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Abstract 

Compartmentalized protein recruitment is a fundamental feature of signal transduction. 

Accordingly, the cell cortex is a primary site of signaling supported by the recruitment of signal 

regulators to the plasma membrane. Recent emergence of optogenetic strategies designed to 

control localized protein recruitment has offered valuable toolsets for investigating 

spatiotemporal dynamics of associated signaling mechanisms. However, determining proper 

recruitment parameters is important for optimizing synthetic control. In this chapter, we describe 

a stepwise process for building linear differential equation models that characterize the kinetics 

and spatial distribution of optogenetic protein recruitment to the plasma membrane. Specifically, 

we outline how to construct 1) ordinary differential equations that capture the kinetics, efficiency, 

and magnitude of recruitment and 2) partial differential equations that model spatial recruitment 

dynamics and diffusion. Additionally, we explore how these models can be used to evaluate the 

overall system performance and how component parameters can be tuned to optimize synthetic 

recruitment. 
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1 Introduction 

 The cellular cortex is a primary site of signaling where dynamic protein and lipid 

scaffolds guide signaling networks to control essential cellular behaviors (1). Signal processing 

at the plasma membrane occurs through multiple classes of mechanisms including: local 



modification of cortical proteins, creation of lipid subdomains that directly recruit protein 

effectors, and activation of scaffold proteins that promote signal complex formation. In many 

cases, these processes can be hijacked by controlling the localization of specific pathway 

components. As a result, a number of engineered strategies that mimic primary modes of 

protein recruitment to the plasma membrane have emerged as complementary toolsets in 

synthetic biology for investigating compartmentalized dynamics of signal transduction (Figure 1).  

Engineered control of protein localization typically uses chemical(2–5) and/or light-

inducible(6–8) strategies. In general, these tools rely on tagging a target signal regulator and its 

binding partner(s) separately with genetically encoded affinity domains whose associations 

require exogenous activation. These approaches can also be adapted to locally recruit 

constitutively active regulators to cellular compartments of interest that house important 

effectors (6). Accordingly, exogenous recruitment of target proteins to the cell cortex can be 

achieved by anchoring one dimerization component to the inner leaflet of the plasma 

membrane. This strategy has been employed to selectively activate and recruit Rho GTPases 

(9, 10), control spindle positioning (11), investigate lipid regulation of ion channels (12), and 

decipher actin mediated Phosphoinositide 3-kinase feedback during cell polarization (13, 14).  In 

addition to activating downstream signaling, synthetic recruitment strategies have also been 

used for inhibitory roles by sequestering protein regulators away from their signaling niches 

(15). The increasing diversity of synthetic strategies for protein recruitment and control have 

immense potential for elucidating complex signaling networks. However, these systems are built 

from biochemical components bound by the laws of chemistry and physics. Often their 

behaviors in real cells do not match the cartoon models that we draw based on their design, and 

system responses can be variable from cell to cell and from day to day. Computational methods 

provide a natural complement for these approaches by assessing how component features can 

be tuned to elicit desired dynamics. When component parameters are known, or can be 

empirically estimated, mathematical models can become powerful tools that offer predictability 



and insights into how biochemical and physical constraints affect system performance. They 

can be particularly useful for characterizing the kinetics and spatial patterns of component 

outputs after compartmentalized recruitment.  

Here, we describe a stepwise approach to construct and apply mathematical models to 

characterize the kinetics and spatial distribution of protein recruitment (7). We describe the 

construction of a system of ordinary differential equations (ODEs) to analyze the temporal 

dynamics of protein recruitment and partial differential equations (PDEs) that incorporate spatial 

patterns. Such ODE/PDE models have been useful in profiling membrane associated processes 

including EGF receptor mediated MAPK signaling (16), optogenetic membrane anchoring (7), 

signal transmission from compartmentalized Ras GTPase nanoclusters (17), and membrane 

associated Rho GTPase cycling (18–20). To illustrate this approach, we specifically focus on a 

two-component ODE model that encompasses the dynamics of local recruitment of a protein 

species to the plasma membrane. We also derive an associated PDE model that incorporates 

spatial conditions, symmetry features, and the effect of diffusion on conferring spatial 

association patterns. We describe how to compute these models using MATLAB; however, 

similar computational strategies can be implemented using other programming languages.  

