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COMPREHENSIVE REVIEW Open Access

Klotho Pathways, Myelination Disorders,
Neurodegenerative Diseases, and Epigenetic Drugs
Walter H. Moos,1,2,* Douglas V. Faller,3,4 Ioannis P. Glavas,5 David N. Harpp,6 Iphigenia Kanara,7 Anastasios N. Mavrakis,8

Julie Pernokas,9 Mark Pernokas,9 Carl A. Pinkert,10 Whitney R. Powers,11,12 Konstantina Sampani,13,14 Kosta Steliou,4,15

Demetrios G. Vavvas,13,16 Robert J. Zamboni,6 Krishna Kodukula,2,* and Xiaohong Chen13,16,*

Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho
activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelina-
tion and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path for-
ward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage
the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the
affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho
proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek
mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or
potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it
has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dys-
function take over, and age-related chronic disorders are likely to follow. The physiological consequences can be
wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system
disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy tar-
gets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics
that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus
no wonder that this topic has caught the attention of biomedical researchers around the world.
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Background
The term ‘‘epigenetics’’ refers to changes resulting from
modification of gene expression instead of alterations
in the genetic code.1 We postulate that drugs aimed
at inducing endogenous Klotho activity and expression
—that is, therapeutics acting through epigenetic mech-
anisms—should promote remyelination and/or stimu-
late myelin repair by acting on mitochondrial function.
As such, this approach may herald a life-saving path
forward for patients suffering from neuroinflammatory
diseases.

Klotho—a gene set of three members: a-Klotho,
b-Klotho, and g-Klotho2–4—is aptly named in the bio-
logical context of aging.5,6 According to Greek mythol-
ogy, Klotho (or Clotho; Greek: Kkxh ), the youngest
of the Fates (Clotho, Lachesis: L veri2 and Atropos:
sqopo2), is one of the three daughter deities (the spin-

ner) of Zeus and Nyx (N n, the goddess of night) or
Themis (Y li2, the goddess of law and order) who to-
gether spin out the thread of life, allot destiny, and
choose the time of passing for both mortals and im-
mortals.7 Thus, nothing could be more appropriate
than Klotho serving as a longevity gene. Indeed, once
Klotho fails to adequately express its proteins and var-
iants,6,8–10 it is implicated in pathways that drive age-
related chronic disorders such as kidney disease, tissue
dysfunction, diabetic retinopathies, neurodegeneration,
and impairments in mitochondrial function and mus-
cle regeneration.4,8,11–16

a-Klotho is often referred to as an ‘‘anti-aging
protein.’’3,6,17,18 When overexpressed in mice, Klotho
extends life (20–30%), reduces oxidative stress (OS),
and demonstrates other prosurvival properties.19–25

The potential of extending these results to humans
has captured pharmaceutical interest in developing
Klotho-based therapeutics to hinder the degenerative
illnesses of aging.5,6,8,26–28

Noticeably, a growing body of evidence asserts the
therapeutic potential of Klotho in treating neurodegen-
erative diseases. As population aging is a global phe-
nomenon,29 age-related neurodegenerative disorders
are projected to surpass cancer as the foremost cause
of death after cardiovascular disease in the developed
world within 20 years.30 The late-onset sporadic form
(LOAD) of Alzheimer’s disease (AD)31–33 accounts
for >90% of disease cases.31,34–36 Along with advanced
aging,23,37–43 inheritance of the apolipoprotein E4 al-
lele (also called APOE4 or APOEe4) remains the
most significant known genetic risk factor for LOAD.
The risk is higher and the age at onset of dementia is

younger for individuals carrying multiple copies of
APOE4, whereas other APOE alleles are considered
protective.31,32,44 In a study of a gene variant of Klotho
with respect to AD in at-risk but presymptomatic indi-
viduals, heterozygosity was found to reduce amyloid
aggregation in an APOE4-associated manner.45 Of
interest, in a research analysis that measured Klotho
concentrations in the cerebrospinal fluid of AD sub-
jects and in older versus younger adults, Klotho levels
were found to be lower in women compared with
men.46,47 Perhaps the latter observation may help to ex-
plain why women are more likely than men to have AD,
although the reported difference may be the result of bi-
ological or social artifacts.48 In addition to AD, the most
common neurodegenerative disease, Parkinson’s dis-
ease (PD), the second most common neurodegenerative
disease,49 has also been tied to Klotho pathways.50–52

