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Abstract

Working memory refers to information actively held in the brain and is essential for advanced

functions like thinking, decision-making, or learning. In this thesis, I focus on two key

problems in working memory: 1) how to maintain a graded amplitude of a local memory in

a classical ring architecture, and 2) how to maintain a novel pattern of graded neural activity

in an unstructured network. To address these problems, I start with reexamining previous

methodologies to limit modeling possibilities. Then, I propose two neural circuit models

with dendritic bistability, each of which is treated analytically and which are robust against

various perturbations. This work links physiological properties to functionality, contributing

to a deeper understanding of the mechanisms underlying working memory.
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CHAPTER 1

Introduction

1.1. What is working memory

Working memory refers to information actively maintained in the brain without external

input. The duration of working memory is flexible. The information can be readily available

for processing for seconds or minutes. Once it is no longer being actively maintained, it

disappears immediately.

Working memory can store diverse contents. It can store a familiar item such as a red apple,

or a novel item such as a new anime character. It can store representations of an abstract

logical relation, an excerpted sentence, a piece of music, or a human face. It can hold one

item or multiple items, until it hits its capacity. It can exist in the mammalian neocortex,

and functionally similar systems also exist more broadly, including prominent work in the

vertebrate oculomotor system and the head direction system.

Working memory is of fundamental importance for the brain. It provides readily available in-

formation for many advanced cognitive tasks such as thinking, planning, or decision making.

In addition, a new input may disappear too quickly to induce any valid training. Holding

a novel memory can provide a prolonged time to help the gradual creation of long-term

memory representations by training [50]. The capacity of working memory is reported to be

positively related to intelligence and cognitive performance [41,53]. Malfunction of working

memory is associated with diseases, such as schizophrenia [43]. Overall, the importance of
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working memory in cognition and behavior calls for a more fundamental understanding of

the underlying mechanisms.

1.2. How to understand working memory

mechanisms

Given the versatility of working memory content, formal models usually focus on one type of

information, and multiple separated working memory systems may coexist in the brain [7].

In general, there are two approaches to modeling working memory.

One approach starts with a simple problem: how information, such as a binary value, can

be maintained by a neural circuit. People seek an analytical understanding of the core

mechanism by taking some mathematical simplification. Some of them are briefly introduced

below. Comprehensive overviews of such models are provided in previous reviews [10,16,

21,22,33,54,69,94,103]. In this thesis, I stick with this approach.

The other approach focuses on the functional role of working memory, that is, how it is used

in information processing. Such models are more high-level and descriptive [7,28], instead of

starting with neural circuit building blocks. Usually, there are a huge amount of parameters

in such models, making mathematical analysis infeasible. Historically, these models are

intensively studied in the language system, while recently being extended to visual-spatial

working memory [1,8,29,31,70,102].
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1.3. A brief introduction to neural modeling

1.3.1. Rate model of a neuron

A neuron is commonly modeled as a node with multiple weighted inputs and an output.

Each input is a firing rate (positive) that may vary over time, and it enters the node through

a synapse with a corresponding weight value, which can be either excitatory (positive) or

inhibitory (negative). The node sums over the products of inputs and corresponding synaptic

weights, and then puts these through a nonlinear input-output function to give an output

firing rate.

A network of mutually connected node neurons can maintain a memory. In this case, the

inputs to a node consist of a sensory input from an external signal and recurrent inputs

provided by other neurons in the same network. During a memory task, the network starts

with all neurons at a baseline level of firing. An external signal is provided for a period

of time and then turned o↵ to zero. If the weights of the recurrent connections are zero,

the neurons no longer receive input activity and therefore drop back to silence. If all the

connections among the neurons in the network are strong, the excitation of some of the

neurons by the sensory input will recurrently excite the other neurons, and this activity

will reverberate among the neurons, maintaining persistent activity after the sensory input

has terminated. When only a few neurons are strongly connected and the other recurrent

connections are near zero, local activity will persist among the interconnected neurons while

the rest remain silent, allowing the network to store a local memory in a specific subset of

neurons.

The weight values for each recurrent connection can be plastic, slowly changing by training.

The plasticity rule governing a synaptic weight is typically determined by the firing rates of

the presynaptic neuron (the neuron projecting to the synapse) and the postsynaptic neuron
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(the neuron where the synapse is located). A common form of plasticity is Hebbian plasticity,

where neurons that fire together strengthen their mutual connection weights, while other

connections weaken. This associative nature of Hebbian plasticity groups strongly firing

neurons together, providing a connectivity pattern that can support local memory.

1.3.2. Spiking model of a neuron

The rate model is a popular choice to capture the key dynamics of a neuron. However, it

can be a bit far from a real neuron, where more complex dynamics exists and may provide

a more powerful tool for modeling. Here we introduce a second model which incorporates

more biophysical details

A real neuron is more complex than a simple node. It consists of a soma, which sums in-

puts, and branching dendrites from the soma, which can receive inputs. In addition, an

axon stretches out of the soma and projects to other neurons. Di↵erent ion channels are

distributed in the surface (membrane) of the neuron. Ion channels may be gated (opened

and closed) by various factors, most commonly by membrane potential or by neurotrans-

mitters. Neurotransmitters are the messager one neuron talks to another, and there are

excitatory and inhibitory receptors. Two common classes of excitatory receptors are a-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and N-methyl-D-aspartate

(NMDA) receptors. There also exist common inhibitory receptors like gamma-aminobutyric

acid (GABA) receptors. These receptors may open upon the arrival of certain neurotrans-

mitters, allowing electric current to flow into the neuron. Neural models also include hypo-

thetical “leak” channels that model an approximately constant component of conductance

with a reversal potential below the neuronal firing threshold.

The neuron undergoes a series of dynamics after receiving an input. The neuronal input

is a temporal train of impulses, with the frequency specified as the firing rate (impulses
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per second). The arrival of an impulse leads to the release of neurotransmitter from the

presynaptic neuron, which bind to receptors on the postsynaptic neuron, opening some ion

channels in the postsynaptic neuron and eventually causing changes in the electrical potential

across the cell membrane at the site of the synapse. These potential changes propagate

along the dendrites and are summed at the soma. If the somatic (or, more precisely, axon

hillock) voltage exceeds a threshold, an action potential (voltage impulse) is generated and

the voltage is reset below the threshold. This action potential travels in two directions,

propagating through the neuron’s axon to other neurons and also, to a greater or lesser

extent depending on the neuron type [87], propagating back into its own dendrites, exerting

a postsynaptic e↵ect on these dendrites.

1.3.3. How working memory is maintained

Neural circuit models in working memory can be divided into four main categories:

(1) Network models with stationary memory. The canonical memory mechanism is

based on mutual excitation of neurons, which leads to self-sustained and stationary

memory activity when the input signal is removed. In a state space manifold,

with each point representing a particular activity pattern across the neurons in the

network, the memory can be represented geometrically as a point attractor. For

instance, a double-well attractor, which has two stable states, can retain binary

information and can be used for decision making. [42, 86, 93]. A line attractor,

which can stabilize at any scalar value along a one-dimensional region in the state

space, can be used to encode a one-dimensional variable such as occurs for encoding

eye position in the oculomotor system [20, 46, 59, 84]. A line attractor can be

periodic, the so-called ring attractor, to represent a feature in a circular space of

values, such as head direction [5,23,26].
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(2) Network models with dynamic memory. Network models of memory with non-

stationary neural activity patterns have also been proposed, motivated by the ob-

servation that the pattern of activity across neurons can vary over time during the

memory maintenance period. For example, memory activity may ramp up [16] over

time, or neurons may change selectivity [71, 72]. Even when memory activity is

non-stationary, a stable memory representation may exist. Such models can exhibit

stochastic oscillation [23], seemingly random activity [32], sequential activity [45],

or chaotic activity [9]. Overall, the mechanisms by which non-stationary activity

may maintain memories is less well defined, but is the subject of active study [25,65].

(3) Cellular-based models. Persistent memory activity may also exist in a single neuron,

without any recurrent excitation between neurons. This has been observed in vitro

for graded persistent activity [34] and in vivo for excitatory hilar mossy cells [96].

Zylberberg and Strowbridge, 2017 [103], discuss three potential mechanisms: (i)

voltage-gated Ca2+ and Na+ currents, (ii) inward currents that track intracellular

Ca2+, and (iii) Ca2+-triggered long-term changes in neuronal excitability. Such

models may be extended to the network level to obtain richer circuit dynamics.

(4) Activity-silent models. Unlike the models described above, which emphasize neu-

ronal firing, activity-silent models rely on transient changes in synaptic strength [10].

The locally stored information gradually decays if there is no subsequent activity.

This mechanism can collaborate with certain activity-based maintenance mecha-

nisms to store working memory [73], with less activity and thus higher energy

e�ciency. It is also claimed to be more consistent with an experiment [11] showing

reduced activity during the memory storage period [10].
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1.4. Working memory beyond binary

information

Most models focus on how binary or categorical information is stored in working memory.

However, the content of working memory is far more complex than binary representations.

Here, I will introduce two additional questions about the storage of more complex informa-

tion.

1.4.1. Encoding a scalar value in a ring

In everyday life, it is often necessary to memorize an object with two dimensions such

that one represents a continuous feature and the other represents the amplitude of the

feature. For instance, one might need to remember the hue of a given colored object (the

feature dimension) along with its intensity (the amplitude dimension). A central goal of this

dissertation is therefore to develop a model that can encode two dimensions, both a feature

and the related scalar.

Traditionally, feature and scalar working memory have been separately modeled despite they

are both one-dimensional. Feature models often use a one-dimensional ring attractor archi-

tecture, in which each neuron represents a location along the ring. The network maintains

a local persistent activity as memory, with the feature value encoded by the location of

the peak firing neuron. This activity has a fixed amplitude, even if input strength varies a

lot. On the other hand, scalar values are typically represented using di↵erent amplitudes

of activity. In this case, stable memory activity requires that the excitatory input perfectly

balances the inhibitory input. If the excitation is even slightly too strong, the activity will

spread across the entire network; if the inhibition is even slightly too strong, the activity will
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die out rather than being maintained. Therefore, as activity amplitude increases, the corre-

sponding inhibition must also increase by the amount that perfectly balances the excitation.

This need for fine-tuned parameters makes the system fragile, so that it will fail as a result

of any slight perturbation by background noise or any minor parameter mistuning.

To encode a feature along with its intensity, we could have a model that merges the two

approaches. Indeed, such models exist [19,20,60,98]. They are based on a ring attractor,

with an additional line attractor at each location for amplitude encoding, instead of encoding

a binary amplitude. However, these models also inherit the fine-tuning problem from line

attractor models.

1.4.2. Encoding a novel pattern

Novel encoding di↵ers mechanistically from the encoding of familiar items. In the encoding

of familiar items, the signal of an item must be repeatedly delivered to the system, training

the system to become familiar with it over hours or days, by forming an attractor. Once this

attractor is established, the system can memorize the item whenever it is presented again.

In contrast, in novel encoding, a new item can be encoded without any specific training

beforehand. For example, we can immediately memorize a new math rule, a new concept

that integrates several established concepts, or a new smell which triggers a distributed

neural activity pattern. In real life, familiar and novel encoding can work together. For

example, seeing a real red apple, I can memorize both the familiar information, a red apple,

and novel information, the surface dents and spots unique to each apple. For the sake of

theoretical modeling, I focus on the novel encoding part. Further, I narrowly deal with a

novel graded input pattern of neural activity.

It is important to distinguish between novel encoding and generalization based on the en-

coding of familiar items [51]. When a network is trained to memorize, say, pictures of lions,
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and then a picture of clouds is provided as the input, the network can represent the cloud

only with respect to its similarity to the lions. In contrast, novel encoding can memorize a

cloud of any shape. In practice, if the network’s generalization ability is strong enough to

cover many untrained inputs, the performance of the two can be similar.

Novel encoding is important for several reasons. 1) In everyday life, we often encounter

novel information. Novel encoding without a slow training process is necessary for quick

decision-making. 2) Novel encoding keeps a new pattern active for an extended time, during

which slower but longer-lasting learning processes can occur [50].

However, the majority of working memory models only work with familiar inputs. Indeed,

memorization in these models relies on attractors. Almost all of these attractors are formed,

or presumably formed, through slow training, making inputs no longer novel. However,

exceptions can exist, where attractors may be gene-encoded without pretraining, especially

for working memory related to evolutionarily important intuitions.

1.5. Complex neurons for computation:

channel and morphological properties

The modeling approaches introduced so far have been driven by the question of ”how to

maintain information”. In this section, I consider a di↵erent, yet overlapping, perspective,

which asks why single-neuron morphology and biophysics is so complex. How does this

complexity contribute to computational capabilities? In the next section, I will merge these

two perspectives and introduce my dendrite-based network models for working memory.

Neurons have complex structures. Neurons can di↵er in their morphologies and channel

types, which a↵ects their functions [66,75]. At the network level, complex neurons can be
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connected in various ways, such as the interplay of excitatory and inhibitory neurons through

dendritic or somatic connections [26,99]. In general, it is still an open question how neural

complexity contributes to network level functionalities.

In the following, I will selectively introduce certain aspects of single-neuron biophysics

that are relevant to the working memory models proposed later. For more comprehensive

overviews of neuronal biophysics and computation, see [6,62,67,78,87,88].

1.5.1. The role of NMDA receptors

NMDA receptors play a key role in working memory, as supported by experiments [90,91,

100]. Mechanistically, NMDA receptors exhibit several useful properties:

1. NMDA receptors have slow dynamics. Therefore, even though spikes may be received

at random times, NMDA receptors can smooth out this randomness and maintain a high

level of openness throughout. This allows for more stable, self-sustained neural activity, as

suggested previously [92].

2. NMDA receptors can perform coincidence detection. The opening of NMDA receptors

requires not just presynaptic input but also postsynaptic voltage. The opening requires a

short time window where both presynaptic input and elevated postsynaptic voltage approx-

imately coincide. In some cases, such as in neurons that have strong backpropagation of

action potentials, the source of the elevated voltage can be due to the postsynaptic neuron

spiking so that the NMDA detects approximate coincidences of pre- and postsynaptic spikes.

3. NMDA receptors may not merely passively add presynaptic inputs linearly but can also

provide rich dynamics that are beneficial for working memory. For instance, nonlinearities

induced by NMDA receptors may help sustain working memory [75]. Additionally, NMDA

receptors can help to mediate local dendritic voltage bistability due to the dependence of the
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conductance of NMDA receptors on postsynaptic voltage, so that the NMDA conductance

can be either high or low for a given amount of bound transmitter. Evidence has been

observed experimentally [68, 83, 95], where NMDA receptors induce voltage plateaus for

milliseconds, and models have been proposed [61,82].

1.5.2. Separated computational units

The branching dendritic morphology of a neuron suggests the presence of multiple separated

computational units. This idea has been implemented in models [77, 88] and has been

supported by some experiments [63, 79]. Others suggest that even individual spines can

function as separate computational units [6,27].

However, intracellular interactions may make these components interdependent rather than

independent. These interactions are common and may be helpful for information processing,

as in the coincidence detection mentioned above. However, these interactions could poten-

tially make dendrites less independent, thereby weakening the benefit of having multiple

dendrites. This worry is mitigated by a model [12], which demonstrates that even with

strong back-propagated somatic action potentials, dendrites still maintain a high level of

independence.

1.6. My methodology towards open questions

- adding more constraints

In this thesis, I model working memory using neural circuit models by incorporating several

constraints. Traditionally, research has focused on how simple information, such as a color, a

location, or a binary choice, can be maintained. It is a relatively easy problem that does not
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strongly constrain models, as many existing models mentioned can address it. Therefore, I

consider additional requirements that are important for working memory, which turns out to

better constrain the set of possible models. The subsequent chapters will show that models

of working memory using dendritic computation can satisfy this additional set of constraints.

1.6.1. Encoding a scalar value in a ring - broader considerations

As mentioned above, there is a trade-o↵ in sensitivity and robustness for encoding a scalar

value in the amplitude of neural activity. To ensure sensitivity under small input signals,

models require fine-tuning of parameters, making them not robust to even slight perturba-

tions. To ensure robustness to perturbations, models need to form discrete attractors, but

this has the downside of reducing their sensitivity to small signals.

