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Abstract

Learning as a Sampling Problem

by

Bradly C Stadie

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter Bartlett, Chair

The past five years have seen rapid proliferation of work on deep learning :
learning algorithms that utilize deep neural networks for nonlinear function
approximation. Although this proliferation had its roots in supervised learn-
ing, it subsequently spread to numerous other learning problems including
reinforcement learning, imitation learning, meta learning, and unsupervised
learning. Today, deep learning enables a variety of previously unobtainable
capabilities:

1. Computers can play complex video games from raw images

2. Unsupervised learning algorithms can generate photo-realistic bedroom
images from scratch without a reference

3. Robots can learn by copying other robot behavior. This imitation is
quite robust and does not falter even when the demonstrated behavior
is complex, abstract, or demonstrated sub-optimally.

4. The world’s best translation and text to speech engines

5. One-shot image classification

Yet, in spite of myriad successes, any deep learning practitioner will quickly
run into difficulties when applying many of these learning algorithms to a
novel problem. Everything is hard and nothing works easily. This thesis
was born out of the difficulties I experienced while working through many
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problems in the fields of meta learning, reinforcement learning, and imitation
learning. It is an attempt to fix many frustrating gaps in the prior art.

The first problem we consider is the exploration vs. exploitation dilemma in
high-dimensional control problems with an image input space. We provide
a practical algorithm to overcome the exploration vs. exploitation dilemma
in this setting. This algorithm shrewdly makes use of a learned dynamics
model to asses a transition’s novelty. This dynamics model has the benefit
of being fast to train and generalizable. We show that using this learned
dynamics model to incentivise exploration leads to massive gains on several
difficult Atari games.

The second problem we consider is a good deal more technical, and deals
largely with fixing certain mathematical dependencies in the computational
graph of meta reinforcement learning algorithms. In particular, we show that
policy-gradient-like algorithms for meta learning must take care to correctly
compute the gradient of the meta learner with respect to the task-specific
learners. We argue that fixing this dependency issue leads to better ex-
ploratory behavior in meta learned agents.

The third problem comes from the field of imitation learning. In imitation
learning, agents typically imitate other identical agents. Moreover, it is al-
ways assumed that the agent’s perspective while learning is identical to the
perspective of the agent it is trying to imitate. In other words, agents do not
learn by watching other agents. Instead, they learn by watching an exact
replica of themselves completing a task. This is a strong and impractical
assumption. We remove it by introducing algorithms for third-person imi-
tation. These algorithms allow agents to learn by watching different agents,
and not just copies of themselves.

The final problem we consider comes from the field of causal inference. In
causal inference, each experiment is typically treated as independent. All
treatment effect estimation is thus done in a vacuum without consideration
to other relevant experiments. To rectify this shortcoming, we develop the
idea of deep causal transfer learning. By modifying some ideas from transfer
reinforcement learning, we are able to train neural networks that can rapidly
learn new treatment effects and causal relationships.

All of these problems can be derived when one takes the perspective that
learning is a sampling problem. That is, many learning problems amount
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to analyzing a sampling distribution over a state space. For reinforcement
learning, we will see that the underlying data distribution we wish to opti-
mize over is not stationary as in supervised learning. Instead, it is sampled
directly from the policy we are optimizing over. Furthermore, many common
methods of optimizing this policy rely heavily on our ability to sample from
the policy and do not require, for instance, derivatives with respect to the
true reward. For the meta learning algorithms we consider, we will see the
fact that we are optimizing over the data-generating process is an impor-
tant consideration. Taking this consideration into account, we derive new
meta learning gradients that account for the impact of task-specific sampling
distributions on the meta sampling distribution. For imitation learning, we
see that the problem is to sample data that matches some unknown expert
distribution. Although we do not know the expert’s true sampling distribu-
tion, we do have access to samples. We can use these samples to guide the
imitator towards sampling from the correct expert distribution. Finally, we
would like to one day allow agents to sample over causal relationships in their
environment. This is in contrast to the present-day reality that sampling is
almost always considered over low-level states or hierarchical constructs like
options. The above arguments relating learning and sampling can be used
to derive all of the problems we consider in this thesis. In this thesis, we
will make these derivations explicit. We have thus chosen to title the thesis,
‘Learning as a sampling problem.’
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1 Opening Remarks

In this thesis, we will consider three learning problems: reinforcement learn-
ing, imitation learning, and meta learning. In all three problems, there will
exist an agent in some environment E. The agent can interact with the en-
vironment by performing some action a from an underlying action space A.
This action will cause a change in E.

We typically assume the agent has access to some observation ω ∈ Ω which
it can analyze before acting. For example, if our agent is a robot, then its
environment is the world, its observations are the measurements taken from
its force and position sensors and the videos taken from its cameras, and its
actions are its joint movements (e.g. moving its arm and opening or closing
its gripper).

Usually, we train the agent to ingest ω and take actions that accomplish some
goal within its environment. For example, we might want to train a robot
to stack blocks on a table. From this desire to train our agents, the three
learning problems we wish to consider arise naturally.

• Reinforcement Learning: There exists some reward function R
which takes the current state of the environment and produces some
reward. The agent learns how to take actions that maximize this re-
ward. For example, if we want a robot to learn how to place one block
on top of another block, we can give the agent a reward function which
is smaller when the two blocks are far apart and larger when the two
blocks come closer together. Another possible reward function is sim-
ply defined to be 1 when the two blocks are stacked and 0 otherwise.
In both cases, the reward is used to reinforce a specific behavior in the
agent’s actions.

• Imitation Learning: There exists another agent in the environment
that is capable of some desirable behavior. Our agent wishes to copy
this behavior. For example, a robot may want to learn how to complete
a new task by watching another robot or a human completing the task.

• Meta Learning: In their lifetime, some agents learn how to complete
more than one task. As more tasks are learned, one might hope that
the learning process itself accelerates. If a robot learns how to do 10
household tasks, then we would expect it to learn the 11th task more
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quickly. Meta Learning seeks to make this intuition explicit by consid-
ering the problem of optimizing over the learning process. Alternative
names for meta learning include: learning to learn, transfer learning,
and lifelong learning.

At first glance, these three learning problems appear quite distinct. RL
requires an explicit reward for learning. Imitation requires no reward but
instead requires example demonstrations. Meta learning requires a multi-task
setting and an outer meta-optimization signal that supervises the underlying
learning problem.

However, the three problems are related. For all three problems, the agent
usually has a similar observation space consisting of sensor readings. In all
three cases, the agent wants to use these observations to help it learn how
to visit parts of the environment that are more desirable according to some
fitness function. The exact nature of this fitness function and the auxil-
iary information available to the agent change during each learning problem.
However, the broad underlying goal always remains the same.

For all three learning problems, we proceed by biasing some sampling process
π(ω) = D(A) towards areas that have more density with respect to the given
fitness function R(z). We have called π(ω) a sampling process because it
produces a distribution D over the agent’s action space A. Sampling from
this distribution produces an action a ∼ D(A) that affects changes in the
distribution of the next state s′ ∼ T (s, a). As a result, it is natural to
identify π with a sampling distribution over the state space. Furthermore,
when we say that we would like π(ω) to be biased towards areas with more
density with respect to R, we roughly mean that we would like to train π
to maximize

∫
Ω
π(ω)R(ω)dω. This integral is immediately recognized as a

density or expectation of R with respect to an underlying distribution π. In
RL, R is an extrinsically defined reward function. In imitation learning, R is
the likelihood of the state with respect to the expert’s density function. In
meta learning, R is a meta density that encourages π to adapt to new reward
functions quickly. As we analyze each type of learning, we will highlight this
viewpoint in further detail.
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1.1 Contributions

In this thesis, we will be able to make contributions towards three learn-
ing problems: reinforcement learning, meta learning, and imitation learn-
ing.

In chapter 2, we will provide an interpretation of RL as a sampling problem,
as motivated by REINFORCE. This interpretation naturally raises many
questions about how to best ensure RL places sufficient mass across the
agent’s state space as the sampling distribution is being learned. These
questions can subsequently be reinterpreted as the exploration vs exploitation
dilemma of RL.

In chapter 3, we consider the problem of exploration in RL in earnest [119].
We propose a new method for exploration that makes use of a learned dy-
namics model to assess novelty. Most previous methods for exploration in
RL focused on count-based methods [13, 86]. These methods relied on the
ability to count state visitation frequencies. Measuring this quantity is often
not tractable in complex environments. Our method replaces these visitation
frequencies with evaluations of a learned dynamics model, which is tractable
in high dimensional problems. Further, predicting model dynamics has bet-
ter generalization properties than counting visitation frequencies (which has
no generalization properties). This work was followed up by many papers
from other authors, including [52, 85].

In chapter 4, we cast meta learning as a sampling problem. In particular,
we will consider meta reinforcement learning from the perspective of trying
to bias a sampling distribution [121]. This perspective leads us to see that
meta learning gradients require an extra term to account for the impact of
the original sampling process on the meta gradient. From these insights, we
develop two new meta-learning algorithms: E-MAML and E-RL2. We show
that these algorithms deliver better performance on tasks where exploration
is important.

In chapter 5, we will shift our focus to imitation learning. We will show
that imitation learning can be viewed as a problem wherein one attempts
to define a sampling process that generates data which matches the data
generated by another sampling process called an expert. In this way, imita-
tion learning is seen to be both a density matching problem and a sampling
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problem. This interpretation will naturally lead to a discussion on several
deficiencies of imitation learning. In particular, we will see that the density
matching framework fails in situations wherein there are irreconcilable differ-
ences between the agent’s state space and the expert’s state space. We will
spend the next chapter addressing and repairing these deficiencies.

In chapter 6, we will consider a new imitation learning problem: Third-
Person Imitation Learning [118]. In classical imitation learning, it is assumed
that the teacher and the student are physical identical and trying to solve
identical problems within identical environments. However, this is often not
a reasonable assumption. Humans, for example, can infer the essence of a
task and imitate this essence even when the expert’s underlying environment
is quite different. Third-Person Imitation Learning formalizes the problem
of trying to extract the essence of a demonstrated task and apply it in a
new environment. We provide a formal definition of Third-Person Imitation
Learning. We also derive an algorithm for Third-Person Imitation and show
that it succeeds in several environments.

In chapter 7, we make our final novel contribution when we apply transfer
learning to the problem of causal inference [120]. We see that one of our
proposed methods, MLRW, achieves excellent transfer on difficult causal in-
ference problems in the field of voter encouragement. Better transfer in causal
inference should lead to a better integration of reasoning in learning prob-
lems. This type of causal reasoning will allow learning agents to short-circuit
many of the problems associated with learning as a sampling problem. In
particular, it allows learning algorithms to achieve better generalization over
both space and time, which reduces the necessary complexity of their search
paths as they try and define sampling distributions that lead to desirable
behavior.

In chapter 8, we end this thesis with a discussion of the difficulties I re-
peatedly faced when writing this thesis. We suggest several potential solu-
tions.
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2 Deep Reinforcement Learning as a Sam-

pling Problem

2.1 The RL objective

Consider an agent living in some environment E. We can train an agent
to complete a task within its environment by making it solve a Markov
decision process (MDP). A Markov decision process can be thought of as
a puzzle which provides the necessary information for an agent to acquire
a new behavior in its environment. It is usually represented as a tuple
M = (S,A,P , r, ρ0, γ, T ) where S is a set containing all possible world states
the agent can encounter, A is an set containing all possible actions an agent
can use, P : S × A × S → R+ is a probability distribution which provides
transition probabilities between states when sampled, r : S × A → R is a
reward function, ρ0 : S → R+ is an initial state distribution, γ ∈ [0, 1] a
discount factor, and T is the problem horizon.

In RL, the objective is to solve a given MDP. This is done by defining an
object called a policy (usually denoted by π) that tells the agent which action
it should optimally take in any given state. We can express the policy in
mathematical notation as πθ : S × A → R+. The subscript θ indicates π is
parametrized by θ. We want to train these parameters so that π prescribes
the optimal action in any given state s.

In practice, the policy π is often not deterministic. Instead, π usually de-
fines a distribution over the action space conditioned on the present state.
Recalling that the actions prescribed by the policy cause a transition to
a new state, we see that the policy implicitly defines a sampling distri-
bution over the state space. This induced distribution can be written as
pθ(τ) = ΠT−1

t=0 p(st+1|st, at)πθ(at|τt), where τi = (s0, a0, . . . , si, ai). Our goal is
to train this sampling distribution to favor areas with higher reward. Put
another way, we want π to produce trajectories with a high reward density.
Mathematically, we want to maximize the expected reward under the induced
distribution p.

Putting everything together, the RL objective is for π to maximizes the ex-
pected discounted sum of future rewards incurred. Let us write the expected
discounted sum of rewards induced by π in a mathematically rigorous way
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as

η(πθ) = Epθ(τ)

[
T∑
t=0

γtr(st)

]
= Epθ(τ)[R(τ)]

where s0 ∼ ρ0(s0), at ∼ πθ(at|st), st+1 ∼ P(st+1|st, at), andR(τ) =
∑T

t=0 γ
tr(st).

Thus, maximizing η(πθ) requires we maximize an expectation. The REIN-
FORCE algorithm provides one such algorithm for computing a tractable
form of this gradient [139].

2.2 REINFORCE

We want to maximize the expression

η(πθ) = Epθ(τ)[R(τ)]

The most straightforward way to achieve this is with stochastic gradient
ascent. This algorithm requires that we compute the gradient of η(πθ) with
respect to θ. To accomplish this, we can expand the expectation into an
integral and then pull the gradient under the integral.

∇θη(πθ) = ∇θEpθ(τ)[R(τ)]

= ∇θ

∫
R(τ)pθ(τ)dτ

=

∫
R(τ)∇θpθ(τ)dτ
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Recalling the derivative of log(x) is dx
x

, we can use the classical trick of

multiplying the expression under the integral by 1 = pθ(τ)
pθ(τ)

.∫
R(τ)∇θpθ(τ)dτ =

∫
R(τ)∇θpθ(τ) · pθ(τ)

pθ(τ)
dτ

=

∫
R(τ)

(
∇θpθ(τ)

pθ(τ)

)
pθ(τ)dτ

=

∫
R(τ)∇θ log pθ(τ)pθ(τ)dτ

= Epθ(τ) [R(τ)∇θ log pθ(τ)]

= Epθ(τ)

[
R(τ)

T∑
t=0

∇θ log πθ(at|τt)

]

The above expression requires only that we compute the gradient of∑T
t=0∇θ log πθ(at|τt), which is tractable though quite inefficient. Critically,

this algorithm only requires that we have the ability to sample from πθ.
It does not require that we directly compute gradient with respect to the
reward R, which would be quite difficult. Instead, it computes gradients of
the distribution induced by the policy with respect to θ and then weights
those gradients by R. Once again, we see that we are using this algorithm
to essentially randomly search for areas with high reward density.

2.3 The Exploration Problem

Policy gradient methods such as REINFORCE are slow. This is because
they do not directly compute gradients with respect to the true underlying
reward function, but instead rely on treating learning as a sampling problem
and sampling from πθ to compute gradients.

When some part of the state space is difficult to repeatedly sample from,
this area will often be overlooked even if it presents a higher reward density.
Furthermore, once the algorithm finds an area of the state space with bet-
ter than random reward density, it will tend to adjust its sampling weights
too much towards this area in response. This results in the policy visiting
one area repeatedly. Consequently, it exploits only a fractional part of the
state space before it had sufficient time to inspect or randomly search other
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areas of the state space. This is referred to as the exploration vs exploita-
tion problem. We would like our algorithms to be more exploratory when
defining a sampling distribution over the state space. In the next chapter,
we provide a novel method for achieving efficient exploration. This method
learns a dynamics model to help the sampling distribution determine which
areas of state space have been sufficiently accounted for. Thus, it helps the
policy ensure it samples a sufficiently eclectic portion of the environment’s
states.
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3 Incentivizing Exploration with Deep Pre-

dictive Models

Achieving efficient and scalable exploration in complex domains poses a ma-
jor challenge in reinforcement learning. While Bayesian and PAC-MDP ap-
proaches to the exploration problem offer strong formal guarantees, they are
often impractical in higher dimensions due to their reliance on enumerating
the state-action space. Hence, exploration in complex domains is often per-
formed with simple epsilon-greedy methods. In this work, we consider the
challenging Atari games domain, which requires processing raw pixel inputs
and delayed rewards. We evaluate several more sophisticated exploration
strategies, including Thompson sampling and Boltzman exploration, and pro-
pose a new exploration method based on assigning exploration bonuses from
a concurrently learned model of the system dynamics. By parameterizing our
learned model with a neural network, we are able to develop a scalable and
efficient approach to exploration bonuses that can be applied to tasks with
complex, high-dimensional state spaces. In the Atari domain, our method
provides the most consistent improvement across a range of games that pose
a major challenge for prior methods. In addition to raw game-scores, we
also develop an AUC-100 metric for the Atari Learning domain to evaluate
the impact of exploration on this benchmark. This work was published as
[119].

3.1 Introduction

In reinforcement learning (RL), agents acting in unknown environments face
the exploration versus exploitation tradeoff. Without adequate exploration,
the agent might fail to discover effective control strategies, particularly in
complex domains. Both PAC-MDP algorithms, such as MBIE-EB [123], and
Bayesian algorithms such as Bayesian Exploration Bonuses (BEB) [60] have
managed this tradeoff by assigning exploration bonuses to novel states. In
these methods, the novelty of a state-action pair is derived from the num-
ber of times an agent has visited that pair. While these approaches offer
strong formal guarantees, their requirement of an enumerable representation
of the agent’s environment renders them impractical for large-scale tasks. As
such, exploration in large RL tasks is still most often performed using simple

9



heuristics, such as the epsilon-greedy strategy [77], which can be inadequate
in more complex settings.

In this work, we evaluate several exploration strategies that can be scaled
up to complex tasks with high-dimensional inputs. Our results show that
Boltzman exploration and Thompson sampling significantly improve on the
näıve epsilon-greedy strategy. However, we show that the biggest and most
consistent improvement can be achieved by assigning exploration bonuses
based on a learned model of the system dynamics with learned representa-
tions. To that end, we describe a method that learns a state representation
from observations, trains a dynamics model using this representation con-
currently with the policy, and uses the misprediction error in this model to
asses the novelty of each state. Novel states are expected to disagree more
strongly with the model than those states that have been visited frequently
in the past, and assigning exploration bonuses based on this disagreement
can produce rapid and effective exploration.

Using learned model dynamics to assess a state’s novelty presents several
challenges. Capturing an adequate representation of the agent’s environment
for use in dynamics predictions can be accomplished by training a model to
predict the next state from the previous ground-truth state-action pair. How-
ever, one would not expect pixel intensity values to adequately capture the
salient features of a given state-space. To provide a more suitable representa-
tion of the system’s state space, we propose a method for encoding the state
space into lower dimensional domains. To achieve sufficient generality and
scalability, we modeled the system’s dynamics with a deep neural network.
This allows for on-the-fly learning of a model representation that can easily
be trained in parallel to learning a policy.