Beyond AD and PD, age-related declines in Klo-
tho8,13,17,24,53 are associated with a range of other dete-
riorating central nervous system (CNS) processes.17,24

For example, mounting evidence implicates dysregula-
tion of Klotho in shared mechanistic pathological rela-
tionships linking iron and myelin in various common
and rare brain diseases,54–56 including abnormalities
in myelination and the maturation of oligodendrocytes
that are central to the pathogenicity of diseases such as
multiple sclerosis (MS)26,56,57 and amyotrophic lateral
sclerosis (ALS).56,58

OS Demyelination and Mitochondrial
Dysfunction
Mitochondrial dysfunction is a well-documented en-
abling factor in the pathophysiology of neurological
conditions and disorders (Fig. 1).41,59–68 Although a
principal role of mitochondria is to supply the bioen-
ergy needed for cellular processes and maintenance,69–71

mitochondria also help regulate neurite branching and
regeneration as well as synaptic strength, stability, and
signaling in the CNS.72 In addition, myelin repair is in-
timately dependent on healthy mitochondrial function
within the CNS in oligodendrocytes and neuronal cell
bodies.63,64,73–77

Dysfunctional mitochondria become sources of
reactive oxygen species (ROS) that contribute to
OS with deleterious effects on the cell’s well-
being.61,70,71,74,77–80 Manifestations of OS are hallmark
symptoms in neurological disease, including cognitive
deficits.52,54,65,76,79,81–88 In concert with the above, a
correlation was found between OS in the CNS and de-
myelination, which results in the loss of integrity
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and proper maintenance of oligodendrocytes and their
myelin sheaths, the latter being crucial for cognitive
performance and higher brain function.57,89–91

Thus, inclusion of strategies for enhancing mitochon-
drial biogenesis, function, and protection68,80,92–96

that may also rely on pathways epigenetically induced
by diet97–108 and/or exercise99,100,106–109 can be timely
in the therapeutic protocols for treating myelination
disorders.68,73–76,98,104,110–115

Dysregulated Myelination in Peripheral
and CNS Diseases
Microglia are a distinct population of immune cells in
the CNS.116–118 They execute fundamental tasks in
brain development, physiology, and homeostasis and
in influencing the pathological progression of brain dis-
eases.117–122 There is evidence to suggest that microglia
actively remove damaged myelin114,123 to recruit myeli-
nating cells, oligodendrocytes in the CNS, and Schwann
cells in the peripheral nervous system (PNS) to repair
the injured myelin sheath.114,117,118,123–125 Dysregulated
myelination is a characteristic feature of numerous her-
itable neurological diseases, such as the PNS hereditary
disorder, Charcot–Marie–Tooth disease,126,127 X-linked
adrenoleukodystrophy and metachromatic leukodys-
trophy,128 hereditary diffuse leukoencephalopathy with
spheroids, Nasu–Hakola disease,114 and Huntington’s
disease,129,130 among others.55,131,132 A dysfunctional

myelination apparatus is also evident in acquired demy-
elinating diseases such as diabetic peripheral neuropa-
thy, drug-related peripheral neuropathies, leprosy, and
peripheral neuropathies of inflammatory etiology.132

Most interestingly, converging evidence drawn from
‘‘Big Data’’ analytics in parallel with epigenetic, neuro-
imaging, and experimental model investigations seems
to connect an adult-onset form of attention-deficit/
hyperactivity disorder pathogenesis and persistence
with dysregulated myelination.133,134 Many risk genes
for CNS disorders such as AD, PD, schizophrenia, au-
tism, and MS have been unveiled by genome-wide as-
sociation studies to be expressed by microglia.117

Dysfunction of microglia is common in neurological
diseases114 and recent studies have found that sex dif-
ferences in microglial gene expression and functions
seen in young adult mice tend to be increasingly pro-
nounced in the aging brain.135

