent term
(at step k — 1) are functionally the same. They are numbered and stored as the s;;" term
at step k. The parent terms at step (k — 1), that has directions less than (k + n — 2), will
not produce as many as (k + n) child terms at step k. The elements for their child terms
are also aligned on the specific column of Sy from the top. For the last few places in that
column where there is a lack of child terms, zero is placed to indicate that there is no child

term at that specific place.

To be more explicit, let the capital letter S* and S° represents the matrix to be examined,

and the lower case s7; and s¢; represents the (i,7)" element of S* and S°. The (i)™

J J
exponential term is expressed as the functional form of the particular functions that comprise
the estimation process, denoted as & ; = f(®,I', H, o, 5,7;v), where f(e) is a function of
all the system parameters as well as the spectral variable, structured in (1.15). If two such
expressions &; ; = &, for all ®, H, I', «, 8, v and v, then the two exponential terms can be

combined. With these notations, let us define viable S matrix as shown in Definition 4.1.1.

Definition 4.1.1. A matrix S* is a viable S matrix when the following statement holds:

*

si; = S|, € Nimplies & ; = &, for all system parameters @, H, T', a, 3, v and for all

spectral variable v.
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From the above definition, one can see that viable S matrix is not unique. Furthermore,
we define the minimal S matrix to be a viable S matrix that has the minimum number of

distinct terms by making the statement a necessary and sufficient condition.

Definition 4.1.2. A matrix S° is the minimal S matrix when the following statement holds:

s¢; = s,, € Nif and only if & ; = &, for all system parameters ¢, H, I', o, 3, v and

for all spectral variable v.

The definition of a viable S matrix is important. It provides the minimum requirement
for a S matrix to store the terms combination information. By definition it states that if
Sij = Sim, then & ; = &, must hold for all parameters and v. However, when s; ; # 5,
it is not necessary that & ; # &.». In fact, during update processing, when the program
looks up the S matrix to decide which term to combine, it does not cause any issue when it
computes the repeated exponential term twice; however, it will raise problems if two distinct
exponential terms were combined by mistake. The notion of the viable S matrix defines
all possible constructions of S matrix that will not cause such computation problems. If
making the one-side statement stronger by a necessary and sufficient condition, one will
get the special viable S that contains the minimum number of distinct exponential terms
analytically, as brought up in Definition 4.1.2. In further content, the viable S matrix is also

named S matrix for short.

4.2 Invariance of S Matrix

The viable S matrix stays invariant for systems of the same dimension, regardless of different
values of the system parameters ®, H, I', o, § and . This is because analytically, a viable
S matrix is obtained by comparing the functional expressions &; ; of the exponential terms.
Only if & ; = &, for all system parameters p = {®, H,[',a, 5,7} and for all v, we say
that these two exponential terms can be combined analytically. If there exists some values
of system parameters p; = {®y, Hy, [, a1, 01,71} and pa = {Pq, Ho, T'9, v, 2,72}, such
that & (p1) = Em(pr) but & ;j(p2) # Em(p2), it means that these two exponential can
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only be combined under special numerical cases. Hence, the terms are not considered to be
combined analytically. In this case, s;; # s;,,». Now, we have seen that only terms with
the same analytic expressions are considered to have the same s; ; in the S matrix. In other
words, these repeated exponential terms which are indicated by the same integer element in
the S matrix, should be equal with each other with respect to all system parameters p =
{®,H, T, 5,7} and for all v. For systems of same dimension, the S matrix is independent

of the particular values of parameters.

4.3 Analytic Recursive Structure of S for Two-State Case

In this section, for two-state system we present an analytic recursive structure of the S
matrix. This recursion is derived by examining different part of S in an order such that

given Si, the form of S;.; can be uniquely determined.

The recursive structure is described explicitly as follows. As a proper initialization, there
are 3 terms at the first measurement update. They are all distinct. The S matrix at step

k =1 is expressed as,
1

Skzl = 2 (42)
3

At the second measurement update, the S matrix is,

1 1 2
2 3 3
Sps = (4.3)
4 5 6
_7 8 9_
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Suppose at step k, where k = 2,3, ..., the S matrix for a two-state dynamics is known as,

S1,1 51,2 81 Ntk—1|lc—1
S2.1 522 S, k—1lk—1 ck—1lk—1
Sk _ 2,N, e N(k+2)><Nt (4.4)
| Sk+2,1 Sk422 - 5k+2,1§/f*1““*1_

where Nf ~HE=1 stands for the number of distinct exponential terms at step k& — 1. This
notation is consistent with equation (3.1). Sy has a “staircase”-shape structure, with its
bottom left corner to be all zeros. This property will be elaborated in detail in latter

subsections. The staircase part of the array is denoted as S} shown in equation (4.5).

,new’

The asterisk in the superscript means that this is not a rectangular matrix in the most

common sense.

o7



(g¥)

= o 1— VNZ Tr&

o\

NG
T—y|T—o2

&w

T—3[1— v\Zw

&

T—3[1— «Zm

v\

'N‘T
T—3|T—o2

&m

INCT

T=HlT—4= o

NON
R
S
S
R
R

mau‘y
o T— aZm
u\
mau‘y
o|T— v\Zw
&
mau‘y, ¢
wli—y Y €
o
mou‘y, ¢
yli—y N C
o
mau‘y
olT— u\>:
&

NDPN
NDPN
Swﬁw Smgw
z—3le— VNZ.TH oT— &Zw
&
moau‘y moau‘y
z—3le— QZ.TH oT— me
&
amgw amgﬂ
z—3le— &Z.f oT— &Zm
&
mau‘y mau‘y
z—3le— V\Z.f oT— x>:
&

NPN

NDPN

mau‘y

NV

T+
T=41=4% Vg

moau‘y
I.H o 1— &me

mau‘y
Tf o 1— &me

mau‘y
H.f oT— VNZ Hm

NPN

NPN

maut
Is

o8



< k|k

Then, at step k + 1, Spy1 € NFF3XNeT i expressed as,

Sk+1
B 1 ]
2 N 41 S5 pew + 117
N v2 o 2NE 4
NEET 1 NS+ N, 2N} +2
= 0 0 NEEL L NE 1
0
0 Ve
0 N
(4.6)

where Sy .., + [1]* means adding 1 to each of the entry in S described in equation

(4.7).

new’
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For the rest of Section 4.3, the recursive formulation of the S matrix for two-state systems
is proved. We break down the S matrix into different parts. By showing what each part
of S looks like in a sequential manner, the S structure is uniquely determined. This is also
verified by numerical experiments, though not presented here. While this structure seems to
be a complicated algorithm, in fact, the implementation is very efficient and straightforward.
This recursion contributes to the computational efficiency significantly, since it provides a
practical implementation that can a priori combine terms without the need of numerical

comparison.

4.3.1 Part 1: The First Child Terms from New Parent Terms

Starting from this subsection, we prove the recursive structure by dividing the S matrix into
seven different parts. First, consider the first child terms form new parent terms. From the
first term combination rule for two-state systems described in equation (3.20), the first child
terms at step k + 1 of all new parent terms at step k£ can be combined. These terms are
stated in Sy, as the first row of the first Nf Lkew columns. Accordingly, let us assign these

entries to be 1 in Sy, meaning that they will be combined and stored as the 1% term at

step k£ 4 1 after term combination.

Hence, the Si,; becomes,

1 1 1 Sl,Ntk;‘,few‘i’l Sl,Ntklk
S2.1 S22 e S, Sk|E S, klk S, klk
Sk+1 f— 27Nt,new 27Nt,new+]' 27Nt (48)
Sk+3,1 Sk+32 - Sk+3,1\7{‘"“
k|

where Sy, 1 € NEF3)XNT

4.3.2 Part 2: The Second Child Terms from New Parent Terms

: Sk o
Here we consider the second row of the first Nt7|new columns. We have exhausted combination

rules for two-state case, where none of the second child terms from new parent terms can be
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combined. In the matrix Sk, those terms are represented as the first Nfﬁw entries of the

second row. We assign the indices of those terms from 2 to Ntlf Lkew + 1. Then rewrite Sk

more specifically as,

1 1 1 Sl,l{’ﬂﬁgwﬂq SLNtklk
k| k
2 3 N, +1 s <k S, <klk
o Hnew 2 NFE 41 PN
Shy1 = Hemew ™ o (4.9)
Sk+3,1 Sk+32 - SHSJQf\k

where Sy, € N(k+3)x N1

4.3.3 Part 3: The First Child Terms from the First N*_!*! Old Parent Terms

t,new

At step k, the number of old distinct exponential terms is Nf'ol;d = Ntk_llk_l = Nf;elf_l +

Nt]fo_lyk_l. Consider the first row from the (N + 1)* column to the (Ntklfew + NF-UR=Lytn

t,new t,new

k—1lk—1
NE-

tmew  Old parent terms

column. These entries represent the first child terms from the first

at step k.

Rewrite Siy1 in more detail. The first Ntk ,‘few columns of S represent all child terms

at step k + 1 from new parent terms at step k, denoted as Sg.1(:, 1 : NEIE ).

t,new

1 1 1
. 2 3 .. N 41 vl
Sk-i—l(l, 1: Nt]flzliw) = " . S N(k+3)XNtk’"ew (410)
| Sk+31 Sk+32 oo Spug gRE 4 |

The last Ntlf ‘Ol;d = Ntkfl‘kfl columns of Si;q represent all child terms at step k£ + 1 from
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old parent terms at step k, shown as follow.

Sk-Jrl(:’Nklk +1: Nf‘k)

t,new
k|k k|k k—1|k—1 k|k k—1|k—1 k|k
th new+1 th new+Nt ,new 1Nt new+Nt new +1 1N
k|k k|k k—1|k—1 k|k k—1|k—1 k|k
— 2Ntnew+1 2Ntnew+Ntnew 2Ntnew+Ntnew +1 2N (411)
RS AL R A B A BB /i 'S S S A

k—1lk—1

where Sk+1(:,Nk|k +1: Nk‘k) € NO+3)xN,

t,new

+1:N, k|k) the first N> 1*7! columns represent the grandchild terms

t,new

I Spia(:, Nf

t,new

from new grandparent terms at step k — 1, and the rest columns of Si,1(:, N; Lew +1:N k|k)

represents the grandchild terms from old grandparent terms at step k& — 1.

Recall the second combination rules expressed in (3.45),

E+1|k+1 E+1|k+1 E—1|k—1
iz =& i, for TSI NG 41 (4.12)

where N: ;Hk_l is the number of elements of the i grandparent term at step k — 1.

Consider the first child terms at step &k + 1 from the first N, F1E=1 01d parent terms at

t,new

step k. It is obvious that the first N F1R=1 01 parent terms at step k are the old child terms

t,new

of all the new terms at step k — 1. In other words, these first NZc nelu‘,k !

old terms at step k
are “l-step” old.

k:l\k;l

Therefore, in this case, the grandparent term has only 2 elements, i.e. N, = 2.
Then the combination rule can be written as,
kA-1]k+1 k1k+1 . Sk—1k—1
gz‘,l72‘ = i,4,l‘ , 1=12,.., Nt,na'u (4.13)
Let [ = 1. Then
k41]k+1 k1)k+1 . Sh—1k—1
gL =g =12, N5 (4.14)

Look at the left hand side of the equation. Because the grandparent terms at step k — 1

are all new terms, the parent term at step k, EZ 1, Where ¢ = 1,2, ...,Nk_llk_l will always

t,new
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combine according to the first combination rule. Recall equation (4.8), we already assign

k+1|k+1

. ch—1lk—1 .
where 1 = 1,2, ..., Nt,mi} is represented by

them to be 1 in S;. Hence, the term &

S21 = 2 in the matrix Sii;.

Remark 4.3.1. A trick is used here to convert the three-subscript system of Sf f;lkﬂ into the

two-subscript system of s5 ; in S1. The first subscripts system is for exponential terms. The
first letter 7 represents the i" grandparent term at step k — 1. i can be very large, according
to the specific term. The second subscript “1” represents the first child at step k. The third
subscript “2” represents the second child at step k + 1. The second subscripts system is for
the element in the S matrix. Therefore, the first two subscripts (4, 1) in & kH' ik corresponds

k+1|k+

to the second subscript “1” of sy in Skyq1. The third subscript “2” in 5 corresponds

to the first subscript of sq; in Sjyq. This trick is frequently used in latter subsections.

Now consider the right hand side of equation (4.14). The term 8 4 at step k for ¢ =

Sh—1]k—1 klk klk k—1lk—1
1,2,...; Ny pew  arerepresented from sy = Nt new 1 through s, N1 = = N; new Nt new
in the matrix Sj;. The reason to count these terms from Nt ,‘ww +1 is trivial — there are Nt lnew

new distinct exponential terms at step k and s4; represents the first old term. There-

k+1)k+1 - <k—1k—1
fore, the child terms &;, where i = 1,2,..., N,,,  are represented from s, S to
S, cklk k—1k—1 1in the matrix S
1 Nt "rLewJ’_Nt nm‘u k+1
We can conclude at this stage that in the matrix Sy,
S k|k = =S k|k k—1lk—1 — S =2 4.15
th "new—i—l th "new—"_Nt TLE’L‘U 21 ( )
The last N** col f Sy i
e last N, 5, columns of Sy is,
. nrklk . nrklk
Sk+1(‘7 Nt,new +1: Nt ) (416)
2 2 S k|k k—1|k—1 S, cklk
th |new+Nt nevlﬂ +1 I’Ntl
S k|k S k|k k—1lk—1 S k|k k—1lk—1 S k|k
— 2Nt ‘new+1 2Nt "new—"_Nt ’IL€7|JJ 2Nt me—’—Nt nevlﬂ +1 2N |
Rt N ks NP AR Sppa NEE AR Sk
k—1|k—1

where Sj.1(:, N, NS Nk‘k) € NO+3)xN,

t,new
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4.3.4 Part 4: The Second Child Terms from the First Nkillk*l 0Old Parent Terms

t,new

Consider the second row from the (Ntk Lkew + 1) column to the (Nf Lkew + Nt’f;eﬂjk_l)th column.

k—1lk—1
NE-

tmew  Old parent terms at

These entries represent the second child terms from the first

step k.

Again, look at equation (4.13). For the second child terms at step k + 1 from the first

NE-UE=L 019 parent term at step k, let [ = 2. Then,

t,new

SRHlkFL _ ohtlllbtl g o gpk—llk-l (4.17)

,2,2 i,4,2 ) )y Sy ey SV new

Look at the left hand side of equation (4.17). The term 852 fori =1,2,... NE-LE=L o step

y £V new

k are represented from sg; = 2 through S ]\thlf;eﬂ)k_l +1 in the matrix Si. Then the
term 85;;'“1 at step k+1 are represented from sz » = 3 through s, cr-1jk-1

t,new

h—1]k—1
+1 = Nt,nmL +2
in the matrix Siy1, refer to equation (4.10). Again, the trick described in Remark 4.3.1 is
used here to convert the three-subscript system for exponential terms to the two-subscript

system for elements in the S matrix.

Now look at the right hand side of equation (4.17). The term 554 at step k for i =

Sh—1[k—1 rklk

1,2,...; Nypew  abt step k are represented from s,; = N, + 1 through Sy Nkl =
rklk k—1lk—1 . : kA1 [k+1
Nt,lzew + NMML in the matrix S;. Then the term 5@:2‘ "1 at step k + 1 are represented
from Sy, HE 1 through Sy, NFE L -ileet D the matrix Si,;. Then,

SQ»Ntk,feerl =3 (418)

_ rk—1lk—1

Sotle ittt = Nipew 42 (4.19)

Or,
Sh—1[k—1
Sy Nkl 1 = 2410, 1=1,2,.., Nt,new (4.20)

t,new
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Therefore, equation (4.16) can be rewritten as,

Sr1 (s Ny + 10 Nf™)

t,new
2 2 S, cklk Sk—1]k—1 S, cklk
17Nt,|ne/w+Nt,net‘u +1 1:Nt I
Tk—1|k—1
3 N, + 2 S, klk <k—1lk—1 S, klk
— tnew 27Nt,|new+Nt,nez‘u +1 2,N, | (421)
R RS B SRR AR s I B A s S SR S Nl
~ klk ~ klk Gk—1|lk—1
where Si41(:, Ntﬂ'ww +1:N, | ) € Nk+3)xN,

4.3.5 Part 5: Last Two Child Terms from All Parent Terms

The combination rules show that none of the last two child terms from any two distinct parent
terms can be combined. Also, since we already exhausted the combination rules for the two-
state case, all the non-zero entries in equation (4.21) except for the last 2 non-zero entries
in each column will be the same with some entries in the second row of Sy 1(:,1 : Ntklfew)

described in equation (4.10). This is illustrated in Fig. 3.1. In other words, no new integers

will show up in the top right corner of the matrix Sii;.

In addition, for the S matrix to have a simple and implementable recursion, one approach
is to pile all the old terms to the end of the new terms. Newer terms come first, and older
terms come after the newer ones. By giving the old child terms a consecutive sequence, the
order of these child terms is kept exactly the way what their several-step old parent terms

were.

Since no new integers show up in the top right corner of Sy.;, and we need to point
the old child terms continuously, the indexing method for this part of S matrix becomes

straightforward.

Let us assign the (3,1) entry in the matrix Sg.; to be N:LIZW + 2, and assign the rest
of the second last non-zero entry of each column sequentially by adding 1. Finally, assign
the last non-zero entry of each column sequentially starting from the first column of Sy, by

adding 1 sequentially as well.
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After these indexing, equation (4.10) and equation (4.21) can be rewritten in more detail.

1 1 1
2 3 N+ 1
Ntlfllkew + 2 foew + 3 2Ntlf7‘1kew + 1
Sk:—i—l(:? L: NtITJ’LIZTU) = Ntlf:{elthJrl + 1 Ntlf:eﬁLkJrl + 2 Nt’f:eﬂ)kJrl + Nt’?lzkew
0 0
0 0
where Si1(:, 1 : Nf‘few) e N:+3)xN,5w Note that only the top four rows of Sy (

(4.22)

t,new

have non-zero entries. For convenience, write the rest columns of S matrix in two parts, and

fill in the last two child terms with ascending integers.

NEIE

t,new

Sk (2 +1

83’

t,new

2Nk|k
Nk+1\k+1

. nTRIE
. Nt,new

_|_

2
3

Nk\k

t,new

t,new + 2

t,new
0

+1

N t’f;elﬂl;k_l)

2

N t]T;elzluk_l + 2
S G R
ONE 4 NP 4

+ 1 Nt]f:ell[)k—i_l + Ntlflzkew + N:;elll)k_l

0

0
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where Si11(:,

where Sk11(:,

Nk

Sk+1(37

NHE

t,new

! 41 Nk\k + Nk—1|k—1) c N(k+3)x

t,new t,new

NFE Nk lR=T g Ntk|k)

t,new t,new

S, Sklk Gk—1lk—1

1’Nt,new+Nt,new +1

S. - k—1|k—
2N et N w1

t,new

S. < b1k
3N AN

t,new

S Gk—1]k—1

47Nk|k +Nt,new +1

t,new

2Nk|k _|_Nk—1\k—1 +9

t,new t,new

Ntlfzelltk-i-l LONEE L kUL

t,new t,new

0

! 11 Ntk\k) e NE+3)x (N,

t,new

Gk—1|lk—1
t,new

Ghlk

. And

1, NIk

o, kI

3, Nkl

Sy, NEI

k141
[\ ianilas

t,new

k141
Nt+|+

Sk—1lk—1
T Vt,new )

(4.24)

Look at equation(4.24). Newer old parent terms at step k produce less child terms at

step k + 1, and older old parent terms produce more child terms. These old parent terms

are already in an order that older terms always come after newer terms. Hence the non-zero

entries form a “staircase” shape. The entries at the bottom left corner are all zeros. Those

at the top right corner are positive integers less than or equal to

NIk

t,new

+ 1. Between the

2 corners are these 2 “staircase”-shape rows, indicating the second last child terms and the

old child terms at step k£ + 1. Fig. 4.1 put together all parts of Si,; and illustrates the

“staircase” shape in the middle of the matrix.

4.3.6 Part 6: The Third Last Child Terms from All Old Parent Terms

In this subsection, consider the third last row of the last Ntk

o1q colomuns in Sp.

For all the Ntk_”k_l terms at step k — 1, suppose in the i** term at step k — 1, there are

k—1lk—1
NE-

e,

elements in the argument of the exponential.
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Recall the second term combination rule for two-state case described in equation (3.45).
At step k+ 1,

klk+l  oktlkrl k—1|k—1
gz‘,l72 SyNk k=1 o p for 1 <1< Neﬂ' +1 (4.25)

Look at the right hand side of the equation (4.25). Its parent term, E%k,uk,lw, is the

i" old term at step k, which has (N Rkl 1) elements. At step k + 1, it will produce

e,i

(N, okl 3) child terms. The third last child terms from all old parent terms at step k

€,1

are the Sk;ilkflrkl g This is the case when [ in equation (4.25) is equal to,
[=NE (4.26)
When 1 < i < Nk k=1 , the term Sk’yjk -1 is represented as s NSy = Nflfew

in the matrix S, in equation (4.22). Then at step k + 1, the term Ek;ilkflr,j )

e,

1o, Nk k-1 4 is
in the matrix Si,1. These are exactly the third last child

represented as s JRESTI K|k
e,

+1 Nt new+i

terms of all old parent terms in sequence, and occupy the third last non-zero entries of each
of the last Ntk_l‘k_l columns in Skyq.

Now look at the left hand side of equation (4.25). At step k, the parent term Sky;k et

is represented as s k11, = Ntknelllvk ' +14 in the matrix Sy, from equation (4.22) — (4.24).

e,

k+1]k+1

Then at step (k+1), the termE A1 is represented as s, ck-1x-1 = NPl o

2N +it t,new

7, e,i t,new

in the matrix Sy, from equation (4.22).