Here, I consider this trade-o↵ between robustness and sensitivity in more detail. A working

memory system needs to be su�ciently robust, given the pervasive noise (or task-irrelevant

activity) in the brain. This robustness makes the system insensitive to small activity changes,

but may not reduce the system’s sensitivity to an external stimulus. That is, a small stimulus

change might trigger a sharp increase in activity, allowing the memory to transition from one

attractor state to another, thereby updating the memory. This may happen for encoding

the hue of a color or the intensity of a concept, such as friendliness. However, it seems

not the case in integrators, such as the oculomotor system or head direction system, where

experiments have shown that small stimulus changes result in small activity changes.

In addition, fine-tuning-based models [20,46,59,84] may struggle when multiple items are

encoded and compete with each other. Each memory receives not only local excitation

to maintain itself but recurrent inhibition. The magnitude of received recurrent inhibition

can vary significantly depending on factors such as the presence or absence of other in-

puts/memories. Consequently, it becomes challenging to balance a relatively fixed level of
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excitation with the varying levels of inhibition. This di�culty in achieving balance may

render stable amplitude encoding impossible in these models.

Due to these two considerations, I prioritize robustness at the price of some insensitivity in

my model. The model, which is introduced in detail below, is motivated by merging two

previous models: the integrator model with multiple bistable dendrites for robust amplitude

encoding and the classical ring model for feature encoding.

1.6.2. Encoding a novel pattern - broader considerations

Even though fast Hebbian plasticity is not well supported, the widely distributed NDMA

receptors can produce e↵ects that are analogous to fast Hebbian plasticity. That is, the

coincidence detection nature of NMDA receptors makes NMDA receptors’ activation asso-

ciative. This property can be utilized to encode information for a brief period of time [89].

If the dynamics of NMDA receptors are tuned to be bistable [61,82], the activation can be

maintained for an extended period of time just like plasticity. It is not yet clear how NMDA

receptors can be utilized in novel encoding.
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CHAPTER 2

Robust encoding of both stimulus location and amplitude in a

working memory model based on dendritic bistability

Working memory can hold basic features like orientation or location. Canonically, the mem-

ory is envisioned as a point within an attractor on a neural activity manifold, which represents

a stationary local activity pattern in a neuronal network. Implementing this concept, the

classical ring model has achieved great success. However, this model struggles with encoding

activity amplitude, which can be an important quantity for memory intensity or precision.

To address this, we propose a modified network model based on the classical ring, where

each neuron has multiple conductance-based bistable dendrites. This allows robust encoding

of memory amplitude in neural spiking by activating di↵erent dendrites. By simplifying the

spiking network to a firing rate one, we found an approximate analytical mapping between

input and memory amplitude. Di↵erent from most previous models, our model requires

no fine-tuning of parameters. Memory is robust against background noise, while amplitude

drift or location di↵usion may happen. Our model provides an example of how dendritic

properties can contribute to working memory.

2.1. Introduction

Working memory refers to memory actively held in the mind. It contains information read-

ily available for advanced cognitive tasks such as recall, reasoning, and decision-making.
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While working memory content is versatile, a popular focus is simple one-dimensional fea-

tures, including orientation, hue, stimulus luminance or vibration frequency, leading to many

experiments and computational models [16, 46, 54, 56, 64, 94]. However, the underlying

mechanisms of working memory remain not fully understood.

A ring model is a canonical model to encode a simple local feature. This includes a hue

in a color wheel or an orientation within 360 degrees. The model arranges neurons in a

one-dimensional ring, with each location corresponding to a feature value. The neurons are

connected via translationally-invariant local recurrent excitation and lateral inhibition [5,23,

26], as shown in Fig. 2.1. The strong local excitation allows for self-sustained memory in a

particular feature location. This memory stabilizes when inhibitory/decay inputs balance out

excitatory inputs in each neuron, as shown in Fig. 2.1B. Over the years, many experimental

works have found support for such a model across di↵erent species and brain regions [55,94].

However, the memory amplitude has a single fixed non-zero value and cannot encode di↵erent

amplitudes, as shown in Fig. 2.1C.

In addition to the ring model, a second class of model to encode a one-dimensional feature

is by activity amplitude. Thiscan represent useful information such as mechanical vibra-

tion frequency [15], stimulus luminance [24] or eye position [3]. In computational modeling

studies of parametric working memory [16,46,56], most previous studies have modeled the

activity by a line attractor, where each point along the line, representing activity amplitude,

is stable and maps to a certain value. Previous models for parametric working memory usu-

ally construct the line attractor through fine-tuning [20,46,59,84]. That is, the excitation,

inhibition, and intrinsic or synaptic decay processes in such models are tuned to be perfectly

balanced at any given memory firing level. Unfortunately, such fine-tuned models are quite

fragile. Even small background noise drives memory along the line attractor randomly. In

addition, slight mistuning of model parameters breaks the perfect balance, which completely

ruins the line attractor, making the memory either saturated or reduced to baseline activity.
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However, exceptions exist [47,56,74], where neuronal or dendritic bistability makes perfect

balancing possible without fine-tuning.

Therefore, it is preferred if the ring model can encode activity amplitude by including an

additional parametric working memory model. In this way, the model can encode two-

dimensional information, viz., a location code (e.g., a hue on the color wheel) and an ampli-

tude code (e.g., the intensity of the hue), which is also suggested by neural recording [2,52].

However, previous modeling e↵orts in this direction need fine-tuning of parameters as in the

parametric line attractor case [19,20,60,98].

In addition, although firing rates seem like a natural way to encode the intensity of a stimulus,

they might also be used to represent the precision or uncertainty about a given feature value.

Theoretical works [57, 85, 97] have demonstrated how activity amplitude can be used to

represent precision of locally stored memory. In the present work, the stable firing rates

could represent either the intensity or the precision of a given feature.

Here we show that dendritic bistability makes the joint coding of amplitude and location

possible without fine-tuning. We propose a ring model with each neuron having multiple

bistable dendrites. This model merges the local feature encoding and amplitude encoding

of that feature. We begin by examining the core mechanism in a simplified autapse case for

parametric working memory and demonstrate how di↵erent weight functions a↵ect memory

performance. We show that this mechanism also enables amplitude encoding in the ring

model. Next, we show the robustness of this local memory under background noise, charac-

terizing the amplitude drift and location di↵usion, and how the e↵ect of noise depends on

dendritic bistability and network connectivity. Finally, we discuss the biological plausibility,

interpretation and limitations of our model.
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2.2. Materials and Methods

In the following, we present three models based on neurons containing multiple bistable den-

dritic compartments. First, we consider an ‘autapse’ network consisting of a single neuron

with excitatory synapses onto its own conductance-based bistable dendrites. Second, we ab-

stract this model to a simplified rate-based model that is amenable to analytical study. Third,

we construct a ‘ring network’ of such rate-based multicompartment neurons to demonstrate

how a network can simultaneously and robustly encode both the location and the amplitude

of a stimulus. Below, we describe the equations governing each of these models, followed by

the simulation details.

2.2.1. Autapse model with multiple conductance-based, bistable

dendrites

The conductance-based model neuron consists of an integrate-and-fire soma electrically con-

nected to N=10 conductance-based dendrites with voltages Vd,i. The somatic voltage Vs is

governed by:

C
dVs

dt
= –IL – Id – Ie – Iton (2.1)

= –gL(Vs – EL) –
NX

i

gds(Vs – Vd,i) – gese(Vs – EAMPA) – Iton, (2.2)

where IL is the leak current, Id is the summed current from all dendrites, Ie is the current

from external excitatory synaptic inputs through AMPA receptors, and Iton is the tonic

background current. We set the membrane capacitance to C = 10 nF/mm2, the maximal

conductance and equilibrium potentials for the currents to gL = 0.5 mS/mm2, EL = –80 mV,

ge = 5.2 mS/mm2, EAMPA = 0 mV, the conductance mediating the flow of currents from
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dendrite to soma as gds = 0.007 mS/mm2, and Iton = –17.2 nA/mm2. The synaptic acti-

vation variable se obeyed dynamics described below. The firing threshold for the soma is

Vth = –50 mV. Each spike sets the somatic voltage to 30 mV for 3 ms before it resets to

Vreset = –80 mV.

The voltage dynamics of the dendritic compartments were adapted from [82], but with multi-

ple dendritic compartments, modified maximum conductance values and the inward rectifier

potassium (KIR) conductance simplified to not include a synaptically driven component:

C
dVd,i

dt
= –IL,i – Is,i – IAMPA,i – INMDA,i – IKIR,i, (2.3)

where IL,i gives the leak current, Is gives the current arriving from the soma, and the final

three terms give the currents arriving through AMPA receptors, NMDA receptors, and

inwardly rectifying potassium (KIR) channels, respectively. These currents are described by

the following equations:

IL,i = gL(Vd,i – EL), (2.4)

Is,i = kgds(Vd,i – Vs), (2.5)

IAMPA,i = gAMPAsAMPA(Vd,i – EAMPA), (2.6)

INMDA,i = gNMDA,isNMDA
Vd,i – ENMDA

1 + 0.15e–0.08Vd,i
, (2.7)

IKIR,i = gKIR
Vd,i – EKIR

1 + e0.1(Vd,i–EKIR+10)
, (2.8)

where k = 2 represents the ratio of the area of the soma to that of each dendrite, ENMDA =

0 mV, EKIR = –90 mV, gAMPA = 0.38 mS/mm2 and gKIR = 8.6 mS/mm2. The maximum

NMDA conductance gNMDA,i = 48/((i + 4.5)0.54) mS/mm2 was chosen such that each den-

drite i can be successively activated, starting from the one with the smallest value, as shown

in Fig. 2.2C.
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The synaptic activations sa obey the dynamics

dsa
dt

= –sa/ta, (2.9)

Dsa = 0.5(1 – sa), each time a spike is received, (2.10)

where a denotes AMPA (se and sAMPA) or NMDA (sNMDA) type synapses with decay time

constants tAMPA = 2 ms or tNMDA = 100 ms, respectively.

To trace out the bistable hysteretic relation for each dendrite in Fig. 2.2B, we replaced the

recurrent synaptic input to each dendrite by a manually applied excitatory spike train and

tested the response of each dendrite to di↵erent fixed levels of presynaptic input. Starting

with 0 Hz, each excitatory spike train lasted for a period of 1400 ms, and the averaged

dendritic voltages over the last 1000 ms were recorded. Next, the frequency was increased

by 1 Hz, and the recording repeated. Once the frequency reached 70 Hz, it was decreased

by 1 Hz each step until returning to 0 Hz.

To illustrate how larger external inputs successively recruit higher-threshold dendrites, en-

abling the neuron to encode graded input amplitudes, in Fig. 2.2C, we implemented the

following procedure: Vs and Vd,i were initialized to –70 mV and the system stabilized after

a period of 1200 ms before providing external inputs to the soma. Each external input was

modeled as a periodic burst of spikes for 400 ms, followed by an 800 ms delay period with

no external input. This cycle of applying external input, followed by a delay period when

the input is o↵, was repeated for di↵erent external input amplitudes, starting at 20 Hz and

increasing by 5 Hz for each subsequent input.
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2.2.2. Rate-based autapse model

The rate-based autapse model was constructed to phenomenologically capture the key fea-

tures of the conductance-based model in an analytically tractable manner. Each dendrite

exhibits a bistable response to synaptic input, and the somatic firing rate r is driven by the

sum of dendritic contributions and external input:

t
dr

dt
= –r +

NX

i=1

Di(r) + Ie, (2.11)

where Di(r) is the bistable dendritic input-output relation, Ie is the external input to the

soma, and ND is the number of dendrites. t is chosen to capture the slowest timescale of

neural activity in this simple single-equation rate model, which is set by the NMDA receptor

kinetics in the spiking model. For the current model, we focus primarily on the ability of

the model to maintain multiple stable states (dr/dt = 0), in which case the value of t is

irrelevant.

Di(r) is illustrated in Fig. 2.3A and given mathematically by:

Di(r) =

8
>><

>>:

bJ(wir – T
0
u) Activation from down- to up-state

bJ(wir – T
0
d) Deactivation from up- to down-state,

(2.12)

where b is the increment in firing rate due to a dendrite flipping from its down- to its up-

state. J(x) indicates the Heaviside (unit step) function, and T0
u and T0

d are constant up

and down thresholds with respect to the current entering dendrite i, wir. This expression is

equivalent to:

Di(r) =

8
>><

>>:

bJ(r – Tu,i) Activation from down- to up-state

bJ(r – Td,i) Deactivation from up- to down-state,

(2.13)
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where the e↵ective up and down thresholds with respect to the presynaptic firing rate r into

dendrite i are Tu,i =
T0
u

wi
and Td,i =

T0
d

wi
.

We derive the graphical band of dendritic feedback
PN

i=1Di(r) in Eq. 2.11, shown in Figures

2.3A and 2.3B, as follows. The total dendritic activity
PN

i=1Di(r) can be plotted as a relation

of the firing rate r by stacking the corresponding hysteretic rectangles on top of each other,

forming a band. We denote the stair-like edges of the band, which are defined by the set of

individual dendrite up and down thresholds Tu,i and Td,i, as Bu(r) and Bd(r), respectively.

The coordinates, with the firing rate r along the horizontal axis and the total dendritic

activity along the vertical axis, of the upper left corner of each step in Bu and Bd are:

[
T0
u

wi
, bi] and [

T0
d

wi
, bi]. (2.14)

In this manner, the shape of the band reflects the specific set of weights wi.

Stable memory states in the absence of external input (Ie = 0) occur when the total dendritic

feedback
PN

i=1Di(r) term in Eq. 2.11 balances the intrinsic neuronal decay term –r during

the delay period, i.e. when r =
PN

i=1Di(r). Graphically, this occurs when the band in Figure

3B intersects the diagonal, 45� line that represents the amplitude of the decay term –r.

For ease of analysis, if wi changes gradually in the range N � i � 0, we can approximate the

discrete set of wi by a continuous function w(x) so that the coordinates of the points in the

continuum plot are given by:

[
T0
u

w(x)
, bx], (2.15)

An analytic formula for the continuum approximation of the edges of the band can be derived

as follows by approximating the sum of dendritic activations by an integral:

Bu =
NX

i=1

bJ(r –
T0
u

wi
)! Bu ⇡

Z N

0
bJ(r –

T0
u

w(x)
)dx. (2.16)
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The Heaviside function in the integral equals 1 for w(x) � T0
u/r and 0 otherwise. For a

weight function w(x) that decreases monotonically with x, if a dendrite x⇤ is activated, all

dendrites with labels x < x⇤ are also activated. The analytical formula for the upper band

edge is:

Bu(r) = bw–1(
T0
u

r
), for r  T0

u/w(N) (2.17)

and similar reasoning applies to deriving the lower edge of the band.

From the above expression, we can derive the minimum value of a steady-state stimulus Ie

that can be encoded in memory. From Eq. 2.11, the steady-state value of the firing rate

before any dendrites turn on is given by r = Ie. The first dendrite turns on when this value

reaches the x-intercept of the band Bu(r) = 0. Thus, the minimum value of stimulus that

can be encoded is given by Bu(Ie) = 0.

From Eq. 2.11, during the encoding period, the steady-state equation is given by:

Bu(rm + Ie) = rm, (2.18)

where rm is the memory amplitude and we assume the firing rate does not decrease past the

down-threshold line Bd(r) during the memory period. This equation defines the location of

the green dots in Figures 2.3C and 2.3D, and we note that such a stable fixed point can only

exist at values for which the band Bu(r) has a slope less than unity, ab
T0
u
< 1, so that it can

intersect the shifted decay line y = r – Ie (Figures 2.3C and 2.3D, rightmost dashed lines).

During the delay period, the firing rate decreases due to the removal of Ie, but the firing rate

is maintained (Figures 2.3C and 2.3D, tip of top red arrow).

As an example, we next derive the conditions for achieving a linear relation between the

strength of external input Iext and the memory amplitude. Equal spacings are required

between Tu,i of successively recruited dendrites. This can be achieved by a weight function
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of the form wi =
a

i+b in the discrete case, where a and b are constants. In the continuous

case, the analogous equation is w(x) = a
x+b , giving a straight line for Bu as shown in Fig.