Klotho as an Obligatory Co-receptor
High concentrations of phosphate in the body are
found in bone, teeth, and dental enamel as calcium
phosphate crystals.136,137 Klotho regulates phosphorus
and calcium homeostasis 5,6,18,23,138 and functions as
an obligatory co-receptor that binds and activates its
related endocrine fibroblast growth factor (FGF) re-
ceptors (FGFRs) to potentiate its biological activi-
ties.5,6,23,102,139–146 FGFs are exemplary pleiotropic
hormones that play numerous roles in cellular and
metabolic homeostasis.5,6,137,141,144–148 In particular,
FGF23 is a bone-derived hormone that in conjunction
with Klotho acts on the kidney to increase phos-
phate excretion and suppress biosynthesis of vita-
min D.5,6,14,23,102,136,138,145,148,149 Vitamin D regulates
epigenetic mechanisms that maintain the transcription
of its target genes in regulatory networks, including the
expression of Klotho and nuclear factor-erythroid-2-
related factor 2 (Nrf2) to carry out many of its homoeo-
static functions.17,97,150–153 Vitamin D is a modulator
of the immune system,154,155 hence its mention here,
and accumulating evidence suggests vitamin D defici-
ency is a risk factor for dysregulated Klotho-associated
neurodegenerative diseases, the most noteworthy being
MS.9,27,52,97,102,150,152,153,156–158

Multiple Sclerosis
MS is an insidious progressive neurodegenerative dis-
ease characterized by demyelinated lesions throughout
the brain, spinal cord, and optic nerve resulting from
immune-mediated attacks against myelin.159–165 It is

FIG. 1. Sampling of neurologic conditions
associated with mitochondrial dysfunction.
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the apotheosis of myelination disorders that affects
*2.5 million people around the world166–168 and cur-
rently there are no definitive cures. The standard of
chronic care, after using steroids for acute episodes,
centers on the use of disease modifying therapies
(DMTs) that modulate an overactive immune response,
such as antibodies against interferon, interleukin, or re-
lated T cell targets.9,169–172 Unfortunately, although
there is a growing armamentarium of DMTs for neu-
rodegenerative diseases, they have to date had only a
modest impact on disease progression173,174 and thus
the demand for myelin repair-promoting therapies for
MS remains a significant unmet medical need.159,175–178

The discovery of new drugs is a daunting, lengthy,
and costly endeavor. Drug repurposing—based on
mechanism of action and/or biological activity, not un-
commonly the result of serendipity—is a promising
and cost-saving approach for the treatment of rare ge-
netic diseases and diseases with limited therapeutic op-
tions.90,104,179,180 This approach has yielded derivatives
of the simple organic chemical, fumarate, including
Vumerity (diroximel fumarate), which is reported to
be better tolerated than Tecfidera, with fewer gastro-
intestinal side effects and more favorable pharmaco-
kinetic properties. Vumerity is a delayed release
formulation of an inactive diester prodrug of mono-

methyl fumarate (Fig. 2). Both Vumerity and Tecfidera
are converted into the same pharmacologically active
drug, monomethyl fumarate in vivo.94,163 The medical
potential of dimethyl fumarate was identified over 60
years ago and marketed for the treatment of psoria-
sis.181,182 MS therapeutics approved by the U.S. Food
and Drug Administration (FDA) are given in Table 1.

Klotho Structure, Distribution,
and Function in MS
Klotho is a single-pass transmembrane protein
expressed in the brain (hippocampus and choroid plex-
us), kidney, eye (retina, optic nerve, lens) and parathy-
roid gland, and less so in other tissues.3,18,27,102,183,184 A
soluble form of Klotho (sKlotho), primarily secreted
from the kidney, circulates in blood, urine, and cere-
brospinal fluid, exerting different biological effects in
multiple tissues as a humoral factor.5,6,8,52,185–189

In the eye, Klotho protects against OS53,55,58,153,190,191

and is essential to the proper maintenance and function
of the ocular system,12,26,192–195 being expressed
throughout the retina, with the highest levels in retinal
ganglion cells.196 The retinal pigment epithelium (RPE)
is a highly specialized CNS tissue whose function is
critical in preserving retinal homeostasis53,78 and an
age-dependent decline of Klotho expression is said to

FIG. 2. Monomethyl fumarate, the pharmacologically active form of Tecfidera and Vumerity.