Our main contribution is a scalable and efficient method for assigning explo-
ration bonuses in large RL problems with complex observations, as well as an
extensive empirical evaluation of this approach and other simple alternative
strategies, such as Boltzman exploration and Thompson sampling. Our ap-
proach assigns model-based exploration bonuses from learned representations
and dynamics, using only the observations and actions. It can scale to large
problems where Bayesian approaches to exploration become impractical, and
we show that it achieves significant improvement in learning speed on the task
of learning to play Atari games from raw images [14]. Our approach achieves
state-of-the-art results on a number of games, and achieves particularly large
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improvements for games on which human players strongly outperform prior
methods. Aside from achieving a high final score, our method also achieves
substantially faster learning. To evaluate the speed of the learning process,
we propose the AUC-100 benchmark to evaluate learning progress on the
Atari domain.

3.2 Preliminaries

We consider an infinite-horizon discounted Markov decision process (MDP),
defined by the tuple (S,A,P ,R, ρ0, γ), where S is a finite set of states, A a
finite set of actions, P : S×A×S → R the transition probability distribution,
R : S → R the reward function, ρ0 an initial state distribution, and γ ∈ (0, 1)
the discount factor. We are interested in finding a policy π : S × A → [0, 1]
that maximizes the expected reward over all time. This maximization can
be accomplished using a variety of reinforcement learning algorithms.

In this work, we are concerned with online reinforcement learning wherein
the algorithm receives a tuple (st, at, st+1, rt) at each step. Here, st ∈ S is the
previous state, at ∈ A is the previous action, st+1 ∈ S is the new state, and
rt is the reward collected as a result of this transition. The reinforcement
learning algorithm must use this tuple to update its policy and maximize
long-term reward and then choose the new action at+1. It is often insufficient
to simply choose the best action based on previous experience, since this
strategy can quickly fall into a local optimum. Instead, the learning algorithm
must perform exploration. Prior work has suggested methods that address
the exploration problem by acting with “optimism under uncertainty.” If
one assumes that the reinforcement learning algorithm will tend to choose
the best action, it can be encouraged to visit state-action pairs that it has
not frequently seen by augmenting the reward function to deliver a bonus
for visiting novel states. This is accomplished with the augmented reward
function

RBonus(s, a) = R(s, a) + βN (s, a), (1)

where N (s, a) : S × A → [0, 1] is a novelty function designed to capture
the novelty of a given state-action pair. Prior work has suggested a va-
riety of different novelty functions e.g., [123, 60] based on state visitation
frequency.
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While such methods offer a number of appealing guarantees, such as near-
Bayesian exploration in polynomial time [60], they require a concise, often
discrete representation of the agent’s state-action space to measure state
visitation frequencies. In our approach, we will employ function approxima-
tion and representation learning to devise an alternative to these require-
ments.

3.3 Model Learning For Exploration Bonuses

We would like to encourage agent exploration by giving the agent exploration
bonuses for visiting novel states. Identifying states as novel requires we
supply some representation of the agent’s state space, as well as a mechanism
to use this representation to assess novelty. Unsupervised learning methods
offer one promising avenue for acquiring a concise representation of the state
with a good similarity metric. This can be accomplished using dimensionality
reduction, clustering, or graph-based techniques [46, 12]. In our work, we
draw on recent developments in representation learning with neural networks,
as discussed in the following section. However, even with a good learned
state representation, maintaining a table of visitation frequencies becomes
impractical for complex tasks. Instead, we learn a model of the task dynamics
that can be used to assess the novelty of a new state.

Formally, let σ(s) denote the encoding of the state s, and let Mφ : σ(S) ×
A → σ(S) be a dynamics predictor parameterized by φ. Mφ takes an en-
coded version of a state s at time t and the agent’s action at time t and
attempts to predict an encoded version of the agent’s state at time t + 1.
The parameterization of M is discussed further in the next section.

For each state transition (st, at, st+1), we can attempt to predict σ(st+1) from
(σ(st), at) using our predictive model Mφ. This prediction will have some
error

e(st, at) = ‖σ(st+1)−Mφ(σ(st), at)‖2
2. (2)

Let eT , the normalized prediction error at time T , be given by eT := eT
maxt≤T {et}

.

We can assign a novelty function to (st, at) via

N (st, at) =
ēt(st, at)

t ∗ C
(3)
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where C > 0 is a decay constant. We can now realize our augmented reward
function as

RBonus(s, a) = R(s, a) + β

(
ēt(st, at)

t ∗ C

)
(4)

This approach is motivated by the idea that, as our ability to model the
dynamics of a particular state-action pair improves, we have come to un-
derstand the state better and hence its novelty is lower. When we don’t
understand the state-action pair well enough to make accurate predictions,
we assume that more knowledge about that particular area of the model
dynamics is needed and hence a higher novelty measure is assigned.

Using learned model dynamics to assign novelty functions allows us to address
the exploration versus exploitation problem in a non-greedy way. With an
appropriate representation σ(st), even when we encounter a new state-action
pair (st, at), we expectMφ(σ(st), at) to be accurate so long as enough similar
state-action pairs have been encountered.

Our model-based exploration bonuses can be incorporated into any online
reinforcement learning algorithm that updates the policy based on state,
action, reward tuples of the form (st, at, st+1, rt), such as Q-learning or actor-
critic algorithms. Our method is summarized in Algorithm 1. At each step,
we receive a tuple (st, at, st+1,R(st, at)) and compute the Euclidean distance
between the encoded state σ(st+1) to the prediction made by our model
Mφ(σ(st), at). This is used to compute the exploration-augmented reward
RBonus using Equation (4). The tuples (st, at, st+1,RBonus) are stored in a
memory bank Ω at the end of every step. Every step, the policy is updated. 1

Once per epoch, corresponding to 50000 observations in our implementation,
the dynamics model Mφ is updated to improve its accuracy. If desired, the
representation encoder σ can also be updated at this time. We found that
retraining σ once every 5 epochs to be sufficient.

This approach is modular and compatible with any representation of σ and
M, as well as any reinforcement learning method that updates its policy
based on a continuous stream of observation, action, reward tuples. In-
corporating exploration bonuses does make the reinforcement learning task

1In our implementation, the memory bank Ω is used to retrain the RL algorithm via
experience replay once per epoch (50000 steps). Hence, 49999 of these policy updates will
simply do nothing.
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Algorithm 1 Reinforcement learning with model prediction exploration
bonuses

1: Initialize maxe = 1, EpochLength, β, C
2: for iteration t in T do
3: Observe (st, at, st+1,R(st, at))
4: Encode the observations to obtain σ(st) and σ(st+1)

5: Compute e(st, at) = ‖σ(st+1)−Mφ(σ(st), at)‖2
2 and ē(st, at) = e(st,at)

maxe
.

6: Compute RBonus(st, at) = R(s, a) + β
(
ēt(st,at)
t∗C

)
7: if e(st, at) > maxe then
8: maxe = e(st, at)
9: end if

10: Store (st, at,Rbonus) in a memory bank Ω.
11: Pass Ω to the reinforcement learning algorithm to update π.
12: if t mod EpochLength == 0 then
13: Use Ω to update M.
14: Optionally, update σ.
15: end if
16: end for
17: return optimized policy π

nonstationary, though we did not find this to be a major issue in practice, as
shown in our experimental evaluation. In the following section, we discuss
the particular choice for σ andM that we use for learning policies for playing
Atari games from raw images.

3.4 Deep Learning Architectures

Though the dynamics modelMφ and the encoder σ from the previous section
can be parametrized by any appropriate method, we found that using deep
neural networks for both achieved good empirical results on the Atari games
benchmark. In this section, we discuss the particular networks used in our
implementation.
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3.4.1 Autoencoders

The most direct way of learning a dynamics model is to directly predict the
state at the next time step, which in the Atari games benchmark corresponds
to the next frame’s pixel intensity values. However, directly predicting these
pixel intensity values is unsatisfactory, since we do not expect pixel inten-
sity to capture the salient features of the environment in a robust way. In
our experiments, a dynamics model trained to predict raw frames exhibited
extremely poor behavior, assigning exploration bonuses in near equality at
most time steps, as discussed in our experimental results section.

To overcome these difficulties, we seek a function σ which encodes a lower
dimensional representation of the state s. For the task of representing Atari
frames, we found that an autoencoder could be used to successfully obtain
an encoding function σ and achieve dimensionality reduction and feature
extraction [49]. Our autoencoder has 8 hidden layers, followed by a Euclidean

Figure 1: Left: Autoencoder used on input space. The circle denotes the
hidden layer that was extracted and utilized as input for dynamics learning.
Right: Model learning architecture.

loss layer, which computes the distance between the output features and
the original input image. The hidden layers are reduced in dimension until
maximal compression occurs with 128 units. After this, the activations are
decoded by passing through hidden layers with increasingly large size. We
train the network on a set of 250,000 images and test on a further set of
25,000 images. We compared two separate methodologies for capturing these
images.

1. Static AE: A random agent plays for enough time to collect the re-
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quired images. The auto-encoder σ is trained offline before the policy
learning algorithm begins.

2. Dynamic AE: Initialize with an epsilon-greedy strategy and collect
images and actions while the agent acts under the policy learning algo-
rithm. After 5 epochs, train the auto encoder from this data. Continue
to collect data and periodically retrain the auto encoder in parallel with
the policy training algorithm.

We found that the reconstructed input achieves a small but non-trivial resid-
ual on the test set regardless of which auto encoder training technique is
utilized, suggesting that in both cases it learns underlying features of the
state space while avoiding overfitting.

To obtain a lower dimensional representation of the agent’s state space, a
snapshot of the network’s first six layers is saved. The sixth layer’s output
(circled in figure one) is then utilized as an encoding for the original state
space. That is, we construct an encoding σ(st) by running st through the
first six hidden layers of our autoencoder and then taking the sixth layers
output to be σ(st). In practice, we found that using the sixth layer’s out-
put (rather than the bottleneck at the fifth layer) obtained the best model
learning results. We discuss this result further below.

3.4.2 On Auto Encoder Layer Selection

Recall that we trained an auto-encoder to encode the game’s state space. We
then trained a predictive model on the next auto-encoded frame rather than
directly training on the pixel intensity values of the next frame. To obtain
the encoded space, we ran each state through an eight layer auto-encoder
for training and then utilized the auto-encoder’s sixth layer as an encoded
state space. We chose to use the sixth layer rather than the bottleneck
fourth layer because we found that, over 20 iterations of Seaquest at 100
epochs per iteration, using this layer for encoding delivered measurably better
performance than using the bottleneck layer. The results of that experiment
are presented below.
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Figure 2: Game score averaged over 20 Seaquest iterations with various
choices for the state-space encoding layer. Notice that choosing the sixth
layer to encode the state space significantly outperformed the bottleneck
layer.

3.4.3 Model Learning Architecture

Equipped with an encoding σ, we can now consider the task of predicting
model dynamics. For this task, a much simpler two layer neural network
Mφ suffices. Mφ takes as input the encoded version of a state st at time t
along with the agent’s action at and seeks to predict the encoded next frame
σ(st+1). Loss is computed via a Euclidean loss layer regressing on the ground
truth σ(st+1). We find that this model initially learns a representation close
to the identity function and consequently the loss residual is similar for most
state-action pairs. However, after approximately 5 epochs, it begins to learn
more complex dynamics and consequently better identify novel states. We
evaluate the quality of the learned model below.

3.5 Related Work

Exploration is an intensely studied area of reinforcement learning. Many
of the pioneering algorithms in this area, such as R-Max [18] and E3 [55],
achieve efficient exploration that scales polynomially with the number of
parameters in the agent’s state space (see also [56, 115]). However, as the
size of state spaces increases, these methods quickly become intractable. A
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number of prior methods also examine various techniques for using models
and prediction to incentivize exploration [117, 72, 37, 4]. However, such
methods typically operate directly on the transition matrix of a discrete
MDP, and do not provide for a straightforward extension to very large or
continuous spaces, where function approximation is required. A number of
prior methods have also been proposed to incorporate domain-specific factors
to improve exploration. Doshi-Velez et al. [30] proposed incorporating priors
into policy optimization, while Lang et al. [66] developed a method specific
to relational domains. Finally, Schmidhuber et al. have developed a curiosity
driven approach to exploration which uses model predictors to aid in control
[106].

Several exploration techniques have been proposed that can extend more
readily to large state spaces. Among these, methods such as C-PACE [88]
and metric-E3 [53] require a good metric on the state space that satisfies the
assumptions of the algorithm. The corresponding representation learning
issue has some parallels to the representation problem that we address by
using an autoencoder, but it is unclear how the appropriate metric for the
prior methods can be acquired automatically on tasks with raw sensory input,
such as the Atari games in our experimental evaluation. Methods based
on Monte-Carlo tree search can also scale gracefully to complex domains
[43], and indeed previous work has applied such techniques to the task of
playing Atari games from screen images [44]. However, this approach is
computationally very intensive, and requires access to a generative model of
the system in order to perform the tree search, which is not always available
in online reinforcement learning. On the other hand, our method readily
integrates into any online reinforcement learning algorithm.

Finally, several recent papers have focused on driving the Q value higher.
In [35], the authors use network dropout to perform Thompson sampling.
In Boltzman exploration, a positive probability is assigned to any possible
action according to its expected utility and according to a temperature pa-
rameter [23]. Both of these methods focus on controlling Q values rather
than model-based exploration. A comparison to both is provided in the next
section.
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3.6 Experimental Results

3.6.1 Learning Curves, AUC 100 Scores, and Discussion

We evaluate our approach on 14 games from the Arcade Learning Envi-
ronment [14]. The task consists of choosing actions in an Atari emulator
based on raw images of the screen. Previous work has tackled this task us-
ing Q-learning with epsilon-greedy exploration [77], as well as Monte Carlo
tree search [44] and policy gradient methods [110]. We use Deep Q Net-
works (DQN) [77] as the reinforcement learning algorithm within our method,
and compare its performance to the same DQN method using only epsilon-
greedy exploration, Boltzman exploration, and a Thompson sampling ap-
proach.

The results for 14 games in the Arcade Learning Environment are presented
in Table 1. We chose those games that were particularly challenging for prior
methods and ones where human experts outperform prior learning methods.
We evaluated two versions of our approach; using either an autoencoder
trained in advance by running epsilon-greedy Q-learning to collect data (de-
noted as “Static AE”), or using an autoencoder trained concurrently with the
model and policy on the same image data (denoted as “Dynamic AE”). Ta-
ble 1 also shows results from the DQN implementation reported in previous
work, along with human expert performance on each game [77]. Note that
our DQN implementation did not attain the same score on all of the games
as prior work due to a shorter running time. Since we are primarily con-
cerned with the rate of learning and not the final results, we do not consider
this a deficiency. To directly evaluate the benefit of including exploration
bonuses, we compare the performance of our approach primarily to our own
DQN implementation, with the prior scores provided for reference.

In addition to raw-game scores, and learning curves, we also analyze our
results on a new benchmark we have named Area Under Curve 100 (AUC-
100). For each game, this benchmark computes the area under the game-score
learning curve (using the trapezoid rule to approximate the integral). This
area is then normalized by 100 times the score maximum game score achieved
in [77], which represents 100 epochs of play at the best-known levels. This
metric more effectively captures improvements to the game’s learning rate
and does not require running the games for 1000 epochs as in [77]. For this
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reason, we suggest it as an alternative metric to raw game-score.

Bowling The policy without exploration tended to fixate on a set pattern
of knocking down six pins per frame. When bonuses were added, the dynam-
ics learner quickly became adept at predicting this outcome and was thus
encouraged to explore other release points.

Frostbite This game’s dynamics changed substantially via the addition of
extra platforms as the player progressed. As the dynamics of these more
complex systems was not well understood, the system was encouraged to
visit them often (which required making further progress in the game).

Seaquest A submarine must surface for air between bouts of fighting sharks.
However, if the player resurfaces too soon they will suffer a penalty with ef-
fects on the game’s dynamics. Since these effects are poorly understood by
the model learning algorithm, resurfacing receives a high exploration bonus
and hence the agent eventually learns to successfully resurface at the correct
time.

Q∗bert Exploration bonuses resulted in a lower score. In Q∗bert, the back-
ground changes color after level one. The dynamics predictor is unable to
quickly adapt to such a dramatic change in the environment and conse-
quently, exploration bonuses are assigned in near equality to almost every
state that is visited. This negatively impacts the final policy.

Learning curves for each of the games are shown in Figure (3). Note that both
of the exploration bonus algorithms learn significantly faster than epsilon-
greedy Q-learning, and often continue learning even after the epsilon-greedy
strategy converges. All games had the inputs normalized according to [77]
and were run for 100 epochs (where one epoch is 50,000 time steps). Between
each epoch, the policy was updated and then the new policy underwent
10,000 time steps of testing. The results represent the average testing score
across three trials after 100 epoch each.

The results show that more nuanced exploration strategies generally improve
on the naive epsilon greedy approach, with the Boltzman and Thompson

20



Figure 3: Full learning curves and AUC-100 scores for all Atari games. We
present the raw AUC-100 scores below in tabular format.
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Game
DQN
100
epochs

Exploration
Static AE
100 epochs

Exploration
Dynamic
AE
100 epochs

Boltzman
Exploration
100 epochs

Thompson
Sampling
100 epochs

DQN [77]
1000 epochs

Human
Expert
[77]

Alien 1018 1436 1190 1301 1322 3069 6875
Asteroids 1043 1486 939 1287 812 1629 13157
Bank Heist 102 131 95 101 129 429.7 734.4
Beam Rider 1604 1520 1640 1228 1361 6846 5775
Bowling 68.1 130 133 113 85.2 42.4 154.8
Breakout 146 162 178 219 222 401.2 31.8
Enduro 281 264 277 284 236 301.8 309.6
Freeway 10.5 10.5 12.5 13.9 12.0 30.3 29.6
Frostbite 369 649 380 605 494 328.3 4335
Montezuma 0.0 0.0 0.0 0 0 0.0 4367
Pong 17.6 18.5 18.2 18.2 18.2 18.9 9.3
Q∗bert 4649 3291 3263 4014 3251 10596 13455
Seaquest 2106 2636 4472 3808 1337 5286 20182
Space Invaders 634 649 716 697 459 1976 1652

Table 1: A comparison of maximum scores achieved by different methods. Static AE
trains the state-space auto encoder on 250000 raw game frames prior to policy optimization
(raw frames are taken from random agent play). Dynamic AE retrains the auto encoder
after each epoch, using the last 250000 images as a training set. Note that exploration
bonuses help us to achieve state of the art results on Bowling and Frostbite. Each of
these games provides a significant exploration challenge. Bolded numbers indicate the
best-performing score among our experiments. Note that this score is sometimes lower
than the score reported for DQN in prior work as our implementation only one-tenth as
long as in [77].

sampling methods achieving the best results on three of the games. However,
exploration bonuses achieve the fastest learning and the best results most
consistently, outperforming the other three methods on 7 of the 14 games in
terms of AUC-100.

