
UC Berkeley
UC Berkeley Previously Published Works

Title
Estimating fluid-induced stress change from observed deformation

Permalink
https://escholarship.org/uc/item/15n8126n

Journal
Geophysical Journal International, 208(3)

ISSN
0956-540X

Authors
Vasco, DW
Harness, Paul
Pride, Steve
et al.

Publication Date
2017

DOI
10.1093/gji/ggw472
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15n8126n
https://escholarship.org/uc/item/15n8126n#author
https://escholarship.org
http://www.cdlib.org/


Geophysical Journal International
Geophys. J. Int. (2017) doi: 10.1093/gji/ggw472
Advance Access publication 2016 December 19
GJI Marine geosciences and applied geophysics

Estimating fluid-induced stress change from observed deformation

D.W. Vasco,1 Paul Harness,2 Steve Pride1 and Mike Hoversten3

1 Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA. E-mail: dwvasco@lbl.gov
2Chevron North America Exploration and Production, Bakersfield, CA 93311, USA
3Chevron Energy Technology Company, San Ramon, CA 94583, USA

Accepted 2016 December 16. Received 2016 December 13; in original form 2016 July 9

S U M M A R Y
Observed deformation is sensitive to a changing stress field within the Earth. However, there
are several impediments to a direct inversion of geodetic measurements for changes in stress.
Estimating six independent components of stress change from a smaller number of displace-
ment or strain components is inherently non-unique. The reliance upon surface measurements
leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displace-
ment field with distance from a source. We adopt a technique suited to the estimation of stress
changes due to the injection and/or withdrawal of fluids at depth. In this approach the surface
displacement data provides an estimate of the volume change responsible for the deformation,
rather than stress changes themselves. The inversion for volume change is constrained by the
fluid fluxes into and out of the reservoir. The distribution of volume change is used to cal-
culate the displacements in the region above the reservoir. Estimates of stress change follow
from differentiating the displacement field in conjunction with a geomechanical model of
the overburden. We apply the technique to Interferometric Synthetic Aperture Radar (InSAR)
observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An
analysis of the InSAR range changes reveals that the stress field in the overburden varies
rapidly both in space and in time. The inferred stress variations are found to be compatible
with the documented failure of a well in the field.

Key words: Inverse theory; Satellite geodesy; Transient deformation; Radar interferometry;
Geomechanics.

1 I N T RO D U C T I O N

Stress changes associated with fluid injection and withdrawal are
important for several reasons. Knowledge of stress change is im-
portant in the context of understanding, and perhaps mitigating,
well-bore failure. With adequate insight into the effects of injection
and withdrawal on the subsurface, one can balance the net fluid
changes at depth, in order to minimize the associated stress alter-
ations. Stress changes influence the growth of fractures and may
alter the flow properties of existing fractures and faults, by caus-
ing those in a particular orientation to close and others to slip and
dilate. For these reasons alone, it is important to understand the
evolution of stress, in both space and time, due to fluid injection
and production.

Because of its importance, numerous techniques have been de-
veloped for measuring or estimating the stress field within the Earth
(Zang & Stephansson 2010). The most direct techniques take ad-
vantage of boreholes, perturbing the conditions in the borehole and
recording the induced strain, or the necessary stress, to achieve
a new equilibrium. Such techniques include step-rate tests, over-
coring, hydraulic tests on pre-existing fractures (HTPF), the analysis
of borehole breakouts and strain recovery, as well as core-disc meth-

ods on drill cores (Ljunggren et al. 2003). While borehole-based
methods are generally the most accurate, they have the distinct dis-
advantage of being restricted to well bores. Furthermore, the tests
can be time consuming and many tests may be required to obtain
estimates of the principle stresses and their orientations.

An alternative approach, one that provides estimates away from
boreholes, relies on stress-induced anisotropy and associated ve-
locity changes (Crampin 1978; Bakulin & Protosenya 1982; Leary
et al. 1990; Mavko et al. 1995; Sinha & Kostek 1996; Johnson &
Rasolofosaon 1996; Sarkar et al. 2003; Prioul et al. 2004; Shapiro
& Kaselow 2005; Gurevich et al. 2011). This indirect technique
relies on an inversion of seismic observations. An added complica-
tion arises because most materials in the Earth contain pre-existing
structural anisotropy, requiring laboratory measurements from core
samples to obtain the natural anisotropy in the unstressed state. Be-
cause stress-induced anisotropy contains coefficients that depend on
the stress field, and hence on the strain, the theory is fundamentally
nonlinear. The nonlinear stress–strain relationship is specified by a
large number of anisotropy parameters and related coefficients. In
order to characterize this relationship and to determine the param-
eters, multicomponent data must be gathered in many directions
in order to estimate the stress. To our knowledge, the approach
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has only been applied in the laboratory (Thurston & Brugger 1964;
Johnson & Rasolofosaon 1996; Sarkar et al. 2003; Prioul et al. 2004;
Shapiro & Kaselow 2005; Gurevich et al. 2011) and has never been
attempted in the field.

Stress estimates based upon seismic source inversions also pro-
vide information about the spatial and temporal variation of the
stress field in the Earth. Early methods relied upon first motion data
and event focal methods to estimates gross features of the stress field
(Gephart & Forsyth 1984; Michael 1984; Angelier 2002; Hardebeck
& Michael 2006; Arnold & Townend 2007), primarily the directions
of the principle stresses and their relative magnitudes (Hardebeck
& Hauksson 2001). The approach has been modified to utilize full
waveforms and the centroid moment tensors of seismic events in
order to estimate the 3-D variations of the stress field (Terakawa &
Matsu’ura 2008). One limitation of this approach is that estimates
are only available where and when seismic events occur. Further-
more, at the field scale, events may not occur frequently enough to
provide adequate temporal resolution of a changing stress field.

Geodetic observations provide another set of data that are sensi-
tive to stress variations within the Earth. Some aspects of geodetic
data, such as generally frequent temporal sampling, are advanta-
geous. Certain data types, such as Interferometric Synthetic Aper-
ture Radar (InSAR) provide fine spatial sampling as well (Fer-
retti 2014). Therefore, it seems sensible to use geodetic data to infer
stress changes within the Earth and over time. However, there are
aspects of such data that limit their usefulness. For example, most
observations are gathered at the surface of the Earth and the spatial
resolution provided by geodetic data decreases strongly with depth.
Techniques such as InSAR usually provide a single component of
displacement, meaning that any inverse problem involving the es-
timation of six independent components of the stress tensor will
be severely under-determined. Here, we describe an approach for
estimating stress changes associated with fluid injection and with-
drawal, whereby the stress changes are not sought directly. Rather,
we invert the observations for volumetric changes associated with
the fluid fluxes. The estimated volume changes are then used to
calculate, in a forward sense, the displacements in the overburden.
With the displacement field in hand, and assuming well character-
ized elastic behaviour in the overburden over the period of interest,
the calculated stress changes follow from a straight-forward differ-
entiation. We illustrate the approach by an application to InSAR
data gathered over an oil field in central California.

2 M E T H O D O L O G Y

Our approach is based upon the assumption that the stress changes
are primarily the result of fluid fluxes. Specifically, injected or pro-
duced fluid volumes lead to changes in fluid pressure at depth,
driving volumetric changes in the region surrounding the reservoir.
The model consists of two regions: the reservoir, where fluid in-
jection and withdrawal are active, and the overburden where fluid
volume changes may be neglected. The reservoir is a source region
that may behave in a complicated, inelastic fashion, while the over-
burden is assumed to behave elastically, at least over monthly time
intervals.