 

2 Materials 

Personal Computer;  

A programming platform such as MATLAB equipped with algorithmic solvers for systems of 

ODEs and/or 1-D PDEs 

 

 

 



3 Methods 

3.1: Modeling Recruitment Kinetics and Endpoint Dynamics 

  A key challenge in designing synthetic recruitment systems is achieving high levels of 

stimulus-induced responses with low basal recruitment. In general, the rate of membrane 

recruitment and the rate of dissociation are critical parameters that need to be optimized for this 

goal. We recently generated models to explore these features for a popular optogenetic 

approach, the Improved Light Induced Dimerization (iLID) system (7). iLID is an engineered 

protein containing a modified LOV2 domain that, in response to light, exposes a peptide from E. 

coli SsrA capable of binding with high affinity to a partner SspB fusion protein (Figure 2A) (6). 

By anchoring iLID to the plasma membrane, this system can be used to concentrate target 

proteins of interest to local membrane sites in response to blue light exposure. In addition to 

intrinsic features that control component binding, including component conformation dynamics 

and binding specifications of the SsrA peptide and SspB, recruitment performance of iLID 

depends on extrinsic variables, such as component concentrations and compartmental 

anchoring, that often require empirical optimization by the user. However, in silico approaches 

can be useful for identifying parameters that help guide recruitment optimization. 

To predict the behavior of such a system, we can construct ODE models to identify 

expression regimes of component species for which membrane recruitment is specific and 

efficient. Our simple model contains two protein species where a substrate (S) concentrates to 

the plasma membrane upon activation of the recruiting receptor species (R) (Figure 2B). We 

consider the [iLID] and [SspB] components as representations of [R] and [S], respectively, but a 

structurally identical model can also be used to describe other optogenetic approaches or, 

alternatively, simple systems of localized protein recruitment. In this model, R is bistable, it can 

exist either in an inactive state with low affinity for substrate S or as a high affinity active state, 



R* (Figure 2B). It is critical to consider binding for both states of R, as the basal binding of S to 

inactive R can be a key limitation of recruitment systems at high component concentrations.  

Here we describe how to outline the primary states of the system and build an ODE 

model that captures the kinetics of protein recruitment. After defining component species, 

interaction states, and reaction events, initial conditions prior to receptor activation can be 

determined. 

1. Define the molecular components of the system, systematically determine each state of the 

system and each possible transition between states. For our model, this corresponds to the 

diagram in Figure 2B. 

 

2. Assign variables to the protein species and component states involved in recruitment. Be 

sure to have a variable for every molecular species in the model: 

Protein Species 

R = Free Inactive Receptor 

R* = Free Active Receptor 

S = Free Substrate 

RS = Bound Inactive Receptor-Substrate 

R*S = Bound Active Receptor -Substrate 

 

3. Write chemical equations for each reaction in the model, including component interactions 

and transitions between protein states. We assume that receptor activation occurs in 

response to the experimental stimulation with a single rate that is equal for all binding states 

of the receptor. For this example, receptor activation rate, γ, will be nonzero during 

stimulation and zero otherwise: 

Interaction Events 



R + S ⇌ RS; Forward Rate = RateInactive,Binding ; Reverse Rate = RateInactive,Release 

R* + S ⇌ R*S; Forward Rate = RateActive,Binding ; Reverse Rate = RateActive,Release 

Receptor Activation Events 

R⇌R*; Forward Rate = γ; Reverse Rate = RateRev 

RS⇌R*S; Forward Rate = γ; Reverse Rate = RateRev 

 

4. Define reaction constants. We can define the rate constant numerically using estimates 

based on published measurements. In many cases, the binding affinities (Kd) may be 

available, but the forward and reverse binding rates may not be. In this case, we relate both 

rates to the Kd, and estimate the off-rate using published kinetic data or by calibrating the 

model to empirical measurements (Note 1).  

𝐾𝐾𝑑𝑑,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵
 

We will treat the forward rate of receptor activation (γ) as an experimental input into the 

model, but the associated reverse rate can likely be empirically obtained or estimated from 

observations made in prior literature. 