Therefore, combine the understanding of both sides of equation (4.25), we can get the

k—1lk—1

third last non-zero entries of the last N, columns in the matrix Si4q at step k + 1.

ae = NEMR Lo 1< < NI (4.27)

SNk—l\k 1 Nt LA t,new

e,
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With this knowledge, Siy1 can be rewritten as,

Sk+1(I,Nk|k 1. NHE L ket 1>

t,new t,new t,new
2 2
Tk—1|k—1
3 Nf A=t 49
Tk—1|k—1 k—1|k—1
Ntnew +3 2Ntnew +2
k|k k|k k—1|k—1
o 2Ntnew+2 2Ntnew Ntnew +1
o ~chrl\kJrl k|k ~k+1|k+1 k|k k—1|k—1
Nt,new Nt ,new + L. Nt,new Nt ,new Nt new
0 0
0 0
k—1]k—1
c Nk+3)x N, e (4.28)
And
. arklk k—1|k—1 . nrklk
Sk+1('7 Nt,new Nt ,ew +1: Nt )
lN:l’I:ewJ’_Ntknel'Lluk 1y lNlc\k
2Ntk|r]few+Ntknel'L|Uk 1 2Nk\k
3Ntk|few+anellluk 1 3Nk\k
k—1]k—1
2Nt new T3 5y, kIR
k|k k—1lk—1
— 2Ntnew+Ntnew +2 cee e e <4 29)
Thk+1lk+1 k|k k—1]k—1
Nt,new +Ntnew+Ntnew +1
rk—1|k—1 Tk—1]k—1
Nt,new + Nt + 2
Tk+1|k+1
0 NS
Tk+1]k+1
0 NFrHR
klk _ x7klk k—1|k—1
6 N k+3 X(N | t‘new Nt ne1‘u )
Refer to equation (3.49),
klk  x7k—1lk—1 k—1|k—1
Nt,new - Nt + Nt ,new + 1’ k Z 2 (430)
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Hence,

Nt]f;elzl;k_l + Ntk_l‘k_l +2= Ntkllkew +1 (431)

Then equation (4.29) is,

Sk+1(¢,Nk|k §ONER Ntk|k)

t,new t,new
51»N2r6w+N£;;Lk71+1 Sletkuc
527N2f5w+]v£;;l;k71+1 327Ntk|k
S3,Nﬁfew+ﬁige1}ukil+l 337N;c|k
QNt%;eiLkil +3 Sy fklk
— 2Ntlf7|1kew + Nt’?rjelutkil + 2
N ™+ Npew + Mo ' +1
Nt]flzkew + 1
0 e NS
0 e NFHEED
e NEX (N =N, =Nl ) (4.32)

4.3.7 Part 7: The “Top Right Corner” of S,

One should realize that the only thing left to be determined is the top right corner of Sk,
i.e. the upper region of Sk“(:,Nf,liw + N:;ell‘uk_l +1: Ntklk) in equation (4.32). As we
introduced this notion earlier, the Si,; can be split into different areas, illustrated in Fig.
4.1. In particular, the last two child terms at step k + 1 of each of the parent terms at step
k form a “staircase”-shape, which split the rest of the S matrix into its bottom left corner
and top right corner. The bottom left corner should be all zeros. Regarding the top right
corner of Si11 at step k+ 1, suppose that the i*" term at step k — 1 have Nii_l'k_l elements.
Each of them produces an old term at step k, and contain (Nf i_llk_l + 1) elements. Then at
step k + 1, it produce (NN, Rodk=l 3) child terms. The top right corner of Sy, represents

e,

the first (N(i;l'k*l + 1) child terms.
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According to the second combination rule, these terms at the last Ntkfuk*l columns of the
top right corner will combine with the terms at the second row of the first NV, FIF  columns

t,new

in Siti1jk+1. Note that the total number of columns of Siy; is Nfﬁl\k*l + N:Lkew = Ntk|k.

Therefore, all the numbers in the top right corner of Si.; should be greater than or equal

to 2, and less than or equal to NFE 41,

t,new

Next, we need to introduce the following lemma.

Lemma 4.3.2. Consider the exponential part of the i'" term, Sik_”k_l, at step k — 1 and

k—1|k—1 k—1|k—1
gkl |

the m'™ term, Em at step k — 1, then the ™" child term at step k of &; and the

p'" child term at step k of LT can be combined if and only if the I'" grandchild term at
step k + 1 of the old child term 5;1‘561 at step k and the p'* grandchild term at step k + 1 of

the old child term Eflkold at step k can be combined, i.e.

Efllk = Efn'f; iof and only if Ef;;;,‘fﬂ — ghtlkt (4.33)

m,old,p

The proof is straightforward, shown in the Appendix D.

Lemma 4.3.2 indicates that for which ever terms that can be combined at step k, the
corresponding child terms at step k + 1 of its old parent terms combine. If any two numbers
in Sy are the same, then in Si41, the top right corner starting from the (Nf'few +1)™ column

will show the same pattern: the two numbers at the corresponding places in Sy, are also

the same.

Observe equation (4.22), (4.28), and (4.32) closely. Only the top right corner in equation
(4.32) is unknown. The known integers in the top right corner of Sy, already cover all
integers from 2 to ]\N/'fq'l’iw + 1. Hence every unknown integer in part 7 of the S matrix must
be identical with some integers that has been determined in part 1 to part 6 in earlier
subsections. Then, our statement can be stronger. Not only that the two numbers at the
corresponding places in Sk, are the same, but also we can uniquely determine the integers

at each unknown places in part 7.
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Note that the top 3 rows of Ski1(:, NHE 41 NHE N1kt

t,new t,new + t,new

) is really copying the
pattern of the top 3 rows in Sk(:, 1 : Nkil‘kfl) by adding 1 on each entry. Let us assume that

t,new

the last ]\thkfmf2 columns of the top right corner in S, copy Sk_1 except its last non-zero
entry at each column by adding 1. Then the last Nfﬁﬂk*l columns of the top right corner in
Ski1 copy Sy except its last non-zero entry at each column by adding 1 as well. Since these
entries are the only entries left to be determined, this assumption is proved immediately by

itself in a recursive manner.

Up till now, we have analytically derived the recursive structure for S matrix for two-state

systems.

Remark 4.3.3. This approach to derive the two-state case S matrix recursion is tricky in the
sense that each part of the S matrix is constructed sequentially. The proof of the parts of
S in earlier subsections turns out to be the premise of the proof presented in its following

subsections.
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Figure 4.1: The “staircase” shape of S matrix
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CHAPTER 5
G Terms

In this chapter, the G terms, i.e. the coeflicient terms G?lk(y) in equation (1.14) are recon-
structed. As described in [5], the G' terms were found to be in a fractional form, of which
each layer contains an imaginary and a real component. The real component is determined
by a sum of real scalars, so called “offsets”, and some sign functions scaled by coefficients.
The real component is independent of the measurements, while the imaginary component
is a function of the measurements. The new structure of G' terms updates the offsets and
the sign functions as well as the imaginary component in a recursive manner as k increases.
Many zeros are added artificially into the structure due to the update integral discussed in
[5]. By introducing this new structure, we are able to eliminate all the redundant zeros,
hence reduce the computing and memory requirement. Next, a comprehensive study of the
G terms for two-state case is presented, revealing the interesting property that in each layer
of G of a new term, there are at most three non-zero elements in the real component. Fur-
thermore, this approach of breaking down the G terms provides the separation of the part
of structure that is independent of the measurement history with the part that is relevant
to the measurements. This allows the offline - online implementation, presented later in

Chpater 6.

5.1 General Structure of GG Terms

In this section, a general structure of the GG terms is proposed. Recall the recursive form of

the G terms in equation (1.16). The coefficient functions g"*(-) at step k are functions of

k—1|k—1 k|k

9 ke (+) at step k — 1, where r; k71|k—1<.>

is the index of the parent terms. If we rewrite g,
Ty
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with respect to the coefficient functions at earlier steps and keep expanding the numerator
of the functional form of G, eventually equation (1.16) can be expressed as a multi-layer

structure, shown as follow,

1 _ 1
TR TR
Gk 1 jlm(k—1)+R§fl—1) B j[m(k—1)+R;C’,€3—l) jlm(k_”*Rz(fZl) )
B k ; (k) . ") .
(27) GIm) R,ﬁ1 GIm®) + Rk,Z
. J

The notation R,E:?) represents the real part of the corresponding denominator, and Im(™
represents the imaginary part. The superscript (m) represents the m! layer from the top.
The subscript k£ means this term is at step k. The second subscript of R,(:;) represents
the [** element in the sequence. Each scalar R,(ﬁ) is a linear combination of the offsets
and coefficients that multiply sign functions. The real part of the G terms, R,gm), can be

formulated as the product of a vector p,im) and a matrix F; k(m), ie.

B = (R ] = 52

where the dimension varies with specific term.

Separate p and I into the offset component p,, F, and the sign function component p.,
F,. Let ,
F
p =1 A R = (5:3)

The offset component, F O(,T), is a matrix that contains only 1 and -1. The sign function

component, I C(,;n ) is in the following,

Sl DY 81

i =1 |, 1<q< NHE (5.4)

76



k|k

where s; = sgn (Bi y), 1<i<q.

(m) will not change from step to step. Once they are

The imaginary part of each layer I'm
produced during a certain step, they stay fixed as functions of the measurement sequence.

At each layer for any particular term, all the imaginary parts are the same.

There are three major benefit from restructuring the G terms into this form and, in par-
ticular, the split of the offset component and the sign function component in the real part
of each G layer. First, the emphasis on the real part R and the imaginary part Im in each
layer allows separation of the component of the estimator structure, that is independent of
the measurement data, from the component that is dependent on the measurements. This
contributes to a pre-computational technique set-up, aimed at improving online computa-
tional efficiency, which will be discussed in a later section. Second, the split of the offset
and sign function successfully eliminates all the zeros that have been artificially added into
the offsets during the update process. These artificial zeros were brought into the coefficient
of the exponential so as to simplify the integration formula in [5]. Therefore, many of the
offsets are zero, and those zeros cannot be distinguished from non-zero offsets treated via the
existing method. Third, the GG terms discussed in this section provides a better understand-
ing of the fundamental structure. One interesting property is that for a two-state system,
for any new term, there are at most 3 non-zero elements in the sequence p = [p, | pc|-
This fact is uncovered by derivations of recursive update of the G terms using the proposed

new structure, presented in the following section which concludes this chapter.

5.2 A Comprehensive Study on Two-State Case

In this section, the recursion of p and F' for two-state systems is completely analyzed. For
two-state systems, there are no more than three non-zero elements in the sequence of p in
any layer of any new term. To show this property, the sequence p and the matrix F' are not
split apart. However, they will be split into the offset part and the sign function part when

implemented in the offline - online structure in latter sections. We first present the update
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at k = 1 in Section 5.2.1 and for £k = 2 in Section 5.2.2. Then by induction, the general
form of G is obtained in Section 5.2.3 for new terms and Section 5.2.4 for old terms. Then
a recursion is developed starting in Section 5.2.5 to Section 5.2.7. The interesting property
that no more than three non-zero elements in the sequence of p in any layer of any new term

is presented in Section 5.2.8.

5.2.1 1% Measurement Update

Refering to [5], the CF is obtained from the update integral at step k = 1.

¢X1\Z1 / ¢X1 v—H" n)¢V( ) jzmd??
eV el
:%/_ exp (—allelHT| 611}[T —77’—042|62HT‘ 22 ’

— [=n| + jzn) dn

_ ZGHI 1|1 (v) (5.5)

There are 3 terms at step kK = 1. The exponential part of these three terms are,

ev
S%\l = exp ( E HT’ |HAv| — ‘ . }{T + C1|1 ) (5.6)
521‘1 = exp <—m ’HAI/' — ‘ HT + Clll ) (57)
&' = exp (—au ferw] = az leav| +jG;"'v ) (5.8)
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The G part are as follows.

ot — i 1
L 27'(' - T T eaV ey ey
Jjz1+ o |lerHT | + ag |eaHT | sgn <62T — EIHT> + vsgn <0_ m)

1
jZl — |61HT| + |€2HT| sgn <% - efll';T> +’739n (0 - ef%)

1 1
2 jz1 + o ler HT| 4 ao les HT | sgn (e  HT - es HT) sqgn (HAV) + ysgn (—ef}}}>
1
_ (5.9)
jz1—ap|etHT |+ ag|leaHT | sgn (e1HT - eoHT) sgn (HAv) + ysgn (—;}}’T>
1 1
Gt = o>
T ljz+ ag|leaHT| 4+ aq et HT | sgn <% — e;}}}) + ysgn (0 — —esfr}/T>
1
Jjz1 — ag|eaHT |+ ay |let HT | sgn (;};T - e;ﬁ}) + ysgn (0 — e;i}})
27 j21 + ao e HT| + ay |er HT| sgn (—e  HT - eoHT) sgn (HAV) + ysgn (—65}{’})
1
jz1 — ag|eaHT |+ aq ley HT | sgn (—e 1 HT - e HT) sgn (HAv) + ysgn <_%>
(5.10)
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ain 1 1
3 = —
27 ]Zl‘|“’7+0£1|61HT|Sgn< e1l/ _0> +a2|egHT|sgn< 6211 _0>

1
jor =+ ledHT | sgn (5 = 0) + as |eo HT| sgn (225 — 0)

1 1
2 jz1+ v+ arletHT| sgn( L4 ) + ay |62HT|sgn( 14 )

_ ! (5.11)

jz1 — fy+oz1|61HT|sgn< ) + ag les HT | sgn (:i’ﬁ)

Rewrite the G parts in the following form.

1 1 1
sz o1 ) O/~ 1), . (5.12)
T s+ Rl,l(z) Jz + R1,2(Z)

where R is the real component of the denominator, structured as,

1 1 1),/. 1) /- 1) /-
rO@) = [RNG, ROG)] = 6) - FOG) (5.13)
Now look at the three terms at step £ = 1. When ¢ =1,

) e1v
Rﬁ(z =)= ‘elHT‘ + o ‘egHT‘ sgn (elHT . EQHT) sgn (HAv) + ~vsgn <_611HT> (5.14)

and

Rgg(z =1)=-m ’61HT’ + ao ’egHT’ sgn (61HT . €2HT) sgn (HAv) + vysgn (—;};}) (5.15)
1

If we let s = sgn(HAv), s = sgn(—_r) and let the sequence pl! )( 1) and the matrix
FY(i =1) be,

Pgl)(i =1) = [a ’€1HT| . Qg ‘QQHT’ sgn(erH" - eoH), 7]

= [al ’elHT| . <€2HT) -sgn(etHT), 'y} (5.16)
1 -1
Wy 1y
Fl (2 - 1) — | S1 S1 ) (517)
So2 SS9
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then
RO =1) = [RG =1, R0 =] =" =1) =1  (518)

Similarly, when i = 2, from equation (5.10), one obtains,

Pgl)(i =2)= [042 |€2HT‘ , !elHT| sgn(—e HT - eoHT), ﬂ

= [042 |62HT . o (elHT) - sgn(—exHT), ’y] (5.19)
1 -1

Ffl)(i =) =ls1 s (5.20)
So  So

where s; = sgn(HAv), s3 = 39"(_65%)'

Finally, when i = 3, from equation (5.11), one gets,

pNi=3)=[7, ai(aHT), as(eHT)] (5.21)
1 -1

FUi=3)=|s s (5.22)
So2 59

where s; = sgn(e1v), se = sgn(esr).

5.2.2 2" Measurement Update

Consider the i term at the first measurement update, and express it in the following form.

el =exp (=P [Blv| = P By + i) (5.23)
1 1 1
= L] S T (5.24)
27 |z + R1,1(3) Jz1 + R1,2<Z)
R’V = [RAG, RG] =6 FOG) (5:25)
AV = [0, A0, A% (5.26)
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FOG) = |s16) s1(0) (5.27)

where s1(1) = sgn(Byv), s2(i) = sgn(Byv).

At the 2" measurement update, each parent term will produce 4 child terms. The [*?
child term has the G part expressed in the following form.
22 _ 1 yzﬁR&i( D) JZ1+R§1;< ) JZ1+R§;,( 0) mmgl;( 0 (5.28)
il = :

(2m)2 ) ji(zo — M HT) + BEG,1)  ji(z — CUHT) + R, 1)

5.2.2.1 The First Child Term i =1

Using the first child term as an example, we will show how the sequence of R in the denom-

inators are updated.

At step k = 1, the first and the only layer of the i*" term has the sequence R as follows.

The notation omits the “(i)” for simplicity.
1 1 1 1
R = ol + 03 - 514+ 013 - 5o (5.29)
R = —pi + i3 - 51+ pi4 - 52 (5.30)

At step k = 2, the fractional form now has two layers as shown in (5.28). The first (top)

layer Rgl) at step k = 2 is updated from the layer Rgl) at step k=1 as
RO =Wl R A, A= R 531
and
Y=o} + o sgn (B0 HT)

Bl|1q)T Blll(I)T
+ p%}%sgn (BQHI(I)THT) - sgn ( 2 © Y _ 1 -V (5.32)

B'oTHT  BleTHT
where pggsgn (Bll o H T) in the above equation is the new offset. The reason why there

is a sign function sgn (Blm@THT> is that in the update integral, the variable (v — H™n)

82



extracts the factor (BMCDTH T) out of the absolute value, and leaves the direction in the

1|1

form of 1I1—THT for further operations.
. . BT B'eT . . . . .
From Chapter 2, the direction (Bg'%cpTHT — BiI%CDTHT) will be align with the direction of
HA  ie.,

BT BT
B'oTHT  BleTHT

where c is a scalar. However, ¢ can be either positive or negative.

—c-HA (5.33)

HA serves as the fundamental direction in the two-state case. Whenever we have co-
aligned directions, we always want to represent them in the HA format by scaling that
direction appropriately. If we want to “convert” the sign function in equation (5.32) into

sgn(HAv), we must deal with the sign of ¢. One way to represent the sign of ¢ is to compare

. . Blll‘I)T Bl‘l(I)T . .
the first element of direction T2 — = and the first element of the direction
Bi'eTHT  BIM'®THT
HA  ie.,

1\1 Billch T

1\1¢,THT - BT T €1
sgn(c) = sgn (AT (5.34)

Define sgn(c) to be a scalar 1, i.e. t; = sgn(c). Looking at (5.32),
R(l) p(lll) + pg 289N (Bm@THT) + p(ll?ngn (B;‘l(I)THT) “t1 - sgn (HAv). (5.35)

Conducting similar analysis, we can obtain the rest of the R sequence as

Rélg = —,051% + pg %sgn (Bi'lCIDTHT> + pggsgn (BQHIQJTHT) -ty - sgn (HAv), (5.36)
RY3 = pi] — piasgn (311'14>TH T) + pilgsgn <B§'1<I>TH T> +ty-sgn(HAv),  (5.37)
Réﬁ p(l) pg %sgn (Bi‘quTHT) + pggsgn (B;“CDTHT> -t1-sgn (HAv). (5.38)
Organize the R sequences into the form of p - F'. Then,
1 1 1
A= [ ol A

[pﬁ, pglg sgn(BllH(I)THT), ,051% . sgn(B%llCDTHT) . (5.39)
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V=11 1 -1 -1 (5.40)
where s; = sgn(HAv).

The second (bottom) layer is,

RY = [RY), R = PP (5.41)

Again, look at the first element of the RéQ) sequence.

B1|1(I)T Bl|1(I)T
Ré? — Pllll ‘B%H(DTHT‘ + P21|1 ‘B%‘lq)THT‘ sgn ( 2 v 1 v

Bl'erHT  BlerHT

r7e” BT BT
+ 4 }FTHT| sgn ( v_ 4 v + vysgn | 0 — Bt M (5.42)

I'THT Bi'lchHT Bllll(I>THT
Define,
v _plleT \ ¢
to = sgn D mrenr) Sy = sgn —ﬂ (5.43)
275 (HA)eT R X Y7 ) ‘

Then equation (5.42) becomes,

R = P ‘B}“@THT’ +p

B;H(I)THT‘ -ty - sgn (HAv)

B'oTy
T T 1 —
+ 5 ‘I’ H } to - sgn (HAv) + ysgn ( BIMCI)T T)

_ P11|1 ‘Bll\lq)THT‘ i <P21|1 B;UQ)THT‘ b+ |FTHT‘ -t2> - sgn (H Av)

. B'oTy
VSN | —
B{'®THT

— pi ‘B}“@THT‘ n <P21|1 B;“@THT‘ i+ B[TTHT| -tg) cs1by-sy (5.44)
Similarly,

2 11
Ré% = _P1|

B}“@THT‘ +(r"

B;HCI)THT‘ ty+ B|TTHT| - t2> s y-se (5.45)
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Therefore, the second layer of the R sequence can be organized in the following manner.

2 2 2 2
o= o2 o2 o]
— [le Bll|1q)THT” pin B;|1¢THT‘.t1+5‘FTHT|.t2’ ,y] (5.46)
1 -1
F2(2): S1 81 (5.47)
S99 So

Till now, we have obtained the G part of the first child term at step & = 2 given by
equation (5.28). The R sequences of each layer in the fractional form can be recursively
updated. In the following sections, we will omit the intermediate process but present the

necessary analytic results.

5.2.2.2 The Second Child Term i = 2
When i = 2, the first layer of the second child term is, same as equation (5.31),
1 1 1 1 1 1 1
R =Ry, RE), RSy, RGY| =) R (5.48)

Unlike the first child term, in this case the element p§1§ - sgn(BAs'®THT) becomes the

new offset.
Define
Billq)T _ B;‘lq)T eT T B Béllq)T eT
BlteTHT  BilteTHT | 1 rrat  gllterpr ) 71 A
L (HA)eT e (HA)er 49
Then,
1 1 1 1
A= AL )
1 1 11 1 11
= | ol son(B OTHT), o) sgn(B e HT) -ty (5.50)
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where s; = sgn(HAv).

The second layer is,

2 2 2 2 2
BY = [RE), RG)| = oY B

2 2 2 2
A= [ o2
= [m" |BteraT|, P BOTHT| b+ BTTHT| s,
1 -1
2
Fz( ) = S1 81
S2 52
where s, = sgn (—Bfqu}TH”T)
5.2.2.3 The Third Child Term ¢ = 3
When i = 3, define
B "oT T\ o By T r?
plgrgr — TTHT ) €1 pligrgr  TTHT
t1 = sgn to = sgn

(HA)el ’ (HA)el

The first layer of the third child term is,

1 1 1 1 1 1 1
RO = [ RS RY RY)= A A

1 1 1|1 1 1|1
- [pg,f, 0, P2 sgn(B"OTHT) -t + pi'y - sgn(By ®THT) - t,
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(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)



V=11 1 -1 -1 (5.58)

where s; = sgn(HAv).

Note that a zero offset is added in pgl) in equation (5.57). This is because at step k = 1,

the real part of the denominator at the top layer looks like Rﬁ = pgli + pglg 81+ p§1§ - 89.

If we consider the third child, the coefficient of the third sign function will be pulled out as

the new offset in pgl), and that is a zero.

The second layer is,

2 2 2 2 2
RY = [RY, RY| = o P (5.59)
2 2 2 2
o0 = [0, o8 P

- [6|FTHT . P BleTHT| ¢ 4 P B§|1<I>THT‘ o, ’y] (5.60)

11
FP =g ¢ (5.61)

S22 82

where s = sgn(HAv), s = sgn (~ g ).

5.2.2.4 The Fourth Child Term i =4

When 7 = 4, the fourth child term is the old term. In this case, zero offsets are added to the

p sequence.

The first layer of this old child term is,

1 1 1 1 1 1 1
R =[RS R RY R =0 R 5.6

1 1 1
= [pg,ia 0, pg,%a Pg,g,] (563)



11 -1 -1
RO — (5.64)

S1 S1 S1 S1

S2 S22 S22 852

where s; = sgn (Bll“(I)TV>, and sy = sgn (B;|1<I>Tu).