The procedure involves three main steps that will be discussed
in some detail in this section. First, we invert the observed range
change for the distribution of volume change within the reservoir.
The inversion is constrained by a given set of fluid fluxes into
and out of the grid blocks of the reservoir model. Second, we use
the reservoir volume changes to calculate the displacement field

throughout the overburden. Third, we compute the spatial deriva-
tives of the displacements field and use them to estimate the stress
changes at depth. For an elastic medium each step is linear, leading
to a linear estimator for the stresses. Thus, a formal linear model
assessment may accompany the estimates of stress change. From
these three steps one observes the importance of accurate estimates
of the geomechanical properties of the overburden in the calcula-
tions. The properties are used in both the inverse problem, whereby
we estimate the reservoir volume changes, and in the forward calcu-
lation of the displacements and stresses. Thus, it is critical to have
a well constrained overburden model in order to provide reliable
estimates of stress changes. In our application, the properties of the
overburden are constrained by numerous logged wells in the region.

2.1 Inverting for the fluid-induced volume change

2.1.1 The forward problem

We suppose that deformation in the region of interest is driven by the
injection and withdrawal of fluids. The fluid flux produces a fluid
pressure change, leading to a fractional volume change vf of the
solid material. It is assumed that the overburden behaves elastically
over the time interval between surveys, roughly one month for the
field case considered below. The equation governing the quasi-static
deformation of an elastic body is

∂

∂x j

[
μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ λ

∂uk

∂xk
δi j

]
= ∂

∂x j
[Kuv f ]δi j (1)

where μ(x) is the shear modulus, λ(x) is the Lame parameter, and δij

is the Kronecker delta function which is 1 when i equals j and zero
otherwise (Fung 1969). The quantity Ku is the bulk modulus. We
adopt the convention of Einstein in which one sums over repeated
indices. The volume change vf occurs on the right-hand side of
eq. (1), as a source term. This means that the inverse problem for vf

is linear for a known elastic overburden model. A Green’s function
for the governing equation is a solution corresponding to the case
in which the right-hand side is a Dirac-delta or impulse function
(Stakgold 1979). Given a suitable Green’s function, gi (x, ζ ), we
can take advantage of the linearity of the problem and make use of
the integral representation of the general solution of eq. (1) (Aki &
Richards 1980)

ui (x, t) =
∫

V
v f (ζ , t)gi (x, ζ )dV, (2)

where ζ denotes the coordinates within the reservoir volume V.
For practical forward and inverse calculations we must turn to a

discrete representation of the volume change within the reservoir.
In the discrete version of eq. (2), we represent the reservoir volume
by a set of N non-intersecting rectangular cells or grid blocks. Each
grid block in the reservoir model may undergo a distinct volume
change. Because the details were presented in Vasco et al. (1988,
2000, 2002b; Vasco & Ferretti 2005; Vasco et al. 2010), we only
need to present the resulting equations. Given M observation points
xj, the discrete version of eq. (2) is

ui (x j , t) =
N∑

n=1

Gn
i (x j )vn = Gi (x j ) · v(t), (3)

where vn is the average volume change for grid block n, and Gi(xj)
is a vector with N components, given by the integrals

Gn
i (x j ) =

∫
Rn

gi (x j , ζ )dV . (4)
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The index i runs from 1 to 3 and j varies over the observation points,
from 1 to M. One may compute the coefficients Gn

i(xj) using either
an analytical or semi-analytical Green’s function, or numerically,
using finite differences or finite volume techniques.

In our application to InSAR data we will need to modify expres-
sion (3), which provides the displacements along each coordinate
axis. InSAR range change, r, is a projection of the displacement
vector onto the look vector l pointing in the direction of the satellite
(Ferretti 2014):

r (x j , t) = l · u = li ui (x j , t). (5)

Substituting the representation of ui(xj, t) given in eq. (3) produces

r (x j , t) = m j · v, (6)

where

m j = li Gi (x j ), (7)

and the dependence of v upon t is implicit. Given a large collection
of data from various observation points xj, we can write eq. (6)
compactly as a matrix-vector equation

r = M · v, (8)

where M is a matrix whose columns signify the grid blocks of the
model and whose rows signify the particular observation point and
the components of r correspond to different measurement points xj

as j varies over the number of observations.

2.1.2 The inverse problem

Eq. (8) relates volume changes in the grid blocks of the model
v to range changes at the observation points r, encapsulating the
forward problem. In the inverse problem one attempts to solve, or
invert, eq. (8) for estimates of the volume changes v. Due to errors
in the observations and the averaging or smoothing effects of the
forward operator, it is not advisable to solve for v directly. The
most common approach to deal with errors in the observations is to
minimize the sum of the squares of the residuals, written here as

�2 = (r − M · v)t · (r − M · v) . (9)

Minimizing this quantity will produce volume change estimates
that fit most of the data, and the method works well for normally
distributed errors (Menke 1989). If there are significant variations
in the errors associated with the observations, it will be necessary
to weight each data constraint by its standard error.

An additional issue is the averaging or smoothing effect of the
forward operator and the non-uniqueness of the estimated volume
changes. Important information may be lost when we record the
deformation at the surface of the Earth, leading to non-uniqueness
even when we formally have more data than unknowns. In partic-
ular, the high spatial frequencies of the displacement field decay
with distance away from the source. For a deep source we may only
retain the low frequency component of the displacement field at the
surface. Uncertain data, variations in the inversion algorithm, and
variations in model constraints also contribute to ambiguity or un-
certainty in the model estimates, compounding the non-uniqueness.
Including a roughness or model norm penalty term to address the
non-uniqueness, will tend to produce an overly smoothed or at-
tenuated solution. The loss of resolution will significantly impact
the estimated stress changes because they depend upon the spatial
gradients of the displacement field.

While we cannot remove the non-uniqueness associated with
the inverse problem, we can construct a model that both satisfies

the data and is compatible with field operations that are driving
the reservoir volume changes and the strain in the overburden. Our
approach is to take advantage of the fact that the displacements are
generated by measured quantities, the fluid fluxes into and out of
each grid block. For example, given a significant net injection into
a particular grid block, one might expect a large pressure increase
and a larger fractional volume change for that grid block. Therefore,
we will include a term that penalizes volume changes deviating
from expected values, based upon production and injection into
that block, denoted by vp. In particular, we minimize the sum of the
squares of the deviations from the volume changes estimated from
the production and injection data,

�2 = (
v − vp

)t · (
v − vp

)
. (10)

The relationship between the net fluid volume change within a grid
block and the volume change of that grid block can be complicated
by the effects of multiphase flow, thermal expansion and contraction,
and material damage. Therefore, the predicted volume changes vp

can require a sophisticated model and will be subject to some error.
In the Appendix we provide an example of a simple model, based
upon grid blocks that behave in a poroelastic fashion. Such a model
provides a relationship between the injected fluid volumes and the
predicted aggregate volume change of the grid block.

The total penalized misfit is given by the weighted sum of the data
misfit plus the sum of the squares of the deviations from volume
changes predicted from the volume fluxes

�2 = �2 + wp�
2. (11)

The scalar wp is the weight given to the penalty term and it controls
the trade-off between fitting the data and honouring the expected
volume changes vp. A necessary condition for the minimum of �2

is the vanishing of the gradient with respect to the elements of the
model parameter vector v, leading to the system of equations

∇v�
2 = −Mt r − wpvp + [

Mt M + wpI
]

v = 0. (12)

Solving eq. (12) for the volume changes in each grid block results
in a penalized least squares estimate, v̂, that is linearly related to the
range change observations:

v̂ = [
Mt M + wpI

]−1 [
Mt r + wpvp

]
. (13)

It is evident that as wp approaches zero this expression converges to
the standard least squares solution minimizing the misfit to the ob-
served range changes. Furthermore, if vp is taken to be the zero
vector then we have a minimum norm solution (Menke 1989).
The minimum norm solution is often used in geophysical inver-
sion in order to reduce artefacts due to noise in the observations
by eliminating components in the null-space of the inverse problem
(Menke 1989).