 

5. Define mathematical versions of the rate equations for each species. Construct one 

differential equation for each species in the model (Note 2). To simulate receptor activation, 

the receptor activation term, γ input, will depend on the external input at a given time. For iLID 

systems γ input is the temporal profile of blue light irradiation: 

(1) 
𝑑𝑑[𝑅𝑅∗]
𝑑𝑑𝑅𝑅  = 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅] + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅∗𝑆𝑆]  −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅∗] ∗ [𝑆𝑆]  −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅∗] 

(2) 
𝑑𝑑[𝑅𝑅∗𝑆𝑆]
𝑑𝑑𝑅𝑅  = 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆] + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅∗] ∗ [𝑆𝑆] −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅∗𝑆𝑆] −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅∗𝑆𝑆] 

(3) 
𝑑𝑑[𝑅𝑅]
𝑑𝑑𝑅𝑅

 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆] + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅∗] − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅] ∗ [𝑆𝑆]  −  𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅] 



(4) 
𝑑𝑑[𝑅𝑅𝑆𝑆]
𝑑𝑑𝑅𝑅  = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅] ∗ [𝑆𝑆] + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅∗𝑆𝑆] − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆]− 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆] 

(5) 
𝑑𝑑[𝑆𝑆]
𝑑𝑑𝑅𝑅

 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆]  + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅∗𝑆𝑆]  −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅] ∗ [𝑆𝑆]           

− 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅∗] ∗ [𝑆𝑆] 

 

6. Define the initial state of the system. Prior to stimulation, we assume that the receptor is 

entirely inactive, and the system is in steady state. Therefore, each reaction species can be 

defined using known measurements. At this initial state, variables [R]total and [S]total are 

defined to be constants representing the total concentration of the two proteins. Additionally, 

conservation of mass can be used to relate free [R] and [S] to the amount of complexed 

[RS]: 

[𝑅𝑅∗] = 0; 

[𝑅𝑅∗𝑆𝑆] = 0; 

[𝑅𝑅] = [𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅𝑆𝑆];  

[𝑆𝑆] = [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅𝑆𝑆]; 

 

(6) 
𝑑𝑑[𝑅𝑅𝑆𝑆]
𝑑𝑑𝑅𝑅

=  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅] ∗ [𝑆𝑆] −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆] 

 

7. Compute the concentration of RS at steady state by setting the rate d[RS]/dt (Eq. 6) to zero: 

(7) 0 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ [𝑅𝑅] ∗ [𝑆𝑆] −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ [𝑅𝑅𝑆𝑆]    (𝐴𝐴𝑅𝑅 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑠𝑠 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 

(8) 0 = ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅𝑆𝑆]) ∗ ([𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅𝑆𝑆]) −  𝐾𝐾𝑑𝑑 ∗ [𝑅𝑅𝑆𝑆] 

(9) 0 = [𝑅𝑅𝑆𝑆]2 + [𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 ∗ [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 −  [𝑅𝑅𝑆𝑆] ∗ [𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅𝑆𝑆] ∗ [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 −  𝐾𝐾𝑑𝑑 ∗ [𝑅𝑅𝑆𝑆] 

(10) 0 = [𝑅𝑅𝑆𝑆]2 − ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅  + [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 +  𝐾𝐾𝑑𝑑) ∗ [𝑅𝑅𝑆𝑆] + ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 ∗ [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅) 

(11) [𝑅𝑅𝑆𝑆] =
([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅  + [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 + 𝐾𝐾𝑑𝑑) ± �([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅  + [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 + 𝐾𝐾𝑑𝑑)2 − 4 ∗ ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 ∗ [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅)

2  



(11′) [𝑅𝑅𝑆𝑆] =
𝑏𝑏 − �𝑏𝑏2 − 4 ∗ ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 ∗ [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅)

2  ;  𝑏𝑏 =  [𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅  + [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 + 𝐾𝐾𝑑𝑑   

 

8. Now that rate equations for each reaction species and initial conditions are defined, reaction 

kinetics can be computed and the ODEs solved algorithmically. We have customarily used 

the MATLAB ODE solver function, ode45, for this; however, similar algorithmic solvers of 

ODEs can be found in many other programming languages (Note 3). 