Note that in this case, we also have a new zero offset being added in the sequence of

pél) in equation (5.63). The reason is similar. The new offset should come from the fourth

coefficient of the sign function s;. However, s, is really added as a dummy zero before the

update integral. Therefore the new offset in pgl) is a zero.

The second layer is,

2 2 2 2 2
Ré)z[Ré,l)y Ré,%]zpé)-Fg” (5.65)
Py = [pé?i, P, P, pé?i]

:[% pil (B}“@THT), p (B;“@THT), /3(PTHT)] (5.66)

o

S S

= (5.67)

S99 So

where s, = sgn (Bi‘lCDTV>, S9 = Sgn (BQM@TV), 83 = sgn (FTV).
From the solutions shown above, it is obvious that, for new terms up to step k = 2, there
are at most three non-zero elements in the sequence of p at each layer. In the rest of this

analysis for the G terms of two-state case, it will be shown that the number of non-zero

elements will not be more than three as well.

5.2.3 General Forms of GG for New Terms at Step £

We already understand that starting from the second measurement update, any new term

at step k has the exponential part that can be written as,
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Eklk — exp (—P1 |HAV| - P |B2V| —i—j(k'kV) (5'68)

There are k (number of) layers in the G part in (5.1). Since this is a new term, only the
last (bottom) layer will involve 2 different sign functions s; = sgn(HAv) and sy = sgn(Bav).
All the other layers only contain s; in the sum of the sign functions. And s; is invariant

across all the new terms in every step.

To better describe R,(cm) at the m'* layer as R,(cm) = p,(cm) - F ,Em), when 1 <m <k —1,

R S TR (o (5.69)

1 -1 1 -11 -1 1 -1
1 1 -1 -11 1 -1 -1
Fm™ = | € Rik+2-mp 2= 5 70
1 1 1 ~1

81 Sl ... 81

When m = k, the bottom layer is,

1 -1
k k k k k
pl(c) - [pl(c,i’ pl(c,;7 ch; ) Fk( )= s1 81| € R>*? (5.71)
S22 82

where pgfm) for 1 < m < k only contains at most three non-zero elements. This is shown in

the rest of this chapter and summarized in Theorem 5.2.1 in Section 5.2.8.

5.2.4 General Forms of G for Old Terms at Step £

There are two types of old terms. Firstly, most of the old terms come from new parent terms
if tracked several steps back. They can be expressed in a general form. They are called
“type-I" old terms. Secondly, there are three old terms that are originated from the three
old parent terms at step & = 2. These three old terms are the “oldest” terms, since they
never had a new parent. They are called “type-II" old terms. The general forms of G for

both types of old terms are presented as follows.
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5.2.4.1 Old Terms: Type I

Old terms of type I refer to those terms that are originated from a new parent term at certain
step k > 1. Let us find the general form for an #-step old term at step k. Then at step k— 0,

notated as p, i.e. p =k — 6, the original parent term is a new term.

The general form of any new term at step p can be found from equation (5.68), (5.1),
(5.69) - (5.71).

“l-step old” term (6 = 1) is the old child term at step (p+ 1) from a new parent term at
step p. The exponential part of this 1-step old child term becomes,

EPHIPTY — oxp (= Py |HAD Y| — Py | BodTv| — B |TT0| + jertirtiy) (5.72)

The G part is in the structure in (5.1), with the parameters s; = sgn (HACDTV), Sy =
sgn (B2®Tv), s3 = sgn (ITv"). The real part R at each layer m is the product of the

sequence p and the matrix F, i.e. R;T)l = pgﬁ)l : Fp(fl), I<m<p+L

When 1 <m<p-1

1 1 1 1
ool = o A s e 0 ] (5.73)
2 2 2 2
o= ol B A 0 o) (5.74)
—1 -1 -1 -1
or equivalently,
e = A, A e 0 A (5.76)

and

1 -11 -11 -1 1 -1

Fm o= | g RPH3-m)p2r2mm 5 g

81 81 DEREY 81
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When m =p

ngh = p;ﬁﬁ: 07 pgj%v ,0,(,{)%] ) F;Ei)l = S R4X4 (578)
S1  S1 S1 S1

S2 S22 S22 S2

When m=p+1

pP = [y, P (HASTHT), Py (B,®THT), g(ITHT)] (5.79)
T

Fo — |7 T g (5.80)
S99 So
_83 83_

By looking at how the p sequences for each layer are updated, one can see that at step
p—+ 1, a zero is added to the p sequence of the top p layers, being the last offset that occurs
before the coefficients of sign functions, as shown in equation (5.76) and (5.78). Therefore,
the number of non-zero elements in the p sequence of the top p layers does not increase; still

at most 3 of these elements are non-zero.

For the bottom layer m = p + 1, all 4 elements are non-zero. The first element, v, is the

only offset. The rest 3 elements are the coefficients of sign functions s;, s2, and s3.

Next, examine the old child term (§ = 2) at step p + 2 from the old parent term at step

p + 1. The exponential part becomes,

EPHAPT2 = exp (— Py |HA®* | — Py | Bo®@*Tv| — B [TT 07|

— T[4 j¢rEtEy) (5.81)

The real part R at each layer m is the product of the sequence p and the matrix F'. Let
s1=sgn (HAD™ V), sy = sgn (B2®*Tv), s3 = sgn (IT®TVT), 54 = sgn (ITv7).
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When1<m<p-1

1 1
/)1(9422 = [ﬂéil,b

2 2
P;jzz[()

)

Pp+1,2>

1 1
- [ o

(2)

pp+1,17 perl

2)

)

)

(1)

Pp.p>

)

127

)

0,

)

2)

Q)

pp+1,p+17 07

07 ppyp+1:|

(2)
pp+1,p7

0,

(2)
Pp+1p+1

(2)

2
— |:p;i7 lop727

)

-1 -1
o = o,

Y

_ [ (p—1)
= [p"

or equivalently,

ots = o, ol
and
(1 1 1 -1 1 -1
1 1 -1 -1 1 1
(m)
FpT2:
1 1 1
_81 S1
When m =p
ngg2 = [ ;(21,1,
Z[p;(f}, 0,

) pp,p717 07 07 pp,p]

-1 -1 —1
pgjkl,%a pz(fkl,gn 07 pgjkl/ﬂ

—1 —1
ngQ )7 07 07 Pffg )i|

(m) (m)
) pp,p—‘,—l—m? 07 07 pp7p+2—mi|

1 -1
-1 -1
€ R(p+4—m)><2(p+3_m)
—1
81_
Pgima 0, Pﬁ)w Pgi)1,4]

0, oy, pff%}
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(5.84)

(5.85)
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(5.87)



FP =11 1 1 1 -1 -1 -1 —1| eR>® (5.88)

51 51 51 51 S1 S1 51 S1

SS9 S22 S22 S22 S22 89 S2 82

When m=p+1

e [ e AR ]
=[y, 0, P (HA®"H"), P (B2 H"), p(I'"H")] (5.89)
(1 -1 1 1]
1 1 -1 -1
FOD — s si s1 s | €R™ (5.90)
S9 S99 S9  S9
|53 853 S3 S3

When m =p+2

WP = [ P(HASTHT). P,(B@PHT). 4(T0THT). B(ITHT)] (5.01)
o
S1 81
F&P = 15, s, | € R (5.92)
S3  S3
|54 54 ]
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Repeat this approach to find the general form of an 6-step old term at step k. There are

in total (6 + 2) elements in the argument of the exponential.

EMF = exp (—Py |[HA®™v| — Py | B,@™v| — g [TT 0T Dy

— = B[y +jgk\ky) (5.93)
R™ = pim M1 < <k (5.94)
Let s1 = sgn (HA@TGV), S9 = Sgn (Bg@Tay), S3 = sgn (FTCDT(H*DI/), cee, Spyg =
sgn (FTV).
When 1 <m<p-1
P;(gm) _ PSE), pz(;g)’ o pz(;;l—l—m’ 01, 0y, -, Op, P;(:;)H—m (5.95)

The total number of zero elements in equation (5.95) is . The subscripts of the zeros
are for convenience. No matter what the subscripts are, they all represent scalar zeros. As
child terms get older (6 becomes larger), these zeros are always inserted as offsets, in front

of the last entry of the p sequence.

M= € R#2mmp2f (5. 96)
111 -1
_81 81 DR 81 ]
When m =p
p = [p,(fi, 0, -, O s, pg,’%] (5.97)
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Again, number of zeros in equation (5.97) is 6.

TR
11
= | € RO (5.99)
11
S1  S1
_52 82 -
When p+1<m<k-1
o = (7,00, O, P (HADTC DI HTY Py (BydT P T
B (rTeTm=—r=bgTy ... g(ITHT)] (5.99)

Unlike the previous cases, the zeros in equation (5.99) are added behind the first entry

of the p sequence. The number of zeros in equation (5.99) is (kK —m). There are (6 + 3) rows

in Fk(p). The total number of columns in F,gp) is 2(0+3)=(m+2-p) — 9f—m+p+l _ gk—m+1

1 ~1
1 1
=1 1 1 .| e ROTTE (5.100)
S1 S1
Sm4+2—p  Sm+4+2—p
When m = k (The bottom layer)
o = [y, P (HAD™HT) Py (B,@™HT) 8 (TT®T¢-VHT) ... B (TTHT)] (5.101)
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There are (6 + 3) rows in Fk(k) as well. The total number of columns in Fk(k) is 2. Sign

functions are from s; to sgys.

S
S S
o N =S U (5.102)
| S0+2  So+2

5.2.4.2 Old Terms: Type 11

Old terms of type I cover the majority of old terms at a general measurement step k.
However, at each step there are 3 old terms that cannot be described by (5.93). They are
the old descendants from the 3 terms at the 1?* measurement update in (5.6) - (5.8). We

call these three old descendants as “Type II” old terms.

Recall the fourth child terms at step & = 2. There are two layers in the G part. The real

part R of each layer m is a product of a row vector p and the matrix F' as

p) = [pff, 0, A, pﬁ%] (5.103)
o = P (B, R (BeTHT), B(TTHT)] (5.104)
(1 -1 1 1] 1 1]
1 1 -1 -1 S S
Y = , PO |7 T (5.105)
S1 S S1 S1 S92 82
_82 S92 S9 82_ _83 83_

where s, = sgn (Bll‘ICDTV), S9 = sgn (Bé‘lfl)TV), s3 = sgn (I'v).
These 3 terms will keep producing old child terms as k becomes large. At each step there
will be 3 of them. The form of such “oldest” child terms at step k can be easily derived.
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At step k, the argument of the exponential has the form of,

ghlk _ exp <—P11|1

Bll|1(1)T(k—1)V‘ _ P21\1

B;|1(I)T(k—1)]/’ _3 ‘FT@T(k—Q)V}

— o= BT Y| + M) (5.106)
When m =1
) = [ﬂﬁ; O, -y Op1,  pio pfg,} (5.107)
When 2<m<k-1
= [% O, -y O, P (Blmq’T(m*DHT) ’
Al (Bl'eT T B (07T D HT) e g (TTHT)| (5.108)

When m =k

plgk) _ [% plm (B%U(DT(k—l)HT) ’ P21“ (B;H(DT(k—l)HT) ’

B(rre™2yty, ... B(I"HT)] (5.109)

Every layer has (k + 2) elements such that

1

Fkgm) B e c R(k+2)><2k+1_m
S1

L 1<m<k (5.110)

_3m+1
5.2.5 The Recursion: New Terms at Step £ to Child Terms at Step £ + 1

Consider the exponential part of a new term at step k in equation (5.68). During time

propagation at k 4 1, the exponential part becomes,

£4 = exp (<P, [ HA®Y| — By |B0Tv] - 17| 4 jcFeTy) (51
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At step k + 1, this term will produce four child terms. The first three child terms are
new terms, and the last child term is an old child term. The four child terms are examined

as follows.

5.2.5.1 The First Child Term at Step £+ 1

Let us look at each layer m of the fractional form separately.

When 1 < m < k — 1, consider equation (5.69). Each of the first (k — 1) layers of the
fractional form from the top contains a sequence of offsets and one coefficient of sign function
s1, if any. The first child term extracts that one coefficient at step k and has it as the last
offset at step (kK + 1). In the mean time, because there is only one row of sign function s;
in F) ,fm) and two zero will be added to complete the update integral, it will produce a zero
coefficient for s; at step (k + 1). This means that the top (k — 1) layer does not contain
sign functions any more. And if they do not have sign functions, any newly added offset
in the future will be zero. Therefore they become “invariant” as time proceeds. Only the
bottom 2 layers contain sign functions. This property of “invariance” aligns with our earlier
findings that the real component of the argument of exponential of the first child terms stay

invariant, presented in Chapter 3.3.

Therefore, the real part of the denominators R,(;Z)l = p,(gz)l - F ,C(Tl) will be updated as,

(m)
11 1 —1
_81 S1 o S |
c R(kﬁ+3—m)><2<k+27m> (5113)

98



When m = k, consider equation (5.71). At step k + 1, there will be 2 offsets and 1
coefficient of sign function. The last offset at step £+ 1 will be the coefficient of the first sign

function s; at step k. The real part of the denominators R,(ﬁgl = p,(cli)l - F 15?1 will be updated

as,
k k k k
p,(chl = p,(%i, ,02% - sgn (HACIDTHT) , p,(f; - 8gn (BgCI)THT) . tl} (5.114)
1 -1 1 -1
FP =11 1 -1 —1] eR¥™ (5.115)
S1  S1 S1 S1
where
< BT HAT ) T
B.dTHT — HASTHT ) €1
ty = sgn sy = sgn (HAv) (5.116)

(HA) et ’

For two-state system, any two non-zero parent directions will produce a child direction
that is aligned with HA. The reason we have t; in (5.114) is for convenience of direction

k)

combination, such that the sign function s; in £, k( 1 in (5.115) can be always normalized to

sgn(HAv).

When m = k + 1, this layer is the bottom layer of the fractional form. Its offsets and

coefficients at step k + 1 should directly come from the exponential part at step k. The real

part of the denominators R,E:Tll) = p,gfll) - F k(fflrl) at step (k+1) is,

p;(ﬁ:_ll) _ [Pl ‘HA(I)THT| ’ P, |B2(I)THT| t 4 ﬁ ‘FTHT} -1, 'y] (5117)

where t; has already been defined earlier and ¢, is defined as,

r’” HA3T eI
ITHT = HA®THT ) *1

(HA) et

ty = sgn (5.118)
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where again, t; and t, here are for the convenience of elements combination. And we also

have,
1 -1
FMY =g s | € R? (5.119)
Sy So
sy =sgn (HAv), sy =sgn (—%) (5.120)

5.2.5.2 The Second Child Term at Step k + 1

Similarly, consider the second child term at step k + 1. Again, consider the m'* layer of the

fractional form separately, where 1 < m < k + 1.

When 1 < m < k — 1, consider equation (5.70). There is only one row of sign function
in F, ,sm), i.e. the coefficient of a second sign function s, is zero. Hence, the second child term
at step (k + 1) will have a new zero offset in the real part of the denominators. The process

of obtaining zero offsets is similar.

Define
HA®T BT el
. HAGTHT — ByoTHT ) €1 (5.121)
= sgn :
Y (HA) e
Then, the real part of the denominators R\ = p\™) - F{™) becomes,
V=1, e 0, pwo .- sgn (HA®THT) -t 5.122
Pr+1 Pr1 s v Pl k+1—mo v Prkt2—m S9N ( ) 1 (5.122)
(1 -1 1 11 -1 1 - ]
1 1 -1 -1 1 1 -1 -1
(m)
11 1 —1
_81 S1 e S1 |
o Rlk+a-mpratesim (5.123)
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When m = k, consider equation (5.71). At step k + 1, there will be 2 offsets and 1
coefficient of sign function. The last offset at step (k 4 1) will be the second coefficient of

the sign function, s,, at step k.

The real part of the denominators R,(ffgl = p,(ﬁgl - F ,Ei)l will be updated as,
ol = | ol sgn (B0 HT), pll) - sgn (HASTHT) 11| (5.124)
1 -1 1 -1
FP =11 1 -1 —1| e R (5.125)

where s; = sgn (HAv).

When m = k + 1, this layer is the bottom layer. The real part of the denominators
RETD — ki) Féﬁl) at step (k + 1) is,

k+1 — Fk+1
pit) = [B|B.®THT|, P HASTHT| t, + B|TTHT| 5, ] (5.126)
" BT T
by = <FTHT Bz@THT> o (5.127)
2= 5gn (HA) T '
and,
1 -1
FMY =g s | € R? (5.128)
S9  So
By®T
sy =sgn (HAv), sy = sgn (_B;I)—T];T) (5.129)
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5.2.5.3 The Third Child Term at Step k£ + 1

Consider the third child term at step k 4+ 1. Look at the m* layer of the fractional form

separately, where 1 < m < k + 1. The method is similar with the second child term.

Define
HA®T 1T T BT 1T T
. HASTHT — TTHT ) €1 . B,®THT — TTHT ) €1 5 130
L= s (HA)eT 2T (HA)eT (5.130)
When 1 < m < k — 1, the real part of the denominator is,
Ry = iy - F{T) (5.131)
where
(m) _ [ (m) (m) 0. pm : HA®THT) - ¢ 5.132
Prs1 Pr1 s v Prk+1-mo v Prkt2—m S9N ( ) 1 (5.132)
(1 -1 1 -1 1 -1 1 -1 |
1 1 -1 -1 1 1 -1 -1
-
1 1 1 -1
_Sl S1 e S1 i
g R(kH3—m)x2trzmm (5.133)

When m = k , consider equation (5.71). At step k + 1, there will be 2 offsets and 1
coefficient of sign function. The second offset at step k£ + 1 will be the third coefficient of
the sign function at step k, which is zero.

The real part of the denominators R,(ffgl = p,(:gl - F ,Ei)l will be updated as,

p,(ﬁl = [pg?, 0, p,(f% - 8gn (HACIDTHT) “t + p,(f?), - sgn (BZ<I>THT) -tQ] (5.134)
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F¥ =11 1 -1 —1| er™ (5.135)

where s; = sgn (HAv).

When m = k + 1, the real part of the denominators R,(ﬁrll) = p,(ﬁlil) . Fk(ﬁl) at step
(k+1) is,
pt ) = [B|CTHT|, P |HASTHT| - t, + Py |Bo®THT| - t2, 1] (5.136)
1 -1
FMY = g s | € R (5.137)
S2 52

where s; = sgn (HAv), and sy = sgn <_FFTq;{VT>'

5.2.5.4 The Fourth Child Term at Step £+ 1

The fourth child term is the old term. Zero offsets are added to each layer of the fractional

form. Explicitly,

When 1 <m<k-1

R = o2 FE 5139
where
)0](::_‘)1 = /)1(:?7 T pl(:Z)—f—l—mv 07 pl(;rl?—i-Q—m $Sgn (HA(I)THT)] (5139)
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1 -1 1 -11 -1 1 -1
11 -1 -11 1 -1 -1

R =
1 1 1 -1
-81 81 P Sl |
c R(k+3—m)x2lkt2=m) (5.140)
d s — ( HA® Y >
and s1 = sgn ( gasraT |-
When m =k
k k k
Rl(w)l = Piﬁl ' FI§+)1 (5.141)
where
k k k k
P = [p;(c,f, 0, py-sgn (HASTHT), pf) - sgn (BQCI)THT)} (5.142)
and ) i
1 -1 1 -1
1 1 -1 -1
ED = e RV (5.143)
s1 81 S1 S1
|52 S22 S22 S2 ]
where
HA®Ty By®Tv
S1 = 8gn (m) 3 S9 = Sgn (W) (5144)

When m = k + 1, the real part of the denominators R,(ﬁrll) = p,(ﬁrll) : F,gﬁl) at step
(k+1) is,

ptHD = [y, P (HA®THT), Py (B®"HT), B(ITHT)] (5.145)
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1 -1
S S
Pl — |7 T g pé (5.146)
S22 S3
S3 S3

where s = sgn (HA®Tv), so = sgn (B,®"v), and s3 = sgn (I'v).

It is interesting to notice that for the first, second and third child term at step k4 1, the
number of non-zero elements in the sequence p at each layer does not increase. There are at

most three non-zero elements.

5.2.6 The Recursion: From Type-I Old Parent Terms

In this section, the scenarios of old parent terms producing child terms will be evaluated.
We start with the general form of an arbitrary 6-step old term at step k. There are (6 + 2)
elements in the argument of the exponential. Hence, at step k + 1, (6 + 4) child terms will

be produced, among which the first (6 4+ 3) of them are new, and the last one is old.

5.2.6.1 The First Child Term at Step £+ 1

At step k + 1, the child term has (k + 1) layers in the G part. Since this is the first child

HAq:,T(9+1)

term, the two child directions at step k + 1 become HA and — - orarnprs 1-€

(5.147)

HAQ)T(Q—H)
sy =sgn(HAv), sy =sgn ( )

CHA®TO+) [T

105



The F' matrix is also in a simple form,

1 -1 1 -11 -1 1 -1
11 -1 -11 1 -1 -1

riz -
111 o 4
|51 51 s S1
€ RU+3-mp22mm) g oy < (5.148)
1 -1
RV = |51 s | €RP? (5.149)
Sy 8o
Since R,(Jz)l = p,(:i)l x F, k(Tl), next we are going to find the sequence p,(:j)l for each layer m.

When 1 < m < p— 1, recall equation (2.27). In the G part of the first child term at

step k41, a new offset is added into the p sequence, and the only coefficient of sign function

s1 becomes 0, for the case when 1 <m <p—1.

1 1 1
pl(chl = [pé,L pé,%? T IO;(;%;))’ 01, , Og,
1
2 2 2 2
plg:il = |:p1()7i7 pz(),%? ) p;J))—l; 017 ) 097

p](fl)) - sgn (HA(IDT(9+1)HT) , O]

—1 —1 —1
pl(f:,—l) = |:pg,)1 )7 pg,)2 )7 017 T 097

p;;;g—l) - sgn (HA(I)T(O—H)HT) 7 0}

106

(5.150)

(5.151)
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Equivalently,
(m) _ |, (m) (m) (m) 0y, - 0p

Prt1 = |Pp1s Pp2o " Ppptiomo

pz(jfZ)JFQ_m - 5gn (HA@T(GH)HT) , O}

There are 6 zeros in the middle of (5.153), and a zero at the last entry.