2.1.3 Assessment: model parameter covariance and resolution

As we shall see in Section 3, very different models can fit the ob-
servations within their expected error bounds. Thus, we are faced
with questions concerning the uniqueness of the estimated volume
changes as well as model parameter uncertainties. Our inverse prob-
lem is characterized by a linear relationship between the observa-
tions and the unknown parameters, as is evident in eq. (3). There is a
well-developed methodology for assessing solutions of such linear
inverse problems (Menke 1989; Parker 1994; Tarantola 2005; Aster
et al. 2013). As in any exercise in parameter estimation there is
the issue of the uncertainty associated with the estimates, typically
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given by model parameter variances and covariances (Menke 1989).
This aspect has been discussed in numerous publications and books.
Therefore, techniques for computing model parameter covariances
will not be described in detail here. Rather, we shall merely present
the expression for the model parameter covariance matrix, given
a data covariance matrix Cd. To simplify the presentation we will
consider the case in which vp is the zero vector in eq. (13), the
minimum norm solution (Menke 1989):

v̂ = M†r, (14)

where M† is the generalized inverse of M given by

M† = [
Mt M + wpI

]−1
Mt . (15)

From eq. (14) we see that the model parameter estimates are linearly
related to the observed data. Such linearity leads to the following
relationship between the data covariances and the model parameter
covariance matrix Cm

Cm = M†Cd

(
M†)t

. (16)

In geophysics we are faced with additional challenges due to the
fact that our parameters are often continuously varying properties
rather than discrete quantities. Rock density and volume change
due to pressure changes within a reservoir are but two simple ex-
amples of continuously varying quantities. As noted by Backus &
Gilbert (1968), we can only reliably estimate the spatial averages
of properties, such as grid block values in a discretization of the
continuous problem. Even then, our data frequently cannot resolve
individual block values independently of the values in adjacent grid
blocks. In this context, we are led to the concept of model parameter
resolution and the resolution matrix (Menke 1989). The resolution
matrix characterizes the averaging inherent in estimates of spatially
varying geophysical parameters. Specifically, the resolution matrix
relates model parameter estimates to a hypothetical ’true’ model
that satisfies the relationship (8). To make this concrete, consider
the estimates of grid block volume changes, given by eq. (14). If
the expression (8) is substituted for r one has

v̂ = M†Mv, (17)

a relationship between v and v̂. The resolution matrix R is defined
as

R = M†M (18)

and it may be interpreted as a matrix describing the averaging
inherent in forming the model parameter estimates (Menke 1989).
In particular, the entries in a row of the resolution matrix denote
averaging coefficients describing how elements of the ‘true’ model
v are combined to form a model parameter estimate. For this reason,
the rows of the resolution matrix are known as averaging kernels.
With the full resolution matrix it is possible to construct a measure
of spatial resolution (Jackson 1979), the resolving width associated
with a particular block.

We have briefly outlined the conventional model assessment
for linear problems, covering our particular inverse problem [see
eq. (8)]. Note that when the inverse problems becomes sufficiently
large, with hundreds of thousands of unknowns, it can be difficult
to evaluate the explicit expressions for the standard analysis and ap-
proximate methods may be required. This was frequently the case
for global tomographic inverse problems for the velocity structure
of the whole Earth derived from seismic arrival times (Hager &
Clayton 1989; Inoue et al. 1990; Pulliam et al. 1993). In order to
work around the computational difficulties, approximate methods

such as spike and checkerboard tests were developed in order to
estimate model parameter resolution (Humphreys & Clayton 1988;
Hager & Clayton 1989; Inoue et al. 1990; Pulliam et al. 1993).
A spike test estimates a column, rather than a row, of the resolu-
tion matrix (Inoue et al. 1990). Subsequently, the formal resolution
matrix was calculated using a massively parallel computer (Vasco
et al. 1993). Using an iterative Lanczos algorithm, it proved possi-
ble to approximate the resolution covariance matrices for problems
involving over 1 million data constraints and hundreds of thousands
of unknowns (Vasco et al. 1999; Vasco & Johnson 2003). In spite
of these advancements, checkerboard tests are still used to approx-
imate model parameter resolution (Wang et al. 2015) for linear
inverse problems of moderate size, perhaps for their ease of imple-
mentation. The drawback to such approximations are that the spike
tests only approximate one column of the resolution matrix and
checkerboard resolution estimates depend upon the spatial length
scale of the checkerboard pattern. In this work we shall estimate the
resolution and covariance matrix elements directly, using the meth-
ods of Vasco et al. (1999) and Vasco & Johnson (2003). Then we
can display the diagonal elements of the resolution matrix, as well
as particular rows of the resolution matrix. A row of the resolution
matrix, an averaging kernel, displays the degree of averaging that is
inherent in a particular model parameter estimate.

2.2 Calculating the displacement in the overburden

The displacement in the overburden follows from eq. (3). If we
substitute the volume change estimate (13) into eq. (3) and rewrite
it to highlight the fact that the expression is valid for all points in
the medium outside of the source region, we have an estimate of the
displacement

ûi (x, t) = Gi (x) · v̂(t). (19)

Note that the dependence on spatial location x is contained in the
Green’s function and not in the volume changes v. The estimated
displacements are linearly related to the volume changes, and cor-
respondingly linearly related to the observed range changes.

2.3 Estimating the stress change

Assuming that the region around the reservoir behaves elastically
during the time interval of interest, the stress change during that
period is given by

�σ̂i j = μ

(
∂ ûi

∂x j
+ ∂ û j

∂xi

)
+ λ

∂ ûk

∂xk
δi j , (20)

(Kennett 1983), where μ(x) and λ(x) are the shear modulus and
Lame parameter for the overburden. Using eq. (3), the expression
for a spatial derivative of the estimated displacement may be written
as

∂ ûi

∂x j
= ∂Gi

∂x j
· v̂(t). (21)

Substituting for all the derivatives in eq. (20) produces a relationship
between the volume change estimates and the change in stress

�σ̂i j =
[
μ

(
∂Gi

∂x j
+ ∂G j

∂xi

)
+ λ

∂Gk

∂xk
δi j

]
· v̂. (22)

Because of the spatial derivatives, the quantity in square brackets is
a roughening operator acting upon the estimated volume changes.

For sufficiently large stresses and strains, the overburden may
behave in a nonlinear fashion, either as a nonlinear elastic material
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or inelastically. For a nonlinear elastic material the elastic moduli
depend upon the stress or strain. For the roughly one-month intervals
considered in the application below, we shall assume incremental
linear elastic behaviour. However, for long time intervals it may be
necessary to account for the variations of μ and λ with stress or
strain. With the exception of the scaling estimates in the Appendix,
we make no assumptions about the behaviour of the source region
within the reservoir, as it is a singular region and diatomite may
behave as a nonlinear plastic material (Bruno & Bovberg 1992).

3 A P P L I C AT I O N

We illustrate the methodology with an application to observations
of surface deformation gathered over an oil field in the San Joaquin
Valley of California.

3.1 Geological setting

The field is part of the Tulare fold belt, a series of northwest trending
asymmetric anticlines and synclines in the Plio-Pleistocene Tulare
formation (Farley 1990). It is one of a series of fields, including
Belridge, Cymric, Lost Hills, Buena Vista, Elk Hills, Midway Sun-
set, Railroad Gap, McKittrick, and Asphalto, that produce from
diatomite reservoirs. Diatomite is a high porosity (45–70 per cent)
rock, consisting of the shells and fragments of diatoms mixed with
varying amounts of clay and sand (Fredrich et al. 2000). The deposi-
tional environment is thought to have been a deep-marine fan system
extending into a basin bounded by the Sierran block to the east and
the Salinian block and Gabilan range to the west (Miller & McPher-
son 1992). Given its high porosity, diatomite can be extremely com-
pressible and, as discussed below, reservoir production and injection
have led to significant surface deformation. Furthermore, diatomite
is a low permeability rock (0.1 to several millidarcies) saturated
by very viscous oil, requiring cyclic steaming in order to recover
a significant fraction of the oil (Kumar & Beatty 1995). The di-
atomite reservoir is overlain by a sedimentary sequence of sands,
shales, and pebble conglomerates of the San Joaquin and Etchegoin
formations. The top of the diatomite is now generally between 200
and 300 m below the ground surface. The primary structural feature
is an anticline with a gradually dipping limb to the west, containing
most of the field, and a steeply dipping limb to the east of the field
(Fig. 1). Stress measurements (Mount & Suppe 1987) suggest that
the anticline appears to be growing along an axis subparallel to the
San Andreas fault, caused by compression oriented perpendicular
to the fault.