2.3C. Solving for w–1(x) and substituting into Eq. 2.17 gives:

Bu(r) =
ab
T0
u
r – bb, (2.19)

which has an x-intercept Bu,th = T0
ub
a that defines the minimal steady-state external input

required to activate any dendrites. Based on Eq. 2.18, we can solve for the memory amplitude

for Ie > Bu,th:

rm =
ab(Ie – Bu,th)

T0
u – ab

. (2.20)

Fig. 2.3 shows plots for the autapse model with b = 1 Hz, T0
u = 9 Hz and T0

d = 2 Hz.

For the discrete case in Fig. 2.3B, dendritic weights follow wi =
30

(i+9)1.4
, with i from 1 to

ND = 10. For the continuous limit, the Bu and Bd lines are plotted in Figures 2.3B-D with

di↵erent weight functions. In Figures 2.3B and 2.3C, the weights obeyed power law decays

w(x) = 30
(x+9)1.4

(Fig. 2.3B) and w(x) = 4/(x + 1) (Fig. 2.3C). In Fig. 2.3D, the weights

obeyed a (half) Gaussian w(x) = e
– x2

2⇥14.142 . Fig. 2.3E summarizes the relation between

external input and memory amplitude for all three weight functions.

2.2.3. Rate-based model with ring architecture

2.2.3.1. Basic dynamics with the ring architecture

Similar to classic ring models [5, 23, 26], our ring network has N neurons arranged along

a one-dimensional ring, with symmetric and rotationally invariant excitatory weights wij.

The weight value decays as the neuronal distance |i – j|, with a value limited to [0, N/2] for

periodicity. Formally in the model, each of the N=360 neurons in the network excitatory

connection projects to a separate dendrite on itself and every other neuron in the network.
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Thus, the number of neurons formally equals the number of dendrites of a total of N dendrites.

However, in practice, for synaptic weight functions that are spatially local, there is e↵ectively

only input to a much smaller number of dendrites on each neuron. The firing rate ri of the

neuron i follows the dynamics:

t
dri
dt

= –ri +
NX

j=1

Dij(rj) + Ie,i, (2.21)

where Dij(rj) is the dendritic bistable input-output relation of the jth dendrite, receiving

input from neuron j, Ie,i is the external input. Dij(rj) is defined analogously to Di(r) in the

autapse model:

Dij(rj) =

8
>><

>>:

bJ(wijrj – T
0
u) Activation from down- to up-state

bJ(wijrj – T
0
d) Deactivation from up- to down-state.

(2.22)

Note a change in labeling. In the autapse case, each dendrite is specified by i. However,

in this context, each dendrite is specified by its presynaptic neural label j and postsynaptic

neural label i. Here, as in the autapse model above, t is chosen to capture the slowest

timescale of neural activity in a simple single-equation rate model of the neuron. Explicit

inclusion of synaptic or dendritic dynamics would not change the steady-state dynamics

during the memory period that are the primary focus of this work, but would change the

detailed dynamics of approach or decay from such steady states due to external inputs or

mistuning.

For a local Ie,i, all dendrites of a neuron i can still be conceived of as forming a bistable

band consisting of individual e↵ective thresholds, analogous to the autapse case. However,

because each dendrite receives input rj from a di↵erent neuron, the pattern of dendritic

activations onto neuron i now depends not only on ri but also on the specific, non-unique

set of firing rates of the other neurons in the network. Thus, any plots of such a bistable

band as a relation of the neuron’s firing rate need to be understood as either specific to the
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exact manner in which the other neurons were activated or, if bands generated for di↵erent

network patterns of firing are not too di↵erent, as an approximation, as shown in Fig. 2.4A,

left. In the analytic calculations below, we find that we can approximate certain features

of the network response, like the peak of the bump of firing as a function of the external

stimulus strength, by making the following approximation:

Dij(rj) =

8
>><

>>:

bJ(wijRjrA – T0
u) Activation from down- to up-state

bJ(wijRjrA – T0
d) Deactivation from up- to down-state,

(2.23)

where we approximate that rj can be decomposed into the product of a fixed shape Rj,

whose peak rate is 1, and a changing scalar rA, which increases as the overall activity rises.

This approximated decomposition is e↵ective for analysis, even though, in real simulations,

a larger rA can change the overall shape Rj. Next, we have:

Dij(rj) =

8
>><

>>:

bJ(rA – Tu,ij) Activation from down- to up-state

bJ(rA – Td,ij) Deactivation from up- to down-state,

(2.24)

where the e↵ective thresholds are Tu,ij = T0
u

wijRj
and Td,ij =

T0
d

wijRj
. Working under this

assumption, in this paper we focus on the bistable band of the peak neuron, for which the

bump amplitude rA is the same as the peak firing rate rp.

2.2.3.2. How weight determines the relation between external input and

memory amplitude

Similar to the autapse case, the synaptic weight function wij approximately determines the

relation between external input and memory amplitude. Below, we analytically show how

to derive a weight function that approximately gives a linear mapping between the strength

of the external input stimulus and the height of the memory pattern of activity (as defined

by the firing rate of the neuron at the peak of the bump of activity).
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For simplicity, we assume that T0
d is low enough to prevent any dendrites from flipping

from their up to their down states during the delay period. Therefore, we can focus on the

dynamics during the encoding period, where Dij(x) is e↵ectively a step function:

t
dri
dt

= –ri + b
NX

j=1

J[wijrj – T
0
u] + Ie,i. (2.25)

Next, we proceed to the continuous limit as was done in the autapse case. If we choose

N = 360, neural label x and z can be also viewed as degrees in the ring:

t
dr(x)

dt
= –r(x) + b

Z N

0
J[w(x – z)r(z) – T0

u]dz + Ie(x). (2.26)

where the x-z term indicates the distance, with a value limited to [-N/2, N/2] for periodicity

and with the weight profile function w(x-z) a function of the absolute value of this modulo

di↵erence. w(x – z)r(z) gives the e↵ective input current received in dendrite z of neuron

x. If this input exceeds T0
u, J(x) gives 1, with the corresponding dendrite activated. The

integration counts the total number of activated dendrites, satisfying w(x – z)r(z) > T0
u.

Multiplying by the factor b then gives the total dendritic contribution to the steady-state

neural firing. Since this contribution is also the total firing following the o↵set of the external

input as no forgetting happens, we will refer to this below as the memory activity M(x).

If we assume that the memory activity pattern M(x) approximately follows the pattern of

the external input Ie(x), with both having the fixed symmetric profile R(x) in the continuum

limit with its maximal value of 1, then we can define Ie(x) = Ip ⇥R(x), M(x) = Mp ⇥R(x),

and r(x) = (Ip +Mp)⇥ R(x), where Ip is the peak rate of input and Mp is the peak rate of

memory.

Without loss of generality, we set x = 0 as the location of the peak of R(x). Since we are

primarily concerned with the magnitude of the peak firing rate for a fixed shape, we focus

on x = 0. With these considerations, the stable solution based on Eq. 2.26 can be rewritten
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as:

Mp = b
Z N

0
H[(Ip +Mp)w(z)R(z) – T

0
u]dz. (2.27)

To get a linear input-memory relation Mp = aIp + b, we need to solve:

aIp + b = b
Z N

0
J[(Ip + aIp + b)w(z)R(z) – T0

u]dz. (2.28)

This integral equation can be solved graphically, as shown in Fig. 2.4E. The product of

two symmetric functions w(z) and R(z), both centered at x = 0, results in the dendritic

input, another local concentric symmetric function w(z)R(z), as illustratively plotted. The

threshold line is T0
u/((1+a)Ip+b). For any z where the dendritic input exceeds this threshold,

it activates a dendrite. The total number of activated dendrites is represented by the length

of the green segment, which equals aI+b
b . Altogether, we can express the coordinate of the

red dot in Fig. 2.4E along the composite function w(z)R(z) as:

(
aI + b

2b
,

T0
u

(1 + a)I + b
). (2.29)

We can reparametrize it as:

R(x)w(x) =
T0
u

(1+a)(2b|x|–b)
a + b

. (2.30)

Finally, the desired weight function is:

w(x) =
T0
u

(1+a)(2b|x|–b)
a + b

1

R(x)
. (2.31)

Thus, the weight function for producing a linear output is a shifted power-law term as

in the autapse case, multiplied by 1
R(x) to compensate for the e↵ect of input shape. For a

perfectly flat output, this reduces to the formula found for the autapse case. For maintaining

a finite width bump of activity, R(x) from the above formula would go to 0, leading to an

infinite weight w(x). Furthermore, even before this blow up, w(x) in the above formula

becomes non-monotonic due to the rapidly increasing values of R(x) near the edges of the
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bump. Therefore, in our simulations, we enforce a monotonically decreasing weight function

by truncating (setting to 0) the values of w(x) at the point that w(x) stops monotonically

decreasing. As shown in Figures 2.4F and 2.4G, this still results in a highly linear memory

activity versus input amplitude relationship.

2.2.3.3. Simulation details in the noise-free case

Figures 2.4-2.7 show the simulations of the ring under di↵erent conditions. Ie,i followed

a (truncated) Gaussian function, Ae
– |i–j|2
2⇥102 , where A is the amplitude. |i – j| refers to the

distance between neuron i and neuron j, which is the peak of the Gaussian function is

located at, j = 180. The distance is bound between 0 to N/2 due to the periodicity of the

ring model network. Ie,i was applied for a duration of 1000 ms (the ‘encoding period’), which

is su�cient for the network activity to reach equilibrium. The input was then turned o↵,

and the subsequent ‘memory period’ activity was simulated for a duration of 1000 ms for

Fig. 2.4. A shifted power law weight function wij =
15

(|i–j|+2)2
was used. Other parameters

remained unchanged from Fig. 2.3, b = 1 Hz, T0
u = 9 Hz, T0

d = 2 Hz, and we set t = 50 ms.

For Fig. 2.4, the input amplitude A = 12, 20, 28, or 36.

In Figures 2.4B and 2.5A, to give intuition for the relationship between the ring model and

the simpler autapse model, we numerically generated a bistable band for a particular neuron

for a particular strength and profile of external excitatory and inhibitory input. For the

up band, for a given neuron i in the presence of a stimulus, we can plot the total dendritic

response,
PN

j Dij against the neuron’s firing rate ri with time parametric in the plot, i.e. the

resulting band edge Bu indicates the trajectory of the firing rate over time. In Fig. 2.4B,

this was done for the neuron with peak firing rate and for initial condition ri(t = 0) = 0, and

for applying a constant external stimulus input A = 100. We note that the resulting band

shape depends upon the stimulus strength and profile because the flipping on of dendrites

depends upon the firing rates of the neurons a↵erent to them – while these other neurons’
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firing rates approximately go up and down together with the firing rate of neuron i that is

plotted along the x-axis, the exact relationship depends upon the exact shape of the bump

of network activity, which in turn depends upon the stimulus.

To identify the down threshold band Bd(r), we first shut o↵ the input, allowing the firing

rate to stabilize. We then apply a uniform inhibition (-15 Hz in Fig. 2.4B) large enough to

shut o↵ the memory-storing activity. The resulting Bd(r) is a trace in time of the memory

decay from the initial value until zero firing rate. Similar to the discussion in the paragraph

above, while activity of the di↵erent neurons in the network approximately goes up and down

together, the exact form of Bd(r) depends on the exact shape of the bump of activity at any

time during the shutting o↵ of the memory, and this shape depends both on the initial stable

memory activity profile before inhibition was applied and also on the shape and strength of

the inhibitory input used to turn o↵ the memory activity.

In Fig. 2.4F, G, we checked the performance for a linear input memory relation. The linear

relation Ip = aMp + b has a = 0.5 and b = –1. We further used a fixed Gaussian shape,

R(x) = e
– x2

2⇥102 . Together, from Eq. 2.31, this yields a weight function w(x) = 9
6|x|+2e

x2

2⇥102 .

In the simulation, we used this new weight function, but truncated after |x| > 9 to ensure

w(x) is a local decay function, and with x discretized in increments of size dx = 0.05. With

input amplitudes taking integer values from 6 to 15, the memory changes agree with the

desired linear relation, as shown in the red dashed line in Fig. 2.4G.

2.2.3.4. Simulation details with noise

For all simulations with noise, spatially and temporally independent Gaussian noise with

a zero mean was applied to each soma with a time step of 1ms, with standard deviations

as specified below. All other model parameters are identical to Fig. 2.4, unless otherwise

specified.
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We show the drifting of memory amplitude in the presence of noise in Fig. 2.5B for a memory

period of duration 9000 ms. The standard deviation of noise is 2, 10, or 15, and the external

input amplitude A = 8, 26, or 80. For each condition, 5 trials were conducted, and the peak

firing rate was estimated by averaging the firing rates of the 10 highest firing neurons.

In Fig. 2.6, we compare the bistable model to its classical limit. A recurrent inhibition term

– aN
PN

j=1 rj was added to the right hand side of Eq. 2.21. To compensate for the additional

inhibition, we adjusted T0
d to 1 Hz. The standard deviation of noise equaled 10, and A = 12.

For each a value, from 0 to 2, with a step size of 0.4, 10 trials were simulated. We estimated

the memory width by averaging across trials the width of the bump of activity at half of its

peak rate, calculated at the end of the delay period. The classical limit was taken by setting

T0
u also to be 1 Hz. For Fig. 2.6C, a smaller distractor input centered at neuron 100 was

applied, with A = 8 and a = 1.

In Fig. 2.7, we study location di↵usion under noise. The memory period is set to 9000ms.

The same recurrent inhibitory term as Fig. 2.6A were used with a = 1. We adjusted T0
d to

1 Hz. In Fig. 2.7A, T0
u is 1, 1.2, or 1.4 Hz. Memory location was estimated by the center

of mass. Traces in Fig. 2.7B, with increasing darkness, represent location di↵usion with A

= 12, 15, or 18. Each trace in Fig. 2.7 was obtained by averaging over 400 trials, with no

spontaneous decay of activity happening throughout the delay period.

2.2.4. Numerical simulation of di↵erential equations

For all simulations, we integrated the di↵erential equations using Euler’s method with a time

step of 0.01 ms for the spiking model and 1 ms for the rate-based ring model, except for Fig.

2.4B, where 0.01 ms was used for better approximation. Code was written in python version

3.9.16.
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Figure 2.1. A classical ring model and its limit. A, The classical ring model. Neurons are arranged in a one-
dimensional ring with local excitation between close neurons (blue) and board inhibition between distant
neurons (gray). B, Excitatory and inhibitory contribution in each neuron. As neural firing rate (x-axis)
increases, more excitatory activity and activity decay are induced (y-axis). The stable activity is given by
the intersection (green) where the total activity (gray) equals the activity decay (dashed). C, Incapability
of amplitude encoding. Under a local input with di↵erent firing rate amplitudes, only two stable memory
states exist, either a fixed amplitude or baseline activity.

2.3. Results

2.3.1. Amplitude encoding in autapse with bistable dendrites

While we primarily focus on working memory of amplitude at a given location, we start by

studying amplitude encoding alone with an autapse model. The autapse is a self-connected

neuron with simple discrete line attractor dynamics. Its performance is qualitatively identical

to the network model mentioned later which also includes location memory. In this section,

we first introduce a spiking autapse to demonstrate amplitude encoding. This is followed by

an explanation of the underlying mechanism using a rate model simplification. We further

demonstrate how di↵erent synaptic weight functions a↵ect memory performance.

2.3.1.1. A spiking autapse with multiple bistable dendrites

We built a spiking autapse to demonstrate amplitude encoding in a biologically plausible way.