Table 1. Food and Drug Administration-Approved Drugs for Multiple Sclerosis in Disease Modifying Therapies

Older drugs, year approved Recent approvals, year Withdrawals, year

Betaseron (INF-b-1b), 1993 Lemtrada (alemtuzumab), 2014 Zinbryta (daclizumab), 2018
Avonex (INF-b-1a), 1996 Plegridty (INF-b-1a), 2014
Copaxone (glatiramer acetate), 1996 Glatopa (glatiramer acetate), 2015
Rebif (INF-b-1a), 2002 Ocrevus (ocrelizumab), 2017
Tysabri (natalizumab), 2004 Mavenclad (cladribine), 2019
Extavia (INF-b-1b), 2009 Mayzent (siponimod), 2019
Gilenya (fingolimod), 2010 Vumerity (diroximel fumarate), 2019
Aubagio (teriflunomide), 2012
Tecfidera (dimethyl fumarate) 2013

Sources: FDA Drug Approvals and Databases (www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases). Orange
Book: Approved Drug Products with Therapeutic Equivalence Evaluations (www.accessdata.fda.gov/scripts/cder/ob/index.cfm).

FDA, Food and Drug Administration.
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contribute to RPE degeneration and retinal patholo-
gy.53 Apoptotic cells in models of retinal degeneration
were found to exhibit high levels of Klotho,8 which is
consistent with Klotho overexpression in its role as a
protective protein that inhibits apoptosis.22,197,198 A re-
cent study has shown that higher levels of circulating
Klotho protein is protective in patients with diabetic
retinopathy.199

Although the retina itself is a nonmyelinated tis-
sue,200 optic neuritis, a disease affecting the myelinated
part of retinal ganglion cell axons, is a serious and often
difficult to assess manifestation of MS,201 particularly
in the pediatric population.202 More than 70% of MS
patients suffer vision loss as a secondary effect of
optic neuritis disease progression.160,203,204 In recent
studies, Klotho was shown to accelerate remyelina-
tion in a cuprizone-mediated demyelination mouse
model.9,28 This important finding is refocusing atten-
tion on Klotho’s role in neurodegeneration and research
efforts are increasingly directed toward the develop-

ment of MS treatments that promote remyelination
and/or stimulate myelin repair.9,27,28,112,166,169,205–211

However, because Klotho does not cross the blood–
brain barrier,10,212 a small molecule approach aimed
at inducing endogenous Klotho activity and expression
in the CNS is surfacing as a promising therapeutic strat-
egy.27,81,90,143,213,214 Epigenetics10,90,100,169,215–219 and
gene therapy-based methods are part of the emerging
landscape under investigation.19,215,220,221

Amyotrophic Lateral Sclerosis
The global prevalence of ALS is estimated to be roughly
two to four cases per 100,000 population222,223 compared
with *30 cases per 100,000 population for MS.168 ALS
(also referred to as progressive muscular atrophy or
Lou Gehrig’s disease) is a devastating neurodegenera-
tive disease. It damages motor neurons in the brain
and spinal cord leading to progressive muscle atro-
phy and paralysis that is fatal, usually within 3–5
years of diagnosis.58,224–227 Unfortunately, patients
with ALS, at present, have limited therapeutic options
(Table 2).96,173,228 Moreover, given the rapid and termi-
nal progression of the disease postdiagnosis, there is a
pressing need to develop new therapies and/or based
on mechanism of action repurposing drugs already ap-
proved for other diseases.176,180 Recruiting ALS sub-
jects into traditional clinical trials is challenging
because of the low number of cases in the population.
Trial-design protocols229 that rely on restrictive inclu-
sion criteria, frequent study visits, use of a placebo

Table 2. Food and Drug Administration-Approved Drugs
for Treating Amyotrophic Lateral Sclerosis

Glutamate
antagonist Antioxidant Other drugs

Riluzole
(Rilutek/
Teglutik)

Edaravone
(Radicava/
Radicut)

Dextromethorphan hydrobromide/
quinidine sulfate (Neudexta)
for pseudobulbar affect

Sources: FDA Drug Approvals and Databases (www.fda.gov/drugs/
development-approval-process-drugs/drug-approvals-and-databases).
Orange Book: Approved Drug Products with Therapeutic Equivalence
Evaluations (www.accessdata.fda.gov/scripts/cder/ob/index.cfm).