3.2 Material properties

The wide-spread compaction, and associated surface deformation
and well failures, in diatomite reservoirs (Myer et al. 1996; Fredrich
et al. 2000), has motivated several studies of the mechanical be-
haviour of these rocks and of the material in the overburden (Stosur
& David 1976; Strickland 1985; Bruno & Bovberg 1992; Fossum
& Fredrich 1998; Fossum & Fredrich 2000; Fredrich et al. 2000).
Unfortunately, little published core data is available for the overbur-
den formations. For the San Joaquin Formation, Fossum & Fredrich
(2000) refer to the study of five core samples from the Lost Hills
field by Bruno & Bovberg (1992). In those studies a Mohr-Coulomb
failure envelope was defined and the cohesion and angle of internal
friction were estimated. In addition, Bruno & Bovberg (1992) found
that the average Young’s modulus for the samples lies between 0.3
and 1.0 GPa, and determined that the mean Poisson’s ratio was 0.25.

Figure 1. Variation in the depth to the top of the diatomite, as indicated by
the contour lines, in the central California reservoir. The colours indicate the
spatial variation of the distribution of the four materials defining the reservoir
volume in the depth interval of 300–400 m. Dark blue signifies the near-
surface sediments, light blue indicates the Tulare formation, orange denotes
the diatomite (Opal A) and red represents the lower diatomite (Opal C). The
lower diatomite is not present in this depth section.

Fredrich et al. (1996) fit a Drucker–Prager failure model to the al-
luvium and samples from the Upper and Lower Tulare formations.
Much more information is available in the literature on the prop-
erties of the diatomite itself, both the reservoir material (Opal A)
and the porcelanite (Opal CT) that underlies the reservoir (Stosur
& David 1976; Strickland 1985; Fossum & Fredrich 1998; Dietrich
& Scott 2007).

There are several unpublished sonic logs and density logs through
the overburden and the diatomite. The sonic logs recorded both com-
pressional and shear propagation times that may be used to calculate
seismic velocities. The properties for specific formations are con-
sistent for the well logs that we examined. Therefore, these well logs
can be used to estimate dynamic elastic moduli for the major lay-
ers in the overburden. The dynamic moduli are converted to static
moduli by scaling Youngs modulus by 0.22 and then transforming
to Lames parameter λ(z) and the shear modulus μ(z) (Fig. 2). The
values of the corresponding Bulk moduli for this model are of the
same order as those cited in the constitutive model of Fossum &
Fredrich (2000), varying from under 0.15 GPa to over 0.30 GPa for
depths between the surface and 500 m. The depths of boundaries
do vary across the field due to the anticlinal structure and corre-
sponding deviations in the thickness of the formations. The depths
of the boundaries shown in Fig. 2 correspond to those found in
a well intersecting the west central portion of the field. However,
the western limb of the anticlinal structure is gentle and the layer
boundaries do not vary significantly over most of the field (Fig. 1).

3.3 Monitoring deformation using Synthetic Aperture
Radar

Because the fields in the San Joaquin Valley are characterized
by soft and porous formations that are quite thick and rather
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Figure 2. Depth variation of the Lame parameter (λ(z)) and the shear mod-
ulus (μ(z)) within the overburden and the diatomite. The reservoir interval
in the model is indicated by the yellow area between the two dashed lines.

shallow, oil production has generated observable subsidence at the
ground surface (Bowersox & Shore 1990; Bruno & Bovberg 1992;
De Rouffignac & Bondor 1995). Such subsidence has been ac-
tively monitored in several fields. For example, starting in 1989;
Global Positioning Satellite (GPS) surveys have been conducted in
the Lost Hills Field over an array of some 70 monuments (Bruno &
Bovberg 1992). In 1998 it was shown that Synthetic Aperture Radar
(SAR) could provide high-resolution images of the deformation due
to oil production in the San Joaquin Valley (Fielding et al. 1998).

Following the successful demonstration by Fielding et al. (1998),
SAR data have been used to monitor deformation above several oil
fields in central California. A total of 156 images were acquired
between 2000 September 10 and 2013 February 10 and processed
to extract stable scatterers and their associated range change (Fer-
retti et al. 2001, 2011). The semi-arid, sparsely vegetated ground
surface and the abundance of man-made structures provided excel-
lent conditions for SAR monitoring, resulting in over 1800 imaging
points per square kilometre. The precision of the deformation rate is
roughly 1 mm yr−1 while the error associated with the range change
is less than 5 mm. An example of the estimated range change is
shown in Fig. 3 for a subset of the field. The time-series for the
scatterers were reinterpolated onto monthly range changes, in this
case for February 2001. The surface deformation associated with
the injection and production of fluids from a large number of wells
comprising the field is evident in Fig. 3.

3.4 Estimating reservoir volume changes

The first step in the estimation of stress changes involves the de-
termination of volume changes in the reservoir from the observed
InSAR range changes, such as those shown in Fig. 3. The estimates
of volume change are subject to constraints provided by the net fluid
volume fluxes due to injection and production. These constraints,
in the form of the penalty term given in eq. (10), are derived from
the reservoir production and injection data. The reservoir interval
extends from 300 to 400 m in depth, just below the top of the di-
atomite. The reservoir volume is subdivided into a 30 × 30 grid of
cells, 100 m on a side. The field operator provided monthly mea-

Figure 3. Range change obtained from RadarSat Interferometric Synthetic
Radar (InSAR) data. Positive range change indicates increasing distance to
a reference point in space, typically signifying subsidence. The open circle
identifies the well in which a multifinger caliper log was run.

Figure 4. Net fluid volume change during the month of February 2001, in
terms of the volume fraction of the grid block. The grid blocks are 100 m
(east–west) by 100 m (north–south). The open circle identifies the well in
which a multifinger caliper log was run.

surements of injected and produced fluids [steam, water, oil, and
gas] from the wells in the field. The fluid volumes of steam, water,
oil, and gas at reservoir conditions, from wells intersecting each
grid block, are added up to calculate the net fluid volume change.
An example of the net fluid volume change for February 2001, in
terms of the volume fraction of the reservoir grid block, is plotted
in Fig. 4.
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(a) (b)

Figure 5. (a) Total misfit for 81 inversions conducted for varying values of the coefficient relating grid block volume change to fluid volume change. (b) Curve
displaying the trade-off between the squared data misfit and the squared model misfit, parameterized by the weighting factor wp. The value of wp at specific
points is indicated by the numerical labels. As is evident from the curve, as wp increases the model misfit decreases while the data misfit increases.

Because the fluid volume introduced into a porous medium does
not lead to an equivalent volume change in the medium itself, a
scaling factor was required. The scaling factor relates fluid volume
change to grid block volume change. In the Appendix we discuss
the considerations that enter into the calculation of the scaling fac-
tor when the grid block behaves poroelastically. The discussion in
the Appendix is for primarily for illustration, we use an empiri-
cal approach to actually estimate the scaling factor. Specifically,
we conducted a series of constrained inversions and examined the
variation in data misfit as a function the value of the scaling factor
(Fig. 5a). A factor between 0.35 and 0.45 appears to produce the
best fit when the fluid volume constraints are included. Once a value
of 0.25 is exceeded, the total misfit does not seem to be a strong
function of the scaling. The variations in Fig. 5(a) are notable be-
cause the scale has been expanded significantly in order to highlight
the small changes. The value of the scaling factor lies between 0.1
and 1, the range estimated in the Appendix. A factor of 0.35-0.45
corresponds to an average grid block porosity between 12 per cent
and 14 per cent.