Here, each connection projects to a separate dendrite, as shown in Fig. 2.2A. All 10 dendrites

are identical except for di↵erent NMDA conductance values, gNMDA. Each dendrite shows
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Figure 2.2. The spiking autapse model for amplitude encoding. A, The autapse model with dendritic self-
connections. The autapse implements conductance-based dynamics with an integrate-and-fire soma. The
external input (red) is directly into the soma. The recurrent input is directed into 10 dendrites, with di↵erent
gNMDA values, see Materials and Methods for more details. B, The hysteretic input-output relations of ten
dendrites. The input frequency in x-axis is periodic impulses, and the dendritic voltage in y-axis is averaged
over 1000 ms. The arrows (top) show the directions for hysteresis. Dendrites with smaller gNMDA values
are plotted at the bottom. C, Amplitude encoding by activating dendrites. As input frequency increases in
each temporal burst (top), dendrites are activated by order starting from the one with the largest gNMDA
(middle). The dendrite colors match those in B. During the delay period, the activated dendrites are self-
sustained, with frequency increasing in proportion to the number of activated dendrites (bottom).

a bistable dendritic input-output relation, with conductance-based dynamics modified from

a previous model [82] (See Materials and Methods). As shown in Fig. 2.2B, starting with

a voltage around –80 mV (up-state) or 0 mV (down-state), once the synaptic activation

exceeds a up (down) threshold, the dendrite voltage activates (drops) to an up/down-state

due to the sudden opening (closing) of NMDA receptors. Moreover, a higher gNMDA gives

lower thresholds, as plotted at the bottom.

Amplitude encoding is possible with the help of bistable dendrites. In Fig. 2.2C, we apply

multiple inputs, each with a duration of 400 ms, followed by a delay period of 800 ms when

the input is o↵. The input starts with a frequency of 20 Hz, causing the dendrite with the

largest NMDA conductance to be activated to a voltage plateau (blue line, middle). The

activation leads to sustained memory activity during the delay period. The stepwise increase

in input frequency by 5 Hz activates successively more dendrites, resulting in larger memory
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Figure 2.3. [The rate-based autapse model for amplitude encoding. A, Rate model to capture key behavior
in the spiking model in Fig. 2.2B. Left, the input-output relation Di(r) of a dendrite i. The y-axis represents
dendritic activity contributed to the somatic firing rate. Di(r) is flat with jumps at up and down thresholds,
whose values are inversely related to synaptic weight value wi. Right, multiple Di(r) with a common x-axis.
Dendrites have smaller gNMDA values at the bottom. The y-axis is changed to the total dendritic activity of
all dendrites. B, A bistable band in the discrete or continuous case. Multiple dendrites form a band with two
lines Bu, Bd for up and down thresholds, either in discrete jumps or smooth approximations. The green line
represents the memory attractor, where the total dendritic activity, the gray lines, equals the activity decay,
the diagonal line. The curve in the continuous limit agrees with the discrete case through step corners. C,
How to encode memory. An external input Ie raises the stable point from baseline to the green dot. The
rate at which the firing rate changes during the encoding period is proportional to the di↵erence indicated
by the blue double arrow. Its removal moves the stable point horizontally leftward to a point within the line
attractor. D, Same as C, but with a di↵erent weight function. It leads to a di↵erent bistable band, where
memory is relatively high even when the external input is barely encodable. In other words, the memory
amplifies the external input. E, The mappings between input and memory amplitude under di↵erent weight
functions.

activity. The process demonstrates how dendrites can function as separated memory units,

enabling amplitude encoding through dendrite-wise recruitment.

2.3.1.2. The core mechanism for amplitude encoding

For ease of analysis, we simplified the spiking autapse to a rate model, as shown in Fig. 2.3.

Some approximations are made: 1. we assume there are N independent dendrites; 2. for

dendrite i, the dendritic input-output relation Di(r) has flat up and down-states, as shown
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in Fig. 2.3A, left. We treat the contribution of each up-state dendritic voltage to the firing

rate as a constant b, while a down-state causes no firing; 3. the conductance dependence

of thresholds is simplified to be Tu,i = T0
u/wi and Td,i = T0

d/wi, where gNMDA in the

spiking model is simply captured in the rate model by the synaptic weight wi, and T0
u, T

0
d

are constants. Because all Di(r) relations share the same horizontal axis, firing rate r, they

can be stacked to reflect the summed e↵ect of all dendrites,
PN

i=1Di(r). This is plotted in

Fig. 2.3A, right, with the vertical axis showing the total dendritic activity of all up-state

dendrites. We will use this rate model simplification for the rest of the paper.

How does a neuron with multiple bistable dendrites maintain a finely discretized set of values

in memory? The summed e↵ect of dendrites,
PN

i=1Di(r), forms two lines Bu, Bd, consisting

of e↵ective up and down threshold values. The region between them creates a bistable

band. In the continuous limit, as shown in Fig. 2.3B, the Bu and Bd lines become two

lines. The equilibrium memory states exist if the total dendritic activity equals the firing

rate,
PN

i=1Di(r) = r (See Materials and Methods). This results in a finely discretized set

of stably maintained values, represented by the intersection of the bistable band with the

green unity slope line in Fig. 2.3B. Notably, the existence of the near-continuum of stable

states does not require fine-tuning of parameters due to the bistable band.

Amplitude encoding is achieved by recruiting dendrites to the up-state. Starting with

all dendrites in the down-state, an external input Ie sets the new stable condition to be
PN

i=1Di(r) = r – Ie, moving the dashed line rightward, as shown in Fig. 2.3C. Once Ie

exceeds the minimum up threshold, it causes dendritic activation, leading to recurrent exci-

tation, and the system stabilizes at the green dot. The removal of Ie reduces dendritic input,

moving the stable point horizontally leftward to the line attractor. The formed memory has

an amplitude proportional to the number of up-state dendrites, multiplied by a factor of b. If

larger Ie is applied, more dendrites get recruited, moving the green dot higher and resulting

in a larger memory.
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During the encoding period, the speed at which the firing rate changes is proportional to the

vertical di↵erence between line Bu and r – Ie, as indicated by the double arrow in Fig. 2.3C

(see Materials and Methods, Eq. 2.11). For this paper, we focus on maintaining a stable

memory of the amplitude of an input; see previous works [47,56,74] on temporal integration

of an input in models with a similar implementation based on bistability.

2.3.1.3. How the weight function a↵ects memory performance

The mapping of input and memory amplitude is determined by the synaptic weight func-

tion. As shown in Fig. 2.3C, any increase in Ie moves the stable point upward along line

Bu, recruiting more dendrites for memory. The shape of line Bu (or Bd) is controlled by

the synaptic weight function. For example, a linear mapping between input and memory

amplitude is possible, with w(x) = a/(z+b) for positive constants a and b (see Materials and

Methods). An example is shown by the blue line in Fig. 2.3E. On the other hand, for di↵er-

ent weight profiles, the mapping can exhibit a saturating shape (Fig. 2.3E, orange curve).

Such a saturating shape implies that a larger portion of the firing rate range of the neuron

is devoted to smaller input values and could be useful if a task demands more sensitivity to

low-amplitude stimuli. Generally, depending on the task demand, the corresponding optimal

weight function may be formed through plasticity.

In addition, it may be desirable for a system to be able to have a small threshold for inputs

to generate large, very stable memory activity. This is possible if there are many dendrites

with weights similar to the largest weight, leading to bistable band shapes such as that

shown in Fig. 2.3D. Once the small signal activates the dendrite with the largest weight, the

recurrent excitation can activate these dendrites, leading to a big jump in activity, as shown

by the green line in Fig. 2.3E. By adjusting the weight function, the model can control the

trade-o↵ between amplifying a small signal [13] or faithfully encoding the small signal.
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Figure 2.4. Amplitude encoding in the ring model with dendritic bistability. A, Network architecture.
Left, each neuron receives recurrent inputs through separate dendrites. The connectivity is excitatory and
stronger for nearby neurons. Right, each dendrite is bistable with thresholds smaller for larger connectivity
strength. B, Approximated bistability band of the peak firing rate neuron, acquired from simulations with
time parametric (See Materials and Methods). C, Amplitude encoding. The input is Gaussian. Each input
amplitude induces a di↵erent memory amplitude of the same shadeness. D, The mapping between input and
memory amplitudes in C. E, Comparing e↵ective up threshold and e↵ective inputs. It is an illustrative step
of the underlying network dynamics during the encoding period. See Materials and Methods. F, Memory
activities for under a particular weight function. As the input amplitude increases linearly, the resulting
memory activity is plotted. The simulation is done in the continuous limit, with a weight function calculated
to approximate a linear mapping between input and memory. G, Matching a desired linear mapping. Blue
dots: the simulated mapping between input and memory amplitudes for F. The red dashed line: the desired
linear mapping.

2.3.2. Working memory in the ring model with bistable dendrites

Here we implemented dendritic bistability into the classical ring network conventionally used

to store location information. Our model has N = 360 neurons, as shown in Fig. 2.4A, with
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two main modifications. First, instead of point neurons, each neuron has N dendrites. Each

recurrent connection from neuron j goes into a separated dendrite of neuron i with weight

wij. Second, each dendrite is bistable (See Materials and Methods).

This network encodes amplitude in a way similar to the autapse. The main di↵erence is that

instead of self-excitation, this network relies on mutual excitation to maintain the memory.

Unlike the autapse, each dendrite of a given neuron depends upon a di↵erent presynaptic

neuron for its activation. As a result, the bistable band of activity defined by the activations

of each dendrite of a neuron as that neuron’s firing rate increases and decreases now depends

explicitly on the pattern of activity generated in other neurons. Nevertheless, for a given

amplitude and shape of network activity, one can numerically plot such a bistable band

for a given neuron, providing a qualitative analog to the analytical insights a↵orded by the

autapse model (Materials and Methods). This is demonstrated for the peak firing neuron

for a Gaussian-shaped external input in Fig. 2.4C. Under di↵erent input amplitudes, the

network can maintain di↵erent memory amplitudes, as shown in Fig. 2.4C.

The input-memory amplitude relations are determined by the weight function similar to

the autapse case. An example is shown in Fig. 2.4D. In general, it is possible to derive

an approximate weight function to achieve any desired relation. An example is shown in

the continuum limit in Fig. 2.4F, G, where a linear relation is achieved for the calculated

weight function, see Materials and Methods. This relation agrees well with the theoretical

prediction, represented by the red dashed line in Fig. 2.4G.

There exists a trade-o↵ between the amplitude and the minimal width of a local memory.

As shown in Figures 2.4D and 2.4F, the memory bump is wider for a larger amplitude.

This is because, to achieve a larger amplitude, more dendrites need to be maintained in

the up-state for the peak neuron. This requires these dendrites to receive strong enough

recurrent input, which necessitates strong firing of more surrounding neurons, making the

bump wider. In the case of holding multiple items in memory, a wider bump is more likely
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Figure 2.5. Drift of memory amplitudes under noise. A, How noise a↵ects existing memory amplitudes.
Three illustrative stable points (a, b, c) are plotted to represent encoded memory amplitudes. Noise will
drive them left or right along the flat up- or down-state unless the stable point crosses the thresholds. B,
How memory amplitude drifts over time. The y-axis represents the estimated peaking firing rate. Memories
remain stable under small noise (top). Under moderate noise (middle), the high-amplitude memories (green)
decay, while the low-amplitude memories drop to the baseline activity. Su�ciently large enough noise erases
all memories (bottom). 5 trials are shown under each condition. See Materials and Methods.

to interfere with other memory bumps and cause errors in maintaining the items. Indeed,

the memory network here can maintain quite general multimodal shapes, although we focus

on the storage of unimodal, Gaussian inputs in this paper.

2.3.3. Memory robustness under perturbations

2.3.3.1. Amplitude drift

Noise may degrade memorized amplitude in di↵erent ways, depending on the local geometry

of the memory activity. This idea is illustrated in Fig. 2.5A, with three exemplar memories

stabilized in points a, b, and c. For memory ‘b’, a moderate level of noise drives its stable

point back and forth horizontally (gray shaded) without crossing line Bd. Therefore, the

fluctuation has no e↵ect on average, although this robustness comes with a trade-o↵ in

sensitivity (See Discussion). In contrast, the same noise is enough to drive the memory

‘a’ out of the bistable band, deactivating some dendrites and leading to memory amplitude
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decay. With a slightly lower amplitude of ‘a’, the distance between the stable point and line

Bd is wider, which can prevent further decay. We define such restabilization of memory at

a lower amplitude as the ‘decay mode’. When noise drives memory ‘c’ across line Bd, the

reduction in amplitude leads to more and more dendritic deactivation, as the distance goes

narrower. We define the reduction of amplitude to the baseline as the ‘drop mode’. Note

that, for the shown example, it is less likely that the noise drives the stable point rightwards

across line Bu, leading to a higher amplitude, as this requires the noise magnitude to be

greater than the input amplitude.

In Fig. 2.5B, we plot the memory traces in the presence of independent Gaussian noise

applied to each soma for three amplitudes with 5 trials each (Materials and Methods). When

the standard deviation of the noise input applied at each 1 ms time step is 5, it is too small

to drive the stable point across the bistable band, and all amplitudes are maintained (top).

A larger noise, std = 10, causes the memories with a higher amplitude, green lines, to slowly

decay to a lower level (middle). In contrast, the memories with a lower amplitude, red lines,

drop to the baseline level activity. Further increasing the noise makes all memories drop to

the baseline activity (bottom). The details of how memory degradation occurs depend on

the shape of the bistable band, the input magnitude and the noise level. See the Discussion

for possible interpretations of these modes.

2.3.3.2. Local memory and the e↵ect of recurrent inhibition

Di↵erent from the classical ring model, the ring model with dendritic bistability does not

require recurrent inhibition to stabilize a localized memory. Classically, a ring model [5]

needs recurrent inhibition to maintain a localized bump of neural activity [37]. Our model

with dendritic bistability provides another solution. As long as the noise in dendritic input

does not change the dendritic state, it causes no further change to the activity and does

not destabilize the memory. In Fig. 2.6A, we compare the bistable model with its classical
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Figure 2.6. The e↵ect of recurrent inhibition. A, Under di↵erent inhibition strength values. Three memories
are plotted, each with a di↵erent value of recurrent inhibition strength value. For a step function dendrite,
the existence of local memory requires su�cient recurrent inhibition. But for a bistable dendrite, a local
memory always exists. B, Memory width under changing inhibition strength. Memory width is firstly
estimated at the half value of the maximum memory activity and then averaged over 10 trials. See Materials
and Methods. C, Recurrent inhibition reduces distraction. For a central, strong input with an additional
smaller perturbation aside, recurrent inhibition is desired to suppress irrelevant information.

limit, where each dendrite follows a step function. For the step function, a local memory is

possible only if the recurrent inhibition is strong enough. In contrast, for the illustrated set

of parameters, the bistable dendrite model is much less sensitive to the recurrent inhibition

values. Fig. 2.6B further shows the averaged width for a range of recurrent inhibition

values. However, recurrent inhibition can still be helpful even in the bistable model. Adding

recurrent inhibition can suppress irrelevant, distractor signals. An example of this is shown

in Fig. 2.6C, where the larger input peak is the real signal and the smaller peak is from the

distractor input.
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Figure 2.7. Di↵usion of memory locations under noise. The input is turned o↵ after 1000 ms. The location
variance is obtained by averaging over 400 trials. A, Dendritic bistability reduces location di↵usion. Each
line is generated with a di↵erent dendritic bistable range. The reduction is significant even when the range
of bistability is very small. Note that the bistable range drawn is for illustration, not drawn to scale relative
to ones in Fig. 2.6. B, Larger input amplitude reduces location di↵usion. A larger input amplitude (darker
trace) results in a smaller location di↵usion over time.

2.3.3.3. Location di↵usion

Memory location undergoes di↵usion under noise. Compared with the di↵usion in the clas-

sical limit in Fig. 2.7A (blue), the di↵usion is drastically reduced when dendrites become

bistable (orange and green). Note that even for a bistable band width as small as 0.4 (green),

the di↵usion is almost negligible. Similar reduction has also been previously modeled with

bistable neurons [18]. Interestingly, the variance of location still grows approximately linearly

with time, exhibiting a di↵usion process as proposed by previous analytical models [17,57].

Mechanistically, bistability reduces drift because changing the pattern of firing rates requires

turning on or o↵ dendrites, which requires having su�ciently large noise to cross dendritic

thresholds. In addition, a higher memory amplitude leads to smaller di↵usion, as shown in

Fig. 2.7B. This occurs because the memory with larger activity exerts more recurrent inhibi-

tion to suppress the di↵usion. See the Discussion for a potential relation of this observation

to the precision of encoding stimuli.
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2.4. Discussion

Amplitude encoding in a given location is a challenging problem for neural circuit models.