(5.153)

When m = p. Starting from the p'* layer, there are more than one sign function in the

F matrix. The number of zero offsets start to vary as well.

pl(ﬁgl = |:p§)13)7 017 T 00, p;(f% - Sgn (HA@T(9+1)HT) )

p;{)?), - sgn (B,®T U HT) -tl]

where
B2(I>T(6+1) HA®T(0+1) T
. B,oTOTDHT — mAeT@rnaT | €1
1= 8gn
(HA)T

When p + 1 < m < k, start with the (p + 1) layer,
Pl = [7,00, 001, P (HADTHT) - sgn (HAQTDHT) q)]

where

g1 = Py (B2®"HT) - sgn (Bo®@"VHT) - t; + 8 (TTHT) - sgn (I1T@™HT) - t,

t1 is defined in equation (5.155), and,

rTeTo HAT(O+1) T
TTSTIHT — HASTO+D AT ) €1
to = sgn
(HA)ef
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The (p + 2)™ layer is,
pPE = 7,00, -, 0o, Py (HAG?THT) - sgn (HAGTETVHT) o] (5.159)
where
G2 =P (B2®*"H") - sgn (Bo®™*VHT) -ty + B (TTOTHT) - sgn (I HT) - 1,
+ B (PTHT) - sgn (TTQTCVHT) - 4, (5.160)
t1 and £y is defined in equation (5.155) and (5.158). t3 is defined as follow.

rTeTO-1) HAPT(0+1) T
IITeTO-1)HT = HAPTO+1)HT €1

(HA)eT

t3 = sgn

(5.161)

Keep doing this until we find the p’s for the £ layer.

ol = [ P (HAG™HT) - sqn (HAGOVHT), g (5.162)

where

@3 =P (Bo®™H”) - sgn (B, HT) - 1
+ B (CT@™"VHT) - sgn (17O HT) - t,
+ 8 (TTOTO2 HT) - sgn (TTOTCVHT) 5+ -

+ B(TTHT) - sgn (TT®THT) - to41 (5.163)

where the scalar ¢; when 2 <[ < # + 1 is defined to be,

T eT0+2-1) HA®T(0+1) T
TTTO2-DHT — HA®TO+L T | €1

(HA)eT

t = sgn (5.164)

Note that in (5.156), there are (0 — 1) zeros. In (5.159), there are (6 — 2) zeros. For each
layer downward, there will be one less zero in the p sequence. At the k' layer, there is no

zero at all, see equation (5.162).

In summary, when p+ 1 <m < k,

p]({?T-)l = [77 017 U 7Ok7m7 Pl (HA(I)T(m_p)HT) s 5gn (HAQ)T(G—i_l)HT) ’q4j| (5165)
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Especially, when m = k, the subscript of the zero is k — m = 0. This means that there are

(K
no Zeros in p,(ﬁzl.

g1 =P, (Bo®" " P HT) - sgn (B,@" TV HT) - ¢,
+ B (LT m=P=DHTY . sgn (TTQTHT) - t,
+ 6 (FTQ)T(m_p_Q)HT) - sgn (FT(pT(e_l)HT) . t3 + ...

+B(CTHT) - sgn (TTQTEDHT) 1, s (5.166)
or, written as a sum,

g1 =Py (Ba®" ™ P HT) - sgn (B,@" TV HT) - 1,
m—p
+8- Y (T HT) sgn (D77 HT) 4,44 (5.167)
=1

The Bottom Layer where m = k + 1 is directly derived from the exponential part in
equation (5.93).

p ) = [P |[HASTHVHT | g5, 4] (5.168)

Like q4, the quantity g5 again should be a sum. This is due to the element combination

which are co-aligned onto the HA direction.

@5 =P3 | Bo®"TVHT |ty + B[TTOTHT | -t + BITTOTEVHT| 45 4 - -

+ BT HT| - tgyy (5.169)

or, as a sui,

0+1
g5 =Py |B®"TVHT| -ty + 8- Y [T T, (5.170)
=1
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5.2.6.2 The " Child Term when 2 <i<#+3

Recall the #-step old term at step k in equation (5.93). For convenience, rewrite the expo-

nential term as,

eM = exp (=PI | BY"| - PE* | Bi| — o — P | Bl | + )
where,
HA®TY =1
P, [=1,2
pHk = , BF={ p,or [=2
I5; J<I<0+2
FT(I)T(9+2—Z) 3< l < 0+ 2

Furthermore, define the sign of the difference between two parent directions.

klk =T klk
B e  BeT o
Bk eTHT  BFFerTyT | 1

t; = sgn I <1
l g (HA) e{ )
Bl eT BrlreT T
BrerpT  pHgrgr | €1
t; = sgn = . [>1
= >
(HA)ef ’

(5.171)

(5.172)

(5.173)

(5.174)

At step k + 1, since the i'® child term when 2 < i < § + 3 is new, the F' matrix is simply

constructed.

(1 -1 1 11 -1 1 -1 ]
11 -1 -1 1 1 -1 -1

-
1 1 1 —1
51 s s1 |

€ RUF3-—mp2EF2m) gy <

-1 —1

Fk({flrl): si s | €RVC
[ S2 S2
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where

B T
s1=sgn(HAv), sy=sgn| ——pr—— 5.177
1 ( ) 2 Bf'k(I)THT ( )

Now, consider each layer of the i child term at step (k + 1).

When 1 < m < p—1, the top (p — 1) layer at step k only has one sign function.

Therefore, starting from the second child term, a zero offset will be added to the p sequence

at step k + 1.
m m m m m k|k
A= [ e e 0 Ahasson (BIOTHT) 0] (5.478)

In particular, if we substitute in the quantities that we already know in equation (5.95),

the p sequence is,

/)JE;T)1 _ [p](ﬁ)’ o pg,;)Jrlfm7 01, <, 0p, Ogu1,
pﬁglg,msgn (HAQTO+D T ~t1] (5.179)

Look at the above expression, we see that the number of nonzero entries in p,i"l)l does not

increase compared to the prior sequence pé,m) from its original parent at step p.

When p <m < p—3+i, only if p < p— 3 +i. At step k, starting from the p** layer,
there are more than one sign functions in the sequence. In fact, the p sequence at step k for

layers p < m < k can be summarized as,
pl(cm) = pl(;?;)’ T pl(:,rlz)-&-l—ma pl(cr,r;c)-ﬂ—m’ T pl(fr,rel)—i—?» , p=m=k (5180)

The specific value of each p has already been defined earlier in equation (5.97) and (5.99).
The first (k+1—m) elements in p,im) are offsets, while the rest of the elements are coefficients
associated with the sign functions. Except for the first offset, all the other offsets are zero,
ie. pl(;g) = p,(g;) = ... = pgf&km = 0. As m increases by 1, the number of offsets will

decrease by 1 and the number of sign functions will increase by 1. The total number of
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entries in p,(cm) for p < m < k is always 6 4+ 3. Hence, for the i*" sign function s;, the first
(p—3+1) layers do not contain s;, and s; start to appear from layer (p —2+1). For example,
when i = 2, the first (p —3+i =p—3+2 = p— 1) layers do not have sy. The p" layer
and lower layers contain ss. Similarly, the third sign function s3 does not appear until the

(p + 1)™ layer. This is the reason why to split the case of p < m < k into two scenarios.

Note that this subsection only apply to the scenario when p < p—3+41, i.e. 1 > 3. When

1 = 2, the rest subsections already exhaust the recursion of all the layers.

For the m' layer where p < m < p — 3 + 1, the new offset at step k + 1 is zero.

m) m m
pl(€+1 = [:01(@,1)> T pl(c,k)Jrl—mv 0, Q1]
= |:10§€73)7 017 Ty Ok—m7 Ok—m—f—l; q1:| )
p<m<p—3+i, i>3 (5.181)

q1 = IOIEIZ:)—&-Q—mSgn (Bf‘kq’THT> “t+ Pi(;,rch)Jr:a—mSgn <B§|k‘pTHT) ty e

m k|k
+ 101(6,0)—&—389” (anlJrQ,p(I)THT) . tm+2—p

m+2—p
= > Aawison (B TH) 1 (5.182)
=1

In the p sequence at step k+1 in (5.181), there are (k+3—m) entries. The first (k+2—m)
entries are offsets. Only pm)l,l = p,(;nl) is non-zero. All the rest offsets are zero. There are in
total two non-zero entries in the sequence of pgi)l for p < m < p— 3+ 1, one of which is an

offset, while the other one is a coefficient of the sign function s;.

When p—2+1 < m < k. From layer p — 2 + i to layer k, every layer contains the

sign function s;. A non-zero offset will be introduced to the p sequence, and there will be a
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coefficient of the sign function s; as well.

=AY A A son (BIOTHT) g
= [p,(ﬂ), 01 -+, Op_m, p,(:Z)Jrl_erisgn (Bf‘kCIDTHT> , q2] p—2+i<m<k
(5.183)
where

@ = s psgn (BIFOTHT) -ty 4 oy s (B @THT) <ty 4
+ Pg,??_mﬂsgn (nyiq’TH T) it pl(:?—m+2+isgn (Bﬂ]ﬁl@THT) K
m k|k

m+1—p

m k|k m k|k
p%k)Jrlmesgn <Bl | CDTHT> -t 4+ Z Pi(c,k)ﬂ,mHSgn (BZJACI)THT) -t (5.184)
1 =i

—_

11—

l

The sequence in (5.183) has three non-zero entries.

The Bottom Layer where m = k + 1 has the p sequence updated as,

D) [pf"“ ‘ BOTHT|, g, »y} (5.185)
where
i—1 0+1
a = PB4+ Y P B e H |y (5.186)
=1 =t

Therefore the bottom also contain 3 elements. They are all non-zero.

5.2.6.3 The Last Child Term i =6 + 4 (old)

The last child term is the old one. It preserves the general structure of an old term that was

derived in Section 5.2.4.
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5.2.7 The Recursion: From Type-II Old Parent Terms

Recall the general form of type-II old term at step k, described in equation (5.106) - (5.110).
At step k, there are (k + 1) elements in the argument of the exponential. Therefore, at step
k + 1, there will be (k + 3) child terms. The approach is similar. Rewrite equation (5.106)

in the following form for convenience.

et = exp (=P B — PV BYM| - = B | B 4 ) (sasT)
where
j2 1=1,2 B eTk-1) 1=1,2
prk = . BiE_ T (5.188)
o 3<I<k+1 [TeTt+i=)  3<I<k+1

Let P,ﬂg = /8 and Bf'fQ = I'T®~T. Also define the sign of the difference between two

parent directions.

Elk o1 K|k
B et BT o
BfkeTHT  BFRerTyT | 1

(HA) et ’

t; = sgn I <i (5.189)

klk T k|k
B, B!* T eI
BMrerHT  BFReTgT | 1

+1

1> (5.190)

t =

At step (k + 1), the i* child terms when 1 < i < k + 2 are new child terms. The F

matrix for those cases can be constructed as follows.

1 -1 1 -11 -1 1 -1
11 -1 -11 1 -1 -1

(m)
1 1 1 —1
_81 S1 o e S1 |

114



1 -1

FMY =g s | e R (5.192)
So2 SS9
where |
B T
sy =sgn(HAv), sy=sgn|———— (5.193)
BT HT

Now, consider each layer of the ¥ child term at step k + 1.

5.2.7.1 New Child Terms When 1 <:<k+2

Under some circumstances, a zero offset will be introduced into p sequence while sometimes
a non-zero offset is produced. According to the value of m, the layers will be discussed in

three different scenarios.

When 1 <m <i—2, only if : > 3. The sequence p at step k is,

pl(cm) = |:p](gﬁ), ety p]({:r]:;)_;'_l_m7 pl((:rl?—‘,-Q—m7 e, pl(;’r;)_’—Z , 1 S m S k (5194>
where p](:;) = p](:;) S p’(:’?Jrl_m —0.

In the first (¢ — 2) layers, the coefficients associated with s; are zero. At step k+ 1, p

becomes,
m) _ | (m) (m) 0 l<m<i—92 i>3
pk+1 - Iok,l ) ) pk,k+1—m7 ) qi| SM =1 5 1=
= [:01(:10’ 01, 5 Ok—me1, QJ (5.195)
where
m+1
m k|k
=D A son (BT HT) (5.196)

=1

Thus there are only two nonzero elements (not even three) in the sequence of p,(g)l
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When i — 1 < m < k, every layer contains a non-zero coefficient of the sign function s;.

Therefore, a non-zero offset will be introduced into the p sequence at step k + 1, and there

will be a coefficient of the sign function s; as well.

Because p,(;g) = pl(g) == p,(:,ilfm =0, p,(ﬁ)l only has 3 non-zero entries.
(m) (m) (m) (m) klk &T 17T
Pr+1 = |:pk:,1’ o Prktl-mo Prk+1—m+iSIT <B¢ o H > ) (&]
m m k|k
= |: ](i‘,l)) 011 Ty 0k—m7 P;(C7k)_,_l_m+isgn <BZ‘ @THT> s q2i|
where

i1 m
" klk m k|k
2= Z pgﬁ,k)—i-l—m—&-lsgn (Bl | ‘I)THT) b+ Z ﬂ;,k)u_mHSgn (BILCI)THT> 1

=1 =t

When m = k + 1, consider the bottom layer. The sequence p is updated as,

) qs3, P)/:|

) = [P v

where
i—1 k42
klk | klk klk | klk
a = P |BrerH 0+ Y P B e H |y
=1 l=i

5.2.7.2 0Old Child Term when i =k + 3

(5.197)

(5.198)

(5.199)

(5.200)

At step k + 1, the formula of the old child term is consistent with previous discussions in

equation (5.93) - (5.102), hence omitted.

5.2.8 Properties

The recursive structure of G layers uncovers an interesting property:

Theorem 5.2.1. Consider the two-state case. For any new term, there are no more than

three non-zero elements in p sequence of each layer of G.
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Proof. This theorem is proven by induction.

1. Examine the p sequence of each layer of G at step k = 2 for new terms. The first three

child terms at step £ = 2 from each of the three parent terms are new terms. The G

term of each one has two layers. Check the p sequence expressed in equation (5.39)

(5.46) (5.50) (5.53) (5.57) and (5.60). Each layer at step k = 2 only has three elements

in p.

2. Assume the theorem statement holds at step k, we show that the number of non-zero

elements does not increase at step k + 1.

(a) Consider the new child terms at step k + 1 that are produced from new parent

terms at step k. In this case, the first three child terms at step k£ + 1 are new.

i.

1i.

1il.

For the first child term at step k + 1, look at equation (5.112) (5.114) and
(5.117). Particularly, compare (5.112) with (5.69). One zero element is intro-

(m (m)

duced into p,, +)1 for 1 <m < k — 1 after propagated and updated from p,
Therefore, there should be still no more than three non-zero elements in the

p sequence at step k£ + 1 for this scenario.

For the second child term at step k + 1, look at equation (5.122) (5.124)
and (5.126). Again, compare (5.122) with (5.69). One zero element is intro-
duced into p,(:j)l for 1 < m < k — 1 after propagated and updated from p,(gm).

Therefore, there should be still no more than three non-zero elements in the

p sequence at step k£ + 1 for this scenario.

For the third child term at step k + 1, look at equation (5.132) (5.134) and
(5.136). Compare (5.132) with (5.69). One zero element is introduced into
p,(ﬁ)l for 1 < m < k — 1 after propagated and updated from p,&m). Therefore,
there should be still no more than three non-zero elements in the p sequence

at step k + 1 for this scenario.

(b) Consider the new child terms at step k 4+ 1 that are produced from type-I old
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parent terms at step k. In this case, the first (6 + 3) child terms at step k+ 1 are

new, where 6 indicates how old this term is, formulated earlier in Section 5.2.4.

i. For the first child term at step k+ 1, look at equation (5.153) (5.154) (5.165)
and (5.168). Compare (5.153) with (5.69). (6 + 1) zero element is introduced
into p,(gf)l for 1 < m < p — 1 after propagated and updated from p\™ at step
p. Therefore, there should be still no more than three non-zero elements in

the p sequence at step k + 1 for this scenario.

ii. For the " child term when 2 < i < 6 + 3 at step k + 1, look at equation
(5.179) (5.181) (5.183) and (5.185). There should be no more than three

non-zero elements in the p sequence at step k + 1 for this scenario.

(c¢) Consider the new child terms at step k + 1 that are produced from type-1I old
parent terms at step k. In this case, the first (k + 2) child terms at step k + 1
are new terms. Consider equation (5.195) (5.197) and (5.199). There are at most

three non-zero elements in p sequence at step k + 1.

By exhausting all scenarios of new terms at step k + 1, we have shown that there are at

most three non-zero elements in p sequence. O]

Remark 5.2.2. For old terms, there are more than three non-zero entries for certain layers.
However, among those non-zero entries, only one of them is the offset, while the rests are
all associated with the sign functions. When this old term produces new child terms, the
number of non-zero entries in the new p will again collapse to at most three, due to the

direction combination aligned with HA.

Furthermore, this comprehensive analysis on the real component of the G terms for two-
state systems also shows the fundamental mechanism of how zeros are introduced into the
G structure. In the update integral, two zeros are added artificially in order to complete
the integral properly. Now we understand analytically that these added zeros in the integral
appear as offsets of each layer in G. Based on this understanding, the structure for a general

multi-dimensional system is simplified by splitting the offset p,, F, and coefficient p., F.
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apart, as proposed up front in Chapter 5.1. This technique will stop adding zeros into the

structure anymore, which potentially enhances the computational efficiency.
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CHAPTER 6

A Pre-Computational Technique

In the estimator structure, much of the computation is independent of the measurement
data. According to the analysis in the previous chapter, the argument of the exponential
part, i.e. Pf]lk and ij Lk in (1.15), are not functions of the measurement sequence. In the G
terms, the real component of each layer, R,(;;), does not depend on the measurements. They
can be pre-computed “offline” and stored a priori. This makes the “online” process easier
because all the directions along with their coefficients in the argument of the exponential
term collapse into a single scalar. Furthermore, all the offsets and sign functions in each
denominator of the G term also become a scalar by a prior: picking the spectral variable
v. An offline - online separation of the estimator structure allows a significant amount of
computational efficiency. From our analysis of the two and three state systems, and our
numerical experiments with four state system, it appears that the S matrix, in general, is
not only independent of the measurements, but also independent of system parameters. It

has been shown numerically that the offline efficiency is greatly enhanced by utilizing the S

matrix to combine exponential terms without comparison at each step.

Based on these observations, a pre-computational implementation for the Cauchy esti-

mator is proposed as follows.

6.1 The Offline Stage

Recall the form of the characteristic function described in (3.1). In order to express the

imaginary part of the exponential term ¢Hk more explicitly, rewrite it as ¢FF = ka’f|k +
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ul” §|k, where uj is the median of the initial states, Qlf‘k € R¥*" and Qg‘k € R, Also,

rewrite the imaginary part of each G layer at step k as I m,(cm) = ykNl(;n) — u%TNQ(,:n), and
when m = k, Nl(:) € RF*1 NQ(Z) € R™!. Altogether, during the offline stage, the parameters
phlkgHlk - pm ) - plm) - plm) - okk S okF N and N{™ are computed recursively from

step to step. These parameters are independent of the measurements.

6.1.1 Initialization

At the first measurement update, there are (n+ 1) terms. For the it term where 1 < i < n,

the exponential term can be written as,

11 _ B - o I L
& (V)—exp{ Z e HT |HAyv| 7’ -

e; HT
I=1,1#i
. e;v 1T HTe;
27—+t u I ——— ||V 6.1
E { T T ( €iHT)} } (6:1)
where A; are defined as Ay = ele; — elTei and e; are the unit row vectors. This form is

obtained by solving the update integral in Appendix B in [5]. Hence, the P!"’s are the

and v, and the directions B**¥’s are HA;; and —-%%.. The

corresponding coefficients e HT

ag
le; HT|

imaginary part of the exponential is expressed by Q1" (i) = & and Q;ll(i) =1- HTQ}H(Z').

Next, consider the G terms of the first n terms at step & = 1. Again, by taking the
update integral and organizing the form into the proposed structure in (5.1) - (5.4), one can

obtain,

p (@) = e e HT|] (6.2)

pg) (1) = [an (erHT) sgn(e;HT) - sgn(H A v),
e T (ei_lHT) sgn(e;HT) - sgn(HA;;—yv),
Qi1 (eiHHT) sgn(e;HT) - sgn(H Ayiy1)v),

+an (e, H") sgn(e;HT) - sqgn(H Ay v), | (6.3)
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FP () (6.4)

]
| —|
—_
|
—_
| I
oL
=
—~
~
SN—
]

STL STL
where the sign functions are s; = sgn(HAqv), ..., i1 = sgn(HA;i—1)v), s; = sgn(H A1),
vy Sn—1 = sgn(HAyv), s, = sgn(—
of N\V(i) =1 and NSV(i) = HT.

" “2r). The imaginary component of the G term consists

For the (n 4 1)™ term, initialize the parameters as below.

Ex (V) —exp< Zaz\ezv!+9u1 v) (6.5)

p(()ll)(@:n—kl) =7, pg)(lzn-i—l) - [al (elHT)7"' , Oy (enHT)} (66)
S1 S1

FR=n+1)=[1 —1], FPG=n+1)=|: (6.7)
Sn Sn

where s; = sgn(e1v), s2 = sgn(eav),..., s, = sgn(e,v). Let Qlll(z =n+1) = {0},
WMi=n+1) =TIy, NVi=n+1)=1, NY(i=n+1)=HT.

6.1.2 Update

Suppose at the k'™ measurement update, the parameters to construct a complete charac-
teristic function are known. The goal, then, is to derive the parameters PrHllk+1 - phtilktl

(m) (m) (m) (m k+1lk+1 k+1lk+1 (m)
Potir1)> Pe(ia1): Fo(k:—‘,—l)’ Fc(k+1 , Q1 , Q5 N( bt 1) and N +1) for1<m<k+1,

as a recursive function of their value at step k.