Both the estimates of volume and stress changes depend upon
the nature of the Green’s functions gi (x, ζ ) [see eq. (2)]. Because
the western limb of the anticline defining the reservoir has a very
shallow dip, as indicated in Fig. 1, we will used a layered elastic
model to represent the overburden above the field (Fig. 2). Accord-
ingly, our Green’s functions will be calculated using a propagator
technique developed by Wang et al. (2003, 2006) for a layered
elastic or viscoelastic medium. The next level of complexity is to
include the depth variations of the boundaries, as shown for the top
of the diatomite reservoir in Fig. 1. We have also computed Green’s
functions for a model containing variable boundaries and four ma-
terials (Fig. 1), using a finite difference algorithm. We found that
the estimated volume changes were not significantly different when
we used the finite difference approach. Therefore, we will adopt
the layered Green’s functions computed using the method of Wang
et al. (2006). As a check, we will compare the stress estimates to
one based upon a full 3-D model, as shown in Fig. 1, computed
using a finite-difference computer code.

The solution that minimizes the penalized least squares objec-
tive function was found by solving the necessary conditions for

a minimum, eq. (12). The iterative sparse solver LSQR (Paige &
Saunders 1982) was used to solve the system of eqs (12). For com-
parison, a conjugate gradient solver (Press et al. 2007) and the
explicit numerical evaluation of expression (13) were used to min-
imize the penalized misfit �2 [see eq. (11)] and found to produce
the same essential result. A trade-off curve was constructed by con-
ducting 51 inversions where the weighting parameter wp was varied
between 0 and 10 000 in a systematic fashion. The curve displaying
the squared data misfit against squared model misfit for each value
of wp is plotted in Fig. 5(b). From this curve it appears that inver-
sions where wp lies between 1000 and 5000 produce reasonable fits
to both the observed range changes and the prior total fluid volume
changes vp. For the results that follow, we set wp equal to 1111 in
order to provide a reasonably good fit to the range change data.

Considering the data and constraints for February 2001 we es-
timated both a minimum norm solution (vp = 0) and a solution
constrained by the injection and production measurements (Fig. 6).
There is fairly good agreement between the reservoir net volume
change (Fig. 4) and the constrained solution (lower panel, Fig. 6b).
The minimum norm solution (upper panel, Fig. 6a) is smoother,
evidence of the loss of resolution with depth associated with this in-
verse problem. The constrained inversion displays characteristics of
both the net fluid volume change in Fig. 4 and the minimum norm
inversion (Fig. 6a). In Fig. 7, we plot the difference between the
constrained inversion in Fig. 6(b) and the net fluid volume change
in Fig. 4. The differences are as large as 50 per cent of the peak
variations in the constrained inversion and show a pattern very sim-
ilar to anomalies in the minimum norm solution (Fig. 6a). Thus, the
constrained inversion does not simply replicate the prior net fluid
volume model. Rather, the inversion result strikes a balance between
fitting the observations and honouring the prior information.

The predicted range changes, calculated using both the con-
strained and minimum norm solutions, are shown in a map view in
Fig. 8, and in Fig. 9 as the calculated range change plotted against
the observed range change. In both figures one observes that the
constrained solution fits the data about as well as the minimum
norm solution, with correlation coefficients of 0.9778 and 0.9779,
respectively. The change in variance for the inversion with a mini-
mum norm prior was from 381 494.5 to 15 956.3, a 95.82 per cent
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(a)

(b)

Figure 6. (a) Fractional volume change obtained from an minimum norm
inversion of the range change data in Fig. 3. (b) Distribution of fractional
volume changes from a constrained inversion of range change observations.
A penalty term was included in the inversion biasing the solution to honour
the net volume change due to fluid injection and production in each grid
block, shown in Fig. 4.

variance reduction. The variance for a model constrained by the net
fluid flux due to injection and production was reduced to 16 044.7,
a variance reduction of 95.79 per cent. Thus, it appears that the
reservoir fluid volume flux constraints do not degrade the fit to the
observations significantly. In the top panel of Fig. 9 we have plot-
ted the range change calculated using the net fluid volume change
model (Fig. 4). Observe that the net fluid volume model does not
fit the range change data, indicating that the inversion must make

Figure 7. Difference between the results of an inversion of range change
data for reservoir volume change that is constrained by reservoir net injected
and produced fluid (Fig. 6b) and the net fluid volumes used to constrain the
model (Fig. 4).

significant changes in the model in order to agree with the mea-
sured values. In Fig. 10, the root mean squared (RMS) misfit is
plotted for monthly intervals from 2001 until 2010. The RMS misfit
is essentially identical for both the minimum norm and constrained
inversion over the entire time interval.

The fact that two different models produce equivalent fits to the
observations reveals the non-uniqueness inherent in the inversion of
InSAR range change observations for volume changes at depth. In
an effort to quantify the non-uniqueness we calculate the resolution
matrix R, defined by eq. (18). The approach, described in Vasco et al.
(1999, 2002a) and based upon the singular value decomposition
(Noble & Daniel 1977), is used to construct the entire resolution
matrix. The diagonal elements of the resolution matrix, plotted in
Fig. 11(a), provide a quick estimate of one’s ability to recover the
volume change associated with an individual block, independently
of the values in other blocks. Eqs (17) and (18) indicate that as the
resolution improves and we can resolve individual block values, the
resolution matrix approaches an identity matrix with ones on the
diagonals and zeros elsewhere. Thus, for a well resolved model
the diagonal elements of the resolution matrix approach unity and
the averaging kernels approach impulse functions. The diagonal
elements of the resolution matrix (Fig. 11a) indicate that the best
resolution is found for blocks at the corners of the model, with values
near 0.5, while the resolution at the edges of the model is around 0.3.
For grid blocks in the interior of the model the diagonal elements
of the resolution matrix are around 0.2. We gain more insight by
examining the averaging kernels associated with four grid blocks
(Fig. 12). For locations in the interior of the model the estimated
volume change is an average over all of the surrounding cells, with
significant averaging over a diameter of 300 m. Furthermore, there
are oscillations in the averaging coefficients indicating trade-offs
between positive and negative volume changes. For grid blocks at
the edges and corners of the model the averaging is truncated by
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(a)

(b)

Figure 8. Predicted range change based upon (a) the minimum norm model
and (b) a constrained model biased to fit the fluid volume fluxes for each
grid block.

the boundary of the model, resulting in less averaging and trade-off,
and higher model parameter resolution. Hence, without a penalty
term biasing the solution to a rougher model, the minimum norm
solution will incorporate the smoothing indicated by the averaging
kernels in Fig. 12.

In addition to the model parameter resolution, there is the is-
sue of model parameter uncertainty to contend with. That is, due
to errors in the observations there will be errors in the estimated
model parameter, given by eq. (13). The resulting model param-
eter covariances are given by expression (16), where Cd are the
data covariances, and M† is the generalized inverse (15). The data
covariance matrix can be complicated, with off-diagonal terms aris-
ing from spatially correlated data errors due to atmospheric effects
(Hanssen 2001). Because we do not have any information on the
spatial correlation of the data errors we will assume that the covari-
ance matrix is diagonal. From the InSAR data reduction, we have

Figure 9. A plot of calculated range change plotted against the observed
range change. (a) The calculated range change is based upon the net fluid
volumes plotted in Fig. 4. (b) The range changes were from a minimum norm
model that minimizes a linear combination of the misfit to the observations
and the model norm. (c) The range changes are based upon a model that
minimizes the misfit to the data and minimizes the deviations from the
injected and produced fluid volumes in each grid block.
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Figure 10. The root mean squared (RMS) data misfit, computed on a
monthly basis, for InSAR monitoring from 2001 to 2010. Misfit for both
the minimum norm solutions and for solutions constrained by reservoir pro-
duction and injection data are shown by the open circles and filled squares,
respectively.

estimates of the standard error of each datum and these vary as a
function of distance from the reference point used in the analysis
(Ferretti 2014). In general, the average data error is of the order
of 5 mm. The resulting model parameter standard errors, derived
from the variances of the covariance matrix (16), are plotted in
Fig. 11(b). The model parameter errors are of the order of 0.002,
roughly 13 per cent of the peak variation of the fractional volume
(0.015). Note that there is a trade-off between the model parameter
resolution and the model parameter uncertainty. That is, as one tries

to improve the resolution, there will generally be an increase in the
model parameter uncertainty (Aki & Richards 1980; Menke 1989;
Aster et al. 2013).