Here we propose a network model based on dendritic bistability. By recruiting di↵erent

dendrites, the model is able to encode amplitude in a biologically plausible way without

fine-tuning parameters. The bistable band formed by the weight function controls the input-

memory mapping, to satisfy di↵erent memory requirements. Furthermore, we have shown

memory robustness under noise, both in amplitude and location, is provided by dendritic

bistability.

It is possible to extend from the current focus on a single local memory to a multimodal

memory; the same dynamic equation, Eq. 2.21, still works if the input is multimodal with

di↵erent amplitudes. Interference can be caused by the widths of local memories, where the

trade-o↵ between amplitude and width mentioned above can play a role. On the other hand,

if the network consists of a pool of separate autapses, a graded input pattern with multiple

values can be encoded with pixel precision by mapping them to these autapses.

2.4.1. Biological plausibility and alternative implementations

Dendritic bistability is the building block of our model. The utility of this concept was first

modeled by Lisman, et al. in a conductance-based model based on widely distributed NMDA

receptors [61]. A subsequent work [82] demonstrated that, with the help of the KIR current,

dendritic bistability can exist for a wide range of cellular parameters. NMDA receptors have

been demonstrated to be critical to working memory function [90,91,100]. However, it is

unclear whether this is simply due to their slow kinetics or is more fundamentally related

to their potential ability to mediate bistable dendritic activity. Physiological recordings

have shown that NMDA receptors in dendrites can cause prolonged voltage plateaus lasting
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hundreds of milliseconds [68,83,95], but more direct evidence is needed to determine whether

dendritic bistability can sustain itself for seconds in working memory tasks.

In our model, each dendrite functions as a separate memory unit, and the total number

of dendrites per neuron limits the maximum resolution for amplitude encoding. Long-term

plasticity and neuron morphology may help to increase this number. Experiments suggest

that each dendrite can function as a separate unit [63,79,88], possibly even at the level of

individual spines [6,27]. In simulations, we set the synaptic weight to decay rapidly so that

only about 20 dendrites are recruitable for each neuron, while other dendrites have e↵ectively

zero synaptic weight.

In addition to dendritic bistability induced by NMDA-receptors, there are alternative ways

to achieve bistability. They include cellular bistability/multistability mechanisms [69,103]

or network-level bistability [56]. Such mechanisms may o↵er alternative implementations

for our model. For example, dendrites of a currently modeled neuron can be mapped to

separate neurons which receive recurrent inputs. These neurons then project to a common

neuron, which is corresponding to the soma and provides recurrent output to other neurons.

Such an organization with receiving neurons converging to an output neuron may exist in

minicolumn. In this alternative implementation, those neurons mapped by dendrites need

cellular bistability, while cellular bistability [58], or multistability [34], have been observed

in the brain. In this alternative implementation, layer 4 neurons need cellular bistability.

In this way, there could be a much larger number of separated bistable units compared to

bistable dendrites in a single neuron, potentially increasing amplitude resolution.

Moreover, the memory is essentially stored as activated dendrites, which function similarly

to potentiated synapses. Interestingly, a small number of studies have shown that short-term

potentiation can depend on presynaptic input and NMDA receptors [35,76].
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2.4.2. Sensitivity to external input and robustness under noise

Our model involves a trade-o↵ between sensitivity and robustness. A wide bistable range

in dendrites is good for robustness under noise. However, this comes at the cost of reduced

sensitivity to small external stimulus change, as it becomes more di�cult to overcome the

thresholds. This insensitivity may not be a problem if the small stimulus increase actually

induces a large input jump as can occur for a band shape such as that shown in Fig. 2.3D.

However, in general, if a system needs to encode a smaller input than that required to cross

the threshold for activating dendrites, this can be a problem. For example, experiments

studying the encoding of head direction coding in Drosophila even small head velocity inputs

can move the bump of activity that encodes head direction. At least in some systems, the

trade-o↵ between sensitivity and robustness may be mitigated by allowing the dendritic

input-output relation to switch between bistable and sigmoid. This can be realized by

e↵ectively adjusting synaptic weights or, on a shorter time scale, by modifying dendritic

current [82]. A potential mechanism for the latter could be dendritic disinhibition [99] which

could provide a fast, active switch when the task requirements shift between sensitivity and

robustness.

2.4.3. Interpretations for memory amplitude and experimental

connections

Memory amplitude can be interpreted in two common ways: as the input intensity at a

location or as the precision of the location. Input intensity could be the strength of a stimulus

in tasks where the stimulus amplitude needs to be encoded, regardless of the amplitude over

which it is presented. Alternatively, the input intensity could represent an accumulation of

the external input, as occurs in accumulation of evidence tasks [3,4,30]. In this case, a band

with edges parallel to the unity line would enable inputs beyond a threshold strength to be
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mathematically integrated, although inputs smaller than this threshold would be ignored [47,

56,74]. Bayesian models of sensory coding have alternatively suggested that the amplitude

of neuronal firing can encode the precision of a stimulus, with higher firing rates indicating

higher precision. In this case, the ability to robustly sustain multiple firing rates could be

useful for stably remembering the precision of stimuli, for example for use in cue combination

tasks that require combining stimuli according to their uncertainties [57,97]. Altogether, this

diverse set of applications suggests a need for the nervous system to be able to robustly store

activity in a manner that encodes not only categorical or positional information, but also

graded amplitudes. While many models of working memory focus primarily on mechanisms

governed by network connectivity, with very simple single-neuron response properties, this

work demonstrates how the nonlinear capabilities of active dendrites may provide a cellular

mechanism that complements and makes robust network interactions.
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CHAPTER 3

Encoding a novel pattern in working memory via dendritic

bistability

Working memory can hold a variety of information and is crucial for understanding cognition.

Commonly, people study the encoding of familiar and simple information, such as hue,

orientation, or head direction. However, real world information can be novel and complex.

In this study, we investigate how to encode a novel pattern with graded values. We propose

an unstructured network model in which each neuron has multiple bistable dendrites. The

dendritic dynamics e↵ectively give fast Hebbian plasticity and enable robust encoding of

a novel pattern under various perturbations. Through analytical study, we characterize

the network dynamics of memory encoding and retention. We further identify conditions

for perfect memory, and characterize di↵erent error patterns due to neuron interaction and

saturation. Additionally, our model exhibits resistance to strong inhibitory perturbations.

Our model provides an example of how dendritic computation can solve a hard working

memory task.

3.1. Introduction

Working memory refers to a diverse range of information that can be temporarily held in

mind. The content can include hues, locations, words, odors, music excerpts, or images.

Working memory serves as the foundation for many advanced cognitive processes, such as
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decision-making, thinking, and recall. Despite its importance, the underlying mechanisms

of working memory are not well understood.

The majority of working memory models focus on familiar and simple information. For

example, binary information, such as a decision out of two choices, can be represented by

the activity of one of two neural groups [42,86,93]; a scalar, such as the shade of a stimulus

or the muscle strength for controlling eye position, can be represented by the amplitude of

memory activity in a non-periodic line attractor [20,46,59,84]; and a periodic scalar, such

as a hue on a color wheel or a specific orientation among 360 degrees, can be represented by

local persistent activity in a periodic, type of line attractor known in one-dimensional as a

ring attractor [5,23,26].

In these models, an attractor in activity state space is required to attract memory activity

into a certain stable and stereotypical form. However, the formation of such an attractor

is typically assumed to require a prolonged training to adjust network connectivity, demon-

strating a lack of flexibility in encoding a novel memory without a pre-existing attractor.

Novel encoding, which refers to the ability to hold a working memory without any prior

training, is crucial for human cognition. In everyday life, we often encounter novel informa-

tion and can make flexible decisions based on it. Such information may include a new word,

a new odor, a new mathematical rule and so on. On the other hand, a prolonged training

signal may not always be available during attractor formation, especially when dealing with

a fleeting novel input. Therefore, novel encoding is necessary for holding the input and

providing the necessary prolonged signal [50].

Despite its importance, there are few e↵orts to model novel encoding and they primarily

focus on encoding simple information. They are generally divided into two approaches:

no training at all or fast training. The first approach often relies on cellular mechanisms

[40, 49, 69, 103]. When memory is maintained by intrinsic mechanisms within a single
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neuron, it may bypass the training happening between synaptic connections between neurons.

On the other hand, although training is usually slow, the second approach assumes fast

Hebbian plasticity, enabling one-shot training to encode a novel input [38,81]. Experimental

evidence exists for fast Hebbian plasticity [36,76,80], but it is not yet strong. Additionally,

for other forms of fast plasticity, such as short-term plasticity or behavior time-scale plasticity

[14], the connection to novel encoding remains unclear.

The memorized information for the novel encoding models mentioned above is unrealistically

simple. For models based on cellular mechanisms, only a binary or graded value can be held

in a neuron. For models using fast Hebbian plasticity, memory is represented as a binary

local pattern, neglecting any graded-value information [38,81].

In this paper, we model novel encoding of a pattern with graded firing rates across neurons.

This novel pattern can represent flexible content, whether explicit or implicit. For example,

it could be a newly defined word, where each neuron maps to a word with a known definition,

and its firing rate reflects the relevance of that word to the new one. Alternatively, it may

represent an abstract, encrypted form of information, such as a new odor that elicits a

distributed firing pattern.

We propose a network model for encoding a novel pattern. The model consists of a homo-

geneous network where each neuron possesses multiple bistable dendrites. These dendrites

can be achieved by NMDA receptor dynamics [61,82] and e↵ectively exhibit a form of fast-

Hebbian plasticity, enabling novel pattern encoding. The structure of the paper is as follows:

First, we discuss the basic performance and show the robustness of novel encoding under

various perturbations. Next, we explain the detailed network dynamics during the encoding

and memory periods. Then we analytically derive the input function for a perfect memory

and identify various error patterns. Additionally, we show memory resilience to a strong,

localized external inhibitory input that silences a small portion of the network. Finally,
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we discuss biological plausibility, di↵erent model interpretations, and comparisons with two

other pattern encoding approaches.

3.2. Results

3.2.1. Network structure and basic performance

To demonstrate the principle of novel encoding in a network of neurons with multiple bistable

dendritic compartments, we first constructed an idealized network with N = 2500 neurons,

all-to-all connected with weights equal to 1 (Fig. 3.1A). Each neuron is identical and has

N = 2500 identical dendrites (Fig. 3.1B). Each dendrite receives a recurrent dendritic input

(Fig. 3.1B). All dendritic outputs are summed in the soma along with the external input

to determine the firing rate. The core structure lies in each dendrite, which has a bistable

input-output relation with up and down-thresholds Tu, Td (Fig. 3.1C). Each dendritic up-

state contributes b to the somatic firing. Importantly, the somatic e↵ect of a neuron x can

backwardly lower the e↵ective up-threshold Te
u of all its dendrites:

Te
u(x) = Tu – af(x), (3.1)

where f(x) is the firing rate and a is the strength factor. We also require Te
u(x) > Td.

This bistable dendrite, with its a box-like bistable range and the somatic e↵ect, qualitatively

captures the performance of previous conductance-based models [61,82] based on NMDA

receptors and the back-propagation of action potentials, which is also reproduced in the

spiking model discussed below.

These bistable dendrites function as basic associative memory units. During the encoding

period, a dendritic up-state can be activated by the combination of a high presynaptic to
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Figure 3.1. Network structure. A, Unstructured neural network. A fully connected network with N=2500
neurons and uniform weight w=1. B, Multicompartment neuron. Each neuron has N separate computational
units, which are assumed to be dendrites. See Discussion for more details about biological plausibility.
Each dendrite receives recurrent input from other neurons (with self-connection) and outputs to the soma.
The firing rate equals the summation of all dendritic outputs and the external input in the soma. C,
Bistable dendrite input-output relationship. The dendritic input and output follow a bistable relation with
up and down thresholds Tu and Td. In addition, the somatic firing f i can e↵ectively lower Tu. The
e↵ective up threshold is modeled by Te

u = Tu – af i, which qualitatively captures the e↵ect from the voltage
backpropagation from the soma to all dendrites of a neuron. See Fig. 3.8 for a spiking neuronal network
version.

the dendrite and a high postsynaptic firing rate, which lowers Te
u. This e↵ectively acts as

fast Hebbian plasticity with binary values, but is based on activity instead of actual weight

change. During the memory period, as long as the dendritic input remains higher than Td,

a dendritic up-state is maintained, and the memory activity of a neuron is proportional to

the total number of its up-state dendrites.
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Figure 3.2. Example of novel pattern encoding. Top panels: Performance in two-dimensional representation.
Left, a graded cloud picture (50x50) is chosen as the input. Each pixel maps to a neuron in the network,
with its intensity equal to the neural firing rate. Right, the resulting memory maintains a similar graded
pattern despite some small distortion. Lower panels: One-dimensional representation of the firing rates of
the neurons, ordered according to the input firing rate, which equals their input intensity. Left, external
input to each neuron. Right, memory activity of each neuron following the o↵set of the external input.

An example of the performance of our model is shown in Fig. 3.2, top. A graded cloud

picture with 50⇥50 pixels is chosen as a novel pattern. Each pixel maps to a separate neuron

within the network. During the encoding period, the external input strength received by

each neuron equals the corresponding pixel intensity. During the memory period, after the

external input is turned o↵, a stable activity pattern maintains graded values similar to the

original input despite some distortion. See Appendix A for simulation details.

For ease of analysis, we convert both the external input and the resulting memory into a one-

dimensional coordinate. Because the network is unstructured, each neuron is anatomically

equivalent. Without loss of generality, we can relabel the neurons based on the external

input intensity in descending order, resulting in a non-increasing intensity values Ii, which
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is approximated to be a continuous function I(x), as shown in Fig. 3.2, bottom left. In

addition, as explained in more details below, because a larger input induces a larger memory

response, the memory is also a non-increasing M(x) under the same neural label.

Before we proceed, there are some clarifications: 1. We chose a large value of N for ease of

analysis. While N = 2500 separate dendrites may be too large for a neuron, and a novel

pattern with N = 2500 entries may also be too hard for human memory, a large N value

allows the performance of this discrete network simulation to approach its continuous limit,

simplifying analysis. See discussion for equivalent model implementations at the synaptic

or cellular level, which allow for more computational units. We do discuss a spiking model

later in the paper with fewer neurons. 2. The cloud picture is just an example to visualize a

novel pattern. Our model is not directly related to how a cloud picture is actually encoded

in the brain, which involves multilayer information processing from the photoreceptors of

the eye to visual cortex. 3. The minimum external input is set to zero for simplicity. The

following results still hold if it is larger than zero. 4. We focus on the memorization of relative

intensities within an input pattern. The averaged firing rate di↵erence between input and

memory is ignored. We assume that the di↵erence, which is captured by an overall scaling

factor, can be encoded by a separate parametric working memory system [16,46,56].

3.2.2. Memory robustness against perturbations

A major feature of our model besides encoding a novel pattern flexibly is that the encoded

memory is robust against various perturbations. We first show the robustness against a

small somatic noise level during the memory period in Fig. 3.3A. The noisy memory can

be decomposed into two parts: a fluctuating part, where the noise drives the memory up or

down (shaded band), and a stable part (dark red line) contributed by up-state dendrites.