First, look at the exponential term. Consider (3.1), (1.15) at step k. Define Pf}\]f =25

and Bff‘j;eﬂ = I'T®~T. At step k + 1, the exponential part of the r** child term can be
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expressed as,
N:i+1|k+1
) —exp [ = > P |BleTH|
I=1,l#r
BifeTy  BFeTy

BifeTHT  BMreTHT

N (e an” ) (6.8)

The coefficients Pfl'k ‘Blk }kfl)TH T‘ forms the new P’s and the absolute value of the differ-
ences of parent directions forms the new B’s. Some directions are co-aligned, recall Chapter

2. Note that P+ and BFHUEHL are obtained after directions are combined.

The imaginary part is constructed as CHHHI = Ykt1 If+1|k+1 +ul” §+1lk+1. From
equation (3.43b) in [5] and be consistent with the notation in this dissertation,
klk &1
ket 1[k+1 KT\ B v ok
Gt = <Zk+1_Hq)<i‘ >k|Zk—TT+Ci|‘1’T (6.9)
B;"®TH
Substitute (f'k = k‘k + ul ’;"“ where y, = [21 2y v Zk] into equation (6.9).
Then,
B/ o7y B/ o7y
Ci,f:rl‘kﬂzzk“ k|k Cik‘kq)T I—m" klzk
BME T T BMEeTHT
B o7y . B/F 9T BTy
QT (1 - T ) T QST (1 - BT —
B "OoTHT B "®THT B "®THT
k|k T T Bf*eTy
. (D (I H klkq)THT 1T k|kq)T I HT Bklk@T
e BiteTy o BrRgTT
B oT T
def _ 11c+1\k+1+u%T 12c+1|k+1 (6.10)
Therefore,
kkgr 7 77 BiFeTy
k+1k+1 |1 *(I-H k““@THT) 6.11
bl o (6.11)
k\kq;,THT
klk & T
B oty
]29+1|k+1 _ /;“k:®T ] o HT ka — <612)
B "®TH

Next, consider the G term. Suppose at step k, the G terms are described in equation

(5.1)-(5.4). There are three different scenarios depending upon which child term ¢ is exam-
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ined.

e When 1 <i<gq

The offset component of the top k£ layer can be written as,

m m m k|k
oy = |0 lsgn (B @ HT ) | (6.13)
(m) (m)
FO]{? | Fok;
FKE(TZL) =l--— 4+ ——— (6.14)
1---1 | —1---—1

where 1 <m < k.

The offset component of the bottom layer ((k+ 1) layer) can be expressed as follows:
Phiin) = [Pf"“ ‘Bf"“chHTH L EG = [1 —1] (6.15)

The sign function component of the top k layer can be calculated as,

m m k|k m k|k
oy = [son (BERTHT) o sgn (B eTHT)
m k|k m
Pul1 59N (Bill@TH T) Lo P sgn (BZ;'%THT)] (6.16)
my | S2 S2 - 82
Fekyny = (6.17)
_Sq—l Sqg—1 " Sq—l_
where 1 <m < k.
For the bottom layer, the sign function component is expressed as,
k+1 klk | oklk k|k k
pi(];:_i) - [Pll ‘Bll @THT yre 7‘PZ‘—‘1 Bz—‘l(bTHT‘ ,
lejl-]; Blk-ll-qu)THT‘ T P]’\C[Ll:_l Bf\[‘f_Fl(I)THT‘ 7’Yi| (618)
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S1 S1

D) 52 52

c(er1) = (6.19)

[ SNe+1 SNe+1 |
s1 through sy_ 41 in (6.17) and (6.19) are the sign function of the first N, 4+ 1 child
(m n (6.16)-(6.19)

directions multiplied by the variable v. Note that p (k ) and F

k+1)
at each layer should also be refined by combining the co-aligned directions in the con-
sistent way as the exponential term. If ¢ = 1 for the m'* layer at step k, the p(}n)

c(k+1)
and FU™ s empty.

k+1)

When ¢g+1<¢:< N+ 1
In this case, the offset component of the top k layer is,
Potis1) = Pok » Foryr) = [ng " | FC >] (6.20)

where 1 < m < k.

The offset component of the bottom layer is in the same form as the 1 < i < g case,
ie.

b2, = P e

k
Fo((k—:ll)) = [1 —1} (6.21)

Similarly, the sign function component of the top £ layer is,

p(ZZ)Jrl) [pik isgn <Bf‘k<I>THT> .o pg:()lsgn (B(’;'kq)THT)] (6.22)
-31 Sy - 31-

TN I (6.23)
| S¢  Sq Sq |
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where 1 < m < k. And the sign function component of the bottom layer is,

ol = [P ||, P BeT
P | BikeTHT| e PR B 0|, ] (6.24)

Fc((lj:l)) is given in (6.19). Again, s; through sy 41 are the sign function of the first

N, + 1 child directions multiplied by the variable v. Finally, co-aligned directions at

step k + 1 must be combined to find PS(Z)H) and F(:((’le) for all m.
When ¢ = N, + 2
The offset component of the top k layer is,

ey = 25 Eliy = |ES | EY] (6:25)
The offset component of the bottom layer is,

S = Fla = - (6.26)

The sign function component of the top k layer is,

Py =P F(0 = [FC(,;”) | F,f,;”)} (6.27)

And the sign function component of the bottom layer is,
pg(f];:}i) — |:P1k|k (Bf'kq)THT) , cee P]I:[L <B§/qu)THT> 76 (FTHT)i| (628)

where Fc((lj:f) is given by (6.19).

The sign functions are s; = sgn (Blthl/), S9 = Sgn (B2<I>TV), .oy SN, = 8GN (BNe(I)TI/),

SN,+1 = Sgn (FTV). In this case, child directions will not be co-aligned.

Finally, let’s construct the imaginary part of each layer in the G terms. Still consider step

(m)

k+1. The update process will not change the imaginary part of the top & layers, i.e. Im;_ 7 =
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Im{™, 1 < m < k. For the bottom layer, construct [m,(;fll) = kaNl(ﬁ:l) — u%TNQ(fC,:I).

According to Appendix B.1 and B.2 in [5], Im,(;f:rll) = 1 — C"OTHT . Substitute the

expression of Cf ‘k, then one can obtain the recursion of Nl(lj:l) and Néifl) in the following
form.
_OFkeT T
k+1 1 k+1 K|k

Nl(,k—i-l) = 1 ) N2(7k+1) = 2‘ q)THT (629)
Remark 6.1.1. Certain directions are co-aligned and hence need to be combined in order
to implement this algorithm. That involves equation (6.16) — (6.19) and (6.22) — (6.24).
Generally, this combination process can all be done by numerically comparing the directions.
However, for two-state and three-state case, it has been fully uncovered how to combine the

directions analytically without the need of numerical comparison. This is developed from

the extensive studies of directions co-alignment in Chapter 2.

The explicit, analytic form of updating R in each layer of G terms without numerically

comparing directions for two-state and three-state cases are provided in Appendix E and F.

6.1.3 Construction of the Offline Stage

During the offline stage, the parameters P, B, @1, Q2, po, pe, F,, F., N1 and N, of each
term are updated and stored according to the S matrix scheme. They are computed inside
the offline loop, providing complete information for estimator update. However, not all of
them are passed to the online stage directly. In order to improve the online efficiency, some

of the parameters can be combined.

First, pick a priori v as 0. ¥ can be randomly chosen, as long as it is not orthogonal

with any directions Bf " Define a; as a n-dim column vector,
N .
aft = =3 Pisgn <Bf‘kﬁ) B (6.30)
I=1

which is related to the real part of the exponential term in (1.15), and is used in the online

stage.
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Also, compute the real part of each layer in the G terms. This manipulation simplifies
the online computation by reducing the sequences of the parameters, p’s and F'’s, into single

scalars R,im) as

o
R = ) o) |- - (6.31)
i
As a result, for the exponential part, af‘k, lf‘k and lek will be passed onto the online

stage in a reduced form. For the G part, R*IF, Nl(TZ) and Néz) will be passed onto the online

stage.

6.2 The Online Stage

During the online stage, the conditional mean and conditional variance given the measure-
ment data is determined by taking derivatives of the characteristic function with respect to
a picked spectral variable  and evaluating at the origin. [5] gives closed form expressions

for the derivatives.

To determine the online values of the conditional mean and conditional variance, the

|k

following parameters are determined. af is received directly from the offline stage. Define

the column vector bf * e R to be,

kT

T T
ik = MRS = QVF T 4 Bl (6.32)

Also define cflk and d?'k to be the real and imaginary parts of each G term, Gk‘k(ﬁ)

)

G (w) = G (o) E e 4 i (6.33)

% i ) 7

K|

where c; (m)

 and df'k are scalars. At each layer, the imaginary component equals I'm,; ~ =
yle(TZ) - uiTNQ(TZ). With the real component R,(Cm) and the imaginary component I m,im)
in each layer of G as deterministic scalars, cf‘k and df'k can be obtained by algebraically

computing the value of all the layers.
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K|k, k|kT
a; " b;

klk klkT

+0b;"a;" ben by nmatrices. Starting with

T T
Lot M, — ablhghT a3
the equation (5.29) and (5.32) in [5] and utilizing our definition of af‘k, bf‘k, cflk and dflk,

the conditional mean Z; and second moment F [xkxﬂYk] can be rewritten in the following

form. "
N} klk klk Kk k|k
a Yot (di"a;” +¢ b )
Zi;1 G
K|k
vaztl [Cflle - dflkMz}
E [z |Vy] = (6.35)

K|k
- Zf\;tl etk
The conditional error variance is E [ekeﬂYk} =F [xkxﬂYk} — a2l

The pre-computational technique is illustrated in Figure 6.1.

e System Parameters: H, O, I
e Noises: B,y
¢ |nitial Conditions: az, ..., an

l ...................................

Measurement: z

l .....................

(For each term)
Exp: P, B, Q1, Q2;

E(Each term)

G Layer: p, F, N1, N2.

o

ffline Stage at Step k

IISII
Matrix

(For each term)
Exp: P, B, Q1, Q2;
G Layer: p,F,N1, N2.

‘Exp: a, Q1,Q2

G Layer: R, N1, Nz:

;(Each term)
Exp:a, QLQ2 i
iG Layer: R, N3, Né

Conditional Mean
and Conditional
Variance at step k

Online Stage at Step k
(for each term)

ak, bk, ck, dk

Conditional Mean

and Conditional
Variance at step k+1

Offline Stage at Step k+1

e ———) Onine Stage at Step k+1

(for each term)
ak+1, bk+1, Ck+1, dk+1

The Online Stage

The Offline Stage

Figure 6.1: The pre-computational technique

129



6.3 Finite Approximation

The size of the estimator structure, i.e. the number of terms in the characteristic function,
grows significantly as more measurement history data is processed. However, not all mea-
surements have the same influence on the estimates. It has been shown that as time goes
on, the measurement from the distant past, as well as the uncertainties of the initial state,
has less and less influence on the current estimates. We use a “sliding window” method to
process a fixed number of recent measurements. This approximation keeps a finite estimator

structure.

To implement this finite approximation, first initialized the “sliding window” with ap-
propriate initial mean of the state at step k, defined earlier as ui, which matches the es-
timated conditional mean Z) propagated by the transition matrix @, i.e. let u} = ®y.
Then, by inputting the initial mean of the window, as well as the measurement sequence
Ypor = [2k+1 -+ zrser] with a sliding window size of L into the offline characteristic func-
tion structure at step £ = L, the algorithm produces the approximated estimate at step
k + L. The performance of the Cauchy estimator with the sliding window approximation is

demonstrated numerically by various examples, presented in the next chapter.
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CHAPTER 7

Simulation Results

7.1 A Three-State System

For a three-state system, the system dynamics are chosen to be,

1.5374 —0.9874 0.4924 0.1
®= 11026 —0.3642 0.5942|, I'=10.3
0.3853 —0.8192 1.3268 1

H= [1 0.5 0.2} (7.1)

The eigenvalues of & are 0.90 and 0.80 + 0.555. Process noise, measurement noise and
initial states are all assumed to be Cauchy distributed with g = 0.2, v = 0.2, ay = 0.2,
as = 0.2, a3 = 0.2, uf = {0},. The simulation runs 101 steps with a sliding window size of

L=T.

Fig. 7.1 shows the estimates error and standard deviation of the Cauchy estimator under
Cauchy-type process noise and measurement noise. The correlation of the estimates is shown
in fig. 7.2. “KF” in the figure stands for the Kalman Filter, whose parameters are chosen to
least square fit the system’s Cauchy pdfs as discussed in [3]. The Cauchy estimator performs
well compared to the standard Kalman Filter. The Cauchy state estimate error stays within
the 1-0 range generated in the Cauchy estimator implementation, as shown in the figure by
dashed lines. When there is an impulsive fluctuation in either the process or measurement
noise, the Cauchy estimator yields a smaller estimation error and converges faster than the

Kalman Filter.
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Figure 7.1: Three state estimation error with window size of 7 compared with a standard

Kalman Filter, Cauchy noises

In Gaussian noise environment, the Cauchy Estimator also functions well, matching the
performance of a standard Kalman Filter. Fig. 7.3 shows the estimation error and the
standard deviation of Cauchy Estimator compared with the Kalman Filter, under Gaussian-
distributed process noise and measurement noise. The correlation is shown in fig. 7.4. It
is interesting to observe that, the multivariate Cauchy estimator, though developed using
heavy-tailed noise profile, also has good estimation performance under light-tailed noise cir-
cumstances. Since the tail of Cauchy distribution upper bounds many practical uncertainties,
the fact that the Cauchy estimator performs well under both Cauchy noise environment and

Gaussian noise environment indicates its robustness under various noise environment.

In terms of computational efficiency, on our machine with the CPU at 2.40 GHz and
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Correlation

P12

P23

Time Steps (k)

Figure 7.2: Three state estimation correlation with window size of 7 compared with a stan-

dard Kalman Filter, Cauchy noises

memory of 8 GB, the offline stage at step k = 7 takes around 164 seconds, while the online
computation takes 89 seconds per step with a window size of L = 7. The online computation
roughly save 65% of the total time consumption. In addition, without the use of S matrix,
the offline computation itself takes around 14,000 seconds at step & = 7. However, it only
takes 164 seconds if using the S matrix. The S matrix technique is able to save nearly 99%

of the offline computation. The computation time per step is shown in Table 7.1
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Figure 7.3: Three state estimation error with window size of 7 compared with a standard

Kalman Filter, Gaussian noises

7.2 A Four-State System

Considers a four-state system with parameters:

2.0014 —1.4605 0.8927 —1.2017] (0.1]
po [03075 —0SI9L 17812 1197 o
11703 —1.3713 14875 —1.0113 0.1
06122 —0.6357 05183 0.3302 | 1]
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Figure 7.4: Three state estimation correlation with window size of 7 compared with a stan-

dard Kalman Filter, Gaussian noises

H=11 01 01 0.1 (7.2)

The eigenvalues of ® are 0.75+0.607 and 0.90 £ 0.307. Process noise, measurement noise
and initial states are all assumed to be Cauchy distributed as g = 0.2, v = 0.2, a; = 0.2,

as = 0.2, a3 = 0.2, ay = 0.2, u; = {0},. The simulation runs 101 steps with a window size

of L =6.

Similar to the three-state example, the Cauchy estimator obtains reasonably good per-
formance under Cauchy-distributed process noise and measurement noise, as shown in Fig.
7.5. When the estimation error of the Cauchy estimator becomes larger, the dashed line of
standard deviation also opens up, which implies that the Cauchy estimator understands and
handles that uncertainty well. This performance cannot be observed from a Kalman Filter.
The correlation of the states from the Cauchy estimator somewhat matches that from the

Kalman Filter, illustrated in fig. 7.6. When both process noise and measurement noise are
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Stage Step Without S Matrix With S Matrix

Offline k=1 0.0014 sec 0.0025 sec
k=2 0.0200 sec 0.0325 sec
k=3 0.0785 sec 0.1127 sec
k=4 0.6618 sec 0.3880 sec
k=5 9.2660 sec 2.8333 sec
k=6 ~ 282 sec 20.7938 sec
k=17 ~ 14000 sec 164.3458 sec

Online LL=5]- 1.2 sec
LL=6]|- 10.2 sec
LL=7]- 88.6 sec

Table 7.1: Computation time per step for three-state case

Gaussian-distributed, the Cauchy Estimator performs well too, see the estimation error in

fig. 7.7 and the correlation in fig. 7.8.

Again, implemented on our machine with the CPU at 2.40 GHz and memory of 8 GB,
the offline stage at step k = 6 takes around 87 seconds, while the online computation takes
37 seconds per step with a window size of L = 6. The online computation roughly save 70%

of the total time consumption, illustrated in Table 7.2.

The successful implementation of four-state example shows that the pre-computational
technique of the Cauchy estimator proposed in this dissertation is to a large extent general for
linear systems of different dimension. But the implementation is also tailored to the specific
system order, by a priori combining directions onto fundamental basis, and combining terms
using the S matrix for the particular system dimension. Furthermore, the online computation
is simplified by a prior: picking 7, such that the G structure is large reduced. The numerical
illustrations in this chapter show the significant computational efficiency enhancement for

the three-state system, and for the first time makes the four-state system implementable.
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Figure 7.5: Four state estimation error with window size of 6 compared with a standard

Kalman Filter, Cauchy noises

Stage Step Time per Step

Offline k=5 8.7750 sec
k=6 86.8517 sec

Online LL =51 3.2 sec
LL =61 374 sec

Table 7.2: Computation time per step for four-state case
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Figure 7.7: Four state estimation error with window size of 6 compared with a standard

Kalman Filter, Gaussian noises
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

This dissertation aims at understanding and developing the fundamental structure of the
multivariate Cauchy estimator. Established on the newly uncovered properties, it then
presents an implementation of the Cauchy estimator that is able to significantly enhance the

computational efficiency. In particular, this dissertation has the following contribution.

1. It is uncovered that three parent directions that are linearly dependent can produce
co-aligned child directions. These co-aligned child directions can always be expressed
as a function of a unique fundamental basis matrix. For two-state case, any two parent
directions can produce a co-aligned child direction along H A, where A is the fundamen-
tal basis. For three-state case, any two parent directions that are in the form of HC®*?

O+ where

where C' = —C7 can produce a co-aligned child direction along H®/*'B®T
B is the fundamental basis. The analytic form of the fundamental basis is derived for

up to five-state systems.

2. Based on the properties of directions co-alignment, certain exponential terms are shown
to have the same functional form and hence can be combined. For two-state case, all
identical exponential terms can be combined using only two combination rules. For
three-state case, several rules are presented as it starts to reveal the term combination
property for multi-dimentional case in general. This combination is analytic, regardless

of system parameters.
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3. An indexing scheme, S matrix, is constructed to allow for terms combination without
numerical comparison during the estimation process. The recursion of the S matrix for
two-state case is derived analytically in closed form. For the first time we are able to a
priori describe which exponential terms to combine. By utilizing S matrix to combine
identical exponential terms, the (offline) computation saves roughly 99% of the time

consumption if not using .S matrix to combine terms.

4. The coefficient terms, i.e. G terms, is reconstructed into a recursive structure. This
structure reduce the memory requirement by completely eliminating all the artificial
zeros in the formulas. Particularly, this new structure helps to prove that for two-state
case, there are no more than three non-zero elements in the real component of each layer
of any new term. Furthermore, this new structure provides an approach to separate
the intermediate parameters that are independent of the measurement history from
those that are relevant to the measurements. It makes the offline - online separation

implementable.

5. Finally, the Cauchy estimator is implemented through a pre-computational technique.
This technique separates the part of the estimator structure that is independent of the
measurements, from the part of the estimator that is dependent upon the measure-
ments. A sliding window method is used to truncate the complexity of the structure
and provides a reasonable approximation. For the first time the Cauchy estimator can
be implemented efficiently on three and four state systems. Cauchy estimator performs
well under both Cauchy and Gaussian environment compared with a standard Kalman

Filter. This indicates the robustness of the Cauchy estimator.

8.2 Future Work

There are several potential directions in the future, established on the current understanding

of the Cauchy estimator.

142



1. The combination of GG terms.

Many exponential terms are shown to have the same functional form regardless of the
system parameters and hence can be combined. However, the number of G terms
are not reduced the same way. Instead, the G terms that are associated with the
same exponential term are grouped and stored as multiple individual G terms. One
potential research direction is to seek to combine or simplify the group of G terms that
are associated with the same exponential term. The G terms have layers of divisions,
each of which are constructed by the product of p sequence and F' matrix, as well as
the imaginary component. We observe that the p and F' among different individual G
terms are very similar, varying by only some elements or the sequential order. Once
the G terms that are associated with the same exponential term can be combined, the

algorithm can be significantly simplified.

2. The analytic form of S matrix for higher order cases.

For two-state case, the analytic form of S matrix is derived in a recursive manner.
That is because we know all the combination rules for exponential terms. However,
for higher order cases, the S matrix is obtained numerically. When the dimension gets
higher, the computational S matrix may become more sensitive to the tolerance. One
direction is to find the analytic recursive structure of S matrix for higher order cases,

or a scheme that can better indicate the term combination.

3. Convergence of the sliding window approximation.

In the numerical experiments, a sliding window approximation is applied to process
only a fixed number of the most recent measurements so that the estimator can proceed
the implementation for longer time sequence. It has been observed that the initial
conditions of the states have less and less influence on the current conditional mean and
conditional variance as time goes on. It can be inferred that the estimator needs only
some recent measurements to obtain reasonable performance. We check the sensitivity

of the current estimates to the initial conditions by various approach numerically to
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support our infer. In the future, one direction is to show this convergence of the sliding

window estimations analytically.

. Parallel computation

Another potential research direction is parallel computation. The Cauchy estimator
structure is very suitable for distributed computation, because each measurement up-
date contains a large number of terms. These terms are independent of each other.
For each distinct exponential term, the multiple G terms are independent of each other
as well. One approach of parallel implementation is to distribute the terms at each
measurement update to different processors during the online stage, obtain the in-

Kk pklk kIl klk

i v Yy Yoo 7

termediate parameters a of each term in different processors using
equation (6.30) (6.32) and (6.33), and collect all these values together to evaluate the
conditional mean and conditional second moment using equation (6.34) and (6.35). In
Chapter 7, the simulations are timed via regular sequential computing in Matlab. If

the algorithm is implemented by parallel computation technique, e.g. GPU, it is very

promising that the computational efficiency may be enhanced to nearly real-time.
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APPENDIX A

Solutions of Update Integral Formula

This chapter of appendix summarizes the solution of the update integral formula that is

proved in Appendix B in [5], for the readers’ convenience to refer to when necessary.

A.1 Exponent-only integral

In the first measurement update, the update integral is in the exponent-only form,

I:/OO exp [(—sz & —77|> +Jzn
% =1

where z is the measurement, p;-s are positive constants, and the &-s are variables linear in

dn (A.1)

V.

The integral was solved by assuming a particular order of &-s, according to [5]. The

solution is in the following form,

I=Y g ( > psgn(& —&)) exp [(— > nlé —&I) +ik|, (A2)
i—1 I=1,1%i I=1,1%i
where
9i ( > msgn(é - fi))
I=1,1%i
! ! (A.3)

G Y msgn(§ = &) Gz = it il 59§ — &)
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A.2 Generalized integral

In the second and subsequent measurement update steps, the more general integral form is

involved,
dn (A4)

I= / g (Z ousgn(& — n)) exp [(— > il - 77!) +Jzn
> =1 =1

The solution of this integral was solved in [5] as,

=Y G ( > asgn(G—&), Y msgn(& - &)) exp [(— > ol - &I) + jz&;
=1

9

I=1,l#i 1=1,1#i =1,
(A.5)
where
G; ( > asgn(& - &), D msgn(§ - @-))
I1=1,l#i =1,
g <Ql + Z?:l,l;ﬁi legn(& - 61)) g <_Qi + Zln:l’l;ﬁi Qngn<€l - fz)) (AG)

CJz i Y pisgn(& — &) C jr—pit > i1z 1SR — &)
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APPENDIX B

Fundamental Basis for Higher-Order Systems

For two-state case, the co-aligned direction becomes H A immediately after one update. For
three-state case, repeated directions align with H®B®” in two updates. Similarly, it can be
deduced that three updates are needed for four-state cases, and four updates are needed for
five-state cases, to obtain the fundamental basis. This update process has been verified by
numerical simulations. It has been demonstrated numerically that such fundamental basis
exists and is unique for four-state and five-state cases. Based on the fact that the form of
the fundamental basis is unique, the analytic structure for four-state and five-state system

can be derived as follows.