3.5 Calculating the stress change

The stress changes are found from the volume change estimates
given by eq. (13). We first calculate the displacements throughout
the overburden, then we estimate the stress changes using expres-
sion (20). Eq. (22) encapsulates the entire process as a single equa-
tion or linear operator applied to the estimated volume changes v̂.
The operator depends upon the elastic model of the overburden and
the reservoir, the layered structure given in Fig. 2. We plot both the
minimum norm estimates of stress change, as well as the constrained
estimates for a depth of 180 m (Fig. 13). While the large scale varia-
tions are similar, there are significant small-scale differences in the
two estimates of stress changes. Such differences might be expected,
given the much smoother minimum norm volume change estimates
and the nature of the linear operator in eq. (22). It is interesting
that, although the patterns vary, the magnitudes of the two sets of
changes are comparable for this one month interval. In Fig. 13, we
are plotting

σh =
√

σ 2
xz + σ 2

yz,

which we will refer to as the horizontal stress or the horizontal
traction vector. This quantity is the resolved shearing stress acting
across a horizontal plane. It is akin to the stress applied to shear a
deck of cards. Such a stress is often responsible for shear failure
across a layer boundary and well buckling due to a localization of
shear strain. In Fig. 14, we plot the changes in all six components
of the stress tensor for February 2001 and for a depth of 180 m. The
complicated pattern reflects the rapid spatial variations in volume
change that are present in the constrained volume change model
(Fig. 6b).

(a) (b)

Figure 11. (a) The diagonal elements of the resolution matrix, plotted in the locations of their respective grid blocks. (b) The square root of the diagonal
elements of the covariance matrix, producing estimates of the model parameter standard errors, plotted as the volume change fraction.
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(a) (b)

(c) (d)

Figure 12. Four averaging kernels corresponding to two interior grid blocks, a grid block at the edge of the model, and a grid block in a corner of the model.

Both the inverse problem for reservoir volume change, and the
forward problem of calculating stress change depend upon the elas-
tic coefficients. Therefore, the estimated stress changes depend
in a nonlinear fashion upon the elastic coefficients representing
the structure. In general, the estimated stress changes will vary
significantly if the elastic properties of the overburden are changed.
Therefore, stress estimates based upon the layered Green’s function
described earlier may contain significant errors due to the topo-
graphic variations that are evident in the field (Fig. 1). However,
the topographic variations underlying the active areas of the field
are rather subdued, and a layered model may well yield sufficiently
accurate stress estimates. In an effort to check this, we constructed
estimates using different elastic models. First, we calculated the

volume changes and resulting stress changes using an elastic model
consisting of a uniform layer, representing the overburden, over the
diatomite reservoir, represented by a half-space. The bulk modu-
lus of the overburden was 0.23 GPa, an average of the layer values,
while the average for the diatomite was 0.30 GPa. The average shear
moduli for the overburden and diatomite were 0.09 and 0.17 GPa,
respectively. Second, we considered a model with the anticlinal to-
pography shown in Fig. 1. The estimated stress changes, based upon
these models, are shown in Fig. 15. The spatial pattern of the stress
changes are roughly similar for both models, though they vary in de-
tail and the magnitudes do vary significantly. The agreement seems
to be the best in the northwestern portion of the reservoir model, in
the area of the crest of the anticline where the topography is flatter.
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(a) (b)

Figure 13. Estimates of horizontal stress changes during February 2001 based upon volume changes estimates using an minimum norm (a) and constrained
(b) inversion. The colour scale indicates the magnitude of the horizontal shear stress while the short line segments indicate the orientation.

Figure 14. All components of stress change during the month of February in 2001, obtained by an inversion of range change, constrained by the injection and
production fluid volumes.
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(a) (b)

Figure 15. Estimated changes in the horizontal traction vector, obtained using a constrained inversion. Two different elastic models were used in these
inversions: (a) a layer over a half-space, and (b) the model shown in Fig. 1, containing an anticlinal boundary between the overburden and the reservoir.

It appears that the general features of the stress estimates for this
particular case, such as the length scale of the spatial variations and
the general spatial pattern, are probably reliable. This conclusion
only applies to the estimates associated with this field, and it is not
true for a general elastic model.

The contracted company TRE-Altamira provided estimates of
range change for the years 2001 through 2012 and for the first month
of 2013. The magnitude of the range change varies significantly in
both space and time, as illustrated in Fig. 16 for four selected time
intervals. This is most likely due to the changes in fluid injection
and withdrawal that occur in the producing field. Overall, the range
varies by several centimetres for any given month. Following the
procedure described above, we conducted inversions of the range
changes, constrained by fluid volume changes estimated from the
field fluid fluxes. For the most part, the observations of range change
are fit within a root-mean-squared value of 2 mm. The calculated
stress changes, for a depth of 180 m, that follow from the inverted
volume changes are shown in Fig. 17. The stress change varies
much more rapidly in space than does the range change, indicat-
ing the influence of the fluid volume constraints and the smoothing
of the displacement field with distance from the source. In looking
over the monthly intervals between January 2001 and January 2013,
we find that the change in the magnitude of the horizontal traction
vector varied between 0.1 and 2.0 MPa. As in Fig. 17, for many
monthly intervals the peak changes were around 0.5 MPa. For com-
parison, the compressive stress due to the weight of the overlying
material is roughly 4.5 MPa at this depth.

3.6 A comparison with well deformation and failure

While the patterns of stress change are intriguing, we do not yet have
an independent method to verify the magnitude of such changes,
particularly at depth. That is, there are no measurements of stress
or stress changes, as discussed in the Introduction of this paper. In

an effort to determine if the estimates of the strains and the stress
changes provide reasonable predictions of observations in the field,
we examined results from two wells. In the first well, a caliper log
recorded the zones of intense shearing and the depth at which the
well was sufficiently bent that no tool could pass that point. In the
second well, the failure time is accurately known, down to the exact
day, due to the loss of communication with instruments in the well.
We use our estimated stress changes to examine the conditions for
failure at the well and compare them to the observed time to failure.

As is evident from eq. (22), the calculated stress changes fol-
low from estimates of displacement in the overburden. The InSAR
data constrain the projection of displacement onto the satellite look
vector, and our fit to the range changes indicate how well we can
match observed deformation at the surface. However, for added
confidence, we would like to compare displacements measured at
depth with predicted values. One set of observations related to the
deformation at depth is provided by multifinger caliper logs that
were run in three wells in the field. The caliper logs indicate when
the orientation of the well changes. In particular, the tool can de-
lineate bends in a given well due to a concentration in strain. The
locations of the well that we shall discuss is plotted as an open
circle in Fig. 3. In Fig. 18, we compare our predictions of radial
displacement as a function of depth in the well, against the depths
of zones of observed shear strain. For the most part, the calculated
radial displacements of the well are smoothly varying in depth.
There are a handful of zones in which there are steep gradients
in calculated radial displacements with depth, due to changes in
mechanical properties across layer boundaries in the model. From
Fig. 18, we see that these zones correlate with the depths at which
bends in the well were detected by the caliper logs. The largest and
sharpest offset is associated with a tagged zone (denoted by ‘t’) in
the caliper log survey, indicating that the well was impassable at the
depth and the survey could not continue beyond that point. The size
of the jumps in calculated displacements across the layer bound-
aries are of the order of 1–4 cm, in the range of 0.5–1.5 inches of
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Figure 16. Range changes for four selected one month intervals.

shear offset obtained from the survey. The amount of deformation
is sensitive to the geomechanical properties of the medium as well
as the level and distribution of deformation induced by the injection
and production of fluids in the reservoir. As we approach the depth
of the reservoir (300 m) the assumption of elastic behaviour may be
called into question because the strains can become quite large and
the reservoir may behave plastically. Also, the results are more sen-
sitive to localized variations in the distribution of estimated volume
change within the reservoir.