 

3.2: Analyzing Efficiency of Recruitment 

This approach can be customized to simulate kinetic dynamics of a variety of synthetic 

recruitment strategies by using different choices of component concentrations, dissociation 

constants, and activation/inactivation rates of the receptor (Note 4). Here we will briefly display 

example model performance measures using values determined for iLID-mediated recruitment. 

As a general note, we suggest simulating the model for a few choices of concentrations first to 

verify that the output looks reasonable and to gain an intuition for the model.  

 

1. The computed system of ODEs can be evaluated by analyzing notable features of model 

outputs.  For example, basal recruitment, maximum recruitment, fold recruitment, and 

dissociation each designate performance measures that help guide optimization strategies 

for efficient synthetic recruitment (Figure 3). Basal recruitment can be computed from the 

initial steady state of the model, while the other measures can be determined from the 

simulated model output (Figure 4A). Max absolute recruitment can be determined from the 

steady state solution during extended system input, similar to how initial conditions were 

calculated in the previous section (Figure 4D). Fold recruitment can be calculated using 

computed values for basal and max recruitment (Figure 4G).  Kinetic parameters such as t1/2 

of dissociation are computed from temporal profiles for simulations involving transient 



system input (Figure 4J). After analyzing the model across systematic ranges of 

concentrations for each component, heatmap plots can be used to visualize how each 

performance measure depends on component concentrations (Figure 4B, 4E, 4H, 4K). Each 

pixel in the heatmap represents outputs from model simulations using specific combinations 

of parameters (Figure 4C, 4F, 4I, 4L; Top) (Note 5). Lastly, analogous plots can also be 

generated to visualize how performance depends on additional variables such as rate 

constants and component binding affinity characteristics.      

 

2. Model output interpretation: Ideally, performance measures generated from model 

simulations can generally predict how recruitment parameters and component 

characteristics influence recruitment efficiency. For example, our system of ODEs generally 

predicts that both basal and maximum membrane recruitment scale positively with 

increasing component concentrations (Figure 4C, 4F; Bottom). While this trade-off limits 

system performance, the simulation results can be used to understand how fold recruitment 

scales with component concentrations (Figure 4I; Bottom) and identify ranges of component 

concentrations where system performance is most efficient. By defining threshold values for 

parameters of interest, an ideal concentration space can be determined where system 

performance exceeds each threshold. These results can be used to guide experimental 

design and troubleshoot parameters where synthetic recruitment is not performing as 

desired. Furthermore, the model can make less intuitive predictions. For example, our iLID 

ODE model predicted that global iLID-SspB disassociation rates decrease with increasing 

iLID concentration(7) (Figure 4L; Bottom). This effect arises from newly dissociated SspB 

molecules being more likely to re-bind at the membrane if surrounding levels of unbound 

iLID are high. 

 

 



3.3: Modeling Spatial Dynamics of Recruitment 

Models generated from ODEs typically capture dynamics across a single dimension and 

are therefore suitable for determining the temporal evolution of reaction systems. However, in 

addition to kinetic features, cell signaling mechanisms often rely on spatially heterogeneous 

patterns. For protein interactions at the plasma membrane, cytoplasmic diffusion near the cell 

cortex and lateral diffusion along the membrane are important factors that influence spatial 

distributions of recruitment events. Additionally, functional outputs of biological signaling are 

often determined by spatially asymmetric propagation of signaling circuitry. Partial differential 

equations (PDEs) follow system dynamics across multiple independent variables and are useful 

for capturing how system components change in space and time.  Here we will generate a PDE 

model that illustrates how diffusion affects the spatial distribution of recruitment over time. 

Towards this goal, consider the general diffusion equation for temporal change in concentration 

of a chemical species over a 1-dimensional spatial coordinate: 

(12) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅

 =  𝐷𝐷 
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

 

where 𝜕𝜕(𝑥𝑥, 𝑅𝑅) represents a concentration value of species 𝜕𝜕 at position 𝑥𝑥 and time 𝑅𝑅. Additionally, 

𝜕𝜕𝑖𝑖
𝜕𝜕𝑖𝑖

 represents the change of concentration of u over time, 𝜕𝜕
2𝑖𝑖

𝜕𝜕𝑥𝑥2
 describes the profile of 

concentration across the spatial coordinate 𝑥𝑥, and D is the diffusion coefficient within the 

system. 