B.1 Four-State Case

Suppose By, B,, and B3 to be arbitrary 4-by-4 skew-symmetric matrices. Define D and D,

as,

D, =B'H"HB, — BIH"HB, (B.1)

Dy, =BIH"HBs — BIH"HB, (B.2)

Consider the parent directions at step k. Then B;, B, and Bjs represent the child
directions at step k£ + 1, due to the skew-symmetry. The formulation of D; and D, stands
for the child directions at step k£ + 2. Next, the differences of the outer product will produce

the fundamental basis C for four-state case at step k + 3, i.e.

oC=Di®"H"H®D, — DI ®"H"H® D, (B.3)
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Substitute (B.1) and (B.2) into equation (B.3),
oC = (BTH"HB; — BIH"HB,)' ®"HTH® (BTH"HB, — Bf H" HB)
— (BTH"HB, — BTHTHB,)" ®"H"H® (BT H" HBs — BT HT H By)
Expand (B.4) further,
0C =B H'HB,®"H"H®BIH"HB, — B H' HB,®"H" H®B] H" H B,
— BIH"HB3;®"H"HOB H"HBy + Bl H' HB;®" H" H® B, H' H B,
—~ BIH"HB\®"H"H®BTH"HBs + BTH"HB,®" H' HO BT H" H B4
+BIH"HB " H"HOBI H'HB, — Bl H' HB,®" H' H®BI H" H B,
Then,
oC = (HB,®"H") - [(HB1®"H") - (B{ H"HB, — B] H" H Bs)
+ (HB,®"H") - (Bf H"HB; — B{ H' HB,)

+ (HB;®"H") - (ByH"HB, — Bl H' HB,)]

(B.4)

(B.5)

(B.6)

The fundamental basis C is a prior: matrix regardless the value of By, By, and Bs.

Hence, by choosing specific values of By, By, and Bz, the form of C can be solved.

Pick
(0 1 0 0] [0 0 1 0] [0 0 0 1]
100 0 0 000 0 00 0
B1: aBQZ 7B3:
0 00 0 100 0 0 00 0
0 00 0 (0 00 0 10 0 0]
Then,

BIH"HB, - BIH"HB; =
hithy 0 0  —h?

~hihy O B} 0

148

(B.8)



BI'H"HBs — BITH"HB, =

ByH"HB, — BITH"HB, =

where the lower case of Ii’s represent the elements of the 4 matrix, i.e. H = |,

Also,

hihs
—hihy
0

—hyihy]

hihy 0

0 0 &
0 0 0
—R2 0 0

—hyhy hihy O
0 -2 0
20 0
0 0 0

HB®"H” = (—hy) (H®ey) + hy (HPes)

HB,®"H" = (—hs) (Hde,) + hy (H®es)

HB3®"H" = (—hy) (H®e;) + hy (Hdey)

Now define

Bil = hz (H@el) — hl (H(DGZ) s

1<il<4,i#l

(B.10)

ha hs hy|-

(B.11)
(B.12)

(B.13)

(B.14)

Substitute (B.7) - (B.14) back into (B.6). And let ¢ = (HB;®"HT) - h?. Then the funda-

mental basis C is,

0

Bsa
—faa

| B2y
The form of C described in (B.15) has been proved numerically.

~Bo s —Ps|
0 —Buu bis
fu 0 =P
—fi3 Pz 0
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B.2 Five-State Case

For five-state case, consider the fundamental basis D to be obtained through four updates

at step k + 4.
oD = E{ " HTH®*E, — E] ®* HT HO*F, (B.16)
E, =Clo"H"H®C, — CTO"HTHOC, (B.17)
Ey,=ClO®"H"H®Cs — CTOTHTHOC, (B.18)

where Fy and Ej are produced at step k+ 3, and C, Cy and C3 are produced at step k + 2.
Substitute (B.17) (B.18) back to (B.16),

oD =(CJo"HTH®C, — CT"HT HOC,) 9 H HD?
(CTOTHTH®Cy — CTOTHTHOCY)
— (Cfo"HT"H®C, — CTo" HT HOC3) 9 HT H®?

(CTOTHTH®C, — CIO"HTHOCY) (B.19)

Expanding every elements in (B.19) is tedious, not to mention that even the C;’s are
produced from matrices B;’s in the directions at step k + 1. One will need to trace back

even further. Hence, let us just write down the first element in equation (B.19).

CIO"HTHOC,@* HTHO*CT O HT HOCy

= (H®C1@*" H") (H®*CT®"H") C;@"H" HOC; (B.20)
C1, (5, and C5 are produced at step k + 2. In particular, define,
C,=B/H"HB, — BJH'"HB, (B.21)
And consider the coefficient in equation (B.20),

HOC1@*"H" = H® (BfH'HB, — ByH"HB,) ®*"H"

= (H®BTH")(HB,®*'H") — (H®B] H")(HB,®*" H™) (B.22)
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Now, pick

0 1000 0 0100
~1.00 0 0 0 0000

Bi=|10 000 0, Ba=|-100 00 (B.23)
0 0000 0 0000
(0 00 0 0] |0 0 0 0 0]

Then,

HO®BIH” = hy(H®ey) — hy(HPe,) (B.24)
HO®B] H" = hi(H®e3) — h3(H®e,) (B.25)
HB,®*THT = hy(H®?%ey) — hy( HD?e;) (B.26)
HBy®*TH' = hy(H®?e3) — hy(Hd?%e;) (B.27)

where the lower case of h’s represent the elements of the A matrix,i.e. H = [h; hy hs hy h5] )

Substitute (B.24) - (B.27) back into (B.22).

HOC,&* " HT =(h(H®ey) — hy(H®ey))(hi(H?e3) — hg(Hd?e,))

— (hi(H®e3) — hs(HPey))(hy(HP?ey) — ho(HP?ey)) (B.28)
Then,

HOC10*"H" =h7 [(HPes)(HD%e3) — (HPes)(HPe,)]
+ hihy [(H®es)(H®?ey) — (HPey)(HP%es)]

+ hihs [(H®e;)(HPes) — (HPey)(HD%ey)] (B.29)
Take this form, and define a set of quantities as,

Bijk = hi [(HPe;)(HP?er) — (HPey)(HP%e;)]
+ hj [(H®ey)(H®%¢;) — (HPe;) (HPey)]

+ hy [(HDe;)(HD%¢j) — (HPe;)(HP%¢;)|, 1<i,j,k<5,i#j#k (B.30)
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Finally, the fundamental basis D can be constructed as follows.

0 B31s  —P2as  [Pass —5234-
—fBas 0 Bus  —biss Pisa
D= fus —fus 0 Pras  —Br24 (B.31)

—Pass Bz —Pas 0 P23
| B2sa —Pisa Praa —Pras 0

Numerical results show that the D matrix described in (B.31) is the fundamental basis

for five-state case.
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APPENDIX C

Some Derivations of Term Combination Rules for

3-State Cases

Consider a new term at step k. The exponential term is expressed as,
EMF = exp (= Pi|HCv| — Po|HCov| — ... = Py |HCyp1v| — Py lbiv| + j¢MF0)  (C.1)

where C;, i = 1,2, ..., m—1, are skew-symmetric matrices, and b; is another row vector which

cannot be expressed in the HC' form.

C.1 Child Terms at step k+ 1

After time propagation, the exponential term becomes,

EMTIF =exp (=P |HC19"v| — Py|HCo® V| — ... — Py [HC 1 @7 0|

— P01 ®Tv| — BITTw| + j¢HHHEY) (C.2)

Then at step k£ + 1, the CF is obtained from the update integral.

- e HC, 9Ty
¢]§+1<V) :/OO G- exp <—P1 ’HCl@THT’ Hcrl(lb—THT — T]‘ — cdots
HC _1@TV bl(I)T]/
— Im— HCmf (I)THT — —Pm bq)THT — T
1| 1 ‘ HC, ®THT n ‘ 1 | b, ®T HT n
T 17T Iy . ket 1)k T
—BITH || — | = v 0l + zwgan + 5 (v = Hn) ) dn (C.3)
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C.1.1 SfH‘kH when 1 <i<m-1

The " child term when 1 < i < m — 1 has the exponential term expressed as,

HC®Tv HC;®Tv
HC,®THT HC,®THT
HC,,_ 19Ty HC;®Ty
HC,, ®THT  HC;®THT
b ®Tv HC;®Ty
b ®THT  HC;®THT
'y HC;®Tv
[THT HC,®THT

(2

NI — exp (—P1 |HC19"H” |

-~ Im-1 ‘Hcmflq)THT’

— P, [0 @ H” |

HCZ@TV
T HCoTHT

_ﬁ ‘FTHT‘

i)

For two 3-dim row vectors by = HC; and by = H(CS, bgbl — blTbg = oB, and ¢ = M.

Heg
Then,
Py - |[HC1 Ay CTHT|
ghHlk+1 _ _ i HoBdT | — ...
Z P\ T THCOTHT| - [Hel| | d
Py - |HCy1 Ay CFHT |
— : HOBO”
|HC,OTHT| - [He]| | 4
by,
~ HCO ] |H® (CTH" by — b] HC;) @™ v|
— |HC(;+HT’ |H® (CTH'TT®" —&~'THC;) " v
_m |HC;0 )| +j§f“"“+1u) (C.5)

Combine the first (m — 2) elements. Then,

m—1

P [HCAL CTHT))

I=1,#i * 1 141215 P,

gFTIET —( HOBO Y| — — = |H®D;®T
i exp |HC;®THT| - [HeT| | | |HC;®THT| | v|
B T g T kA 1]k+1
where
D;=CF HTby — b HC; and E; = CTH'TT®™T — d~'THC, (C.7)
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C.1.2 gk+1\k+1

At step k + 1, the m!” child term has the exponential term expressed as,

HC®Tv b Ty

HC,®THT b, ®THT|
HC’m 1 DTy b ®Tv

A PTHT — pdTHT

ERFIFL — exp (—P1 |HC19"HT |

- LIm-— 1‘Hcm ICDTHT|

'’y b (I)TV b ®Tv
T 7T 1 1 s kA1 kA1
S g~ o _7’W G ”) (C8)
Then,
P

e84 o (it |0 (T HCL - CTT) 8Ty -

P T T T

W }HCD (bTHCm 1 — Cm—lH bl) P V’
g T1T q,—T -1 T gl T k4 1]k+1

(C.9)

As defined earlier, D; = CFH"by —bT HC;, i =1,...,m—1. Also define D, = b]T7®"T —

®~'T'b;. Then Sﬁf”kﬂ can be rewrite as follows.

P P,
k+1|k+1 1 T -
Ent e (‘W‘H‘DD@ A= g | H®Pna 2T
—ﬁ T 0 T k41| k+1
“ipargr) PP | = gy @y 4G ) (C0)

C.1.3 gk+1\k+1

At step (k + 1), the (m + 1) child term has the exponential term expressed as,

HCdTv '’y

HC,®THT TTHT|
HC 19Ty '’y

L ®THT TTHT

b ®Tv '’y '’y
bnoTHT TTHT| | |TTHT

ERHIMT = exp (—P1 |HC,®"H|

- LIm-— 1‘Hcm 1(I)THT|

010" HT|

o HT| HT|

i) e
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Then,

EMIFT — exp <— i |[H® (97'THC, — CTH'TTeT) 0™y| -

[T HT|
‘I{DT AT |H® (®~'THC,,,y — Cf,_H'TTO™T) &7y
-5 HT‘ 7|FTHT’ |H® (&7'Th, — b T 0 ") 07|
IFTHT| T[]+ 56 k+1|k+1 ) (C.12)

As defined earlier, £, = CI H'TT®T — & 'THC), I = 1,....,m — 1 and Dy, = bITT®d~ T —

®~'T'b;. Then anfrlllkﬂ can be rewrite as follows.

D P,
k+1k+1 1 - .
Emt =P (_|FT—HT| |H(I)E1q) Vl o |FTHT’ ‘HCI)Em 1@ 1/|
i T _ T k+1\k+1
T HT| - |TTHT| |HODy, @ v| — ]FTHT\ IT7v| + §¢ns y> (C.13)

Furthermore, look at the exponential terms at step k£ + 1 in equation (C.6), (C.10) and

(C.13), one can find the value of P, in equation (C.1), as P, = ;7.

C.2 Grandchild Terms at step k + 2

C.2.1 From Ekﬂ‘kﬂ 1<i<m-1to Sﬁr2|k+2

Consider equation (C.6) at step k + 1. Then, after time propagation, the exponential term

becomes,
S B [HC A CPHT) ) )
gk+2|k‘+1 — _ ( v HCI)B@ZT . bt H H@DZQ)QT
Z o HCATHT A Aty rersaral Y
__B___ N 2T T k21
“acergT] OB Y] = ey G v = BT+ 3G
(C.14)
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The CF is obtained from the update integral.

m—1
S > M e
= . eX —_ -
2 . P |HC,®THT| - |Hel| HoBo2T T !
0 2T
~_wi \geDe T HT| | Y
|HC,®THT| | |\ Zop,eergr 7
3 e o | HOE®Ty
P \gopeTHT|| 22T Y
|HC,®THT| | |\ og,armr ~ "
T HCTHT| | Y
|HC®THT| | |\ frcgera — 7
'’y ) .
—B[TTHT| THT 77‘ — 0]+ Jzgen + 3¢ (v - HTU)) dn (C.15)

Then the first child term at step k& + 2 has the exponential term expressed as follow.

H®D;®* Ty H®B®* Ty

)
EFFM? —exp ( i |HOD,®*T H|

|HC®THT| HO®D;®*"HT HOBOTHT
HOE;®>T HOB®2T
b |[HOE, " HT | _ .
|[HC;®THT| HOE®THT  HO®BI?THT
¥ or 1 | HC:®* v H®B®* Ty
 |HC;®THT] [HC:2™ HY HC;®THT ~ HO®B®?THT
'y H3B®* Ty H®B®* Ty ket 9lkt2
O |5 ~ amerrar| 7 oo | G " V) (C10)

Note that for two 3-dim row vectors by = HC, and by = HCy, blb, — bT'by = 0B, and

by AgbT

= el In addition, simple algebra shows that

Ay H"HOB — B ®"HTHA;, = (HPA, HT)B (C.17)

where B is the fundamental basis.

Because of linearity, it must hold that for any 3 by 3 skew-symmetric matrix C
CTH"H®B - B""H"HC = (H®CTH")B (C.18)

which has also been verified numerically.
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Therefore, this exponential term can be written as,
gik,:f—2|k+2 =exp (— ]HC@THT\ﬁI(I)Bq)QTHT‘ o (H@DiqDTjj;;;Y}iBTcpTHT) BoT,
~ (HCOTHT] -fH@BCIﬂTHﬂ H (HéE@TéngT@THT) ot
~ (e e | HOS T B
- |H<I>B§>2THT|

|H (*°B"®"H'T" —TH®B®*") v|

Y .
~TeBeer T | PR +J<fl+2'k+2”> (19

Combine the first 2 elements.

o pT TeT gT BT T&T 7T
grrawra _ (_EHTIHODAT A BB O HT | + IHOES An 087 [—
’ |HC,&THT| - |[HOBO HT| - |Hel|
gl 21§27 p 2T &T T T 2T
— Ho*Bd — H(®*B "o H' I —TH®B®
HOBOTHT| VI~ TgeBoT T ( ) VI
g 2T . k2|42
— HPB® , 2
|H(I)B(I)2THT|| v+ JGa V) (C.20)

D, and FE; are defined earlier.

C.2.2 From & 1 <i<m—1to &1

Consider the CF of step k£ + 2 in equation (C.15). Then the second child term at step k + 2
has the argument of the exponential,

B ( iz P \HO;AmCiTHT])
|HC;®THT| - }He?;’

HPB®2Ty H®D;®*Ty

ghtalk+2 _ B
HOB2THT HOD;®2THT

io |HeB®* H™|

HOE;®*Tv H®D,;®*Tv
HOE;®2THT  H®D,®2THT
HC;®*Ty H®D,;®*Ty
HC;®2THT H®D;®2THT

p
|HC;®THT|

|HOE;®*THT|

QQTHT‘

8l
N S &
|HC;®THT| |HC:

Ty H®D;®*Ty H®D;®*Ty
—3|rTHT - i _ i k42|42
B ’F H ’ FTHT H@Di(I)QTHT v HCI)DZ-@ZTHT Jr]<z,2 V) (0-21)
Because
HOB®*v  HOD;®*'v |H®D;®" Ay B ®T HT | .
|HOBO v

H®B®2THT ~ HOD;®2THT | [Hel| - |[HOBOX HT|- [HO DT HT|

(C.22)
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HOE®*v  H®D;®*Tv |HOD;®" Ay DE] T H” |

— = HOBOT
HOE®THT  HOD®THT| |Hel| - |HOE;®THT| - |HOD;P2THT| | 4
(C.23)
And from simple algebra,
D/®"H"HC; — CTH"H®D; = — (HC;®"H") - D; (C.24)
Then,
m—1
ke _ _( iz B |[HC A CT HT\) |HOD; 9" Ay BT H | HOBET
w2 P |HC;®THT| - |Hel| |Hel| - |HOD;®2THT|
HOD;®T Ay ®EF®THT
— : |HOBO' |
|HC;®THT| |Hek| - |H®D;®2THT|
Y 2 2T
~ HED.47ET |H®*D;®*"v|
— B H (®*DI'e"H'TT —TH®D,®*") v
|HOD;®2THT| '
gl _
|HO®D;®*THT| [H®D; " v| +JC52+2|H2V) (6.25)

Combine the first 2 elements.

85;2%” = exp (—p1 |H(I>B<I>TV}
2 2 27
- H®*D;®
|H®D;d2 [T | Y
N B8
|[HOD,;®2THT|

f)/
|[HOD, T HT|

|H (®*Df @"H'T" —TH®D;®*") v|

|HOD;®* v + jdf;“”y) (C.26)

where

_( P P [HC Ay CF HT\) |HOD; " A @B " H” |

LT HC,OTHT) - [HeD| |Hel| - |[HOD; 9> HT|
N B |H®D;®" Ay PET®THT | (©.27)
|HC;®THT| |Hek| - |H®D;P2THT| ‘
and as defined earlier,
D;=CI'H"p —b'HC; and E;=CIH'TT"0™" — 0 'THC; (C.28)
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C.2.3 From Sfﬂ‘kﬂ, 1<i<m-—1to ngrmﬁ

Again, consider the CF of step k + 2 in equation (C.15). Then the third child term at step

k + 2 has the argument of the exponential,

HPB®2Ty HOE;®?Ty
HO®B®2THT HOE;®2THT

E2lk+2
5+|+:ex

i3 |HeB®* H™|

(ST B O )
- |HC;®THT| - [Hel|

H®D,;®*Ty B HOE;®*Ty
HO®D;®2THT HOE;®2THT
HC;®*Ty HOE; 2Ty

_ \blsz\
|HC,®THT|

|HO®D;®*"H" |

- 2T ygT _
|HC;®THT| |[HC:oT H| HC;®?THT HOE;®THT
'y HOE;®*Ty HOE;®*Ty
. T ++T . % . 7 .k+2\k+2
PICH et — Tremerrar| Y | Hemar | TG ”> (C.29)
Because
H®B®*'vy  HOE®* v |HOE; @ Ay OB T HT | HOBET|
—_— pr— I/
HOB®THT  HOE®THT| |Hel| - |HOBOTHT| . |[HOEPTHT|
(C.30)
H®D;®*Tv ~ HOE v |HOD;®" Ay OET T HT | HOBO™,
—_— pu— l/
HOD;®THT HOE®THT| |Hell - |HOE,®THT| - |HOD;P2THT|
(C.31)
And
E/®"H"HC; — C'H"HO®E;, = — (HC;®"H") - E; (C.32)
Substitute equation (C.30) (C.31) and (C.32) back to equation (C.29).
m—1
Pz P |HOANCTHT | ) | o B,07 Ay 0BT 9T HT
EFIT —exp | - |HOBO v
3 |HC;®THT| - |Hed| |Hel | |HOE®2THT|
wm |HPD;@T Ay ®ETOTHT | HOBET|
T JHC,OTHT| [Hel|- |HOE,®THT| Y
Y 2 2T
~ OB |HO?E;@*" v
— 2 |H (*E]®"H'TT —THP®E;®*") v|
|HOE;®2THT | ‘
gl .
T [HOE®THT |HOE;2* v | "‘de;mkwl/) (C.33)
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Combine the first 2 elements, then,

EETT? =exp (—p1 |HEBO v |
gl

2 2T
~ THeger M BT
5 2T /T ryT' T oT
 |H®E,®>THT| |H (P*E]®"H'T" —THOE;®*") v|
_|H<I>E-2>2THT| ‘H(I)EZ.CIHTV‘ +j<£;2lk+2y) (30

where

( P s P |[HC Ay CTH T\) |HOE,®T Ay @B &7 H |
LT HC,OTHT| - [HeD| |Hel| - [HOE, T HT |
wm |HPD;@T Ay ®ETOTHT |
|HC,®THT| |Hel|- |HOE;®THT|

_I_

(C.35)
As defined earlier,

D;=CFH"b, —b'HC; and E; = CTH'TT®™" — o 'THC; (C.36)

C.2.4 From &5 to &2 for 1 <i<m—1

k+1|k+1
gkl

At step k + 1, consider the exponential term expressed in equation (C.10). After

time propagation, this term becomes,

P P,
k2lk41 _ 1 o o or
Sm+ |+ =eXp <—W‘H¢’D1q} I/‘ __W‘HCI)Dm_l@ ]/|
_B__ = b 2T T okt 2]k
“ipargr] PP V] = g @] = BT+ G

(C.37)
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Then at the (k + 2) measurement update, the CF is obtained from the update integral.