3.6.2 On the Quality of the Learned Model Dynamics

Evaluating the quality of the learned dynamics model is somewhat difficult
because the system is rewarded achieving higher error rates. A dynamics
model that converges quickly is not useful for exploration bonuses. Never-
theless, when we plot the mean of the normalized residuals across all games
and all trials used in our experiments, we see that the errors of the learned dy-
namics models continually decrease over time. The mean normalized residual
after 100 epochs is approximately half of the maximal mean achieved. This
suggests that each dynamics model was able to correctly learn properties of
underlying dynamics for its given game.
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Game DQN Exploration
Static AE

Exploration
Dynamic
AE

Boltzman
Exploration

Thompson
Sampling

Alien 0.153 0.198 0.171 0.187 0.204
Asteroids 0.259 0.415 0.254 0.456 0.223
Bank Heist 0.0715 0.1459 0.089 0.089 0.1303
Beam Rider 0.1122 0.0919 0.1112 0.0817 0.0897
Bowling 0.964 1.493 1.836 1.338 1.122
Breakout 0.191 0.202 0.192 0.294 0.254
Enduro 0.518 0.495 0.589 0.538 0.466
Freeway 0.206 0.213 0.295 0.313 0.228
Frostbite 0.573 0.971 0.622 0.928 0.746
Montezuma 0.0 0.0 0.0 0 0
Pong 0.52 0.56 0.424 0.612 0.612
Q∗bert 0.155 0.104 0.121 0.13 0.127
Seaquest 0.16 0.172 0.265 0.194 0.174
Space Invaders 0.205 0.183 0.219 0.183 0.146

Table 2: AUC-100 is computed by comparing the area under the game-score
learning curve for 100 epochs of play to the area under of the rectangle
with dimensions 100 by the maximum DQN score the game achieved in [77].
The integral is approximated with the trapezoid rule. This more holistically
captures the games learning rate and does not require running the games for
1000 epochs as in [77]. For this reason, we suggest it as an alternative metric
to raw game-score.

Figure 4: Normalized dynamics model prediction residual across all trials of
all games. Note that the dynamics model is retrained from scratch for each
trial.

3.7 Conclusion

In this work, we evaluated several scalable and efficient exploration algo-
rithms for reinforcement learning in tasks with complex, high-dimensional
observations. Our results show that a new method based on assigning ex-
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ploration bonuses most consistently achieves the largest improvement on a
range of challenging Atari games, particularly those on which human players
outperform prior learning methods. Our exploration method learns a model
of the dynamics concurrently with the policy. This model predicts a learned
representation of the state, and a function of this prediction error is added
to the reward as an exploration bonus to encourage the policy to visit states
with high novelty.

One of the limitations of our approach is that the misprediction error metric
assumes that any misprediction in the state is caused by inaccuracies in the
model. While this is true in deterministic environments, stochastic dynamics
violate this assumption. An extension of our approach to stochastic systems
requires a more nuanced treatment of the distinction between stochastic dy-
namics and uncertain dynamics, which we hope to explore in future work.
Another intriguing direction for future work is to examine how the learned
dynamics model can be incorporated into the policy learning process, beyond
just providing exploration bonuses. This could in principle enable substan-
tially faster learning than purely model-free approaches.

Since this chapter’s initial publication in 2015, there has been a flurry of
follow-up work. These results include but are not limited to [52, 87, 85].
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4 The Importance of Sampling in

Meta-Reinforcement Learning

We interpret meta-reinforcement learning as the problem of learning how to
quickly find a good sampling distribution in a new environment. This inter-
pretation leads to the development of two new meta-reinforcement learning
algorithms: E-MAML and E-RL2. Results are presented on a new environ-
ment we call ‘Krazy World’: a difficult high-dimensional gridworld which
is designed to highlight the importance of correctly differentiating through
sampling distributions in meta-reinforcement learning. Further results are
presented on a set of maze environments. We show E-MAML and E-RL2 de-
liver better performance than baseline algorithms on both tasks. This work
was published as [121].

4.1 Introduction

Reinforcement learning can be thought of as a procedure wherein an agent
bias its sampling process towards areas with higher rewards. This sampling
process is embodied as the policy P , which is responsible for outputting an
action (a) conditioned on past environmental states ({s}). Such action affects
changes in the distribution of the next state s′ ∼ T (s, a). As a result, it is
natural to identify the policy P with a sampling distribution over the state
space.

This perspective highlights a key difference between reinforcement learning
and supervised learning: In supervised learning, the data is sampled from a
fixed set. The i.i.d. assumption assumes that the model does not affect the
underlying distribution. In reinforcement learning however, the very goal
in the problem setup is to learn a policy that could manipulate the state
samples to the agent’s advantage.

This property of RL to affect the data distribution during its own learn-
ing process is particularly salient in the field of meta-reinforcement learning
(meta RL) [107, 108, 102, 101, 104, 61, 105, 138, 129]. Meta RL goes by
many different names: learning to learn, multi-task learning, lifelong learn-
ing, transfer learning, etc. The goal however, is usually the same– we wish
to train agents that in some way optimize over, and consequently improve
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upon, their own learning process by training over a multitude of episodes,
tasks, and environments. As a consequence of these improvements to the
learning process, we expect the agent to solve new tasks more quickly than
a regular RL agent that starts from scratch.

This problem definition induces an interesting consequence: during meta-
learning, we are no longer under the obligation to optimize for maximal
reward during training. Instead, we are optimizing to obtain a sampling
process that maximally informs the meta-learner how it should adapt to
new environments. In the context of gradient based algorithms, this means
that a principled approach in learning an optimal sampling strategy is to
differentiate the meta RL agent’s per-task sampling process with respect
to the goal of maximizing the meta-learners reward. To the best of our
knowledge, such a scheme is hitherto unexplored.

In this work, we derive an algorithm for gradient-based meta-learning that ex-
plicitly considers the deviates of the per-task sampling distributions with re-
spect to the expected future returns produced by its parent meta-learner. We
show that this algorithm is closely related to the recently proposed MAML
algorithm [33]. For reasons that will become clear later, we call this algorithm
E-MAML. Inspired by this algorithm, we develop less principled extension of
RL2 that we call E-RL2. We show that our algorithms outperform baselines
on a high-dimensional dynamically-changing set of grid-world environments
that are challenging even for state-of-the-art RL algorithms. To verify we
are not over-fitting to this environment, we also present results on a set of
maze environments.

4.2 Problem Formulation and Algorithms

4.2.1 Reinforcement Learning Notation

Let M = (S,A,P , r, ρ0, γ, T ) represent a discrete-time finite-horizon dis-
counted Markov decision process (MDP). The elements of M have the follow-
ing definitions: S is a state set, A an action set, P : S×A×S → R+ a transi-
tion probability distribution, r : S ×A → R a reward function, ρ0 : S → R+

an initial state distribution, γ ∈ [0, 1] a discount factor, and T the horizon.
We will sometimes speak of M having a loss function L rather than reward
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function r. All we mean here is that L(s) = −r(s) In a classical reinforce-
ment learning setting, we optimize to obtain a set of parameters θ which
maximize the expected discounted return under the policy πθ : S ×A → R+.
That is, we optimize to obtain θ that maximizes η(πθ) = Eπθ [

∑T
t=0 γ

tr(st)],
where s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at).

4.2.2 The Meta Reinforcement Learning Objective

In meta reinforcement learning, we consider a family of MDPsM = {Mi}Ni=1

which comprise a distribution of tasks. The goal of meta RL is to find a policy
πθ and paired update method U such that, given Mi ∼ M, we have πU(θ)

solves Mi quickly. The word quickly is key: By quickly, we mean orders of
magnitude more sample efficient than simply solving Mi with policy gradient
or value iteration methods from scratch. For example in an environment
where policy gradients require over 100,000 samples to produce good returns,
an ideal meta RL algorithm should solve these tasks by collecting less than
10 trajectories. The assumption is that if an algorithm can solve a problem
with so few samples, then it might be ‘learning to learn.’ That is, the agent
is not learning how to master a particular task but rather how to quickly
adapt to new ones. This objective can be written cleanly as

min
θ

∑
Mi

EπU(θ)) [LMi
] (5)

This objective is similar to the one that appears in MAML [33], which we will
discuss further below. In MAML, U is chosen to be the stochastic gradient
descent operator parameterized by the task.

4.2.3 Fixing the Sampling Problem with E-MAML

We can expand the expectation from (5) into the integral∫
R(τ)πU(θ)(τ)dτ (6)

It is true that the objective (5) can be optimized by taking a derivative of this
integral with respect to θ and carrying out a standard REINFORCE style
analysis to obtain a tractable expression for the gradient [139]. However, this
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decision is sub-optimal.

Our key insight is to recall the sampling process interpretation of RL. In
this interpretation, the policy πθ implicitly defines a sampling process over
the state space. Under this interpretation, meta RL tries to learn a strategy
for quickly generating good per-task sampling distributions. For this learn-
ing process to work, it needs to receive a signal from each per-task sampling
distribution which measures its propensity to positively impact the meta-
learning process. Such a term does not make an appearance when directly
optimizing (5). Put more succinctly, directly optimizing (5) will not
account for the impact of the original sampling distribution πθ on
the future rewards R(τ), τ ∼ πU(θ). Concretely, we would like to account
for the fact that the samples τ̄ drawn under πθ will impact the final returns
R(τ) by influencing the initial update U(θ, τ̄). Making this change will allow
initial samples τ̄ ∼ πθ to be reinforced by the expected future returns after
the sampling update R(τ). Under this scheme, the initial samples τ̄ are en-
couraged to cover the state space enough to ensure that the update U(θ) is
maximally effective.

Including this dependency can be done by writing the modified expectation
as ∫∫

R(τ)πU(θ)(τ)πθ(τ̄)dτ̄dτ

This provides an unbiased expression for computing the gradient which cor-
rectly accounts for the dependence on the initial sampling distribution.

We now find ourselves wishing to find a tractable expression for the gradient
of (3). This can be done quite smoothly by applying the product rule under
the integral sign and going through the REINFORCE style derivation twice
to arrive at a two term expression

∂

∂θ

∫∫
R(τ)πU(θ)(τ)πθ(τ̄)dτ̄dτ

=

∫∫
R(τ)

[
πθ(τ̄)

∂

∂θ
πU(θ)(τ) + πU(θ)(τ)

∂

∂θ
πθ(τ̄)

]
dτ̄dτ

≈ 1

T

T∑
i=1

R(τ i)
∂

∂θ
log πU(θ)(τ

i) +
1

T

T∑
i=1

R(τ i)
∂

∂θ
log πθ(τ̄

i)

∣∣∣∣
τ̄
i ∼ πθ
τ
i ∼ πU(θ)
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The term on the left is precisely the original MAML algorithm [33]. This term
encourages the agent to take update steps U that achieve good final rewards.
The second term encourages the agent to take actions such that the eventual
meta-update yields good rewards (crucially, it does not try and exploit the
reward signal under its own trajectory τ̄). In our original derivation of this
algorithm, we felt this term would afford the the policy the opportunity to
be more exploratory, as it will attempt to deliver the maximal amount of
information useful for the future rewards R(τ) without worrying about its
own rewards R(τ̄). Since we felt this algorithm augments MAML by adding
in an exploratory term, we called it E-MAML. At present, the validity of this
interpretation remains an open question.

For the experiments presented in this work, we will assume that the operator
U that is utilized in MAML and E-MAML is stochastic gradient descent.
However, many other interesting choices exist.

4.2.4 Choices for the Operator U

During our derivation of E-MAML, we made an implicit choice in that the
inner update operator U takes the form of SGD. However, this is but one
of many eligible operators where the exploration is directed by the task re-
ward. Consider the path-integral formulation of the expected reward in E-
MAML

L(θ0) =−
∫∫

R(τ) · π(ai|si, U(θ0, R(τ̄), τ̄ ∼ π(a|θ0))) · π(āi |s̄i, θ0) dτdτ̄ .

(7)

We can make it easier to tell the role of U by re-writing the action probability
π and U in type notation where

π̂(θ) :⇒ {(τ) : R+ ⇒ π(at|st, θ)} (8)

and Û(θ0) : Θ⇒ U

(
θ0, R(τ), τ ∼ π(a|θ0)

)
. (9)

π̂ returns a function on trajectories τ ∈ T , whereas Û takes in two more
variables from its closure, and returns an updated θ ∈ Θ. Using the Polish
notation @ applied from-left-to-right, the surrogate loss could be written
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as

L(θ0) = −
∫∫

R(τ) ·
(
π̂ ◦ Û

)
@θ0@τ̄ (10)

· π̂@θ0@τ̄ dτdτ̄ .

In this notation, it becomes clear that you could pick any arbitrary function
for the inner-update operator Û . Under this context, the update operator
of choice in E-MAML (and similarly MAML) is an instance from a more
general class of exploratory operators O:

ÛMAML(θ0) : Θ⇒ SGD

(
LPPO, τ(π(θ0)), θ0

)
(11)

where the class of operators it belongs to is ÛMAML ∈ O : {(Θ) :⇒ Θ}

So what is this policy gradient update operator? One could argue that UMAML

is a “reward-maximizing” exploration strategy. The reward collected during
the exploration phase is used to compute the gradient direction for θ0, which
is in-turn used to update θ0 → θ.

Then it becomes immediately obvious there are a few other operators that
could also be plugged in:

• random exploration on a single task, where θ is perturbed randomly.

• natural gradient on a single task, where such perturbation is scaled
with the inverse fisher information.

• perpendicular to gradient : Another extreme is to update the initial
parameter θ0 perpendicular to the gradient direction.

• ε-greedy : A middle ground between these extremes is a ε-greedy ex-
ploration strategy, where for ε of the time the per-task exploration is
done randomly, whereas for the rest of the time (1 − ε) the gradient
direction is picked.

• Meta-learned Exploratory Operator where the inner-update operator U
is learned to optimality to a specific class of tasks. See [102, 101].

• Distraction-free Learning where the sign of the explorative log prob-
ability is flipped. This should discourage exploratory behavior. This
could be useful in a life-long learning agent during test time, where
exploration is extremely costly.
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4.2.5 E-RL2

RL2 optimizes (5) by feeding multiple rollouts from multiple different MDPs
into an RNN. The hope is that the RNN hidden state update ht = C(xt, ht−1),
will learn to act as the update function U . Then, performing a policy gra-
dient update on the RNN will correspond to optimizing the meta objective
(5).

We can write the RL2 update rule more explicitly in the following way. Sup-
pose L represents an RNN. Let Envk(a) be a function that takes an action,
uses it to interact with the MDP representing task k, and returns the next
observation o 2 , reward r, and a termination flag d. Then we have

xt = [ot−1, at−1, rt−1, dt−1] (12)

[at, ht+1] = L(ht, xt) (13)

[ot, rt, dt] = Envk(at) (14)

To train this RNN, we sampleN MDPs fromM and obtain k rollouts for each
MDP by running the MDP through the RNN as above. We then compute
a policy gradient update to move the RNN parameters in a direction which
maximizes the returns over the k trials performed for each MDP.

Inspired by our derivation of E-MAML, we attempt to make RL2 better
account for the impact of its initial sampling distribution on its final returns.
However, we will take a slightly different approach. Call the rollouts that help
account for the impact of this initial sampling distribution S-rollouts. Call
rollouts that do not account for this dependence G-rollouts. For each MDP
Mi, we will sample p S-rollouts and k − p G-rollouts. During an S-rollout,
the forward pass through the RNN will receive all information. However,
during the backwards pass, the rewards contributed during S-rollouts will be
set to zero. For example, if there is one S-rollout and one G-rollout, then
we would proceed as follows. During the forward pass, the RNN will receive
all information regarding rewards for both episodes. During the backwards

2RL2 works well with POMDP’s because the RNN is good at system-identification.
This is the reason why we chose to use o as in “observation” instead of s for “state” in
this formulation.
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pass, the returns will be computed as

R(xi) =
T∑
j=i

γjrj · χE(xj) (15)

Where χE is an indicator that returns 0 if the episode is exploratory and
1 otherwise. This return, and not the standard sum of discounted returns,
is what is used to compute the policy gradient. The hope is that zeroing
the return contributions from S-rollouts will encourage the RNN to account
for the impact of casting a wider sampling distribution on the final meta-
reward. That is, during S-rollouts the policy will take actions which may
not lead to immediate rewards but rather to the RNN hidden weights that
perform better system identification. This system identification will in turn
lead to higher rewards in later episodes.

4.3 Experiments

4.3.1 Krazy World Environment

To test the importance of correctly differentiating through the sampling pro-
cess in meta reinforcement learning, we engineer a new environment known
as Krazy World. A successful meta learning agent will first need to identify
the different tile types, color palette, and dynamics. This environment is
challening even for state-of-the-art RL algorithms. In this environment, it is
essential that meta-updates account for the impact of the original sampling
distribution on the final meta-updated reward. Without accounting for this
impact, the agent will not receive the gradient of the per-task episodes with
respect to the meta-update. But this is precisely the gradient that encourages
the agent to quickly learn how to correctly identify parts of the environment.
See below for a full description of the environment.

4.3.2 Further Krazy World Details

We find this environment challenging for even state-of-the-art RL algorithms.
For each environment in the test set, we optimize for 5 million steps using
the Q-Learning algorithm from Open-AI baselines. This exercise delivered a
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Figure 5: Three example worlds drawn from the task distribution. A good
agent should first complete a successful system identification before exploit-
ing. For example, in the leftmost grid the agent should identify the following:
1) the orange squares give +1 reward, 2) the blue squares replenish energy,
3) the gold squares block progress, 4) the black square can only be passed by
picking up the pink key, 5) the brown squares will kill it, 6) it will slide over
the purple squares. The center and right worlds show how these dynamics
will change and need to be re-identified every time a new task is sampled.

Figure 6: One example maze environment rendered in human readable for-
mat. The agent attempts to find a goal within the maze.

mean score of 1.2 per environment, well below the human baselines score of
2.7. The environment has the following challenging features:

1. 8 different tile types: Goal squares provide +1 reward when re-
trieved. The agent reaching the goal does not cause the episode to ter-
minate, and there can be multiple goals. Ice squares will be skipped
over in the direction the agent is transversing. Death squares will kill
the agent and end the episode. Wall squares act as a wall, impeding
the agent’s movement. Lock squares can only be passed once the
agent has collected the corresponding key from a key square. Tele-
porter squares transport the agent to a different teleporter square
on the map. Energy squares provide the agent with additional en-
ergy. If the agent runs out of energy, it can no longer move. The agent
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proceeds normally across normal squares.

2. Ability to randomly swap color palette: The color palette for the
grid can be randomly permuted, changing the color that corresponds
to each of the different tile types. The agent will thus have to identify
the new system to achieve a high score. Note that in representations
of the gird wherein basis vectors are used rather than images to de-
scribe the state space, each basis vector will correspond to a tile type,
and permuting the colors will correspond to permuting the types of
tiles these basis vectors represent. We prefer to use the basis vector
representation in our experiments, as it is more sample efficient.

