
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Functional reorganization of brain networks across the human menstrual cycle

Permalink
https://escholarship.org/uc/item/15k8d4q4

Authors
Pritschet, Laura
Santander, Tyler
Taylor, Caitlin M
et al.

Publication Date
2020-10-01

DOI
10.1016/j.neuroimage.2020.117091
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15k8d4q4
https://escholarship.org/uc/item/15k8d4q4#author
https://escholarship.org
http://www.cdlib.org/


NeuroImage 220 (2020) 117091
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Functional reorganization of brain networks across the human
menstrual cycle

Laura Pritschet a,1, Tyler Santander a,1, Caitlin M. Taylor a, Evan Layher a, Shuying Yu a,
Michael B. Miller a,b,c, Scott T. Grafton a,b, Emily G. Jacobs c,*

a Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
b Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
c Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
A R T I C L E I N F O

Keywords:
Sex hormones
Estrogen
Progesterone
Functional connectivity
Resting-state
* Corresponding author. Department of Psycholo
E-mail address: emily.jacobs@psych.ucsb.edu (E

1 Authors contributed equally to this work.

https://doi.org/10.1016/j.neuroimage.2020.11709
Received 29 December 2019; Received in revised f
Available online 2 July 2020
1053-8119/© 2020 The Author(s). Published by Els
A B S T R A C T

The brain is an endocrine organ, sensitive to the rhythmic changes in sex hormone production that occurs in most
mammalian species. In rodents and nonhuman primates, estrogen and progesterone’s impact on the brain is
evident across a range of spatiotemporal scales. Yet, the influence of sex hormones on the functional architecture
of the human brain is largely unknown. In this dense-sampling, deep phenotyping study, we examine the extent to
which endogenous fluctuations in sex hormones alter intrinsic brain networks at rest in a woman who underwent
brain imaging and venipuncture for 30 consecutive days. Standardized regression analyses illustrate estrogen and
progesterone’s widespread associations with functional connectivity. Time-lagged analyses examined the tem-
poral directionality of these relationships and suggest that cortical network dynamics (particularly in the Default
Mode and Dorsal Attention Networks, whose hubs are densely populated with estrogen receptors) are pre-
ceded—and perhaps driven—by hormonal fluctuations. A similar pattern of associations was observed in a follow-
up study one year later. Together, these results reveal the rhythmic nature in which brain networks reorganize
across the human menstrual cycle. Neuroimaging studies that densely sample the individual connectome have
begun to transform our understanding of the brain’s functional organization. As these results indicate, taking
endocrine factors into account is critical for fully understanding the intrinsic dynamics of the human brain.
1. Introduction et al., 2015; Gordon et al., 2017; Gratton et al., 2018a). Neuroimaging
The brain is an endocrine organ whose day-to-day function is inti-
mately tied to the action of neuromodulatory hormones (Woolley and
McEwen, 1993; Frick et al., 2015; Hara et al., 2015; Galea et al., 2017).
Yet, the study of brain-hormone interactions in human neuroscience has
often been woefully myopic in scope: the classical approach of interro-
gating the brain involves collecting data at a single time point from
multiple subjects and averaging across individuals to provide evidence
for a hormone-brain-behavior relationship. This cross-sectional approach
obscures the rich, rhythmic nature of endogenous hormone production. A
promising trend in network neuroscience is to flip the cross-sectional
model by tracking small samples of individuals over timescales of
weeks, months, or years to provide insight into how biological, behav-
ioral, and state-dependent factors influence intra- and inter-individual
variability in the brain’s intrinsic network organization (Poldrack
gical & Brain Sciences, University
.G. Jacobs).
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studies that densely sample the individual connectome are beginning to
transform our understanding of the dynamics of human brain organiza-
tion. However, these studies commonly overlook sex steroid hormones as
a source of variability—a surprising omission given that sex hormones
are powerful neuromodulators that display stable circadian, infradian,
and circannual rhythms in nearly all mammalian species. In the present
study, we illustrate robust, time-dependent interactions between func-
tional network dynamics and the sex steroid hormones 17β-estradiol and
progesterone during a complete menstrual cycle. A within-subject
replication study further confirms the robustness of these effects. These
results offer compelling evidence that sex hormones modulate wide-
spread patterns of connectivity in the human brain.