We can build our PDE model based on our previous ODE model through the following steps: 

 

1. Determine the spatial domain for the model. Using a 1-dimensional domain simplifies 

computation and the interpretation of model results. We can modify symmetry to model 

higher dimensional geometries using this simple domain. For analyzing the spatial spread of 

proteins on a 2-dimensional plasma membrane, we define our spatial coordinate to be the 



radial distance along the membrane from the target recruitment site. We use symmetry 

conditions in the model, to handle the increasing area associated with larger radial 

distances. This is accomplished in MATLAB’s pdepe PDE solver by setting the symmetry 

parameter m to 1 for “cylindrical” symmetry (Note 6). 

 

2. Define the diffusion coefficients. The diffusion coefficients are the only additional parameters 

for this model (Note 7). 

 

3. Define the molecular species within the variable u. Importantly, 𝜕𝜕(𝑥𝑥, 𝑅𝑅) can represent a single 

concentration species across the spatial coordinate 𝑥𝑥 and time coordinate 𝑅𝑅; or, for signaling 

circuits that involve multiple reaction species, a matrix that incorporates all relevant species 

within the system: 

(13) 𝜕𝜕(𝑥𝑥, 𝑅𝑅) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕1
𝜕𝜕2
𝜕𝜕3
𝜕𝜕4
𝜕𝜕5⎦
⎥
⎥
⎥
⎤

; 

where 𝜕𝜕1 = [𝑅𝑅], 𝜕𝜕2 = [𝑅𝑅∗], 𝜕𝜕3 = [𝑅𝑅𝑆𝑆], 𝜕𝜕4 = [𝑅𝑅∗𝑆𝑆], 𝜕𝜕5 = [𝑆𝑆]. 

For our purposes, we interpret the units for the spatial dimension to be in microns since this 

is a relevant scale for a cell.  

 

4. To build a PDE, spatial boundary conditions must also be defined. We typically use the 

Neumann condition (Note 8), specifying that the spatial derivative is zero at the boundaries: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= 0;  𝑅𝑅𝑅𝑅 𝑥𝑥 = 0 𝑅𝑅𝑎𝑎𝑑𝑑 𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑖𝑖𝑥𝑥 

 

5. In contrast to the ODE example, we will now assume that this system begins with a pre-

established profile of active receptors. This approach is useful for analyzing the spread of 



recruited components after an initial standardized input. Therefore, initial conditions can be 

adapted as follows: 

𝜕𝜕1 = 0;  

𝜕𝜕2 = ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅∗𝑆𝑆])  ∗  𝑟𝑟(𝑥𝑥) ; 

𝜕𝜕3 = 0; 

𝜕𝜕4 = �
𝑏𝑏 − �𝑏𝑏2 − 4 ∗ ([𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 ∗ [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅)

2
� ∗  𝑟𝑟(𝑥𝑥),   𝑤𝑤ℎ𝑅𝑅𝑟𝑟𝑅𝑅 𝑏𝑏 =  [𝑅𝑅]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅  + [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 +  𝐾𝐾𝑑𝑑; 

𝜕𝜕5 = [𝑆𝑆]𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅 − [𝑅𝑅 ∗ 𝑆𝑆] 

where 𝑟𝑟(𝑥𝑥) is a scaling function that determines the spatial distribution of receptor activation. 

For example, in optogenetic systems such as iLID, after global light activation, 𝑟𝑟(𝑥𝑥) can be 

set to a gaussian profile peaking at x=0, with a width determined by the resolution of focal 

stimulation for an optical microscope system. 

 

6. For algorithmic evaluation of PDE models, programmatic solvers often require representing 

PDEs in standard organizational forms. In MATLAB a standard form for 1D PDE solvers is: 

(14) 𝑐𝑐 �𝑥𝑥, 𝑅𝑅, 𝜕𝜕,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅

 =  𝑥𝑥−𝑚𝑚
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝑥𝑥𝑚𝑚 𝑓𝑓 �𝑥𝑥, 𝑅𝑅,𝜕𝜕,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�� + 𝑠𝑠 �𝑥𝑥, 𝑅𝑅,𝜕𝜕,