Well failures, due to reservoir deformation, have accompanied
oil production from fields in the San Joaquin Valley of California
(Bruno & Bovberg 1992; De Rouffignac & Bondor 1995; Myer

et al. 1996; Fredrich et al. 2000). For this reason several studies
explored the failure characteristics of diatomite, the main reservoir
rock (De Rouffignac & Bondor 1995; Fossum & Fredrich 1998;
Fredrich et al. 2000), and of the overlying sediments where many of
the well failures tend to occur (Bruno & Bovberg 1992; Fossum &
Fredrich 2000; Fredrich et al. 2000). The Drucker-Prager (Drucker
& Prager 1952), Cam-Clay (Roscoe et al. 1958), and the ESR model
(Fossum & Fredrich 2000), an extension of the work of Sandler &
Rubin (1979) have been used to model the yield surfaces and shear
failure of both the overburden and the reservoir materials.

Given a model of the yield criterion for failure in a given for-
mation we can use our estimated stress changes to determine when
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Figure 17. Estimated of horizontal stress changes corresponding to the range change data plotted in Fig. 15. The colour scale indicates the magnitude of the
horizontal traction vector, while each line segment indicates the orientation.

failure should occur at a particular location within the overburden.
We apply this approach to a well in the field with an accurately doc-
umented failure time, located near the western edge of the field. The
lifespan for this well is accurately known because its failure resulted
in a cessation of data from downhole instrumentation. The well was
completed on 2010 August 30 and it failed at a depth of 183 m on
2012 March 31. Two failure criteria were considered, based on prop-
erties determined from laboratory experiments discussed in Bruno
& Bovberg (1992) and Fossum & Fredrich (2000).

The first failure criterion is a Mohr–Coulomb yield condition, in
which the shear strength of a material, or of an interface between

formations, τ s, depends upon the normal stress on the potential slip
plane, σ n, and the cohesion (C) of the material according to the
formula

τs = σn tan θ + C, (23)

where θ is the angle of internal friction. In this equation τ s, the
shear strength, signifies the value of resolved shear along the slip
plane that will lead to failure across the plane (Scholz 2002). Bruno
& Bovberg (1992) give Mohr envelope failure values of θ = 12o

and C = 1.6 MPa for the siltstones of the San Joaquin unit [see
also Fossum & Fredrich (2000)], the formation where the failure
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Figure 18. Radial displacement magnitude as a function of depth from a
caliper log in the well indicated by the open circle in Fig. 3. The six curves
correspond to different time intervals and the labelled values indicate the
number of months since the well was completed. The dashed horizontal
lines denote shear zones (s) determined by the multifinger caliper log. The
solid horizontal line corresponds to the depth of a tagged zone (t) beyond
which the well was impassable.

occurred. Because the failure occurred on a sub-horizontal bedding
plane the normal stress is the vertical stress σ zz which we assume
is due to the weight of the overlying sediments, 4.5 MPa, plus the
vertical stress changes due to production and injection. We have
not accounted for the contribution of the production-induced stress
changes prior to the drilling of the well. However, from our inver-
sions of the entire InSAR range change data set we have found
that the monthly variations are in the range of 0.5 MPa. We have
plotted the right-hand-side of eq. (23), with the parameters from
Bruno & Bovberg (1992) and using our vertical stress changes, as
the solid sub-horizontal curve in Fig. 19. While there are muted tem-

poral variations, the curve is generally horizontal, signifying that
the monthly vertical stress changes due to injection and production
are not significantly altering the estimated shear strength over time.
In Fig. 19, we see that the horizontal shear stresses σ xz and σ yz are
increasing roughly linearly with time. Thus, the resolved peak hor-
izontal stress is also increasing with time and reaches and exceeds
the estimated shear strength of the formation near the beginning
of 2012. This is in accordance with the failure of the well in early
2012, as indicated by the solid vertical line if Fig. 19.

The second yield condition is a Drucker–Prager failure criteria
of the form√

J2 = A + B I1 (24)

where I1 is the first invariant (trace) of the Cauchy stress tensor
given by

I1 = σ11 + σ22 + σ33 (25)

and J2 is the second invariant of the deviatoric part of the Cauchy
stress tensor given by

J2 = 1

2
Di j Di j (26)

where

Di j = σi j − 1

3
δi jσkk . (27)

The diagonal elements of the stress tensor σ 11, σ 22 and σ 33 cor-
respond to σ xx, σ yy and σ zz, respectively, and similarly for the
off-diagonal elements. The criterion (24) was introduced to treat
the plastic deformation and failure of soils and other pressure-
dependent materials (Drucker & Prager 1952). The values of the
coefficients are A = 1.88 MPa and B = 0.09 (Bruno & Bovberg 1992;
Fossum & Fredrich 2000). We assume that the initial stress field is
just due to the weight of the overlying sediments, neglecting the un-
known initial horizontal tectonic stresses. The field operator noted
that that the local stresses have been significantly altered by the in-
jection and production activities and that there no longer appears to
be a systematic direction of failure in the field. Thus, the horizontal

σ

σ

σ

(a) (b)

Figure 19. Left panel: a Mohr–Coulomb failure condition (subhorizontal solid line) indicating the shear strength of the overburden in the San Joaquin
formation. The dashed lines are the horizontal shear stress σ h, and the two components of horizontal shear stress (σ xz and σ yz computed from the estimates
of stress change). Right panel: a Drucker–Prager failure criterion (sub-horizontal solid line) and the value of the square root of the second invariant of the
deviatoric part of the stress tensor, given by eqs (22) and (23).



Estimating stress change from deformation 17

stress changes appear to be dominated by the field activities over the
time interval of interest. In Fig. 19, we plot the right-hand-side of
eq. (24), rhs = 1.88MPa + 0.09I1 as a solid subhorizontal line. The
dashed line, representing

√
J2, increases almost linearly with time.

It intersects the failure line just after the start of 2012, roughly three
months before the well fails. Thus, the estimated stress changes and
the estimated yield criteria are compatible with the observed well
failure.

4 D I S C U S S I O N

The dynamic nature of the stress field, evident in Fig. 17, provides
some indication as to why well failures are observed throughout
the field and are difficult to predict based upon large scale stress
changes. For example, there is little correlation between shear fail-
ure in wells and their position with respect to the outer edge of the
field, where the large scale and long term horizontal shear stress
is often the greatest. This was also the case for the South Belridge
Field to the north, where it was observed that well failures oc-
curred throughout the area of production rather than simply along
the perimeter or within the centre of the zone of subsidence (Hansen
et al. 1995; Myer et al. 1996; Fredrich et al. 2000). Furthermore,
an analysis of the spatial distribution of well failures at the South
Belridge field, obtained from a comprehensive database, indicates
that well damage is influenced by local patterns of injection and pro-
duction (Fredrich et al. 2000). High-resolution estimates, obtained
frequently in time, may present an opportunity to improve upon
this last observation. Specifically, we can examine how the changes
in the components of the stress tensor correlate with well failures.
Unfortunately, the time at which a well fails is not accurately known
in this field because it can be a number of months before the failure
is detected. However, during 2012 the condition of all existing wells
in the field was determined. Taking advantage of this information,
we examined all wells that were drilled between the beginning of
2010 and the end of 2012. Next, we calculated the fraction of wells
that failed in each of the 100 m by 100 m grid blocks used in our
partitioning of the field (see Fig. 4). The failed wells in the grid
blocks were then correlated with the peak of each stress component
attained between 2010 and 2012 in the grid block. The compo-
nents of stress change were estimated for a depth of 200 m, where
most well failures occur. The number of failed wells correlates most
strongly with the stress component σ zz (Fig. 20). Because we are
considering peak magnitudes, rather than signed values, there is a
positive correlation. The next highest correlation is between failed
wells and the two horizontal stress components σ xz and σ yz. These
correlations are supportive of the Mohr–Coulomb yield condition
(23) for a horizontal or subhorizontal failure surface. In that case,
σ zz may be associated with the normal stress on the plane, σ n, and
σ xz and σ yz are the shear stresses acting to cause slip on the plane.
Therefore, changes in these stress components might be expected
to lead to well failures.