3. Ability to randomly swap dynamics: The game’s dynamics can be
altered. The most naive alteration simply permutes the player’s inputs
and corresponding actions (issuing the command for down moves the
player up etc). More complex dynamics alterations allow the agent
to move multiple steps at a time in arbitrary directions, making the
movement more akin to that of chess pieces.

4. Local or Global Observations: The agent’s observation space can
be set to some fixed number of squares around the agent, the squares
in front of the agent, or the entire grid. Observations can be given as
images or as a grid of basis vectors. For the case of basis vectors, each
element of the grid is embedded as a basis vector that corresponds to
that tile type. These embeddings are then concatenated together to
form the observation proper. We will use local observations.

Figure 7: A comparison of local and global observations for the Krazy World
environment. In the local mode, the agent only views a 3 × 3 grid centered
about itself. In global mode, the agent views the entire environment.
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Figure 8: Meta learning curves on Krazy World. We see that E-RL2 is at
achieves the best final results, but has the highest initial variance. Crucially,
E-MAML converges faster than MAML, although both algorithms do manage
to converge. RL2 has relatively poor performance and high variance. A
random agent achieves a score of around 0.05 on this task.

4.3.3 Mazes

A collection of maze environments. The agent is placed at a random square
within the maze and must learn to navigate the twists and turns to reach
the goal square. A good exploratory agent will spend some time learning the
maze’s layout in a way that minimizes repetition of future mistakes. The
mazes are not rendered, and consequently this task is done with state space
only. The mazes are 20× 20 squares large.

4.3.4 Results

In this section we present the following experimental results.

1. Learning curves on Krazy World and mazes.

2. The gap between the agent’s initial performance on new environments
and its performance after updating. A good meta learning algorithm
will have a large gap after updating. A standard RL algorithm will
have virtually no gap after only one update.

3. Three heuristic metrics for how much of the state space an algorithm
manages to correctly identify.

When plotting learning curves in Figure 8 and Figure 9, the Y axis is the
reward obtained after training at test time on a set of 64 held-out test envi-
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ronments. The X axis is the total number of environmental time-steps the
algorithm has used for training. Every time the environment advances for-
ward by one step, this count increments by one. This is done to keep the
time-scale consistent across meta-learning curves.

For Krazy World, learning curves are presented in Figure 8. E-MAML and
E-RL2 have the best final performance. E-MAML has the steepest initial
gains for the first 10 million time-steps. Since meta-learning algorithms are
often very expensive, having a steep initial ascent is quite valuable. Around
14 million training steps, E-RL2 passes E-MAML for the best performance.
By 25 million time-steps, E-RL2 has converged. MAML delivers comparable
final performance to E-MAML. However, it takes it much longer to obtain
this level of performance. Finally, RL2 has comparatively poor performance
on this task and very high variance. When we manually examined the RL2

trajectories to figure out why, we saw the agent consistently finding a single
goal square and then refusing to explore any further. The additional metrics
presented below seem consistent with this finding.

Learning curves for mazes are presented in Figure 9. Here, the story is dif-
ferent than Krazy World. RL2 and E-RL2 both perform better than MAML
and E-MAML. We suspect the reason for this is that RNNs are able to
leverage memory, which is more important in mazes than in Krazy World.
This environment carries a penalty for hitting the wall, which MAML and
E-MAML discover quickly. However, it takes E-RL2 and RL2 much longer
to discover this penalty, resulting in worse performance at the beginning of
training. MAML delivers worse final performance and typically only learns
how to avoid hitting the wall. RL2 and E-MAML sporadically solve mazes.
E-RL2 manages to solve many of the mazes.

When examining meta learning algorithms, one important metric is the up-
date size after one learning episode. Our meta learning algorithms should
have a large gap between their initial policy, which is largely exploratory,
and their updated policy, which should often solve the problem entirely. For
MAML, we look at the gap between the initial policy and the policy after one
policy gradient step (see figure 11 for information on further gradient steps).
For RL2, we look at the results after three exploratory episodes, which give
the RNN hidden state h sufficient time to update. Note that three is the
number of exploratory episodes we used during training as well. This metric
shares similarities with the Jump Start metric considered in prior literature
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Figure 9: Meta learning curves on mazes. Figure 10 shows each curve in iso-
lation, making it easier to discern their individual characteristics. E-MAML
and E-RL2 perform better than their counterparts.

Figure 10: Gap between initial performance and performance after one up-
date. All algorithms show some level of improvement after one update. This
suggests meta learning is working, because normal policy gradient methods
learn nothing after one update.

[127]. These gaps are presented in figure 10.

Finally, in Figure 12 we see three heuristic metrics desigend to measure a
meta-learners capacity for system identification. First, we consider the frac-
tion of tile types visited by the agent at test time. A good agent should visit
and identify many different tile types. Second, we consider the number of
times an agent visits a death tile at test time. Agents that are efficient at
identification should visit this tile type exactly once and then avoid it. More
naive agents will run into these tiles repeatedly, dying repetedly and instilling
a sense of pity in onlookers. Finally, we look at how many goals the agent
reaches. RL2 tends to visit fewer goals. Instead, it finds one goal and exploits
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it. Overall, our suggested algorithms achieve better performance under these
metrics.

4.3.5 Number of Gradient Steps vs. Return MAML and E-MAML

Figure 11: MAML on the right and E-MAML on the left. A look at the
number of gradient steps at test time vs reward on the Krazy World environ-
ment. Both MAML and E-MAML do not typically benefit from seeing more
than one gradient step at test time. Hence, we only perform one gradient
step at test time for the experiments in this work.

4.3.6 Further Details on Procedure for Running Experiments

For both Krazy World and mazes, training proceeds in the following way.
First, we initialize 32 training environments and 64 test environments. Every
initialized environment has a different seed. Next, we initialize our chosen
meta-RL algorithm by uniformly sampling hyper-parameters from predefined
ranges. Data is then collected from all 32 training environments. The meta-
RL algorithm then uses this data to make a meta-update, as detailed in the
algorithm section of this section. The meta-RL algorithm is then allowed
to do one training step on the 64 test environments to see how fast it can
train at test time. These test environment results are recorded, 32 new
tasks are sampled from the training environments, and data collection begins
again. For MAML and E-MAML, training at test time means performing
one VPG update at test time (see figure 11 for evidence that taking only one
gradient step is sufficient). For RL2 and E-RL2, this means running three
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exploratory episodes to allow the RNN memory weights time to update and
then reporting the loss on the fourth and fifth episodes. For both algorithms,
meta-updates are calculated with PPO [109]. The entire process from the
above paragraph is repeated from the beginning 64 times and the results are
averaged to provide the final learning curves featured in this work.

4.4 Related Work

This work builds depends upon recent advances in deep reinforcement learn-
ing. [77, 76, 62] allow for discrete control in complex environments directly
from raw images. [110, 76, 109, 70], have allowed for high-dimensional con-
tinuous control in complex environments from raw state information.

It has been suggested that our algorithm is related to the exploration vs.
exploitation dilemma. There exists a large body of RL work addressing this
problem [57, 18, 60]. In practice, these methods are often not used due to
difficulties with high-dimensional observations, difficulty in implementation
on arbitrary domains, and lack of promising results. This resulted in most
deep RL work utilizing epsilon greedy exploration [77], or perhaps a simple
scheme like Boltzmann exploration [23]. As a result of these shortcomings,
a variety of new approaches to exploration in deep RL have recently been
suggested [126, 52, 119, 85, 13, 86, 82, 41, 104, 82, 41, 108, 107, 122, 124, 61,
105]. In spite of these numerous efforts, the problem of exploration in RL
remains difficult.

Many of the problems in meta RL can alternatively be addressed with the
field of hierarchical reinforcement learning. In hierarchical RL, a major focus
is on learning primitives that can be reused and strung together. Frequently,
these primitives will relate to better coverage over state visitation frequen-
cies. Recent work in this direction includes [134, 9, 128, 98, 11, 138]. The
primary reason we consider meta-learning over hierarchical RL is that we find
hierarchical RL tends to focus more on defining specific architectures that
should lead to hierarchical behavior, whereas meta learning instead attempts
to directly optimize for these behaviors.

As for meta RL itself, the literature is spread out and goes by many different
names. There exist relevant literature on life-long learning, learning to learn,
continual learning, and multi-task learning [102, 101]. We encourage the
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reviewer to look at the review articles [113, 127, 129] and their citations.
The work most similar to ours has focused on adding curiosity or on a free
learning phrase during training. However, these approaches are still quite
different because they focus on defining an intrinsic motivation signals. We
only consider better utilization of the existing reward signal. Our algorithm
makes an explicit connection between free learning phases and the its affect
on meta-updates.

Figure 12: Three heuristic metrics designed to measure an algorithm’s system
identification ability on Krazy World: Fraction of tile types visited during
test time, number of times killed at a death square during test time, and
number of goal squares visited. We see that E-MAML is consistently the most
diligent algorithm at checking every tile type during test time. Improving
performance on these metrics indicates the meta learners are learning how
to do at least some system identification.

4.5 Closing Remarks

In this work, we considered the importance of sampling in meta reinforce-
ment learning. Two new algorithms were derived and their properties were
analyzed. We showed that these algorithms tend to learn more quickly and
cover more of their environment’s states during learning than existing algo-
rithms. It is likely that future work in this area will focus on meta-learning
a curiosity signal which is robust and transfers across tasks, or learning an
explicit exploration policy. Another interesting avenue for future work is
learning intrinsic rewards that communicate long-horizon goals, thus better
justifying exploratory behavior. Perhaps this will enable meta agents which
truly want to explore rather than being forced to explore by mathematical
trickery in their objectives.
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5 Imitation Learning as a Sampling Problem

This chapter interprets imitation learning as the problem of learning a sam-
pling distribution that matches an underlying expert distribution. It serves
as a bridge, connecting the third-person imitation learning problem we ex-
plore in the next chapter to the broader themes of this thesis.

5.1 The Imitation Learning Objective

The central goal of imitation learning is for one agent to acquire a skill by
watching expert demonstrations of that skill. For example, a robot might
want to watch a video of another robot poring a glass of water and use these
expert demonstrations to acquire the skill of pouring.

We can make this objective more rigorous in the following way. Suppose
there is some expert policy πE. This policy produces expert rollouts τ iE =
(s0
E, a

0
E, . . . , s

i
E, a

i
E) which represent a successful completion of the given task.

Meanwhile, the novice policy πN similarly produces novice rollouts τ iN =
(s0
N , a

0
N , . . . , s

i
N , a

i
N). We want to train πN to produce trajectories that look

like they came from πE. Let âi = πN(si−1
N ). Then the imitation learning

objective is that

d(âi, aiE) (16)

should be small. Of course, if we assume d is the euclidean distance metric,
we can optimize for this objective directly! It’s a classical supervised learning
problem that offers no complications.

In practice, direct optimization of the imitation learning objective via su-
pervised learning often leads to over-fitting and poor generalization. An
alternative route would be to replace the distance metric d with some sort of
distributional distance, which will turn imitation learning into a more robust
sampling problem than exact matching3. This is exactly what is done in
Generative Adversarial Imitation Learning (GAIL).

3Technically, the supervised learning approach also turns imitation learning into a
sampling problem, since we are hoping πN can be used to sample expert trajectories.
However, it’s an exact matching problem that tries to match actions directly rather than
explicitly trying to model the expert distribution and explicitly sample from it as in GAIL
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5.2 Generative Adversarial Imitation Learning

One interesting scheme is to replace the distance metric d in (16). Rather
than using euclidean distance, one might instead use a distributional distance
that assesses how far away the distribution generated by sampling from πN is
from the distribution generated by sampling from πE. One would then train
πN to minimize this distance, generating samples that look like they come
from the distribution induced by πE. This idea is quite similar to Generative
Adversarial Networks (GANs) [40], as first noted by Ho in GAIL [50].

In [50], we assume that πE induces a distribution over the state space ΩE.
Likewise, we assume πN induces a distribution ΩN . LetD be a neural network
that returns the log probability that a state space belongs to ΩE. In other
words, D models the KL divergence4 between ΩE and ΩN . GAIL proceeds by
alternatively training D to better model this distance between the induced
distributions and training πN to further minimize the distance by enabling
πN to generate samples that look like they come from ΩE. In GAIL, πN is
trained with policy gradient methods (See chapter 2) where the cost signal
is equal to the distributional loss. Hence, we see that imitation learning is
twice a sampling problem. First, you are trying to train a novice sampling
distribution to match an expert sampling distribution. Second, the primary
method of training this novice is via RL as a sampling problem as discussed
in chapter 2.

5.3 The Mismatched Distribution Problem

It is worth noting that in practical imitation learning, a robot is almost never
trying to imitate another robot. Instead, it tries to imitate expert trajectories
provided by itself. These trajectories are usually acquired by using a human
to manually move the robot, moving the robot with use of a video game
controller, or using motion capture and a virtual reality headset to move
the robot. Robots never actually imitate other robots. They certainly never
imitate humans. This limitation of imitation learning is one instance of
what I call the mismatched distribution problem: the problem of performing
imitation learning in a setting where the distribution induced by the novice

4Technically the cross entropy loss is used but they are equivalent in this setting.
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policy can never fully match the underlying expert distribution. Let us briefly
review three instances of the problem.

1. One-Shot Imitation Learning: The novice is only provided a sin-
gle expert demonstration to mimic. This means that the expert sam-
pling distribution is a single point, correctly modeled by a Dirac delta
function. This poses numerous issues. Neural networks are poor at
modeling distributions with infinite derivatives. The generalization ca-
pabilities of GAIL in this context would be nonexistent. Sampling from
this distribution is practically meaningless since all the mass is concen-
trated around a single point. In [32], we provide a practical algorithm
for one-shot imitation learning that fixes many of these issues.

2. Super-Expert Imitation Learning: The expert that the agent is
attempting to imitate may in fact be sub-optimal in some ways. For in-
stance, the expert robot may shake too frequently, take inefficient paths
to its goal, clumsily knock over objects, or sometimes fail to complete
its goal. However, even though its demonstrations are sub-optimal,
the expert agent is still demonstration the correct intent and providing
good baseline performance. In Super-Expert imitation learning, we use
the expert to bootstrap a policy with a performance that far exceeds
that of the expert. Two primary algorithms are considered: meta-data
imputation (MDI) and meta learning from sub-optimal demonstrations.

3. Third-Person Imitation Learning: A robot tries to imitate an
agent that is different from itself. For instance, a robot might imitate
a different model of robot or a human. In GAIL, any attempts at such
imitation are doomed to failure because the robot and the expert have
an inherent difference in their state spaces. Hence, the distributions in-
duced by sampling from their policies will also be inherently different.
Any reasonable attempt to naively measure the KL divergence between
the expert and novice distributions will immediately find the obvious
differences between the novice and the expert. In [118], we rectify this
issue by introducing a third-person imitation learning algorithm that
allows a novice to learn from expert demonstrations even when there is
an inherent difference between the novice and expert’s underlying state
spaces. In the next chapter, we fully explore this algorithm.
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6 Third-Person Imitation Learning

Reinforcement learning (RL) makes it possible to train agents capable of
achieving sophisticated goals in complex and uncertain environments. A key
difficulty in reinforcement learning is specifying a reward function for the
agent to optimize. Traditionally, imitation learning in RL has been used to
overcome this problem. Unfortunately, hitherto imitation learning methods
tend to require that demonstrations are supplied in the first-person: the agent
is provided with a sequence of states and a specification of the actions that
it should have taken. While powerful, this kind of imitation learning is lim-
ited by the relatively hard problem of collecting first-person demonstrations.
Humans address this problem by learning from third-person demonstrations:
they observe other humans perform tasks, infer the task, and accomplish the
same task themselves.

In this chapter, we present a method for unsupervised third-person imitation
learning. Here third-person refers to training an agent to correctly achieve
a simple goal in a simple environment when it is provided a demonstration
of a teacher achieving the same goal but from a different viewpoint; and
unsupervised refers to the fact that the agent receives only these third-person
demonstrations, and is not provided a correspondence between teacher states
and student states. Our methods primary insight is that recent advances from
domain confusion can be utilized to yield domain agnostic features which are
crucial during the training process. To validate our approach, we report
successful experiments on learning from third-person demonstrations in a
pointmass domain, a reacher domain, and inverted pendulum. This work
was published as [118].

6.1 Introduction

Reinforcement learning (RL) is a framework for training agents to maximize
rewards in large, unknown, stochastic environments. In recent years, combin-
ing techniques from deep learning with reinforcement learning has yielded a
string of successful applications in game playing and robotics [77, 76, 110, 69].
These successful applications, and the speed at which the abilities of RL al-
gorithms have been increasing, makes it an exciting area of research with
significant potential for future applications.
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One of the major weaknesses of RL is the need to manually specify a reward
function. For each task we wish our agent to accomplish, we must provide
it with a reward function whose maximizer will precisely recover the desired
behavior. This weakness is addressed by the field of Inverse Reinforcement
Learning (IRL). Given a set of expert trajectories, IRL algorithms produce a
reward function under which these the expert trajectories enjoy the property
of optimality. Recently, there has been a significant amount of work on
IRL, and current algorithms can infer a reward function from a very modest
number of demonstrations (e.g,. [1, 92, 142, 68, 50, 34]).

While IRL algorithms are appealing, they impose the somewhat unrealistic
requirement that the demonstrations should be provided from the first-person
point of view with respect to the agent. Human beings learn to imitate
entirely from third-person demonstrations – i.e., by observing other humans
achieve goals. Indeed, in many situations, first-person demonstrations are
outright impossible to obtain. Meanwhile, third-person demonstrations are
often relatively easy to obtain.

The goal of this chapter is to develop an algorithm for third-person imitation
learning. Future advancements in this class of algorithms would significantly
improve the state of robotics, because it will enable people to easily teach
robots news skills and abilities. Importantly, we want our algorithm to be
unsupervised : it should be able to observe another agent perform a task,
infer that there is an underlying correspondence to itself, and find a way to
accomplish the same task.

We offer an approach to this problem by borrowing ideas from domain con-
fusion [133] and generative adversarial networks (GANs) [40]. The high-level
idea is to introduce an optimizer under which we can recover both a domain-
agnostic representation of the agent’s observations, and a cost function which
utilizes this domain-agnostic representation to capture the essence of expert
trajectories. We formulate this as a third-person RL-GAN problem, and our
solution builds on the first-person RL-GAN formulation by [50].

Surprisingly, we find that this simple approach has been able to solve the
problems that are presented in this chapter (illustrated in Figure 13), even
though the student’s observations are related in a complicated way to the
teacher’s demonstrations (given that the observations and the demonstra-
tions are pixel-level). As techniques for training GANs become more stable
and capable, we expect our algorithm to be able to infer solve harder third-
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person imitation tasks without any direct supervision.

Figure 13: From left to right, the three domains we consider in this chapter:
pointmass, reacher, and pendulum. Top-row is the third-person view of a
teacher demonstration. Bottom row is the agent’s view in their version of
the environment. For the point and reacher environments, the camera angles
differ by approximately 40 degrees. For the pendulum environment, the color
of the pole differs.