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 

where 𝑓𝑓 �𝑥𝑥, 𝑅𝑅, 𝜕𝜕, 𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥

 � is a term for the temporal and spatial flux of the species u, 𝑠𝑠 �𝑥𝑥, 𝑅𝑅,𝜕𝜕, 𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥
� 

is a source term or reaction term that, in this case, will incorporate binding and chemical 

reactions that generate or deplete species within u, and 𝑐𝑐 �𝑥𝑥, 𝑅𝑅,𝜕𝜕, 𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥

 � represents a balance 

coefficient. m is the symmetry constant that determines the type of spatial symmetry in the 

system; m = 0, 1, or 2 represents cartesian (no symmetry), cylindrical symmetry (azimuthal), 

or spherical symmetry (azimuthal and zenith) coordinates respectively. 

 



7. Referring to the initial equation for diffusion (eq. 12), with an addition of the reaction term, its 

standard form can be rewritten as: 

(15) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅

 =  
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝐷𝐷 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� + 𝑠𝑠 �𝜕𝜕(𝑥𝑥, 𝑅𝑅),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 

      where: 

𝑐𝑐 �𝑥𝑥, 𝑅𝑅,𝜕𝜕, 𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥

 �  =  1;     

𝑓𝑓 �𝑥𝑥, 𝑅𝑅,𝜕𝜕,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�  =  𝐷𝐷 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 

 

In this system, the source term s corresponds to the same set of terms as the right-hand 

side of the equations from our ODEs generated previously (eq. 1-5). Collectively, these 

equations can be written in matrix form as 𝑠𝑠 �𝜕𝜕(𝑥𝑥, 𝑅𝑅), 𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥
� (Note 9): 

⎣
⎢
⎢
⎢
⎡
𝑠𝑠1
𝑠𝑠2
𝑠𝑠3
𝑠𝑠4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

 =  

⎣
⎢
⎢
⎢
⎢
⎡

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ 𝜕𝜕3 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ 𝜕𝜕2 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ 𝜕𝜕1 ∗ 𝜕𝜕5
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ 𝜕𝜕4  −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ 𝜕𝜕2 ∗ 𝜕𝜕5 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ 𝜕𝜕2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ 𝜕𝜕1 ∗ 𝜕𝜕5 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ 𝜕𝜕4 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ 𝜕𝜕3
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ 𝜕𝜕2 ∗ 𝜕𝜕5 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ 𝜕𝜕4 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∗ 𝜕𝜕4

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ 𝜕𝜕3  +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ∗ 𝜕𝜕4 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ 𝜕𝜕1 ∗ 𝜕𝜕5  −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐵𝐵 ∗ 𝜕𝜕2 ∗ 𝜕𝜕5⎦
⎥
⎥
⎥
⎥
⎤

 

 

8. At this stage, with the initial and boundary conditions set, the PDEs can be integrated using 

programmatic solvers such as pdepe function in MATLAB (Note 10).  

 

3.4: Analyzing Recruitment and Diffusional Spread 

 

1. Just as with the ODE model, measures of system performance should be computed. While 

basal recruitment can be computed similarly, maximal recruitment will be different since 

PDE models simulate recruitment in a local subregion of the plasma membrane that evolves 

over time (Figure 5A). In this case, both dissociation and diffusional spread can reduce the 



local accumulation of the recruited protein. For this reason, maximal recruitment should be 

determined by following simulation outputs over time. Additionally, the dependence of 

recruitment on the concentrations of R and S will likely scale differently from what was 

previously produced in the ODE model. 

 

2. Compared to ODE simulations, the PDE model naturally presents additional measures of 

system performance. Most notably, the spread of recruitment regions can be calculated from 

the spatial recruitment profiles at given component concentrations and diffusion 

characteristics (Figure 5A). 

 

3. As with the ODE model, thresholds for the PDE system can be set for each measure of 

system performance. Regions in component concentration spaces that exhibit acceptable 

recruitment performances can be identified and subsequently used to inform how synthetic 

systems can be optimized at the bench (Figure 5B, 5D, 5F). For example, we have used 

similarly structured PDE models to optimize iLID recruitment approaches. These PDE 

models profiled how customizing plasma membrane anchoring strategies that confer 

differential membrane diffusion properties to iLID receptors influence spatiotemporal SspB 

recruitment (Note 11,12). PDE modeling of iLID recruitment offered interesting predictions. 