Notably, the stable part aligns well with the noise-free memory shown in Fig. 3.2 (dotted

red line), whose activity is entirely due to up-state dendrites. The reason for this robustness
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Figure 3.3. Memory performance with somatic noise or connectivity variations. A, Performance in the
presence of noise injected to the somatic compartment. Gaussian random noise with zero mean and standard
deviation 0.1 is applied to each soma independently. The averaged memory (dark red line) is computed over
500 ms, with a band representing its standard deviation. The dotted line is the memory replotted from Fig.
3.2 for comparison. Inset: A schematic plot illustrating how noise can drive a stable point in a bistable
dendrite back and forth along its original stable point. See more details in the text. B, Same as A but with
a noise standard deviation of 0.3. Noise not only leads to fluctuations, but also causes the high firing rate
part of the memory to drop. Inset: Similar to A, but now some dendrites flip to the down-state due to noise.
C, Performance under connectivity variations. Three possibilities are implemented. Left: The unperturbed
memory replotted from Fig. 3.2. Top Right: Memories resulting from noisy weight values from a Gaussian
distribution of connection strengths with mean 1 and standard deviation 0.1, 0.5, or 1, respectively. Middle
Right: Memories resulting from uniform weight sparse connections with a connection probability of 50%,
10%, or 1%. Bottom Right: Memories resulting from a connectivity pattern in which connections only exist
between local neurons, within a radius of 20, 10, or 5, in a space defined by two-dimensional pixels. The
memory encoding is surprisingly robust for all but the most extreme connectivity modifications. The same
graded scale bar is used to help direct comparison. See simulation details in appendix A.

against noise lies in dendritic bistability. As shown in Fig. 3.3A (inset), noise changes

the dendritic input, shifting the stable point (red) back and forth. However, small noise is

insu�cient to drive the stable point across Tu or Td, thus causing no change in the state or

the resulting dendritic output.
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On the other hand, larger somatic noise can trigger a positive feedback loop. Unlike the small

noise case, larger noise may cause a dendritic input to cross Tu, leading to larger dendritic

output which recurrently increases dendritic inputs. This can create a positive feedback

loop, where excitation leads to more recurrent excitation, it causes runaway excitation that

potentially can destabilize the system. However, it is not always the case in our model. If a

dendrite is already saturated in the up-state, the increased dendritic input does not change

the dendritic output. Similarly, if a dendrite is in the down-state, the increased dendritic

input may not be strong enough to activate the dendrite to the up-state. Therefore, the

threat of a positive feedback loop can be mitigated by zero feedback. Similarly for the case

related to Td. An example is shown in Fig. 3.3B, where noise drives some dendrites in high-

firing neurons from the up-state to the down-state, while low-firing neurons remain almost

una↵ected by both the noise and the recurrent changes.

Somatic noise has other e↵ects. In either the small or large noise case shown in Figures 3.3A

or 3.3B, the averaged memory in low-firing neurons is slightly larger than the unperturbed

memory. This occurs because firing rates are non-negative, and the noise can not drive them

below zero, resulting in a net excitatory e↵ect. In addition, if noise is applied during the

encoding period, it is encoded along with the novel input pattern, as the network makes no

distinction between input arising from the novel pattern or the noise.

We further show the memory robustness against variations in connectivity. For visual clarity,

memories are presented as two-dimensional pixels with the same graded scale bar as in

Fig. 3.2B. Three common variations are considered in Fig 3C: random weight values in

a uniformly connected network (top), sparse connectivity (middle), and local connectivity,

where connections only exist between neurons that are close enough in two-dimensional

space (bottom). In each case, the network can robustly encode a novel pattern similar to

the unperturbed case (left), unless the variations are extreme. For example, the memory

is clearly degraded when the standard deviation of weights approaches its mean value 1
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(top, rightmost); when the connection probability drops to 1% (middle, rightmost); or when

the connectivity exists only within a narrow radius of 5, in a space of 50 ⇥ 50 pixels. See

Appendix A for implementation details.

3.2.3. Detailed network dynamics during the encoding and the

memory periods

How can a graded pattern be encoded? In this section, we provide a detailed breakdown of

the network dynamics during the encoding and memory periods. Because of the particular

importance of the encoding dynamics, we start by developing some intuition for this dynam-

ics. Fig. 3.4A shows neurons in the network, where a higher-firing neuron has a lower Te
u

value. All dendrites of a particular neuron ⇤, as shown in Fig. 3.4B, receive graded dendritic

inputs from recurrent connections and share the same Te
u determined by the firing rate of

neuron ⇤. A dendrite is activated if the input it receives exceeds Te
u. As shown in Fig.

3.4C, the total dendritic output is given by counting all activated dendrites and multiplying

by the up-state contribution factor b. The soma then integrates this total dendritic output

with the external input it receives to get an updated firing rate. Through this procedure,

each neuron receives identical but graded dendritic inputs due to the uniform connectivity.

What di↵erentiates the activation in each neuron is the somatic e↵ect. A neuron with a

higher firing rate has a lower Te
u for all its dendrites, allowing at least the same amount

of, or possibly more, dendrites to activate. As a result, as shown in Fig. 3.2, the memory

activity proportional to the number of activated dendrites follows a non-increasing function

if ranked by the input intensity.

Next, we formally describe the encoding dynamics in the continuous, noise-free limit in which

the continuum identity of neurons is labeled by x. During the encoding period, firing rates

are non-decreasing such that only the Tu branch of the dendritic bistability gets involved.
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Figure 3.4. Detailed dynamics during the encoding and memory periods. A-C, Illustrative plots of encoding
dynamics. A, A list of network neurons ranked by external input intensity, each of which has multiple
bistable dendrites. A neuron with a high firing rate has a low Te

u due to the somatic e↵ect. B, All dendrites
of a given neuron. Dendrites are labeled by their presynaptic neurons. The somatic e↵ect uniformly reduces
Te
u (purple bar) of all its dendrites. Dendrites also receive recurrent inputs of graded values (green sticks)

through uniform weight w = 1. C, How firing rate is determined. If a dendritic input exceeds Te
u, the

dendrite is activated. Each activation contributes b to the somatic firing. The soma sums an external input
(blue) with all up-state dendrites, with each contributing b to the somatic firing. Down-state dendrites have
no e↵ect. D-F, Detailed encoding dynamics, drawn to illustrate Eq. 3.3. D, The green curve indicates the
firing rate f(x) at a particular time step. f(x) is the summation of external input I(x) and the total dendritic
output D(x). The purple curve indicates the e↵ective up-threshold Te

u(x), which is inversely related to f(x).
The plot is done at the equilibrium limit, while the dynamics shown are generally true. E, For a particular
neuron x⇤, all its dendritic inputs, whose values are simply the uniform weight times the firing rates, are
plotted. Dendritic inputs are ranked by the same input intensity order as in D. All dendrites in x⇤ shares a
common Te

u(x⇤). The portion of dendrites activated is shown by the red segment. F, D(x⇤) is updated to
a new value, which is proportional to the total number of activated dendrites, by a factor of b. This new
D(x⇤) is fed back to A, iteratively in time, until the system stabilizes. See more details in the text in Results.
G-I, detailed memory dynamics, drawn to illustrate Eq. 3.4. G, After I(x) is turned o↵, D(x) remains in
the system. Note that the y-axis is rescaled from F. H. The dashed dark red segment shows the portion of
dendrites with inputs above Td. I, The dashed dark red segment shows the maximally sustainable activity.
If the total dendritic output D(x) falls below this line, it means existing dendritic activity is sustainable such
that D(x) becomes M(x). See more details in the text in Results.

In Fig. 3.4D, the firing rate, f(x) = I(x) + D(x), sums the external input I(x), and the total

summed output of all dendrites D(x). For each neuron x, its Te
u is lowered by the somatic

e↵ect: Te
u(x) = Tu – af(x). Zooming in on all dendrites of a neuron x⇤ in Fig. 3.4E, the

synaptic inputs to the dendrites of a given neuron is given by wf(x) = f(x) (due to the
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uniform weight w = 1), where each dendrite is specified by its presynaptic neural label. If

a dendritic input exceeds the e↵ective up-threshold, f(x) > Te
u(x⇤), a dendrite is activated.

Because of the non-increasing nature of f(x), the total number of up-state dendrites equals

the length of the solid red line:

f–1(Te
u(x⇤)) = f–1(Tu – af(x⇤)), (3.2)

where we assume the existence of the inverse function f–1(x). Finally, we have new D(x):

D(x) = f(x) – I(x), as shown in Fig. 3.4F. This is fed back to Fig 4D iteratively until the

system is stabilized. It gives a dynamical equation as:

t
df(x)

dt
= bf–1(Tu – af(x)) + I(x) – f(x), (3.3)

with a time constant t, capturing the slowest timescale of neural dynamics. See Appendix

A for the discrete version of dynamics with dendritic dynamics.

After dendrites are activated, we turn o↵ I(x), reducing the steady-state value of f(x) to D(x)

and check if the activated dendrites can be recurrently sustained. Similar to the encoding

case, we zoom in on all dendrites of a neuron x⇤, as shown in Fig. 3.4H. An activated

dendrite can still be sustained if its dendritic input exceeds Td, wD(x) > Td. Technically,

we need to check this inequality for every dendrite. However, given the non-increasing nature

of D(x), the total number of sustainable dendrites equals the length of dashed dark red line,

D–1(Td). If the length exceeds the number of actually activated up-state dendrites for each

neuron, D–1(Td) > D(x)/b, all activated up-state dendrites are preserved with the memory

M(x) = D(x). Equivalently, it happens when the maximum sustainable activity (indicated

by the dashed dark red line) exceeds the total dendritic activity (solid red line) as shown in

Fig. 3.4I.

Next we examine the conditions under which forgetting of the novel encoded memory can

happen . If Td is increased, D–1(Td) decreases, and the inequality, D–1(Td) > D(x)/b, may
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not hold for some dendrites. As the number of actually activated up-state dendrites can

never exceed the total number of sustainable dendrites, forgetting happens, described by the

dynamics:

t
df(x)

dt
= bMin[D–1(Td), D(x)/b] – f(x), (3.4)

where the memory M(x) is given by the stabilized D(x). Notably, the forgetting may not

lead to instability, and a graded pattern can still be maintained in this case. The intuition

is provided in the text describing Fig. 3.3B.

The above treatment of dynamics assumes that the network is noise-free, and I(x) (or the

induced f(x), D(x), or M(x)), is approximately a non-increasing function. In this way, we

can view the total number of up-state dendrites as the length of the dashed red line in Fig.

3.4E. In the presence of noise, the dendritic input to the leftmost neuron may be accidentally

below Te
u, making the total number of up-state dendrites slightly smaller than the length of

the dashed red line.

3.2.4. Perfect memory and functional separation of two neural

groups

Given the dynamics in Equations 3 and 4, we can solve for when a perfect memory arises,

i.e., a memory proportional to the input function by a scaling factor so there is no distortion.

This requires D(x) / I(x) / f(x) at the end of the encoding period, and no forgetting during

the memory period, M(x) = D(x). With detailed algebra in Appendix B, we arrive at a

solution for the perfect memory:

I(x) = Tu – bA – (
Tua
A

– ab)x, (3.5)

Tu  (1 + a)(Tu – bA), (3.6)

Td  (1 – a)bA, (3.7)
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Figure 3.5. Memory that perfectly matches a partially linear input up to a scaling factor. A, A particular
form of external input gives a perfect memory. The external input I(x) (blue) follows a partially linear form,
separated by the blue dot. For neural labels smaller than the blue dot, the input is linear with a fixed slope
determined by the exact location of the blue dot. For neural labels larger than the blue dot, the input is
arbitrary within the gray box. The resulting memory (red) is proportional to I(x), as it perfectly overlaps
with I(x) after rescaling (thick shaded red line). See more details in the text. B, The dendritic state of all
dendrites under the memory. Each pixel represents a dendrite, with white indicating an up-state and dark
indicating a down-state. The memory activity is proportional to the total number of up-state dendrites, as
summed along the y-axis (double arrow line), by a factor of b. A memory forms an e↵ective network, with
each neuron having some up-state dendrites (in-degree) and activating up-state dendrites in other neurons
(out-degree). The location of the blue dot in A separates the network into two groups: the mutual-correlated
group in high firing neurons, where they have both in-degree and out-degree and the mutual-separated group
in low firing neurons, where they have only in-degree.

where the non-negativity of Tu, I(x) requires Tu < bA , 1 � a > 0, and A takes an arbitrary

value between 0 to 2500.

To achieve a perfect memory, the external input I(x) needs to be partially tuned. For x

between 0 and A, I(x) needs to be linear; for x between A and N, I(x) can be any pattern.

An exemplar I(x) is given in Fig. 3.5A alongside the resulting memory M(x). The manually

chosen point A, indicating the horizontal position where the linear part ends, is marked by

the blue dot. M(x) perfectly matches I(x) after rescaling, as indicated by the shaded red

line. This holds true for arbitrary I(x) values within the gray box. See Appendix A for more

simulation details.

To understand why this partially linear form of I(x) works, we take a digression to examine

all dendritic states of a given memory. As visualized in Fig. 3.5B, each pixel represents

a dendrite, specified by its pre and postsynaptic neuron labels. More up-state dendrites
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(white) are found in the lower left corner, where both pre and postsynaptic neurons have

high firing rates. Neurons form an e↵ective network through dendritic states in such a way

that each neuron has some up-state dendrites (in-degree), whose summation is proportional

to its firing rate, and activates up-state dendrites in other neurons (out-degree). Importantly,

we define two neural groups: the mutual-correlated group, which consists of neurons with

both in-degree and out-degree connections, and the mutual-separated group, which consists

of neurons lacking out-degree connections.

We can gain some intuition as to why this partially linear I(x) works. In the mutual-

correlated group, neurons are highly interactive. To prevent unwanted interaction-induced

error, the input to this region must be well-tuned to follow a particular linear pattern. In

contrast, in the mutual-separated group, each neuron has no out-degree and thus does not

a↵ect others. Therefore, it can fire at any rate, without any interaction-induced error.

3.2.5. Di↵erent errors formed during the encoding period

If I(x) does not follow the special partially linear form in Eq. 3.5, a graded memory can still

be encoded, but distortion can occur even in the noise-free case. In this section, we examine

four types of errors that happen during the encoding period, with the assumption that no

forgetting happens in the later memory period.

3.2.5.1. In-degree error

Ideally, a local increase in the external input should induce a memory increase at the same

location, whose magnitude is proportional to the input increase. If this is true, an input

pattern with arbitrary intensities can be memorized perfectly, as it just consists of an aggre-

gation of many small input increases.
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Figure 3.6. Distortion of the memory activity in response to localized perturbations of neural firing rates.
A, How memory responds to a local extra input to neurons in the mutual-separated group. The memory
response is local. The blue dot separates the mutual-correlated group (left) from the mutual-separated group
(right). B, The detailed encoding dynamics of A. This plot merges dynamics from Figures 3.4D-F into a
single plot with the same legends. The gray lines indicate how the blue dot is determined mechanistically.
See more details in text. C, How memory responds to a local extra input in the mutual-correlated group.
Memory changes in three locations, as indicated by the red arrows. D, The detailed encoding dynamics of C.
E, An illustration of how interactions lead to multiselectivity. Neurons are separated into di↵erent regions,
with region 1 being just the mutual-separated group. These groups are determined by the spiraling gray line
starting from the point of the smallest Te

u value. See more details in the text.

However, this does not always hold for this network. In general, the increased magnitude is

determined by a nonlocal e↵ect in addition to the input increase, and the induced memory

can be in multiple locations. Let’s first look at the first case, where “in-degree error” happens.

The local memory response upon a local input increase is shown in Fig. 3.6A. Fig. 3.6B
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illustrates the encoding dynamics if the input increase is infinitesimal, where we merged all

three panels in Fig. 3.4D-F into a single panel for simplicity. As in Fig. 3.6B, the memory in

neuron x⇤ is proportional to the length of the red segment. An increase in input to neuron

x⇤ lowers Te
u(x⇤), activating more dendrites/in-degree and increasing M(x⇤). The extent of

this increase depends on the slope of f(x) at the location of the red arrow. In other words,

memory increase locally in x⇤, which is proportional to its in-degree, depends on a nonlocal

slope, which thus causes in-degree error.

Fig. 3.6B also shows mechanistically how neurons are separated into mutual-correlated and

mutual-separated groups during the encoding period. The blue dot indicates the separation

neuron, which has just 0 out-degree: its firing rate is just below the e↵ective up-threshold

of the highest firing neuron, Te
u(0), such that it can not activate any dendrite, as illustrated

by the solid gray line.

As x⇤ belongs to the mutual-separated group, the in-degree error remains localized to that

neuron. No further interaction happens as a neuron in this group does not influence others.

However, if x⇤ belongs to the mutual-correlated group, additional out-degree error exists due

to the interaction, as explained next.

3.2.5.2. Out-degree error

Additional out-degree error exists if the input increase is in the mutual-correlated group.

An example is shown in Fig. 3.6C where it causes memory changes in three locations. The

mechanistic explanation is illustrated in Fig. 3.6D through an infinitesimal input increase.

For a neuron x# indicated by the vertical dashed line, it receives recurrent dendritic inputs.