6.2 Related Work

Imitation learning (also learning from demonstrations or programming by
demonstration) considers the problem of acquiring skills from observing demon-
strations. Imitation learning has a long history, with several good survey
articles, including [100, 21, 5]. Two main lines of work within imitation
learning are: 1) behavioral cloning, where the demonstrations are used to di-
rectly learn a mapping from observations to actions using supervised learning,
potentially with interleaving learning and data collection (e.g., [89, 96]). 2)
Inverse reinforcement learning [81], where a reward function is estimated that
explains the demonstrations as (near) optimal behavior. This reward func-
tion could be represented as nearness to a trajectory [22, 2], as a weighted
combination of features [1, 92, 91, 142, 16, 54, 28], or could also involve
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feature learning [93, 68, 140, 34, 50].

This past work, however, is not directly applicable to the third person imi-
tation learning setting. In third-person imitation learning, the observations
and actions obtained from the demonstrations are not the same as what the
imitator agent will be faced with. A typical scenario would be: the imitator
agent watches a human perform a demonstration, and then has to execute
that same task. As discussed in [80] the ”what and how to imitate” questions
become significantly more challenging in this setting. To directly apply ex-
isting behavioral cloning or inverse reinforcement learning techniques would
require knowledge of a mapping between observations and actions in the
demonstrator space to observations and actions in the imitator space. Such
a mapping is often difficult to obtain, and it typically relies on providing fea-
ture representations that captures the invariance between both environments
[24, 112, 22, 79, 39, 45]. Contrary to prior work, we consider third-person
imitation learning from raw sensory data, where no such features are made
available.

The most closely related work to ours is by [34, 50, 140], who also consider
inverse reinforcement learning directly from raw sensory data. However, the
applicability of their approaches is limited to the first-person setting. In-
deed, matching raw sensory observations is impossible in the 3rd person
setting.

Our work also closely builds on advances in generative adversarial networks [40],
which are very closely related to imitation learning as explained in [34, 50].
In our optimization formulation, we apply the gradient flipping technique
from [36].

The problem of adapting what is learned in one domain to another domain
has been studied extensively in computer vision in the supervised learning
setting [141, 74, 64, 8, 31, 51, 71]. It has also been shown that features trained
in one domain can often be relevant to other domains [29]. The work most
closely related to ours is [133, 132], who also consider an explicit domain
confusion loss, forcing trained classifiers to rely on features that don’t allow
to distinguish between two domains. This work in turn relates to earlier
work by [20, 26], which also considers supervised training of deep feature
embeddings.

Our approach to third-person imitation learning relies on reinforcement learn-
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ing from raw sensory data in the imitator domain. Several recent advances
in deep reinforcement learning have made this practical, including Deep Q-
Networks [77], Trust Region Policy Optimization [110], A3C [76], and Gener-
alized Advantage Estimation [111]. Our approach uses Trust Region Policy
Optimization.

6.3 Background and Preliminaries

A discrete-time finite-horizon discounted Markov decision process (MDP) is
represented by a tuple M = (S,A,P , r, ρ0, γ, T ), in which S is a state set,
A an action set, P : S × A × S → R+ a transition probability distribution,
r : S × A → R a reward function, ρ0 : S → R+ an initial state distribution,
γ ∈ [0, 1] a discount factor, and T the horizon.

In the reinforcement learning setting, the goal is to find a policy πθ : S ×
A → R+ parametrized by θ that maximizes the expected discounted sum
of rewards incurred, η(πθ) = Eπθ [

∑T
t=0 γ

tc(st)], where s0 ∼ ρ0(s0), at ∼
πθ(at|st), and st+1 ∼ P(st+1|st, at).

In the (first-person) imitation learning setting, we are not given the reward
function. Instead we are given traces (i.e., sequences of states traversed) by
an expert who acts according to an unknown policy πE. The goal is to find
a policy πθ that performs as well as the expert against the unknown reward
function. It was shown in [1] that this can be achieved through inverse rein-
forcement learning by finding a policy πθ that matches the expert’s empirical
expectation over discounted sum of all features that might contribute to the
reward function. The work by [50] generalizes this to the setting when no
features are provided as follows: Find a policy πθ that makes it impossible
for a discriminator (in their work a deep neural net) to distinguish states
visited by the expert from states visited by the imitator agent. This can be
formalized as follows:

max
πθ

min
DR

− Eπθ [logDR(s)]− EπE [log(1−DR(s))] (17)

Here, the expectations are over the states experienced by the policy of the
imitator agent, πθ, and by the policy of the expert, πE, respectively. DR is
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the discriminator, which outputs the probability of a state having originated
from a trace from the imitator policy πθ. If the discriminator is perfectly
able to distinguish which policy originated state-action pairs, then DR will
consistently output a probability of 1 in the first term, and a probability of
0 in the second term, making the objective its lowest possible value of zero.
It is the role of the imitator agent πθ to find a policy that makes it difficult
for the discriminator to make that distinction. The desired equilibrium has
the imitator agent making it impractical for the discriminator to distinguish,
hence forcing the discriminator to assign probability 0.5 in all cases. [50]
present a practical approach for solving this type of game when representing
both πθ andDR as deep neural networks. Their approach repeatedly performs
gradient updates on each of them. Concretely, for a current policy πθ traces
can be collected, which together with the expert traces form a data-set on
which DR can be trained with supervised learning minimizing the negative
log-likelihood (in practice only performing a modest number of updates). For
a fixed DR, this is a policy optimization problem where − logDR(s, a) is the
reward, and policy gradients can be computed from those same traces. Their
approach uses trust region policy optimization [110] to update the imitator
policy πθ from those gradients.

In our work we will have more terms in the objective, so for compactness of
notation, we will realize the discriminative minimization from Eqn. (17) as
follows:

max
πθ

min
DR
LR =

∑
i

CE(DR(si), c`i) (18)

Where si is state i, c`i is the correct class label (was the state si obtained
from an expert vs. from a non-expert), and CE is the standard cross entropy
loss.

6.4 A Formal Definition Of The Third-Person Imita-
tion Learning Problem

Formally, the third-person imitation learning problem can be stated as fol-
lows. Suppose we are given two Markov Decision Processes MπE and Mπθ .
Suppose further there exists a set of traces ρ = {(s1, . . . , sn)}ni=0 which were
generated under a policy πE acting optimally under some unknown reward
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RπE . In third-person imitation learning, one attempts to recover by proxy
through ρ a policy πθ = f(ρ) which acts optimally with respect to Rπθ .

6.5 A Third-Person Imitation Learning Algorithm

6.5.1 Game Formulation

In this section, we discuss a simple algorithm for third-person imitation learn-
ing. This algorithm is able to successfully discriminate between expert and
novice policies, even when the policies are executed under different environ-
ments. Subsequently, this discrimination signal can be used to train expert
policies in new domains via RL by training the novice policy to fool the
discriminator, thus forcing it to match the expert policy.

In third-person learning, observations are more typically available rather than
direct state access, so going forward we will work with observations ot instead
of states st as representing the expert traces. The top row of Figure 15
illustrates what these observations are like in our experiments.

We begin by recalling that in the algorithm proposed by [50] the loss in
Equation 18 is utilized to train a discriminator DR capable of distinguishing
expert vs non-expert policies. Unfortunately, (18) will likely fail in cases when
the expert and non-expert act in different environments, since DR will quickly
learn these differences and use them as a strong classification signal.

To handle the third-person setting, where expert and novice are in different
environments, we consider that DR works by first extracting features from
ot, and then using these features to make a classification. Suppose then that
we partition DR into a feature extractor DF and the actual classifier which
assigns probabilities to the outputs of DF . Overloading notation, we will
refer to the classifier as DR going forward. For example, in case of a deep
neural net representation, DF would correspond to the earlier layers, and
DR to the later layers. The problem is then to ensure that DF contains no
information regarding the rollout’s domain label d` (i.e., expert vs. novice
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domain). This can be realized as

max
πθ

minLR =
∑
i

CE(DR(DF (oi)), c`i)

s.t. MI(DF (oi); dl) = 0

Where MI is mutual information and hence we have abused notation by using
DR, DF , and d` to mean the classifier, feature extractor, and the domain label
respectively as well as distributions over these objects.

The mutual information term can be instantiated by introducing another
classifier DD, which takes features produced by DF and outputs the prob-
ability that those features were produced by in the expert vs. non-expert
environment. (See [19, 10, 63, 25] for further discussion on instantiating the
information term by introducing another classifier.) If σi = DF (oi), then the
problem can be written as

max
πθ

min
DR

max
DD
LR + LD =

∑
i

CE(DR(σi), c`i) + CE(DD(σi), d`i) (19)

In words, we wish to minimize class loss while maximizing domain confu-
sion.

Often, it can be difficult for even humans to judge a static image as expert vs.
non-expert because it does not convey any information about the environ-
mental change affected by the agent’s actions. For example, if a pointmass
is attempting to move to a target location and starts far away from its goal
state, it can be difficult to judge if the policy itself is bad or the initializa-
tion was simply unlucky. In response to this difficulty, we give DR access
to not only the image at time t, but also at some future time t + n. Define
σt = DF (ot) and σt+n = DF (ot+n). The classifier then makes a prediction
DR(σt, σt+n) = ĉ`.

This renders the following formulation:

max
πθ

min
DR

max
DD
LR + LD =

∑
i

CE(DR(σi, σi+n), c`i) + CE(DD(σi), d`i) (20)
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Note we also want to optimize over DF , the feature extractor, but it feeds
both into DR and into DD, which are competing (hidden under σ), which we
will address now.

To deal with the competition over DF , we introduce a function G that acts
as the identity when moving forward through a directed acyclic graph and
flips the sign when backpropagating through the graph. This technique has
enjoyed recent success in computer vision. See, for example, [36]. With this
trick, the problem reduces to its final form

max
πθ

min
DR,DD,DF

LR + LD =
∑
i

CE(DR(σi, σi+n), c`i) + λ CE(DD(G(σi), d`i)

(21)

In Equation (21), we flip the gradient’s sign during backpropagation of DF

with respect to the domain classification loss. This corresponds to stochastic
gradient ascent away from features that are useful for domain classification,
thus ensuring that DF produces domain agnostic features. Equation 21 can
be solved efficiently with stochastic gradient descent. Here λ is a hyperpa-
rameter that determines the trade-off made between the objectives that are
competing over DF .

To ensure sufficient signal for discrimination between expert and non-expert,
we collect third-person demonstrations in the expert domain from both an
expert and from a non-expert.

Our complete formulation is graphically summarized in Figure 14.

6.5.2 Algorithm

To solve the game formulation in Equation (21), we perform alternating
(partial) optimization over the policy πθ and the reward function and domain
confusion encoded through DR,DD,DF .

The optimization over DR,DD,DF is done through stochastic gradient de-
scent with ADAM [58].

Our generator (πθ) step is similar to the generator step in the algorithm
by [50]. We simply use − logDR as the reward. Using policy gradient meth-
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Figure 14: Architecture diagram for third-person imitation learning. Images
at time t and t+ 4 are sent through a feature extractor to obtain F (ot) and
F (ot+4). Subsequently, these feature vectors are reused in two places. First,
they are concatenated and used to predict whether the samples are drawn
from expert or non-expert trajectories. Second, F (ot) is utilized to predict a
domain label (expert vs. novice domain). During backpropogation, the sign
on the domain loss LD is flipped to destroy information that was useful for
distinguishing the two domains. This ensures that the feature extractor F is
domain agnostic. Finally, the classes probabilities that were computed using
this domain-agnostic feature vector are utilized as a cost signal in TRPO;
which is subsequently utilized to train the novice policy to take expert-like
actions and collect further rollouts.
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ods (TRPO), we train the generator to minimize this cost and thus push the
policy further towards replicating expert behavior. Once the generator step
is done, we start again with the discriminator step. The entire process is
summarized in algorithm 1.

Algorithm 2 A third-person imitation learning algorithm.

1: Let CE be the standard cross entropy loss.
2: Let G be a function that flips the gradient sign during backpropogation and acts as

the identity map otherwise.
3: Initialize two domains, E and N for the expert and novice.
4: Initialize a memory bank Ω of expert success and of failure in domain E. Each tra-

jectory ω ∈ Ω comprises a rollout of images o = o1, . . . , ot, . . . on, a class label c`, and
a domain label d`.

5: Initialize D = DF ,DR,DD, a domain invariant discriminator.
6: Initialize a novice policy πθ.
7: Initialize numiters, the number of inner policy optimization iterations we wish to run.
8: for iter in numiters do
9: Sample a set of successes and failures ωE from Ω.

10: Collect on policy samples ωN
11: Set ω = ωE ∪ ωN .
12: Shuffle ω
13: for o, c`, d` in ω do
14: for ot in o do
15: σt = DF (ot)
16: σt+4 = DF (ot+4)
17: LR = CE(DR(σt, σt+4), c`)
18: Ld = CE(DD(G(σt)), d`)
19: L = λ · Ld + LR 5

20: minimize L with ADAM.
21: end for
22: end for
23: Collect on policy samples ωN from πθ.
24: for ω in ωN do
25: for ωt in ω do
26: σt = DF (ot)
27: σt+4 = DF (ot+4)
28: ĉ` = DR(σt, σt+4)
29: r = ĉ`[0], the probability that ot, ot+4 were generated via expert rollouts.
30: Use r to train πθ with via policy gradients (TRPO).
31: end for
32: end for
33: end for
34: return optimized policy πθ
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6.6 Experiments

We seek to answer the following questions through experiments:

1. Is it possible to solve the third-person imitation learning problem in
simple settings? I.e., given a collection of expert image-based rollouts
in one domain, is it possible to train a policy in a different domain that
replicates the essence of the original behavior?

2. Does the algorithm we propose benefit from both domain confusion
and velocity?

3. How sensitive is our proposed algorithm to the selection of hyper-
parameters used in deployment?

4. How sensitive is our proposed algorithm to changes in camera angle?

5. How does our method compare against some reasonable baselines?

6.6.1 Environments

To evaluate our algorithm, we consider three environments in the MuJoCo
physics simulator. There are two different versions of each environment, an
expert variant and a novice variant. Our goal is to train a cost function
that is domain agnostic, and hence can be trained with images on the expert
domain but nevertheless produce a reasonable cost on the novice domain.
See Figure 1 for a visualization of the differences between expert and novice
environments for the three tasks.

Point: A pointmass attempts to reach a point in a plane. The color of the
target and the camera angle change between domains.

Reacher: A two DOF arm attempts to reach a designated point in the
plane. The camera angle, the length of the arms, and the color of the target
point are changed between domains. Note that changing the camera angle
significantly alters the image background color from largely gray to roughly
30 percent black. This presents a significant challenge for our method.

Inverted Pendulum: A classic RL task wherein a pendulum must be made
to balance via control. For this domain, We only change the color of the
pendulum and not the camera angle. Since there is no target point, we found
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that changing the camera angle left the domain invariant representations
with too little information and resulted in a failure case. In contrast to
some traditional renderings of this problem, we do not terminate an episode
when the agent falls but rather allow data collection to continue for a fixed
horizon.

6.6.2 Evaluations

Is it possible to solve the third-person imitation learning problem
in simple settings? In Figure 15, we see that our proposed algorithm is
indeed able to recover reasonable policies for all three tasks we examined.
Initially, the training is quite unstable due to the domain confusion wreaking
havoc on the learned cost. However, after several iterations the policies
eventually head towards reasonable local minima and the standard deviation
over the reward distribution shrinks substantially. Finally, we note that
the extracted feature representations used to complete this task are in fact
domain-agnostic, as seen in Figure 16. Hence, the learning is properly taking
place from a third-person perspective.

Figure 15: Reward vs training iteration for reacher, inverted pendulum, and
point environments. The learning curves are averaged over 5 trials with error
bars represent one standard deviation in the reward distribution at the given
point.
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Figure 16: Domain accuracy vs. training iteration for reacher, inverted pen-
dulum, and point environments.

Does the algorithm we propose benefit from both domain confu-
sion and the multi-time step input? We answer this question with
the experiments summarized in Figure 17. This experiment compares our
approach with: (i) our approach without the domain confusion loss; (ii) our
approach without the multi-time step input; (iii) our approach without the
domain confusion loss and without the multi-time step input (which is very
similar to the approach in [50]). We see that adding domain confusion is es-
sential for getting strong performance in all three experiments. Meanwhile,
adding multi-time step input marginally improves the results. See also Fig-
ure 19 for an analysis of the effects of multi-time step input on the final
results.

Figure 17: Reward vs iteration for reacher, inverted pendulum, and point
environments with no domain confusion and no velocity (red), domain con-
fusion (orange), velocity (brown), and both domain confusion and velocity
(blue).

How sensitive is our proposed algorithm to the selection of hyper-
parameters used in deployment? Figure 18 shows the effect of the
domain confusion coefficient λ, which trades off how much we should weight
the domain confusion objective vs. the standard cost-recovery objective, on
the final performance of the algorithm. Setting λ too low results in slower
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learning and features that are not domain-invariant. Setting λ too high
results in an objective that is too quick to destroy information, which makes
it impossible to recover an accurate cost.

For multi-time step input, one must choose the number of look-ahead frames
that are utilized. If too small a window is chosen, the agent’s actions have
not affected a large amount of change in the environment and it is difficult
to discern any additional class signal over static images. If too large a time-
frame passes, causality becomes difficult to interpolate and the agent does
worse than simply being trained on static frames. Figure 19 illustrates that
no number of look-ahead frames is consistently optimal across tasks. How-
ever, a value of 4 showed good performance over all tasks, and so this value
was utilized in all other experiments.

Figure 18: Reward of final trained policy vs domain confusion weight λ for
reacher, inverted pendulum, and point environments.

Figure 19: Reward of final trained policy vs number of look-ahead frames for
reacher, inverted pendulum, and point environments.

How sensitive is our algorithm to changes in camera angle? We
present graphs for the reacher and point experiments wherein we exam the
final reward obtained by a policy trained with third-person imitation learning
vs the camera angle difference between the first-person and third-person per-
spective. We omit the inverted double pendulum experiment, as the color and
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not the camera angle changes in that setting and we found the case of slowly
transitioning the color to be the definition of uninteresting science.

Figure 20: Point and reacher final reward after 20 epochs of third-person
imitation learning vs the camera angle difference between the first and third-
person perspective. We see that the point follows a fairly linear slope in
regards to camera angle differences, whereas the reacher environment is more
stochastic against these changes.
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Figure 21: Learning curves for third-person imitation vs. three baselines:
1)RL with true reward, 2) first-person imitation, 3) attempting to use first-
person features on the third-person agent.

How does our method compare against reasonable baselines? We
consider the following baselines for comparisons against third-person imi-
tation learning. 1) Standard reinforcement learning with using full state
information and the true reward signal. This agent is trained via TRPO. 2)
Standard GAIL (first-person imitation learning). Here, the agent receives
first-person demonstration and attempts to imitate the correct behavior.
This is an upper bound on how well we can expect to do, since we have
the correct perspective. 3) Training a policy using first-person data and
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applying it to the third-person environment.