Constraining receptor diffusion at the membrane by increasing membrane anchor size 

resulted in significant changes in substrate recruitment levels. This model predicted that 

decreasing receptor diffusion promoted increased maximum recruitment, fold recruitment, 

and lengthened evolution time to maximal recruitment of substrate across wide ranges of 

receptor and substrate concentrations (Figure 5C, 5E, 5G).  

 

 Altogether, two-component ODE and PDE models reliably captures fundamental features 

of protein recruitment dynamics. With proper reaction constants and measures for component 



features in hand, modeling approaches like these can be implemented in a straightforward 

manner. Additionally, these analytical approaches offer powerful predictive strength for synthetic 

recruitment strategies and can provide unique insights into efficient manipulation of 

compartmentalized signaling using synthetic tools. 

 

 

4 Notes 

1. To estimate the kinetic binding and dissociation rates, one can make some simplifying 

assumptions. In many cases, binding affinities are determined largely by the dissociation 

rates. For simplicity, we can assume that the association rates are equal for inactive and 

active forms of R. We then can estimate or calibrate the association and dissociation rates 

from kinetic experiments measuring the half-time for association after a strong light stimulus. 

Importantly, association rates are likely to be different for different optogenetic systems. For 

example, the “magnets” system was designed to have a more rapid association rate (21, 

22). 

 

2. It is essential that as differential equations are built, balance is maintained according to the 

law of conservation of mass. This can be checked by making sure that, for each equation, 

all events that either produce or consume the target component species are represented. 

 

3. In many cases, γinput will be a step function. These are typically not handled well by 

numerical integration algorithms such as ode45. A handy solution to this problem is to 

perform piecewise numerical integration. One can separately perform numerical integration 

for each time period in which γinput is constant, using the output of each round of numerical 

integration as the initial condition for the next. For example, a simple experiment where γinput 



is 1 for the first and second round and then zero thereafter would require two separate 

rounds of numerical integration with the second using the conditions produced by the first 

round.  

 

4. Accurate estimations for component concentrations, dissociation constants, and reaction 

rates can improve predictive ability of ODE/PDE models. For modeling iLID recruitment we 

use an assortment of values either derived empirically or approximated using measurements 

from similar mechanisms. The following parameter values have been useful for modeling 

iLID dynamics (with associated references): 

𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇 [𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷] = 0.1𝜇𝜇𝜇𝜇 

𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇 [𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆] = 0.5𝜇𝜇𝜇𝜇 

𝐾𝐾𝑑𝑑,𝐿𝐿𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 130𝑎𝑎𝜇𝜇  (6) 

𝐾𝐾𝑑𝑑,𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 4.7𝜇𝜇𝜇𝜇  (6) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝐿𝐿𝐼𝐼𝐷𝐷 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑅𝑅𝑖𝑖𝑅𝑅 = 0.02 𝑠𝑠−1  (21) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖,𝐿𝐿𝑖𝑖𝑖𝑖 = 0.5 𝑠𝑠−1  (21) 

 

5. Model outputs may evolve over time, therefore it is important to verify that simulations are 

run over long enough time periods to determine the correct value. 

 

6. While cylindrical symmetry is useful for simulating spot recruitment and diffusion along a flat 

membrane interface, in other cases it may be useful to model diffusion of a cytoplasmic 

component towards or away from the membrane in a spherical cell. For the latter, the 

symmetry parameter m, in MATLAB’s pdepe PDE solver, can be set to 2 for designating 

spherical (azimuthal and zenith) symmetry coordinates. 

 



7. Diffusion coefficients can be determined empirically, for instance through fluorescence 

recovery after photobleaching experiments. As a rough guide, diffusion coefficients may be 

around 10-30 µm/s2 for cytoplasmic proteins, 0.5-1 µm/s2 for lipid-anchored proteins, and 

0.03-0.1 µm/s2 for transmembrane proteins. 

 

8. The Neumann boundary condition specifies that the spatial derivative of a system is 

constant at its boundaries. By setting the derivative to zero at each boundary, the resulting 

condition can be thought of as a “reflecting” boundary which maintains the flux of model 

components within the spatial barriers of the system. Therefore, under this condition, there 

is no passage of molecular species in or out of the system through the boundary which 

helps ensure conservation of mass. 