+o0 2T
- P1 9T 74T H@qu) 1%
= : Y e e HT| | AT Y
Prr2(V) . G exp< |b1(I>THT|‘ 1 | HoD, 0 [T U
P, HOD,, 18Ty
——nl_\H®D,, &> HT ml -
]b1<I>THT]‘ ! |\ 72D, emar 7
— Z__|H®D,,®*H -
b T HT | |2 Dy, |\ 7ep WO HT
Y oT 17T b1 0*"y T 17T
T T 2T T T T
_|b1<I>H|‘blq)H}b<I>H mFH'rH 1
— |nl + jzrson + JCTE (v — H ) dn (C.38)

Next, find the exponential term of the ** child term at step k 4+ 2 for 1 < i < m — 1, and

k+2lkt2.
denoted as 5 + [+

H®D,d*Ty H®D;®*y
H®D®>"HT  HOD;P>*THT

P
k+2k+2 1 2T 7T
g’m,i =exp <—W ’H@D1® H |

P, H®D,, 0" HO D07
— "l _H®D,, &> H| S .
b, ®T HT | HOD,, 1@ HT ~ H®D;®* HT
H®D,, 0" HOD, 0"
S |H®D, | o .
|b1cI>THT| H®D,@THT ~ HOD,®2THT
}b CIDQTHT| b1 ®*y B H®D,;®*Ty
|b1(I>THT| ! b1 ®THT  HOD;®*THT
T 2T 2T
T 17T v H@DZ(I) 14 H(I)qu) 14 . k+2|k+2
I\~ repeerar| ) [epaer | T V) (C39)

Because for [ =1,2,....m — 1, # 1,

HOD,®" Ay ®DTdTHT
oDId"H'HOD, " — DI T H' HOD,dT = l ;T : ‘B (C.40)
€3

And

H®D, T Ay ® DI ®THT
Hel

oD} ®"H"HOD,,®" — ®D], " H" HOD;®" = ‘B (C41)
In addition,
D/ ®"H"b; — b] H®D; = (C]H"b; — b] HC;) ®"H" by — b] H® (b HC; — C] H"by)
=— (1@ "H") - D (C.42)
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Substitute equation (C.40) (C.41) and (C.42) back into equation (C.39), and combine the

first (m — 1) elements.

ERTNT? —exp (—ps | HOBO v |

m,i

- @ D:IDQT g [ Dy
T H® wa T |H (2*°DFo" H'TT —TH®D;*") v
|H®D; CI)2THT| |[H® D& u| + i 22y ) (C.43)
where
. (Zz vizi P \H@Dz@TAm@DTcDTHT}) 5 [HOD, 0" Ay DTOT | o

T HT||HOD, ST HT||Hel| @ HT| |[HO D& HT| [Hel |
C.2.5 From gk-i-l\k-&-l to €k+2|k+2

At step k + 1, consider the CF expressed in equation (C.38). The m!* child term at step

k + 2 has the exponential term as,

Py
|b1<I>THT|

H®D,®*Ty H®D,,®*v
H®D,®?THT H®D,®?THT

ENTIRT? — exp <— |H®D;®*THT |-

P, o 11T H®D,, 9*"v H®D,,*"'v
|b1CI>THT| |HCI)D 19 H ’ ’ DT HT - H®D,,®THT
|61<I>THT| bi®2THT  H®D ¢ THT

T +1T 'y H®D,,o*'v
_5}1—‘ H | \ITTHT H®D,,&>THT
H®D gy v 2li+2 )
_ C.45
"\ HoD, o ET | T Iomm (C45)
Because
HOD®* v HODu v | |[HOD,®" Ay ® D}, T H™ | |HOBAT |
HOD®2THT  H®D,®2THT | |Hel| - |[HO®D,,®2THT| - |[HO D@2 T HT|
(C.46)
D}, ®"H by —b{ H®Dy, = — (01 ®"H") - Dy, (C.47)
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Then the exponential term can be rewritten as,

P, |H®D®T Ay ® DT T HT
5,@+Ti\k+2 =exp | — ;‘ - 1 21 2Tng | - ‘H(I)B(I)TV‘ o
; |bi@THT| - |H®D,,®*THT| - |Hes |
B P ’H@Dm_l@TAQI@DgTbcDTHT’ {Hq)B@TV'
b, ®THT| - [H®D,,®2THT| - [Hel|
v 2 2T
— |H¢)ng(1)2THT| ‘H(I) ngq) l/‘
B 21T T T 17T o7
~ H&D,, o7 i |H (2*D},@" H'T" —~TH® Dy, @) v
7 2T - rk4-2|k4-2
- HOD o €48
|H@ng¢)2THT| ‘ gb V| +]Cm,m V> ( )

Combine the first (m-1) elements, then,

lrgl (Pl |H@D1¢TA21¢D§,®THT‘)

ch+2lk+2 _ B P
m,m exXp by ®THT| - |H<I>ng<I>2THT| . |Heg| ‘ v
il 2 2T
" [H®D,, &> HT] [H®* Dy @*"v|
_ |H(I)D f(I)QTHT| |H ((I)QD;;](I)THTFT _ FH(I)ngq)2T) V’
g
il :
“H®D,, P2 HT| |HO Dy ®* | + JCZT%’“”V) (C.49)
g
where
Dy = bITT®~T — &~ 'Thy (C.51)

C.2.6 From Sflfl‘kﬂ to 5:;121@” for 1 <i:<m -1

At step k + 1, consider the exponential term 8:;11‘“1 expressed in equation (C.13). After

time propagation, this term becomes,

Pm—l

k+2lk+1 P o7 or
ngrl =exp (_ |FTHT’ ‘H(I)Elq) y| e — |1“THT‘ ‘HQEm,1® 1/‘
7 2r i TeT T o k2lk+1
_|b1HT| . |FTHT| |H(I)ngq) V‘ — |FTHT| ‘F 0} I/| — B ’F y| +]Cm+1 V>

(C.52)
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Then at the (k + 2)* measurement update, the CF is,

iy oo Pl oT 17T H@Elq)QTI/
Dri2(V) :/_OO G - exp (_]FTHT\ ]H(DE&) H ] W — ,7‘ _
Pm—l o +1T H@Em_l(b2TI/
— —— |H®F,,_ 1P H _
ITTHT| ’ ! | HOE,, ®THT N
fy H@D b(I)QT]/
B ’blHT’ . ’FTHT‘ |H¢ng®2THT| Hq)ngg(DQTHT -0
v T T 17T FT(I)TV
- ITTHT| ’F > H ‘ Tergr !
T 17T Iy . o k42]k+1 T
s ‘F H ‘ TTHT nl— vl + jzkran + jCnin (1/ - H 7]) dn  (C.53)

Find the exponential term of the i** child term at step k + 2 when 1 < ¢ < m — 1, and

k-+2[k+2
denoted as &, 7, "

HOE,d*Ty HOE;®*Ty

P
ERTART? — exp (——1 |[HOE,@*THT|

ITTHT| HOE,®?THT  HOE®THT|
Py HOE,, 19Ty HOE®7y
— T |HOE,, ®*THT = — -
\FTHT|| ! | HOE,, ®THT  HOE®THT
H®D,, 2" HOE;®*"
- T ! THT |H®D95(I)2THT} z 2T VT - 2T VT
by HT| - [TTHT| H®D,,®*"HT  HOE®TH
0 |FT(I>THT| ety HOE;®*Ty
TTHT| TT®THT — HOE;®?THT
I’y HOE® Ty HOE;®*Ty
T T i i . k2| k42
PN H \err ~ FeperaT| | HeEeTHT| T ”) (C-54)

When [ =1,2,....m —1,1# 1,

HOE®T Ay ®ETOTHT
SE'O"HTHOE, " — dEF " HT HOE, 07 = l ;T d B (C.55)
€3
And

HOD,, 07 Ay ®EL T HT
QEO"H"H®D,d" — DL " HT HO ;0" = 9 HQlT d B (C.56)
€3

In addition,
Ere"H'TTe T — o 'THOE,
= (CIH'T"®" —®~'THC;) ®"H"by — b{ H® (¢ 'THC; — CTH'TT®™T)
= (T"H") - (CH'T"®" — &~'THC))

— —(I"HT) - E, (C.57)
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Substitute equation (C.55) (C.56) and (C.57) back into equation (C.54), and combine the

first (m — 1) elements.

ghalkt2 _ exp (—pg ‘HCI)B(I)TI/‘

m+1,2
- 1 |HO* B,y
|HOE;®2THT | Z
~ Ho Eéﬂ AT |H (P*E]®"H'TT —THOE;®*") v|
g .
“megergT] | HOEYTY +JC§1++21|§+2V) (C.58)
where
P - |HPEDT Ay ®EF T H” , T THT T
iy N v |HODy®" Ay ®EF OT HT |
2= ILTHT||HOE;®2THT| |Hel| bl HT| - [LTHT| - |[HOE,®*THT| - |Hel|

(C.59)

k+1]k+1 k+2|k+2
C.2.7 From €&, to &, 1 m

At step k + 1, consider the CF expressed in equation (C.53). The m!”* child term at step
k + 2 has the exponential term as,

HOE,®* Ty H®D,,o*'v
HOE\QTHT  HODg »2THT

P
Ert2 L =exp (—ﬁ |HOE,&*TH|

P, HOE,, 9> v H®D 2Ty
T 17T ‘HQ)E 1(I)2THT| 12T T ngT T
o H| HOE,, (®THT H®D,dTH
|FTHT| ITOTHT  HOD,d2THT
5|77 Iy H®Dy®"v H®D,,®*'v Lk,
TTHT  HODwd T HT| | |HOD,eTHT| ' Iomtim
(C.60)
Because,
HOE, T H®D,, T HOE®T Ay ®D1 o HT
Y Ll HOEPT Asy | |HOBO |

HOEQTHT  H®D,d2THT | [Hes| - [HOD,®2THT| - |[HOE;®2THT|

(C.61)
and

D}, "H'T"®" — &' TH®Dy, = — (I"H") - Dy, (C.62)
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Then the exponential term can be rewritten as,

ks _ B Py |HOE\®T Ay ® DL 0T HT | HOBOTY|— ...
m+1m ITTHT| - |Hes| - [HOPD,,®2T HT |
Py 1 |HOE,, 19T Ay ®DT &7 HT
1 " ‘]H@B@Tu]

~ |TTHT| - |Hes| - |H®D,,®T HT|

il 2 2T
a |H®D,,®>T HT| | H®?D g, " v|
6 2T /T 7T 7T oT
a |HO D, 2T HT | |H(q) Dy  H' I —TH®Dg® )y‘
il 2T
~ |[H®D,®*THT| [HOD @'y | (C.63)

Combine the first (m — 1) elements.

(P | HOE®T Ay @ DL 0T HY))

5k+2|k+2 _ B H(DB@T
m+1,m €Xp |FTHT| . |H63| . |HcI)ng(I)2THT| | v
il 2 2T
- H®*D_,®
|Hq>ngq>2THT| | gb V|
p 2T &T 17T 1~T o7
B |HO® D, ®THT | |H (q) Dy @ H' I —TH®Dg® )y’
il 2T
- H®D,_ o C64
|[H® Dy, ®2T H| |[H® Dy 2" v (C.64)
where
E =& 'THC, - CFH'TT® ", 1=1,..,m—1 (C.65)
and
Dy = ®7'Thy — b{TTd~T (C.66)

C.3 Terms at Step k + 3

k+2lk+2 k+3|k+3
C.3.1 From Eif“r to SiILl'JF

k+2|k+2 k+3|k+3

Consider the term & at step k + 2, and find its first child term &5 | at step £+ 3.
For convenience, rewrite Eﬁmkw as,

R — oxpy (—p1|H<I>B<I>T1/] — po| HO*BO? | — ps| HCw| — py| HOBO? | + jg;fl“"“”y)

(C.67)
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where

B [H D, Ay B T HT | + S| HOE, 0" Ay DB " H|
B |HC;®THT|- |HOB®2THT| - |Hel|
_ gl
|HOBO2T HT|
_ B
3 = THOBOT HT)|

C=d’BTdTH'TT —THOB®*”

P1

P2 = P4

After the propagation, the exponential term becomes,

ET? = exp (—pi [HEBOX v| — po| HO*BO*Tv| — ps| HCDT v

—ps| HOB®* | — BTy +j§fl+3|k+2u>

The CF can be obtained from the update integral.

_ oo HOBO Ty
— 2T 17T
¢k+3(l/) = /OO G- exp (—p1 ‘H(I)B(I) H ‘ w T - 77‘
H®?Bo*y HC®Ty
2 3T ryT T T
— p2 |[HO*BO* H'| W—n‘—pgwc,@ H'| |\ gagrgT
HOB* Ty I’y
3T ¢yT T 7T
o [HOBO | e _”’ A _”‘

. . k+3lk+2
0]+ jzeian + 3¢ (V—HTn)> dn

Then, the first child term at step k& 4+ 3 will have the exponential term expressed as,

HO?B®3 Ty HOB®*Ty
HO2BOTHT  HOBPTHT
HC®Ty HOBO Ty
HC®THT HOBOTHT
HOB®3Ty HOB®* Ty
HOB®THT HOBTHT
Ty HOB®* Ty HOB®Ty
ITHT HO®B®2THT HOBOTHT

ETET =exp (—p2 |HO*Bo* H|

— ps |HCO"H" |

— ps |[HOBO* T H” |

6|07 HT —y

- k+3lk+3
+]C¢,1 | V)
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Then,

k43|k+3 P2 T&T 17T 21 & 27T 2T &2T 17T ™ &T
ET T =exp (—|H®B®2THT| |H® (9B"¢" H" H®*B®*" — ¢*B"0*" H' HOB®") &7 v/|

. P3
|HOBP2THT|
_ P4
|HOPB®

g
|[HOB®2THT|

|H® (PB"®"H"HC — CTH" HOBO") &7 v/|

ST |Ho? (B"e"H" HOBO" — oB"®" H' HOB) > /|

|H (9*B"®"H'T" —TH®B®>) 1|

_ |H<I>B;>2THT| |[HOB®* | + j(ff3|k+3u> (C.75)

Because

H®2B32T A BT T HT

oB"®"H"H®’B®*" — °B"®*" H' HOB®" = =
€3

B (C.76)

HC Ay ®BT®THT

®B"®"H'"HC — C"H"HOB®" = —
Hes

B (C.77)

And let C' in equation (C.18) equal to ®B®?. Hence,
B"o"H"HOoB®" — ¢B"®"H"HOB = — (HPB®*"H") - B (C.78)

Substitute equation (C.76) (C.77) and (C.78) back to the exponential term expressed in

equation (C.75), and combine the first two elements.

gEOS _ (_ p2 |HO* BT Ay @B ®THT | + p3 |[HC Ay @B T HT | HOBTY|
i, |[HOBOTHT| - [He}
— ps |HO*BO* 0| — i @Bgﬂ AT |H (2*B"®"H'TT —TH®B®*") 1|
- |H<I)B$2THT| |HCI)B(I)2TV‘ + jgﬁrmkw’/) (C.79)
where
p2 = ps = ]HCDB?{yﬂTHT\ (C.80)
. |H(I>B§>2THT| (C81)
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APPENDIX D

Proof of Lemma 4.3.2

When the top right corner of S, is discussed to derive the recursion of S matrix, Lemma

4.3.2 is introduced. This lemma states that,

Lemma 4.3.2 Consider the exponential part of the it" term, Sffuk*l, at step k —1 and the
mt term, EETVETY ot step k — 1, then the 1™ child term at step k of 5?71%71 and the pt"

child term at step k of EEIEL can be combined if and only if the I grandchild term at step
k+ 1 of the old child term ng;d at step k and the p'* grandchild term at step k + 1 of the

old child term Sgild at step k can be combined, i.e.

klk _ ocklk . k+1lk4+1 _ ok+1|k+1
E =E&my Wandonlyif & a0 =&y (D.1)

Proof. At step k — 1, consider the i** exponential term,

5<]€_1|k_1 = €exp <—P1|Bll/‘ — .. PNk.fl\kflyBNk_71|k71V| + jCk_l‘k_1u> (D.Q)

3 3
where N, Q_I‘k_l is the number of elements in the argument of the exponential term.

After time propagation and measurement update, at step k, the exponential part of the

[*" child term can be derived as,

B®"Tv B®Ty
B®THT  B®THT

BNk—l\k—1(I)TI/ Bl(I)TI/

el

B,®THT  B®THT

BoTy K|k
-7 ’_W + G v (D.3)

£ = exp <—P1|31CDTHT|

T 7T
PN:i—l\kfl‘BNZ—l\k71® H ‘

'’y B,®Tv

—B|ITTHT
8] ‘PTHT B,®THT

and the first N, fi_”k_l child directions in equation (D.3) are co-aligned with HA. According

to term combination rules, the last two child terms of €ik “!5=1 never combine. Thus one
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only needs to look at the first NV, Zf”k*l child terms, where only the parent directions in the

T k—1]k—1 : .
form of % for 1 <I <N, =1 are being considered.

Define B B; — BI'B, = 0, - A, BTT®d™T — &~'T'B, = QN@_1\;€_1+1 - HA, and define

Pr-1k-1, ;= . From simple algebra, we know that HPAPT = det(®) - HA. Combine the

e

directions of (D.3) except the last one, the exponential part then can be expressed as,

gkt _ HA B®Ty K|k DA
i =exp | —Qi1|HAv| -~ “BOTHT + G v (D.4)
where
F1lk=1
| det(®)] |
Q1= W Z Py - |9q’ (D.5)
q=1,qg#l

Similarly, the m'* exponential term at step k — 1 is expressed as,

En I = exp (—M1|C'1V| — o = M1 |Cprapp1v] +ij;1“§_1’/> (D.6)

Write down the exponential part of the p* child term at step k of the m*™ term at step

k—1 as,
CI(I)TV i
Eplly = oxp (—Q2|HAV| - ‘—W +]C7’%|§;V) (D.7)
where
NEUR=T
| det(®)[ )

= T aToTl M -9 D.8
Q2 ‘Clq)THTl qﬁzqﬂ q ’ ql ( )

and CFC;—CICy = 9;-A, CITTd~T —~'TC) = Ok, - HA, and define M 11 | =
3,

There are in total N:;_llk_l

+ 2 child terms at step k. The last child term is the old child

. . |k
term, whose exponential part is represented as & ;. And,

gl = exp <—P1|qu>Ty| — oo = Pyt |Byran 7| = SIITOTY| + jcfjl,’;dy) (D.9)

7
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Then after time propagation and measurement, at step k+ 1, the exponential part of the

[*" child term is,

B,®*Ty B;®* Ty
B, ®THT — B®2T [T

2T
BNkfl\k—1® v qu)QTV

el

B, ®2THT - B,®2T HT
7Ty B;®*Ty
[TOTHT BT HT

Sf;;ff“ = exp (—PlyBlcb?THT\

2T 17T
PNfi—1|k—1|BN:i—1\k—1(I) H|

— BIr*eT HT|

'’y B®*Ty B®*Ty
T 17T l ! k1 k41
“ACH N e~ e | T | Bt | TG ”) (b-10)
Combine the first Nf[”k*l + 1 elements,
B (I)QT
Ernal T = exp (—Nl\HAV! —7 ‘—WT;T +j<jfjl§f“u) (D.11)
!
where
k—1|k—1
v, ldet(@)] N > “P o Bl det(®)] - [0y,
e 2 Tl BSTHT|
| det(®)| - | B,®THT| Bl det(@)] - [0 ye-rin- | 5
= BT AT Q1+ BT T (D.12)
And the grandchild term Erlfi)ll‘dk; ' s,
Cd* Ty .
5:1111‘;;1 = eXp (—N2|HAV| -7 '—m +]Cfn—j_olld]fg_ly) (D-13)
where
k—1]k—1
N, — |det(q>)|2 Nern +1M ) |19 ‘ 5| det(CID)| ) |9N§n:1|k—1+1|
27 |G @ HT @ |Ci P> HT|
q=1,q#l
|det(®)| - |C;®THT| S| det(®)] - |?9N§£1"“‘1+1|
- |C, T HT| T2 |, [T | (D.14)

Now, look at (D.4), (D.7), (D.11) and (D.13). As mentioned before, we are only interested
in the real part of the exponential terms, because the imaginary part will match whenever

the real part of two exponential terms are identical.

172



it gzkl‘k - ’If“f;” then Q1 = )2, and B; and () are parallel, i.e. there exists a scalar s such

that B; = sC;. Then N; = N,, and hence Ssz;g(ll!fﬂ _ ghtliktl

m,old,p
If 55;?31!f+1 — gfjollldk’glj then Ny = N,, and B; and C; are parallel. Therefore Q1 = @2,
and hence Sfl'k = ghk. -
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APPENDIX E

Updating R in Each Layer of G Terms for 2-State Case

The recursion of R in the G terms in equation (5.1) for n-state systems has been presented
in general in Chapter 2. For two-state case, this appendix chapter provides a clear algorithm
for the recursion explicitly. It is obtained utilizing the directions co-alignment and terms
combination properties that has been discussed in previous chapters. It is interesting to
notice that a large part of the recursion for two-state cases will preserve when extended to
higher-order cases. The only major difference of this recursive structure among different
system dimensions is how to combine directions onto the fundamental basis. And this only

effects the sign function part of the structure in each layer.

The implementation of layer update will be initialized at the first measurement update,

and then be generalized to step k in a recursive manner.

E.1 1% Measurement Update

At the 1% measurement update, there are 3 terms, initialized as follows.

E.1.1 The First Term i.e. i =1

pgll)(z' =1) = [041 ‘€1HT } , pg)(i =1)= [Oég (€2HT) . Sgn(elHT), 7] (E.1)
FOi=n=[1 «], Eu=p=|"" (B.2)
So SS9
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E.1.2 The Second Term i.e. ¢ =2

,0(()11)(@' =2)= [O(Q |62HT|] , pg)(i =2)= [al (elHT) - sgn(—egHT), ﬂ (E.3)
s1 S

Fﬁu:m:[1—@,ﬁﬁu:m: b (E.4)
So9  So

where s1 = sgn(HAv), sy = sgn(—-2%).

eo HT

E.1.3 The Third Term i.e. : =3

pi=3) =[], PV (i=3)=[o1(esHT), a2 (eH")] (E.5)
==l -1], FPe=3=|"" (E6)

where s; = sgn(e1v), se = sgn(esr).

E.2 From Step k to Step £+ 1

At step k, assume the general form of the exponential part as follow. This term can be either

new term or an old term. The number of directions is notated as V..
ghlk — exp (—Plklk ‘Bf'ky‘ — Pf‘k ’Bg‘kV‘ — = P]]:[Lk ‘Bjk\;f‘fy’ ”‘jCklkV) (E.7)

At each layer of the GG part, the sequence p and the matrix F' are split into two compo-
nents. p(7” and F™ are associated with the offsets, and p” and FU"™ are associated with

the coefficients of the sign functions.

O

Ry = |ply |p$qx ————|, ls=msk (E3)
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Suppose pg,?) € R and pg:) € R'% then

111 -1 ]

F = 1 e I (E.9)
1111 ]
s s

Fim = | Cl e R g <N, (E.10)
S S

q q

At step k + 1, there will be (k + 1) layers in the G part of the child terms. The top k
layers can be expressed in terms of the layers of its parent term at step k, while the bottom

layer directly comes from the exponential parts.