5 C O N C LU S I O N S

Observed surface deformation, coupled with information on fluid
volume fluxes and elastic parameters, can provided high-resolution
estimates of stress changes associated with injection and production.
Our results indicate that stress changes at depth can vary rapidly
in both space and time due to the proximity to the injection and
production wells. The rapid spatial variations may not be reflected
in observed surface deformation, due to the smoothing of the dis-

Figure 20. Coefficients indicating the correlation between the peak values
of the estimated stress components in each grid block at 200 m and the
percentage of failed wells in that grid block.

placement field with distance from the source. The intricate pattern
of stress variations, with large stresses located throughout the over-
burden, may explain why well failures often occur throughout a
deforming reservoir and are not concentrated around the rim of a
surface subsidence bowl.

The results also highlight the non-uniqueness inherent in the in-
terpretation of surface geodetic data. While we cannot eliminate
such non-uniqueness, as it is a fundamental limitation of the data,
constraining the inversion to honour a given set of production and in-
jection data does provide an interesting solution, one that may better
reflect the spatial variation of volume change within the reservoir.
However, such constraints or penalty terms can introduce their own
set of errors, for example if the fluid fluxes are not measured accu-
rately, and the quality of the inversion may be impacted. One way
to reduce the non-uniqueness would be to combine several tech-
niques, such as borehole stress measurements, seismic anisotropy
observations, and seismic source mechanisms with our approach.
The advantages of geodetic data, its dense spatial coverage and ex-
cellent temporal sampling, could overcome some of the limitations
of seismic source inversions which depend upon natural seismic
events for sampling in space and time. Time-lapse seismic strains,
are one data set that can provide improved spatial resolution, be-
cause it is possible to estimate strains within a volume of the Earth
(Rickett et al. 2007). Such data sets also extend the applicability
of the method to offshore areas, as do observations from deep-sea
pressure sensors (Chadwick et al. 2006).

Estimates based upon a layered elastic model, a single layer over
a half-space model, and an anticlinal model produce roughly similar
solutions for the stress changes, suggesting that the general pattern
of stress change can be recovered in the absence of significant
lateral heterogeneity. The estimated stress changes depend strongly
on the spatial variations in the mechanical properties of the medium.
Furthermore, the magnitude of the stress estimates are strongly
influenced by the variations in properties with depth. Any deviations
from elasticity could be incorporated into more general viscoelastic
or elastoplastic models of the overburden. As a first step, one can
incorporate elastic coefficients that vary as the material is stressed,
allowing for the evolution of the properties of the overburden as it
deforms.
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A P P E N D I X : R E L AT I N G G R I D B L O C K
V O LU M E C H A N G E T O I N J E C T E D A N D
P RO D U C E D F LU I D V O LU M E S

Given the volumes of the various fluids, say �Vqi where i = 1,
2, . . . , Nf for Nf fluids, introduced or removed from a given grid
block we wish to estimate its fractional volume change. Needless
to say, this is a rather complicated task that will depend strongly
on the behaviour of the medium. Here, we will assume that the
grid block as a whole can be modelled as a poroelastic body
for a specified time interval. In our application the time inter-
vals are generally one month. This appendix provides an illus-
tration of the considerations that enter into the scaling between
fluid and grid block volume changes. The results will provide a
range of values for the scaling factor when the medium behaves
poroelastically.

We shall be modelling cyclic steam injection in which the du-
ration of the cycles is short compared to the lifetime of the well.
Therefore, a given well will be subject to tens to hundreds of cycles.
Typically, in a given time interval, very few wells will be under-
going their first initial injection in which the rock is fractured and
the surrounding regions is subject to significant heating. Therefore,
we shall ignore the transient effects due to the initiation of cyclic
steaming. Such effects include the temperature change around the
fracture and associated expansion as well as the porosity changes
due to the initiation of the fracture.

For simplicity, consider the effect of a net fluid volume change
dVq. For a grid block that behaves in a poroelastic fashion, the
change in confining pressure Pc and fluid pressure Pf are linearly
related to the change in grid block volume dV and fluid volume dVq

according to

d Pc = −Ku
dV

V
+ αM

dVq

V
(A1)

d Pf = −αM
dV

V
+ M

dVq

V
(A2)

dφ = −
[

(1 − φ)

Kd
− 1

Ks

] (
d Pc − d Pf

)
(A3)

where Kd and Ku are the drained and undrained bulk modulus, re-
spectively (Wang 2000). In the undrained state, the fluid content
is constant and there is no fluid transfer into or out of the sam-
ple. Drained moduli correspond to experiments in which fluid may
freely enter and exit a sample, but the pressure is held constant.
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The fluid storage coefficient M represents the amount of fluid that
can accumulate in a sample at constant volume. The quantity α

is the Biot-Willis coefficient, representing the ratio of added fluid
volume to the change in bulk volume at constant pressure. A good
discussion of these various poroelastic parameters may be found in
Wang (2000), Pride (2005, p. 264), and Vasco & Datta-Gupta (2016,
p. 92).

Because we are considering times after the initiation of injection
and fracture formation, we shall assume that the porosity change
associated with the injection may be neglected so that dφ = 0. From
eq. (A3) we see that dPc = dPf and we may equate the right-hand-
sides of equations (A1) and (A2)

(Ku − αM)
dV

V
= M (1 − α)

dVq

V
. (A4)

The undrained bulk modulus Ku may be written in terms of α, M,
and Skemptons coefficient B,

Ku = αM

B
(A5)

where Skemptons coefficient is the ratio of pore pressure to confin-
ing pressure under undrained conditions (Skempton 1954). Substi-
tuting for Ku in eq. (A4) gives
( α

B
− α

) dV

V
= (1 − α)

dVq

V
. (A6)

In order to express the parameters in this equation in terms of the
bulk moduli of the drained rock (Kd), the composite fluid (Kf), and
the solid grains (Ks), we invoke Gassmann’s eq. (Gassmann 1951)
which allows us to write the coefficient on the left-hand side as

α

B
− α = φ

(
Kd

K f
− Kd

Ks

)
. (A7)

Furthermore, one can write α in terms of Kd and Ks

α = 1 − Kd

Ks
(A8)

and eq. (A6) becomes

φ

(
1

K f
− 1

Ks

)
dV

V
= 1

Ks

dVq

V
(A9)

or

dV

V
= K f

φ
(
Ks − K f

) dVq

V
. (A10)

One can carry out the derivation for multiple fluids, generalizing
eqs (A1) and (A2) to allow for fluids with different properties.
For example, in the field application there are at least four fluid
phases, water, oil, gas, and steam. For Nf fluids where the ith fluid is
characterized by the bulk modulus Ki, we can carry the derivation
through to the final equation

dV

V
=

N f∑
i=1

Ki

φ (Ks − Ki )

dVqi

V
. (A11)

The relationship (A10) may be used to estimate a range of scaling
factors relating the net fluid volume change to the fractional volume
change of the appropriate grid block. Because the fluid flux is domi-
nated by the aqueous phase, the injected steam quickly condenses to
water, and the bulk modulus of water is the largest, we will assume
the Kf = 2 GPa, that of water. Diatomite is a silica-based rock so for
the solid grains we shall use the bulk modulus of quartz, Ks = 40
GPa. There is considerable uncertainty in the value of porosity that
we should use in the calculations. The porosity of diatomite is quite
high, exceeding 60 per cent in many instances. However, the per-
meability is quite low and much of the pore space is inaccessible.
Most of the fluid flow probably takes place within the natural and
induced fractures in the diatomite. Thus, the porosity could be as
low as a few percent, depending on the nature of the fractures. If
we allow for porosity variations between 5 per cent and 60 per cent,
a water-rich fluid, and a silica-based rock then eq. (A10) predicts
scaling factors between 0.1 and 1.