We compare all three of these baselines to third-person imitation learning.
As we see in figure 9: 1) Standard RL, which (unlike the imitation learning
approaches) has access to full state and true reward, helps calibrate perfor-
mance of the other approaches. 2) First-person imitation learning is faced
with a simpler imitation problem and accordingly outperforms third-person
imitation, yet third-person imitation learning is nevertheless competitive. 3)
Applying the first-person policy to the third-person agent fails miserably,
illustrating that explicitly considering third-person imitation is important in
these settings.

Somewhat unfortunately, the different reward function scales make it difficult
to capture information on the variance of each learning curve. Consequently,
below we have included the full learning curves for these experiments with
variance bars, each plotted with an appropriate scale to examine the variance
of the individual curves.

6.6.3 Learning Curves for Baselines

Here, we plot the learning curves for each of the baselines mentioned in the
experiments section as a standalone plot. This allows one to better examine
the variance of each individual learning curve.
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Figure 22: Inverted Pendulum performance under a policy trained on RL,
first-person imitation learning, third-person imitation, and a first-person pol-
icy applied to a third-person agent.
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Figure 23: Reacher performance under a policy trained on RL, first-person
imitation learning, third-person imitation, and a first-person policy applied
to a third-person agent.
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Figure 24: Point performance under a policy trained on RL, first-person
imitation learning, third-person imitation, and a first-person policy applied
to a third-person agent.

6.6.4 Architecture Parameters

Joint Feature Extractor: Input is images are size 50 x 50 with 3 channels,
RGB. Layers are 2 convolutional layers each followed by a max pooling layer
of size 2. Layers use 5 filters of size 3 each.

Domain Discriminator and the Class Discriminator: Input is domain ag-
nostic output of convolutional layers. Layers are two feed forward layers of
size 128 followed by a final feed forward layer of size 2 and a soft-max layer
to get the log probabilities.

ADAM is used for discriminator training with a learning rate of 0.001. The
RL generator uses the off-the-shelf TRPO implementation available in RL-
Lab.
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6.7 Discussion and Future Work

In this chapter, we presented the problem of third-person imitation learning.
We argue that this problem will be important going forward, as techniques
in reinforcement learning and generative adversarial learning improve and
the cost of collecting first-person samples remains high. We presented an
algorithm which builds on Generative Adversarial Imitation Learning and is
capable of solving simple third-person imitation tasks.

One promising direction of future work in this area is to jointly train policy
features and cost features at the pixel level, allowing the reuse of image fea-
tures. Code to train a third-person imitation learning agent on the domains
from this chapter is presented here: https://github.com/bstadie/third_
person_im
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7 Transfer Learning for Causal Inference

The previous work on this paper has focused on solving various learning
problems in the fields of meta-learning, imitation learning, and reinforce-
ment learning. In each case, we showed that the learning problem we were
interested in solving arose naturally from the perspective that learning is
really a sampling problem.

In this chapter, we take a step back. Instead of focusing on one particular
learning problem, we instead consider one of the fundamental difficulties that
arises from interpreting learning as a sampling problem: it is extremely dif-
ficult to understand causal relationships in the agent’s environment through
sampling alone. It is difficult to understand not only the causal relationships
between states, but also the causal relationship between actions and state
transitions. Propagating a policy’s understanding of causal effects across
hundreds of time-steps and across wide search trees of states is a nearly
impossible problem.

Model based reinforcement learning exists in large part to rectify this prob-
lem. Model based algorithms allow the agent access to a model of the
system’s dynamics. This allows for better planning, a more consistent in-
terpretation of relationships between states, and a more explicit use of the
causal relationship between actions and state transitions. However, dynam-
ics models are still not enough. They are too low-level and local, seeking
to explicitly model the impacts of actions on immediately following state
transitions. This ignores the need for a higher-level understanding of com-
plex relationships between present and future states and the rules governing
the agent’s environment and the problem it is trying to solve. In the video
game pong, a dynamics model will help the agent see that hitting the ball
changes the direction of the ball. However, this dynamics model will not
help the agent understand that its true goal is to hit the ball past its oppo-
nent’s paddle. This deficiency is at the heart of the issue that arises from
naively treating learning as a sampling problem over a state space. Learning
ought to be a sampling problem over the various causal relationships within
an agent’s environment, not a sampling problem over a low-level state space.
In this chapter, we will take a step towards this paradigm by considering the
problem of transfer learning for causal inference. The algorithm we present
allows causal relationships to be transported from one causal study to an-
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other. Such an algorithm could allow agent’s to port their understanding
of one causal relationship in their environment to another analogous causal
relationship.

Below, we develop new algorithms for estimating heterogeneous treatment
effects, combining recent developments in transfer learning for neural net-
works with insights from the causal inference literature. By taking advan-
tage of transfer learning, we are able to efficiently use different data sources
that are related to the same underlying causal mechanisms. We compare
our algorithms with those in the extant literature using extensive simulation
studies based on large-scale voter persuasion experiments and the MNIST
database. Our methods can perform an order of magnitude better than ex-
isting benchmarks while using a fraction of the data. This work was published
as [120].

7.1 Introduction

The rise of massive datasets that provide fine-grained information about
human beings and their behavior provides unprecedented opportunities for
evaluating the effectiveness of treatments. Researchers want to exploit these
large and heterogeneous datasets, and they often seek to estimate how well a
given treatment works for individuals conditioning on their observed covari-
ates. This problem is important in medicine (where it is sometimes called
personalized medicine) [47, 90], digital experiments [125], economics [7], po-
litical science [42], statistics [131], and many other fields. A large number of
articles are being written on this topic, but many outstanding questions re-
main. In this thesis, we will consider the first application of transfer learning
to this problem.

In the simplest case, treatment effects are estimated by splitting a training set
into a treatment and a control group. The treatment group receives the treat-
ment, while the control group does not. The outcomes in those groups are
then used to construct an estimator for the Conditional Average Treatment
Effect (CATE), which is defined as the expected outcome under treatment
minus the expected outcome under control given a particular feature vector
[6]. This is a challenging task because, for every unit, we either observe its
outcome under treatment or control, but never both. Assumptions, such as
the random assignment of treatment and additional regularity conditions,
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are needed to make progress. Even with these assumptions, the resulting
estimates are often noisy and unstable because the CATE is a vector param-
eter. Recent research has shown that it is important to use estimators which
consider both treatment groups simultaneously ([65, 136, 84, 48]). Unfortu-
nately, these recent advances are often still insufficient to train robust CATE
estimators because of the large sample sizes required when the number of
covariates is not small.

However, researchers usually fail to use ancillary datasets that are available
to them in applications. This is surprising, given the need for additional data
to estimate CATE reliably. These ancillary datasets are related to the causal
mechanism under investigation, but they are also partially distinct so they
cannot be pooled naively, which explains why researches often do not use
them. Examples of such ancillary datasets include observations from: ex-
periments in different locations on different populations, different treatment
arms, different outcomes, and non-experimental observational studies. The
key idea underlying our contributions is that one can substantially improve
CATE estimators by transferring information from other data sources.

Our contributions are as follows:

1. We introduce the new problem of transfer learning for esti-
mating heterogeneous treatment effects.

2. We develop the Y-learner for CATE estimation. We consider
the problem of CATE estimation with deep neural networks. We pro-
pose the Y-Learner, a CATE estimator designed from the ground up
to take advantage of deep neural networks’ ability to easily share in-
formation across layers. The Y-Learner often achieves state-of-the-art
performance on CATE estimation. The Y-learner does not use transfer
learning.

3. MLRW Transfer for CATE Estimation adapts the idea of meta-
learning regression weights (MLRW) to CATE estimation. Using these
learned weights, regression problems can be optimized much more quickly
than with random initializations. Though a variety of MLRW algo-
rithms exist, it is not immediately obvious how one should use these
methods for CATE estimation. The principle difficulty is that CATE
estimation requires the simultaneous estimation of outcomes under
both treatment and control, when we only observe one of the outcomes
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for any individual unit. However, most MLRW transfer methods opti-
mize on a per-task basis to estimate a single quantity. We show that
one can overcome this problem with clever use of the Reptile algorithm
[83].While adapting Reptile to work with our problem, we discovered
a slight modification to the original algorithm. To distinguish this
modification, we refer to it in this chapter as SF Reptile, Slow-Fast
Reptile.

4. We provide several additional methods for transfer learning
for CATE estimation: warm start, frozen-features, multi-head, and
joint training.

5. We apply our methods to difficult data problems and show
that they perform better than existing benchmarks. We reana-
lyze a set of large field experiments that evaluate the effect of a mailer
on voter turnout in the 2014 U.S. midterm elections [38]. This includes
17 experiments with 1.96 million individuals in total. We also simulate
several randomized controlled trials using image data of handwritten
digits found in the MNIST database [67]. We show that our methods,
MLRW in particular, obtain better than state-of-the-art performance
in estimating CATE, and that they require far fewer observations than
extant methods.

6. We provide open source code for our algorithms.6

7.2 CATE Estimation

7.2.1 Background and Assumptions

We begin by formally introducing the CATE estimation problem. Following
the potential outcomes framework [97], assume there exists a single experi-
ment wherein we observe N i.i.d. distributed units from some super popu-
lation, (Yi(0), Yi(1), Xi,Wi) ∼ P . Yi(0) ∈ R denotes the potential outcome
of unit i if it is in the control group, Yi(1) ∈ R is the potential outcome of
i if it is in the treatment group, Xi ∈ Rd is a d-dimensional feature vector,

6The software will be released once anonymity is no longer needed. We can also provide
an anynomized copy to reviewers upon request.
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and Wi ∈ {0, 1} is the treatment assignment. For each unit in the treat-
ment group (Wi = 1), we only observe the outcome under treatment, Yi(1).
For each unit under control (Wi = 0), we only observe the outcome under
control. Crucially, there cannot exist overlap between the set of units for
which Wi = 1 and the set for which Wi = 0. It is impossible to observe
both potential outcomes for any unit. This is commonly referred to as the
fundamental problem of causal inference.

However, not all hope is lost. We can still estimate the Conditional Average
Treatment Effect (CATE) of the treatment. Let x be an individual feature
vector. Then the CATE of x, denoted τ(x), is defined by

τ(x) = E[Y (1)− Y (0)|X = x].

Estimating τ is impossible without making further assumptions on the distri-
bution of (Yi(0), Yi(1), Xi,Wi). In particular, we need to place two assump-
tions on our data.
Assumption 1 (Strong Ignorability, [95]).

(Yi(1), Yi(0)) ⊥ W |X.

Assumption 2 (Overlap). Define the propensity score of x as,

e(x) := P(W = 1|X = x).

Then there exists constant 0 < emin, emax < 1 such that for all x ∈
Support(X),

0 < emin < e(x) < emax < 1.

In words, e(x) is bounded away from 0 and 1.

Assumption 1 ensures that there is no unobserved confounder, a random
variable which influences both the probability of treatment and the potential
outcomes, which would make the CATE unidentifiable. The assumption is
particularly strong and difficult to check in applications. Meanwhile, As-
sumption 2 rectifies the situation wherein a certain part of the population
is always treated or always in the control group. If, for example, all women
were in the control group, one cannot identify the treatment effect for women.
Though both assumptions are strong, they are nevertheless satisfied by de-
sign in randomized controlled trials. While the estimators we discuss would
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be sensible in observational studies when the assumptions are satisfied, we
warn practitioners to be cautious in such studies, especially when the number
of covariates is large [27].

7.2.2 Basic CATE Estimation with the T-Learner

Given our two assumptions, there exist many valid CATE estimators. The
crux of these methods is to estimate two quantities: the control response
function,

µ0(x) = E[Y (0)|X = x],

and the treatment response function,

µ1(x) = E[Y (1)|X = x].

If we denote our learned estimates as µ̂0(x) and µ̂1(x), then we can form the
CATE estimate as the difference between the two

τ̂(x) = µ̂1(x)− µ̂0(x).

The astute reader may be wondering why we don’t simply estimate µ0 and
µ1 with our favorite function approximation algorithm at this point and then
all go home. After all, we have access to the ground truths µ0 and µ1 and the
corresponding inputs x. In fact, it is commonplace to do exactly that. When
people directly estimate µ0 and µ1 with their favorite model, we call the
procedure a T-learner [65]. Common choices of models include linear models
and random forests, though neural networks have recently been considered
[84].

While it may seem like we’ve triumphed, the T-learner does have some draw-
backs [6]. It is usually an inefficient estimator. For example, it will often
perform poorly when one can borrow information across the treatment con-
ditions. To overcome these deficiencies, a variety of alternative learners have
been suggested. Closely related to the T-learner is the idea of estimating
the outcome using all of the features and the treatment indicator, without
giving the treatment indicator a special role [48]. The predicted CATE for an
individual unit is then the difference between the predicted values when the
treatment assignment indicator is changed from control to treatment, with
all other features held fixed. This is called the S-learner, because it uses a
single prediction model.
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In the following section, we suggest another new learner called the Y-learner
(See Figure 25). This learner has been engineered from the ground up to
take advantage of some of the unique capabilities of neural networks. See
below for a full description of the Y-learner, and additional learners found
in the literature. Below, we will use these learners as base algorithms for
transfer learning. That is to say, we will use the knowledge gained by training
one learner on one experiment to help a new learner with a new underlying
experiment train faster with less data.

7.2.3 More Advanced CATE Estimation with the Y-Learner

In this section, we show the favorable behavior of the Y-learner over the X-
learner. In order to show this, we implemented the X-learner exactly as it is
described in [65] and the Y-learner as it is described in this section. Figure
26 shows the MSE in proportion to its sample size. We can see that the X–
learner is consistently outperformed on all these data sets by the Y-learner.
We note that all these data sets were intentionally crated to be very similar
to the GOTV data set we are interested in studying. Therefore these data
sets are not extremely different from each other, and it is possible that the
X-NN performs much better on different data sets.
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Figure 25: Y-learner with Neural Networks. One of many advanced meth-
ods for CATE estimation. See Section 7.2.3 and 7.6.2 for a more detailed
overview.

Another important advantage of neural networks is that they can be trained
jointly. This enables us to adapt well-performing meta-learners to perform
even better. Specifically, we used the idea of X-NN to propose a new CATE
estimator, which we call Y-NN.7 The X-learner is essentially a two step pro-
cedure. In the first stage, the outcome functions, µ̂0 and µ̂1, are estimated
and the individual treatment effects are imputed:

D1
i := Y (1)− µ̂0(Xi) and D0

i := µ̂1(Xi)− Yi(0).

In the second stage, estimators for the CATE are derived by regressing the
features X on the imputed treatment effects. [65] provides details. In the
X-learner, the estimators of the first stage are held fixed and are not updated
in the second stage. This is necessary since, unlike neural networks, many
machine learning algorithms, such as RF and BART, cannot be updated in a
meaningful way once they have been trained. For neural networks and similar
gradient optimization-based algorithms, it is possible to jointly update the
estimators in the first and the second stage.

This is exactly the motivation of the Y-learner. Instead of first deriving

7Y is chosen as it is the next letter in the alphabet after X. However, this is not a
meta-learner because there is no obvious way to extend it to arbitrary base learners, such
as RF or BART.
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Figure 26: In this figure, we compare the Y and the X learner on six simulated
data sets. A precise description on how the data was created can be found
in Section 7.4.3
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an estimator for the control response functions and then an estimator for
the CATE function, these functions are optimized jointly. The pseudo-code
in Algorithm 34 shows how these two stages are updated simultaneously. In
Figure 26, we compare Y-NN with X-NN, and we find that Y-NN outperforms
X-NN for our data sets.

7.3 Transfer Learning

7.3.1 Background

The key idea in transfer learning is that new experiments should transfer
insights from previous experiments rather than starting learning anew. The
most straightforward example of transfer comes from computer vision [137,
99, 17, 29]. Here, it is standard practice to train a neural network πθ for
one task and then use the trained network weights θ as initialization for a
new task. The hope is that some basic low-level features of a vision system
should be quite general and reusable. Starting optimization from networks
that have already learned these general features should be faster than starting
from scratch.

Despite its promise, fine-tuning often fails to produce initializations that are
uniformly good for solving new tasks [33]. One potent fix to this problem is a
class of algorithms that seek to optimize meta-learning initialization weights
[33, 83]. In these algorithms, one meta-optimizes over many experiments to
obtain neural network weights that can quickly find solutions to new exper-
iments. We will use the Reptile algorithm to learn initialization weights for
CATE estimation.

7.3.2 Transfer Learning CATE Estimators

In this chapter, we consider a scenario wherein one has access to many re-
lated causal inference experiments. Across all experiments, the input space
X is the same. Let i index an experiment. Each experiment has its own
distinct outcome when treatment is received, µi1(x), and when no treatment
is received, µi0(x). Together, these quantities define the CATE τ i = µi1 − µi0,
which we want to estimate. We are usually interested in estimating the CATE
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Figure 27: Warm start, frozen-features, and multi-head methods for CATE
transfer learning. For these figures, we use the T-learner as the base learner
for simplicity. All three methods attempt to reuse neural network features
from previous experiments. See below for an illustration of joint-training.

by using X to predict µi0 and µi1. However, in transfer learning, the hope
is that we can transfer knowledge between experiments such that being able
to predict µi0, µ

i
1, and τ i from experiment i accurately will help us predict

µj0, µ
j
1, and τ j from experiment j.

Below, let πθ be a generic expression for a neural network parameterized by θ.
Sometimes, parameters will have a subscript indicating if their neural network
predicts treatment or control (0 for control and 1 for treatment). Parameters
may also have a superscript indicating the experiment number whose outcome
is being predicted. For example, πθ2

0
(x) predicts µ2

0(x), the outcome under
control for Experiment 2. All of the transfer algorithms described here are
presented in detail below 7.6.2.

Warm start (also known as fine-tuning): Experiment 0 predicts πθ0
0
(x) =

µ̂0
0(x) and πθ0

1
(x) = µ̂0

1(x) to form the CATE estimator τ̂ = µ̂0
1(x) − µ̂1

0(x).

Suppose θ0
0, θ0

1 are fully trained and produce a good CATE estimate. For
experiment 1, the input space X is identical to the input space for experi-
ment 0, but the outcomes µ1

0(x) and µ1
1(x) are different. However, we suspect

the underlying data representations learned by πθ0
0

and πθ0
1

are still useful.

Hence, rather than randomly initialize θ1
0 and θ1

1 for experiment 1, we set
θ1

0 = θ0
0 and θ1

1 = θ0
1. We then train πθ1

0
(x) = µ̂1

0(x) and πθ1
1
(x) = µ̂1

1(x). See
Figure 27 and Algorithm 6 below.