E.2.1 The Top k Layer i.e. 1 <m <k

The top k layers at step k£ + 1 are updated from the layers at step k. The offset part of
p,gm), ie. pgl?) will either stay the same or add a new offset to the end of the sequence. For
two-state systems, all the child directions that are produced from any two non-zero parent
directions is co-aligned with the HA direction. Therefore, the sign function component of

p,gm), ie. p((:;”) for new child terms will be either empty or contain only one element.

For convenience of direction combination, define

B ®T B; T T
(BlchHT - B,-<I>THT> €1 .
t1 = sgn (AT , < (E.11)
and Bi11®7 B;®T T
<B1+1+<I>THT - Biq;THT> €1 ‘
t; = sgn NG , 1<I<N, (E.12)

Due to the propagation, By, = IT®" T, Py 1 = 3.
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E.2.1.1 The child terms when 1 <i <g¢

Consider the first ¢ child terms. In F C(,T ), there are ¢ sign functions, from s; to s,. Hence
for the i** child term, the coefficient of s;, i.e. pgfz will be pulled out to compute the new

offset. The rest coefficients of sign functions will be combined.

For two-state system, consider the any layer except the bottom one. When ¢ = 1 this

is a new parent term. The corresponding layers of the first child term will not contain sign

function component of p, i.e. /)S(Z)H) will be empty. When ¢ > 1, this is an old parent term.

To produce new child terms, the element in pg:) will collapse and pﬁ?&l) should only contain

one element.

Pl = [pff;?) .Gl sgn (B@THT)] C A =@ (E.13)
where
g =pisgn (BI®THT) -t + -+ + ) sgn (Bio ®THT) -ty + pl) 1 sgn (B ®THT) -t
+oe o pl sgn (B @THT) -ty (E.14)

If ¢ =1, ¢ is not valid. Hence PS(T;:;)H) is empty, i.e. PSZ;ZL) = ]

The F' matrix is straightforward.

R R
Fiy=|-——— + ———— | eRUm (E-15)
1ol | —1.-—1
and
Fc((ﬁﬂ) = [81 Sy v 51] € RO (E.16)

E.2.1.2 The child terms when ¢+1<:< N, +1

Because the sign function only goes from s; to s,, the i child term at step (k + 1) when

qg+1<i<N,+ 1 will not change the offset component of p at step k.
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(m) _ (m)
Po(k+1) = Pok (E.17)
and

m m m rx2kt2-m
Fo((k)+1) - [Fo(k ) | Fo(k )] eR™ (E.18)

The sign function component of p involves direction combination.

Py = lisgn (BiOTHT) -ty + -4 plil) sn (B, 0T HT) -1, (E.19)
And
Fc((rgzrl) = [51 S1 v 51] e R (E.20)

E.2.1.3 The child terms when i = N, + 2 (old)
The offset component of p stays the same.
(m) _ (m) (m) _ m m rx2k+2-—m
po(kJrl) — Fok » Fo(k+1) - |:F(Ek: ) ‘ F(Ek: ) eR x (EQ].)

The sign function component of p also remain the same structure. In this case, only the

value of s4, ..., s, change.
(m) _ (m) (m) _ m m gh+2-m
pc(kJrl) = Pek > Fc(k+1) - |:Fc(k ) | Fc(k )} S IR (EQQ)
where the new sign functions are s; = sgn (qu)TV), S9 = sgn (BQ(I)TV), ey Sq = 8GN (Bq<I>T1/).

E.2.2 The Bottom Layer i.e m=k+1

For the bottom layer, we consider two scenarios separately. When 1 < i < N, + 1, the i
child term is a new term. The bottom layer will contain only three elements in p, among
which one is offset, the other two of them are coefficients of sign functions. When ¢ = N, + 2,
the " child term at step k + 1 is an old term. The number of elements in p for the bottom

layer will be N, + 2.
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E.2.2.1 New child terms when 1 <i< N, +1

(k+1) (k+1)
Po(k+1) = [Pz’ |Bi<DTHT” v Pek+1) = [(J:«z, ’V] (E.23)
(k+1) (k+1) _ |51 S1
Fo(k+1) - |:1 _1] ) Fc(k+1) - (E24)
So S
where the sign functions are s; = sgn (HAv), and s; = sgn <—B%‘I};”T). And
gs =Py |By®"H"| -ty + -+ Py | B 1 ®"H"| - t;,
+ Pip1 |Bia® H' | -t + -+ + Pyog1 | By 1@ H'| - ty, (E.25)
E.2.2.2 OlId child terms when i = N, + 2
k+1 k+1
Pl =T Pl = [P1 (By®THT), -+, Py (By.OTHT), 3 (PTHT)} (E.26)
S1 S1
(k+1) (k+1) 52 52
Fohty = [1 —1} v e = (E.27)
| SNe+1 SNe+1 |
where the sign functions are s; = sgn (Bl®TV), S9 = sgn (BQCIDTV), ey SN, = 8GN (BNGCIDTV),

sn.+1 = sgn (I'"v).
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APPENDIX F

Updating R in Each Layer of G Terms for 3-State Case

In this appendix chapter, an explicit, analytic structure for updating R in each layer of G
terms in equation (5.1) for three-state systems is presented. The derivation is based on the
understanding of fundamental properties of the Cauchy estimator that have been elaborated
in main chapters. In following sections, the G layer update will be initialized at the first

update, and then be generalized to step k in a recursive manner.

F.1 1% Measurement Update

The characteristic function of the unconditioned initial states ¢,, (v) is,

Ox, (V) = exp[—aq |erv| — ag|eav| — as |esv|] (F.1)
wheree; =[1 0 0],ea=[0 1 0,andey=[0 0 1J.

At the 1% measurement update, the CF is,

¢Xlzxv>::¥5¥/‘ bx, (21 — Ha )by (—n)e™dn

:—/em{Mmﬂ

€slV
HT

_ZG”l L&) (F.2)

eV

(1% ‘

_7’}'—0[2‘62[—[ ‘ QHT—T]

—Q3 ’63HT|

- 77‘ — |- +jzm] dn
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There are four terms in the sum. The exponential part of these four terms are,

[ e el |
ENw) = HA HA - F.3
1 (y) exp |€1HT| | 1V| | HT| | 2V| €1HT +j21 1HTV ( )
[ esl eV |
51|1 — HA HA — F.4
2 (V) exp ‘6 HT‘ | 1V| ’ HT’ | 3V| eo HT + 72 QHT ( )
[ Q2 esv . esv |
Elw) = HA HAsv| — |- F.5
3 (y) exp ‘6 HT“ 2”’ ’€3HT” 31/‘ Y 63HT +]2163HTV ( )
é’i'l(u) = exp [—aq |e1v| — ag |eav| — a3 |esv|] (F.6)
where A; is produced from the initial directions e;, es, and e3.
0O 1 0 0 0 1 0O 0 O
Ai=1-10 0|, A=1]0 00, 4=1]0 0 1 (F.7)
0O 0 0 -1 0 0 0 -1 0
Consider the G part of the first term.
RO
-t !
27 jz1 + o1 |er HT | + ag |ex HT | sgn (EzzHuT -~ ef}‘IUT) + a3 |esHT | sgn (egsz -~ ele}{vT> + vysgn (0 — GE{VT)
1
_ -8)
jz1 — aq |elHT‘ + asg ‘egHTlsgn (Fj% - Ef;{VT) + a3 |63HT}sgn (f};—T — cf}{'}) + vsgn (0 — %) } s
- !
2 jz1 + a1 ‘elHT{ + az(eaHT)sgn (e HT) sgn (HA1v) + az(esHT )sgn (et HT) sgn (HAzv) + vsgn (7 e:};T>
(F.9)

1
jz1 — aq |51HT‘ + az(eaHT)sgn (elHT) sgn (HA1v) + az(esHT )sgn (elHT) sgn (HAsv) + vsgn (7 e}{VT)
€1

The G part of other terms can also be derived via the same procedure.

1

lll(y)
2 jz1 + as |52HT‘ +ai(erHT)sgn (—eo HT ) sgn (HA1v) + ag(egHT )sgn (e2HT) sgn (HAgv) +’ysgn —

1

egv

jzl—a2|e2HT}+a1(elHT)sgn (—egHT) sgn (HA1v) + az(e3HT )sgn (E2HT) sgn(HA3V)+'ysgn — QHT

1

H

} o

1|1(V)
2m jz1 +as|esHT |+ ay(er HT )sgn (—esHT)

1

sgn (HAgv) 4+ az(eoHT )sgn (—es HT) sgn (HA3v) + ysgn (*%)
es H

egv
E3HT

jz1 — as {egHT} + ai(er HT)sgn (—€3HT) sgn (HAov) 4+ as(eo HT )sgn (—egHT) sgn (HAsv) 4+ vsgn (—
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6l'0) = 5-{ :

" or jz1+ v+ ai(etHT)sgn (e1v) + ag(ea HT ) sgn (eav) + ag(esHT)sgn (ezv)

1
2 — v+ ar(erHT)sgn (eyv) + as(ea HT )sgn (eav) + as(esHT )sgn (esv) }
(F.12)

Rewrite the G parts in the following form.

2m | ja + Ryi(i)  jzi+ Rys(d)

Using the structure provided in Chapter 5, the R’s in each layer of G are expressed as

follows.

F.1.1 The First Term i.e. i =1

P (i =1) = ay e HT|

(F.14)
pg)(i =1) = [ag (egHT) -sgn(e HT),  as (€3HT) -sgn(elHT), *y] (F.15)
S1 51
FRi=1 =1 —1], EP=1=|s s (F.16)
S3 S3
where s1 = sgn(HAv), s2 = sgn(HAsv), s3 = sgn(— ).
F.1.2 The Second Term i.e. i =2
p (i =2) = as |e,HT| (F.17)
,og)(i =2) = [a; (etH") - sgn(—e2H"), a3 (esH”) cot sgn(e2H"), 7] (F.18)
S1 S1
FRli=2=1 ], FPi=2= s s (F.19)
S3 S3

where s, = sgn(HAw), s = sgn(HAs), sy = sgn(—52).

eo HT
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F.1.3 The Third Term i.e. 1 = 3

pgll) (1=3)=as }egHT‘ (F.20)

pg) (i=3)= [ (elHT) -sgn(—esHT), (eQHT) - sgn(—esHT), 7] (F.21)
S1 81

FRi=3=1 <], FP0=3= s s (F.22)
S3 83

where s; = sgn(H Ayv), sy = sgn(H Azv), sy = sgn(—-24).

esHT

F.1.4 The Fourth Term i.e. 1 =4

pi=4) =[], PN =4)=[ar (e:HT), as(exHT), az(esHT)]  (F.23)
S1 S1

FRi=0=1 ], FPi=9= s s (F.24)
S3  S3

where s; = sgn(ejv), so = sgn(eav), s3 = sgn(esv).

F.2 From Step k to Step k+ 1

At step k, assume the general form of the exponential part as follow. The number of

directions is denoted as V..
et — exp (P | Biw| — P [BEPY| - = PR [BREY| + ) (F.25)
The coefficient term G is expressed in equation (5.1). And
Ry

R™ = [pm | pggﬂ] x| |, 1<m<k (F.26)

o

Fy”
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where the sign function component of the matrix F, F C(,Zn ), is expressed as,

Fy = Sl g <N (F.27)

At step k + 1, there will be (k + 1) layers in the G part of the child terms. The top k
layers can be expressed in terms of the layers of its parent term at step k, while the bottom

layer directly comes from the exponential parts.

There are three type of terms at step k. Firstly, new terms at step k have directions
in the form of [HC,, HCy, ..., HCy__1,b], where the 3-dim matrices C; are anti-symmetric.
Secondly, a general old term has the directions as [HC,®T%, HC,®™Y ..., HCy, g ®1% b®T?,
[7eT0-1  TT]. The scalar § indicates how old the term is. For example, if # = 2, this
term is a 2-step old term at step k. Its parent term at step k—1 is an 1-step old term, and its
grandparent term at step £ — 2 is a new term. These forms of new and old terms can cover
all the cases, except the oldest one, which does not contain directions in a HC' format. This
special old term at step & is produced from the 4" term at the 1% measurement update, and
has the directions expressed as [e;®T*~D e, dT+=1) e @Tk=1) TTHT*=2) TT] for k > 2.

This is the third type of terms.

To make it simpler, we do not distinguish the case between new terms and general old
terms in the following derivation. In fact, a new term at step k can be expressed by the
form of a general old term, when letting the index 6 to be zero. Also notice that the last few
directions in a general old term involves '’ which does not appear in the direction in a new
term. We can still merge these two cases together by stating that no inverse of ® are allowed
in the directions; when § — 1 is negative, i.e. § = 0, no I'” will appear in the directions.
After all, the first several directions in the HC' forms are much more important than the last
few directions in the I'!' forms. The HC' directions are pivotal for term combination without

comparison, hence is one of the keys that can enhance the algorithm efficiency.
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F.2.1 The Top k Layer i.e. 1 <m <k

The top k layers at step k + 1 are updated from the layers at step k. The offset part of
p,(gm), ie. p(()zl) will either stay the same or add a new offset to the end of the sequence. For
three-state systems, some child directions that are produced from 2 parent directions will be
aligned onto the HP 1 B®T+D) direction and others are not. It is completely predictable

when the direction combination will happen based on the previous studies on directions.

Here, let us define,

BT BoT eI
B, ®THT B;oTHT | ©1

(H(IDGHBCI)T(GH))QT !

t = sgn <1 (F.28)

and

Bi19T  B;eT o7
Bl ®THT — B;oTHT ) ©1

(HOO-BETOD)eT |7 1 <1< N, (F.29)

t; = sgn

Due to the propagation, By, = I'7®~ 1 Py 1 = 3.

This definition provides the convenience to combine elements in one term. This form has
a meaning only if this parent term at step k£ will produce some repeated child directions at
step k + 1. In addition, in order for #; to be meaningful, the two involved parent directions
should be both in HC' form. Nevertheless, the above expression of ¢; is a superset of what

the algorithm requires and does not effect the validity of the rest parts of the program.

F.2.1.1 The child terms when 1 < <gq

Consider the first ¢ child terms. In F C(,T ), there are ¢ sign functions, from s; to s,. Hence for

the i*" child term, the coefficient of s;, i.e. pgzlz will be pulled out to compute the new offset.

And the offset part of the F' matrix at step k£ + 1 is will be simply replication of F, at step

k added by another one row at the bottom, representing that new offset at step k + 1.

The offset part of p and F' can be directly transferred from two-state case. In fact,
anything in this algorithm that does not involve direction combination are general forms

and are valid for n-state case.
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The offset component of p and F' for the top k layers of the first ¢ child terms at step

k + 1 can be expressed as follows.

Py = (o5, piZfZ-sgn(BﬂDTHT)], FQ = |-—— + ————| (F30)

For system of different dimensions, the sign function component of p and F' are different.

In particular, for three-state systems, we consider three scenarios respectively.

e The 1% scenario is when g = 1. At step k, if there is only one sign function in some
layers of G term, then at step k + 1, the corresponding layers of the first child term
will not contain sign function component of p and F, i.e. P,(;(r;i)ﬂ) and FC({ZL) will be

empty.

e The 2" scenario is when ¢ # 1,47 < N, — 1 — 6 and this term is not the oldest term.
In this case, at step k, there are in total of (Ne — 1 — @) directions in HC form in the
argument of the exponential. Hence consider the i** child terms at step k + 1, the first
(Ne — 2 — 0) directions in the argument of the exponential will be co-aligned onto the
fundamental direction H®¢+YBO@+DT Here we need to consider two sub-scenarios.
If g > Ne—1— 0, it means that in that particular layer of G, there are some parent
directions that are not in the HC form. At step k£ + 1, the child directions will be
H®UO+) BOOHDT and some other HC' directions. The program will need to know
which directions to combine explicitly to form IOEZ::)H) and FC(ZZL). On the contrary, if
q < Ne — 1 — 0, then all the child directions in the corresponding layer of G at step
k+1 are aligned with H®@+) BeO+DT The program will simply combine all of them

and leave the sign function component of p as a scalar.

e The 3" scenario is everything else other than the first two scenarios. In this case, a
term could be either the oldest term, or ¢ # 1,7 > Ne — 1 — . None of the child

directions can be combined.
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The recursion of the sign function component of p and F’ under each of the three scenarios

are presented below.

Scenario 1: ¢ =1
(m) (m)
Pe(k+1) = [ ], Fc(k+1) =[] (F.31)

Scenario 2: ¢ # 1,7 < N, —1— 6, not the oldest term

Sub-Scenario 2.1: ¢ > N, —1—16

(m)

Pehr1) = [ql, pgzgve_gsgn (BNe_gq)THT) , pg;gsgn (Bq(I)THT)} (F.32)
where

¢ :pgﬂsgn (Bi®"H") - t1+ -+ ps,?’z_lsgn (Bi1®"HT) - t;y

+ pgzzﬂsgn (BZ-H(I)THT) i+ pg,zgve_l_esgn (BNe_l_gq)THT) “tye—o_g (F.33)

Sl 51 ... 81
S S ... 8
(m) 2 2 2
Fc(k+1) = ) (F.34)
| Sq—Ne+0+2  Sq—Ne+6+2 " Sq—Ne+0+2 |

where s; through s,_ne+g+2 are the sign function of the first (¢ — Ne+6+2) child directions

multiplied by the variable v.

Sub-Scenario 2.2: ¢ < N, —1—-16

Pl =i sgn (BU®THT) -ty 4 -+ pl)_sgn (Bia®TH") -t

+ pi’,;fzﬂsgn (Bi1® " H") <t + -+ pmsgn (By®"H") -ty (F.35)

FC((TZ—)&-l) = [31 51 e 81] (F.36)

where s; = sgn (H(I)(9+1)B(I)(0+1)TV).
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Scenario 3: not scenario 1 and 2

iy = [Ahsn (BOTHT) ol sgn (B HT).
psgn (Ba® HT), o plsgn (B, HT)|  (F37)
-31 s; - 8 1
Finy = S:Q v (F.38)
o S s

where s; through s,_; are the sign function of the first (¢ — 1) child directions multiplied by

the variable v.

(End of Scenarios.)

F.2.1.2 The child terms when ¢+ 1 <i< N, +1

Because the sign function only goes from s; to s,, the i child term at step (k + 1) when

g+ 1<i<N,+ 1 will not change the offset component of p at step k.

(m) _ m) pa(m) m m
Poter1) = Pok » oy [F(fk) | FC )] (F.39)

Again, the number of parent directions in the HC' form at step k is (N, — 1 — ). Hence
when ¢ < N, — 1 — 6 and this term is not the oldest one, because ¢ < i < N, — 1 — 0, all the
child directions will be co-aligned onto H®@H+VBOE+NIT  The sign function component of p
will collapse to a single scalar. On the contrary, if ¢ > N, — 1 — 6 or this is the oldest term,
no direction combination will occur at step (k+ 1) at this layer of G. The two scenarios are

stated below.

Scenario 1: i < N, — 1 — 6, not the oldest term

pg?z)ﬂ) = gz)lsgn (Bi1®"H") -ty 4+ ,ogzt)zsgn (B,2"HT) - ¢, (F.40)
FC(ZZL) = [31 s1 v 81} (F.41)
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where S1 = sgn (H(I)(9+1)B<I>(9+1)Ty)‘

Scenario 2: otherwise

Pl = [ tsgn (Br@THY) o plitsgn (Bq<I>THT)] (F.42)
-31 sy - 31-

F ) = 8:2 v (F.43)
(8¢ Sq ttt Sq]

where s; through s, are the sign function of the first ¢ child directions multiplied by the

variable v.

(End of Scenarios.)

F.2.1.3 The child terms when i = N, + 2 (old)

Consider the old child term. The offset component is,
(m) _ (m) (m)  _ m m
po(k+1) — Fok > Fo(k+1) - [Fo(k ) | Fo(k )] (F.44)

The sign function component of p also remain the same structure. In this case, only the

value of s1, ..., s, change.
(m) (m) (m) m m
pc(k+1) = Pek Fc(k+1) - |:Fc(k ) | Fc(k )i| (F45)
where the new sign functions are s; = sgn (B1®7v), so = sgn (B.®"v), ..., s, = sgn (B,@v).

F.2.2 The Bottom Layer i.e m =k + 1

For the bottom layer, when 1 < i < N.+1, the ith child term is a new term. When i = N, +2,

the i** child term at step k + 1 is an old term.
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F.2.2.1 New child terms when 1 <i<g—+1

The offset component is straightforward. Define Py_; = 8 and By_,; = [T®~1. Then,

(k+1) _ T 7T (k+1)
po(kH)—Pi\Bz-fI) H'|, Feiny = [1 —1} (F.46)

When this term is not the oldest term, in the meanwhile i < N, — 1 — @, the first
(N.—2—40) child directions at step (k+ 1) will be co-aligned with the fundamental direction
HOUHBO@H+DT  Then the number of sign functions in the bottom layer of G will be
(Ne+1)— (N.—2—0)+1 =0+ 4. If this is the oldest term, or ¢ > N, — 1 — 6, child

directions will not be co-aligned.

Scenario 1: i < N, — 1 — 6, not the oldest term
Pty = [0 Pyoo|Byo® H"|, -+, Py.i|By.a® H'|, 4] (F.47)

where

q="r |B1CI’THT| A+ Py Bi—l(I)THT‘ iy

+ Py | B ®"HT| -t + -+ 4 Pn,—g-1 | Bn,—0-1®"H" | - tn,—0—2 (F.48)
s s

F ) = . (F.49)
| S6+4  S6+4 |

where s; through sy, 4 are the sign function of the first 8 4+ 4 child directions multiplied by

the variable v.

Scenario 2: otherwise

A = [P |71

;o P ‘Bz‘—l@THT}, Py |Big1 @ HT

9

©, Py By ®THT|, 4] (F.50)
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51 S1

S S
Fm o= ? (F.51)

| SNe+1 SNe+1 |
where s; through sy, ;1 are the sign function of the first N, + 1 child directions multiplied by

the variable v. In particular, these sign functions are s; = sgn (BZ<I>TV), for1 <l < N,+1.

(End of Scenarios.)

F.2.2.2 Old child terms when i = N, + 2

The offset component is,
(k+1) (k+1)
po(k+1) =7 Fo(k+1) - |:1 —]_i| (F52)

And the sign function component is,

ol = [P (BiOTHT), o, Py (By.9THT),5(07HT)] (F.53)
_ . . }
Fimd = S:2 ” (F.54)
[ SNe+1 SNe+1 |
where the sign functions are s; = sgn (B1®7v), s3 = sgn (Bs®™v), ..., sy, = sgn (By, ®"v),

sn.+1 = sgn (I'"v).

Till now, the recursive structure for R in each layer of G terms for three-state systems is

complete.
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