Some dendritic inputs are above Te
u(x#), and some are below. There exists a dendrite whose

dendritic input is right below Te
u(x#). We denote the presynaptic neuron of that dendrite

as x⇤. An increase in the firing rate of x⇤, f(x⇤), can activate that dendrite in x#, thus
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inducing a nonlocal memory increase. Similarly, the increase in x# can trigger a nonlocal

memory increase in another neuron. It sequentially induces nonlocal memory increases until

it propagates to a neuron in the mutual-separated region. That neuron has no out-degree,

thus not a↵ecting others further. For all three locations illustrated, each still has the in-

degree error, in parallel with the nonlocal out-degree error.

The in-degree and out-degree errors define a particular form of multiselectivity. In Fig. 3.6E,

with a horizontal line starting from the y-axis with the lowest Te
u, the merged plot for the

encoding dynamics can be separated into di↵erent regions, gray boxes, as guided by the

spiraling gray line. Each gray box includes a portion of neurons in the network depending

on their firing rates. In Fig. 3.6D we have shown how an increase in f(x⇤), within neurons

in region 3, gives three memory responses, in region 3, 2, 1 respectively. It shows a level of

multiselectivity, such that an increase in f(x⇤) can induce the firing of other neurons, while x⇤

itself is susceptible to firing changes in neurons from a larger region label. In general, a neuron

in a region R can induce R changes in region R, R-1, . . . , 1, while can also be susceptible to

changes in region R+1, R+2. . . . For a neuron with a smaller region label, it is less influential

to other regions but more susceptible under small incremental perturbations. For neurons

with a larger region label, they are more influential but less susceptible in the sense that

they can only be influenced by higher numbered regions. Therefore, multiselective neurons

exhibit a level of anticorrelation in influential and susceptible levels, and the multiselectivity

level depends on firing rate of each neuron. Such properties can potentially be tested in the

brain through perturbation experiments.

3.2.5.3. Encoding failure or saturation

We can consider another source of error based upon the peak of input intensity, which is

denoted as I(0). In Fig. 3.2, we scale the input pattern to have its maximal value I(0) equal

to 15.33 such that the example shows no encoding failure nor saturation. However, if we

63



scale the input pattern down, from I(0) = 15.33 to I(0) = 13, while keeping the overall shape

unchanged, the high firing portion of input could be encoded, while the rest gives encoding

failure with a lack of dendritic activation, as shown in Fig. 3.9A. If the scale is reduced

further, I(0) can be too small such that no dendrite is activated, leading to a complete

encoding failure. Therefore, as shown in Appendix C, we require Tu  I(0)(1+ a) such that

at least one dendrite can be activated.

On the other hand, if we scale the input pattern used in Fig. 3.2 up with a too large I(0),

memory may saturate. The saturation can happen in two ways. One is out-degree saturation,

where a high firing neuron activates all dendrites it projects to. It causes all neurons to have

at least one activated dendrite, leading to a constant background firing, as shown in Fig.

3.9D with I(0) = 16. The other case is in-degree saturation, where a high firing neuron has

such a low Te
u that it can no longer activate more dendrites, making its firing rate saturate

during the memory period, as shown in Fig. 3.9G with I(0) = 19. For a more comprehensive

treatment of encoding failure or saturation, see Appendix C.

3.2.5.4. Instability and runaway error

As mentioned in the text of Fig. 3.3B, the interaction between neurons can form a positive

feedback loop which may destabilize the system, causing runaway error. It is particularly true

during the encoding period, where an increase in D(x⇤) lowers Te
u(x⇤), which can cause larger

D(x⇤) recurrently. To keep D(x⇤) stable, mathematically, we want the recurrent increase at

each iteration smaller than the previous increase. The stability is guaranteed if the slope of

I(x) in the mutual-correlated group satisfies:

ab < |I0(x)|. (3.8)

A detailed derivation can be found in Appendix D.
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The stability requires I0(x) not be too flat. If I0(x) is too flat such that some neurons receive

almost identical input intensities, certain dendrites for a given neuron may receive similar

dendritic inputs from them. A slight activation in that neuron leads to a lower Te
u such that

it may activate all these dendrites, leading to a blow up. Failure to satisfy the inequality

leads to runaway error, which includes a discrete jump or a flat line in memory activity, but

a partially graded memory is still possible. See more details in Appendix D.

3.2.6. Memory survives strong local inhibition

How does an existing memory get a↵ected if a subset of neurons in the memory are silenced?

From a physiological perspective, such inhibition ideally could be performed by optogenetic

silencing of a portion of a population. Therefore, it is interesting to see how a stored novel

memory reacts to applied strong local inhibition.

After strong local inhibition is applied to neurons with memory activity, neurons at the

location of inhibition are silenced (light red line, Fig. 3.7A). This further induces a recurrent

e↵ect: the out-degrees of inhibited neurons will drop to down state due to the silence, which

thus reduces the firing rates of not-inhibited neurons. This is also represented in dendrite

states (Fig. 3.7B). Due to the potential breakdown of the positive feedback loop, this activity

reduction may not lead to further forgetting.

Notably, up-state dendrites (in-degree) still exist in inhibited neurons, supported by dendritic

inputs from other neurons, even with zero somatic firing. Upon the removal of inhibition,

the inhibited neurons recover most of their firing rates due to these up-state dendrites (Fig.

3.7A, solid red line).
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Figure 3.7. Memory performance with strong local inhibition. A, Memory changes under a strong local
inhibition. The dashed red line represents the original memory. The shaded red line shows the memory after
strong local inhibition is applied. The inhibition kills local activity and reduces activity in other regions.
The solid red line represents the memory after the inhibition is removed, where local activity reactivates.
The blue dot separates the mutual-correlated group of neurons (left) from the mutual-separated group of
neurons (right). Inhibition is applied to the mutual-correlated group of neurons. B, The dendritic state plot
for the memory in A, during the inhibition or removal period. The inhibited neurons cannot support the
activation of dendrites in other neurons (no out-degree). C, D, similar to A, B, but with inhibition applied
to the mutual-separated group of neurons. The inhibition does not reduce activity in other regions, and the
memory is perfectly recovered after the inhibition is removed.

Interestingly, if local inhibition is applied to neurons in the mutual-separated group, due to

a lack of out-degrees for those neurons, inhibition does not reduce any activity except locally

(Figures 3.7C and 3.7D). And its removal can fully recover all suppressed activities.

3.2.7. A spiking neuronal network for novel pattern encoding

In this section, we present a spiking network model which can perform novel encoding sim-

ilar to the rate model. We built a network of 40 randomly connected neurons, where the
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Figure 3.8. Spiking model performance. A, Network structure. We construct a network with 40 neurons.
The connection probability between any two neurons is 50%. Each existing connection goes into a separate
dendrite (or synapse) with conductance-based dynamics. The soma operates as a leaky integrate-and-fire
model. See Appendix F for more details. B, Dendritic bistable voltage. A dendrite shows bistability in its
voltage under changing dendrite input frequency. A higher somatic firing can lower its up threshold. C,
Changing dendritic threshold. Threshold values are recorded as the soma fires more. Up threshold drops
(blue), while the down threshold remains mostly unchanged (red). D, Memory in firing rate. For a single
trial, a linear input is delivered (blue), and the remaining memory (red) is similar to the input but noisy.
E, Memory in dendritic voltages. For the memory in D, the heat map shows voltages of all dendrites, with
white pixels indicating the absence of a recurrent connection. F, Memory statistics. We ran 20 trials, each
time with a random connectivity and input spiking train and recorded all memories. The red dots represent
non-zero memory activity of neurons across trials. The gray dots represent zero memory activity of neurons
across trials, with lower firing neurons having more gray dots overlapped. The solid red line represents the
average of all non-zero memory activities.

probability for a recurrent connection is 50%. Each recurrent connection projects to a sep-

arate dendrite, such that, on average, a neuron has 20 conductance-based dendrites. Each

dendrite is equipped with NMDA receptor based dynamics [61, 82], which gives dendritic

bistability, as shown in Fig. 3.8B. See Appendix F for more details on the model dynamics.

Larger somatic firing significantly lowers the up-threshold of a given neuron, as demonstrated

in Fig. 3.8B and C for di↵erent values of somatic firing. Physiologically, it occurs due to

the following steps: 1. The back-propagation of somatic voltage reaches a dendrite; 2. The

depolarization removes the Mg2+ block from the NMDA channels, facilitating the opening
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of NMDA receptors in these dendrites; 3. The increased current from NMDA receptors

provides further depolarization which leads to more current influx until saturation.

In contrast, the down-threshold behaves di↵erently. Because NMDA receptors easily saturate

even when the dendritic input is low, the down threshold is low. This may be beneficial as

it makes memory forgetting harder. In addition, the down-threshold is insensitive to the

somatic e↵ect, as the simulation shows. This is because most NMDA receptors are already

unblocked upon dendritic activation. The voltage back-propagation does not significantly

a↵ect the Mg2+ block.

This network model is capable of novel pattern encoding. Fig. 3.8D depicts the performance

under an exemplar linear input in a single trial. The memory is noisy but still encodes

graded values. Fig. 3.8E shows the corresponding dendritic voltages during the memory

period, which are indeed higher for those dendrites with both their pre and postsynaptic

firing rate high, indicating the associative nature of the dendritic voltage. Fig. 3.8F shows

all memory activities (dots) across 20 trials. We can see that for neurons with lower input

intensities, encoding failure is more likely, with moregray dots overlapped at zero activity,

and the averaged activity (red line) for these non-zero memory activities (red dots) is also

lower, indicating the encoding of graded values.

3.3. Discussion

In this paper, we model a challenging working memory task involving the encoding of a novel

pattern. The model is based on a uniformly connected network where each neuron possesses

multiple bistable dendrites. Each dendrite follows a box-like dendritic relation with the

somatic e↵ect, e↵ectively making a fast-Hebbian plasticity. The network is highly interactive

but a stable, graded novel encoding can be achieved without requiring finely tuned model
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parameters. Notably, the failure of dendritic bistability—either box-like dendritic relation

or somatic e↵ects—leads to failure in performing the task, as detailed in Appendix E.

3.3.1. Biological plausibility and alternative implementations

Dendritic bistability is central to our model, and it may be achieved in several ways. In the

spiking model, we choose dynamics based on wide-spreading NMDA receptors, as done in

previous models [61,82]. However, other multistability mechanisms [69,103] may achieve

the same functional network.

A major candidate for the somatic e↵ect is back-propagated action potentials(bAPs) [39,

87,88]. But this is not the only possibility, especially if an action potential is missing, or

the propagation is weak [44]. Other mechanisms which can similarly provide the required

depolarization include: i) A subthreshold voltage in the soma or an input current roughly

colocalized with bistable dendrites. Similar ideas have been tested in [48] for long term

potentiation. ii) If bAPs are very strong, [12] shows that dendrites can still maintain high

independence.

Instead of a di↵erent input intensity to each neuron, it may be helpful to provide the same

input to a small cluster of neurons. This potentially provides more bistable units and smooths

noise. For example, each neuron in our model might correspond to a cluster of neurons in a

network that is wired with a connectivity like that of our bistable-dendrites-based model.
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3.3.2. Two interpretations of the model and

implications/predictions

3.3.2.1. Single-system interpretation

If treating the entire network as a whole, as is the default assumption, our model shows

multiselectivity. This multiselectivity is essentially due to the highly recurrent, functional

connection established by up-state dendrites. It causes distortion to the memory, with di↵er-

ent performance in two groups as shown in Fig. 3.6, and exhibits an interesting anticorrela-

tion between its susceptibility and influence. Meanwhile, this recurrent connection can also

be beneficial, providing extra robustness against strong local inhibition. It is because the

local inhibition can not erase all dendritic activity of the receiving neuron, as these dendrites

are nonlocally maintained through other neurons. Interestingly, dendritic bistability in our

model is functionally similar to synaptic plasticity, where information is stored in dendrites

and thus escapes from strong somatic inhibition.

3.3.2.2. Dual-system interpretation

The multiselectivity behaves di↵erently in two groups of neurons. For those in the mutual-

correlated group, a perturbative local increase in firing rate during the encoding period leads

to more activity increase in other neurons, spreading out the perturbation. For those in the

mutual-separated group, a perturbative local increase only changes activity locally, although

the changing magnitude depends on nonlocal neurons. In addition, for the perfect memory

case as shown in Fig. 3.5, the input separates into a linear part and an arbitrary part. These

performances motivate us to interpret the network as a dual-system.

Suppose that the input is from, instead of a single external source, two sources simultane-

ously. One is an auxiliary internal input from a certain brain region, providing fixed high
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intensities to form the mutual-correlated group. Another is an arbitrary external input,

providing relatively low intensities to form the mutual-separated group. The final memory

consists of one part due to the auxiliary input and another part due to the external input,

where information is actually encoded. The major benefit for this dual-system interpreta-

tion is that there is generally no out-degree error for the external input. If the auxiliary

input is further trained to be linear in a form of Eq. 3.5, an arbitrary external input can be

memorized perfectly.

The dual-system interpretation may be realistic. The fixed internal input may represent

a general control of the current task setting, and the external input can represent a more

explicit and flexible task-relevant content. The task content part can be encoded only if the

task setting part is active to provide it dendritic inputs.

Appendix

A: Simulation details of the rate network model

The default input pattern first appearing in Fig. 3.2 was generated based on a cloud picture

(CCSNv2/Cu/Cu – N083.jpg) in [101]. The original picture was compressed to a resolution

of 50⇥50, converted into gray scales and ranked by its intensity in the descending order. To

get rid of intensity degeneracy, which exists as intensity is an integer value out from 0 to

255, the ranking was smoothed by using the ’nearest’ mode of ndimage.convolve in Python.

This gets rid of degeneracy by giving a small distortion to each intensity value. Further, the

minimal intensity was subtracted from all intensities. Finally, the input pattern is scaled to

have a maximum value of 15.33. Eventually it gives discrete input values Ii with i from 1 to

N=2500, which are approximated to be continuous, I(x), for the analysis in the main text.
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A rate network model is used in Figures 3.1-3.7. For the default setting introduced in Fig.

3.1, parameters are defined as N = 2500, Tu = 20, Td = 1, b = 0.0032, a = 0.7, t = 50 ms

and w = 1. For memory encoding, the network starts with all dendrites in the down-state,

an input is applied for 1000 ms during the encoding period, and it is turned o↵ for another

1000 ms during the following memory period. Equilibrium is reached in each period. The

model dynamics are governed by:

t
df i
dt

= –f i +
NX

j=1

B(f i, fj) + Ii, (3.9)

where B(fi, fj) is the dendritic bistable relation described in Fig. 3.1C, which is mathemati-

cally expressed as:

B(f i, fj) =

8
>><

>>:

bJ(fj – Tu + af i) Activation from down- to up-state

bJ(fj – Td) Deactivation from up- to down-state,

(3.10)

where J(x) is a Heaviside step function, and the somatic e↵ect is bound from below Tu –

af i > Td. Note that Td is not a↵ected by the somatic firing, which qualitatively captures

the conductance-based dynamics of a bistable dendrite. See Fig. 3.8B for more details.

Simulations are done using Euler’s method with dt = 1 ms in Python [Version: 3.9.16].

In Figures 3.3A and 3.3B, we implement Gaussian independent noise throughout the memory

period. The noise has a zero mean and a standard deviation of 0.1 or 0.3, applied with a

time step of 1 ms. It adds to the firing rate directly without the e↵ect of t. The average

(dark line) and standard deviation (light red shadiness) of the resulting noisy memory were

calculated over a period of 500 ms, after 1000 ms into the memory period. The noise-free

memory in Fig. 3.2 is reproduced as a dotted red line for comparison.

In Fig. 3.3C, we implement three variations to the original connectivity. For the top panels,

weight values were drawn from a Gaussian distribution with mean 1 and standard deviation
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0.1, 0.5 or 1 respectively, with a minimal value set to 0. For the middle panels, the connection

probability p was changed to 50%, 10% or 1% respectively. As a dendrite exists only if a

connection exists, this change reduces the total number of dendrites for each neuron. To

balance this reduction, b was normalized correspondingly b b/p. For the bottom panels,

the connectivity exists only locally, within the two-dimensional space defined by horizontal

and vertical pixel labels with periodic boundary conditions. If two neurons are located within

a radius of 20, 10 or 5, the weight value is one, otherwise zero. To balance the reduction of

dendrites, b was normalized correspondingly b bN/Nloc, where Nloc is the total number of

dendrites in each neuron. For all panels in Fig. 3.3C, we use the same graded scale bar for

ease of direct comparison. However, due to changes in connectivity, the actual firing rates

of some neurons may exceed the maximum scale shown. This procedure does not change

qualitative results.