Frozen-features: Begin by training πθ0
0

and πθ0
1

to produce good CATE
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estimates for experiment 0. Assuming θ0
0 and θ0

1 have more than k layers,
let γ0 be the parameters corresponding to the first k layers of θ0

0. Define
γ1 analogously. Since we think the features encoded by πγi(X) would make
a more informative input than the raw features X, we want to use those
features as a transformed input space for πθ1

0
and πθ1

1
. To wit, set z0 = πγ0(x)

and z1 = πγ1(x). Then form the estimates πθ1
0
(z0) = µ̂1

0 and πθ1
1
(z1) = µ̂1

1.

During training of experiment 1, we only backpropagate through θ1
0, θ1

1 and
not through the features we borrowed from θ0

0 and θ0
1. See Figure 27 and

Algorithm 7 below.

Multi-head: In this setup, all experiments share base layers that are fol-
lowed by experiment-specific layers. The intuition is that the base layers
should learn general features, and the experiment-specific layers should trans-
form those features into estimates of µij. More concretely, let γ0 and γ1 be
shared base layers. Set z0 = πγ0(x0) and z1 = πγ1(x1). The base layers are
followed by experiment-specific layers φi0 and φi1. Let θij =

[
γj, φ

i
j

]
. Then

πθij(x) = πφij
(
πγj(x)

)
= πφij(zj) = µ̂ij. Training alternates between experi-

ments: each θi0 and θi1 is trained for some small number of iterations, and
then the experiment and head being trained are switched. Every head is
usually trained several times. See Figure 27 Algorithm 8 below.

Joint training: All predictions share base layers θ. From these base lay-
ers, there are two heads per-experiment i: one to predict µi0 and one to
predict µi1. Let µji (r) represent the rth individual data-point from exper-
iment i with treatment group j. Every head and the base features are
trained simultaneously by optimizing with respect to the loss function L =∑

i

∑
r ‖ (µ̂i0(r)− µi0(r)) ‖ +

∑
i

∑
p ‖ (µ̂i1(p)− µi1(p)) ‖ and minimizing over

all weights. This will encourage the base layers to learn generally applicable
features and the heads to learn features specific to predicting a single µij.
Note that the summations are occurring over a different set of data, as we do
not assume access to both µi0 and µi1 simultaneously. See Algorithm 4.

SF Reptile transfer for CATE estimators: Similarly to fine-tuning, we
no longer provide each experiment with its own weights. Instead, we use data
from all experiments to learn weights θ0 and θ1, which are good initializers.
By good initializers, we mean that starting from θ0 and θ1, one can train neu-
ral networks πθ0 and πθ1 to estimate µi0 and µi1 for any arbitrary experiment
much faster and with less data than starting from random initializations. To
learn these good initializations, we use a transfer learning technique called
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Reptile. The idea is to perform experiment-specific inner updates U(θ) and
then aggregate them into outer updates of the form θnew = ε ·U(θ)+(1−ε) ·θ.
In this chapter, we consider a slight variation of Reptile. In standard Reptile,
ε is either a scalar or correlated to per-parameter weights furnished via SGD.
For our problem, we would like to encourage our network layers to learn at
different rates. The hope is that the lower layers can learn more general,
slowly-changing features like in the frozen features method, and the higher
layers can learn comparatively faster features that more quickly adapt to new
tasks after ingesting the stable lower-level features. To accomplish this, we
take the path of least resistance and make ε a vector which assigns a differ-
ent learning rate to each neural network layer. Because our intuition involves
slow and fast weights, we will refer to this modification in this chapter as
SF Reptile: Slow Fast Reptile. Though this change is seemingly small, we
found it boosted performance on our problems. See Figure 36 and Algorithm
9.

MLRW transfer for CATE estimation: In this method, there exists one
single set of weights θ. There are no experiment-specific weights. Further-
more, we do not use separate networks to estimate µ0 and µ1. Instead, πθ
is trained to estimate one µij at a time. We train θ with SF Reptile so that
in the future πθ requires minimal samples to fit µij from any experiment. To
actually form the CATE estimate, we use a small number of training samples
to fit πθ to µi0 and then a small number of training samples to fit πθ to µi1.
We call θ meta-learned regression weights (MLRW) because they are
meta-learned over many experiments to quickly regress onto any µij. The full
MLRW algorithm is presented as Algorithm 3.

7.4 Evaluation on GOTV Data

We evaluate our transfer learning estimators on both real and simulated
data. In our data example, we consider the important problem of voter en-
couragement. Analyzing a large data set of 1.96 million potential voters, we
show how transfer learning across elections and geographic regions can dra-
matically improve our CATE estimators. This example shows that transfer
learning can substantially improve the performance of CATE estimators. To
the best of our knowledge, this is the first successful demonstration
of transfer learning for CATE estimation.
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7.4.1 GOTV Experiment Background

To evaluate transfer learning for CATE estimation on real data, we reanalyze
a set of large field experiments with more than 1.96 million potential voters
[38]. The authors conducted 17 experiments to evaluate the effect of a mailer
on voter turnout in the 2014 U.S. Midterm Elections. The mailer informs the
targeted individual whether or not they voted in the past four major elections
(2006, 2008, 2010, and 2012), and it compares their voting behavior with that
of the people in the same state. The mailer finishes with a reminder that
their voting behavior will be monitored. The idea is that social pressure—
i.e., the social norm of voting—will encourage people to vote. The likelihood
of voting increases by about 2.2% (s.e.=0.001) when given the mailer.

Each of the experiments target a different state. This results in different pop-
ulations, different ballots, and different electoral environments. In addition
to this, the treatment is slightly different in each experiment, as the median
voting behavior in each state is different. However, there are still many sim-
ilarities across the experiments, so there should be gains from transferring
information.

In this example, the input X is a voter’s demographic data including age,
past voting turnout in 2006, 2008, 2009, 2010, 2011, 2012, and 2013, marital
status, race, and gender. The treatment response function µ̂1(x) estimates
the voting propensity for a potential voter who receives a mailer encourag-
ing them to vote. The control response function µ̂0 estimates the voting
propensity if that voter did not receive a mailer. The CATE τ is thus the
change in the probability of voting when a unit receives a mailer. The com-
plete dataset has this data over 17 different states. Treating each state as a
separate experiment, we can perform transfer learning across them.
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Being able to estimate the treatment effect of sending a mailer is an important
problem in elections. We may wish to only treat people whose likelihood of
voting would significantly increase when receiving the mailer, to justify the
cost for these mailers. Furthermore, we wish to avoid sending mailers to
voters who will respond negatively to them. This negative response has been
previously observed and is therefore feasible and a relevant problem—e.g.,
some recipients call their Secretary of State’s office or local election registrar
to complain [73, 75].

7.4.2 Evaluating CATE Estimators on Real GOTV data

Evaluating a CATE estimator on real data is difficult since one does not
observe the true CATE or the individual treatment effect, Yi(1)− Yi(0), for
any unit because by definition only one of the two outcomes is observed
for any unit. One could use the original features and simulate the outcome
features, but this would require us to create a response model. Instead,
we estimate the ”truth” on the real data using linear models (version 1)
or random forests (version 2), and we then draw the data based on these
estimates. For a detailed description, we refer to section 7.4.3. We then ask
the question: how do the various methods perform when they have less data
than the entire sample?

We evaluate S-NN, T-NN, and Y-NN using our transfer learning methods.
We also added a baseline benchmark which does not use any transfer learning
for each of the CATE estimators. In addition to this, we added the S-
RF and T-RF as random forest baselines, as well as the Joint estimator
and the MLRW estimator, both of which use transfer learning. Figure 28
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Figure 28: Social Pressure and Voter Turnout, Version 1. Our results far
exceed the previous state of the art, which are represented here as S-RF,
T-RF, and the baseline method for S-NN and T-NN. Our new methods are
Y-NN and the transfer learning methods: warm, frozen, multi-head, joint,
SF Reptile, and MLRW.

shows the performance of these estimators when the regression functions were
created using a linear model, and Figure 29 shows the same, but the response
functions are created using a random forest fitted on the real data.

In previous work, the non-transfer tree-based estimators such as T-RF and
S-RF have achieved state of the art results on this problem [65]. For CATE
estimation, these methods are very competitive baselines [42]. Happily for
us, even non-transfer neural-network-based learners vastly outperform the
prior art. In both examples, non-transfer S-NN, T-NN, and Y-NN learners
are better or not much worse than T-RF and S-RF. S-NN and Y-NN perform
extremely well in this example. Better still, our transfer learning approaches
consistently outperform all classical baselines and non-transfer neural net-
work learners on this benchmark. Positive transfer between experiments is
readily apparent.

We find that multi-head, frozen features, and SF are usually the best methods
to improve an existing neural network-based CATE estimator. The best
estimator is MLRW. This algorithm consistently converges to a very good
solution with very few observations.
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Figure 29: Social Pressure and Voter Turnout, Version 2. Our results exceed
the previous state of the art results, which are represented here as S-RF,
T-RF, and the baseline method for S-NN and T-NN. Our new methods are
Y-NN and the transfer learning methods: warm, frozen, multi-head, joint,
SF Reptile, and MLRW.

7.4.3 Data Generating Processes for Our Real World GOTV Data

In this section, we describe how the simulations for the GOTV example in
the main paper were done

For our data example, we took one of the experiments conducted by [38].
The study took place in 2014 in Alaska and 252,576 potential voters were
randomly assigned in a control and a treatment group. Subjects in the treat-
ment group were sent a mailer as described in the main text and their voting
turnout was recorded.

To evaluate the performance of different CATE estimators we need to know
the true CATEs, which are unknown due to the fundamental problem of
causal inference. To still be able to evaluate CATE estimators researchers
usually estimate the potential outcomes using some machine learning method
and then generate the data from this estimate. This is to some extent also
a simulation, but unlike classical simulation studies it is not up to the re-
searcher to determine the data generating distribution. The only choice of the
researcher lies in the type of estimator she uses to estimate the response func-
tions. To avoid being mislead by artifacts created by a particular method,
we used a linear model in Real World Data Set 1 and random forests
estimator in Real World Data Set 2.

Specifically, we generate for each experiment a true CATE and we simulate
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new observed outcomes based on the real data in four steps.

1. We first use the estimator of choice (e.g., a random forests estimator)
and train it on the treated units and on the control units separately to
get estimates for the response functions, µ0 and µ1.

2. Next, we sample N units from the underlying experiment to get the
features and the treatment assignment of our samples (Xi,Wi)

N
i=1.

3. We then generate the true underlying CATE for each unit using τi =
τ(Xi) = µ1(Xi)− µ0(Xi).

4. Finally we generate the observed outcome by sampling a Bernoulli dis-
tributed variable around mean µi.

Y obs
i ∼ Bern(µi), µi =

{
µ0(Xi) if W = 0,

µ1(Xi) if W = 1.

After this procedure, we have 17 data sets corresponding to the 17 experi-
ments for which we know the true CATE function, which we can now use to
evaluate CATE estimators and CATE transfer learners.

7.4.4 Data Generating Processes for Simulated GOTV Data

In this section, we discuss the results of a much bigger simulation study with
51 experiments which is summarized in Tables 3, 4, and 5.

Simulations motivated by real-world experiments are important to assess
whether our methods work well for voter persuasion data sets, but it is
important to also consider other settings to evaluate the generalizability of
our conclusions.

To do this, we first specify the control response function, µ0(x) = E[Y (0)|X =
x] ∈ [0, 1], and the treatment response function, µ1(x) = E[Y (1)|X = x] ∈
[0, 1].

We then use each of the 17 experiments to generate a simulated experiment
in the following way:

1. We sample N units from the underlying experiment to get the features
and the treatment assignment of our samples (Xi,Wi)

N
i=1.
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2. We then generate the true underlying CATE for each unit using τi =
τ(Xi) = µ1(Xi)− µ0(Xi).

3. Finally we generate the observed outcome by sampling a Bernoulli dis-
tributed variable around mean µi.

Y obs
i ∼ Bern(µi), µi =

{
µ0(Xi) if W = 0,

µ1(Xi) if W = 1.

The experiments range in size from 5,000 units to 400,000 units per experi-
ment and the covariate vector is 11 dimensional and the same as in the main
part of the chapter. We will present here three different setup.

Simulation LM (Table 3): We choose here N to be all units in the cor-

responding experiment. Sample β0 = (β0
1 , . . . , β

0
d)

iid∼ N (0, 1) and β1 =

(β1
1 , . . . , β

1
d)

iid∼ N (0, 1) and define,

µ0(x) = logistic
(
xβ0
)
,

µ1(x) = logistic
(
xβ1
)
.

Simulation RF (Table 4): We choose here N to be all units in the corre-
sponding experiment.

1. Train a random forests estimator on the real data set and define µ0 to
be the resulting estimator,

2. Sample a covariate f (e.g., age),

3. ample a random value in the support of f (e.g., 38),

4. Sample a shift s ∼ N (0, 4).

Now define the potential outcomes as follows:

µ0(x) = trained Random Forests algorithm

µ1(x) = logistic (logit (µ0(x) + s ∗ 1f≥v))

Simulation RFt (Table 5): This experiment is the same as Simulation RF,
but use only one percent of the data, N = #units

100
.
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7.4.5 Full Results of 42 Simulated GOTV Experiments

Even though we combine each Simulation setup with 17 experiments, we
only report the first 14, because the last three don’t add any new insight,
but they don’t fit well on the page. Looking at Tables 3, 4, and 5, we observe
that MLRW is the best performing transfer learner. In fact, for Simulation
LM it is the best in 8 out of 17 experiments, in Simulation RF it is the
best in 11 out of 17 experiments, and in Simulation RFt it is best in 10 out
of 17 experiments. We also notice that in cases, where it is not the best
performing estimator, it is usually very close to the best and it does not
fail terribly anywhere. For the other transfer method, we note that frozen
features, multi-head, and SF works very well and consistently improves upon
the baseline learners which are not using outside information. Warm Start,
however, does not work well and often even leads to worse results than the
baseline estimators.
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7.5 Evaluation on MNIST Example

In the previous experiment, we observed that the MLRW estimator per-
formed most favorably and transfer learning significantly improved upon the
baseline. To confirm that this conclusion is not specific to voter persuasion
studies, we consider in this section intentionally a very different type of data.
The simulated data has been intentionally chosen to be different in charac-
ter from our real-world example. In particular, the simulated input space is
images and the estimated outcome variable is continuous.

Recently, [84] introduced a simulation study wherein MNIST digits are ro-
tated by some number of degrees α; with α furnished via a single data gen-
erating process that depends on the value of the depicted digit. They then
attempt to do CATE estimation to measure the heterogeneous treatment
effect of a digit’s label.

Motivated by this example, we develop a data generating process using
MNIST digits wherein transfer learning for CATE estimation is applicable.
In our example, the input X is an MNIST image. We have k data generating
processes which return different outcomes for each input when given either
treatment or control. Thus, under some fixed data generating process, µ0

represents the outcome when the input image X is given the control, µ1 rep-
resents the outcome when X is given the treatment, and τ is the difference in
outcomes given the placement of X in the treatment or control group. Each
data generating process has different response functions (µ0 and µ1) and thus
different CATEs (τ), but each of these functions only depend on the image
label presented in the image X. We thus hope that transfer learning could
expedite the process of learning features which are indicative of the label.
See section 7.5.1 for full details of the data generation process. In Figure 30
of section 7.5.1, we confirm that a transfer learning strategy outperforms its
non-transfer learning counterpart, even on image data, and also that MLRW
performs well.
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7.5.1 Data Generation Procedure for MNIST Experiment
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Figure 30: MNIST task

For our MNIST simulation study (Section 7.5), we used the MNIST database
[67] which contains labeled handwritten images. We follow here the notation
of [84], who introduce a very similar simulation study which is not trying to
evaluate transfer learning for CATE estimation, but instead emulates a RCT
with the goal to evaluate different CATE estimators.

The MNIST data set contains labeled image data (Xi, Ci), where Xi denotes
the raw image of i and Ci ∈ {0, . . . , 9} denotes its label. We create k Data
Generating Processes (DGPs), D1, . . . , Dk, each of which specifies a dis-
tribution of (Yi(0), Yi(1),Wi, Xi) and represents different CATE estimation
problems.

In this simulation, we let Wi = 0 if the image Xi is placed in the control,
and Wi = 1 if the image Xi is placed in the treatment. Yi(Wi) quantifies the
the outcome of Xi under Wi.

To generate a DGP Dj , we first sample weights in the following way,

mj(0), mj(1), . . . , mj(9)
iid∼ Unif(−3, 3),

tj(0), tj(1), . . . , tj(9)
iid∼ Unif(−1, 1),

pj(0), pj(1), . . . , pj(9)
iid∼ Unif(0.3, 0.7),
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and we define the response functions and the propensity score as

µj0(Ci) = mj(Ci) + 3Ci,

µj1(Ci) = µj0(Ci) + tj(Ci),

ej(Ci) = pj(Ci).

To generate (Yi(0), Yi(1),Wi, Xi) from Dj, we fist sample a (Xi, Ci) from the
MNIST data set, and we then generate Yi(0), Yi(1), and Wi in the following
way:

εi
iid∼ N (0, 1)

Yi(0) = µ0(Ci) + εi

Yi(1) = µ1(Ci) + εi

Wi ∼ Bern(e(Ci)).

During training, Xi,Wi, and Yi are made available to the convolutional neural
network, which then predicts τ̂ given a test image Xi and a treatment Wi.
τ is the difference in the outcome given the difference in treatment and
control.

Having access to multiple DGPs can be interpreted as having access to prior
experiments done on a similar population of images, allowing us to explore
the effects of different transfer learning methods when predicting the effect
of a treatment in a new image.

7.6 Psuedo Code

7.6.1 Pseudo Code for CATE Estimators

We will present pseudo code for the standard CATE estimators in this section.
We present code for the transfer learning algorithms in Section 7.6.2. To
be clear, the algorithms below are vanilla CATE estimators. There are no
transfer learning algorithms in this section. We denote by Y 0 and Y 1 the
observed outcomes for the control and the treated group. For example, Y 1

i

is the observed outcome of the ith unit in the treated group. X0 and X1 are
the features of the control and treated units, and hence, X1

i corresponds to
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Figure 31

Figure 32

the feature vector of the ith unit in the treated group. Mk(Y ∼ X) is the
notation for a regression estimator, which estimates x 7→ E[Y |X = x]. It can
be any regression/machine learning estimator, but in this chapter we only
choose it to be a neural network or random forest.
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Figure 33

Figure 34
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5/17/2018 y_learner

1/3

Figure 35: Y-learner with Neural Networks
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7.6.2 MLRW and Joint Training Pseudo Code

5/17/2018 joint_training

1/3

 
 

 

Figure 36: Joint Training - Unlike the Multi-head method which differentiates
base layers for treatment and control, the Joint Training method has all
observations and experiments (regardless of treatment and control) share
the same base network, which extracts general low level features from the
data.
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Algorithm 3 MLRW Transfer for Cate Estimation.

1: Let µ
(i)
0 and µ

(i)
1 be the outcome under treatment and control for experiment i.