 

9. Note that the source term s for the PDEs encompasses kinetic parameters and interaction 

states of component species. To also incorporate light input, 𝑠𝑠 �𝑥𝑥, 𝑅𝑅,𝜕𝜕, 𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥
� can include a γ input 

term that designates a temporal profile of blue light activation such as in equation (1-5). 

 

10. Note that while PDE solvers in other programming languages may have similar 

requirements for initial conditions, boundary conditions, source, and flux terms, they may 

require different organizational formats for proper implementation.  

 

11. For this example, we implemented a PDE model of iLID diffusion where membrane diffusion 

coefficients for iLID-CAAX (short anchor) and Stargazin-iLID (long multipass anchor) were 

estimated to be 1 µm2/s and 0.1 µm2/s, respectively, based on observations from previous 

studies (23, 24).  



12. Custom MATLAB code for implementing both ODE and PDE models designed for iLID 

recruitment can be found at: 

https://github.com/srcollins/Code_for_iLID_Recruitment_from_Springer-Protocol-Chapter-

2022 
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Figure 1: Signaling mechanisms for plasma membrane recruitment with example design 

principles of associated optogenetic systems. 

A) Left, Cortical protein recruitment by receptor activation and clustering. Right, Synthetic 

activation driven by CRY2 optogenetic receptor clustering. 

B) Left, Direct associations between plasma membrane lipid domains and lipid binding proteins. 

Right, Local protein recruitment to plasma membrane domains after synthetic enrichment of 

signaling lipids using iLID optogenetic recruitment of a lipid modifying enzyme. 

C) Left, Signaling complex formation downstream of an activated receptor. Right, Synthetic 

production of signaling complexes through direct stimulation of optogenetic opsin receptors. 

 

Figure 2: Schematic diagrams of iLID recruitment and component interaction states. 

A) Diagram illustrating idealized iLID and SspB interactions before and after light activation. 

B) Schematic diagram depicting possible activation states and interaction events during 

membrane recruitment of substrate S by receptor R, including “dark state binding” in which the 

substrate binds to an inactive membrane receptor.    

 

Figure 3: Representative plot of recruitment kinetics after receptor activation. 

Depiction of an example kinetic profile of recruitment after temporary receptor stimulation. 

Illustrated here are measures of recruitment dynamics captured in ODE/PDE models including: 

basal recruitment, max recruitment, fold enrichment, and t1/2 of dissociation. 

 

Figure 4: ODE modeling captures important features of recruitment dynamics across 

broad ranges of component expression regimes. 

A,D,G,J) Example plot profiles of recruitment kinetics each illustrating a measurement feature 

captured by ODE modeling. 



B,E,H,K) Heatmap plots generated from ODE models displaying individual features of 

recruitment across four orders of magnitude of [R] and [S] concentrations. In these examples, 

values represent real recruitment measures predicted by ODE models constructed for iLID-

SspB interactions. Red bars designate isolated concentration regions portrayed in C,FI, and L. 

C,F,I,L) Top, Heat map insets of specific regions extracted from B,E,H, and K (red bars) 

showing differential dynamics between two different receptor concentrations. Bottom, Line trace 

format of heat map insets comparing recruitment features at two different receptor 

concentrations. 

 

Figure 5: PDE modeling captures the effects of receptor diffusion on spatial spread and 

recruitment dynamics across broad ranges of component expression levels. 

A) Time lapse plots displaying spatial spread of recruitment predicted by PDE modeling. 

Additionally, important measures of recruitment are depicted including: max recruitment, 

basal recruitment, time to max recruitment, and recruitment spread. 

B,D,F) Heat map plots generated from PDE models displaying the effect of receptor diffusion on 

individual features of recruitment across ranges of [R] and [S] concentrations. In these 

examples, values represent real recruitment measures predicted by PDE simulations of 

iLID-SspB interactions with two different membrane anchors (see Note 10). Red bars 

designate isolated concentration regions portrayed in C, E, and G. 

C,E,G) Line traces of heat map insets (red bars) from B, D, and F comparing the effect of 

changing receptor diffusion on individual recruitment features across a range of receptor 

concentrations. 
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