In Fig. 3.5, the external input for a perfect memory has a linear part I(x) = 14.4 –

0.00576x, for x between 0 and A=1500. For the arbitrary part, we chose another pic-

ture, CCSNv2/Cu/Cu – N004.jpg in [101], followed the same steps as mentioned above and

took the 1000 lowest intensity pixels. This portion was rescaled so that its maximum value

matches the minimal value of the linear part in neuron 1500.

In Fig. 3.6, the extra input was given to neurons 1700 to 1750 (Fig. 3.6A) or 1300 to 1350

(Fig. 3.6C) during the encoding period with a magnitude of 1 adding to the existing I(x).

In Fig. 3.7, an inhibitory signal with an intensity of 20 was given to neurons 150 to 250 (Fig.

3.7A) or 1600 to 1700 (Fig. 3.7C) at the end of the memory period. It lasted for 1000 ms,

and another 1000 ms was simulated after its removal.

In Figures 3.9A, 3.9D, and 3.9G, the maximum external input intensities are I(0) = 13, 16,

and 19 respectively.
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In Fig. 3.10, the derivative was estimated through 4 nearby neurons from a discrete function

f(x): f 0(x) ⇡ –f(x+2Dx)+8f(x+Dx)–8f(x–Dx)+f(x–2Dx)
12Dx , with step size Dx = 5. In Fig. 3.10C,

we chose the same picture as used in Fig. 3.5, with a maximum external input intensity

I(0) = 14.17. In Fig. 3.10E, with the default input pattern, the input pattern is rescaled

such that I(0) = 15.33 becomes I(0) = 15.8 and all intensities after neuron 1200 were

decreased to 80% of their original values, so that a discrete jump was created in the input

pattern.

In Fig. 3.11, we set a = 0 and the maximum external input intensities are I(0) = 22, 30, 38

or 46.

B. Solving for a perfect memory

As discussed in the text for Fig. 3.5, for a perfect memory, the stable state during the

encoding period needs to satisfy:

bf–1(Tu – af(x)) = D(x) =
bA
Tu

f(x), (3.11)

where bATu
< 1 is the proportionality ratio, which is smaller than 1 as firing rate f(x) is always

larger than the total dendritic activity D(x), with an arbitrary neural label A. The choice

of this particular form will be clear below. It simplifies to:

Tu = af(x) + f(
A

Tu
f(x)). (3.12)

Recall that f(x) is a non-increasing function that decays to 0, f(N) = 0. Substituting it into

Eq. 3.12 gives: f(0) = Tu.

On the other hand, taking the derivative of Eq. 3.12 gives:

0 = af 0(x) + f 0(
A

Tu
f(x))f 0(x)

A

Tu
. (3.13)
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For non trivial solution, f 0(x) 6= 0, We then have:

f 0(
A

Tu
f(x)) = –

Tua
A

. (3.14)

Note that f(x) can take values from f(N) = 0 to f(0) = Tu. This means that A
Tu

f(x) takes

values from 0 to A. The above equation requires a constant slope –Tua
A for f(x) with x ranging

from 0 to A. Note that this value A just maps to the location of the blue dot as shown in

Fig. 3.5.

Altogether, we have the solution for Eq. 3.11:

f(x) = Tu –
Tua
A

x, (1 � a > 0), (3.15)

I(x) = Tu – bA – (
Tua
A

– ab)x, (3.16)

D(x) = bA – abx, (3.17)

where x ranges from 0 to A. We require 1 � a > 0 such that f(x) is non negative. To

ensure I(x) can activate a dendrite in the absence of any dendritic activity, as discussed in

Appendix C, we further require: Tu  (1 + a)(Tu – bA)

On the other hand, to ensure no forgetting happens, the maximum sustainable line should

be above D(x) as shown in Fig. 3.4I, but now with D(x) defined in Eq. 3.17. We require:

Td  (1 – a)bA. (3.18)

We can check if Te
u hits its lower bound, Td, as well. Because the ratio is bATu

< 1, we have

(1 – a)Tu > (1 – a)bA. With the above equation, we have Te
u = (1 – a)Tu > (1 – a)bA � Td.

Therefore, Te
u is always above its lower bound, Td, for the parameter range considered here

and does not saturate.

Altogether, we get the condition for a perfect memory as shown in the main text.
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Figure 3.9. The scaling of I(x) and encoding failure or saturation error. A-C, A memory with encoding
failure. A, An input with a small scaling results in a memory that has graded values in neurons receiving
high input intensities, while neurons receiving low input intensities remain silent. B. All dendrite states of
the memory, with up-state dendrites in white and down-state dendrites in dark. C, The merged encoding
dynamics. See more details in the text. D-F, A memory with out-degree saturation. Similar to A-C, but with
a higher scaled input pattern that leads to constant background activity. F. The maximum firing neurons
exceed Tu (black arrow) making them capable of activating all dendrites it projects to. It gives a constant
firing in all neurons (dark green arrow). G-I, A memory with in-degree saturation. Similar to D-F, but with
an even higher scaled input, which leads to further saturation. G. the memory reaches a maximum firing
rate (dashed horizontal line). I. The e↵ective up-threshold of high firing-neurons (purple arrow) is lower
than the smallest firing rate (dark green arrow) making all dendrites in high firing neurons activate.

C. Memory with encoding failure or saturation

In this section, we take 0 < a  1 for analysis, but the idea is qualitatively similar for a > 1

case.

A minimal requirement is that input can at least activate one dendrite so that memory can

be nonzero. The most activatable dendrite is the one that projects from neuron 0 back
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to itself, which has the largest pre and postsynaptic firing rate I(0) in the absence of any

dendritic activity. The activation of this dendrite requires Tu  I(0)(1 + a).

Further, during the encoding period, for any neuron receives nonzero input, we want nonzero

memory. It requires that a neuron receiving an infinitesimal input to have at least one

dendrite activated. The most activatable dendrite in such a neuron is the one that receives

dendritic input from neuron 0, with maximum rate f(0). Therefore we need f(0) � Tu. The

input in Fig. 3.2 is tuned with I(0) = 15.33 to make f(0) = Tu such that no encoding failure

happens. If the input is scaled lower, I(0) = 13, the memory loses some information of the

region with low input intensity (Fig. 3.9A), as the firing rate is not enough to activate some

dendrites to the up-state.

A large input may saturate the memory. Fig. 3.9D shows an example with I(0) = 16

for the out-degree saturation. The high firing neurons exceed Tu, such that out-degree

saturation happens, with all dendrites they project to activate. These up-state dendrites,

distributed among all neurons, provide a constant background activity (Fig. 3.9F). This out-

degree saturation is benign, as a constant background term still allows a graded memory.

In contrast, in-degree saturation happens when a high firing neuron can no longer activate

more dendrites as input goes larger. It may happen either because its Te
u hits the minimal

value, Te
u = Td, or the dendritic input from the lowest firing neuron N exceeds Te

u such that

it has already activated all its dendrites. An example of the latter case is provided with

I(0) = 19, as shown in Figures 3.9G and 3.9I.

Why do we focus on the range 0 < a  1? We want the memory to have no encoding

failure, f(0) � Tu. However, if we choose a > 1, Te
u(0) reaches its minimum value Td, as

Tu – af(0) < Td. This leads to in-degree saturation. Choosing 0 < a  1 makes it possible

to have no encoding failure nor saturation.
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Figure 3.10. The slope of I(x) and runaway error. A, B, A memory without runaway error. A, Top: Results
reproduced from Fig. 3.2. Bottom: The derivatives of f(x) (green) and I(x) (blue). A horizontal line
indicates the value of –ab. B. The encoding dynamics merged into a single plot. This plot merges dynamics
in Figures 3.4D-F in a single plot with the same legends. See the text for a detailed explanation. C, D,
Similar to A, B, but with a di↵erent input pattern. The light shaded region includes neurons whose slope of
I(x) (negative) is less negative than –ab. The dark shaded region includes neurons whose f(x) exceeds –ab.
The star indicates a local discrete jump in the memory, even though I(x) has no jump.

D. How input slope a↵ects the formation of memory and runaway

error

How does input slope a↵ect encoding dynamics? As mentioned above in Fig. 3.6B, there

exists a positive feedback loop. It is reproduced in Fig. 3.10B with more details. A local

infinitesimal input increase dI(xi), or equivalently df(xi), lowers Te
u(xi) by adf(xi). This

expands the total number of up-state dendrites, which equals the neural label xj in value,
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by – a
f 0(xj)

df(xi). Therefore, the induced change is given by:

dD(xi) –
ab

f 0(xj)
df(xi), (3.19)

where dD(xi) feeds back into df(xi). To prevent the blowing up of recurrent activity and to

make D(x) sensitive to a small increase, we limit the gain factor:

–
ab

f 0(xj)
< 1. (3.20)

As f 0(xj) = I0(xj) + D0(xj), we have ab < |I0(xj)| + |D0(xj)|. Because I(x) is what can be

manipulated externally, we get the su�cient condition to prevent runaway error:

ab < |I0(xj)|. (3.21)

This condition applies to neurons in the entire mutual-correlated group, where any xi has a

corresponding xj. An example, where the memory has no blow-up and is sensitive, is shown

in Fig. 3.10A, where I0(x) (bottom) is always below –ab, consistent with the inequality.

Here, we only consider how a local increase to neuron i directly causes xi to gain more up-

state dendrites. However, it may cause more activity in other neurons, which feeds back

to activate xi more. This indirect, recurrent path can be ignored because an increase in xi

maximally activates one dendrite in other neurons. In the continuous limit, the contribution

of a single dendrite is negligible such that we ignore such activation and further recurrent

interaction.

Failing to satisfy Eq. 3.21 may bring extra errors to the memory. An example is shown in

Fig. 3.10C, where ab > |I0(x)| in the light shaded region. The violation of the su�cient

condition is fine for the lighter shaded region, as the exact requirement, Eq. 3.20 is still

satisfied (Fig. 3.10C, bottom). However, for the darker shaded region, neurons have similar

rates such that the dendrites they project to in neuron xi are similarly prone to be activated
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Figure 3.11. Memory performance when the somatic e↵ect is absent. If there is no somatic e↵ect, a = 0, a
graded novel pattern leads to a uniform memory, with no graded values. However, di↵erent input scalings
result in di↵erent uniform values.

(Fig. 3.10D). That is, a small increase df(xi) can lead to the activation of all these dendrites,

resulting in a discontinuity in D(xi).

E. The necessity of both dendritic bistability and somatic e↵ect

for novel encoding in this model

To achieve novel encoding in this network model, dendritic bistability is necessary, with

both the box-like dendritic input-output relation and the somatic e↵ect. To demonstrate

the necessity further, we consider two potential changes here. First, instead of a bistable

relation, now a step function is applied, with a single threshold T0. We assume the somatic

e↵ect still exists. The stable firing rate during the memory period is:

bM–1(T0 – aM(x)) = M(x). (3.22)

Similar to the calculation for Eq. 3.16, we can solve this as M(x) = T0 – abx, with x from

0 to T0/b. However, this solution is unstable, as M0(x) = ab does not satisfy the stability

inequality Eq. 3.20.
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Secondly, with no somatic e↵ect, a = 0, all neurons are now functionally identical. Therefore,

the memory gives a uniform line, as shown in Fig. 3.11. The overall scaling di↵erence is still

memorized.

F. Simulation details about the spiking network

We constructed a single neuron model with n = 20 dendrites to show the dendritic bistability

based on dynamics of NMDA receptors. This model is based on our above autapse model

with multiple dendrites and other dendritic bistability models with more detailed gating

kinetics [61,82]. Euler’s method is used for the simulation, with step size 0.25 ms, which

was performed in python [Version: 3.9.16].

The somatic voltage Vs follows dynamics:

C
dVs

dt
= – IL – Id – Iext – Iton – Is,noise, (3.23)

= – gL(Vs – EL) –
nX

i

gds(Vs – Vd,i) (3.24)

– gextsext(Vs – Eext) – Iton – Is,noise, (3.25)

where C = 10 nF/mm2, gL = 1 mS/mm2, EL = –80 mV, gds = 0.01 mS/mm2, gext =

30 mS/mm2, Eext = 0 mV and Iton = –34 nA/mm2. Is,noise is independent Gaussian noise

with mean 0 and a standard deviation of 1 applied at every time step. The synaptic activation

sext was driven by an external spike train with dynamics specified below. Once Vs crossed

the firing threshold –50 mV, a spike was triggered and the somatic voltage was set to 30 mV

for 3 ms before resetting to –55 mV for another 3 ms.

The dendritic voltage Vd,i follows dynamics:

C
dVd,i

dt
= –IL,i – Is,i – INMDA,i – IKIR,i – Id,noise,i (3.26)
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and each term on the right hand side is:

IL,i = gL(Vd,i – EL), (3.27)

Is,i = kgds(Vd,i – Vs), (3.28)

INMDA,i = gNMDA,isNMDA,i
Vd,i – ENMDA

1 + 0.15e–0.08Vd,i
, (3.29)

IKIR,i = gKIR,i
Vd,i – EKIR

1 + e0.1(Vd,i–EKIR+10)
, (3.30)

where ENMDA = 0 mV, EKIR = –90 mV and the area ratio of the soma to a dendrite k = 37.

Id,noise,i was independent Gaussian noise with mean 0 and standard deviation 1. gNMDA,i

was generated from a Gaussian random variable with mean 34.5 mS/mm2 and standard

deviation 1. Similarly, gKIR,i with mean 41 mS/mm2 and standard deviation 1.

The synaptic activation sa, with a = ext or NMDA, i, follows dynamics:

dsa
dt

= –sa/ta, (3.31)

Dsa = 0.5(1 – sa), each time a spike is received, (3.32)

where text = 2 ms and tNMDA,i = 100 ms respectively. sext receives an external spike train,

and sNMDA,i receives the recurrent spike train generated by neuron i.

Such a single neuron model shows dendritic bistability. To generate the solid line in Fig.

3.8B, a Poisson spike train with a frequency of 40 Hz is delivered to the soma, and a fixed

period spike train with changing frequencies is delivered to all 20 dendrites. The latter is to

mimic recurrent inputs from other neurons, which has a relatively fixed period due to the

integrate-and-fire soma. The dendritic input frequency starts from 0 Hz and increases by 1

Hz every 1400 ms until it reaches 150 Hz. Afterwards, it decreases by 1 Hz every 1400 ms

until it goes back to 0 Hz. The dendritic voltage shown is averaged over the last 500 ms

before the frequency change happens. The light purple line in Fig. 3.8B is generated with
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another somatic input of 210 Hz. For Fig. 3.8C, we ran 10 trials with the somatic input

ranges from 30 Hz to 210 Hz and recorded the averaged threshold values across all trials and

all 20 dendrites. Thresholds are estimated by the largest slope.

We extended the neural model to a homogeneous network of N = 40 neurons. The probability

a connection exists from one neuron to another is p = 0.5, which makes n a variable with

mean 20. Voltages are stabilized at about -80mV initially. The input to the soma of each

neuron is a Poisson spike train with a linear frequency from 100 to 0 Hz (Fig. 3.8D). The

encoding period lasts for 1200 ms, the memory period lasts for 800 ms. The dendritic voltage

and firing rate are averaged over the last 300 ms (Fig. 3.8E). We further ran 20 trials to get

the statistical performance (Fig. 3.8F).
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CHAPTER 4

Summary

In this thesis, I address two questions related to working memory. The first is how to encode a

familiar local input with its amplitude, and the second is how to encode a novel pattern with

graded intensity. I purpose two neural circuit models where dendritic bistability is the core

unit. Both models can maintain a robust memory against noise. Despite their similarity, the

two models di↵er structurally. The first model requires pretrained local weights and a box-

like dendritic relation, whereas the second model does not need any local weight structure

but needs a box-like dendritic relation with the somatic e↵ect. The two models could work

together for a partially novel and partially familiar input, such as a red apple with its own

unique surface dents and spots. My work demonstrates the strength of dendritic computation

and calls for more direct experimental evidence to verify these mechanisms.
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