2: Let numexps be the number of experiments.
3: Let πθ be an N layer neural network parameterized by θ = [θ0, . . . , θN ].
4: Let ε = [ε0, . . . , εN ] be a vector, where N is the number of layers in πθ.
5: Let outeriters be the total number of training iterations.
6: Let inneriters be the number of inner loop training iterations.
7: for oiter < outeriters do
8: for i < numexps do
9: Sample X0 and X1: control and treatment units from experiment i

10: for j < 2 do
11: # # j iterating over treatment and control
12: Let U0(θ) = θ
13: for k ¡ inneriters do
14: L = ‖πUk(θ)(Xj)− µj(Xj)‖
15: Compute ∇θL.
16: Use ADAM with ∇θL to obtain Uk+1(θ).
17: Uk(θ) = Uk+1(θ)
18: end for
19: for p < N do
20: θp = εp · Uk(θp) + (1− εp) · θp.
21: end for
22: end for
23: end for
24: end for
25: To Evaluate CATE estimate, do
26: C = []
27: for i < numexps do
28: Sample X0 and X1: control and treatment units from experiment i
29: Sample X: test units from experiment i.
30: for j < 2 do
31: for k < innteriters do
32: L = ‖πUk(θ)(Xj)− µj(Xj)‖
33: Compute ∇θL.
34: Use ADAM with ∇θL to obtain Uk+1(θ).
35: Uk(θ) = Uk+1(θ)
36: end for
37: µ̂j = πUk(θ)(X)
38: end for
39: τ̂i = µ̂0 − µ̂1

40: C.append(τ̂i)
41: end for
42: return C
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Algorithm 4 Joint Training

1: Let µ
(i)
0 and µ

(i)
1 be the outcome under control and treatment for experi-

ment i.
2: Let numexps be the number of experiments.
3: Let πρ be a generic expression for a neural network parameterized by ρ.
4: Let θ be base neural network layers shared by all experiments.
5: Let φ

(i)
0 be neural network layers predicting µ

(i)
0 in experiment i.

6: Let φ
(i)
1 be neural network layers predicting µ

(i)
1 in experiment i.

7: Let ω
(i)
0 =

[
θ, φ

(i)
0

]
be the full prediction network for µ0 in experiment i.

8: Let ω
(i)
1 =

[
θ, φ

(i)
1

]
be the full prediction network for µ1 in experiment i.

9: Let Ω =
⋃1
j=0

⋃numexps
i=1 ω

(i)
j be all trainable parameters.

10: Let numiters be the total number of training iterations
11: for iter < numiters do
12: L = 0
13: for i < numexps do
14: Sample X0 and X1: control and treatment units from experiment i
15: for j < 2 do
16: # # j iterating over treatment and control
17: L(i)

j = ‖π
ω

(i)
j

(Xj)− µj(Xj)‖

18: L = L+ L(i)
j

19: end for
20: end for

21: Compute ∇ΩL = ∂L
∂Ω

=
∑

i

∑
j

∂L(i)
j

∂ω
(i)
j

22: Apply ADAM with gradients given by ∇ΩL.
23: for i < numexps do
24: Sample X: test units from experiment i
25: end for
26: end for
27: µ̂0 = π

ω
(i)
0

(X)

28: µ̂1 = π
ω

(i)
1

(X)

29: return CATE estimate τ̂ = µ̂1 − µ̂0
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7.6.3 Pseudo-code for T-learner Transfer CATE Estimators

Here, we present full pseudo code for the algorithms from Section 3 using
the T-learner as a base learner. All of these algorithms can be extended to
other learners including S,R,X, and Y . See the released code for implemen-
tations.

Algorithm 5 Vanilla T-learner

1: Let µ0 and µ1 be the outcome under treatment and control.
2: Let X be the experimental data. Let Xt be the test data.
3: Let πθ0 and πθ1 be a neural networks parameterized by θ0 and θ1.
4: Let θ = θ0 ∪ θ1.
5: Let numiters be the total number of training iterations.
6: Let batchsize be the number of units sampled. We use 64.
7: for i < numiters do
8: Sample X0 and X1: control and treatment units. Sample batchsize

units.
9: L0 = ‖πθ(X0)− µ0(X0)‖

10: L1 = ‖πθ(X1)− µ1(X1)‖
11: L = L0 + L1

12: Compute ∇θL = ∂L
∂θ

.
13: Apply ADAM with gradients given by ∇θL.
14: end for
15: µ̂0 = πθ0(Xt)
16: µ̂1 = πθ1(Xt)
17: return CATE estimate τ̂ = µ̂1 − µ̂0
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Algorithm 6 Warm Start T-learner

1: Let µi0 and µi1 be the outcome under treatment and control for experiment
i.

2: Let X i be the data for experiment i. Let X i
t be the test data for experi-

ment i.
3: Let πθ0 and πθ1 be a neural networks parameterized by θ0 and θ1.
4: Let θ = θ0 ∪ θ1.
5: Let numiters be the total number of training iterations.
6: Let batchsize be the number of units sampled. We use 64.
7: for i < numiters do
8: Sample X0

0 and X0
1 : control and treatment units for experiment 0.

Sample batchsize units.
9: L0 = ‖πθ0(X0

0 )− µ0(X0
0 )‖

10: L1 = ‖πθ1(X0
1 )− µ1(X0

1 )‖
11: L = L0 + L1

12: Compute ∇θL = ∂L
∂θ

.
13: Apply ADAM with gradients given by ∇θL.
14: end for
15: for i < numiters do
16: Sample X1

0 and X1
1 : control and treatment units for experiment 1.

Sample batchsize units.
17: L0 = ‖πθ0(X1

0 )− µ0(X1
0 )‖

18: L1 = ‖πθ1(X1
1 )− µ1(X1

1 )‖
19: L = L0 + L1

20: Compute ∇θL = ∂L
∂θ

.
21: Apply ADAM with gradients given by ∇θL.
22: end for
23: µ̂0 = πθ0(X1

t )
24: µ̂1 = πθ1(X1

t )
25: return CATE estimate τ̂ = µ̂1 − µ̂0
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Algorithm 7 Frozen Features T-learner

1: Let µi0 and µi1 be the outcome under treatment and control for experiment
i.

2: Let X i be the data for experiment i. Let X i
t be the test data for experi-

ment i.
3: Let πρ be a generic expression for a neural network parameterized by ρ.
4: Let θ0

0, θ
1
0, θ

0
1, θ

1
1 be neural network parameters. The subscript indicates

the outcome that θ is associated with predicting (0 for control and 1 for
treatment) and the superscript indexes the experiment.

5: Let γ0 be the first k layers of πθ0
0
. Define γ1 analogously.

6: Let θi = θi0 ∪ θi1.
7: Let numiters be the total number of training iterations.
8: Let batchsize be the number of units sampled. We use 64.
9: for i < numiters do

10: Sample X0
0 and X0

1 : control and treatment units for experiment 0.
Sample batchsize units.

11: L0 = ‖πθ0
0
(X0

0 )− µ0(X0
0 )‖

12: L1 = ‖πθ0
1
(X0

1 )− µ1(X0
1 )‖

13: L = L0 + L1

14: Compute ∇θL = ∂L
∂θ

.
15: Apply ADAM with gradients given by ∇θ0L.
16: end for
17: for i < numiters do
18: Sample X1

0 and X1
1 : control and treatment units for experiment 1.

Sample batchsize units.
19: Compute Z1

0 = πγ(X
1
0 ) and Z1

1 = πγ(X
1
1 )

20: L0 = ‖πθ1
0
(Z1

0)− µ0(Z1
0)‖

21: L1 = ‖πθ1
1
(Z1

1)− µ1(Z1
1)‖

22: L = L0 + L1

23: Compute ∇θ1L = ∂L
∂θ1 . Do not compute gradients with respect to θ0

parameters.
24: Apply ADAM with gradients given by ∇θ1L.
25: end for
26: Compute Z1

t = πγ(X
1
t ).

27: µ̂0 = πθ1
0
(Z1

t )

28: µ̂1 = πθ1
1
(Z1

t )
29: return CATE estimate τ̂ = µ̂1 − µ̂0
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Algorithm 8 Multi-Head T-learner

1: Let µi0 and µi1 be the outcome under treatment and control for experiment i.
2: Let Xi be the data for experiment i. Let Xi

t be the test data for experiment i.
3: Let πρ be a generic expression for a neural network parameterized by ρ.
4: Let θ0 be base neural network layers shared by all experiments for predicting outcomes

under control.
5: Let θ1 be base neural network layers shared by all experiments for predicting outcomes

under treatment.
6: Let φ

(i)
0 be neural network layers receiving πθ0(xi0) as input and predicting µ

(i)
0 (xi0) in

experiment i.

7: Let φ
(i)
1 be neural network layers receiving πθ1(xi1) as input and predicting µ

(i)
1 (xi1) in

experiment i.

8: Let ω
(i)
0 =

[
θ, φ

(i)
0

]
be all trainable parameters used to predict µi0.

9: Let ω
(i)
1 =

[
θ, φ

(i)
1

]
be all trainable parameters used to predict µi1.

10: Let Ωi = ω
(i)
0 ∪ ω

(i)
1 .

11: Let numiters be the total number of training iterations.
12: Let batchsize be the number of units sampled. We use 64.
13: Let numexps be the number of experiments.
14: for i < numiters do
15: for j < numexps do
16: Sample Xj

0 and Xj
1 : control and treatment units for experiment j. Sample

batchsize units.
17: Compute Zj0 = πθ0(Xj

0) and Zj1 = πθ1(Xj
1)

18: Compute µ̂j0 = πφj0
(zj0) and µ̂j1 = πφj1

(zj1)

19: L0 = ‖µ̂j0 − µ
j
0(Xj

0)‖
20: L1 = ‖µ̂j1 − µ

j
1(Xj

1)‖
21: L = L0 + L1

22: Compute ∇ΩiL = ∂L
∂Ωi .

23: Apply ADAM with gradients given by ∇θL.
24: end for
25: end for
26: Let C = []
27: for j < numexps do
28: Compute Zj0 = πθ0(Xj

t ) and Zj1 = πθ1(Xj
t )

29: Compute µ̂j0 = πφj0
(zj0) and µ̂j1 = πφj1

(zj1)

30: Estimate CATE τ̂ = µ̂j1 − µ̂
j
0.

31: C.append(τ̂)
32: end for
33: return C
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Algorithm 9 SF Reptile T-learner

1: Let µi0 and µi1 be the outcome under treatment and control for experiment i.
2: Let Xi be the data for experiment i. Let Xi

t be the test data for experiment i.
3: Let πθ0 and πθ1 be a neural networks parameterized by θ0 and θ1.
4: Let θ = θ0 ∪ θ1.
5: Let ε = [ε0, . . . , εN ] be a vector, where N is the number of layers in πθi .
6: Let numouteriters be the total number of outer training iterations.
7: Let numinneriters be the total number of inner training iterations.
8: Let numexps be the number of experiments.
9: Let batchsize be the number of units sampled. We use 64.

10: for iouter < numouteriters do
11: for i < numexps do
12: U0(θ0) = θ0

13: U0(θ1) = θ1.
14: for k< numinneriters do
15: Sample Xi

0 and Xi
1: control and treatment units. Sample batchsize units.

16: L0 = ‖πUk(θ0)(X
i
0)− µ0(Xi

0)‖
17: L1 = ‖πUk(θ1)(X

i
1)− µ1(Xi

1)‖
18: L = L0 + L1

19: Compute ∇θL = ∂L
∂θ .

20: Use ADAM with gradients given by ∇θL to obtain Uk+1(θ0) and Uk+1(θ1).
21: Set Uk(θ0) = Uk+1(θ0) and Uk(θ1) = Uk+1(θ1)
22: end for
23: for p < N do
24: θp = εp · Uk(θp) + (1− εp) · θp.
25: end for
26: end for
27: end for
28: To Evaluate CATE estimate, do
29: C = [].
30: for i < numexps do
31: U0(θ0) = θ0

32: U0(θ1) = θ1.
33: for k< numinneriters do
34: Sample Xi

0 and Xi
1: control and treatment units. Sample batchsize units.

35: L0 = ‖πUk(θ0)(X
i
0)− µ0(Xi

0)‖
36: L1 = ‖πUk(θ1)(X

i
1)− µ1(Xi

1)‖
37: L = L0 + L1

38: Compute ∇θL = ∂L
∂θ .

39: Use ADAM with gradients given by ∇θL to obtain Uk+1(θ0) and Uk+1(θ1).
40: Set Uk(θ0) = Uk+1(θ0) and Uk(θ1) = Uk+1(θ1)
41: end for
42: µ̂i0 = πUk(θ0)(X

i
0)

43: µ̂i1 = πUk(θ1)(X
i
1)

44: τ̂ i = µ̂i1 − µ̂i0
45: C.append(τ̂ i).
46: end for
47: return C. 102



7.7 Discussion and Conclusion

In this chapter, we proposed the problem of transfer learning for CATE es-
timation. One immediate question the reader may be left with is why we
chose the transfer learning techniques we did. We only considered two com-
mon types of transfer: (1) Basic fine tuning and weights sharing techniques
common in the computer vision literature [137, 99, 17, 29, 59], (2) Techniques
for learning an initialization that can be quickly optimized [33, 94, 83]. How-
ever, many further techniques exist. Yet, transfer learning is an extensively
studied and perennial problem [103, 15, 129, 130, 127, 113]. In [135], the
authors attempt to combine feature embeddings that can be utilized with
non-parametric methods for transfer. [116] is an extension of this work that
modifies the procedure for sampling examples from the support set during
training. [3] and related techniques try to meta-learn an optimizer that can
more quickly solve new tasks. [98] attempts to overcome forgetting during
transfer by systematically introducing new network layers with lateral con-
nections to old frozen layers. [78] uses networks with memory to adapt to
new tasks. We invite the reader to review [33] for an excellent overview of the
current transfer learning landscape. Though the majority of the discussed
techniques could be extended to CATE estimation, our implementations of
[98, 3] proved difficult to tune and consequently learned very little. Fur-
thermore, we were not able to successfully adapt [116] to the problem of
regression. We decided to instead focus our attention on algorithms for ob-
taining good initializations, which were easy to adapt to our problem and
quickly delivered good results without extensive tuning.
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8 Closing Remarks

Supervised learning has a curious property: it wants to work. Using a fairly
standard set of algorithms and tools, an inexperienced researcher can solve a
novel supervised learning problem. In my own experience, supervised learn-
ing worked even when I incorrectly coded my algorithms, did not correctly
clean my data, and was bad at tuning my hyper-parameters. There were
few surprises. For the most part, everything just worked even on novel prob-
lems.

Not surprisingly, many of the best results that utilize deep neural networks
for robotics rely on supervised learning rather than the three learning prob-
lems we discussed in this dissertation [114]. When I coded Guided Policy
Search [114], it worked beautifully and easily on difficult problems. Compar-
atively, the algorithms presented in this dissertation all required painstaking
effort, bags of tricks, and thousands of hyper-parameter tuning sessions to
get working at their full capacity. Even after all of this work, the results
were often mixed. My contributions would improve performance on one task
but hurt another. They could often solve one benchmark problem but would
completely fail on a benchmark of seemingly similar difficulty. And even af-
ter all of my efforts, I’m still never quite sure why this is. After writing this
thesis, I’m left with two questions. First, why are reinforcement learning,
meta learning, and imitation learning so much more difficult than supervised
learning? Second, is there anything we can do about it going forward?

As for my first question, I can postulate the following reasons why RL, im-
itation learning, and meta learning are much more difficult than supervised
learning:

1. These learning problems are largely trying to learn over sequential data
with complex causal relationships. Though supervised learning has
shown that learning over sequential speech and text data is possible,
analyzing this data does not require a deep understanding of the causal
relationships between states.

2. On a related note, supervised learning never has to consider the credit
assignment problem. It is very difficult for an RL agent to properly
assign credit to which actions lead to an eventual reward. Of course,
policy gradient methods are essentially doing credit assignment by re-
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inforcing good actions. But, they may be doing this quite poorly. A
human playing pong or tennis has a keen understanding that the key
moment during their play is when their own racket strikes the ball, even
though they do not receive credit for this strike until many time-steps
later. Comparatively, our learning agents are trained to assign larger
credit to times when their opponent misses the ball, even though they
have long since lost control of the state space. As mentioned before,
credit would be better assigned by sampling causal relationships in the
agents environment, rather than directly sampling low-level states.

3. Policy gradient methods might be little better than random search.
They are data inefficient, bad at exploration, and highly unstable. They
do not compute the gradient with respect to the true reward, and are
consequently orders of magnitude slower than model based approaches.

4. Our benchmarks for these learning problems are quite bad. Unfortu-
nately, I spent around 33 percent of my time as a graduate student
simply trying to find the right environments to test my new ideas.
This problem is systematic and affected the majority of RL researchers
I know. Comparatively, the supervised learning community seems to
have very good benchmarks for their major problems. Moreover, the
benchmarks we do have tend to be contrived. In supervised learning,
the community tends to directly solve the problem they care about:
classifying images, translating text, transcribing speech. In RL, we
instead try and solve proxy problems such as Atari games. No one
actually wants agents that are good at playing Atari. They have no
value to us. What we probably want is something closer to androids
that can perform most manual labor tasks. Our environments need to
reflect this more.

5. We don’t yet have enough compute. In particular, the experiments in
Section 4 required over ten thousands hours of compute time. Since
meta learning is a double optimization problem that optimizes over the
entire learning process, this is not surprising. Such compute require-
ments are not unusual in RL research. In fact, they are commonplace.
Given how inefficient policy gradient methods are, and how difficult the
benchmark problems are, we probably need two orders of magnitude
more compute to make real progress on meta learning.

6. Supervised learning is not a sampling problem. The underlying data
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distribution is fixed and exogenous to the optimization process. In
the learning problems we considered, the optimization algorithm it-
self influences the data that it will optimize over at future time-steps.
This creates non-stationarity issues which in general make the problem
much much more difficult. Optimizing over a dynamically changing
set of data is difficult because the optimization landscape is constantly
changing. Moreover, policy gradient methods essentially rely on only
their ability to sample in order to compute gradients. This further com-
plicates the relationship between the optimization process and sampling
the state distribution. Though this thesis is titled Learning as a Sam-
pling Problem, it would be remiss to suggest that such an interpretation
is a good thing. Instead, I argue that learning as a sampling problem
is one of the chief difficulties in the learning process.

This list might appear to make things quite hopeless. I often felt that way
while completing this thesis. However, I do think there are interesting av-
enues to explore.

1. Better learning algorithms. Most of the work in this thesis was based
on policy gradient methods or other model free reinforcement learning
methods. While these methods are flexible and impressive, they are
not poised for long term success. The world is too big and too complex
for all learning to be model free. I would like to see more effort put
into model-based RL and model based meta learning. In particular, I
would like to expand the definition of models to include system other
than dynamics.

2. More work on causal inference and credit assignment. A lot of past work
in these areas has focused on meta learning or hierarchical learning,
without much success. I would like to see work on RL that takes credit
assignment and causal models seriously.

3. Better benchmarks. We should try and find problems that we actually
care about solving. The solutions to our benchmarks should be valuable
results, not stepping stones.
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