FIG. 3. Chemical structures of FDA-approved therapeutics for ALS, including cromolyn sodium, a drug
used to treat asthma and other conditions showing promising potential as a repurposed drug for ALS.
ALS, amyotrophic lateral sclerosis; FDA, Food and Drug Administration.
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control arm that denies patients early access to the
therapy, and the comparatively long time it takes to
document results relative to the rapid progression of
the disease are additional impediments.230

Riluzole and edaravone, the principal therapeutics
used in the treatment of ALS (Fig. 3), have a modest
impact on disease progression, extending survival by
*3 months.68,96,223,231 The combination of dextrome-
thorphan and quinidine sulfate has shown positive re-
sults against pseudobulbar affect (emotional lability)
and is FDA-approved for ALS and MS,232 although it
is reported to be prescribed more to patients suffering
from dementia or PD.233 Clearly, much more effective
therapies are needed and a vigorous research effort has
been underway for the past several years to screen for
and develop new pharmaceuticals for treating neuro-
degenerative diseases including ALS.234,235 Cromolyn
sodium (Fig. 3), an FDA-approved compound used
to treat asthma and other conditions has recently
emerged as a promising new therapeutic for ALS. In
the SOD1G93A mouse model of ALS, treatment with
cromolyn sodium delayed disease onset and showed
neuroprotection by decreasing the inflammatory re-

sponse.236 However, a focus on myelination may lead
to more lasting and effective therapeutic outcomes.
Klotho overexpression in the SOD1G93A mouse
model was shown to suppress the production of proin-
flammatory cytokines, reduce the expression of neuro-
inflammatory markers, and prevent neuronal loss with
a more profound effect in the spinal cord than in the
motor cortex, thereby delaying the onset and pro-
gression of the disease.58 These results along with the
positive effect Klotho has on the promyelinating prop-
erties of oligodendrocytes offer compelling evidence in
support of developing Klotho-based therapeutic strate-
gies for treating ALS.58

Concluding Remarks
As outlined in the introduction, drugs aimed at induc-
ing endogenous Klotho activity and expression—epige-
netic action per se—should promote remyelination
and/or stimulate myelin repair by acting on mitochon-
drial function. In the ensuing two decades since the ser-
endipitous discovery of Klotho as an aging-suppressor
gene, research has helped unmask many of its func-
tional pathways in neurodegenerative disorders

FIG. 4. Klotho function in neurodegenerative disorders and/or dysregulated myelination.
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and/or dysregulated myelination (Fig. 4). Deficient lev-
els of Klotho protein lead to excessive OS induction
mainly from ROS produced in mitochondrial dysfunc-
tion. Myelin repair is intimately dependent on the en-
ergy made available by healthy mitochondria within
the CNS in oligodendrocytes (Schwann cells in the
PNS) and neuronal cell bodies. Thus, drugs aimed at
inducing endogenous Klotho production may herald
a life-saving path forward for patients suffering from
neuroinflammatory diseases. In parallel, much as the
old psoriasis drug, dimethyl fumarate, was repurposed
to treat MS, more drug repurposing may find worth-
while paths here too. Will AD, PD, MS, or ALS yield
to these approaches when coupled with drugs that at-
tack such a powerful pathway as Klotho? As we kick
off what we hope will be ‘‘the roaring 2020s’’ when
it comes to the advancement of major new life-saving
therapeutics, time and effort toward this goal will
hopefully give us the answers.
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AD ¼ Alzheimer’s disease

ALS ¼ amyotrophic lateral sclerosis
CNS ¼ central nervous system

DMT ¼ disease modifying therapy
FDA ¼ Food and Drug Administration
FGF ¼ fibroblast growth factor

LOAD ¼ late-onset Alzheimer’s disease
MS ¼ multiple sclerosis
OS ¼ oxidative stress
PD ¼ Parkinson’s disease

PNS ¼ peripheral nervous system
ROS ¼ reactive oxygen species
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