Converging evidence from rodent (Woolley et al., 1993; Frick et al.,
2015, 2018), non-human primate (Hao et al., 2006; Wang et al., 2010),
and human neuroimaging studies (Berman et al., 1997; Jacobs &
of California, Santa Barbara, CA, 93106, USA.
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Fig. 1. Timeline of data collection for the 30 experiment sessions. Endo-
crine and MRI assessments were collected at the same time each day to minimize
time-of-day effects.
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D’Esposito, 2011; Petersen et al., 2014; Lisofky et al., 2015; Jacobs et al.,
2016a,b) has established the widespread influence of 17β-estradiol and
progesterone on regions of the mammalian brain that support higher
level cognitive functions. Estradiol and progesterone signaling are crit-
ical components of cell survival and plasticity, exerting excitatory and
inhibitory effects that are evident across multiple spatial and temporal
scales (Galea et al., 2017; Frick et al., 2018). The dense expression of
estrogen and progesterone receptors (ER; PR) in cortical and subcortical
tissue underscores the widespread nature of hormone action. For
example, in non-human primates, ~50% of pyramidal neurons in pre-
frontal cortex (PFC) express ER (Wang et al., 2010) and estradiol regu-
lates dendritic spine proliferation in this region (Hara et al., 2015).
Across the rodent estrous cycle (occurring every 4–5 days), fluctuations
in estradiol enhance spinogenesis in hippocampal CA1 neurons, while
progesterone inhibits this effect (Woolley and McEwen, 1993).

During an average human menstrual cycle, occurring every 25–32
days, women experience an~8-fold increase in estradiol and an~80-fold
increase in progesterone (Stricker et al., 2006). Despite this striking
change in endocrine status, we lack a complete understanding of how the
large-scale functional architecture of the human brain responds to
rhythmic changes in sex hormone production across the menstrual cycle.
Much of our understanding of cycle-dependent changes in brain structure
(Woolley et al., 1993; Sheppard et al., 2019) and function (Hampson
et al., 2014; Warren and Juraska, 1997; Kim and Frick, 2017) comes from
rodent studies, since the length of the human menstrual cycle (at least 5x
longer than rodents’ estrous cycle) presents experimental hurdles that
make longitudinal studies challenging. A common solution is to study
women a few times throughout their cycle, targeting stages that roughly
correspond to peak/trough hormone concentrations. Using this ‘spar-
se-sampling’ approach, studies have examined resting-state connectivity
in discrete stages of the cycle (Petersen et al., 2014; Hjelmervik et al.,
2014; Lisofsky et al., 2015; De Bondt et al., 2015; Syan et al., 2017; Weis
et al., 2019); however, some of these findings are undermined by in-
consistencies in cycle staging methods, lack of direct hormone assess-
ments, or limitations in functional connectivity methods.

In this dense-sampling, deep phenotyping study, we determined
whether day-to-day variation in sex hormone concentrations impacts con-
nectivity states across major intrinsic brain networks. First, we assessed
brain-hormone interactions over 30-consecutive days representing a com-
plete menstrual cycle (Study 1). To probe the reliability of these findings,
procedures were then repeated over a second 30-day period, providing a
within-subject controlled replication (Study 2). Results reveal that intrinsic
functional connectivity is linearly dependent on hormonal dynamics across
the menstrual cycle at multiple spatiotemporal scales. Estradiol and pro-
gesterone were associated with spatially-diffuse changes in connectivity,
both at time-synchronous and time-lagged levels of analysis, demonstrating
that intrinsic fluctuations in sex hormones—particularly the ovulatory
surge in estradiol—may contribute to dynamic variation in the functional
network architecture of the human brain. We further highlight this sensi-
tivity to estradiol in a controlled replication study. Together, these findings
provide insight into how brain networks reorganize across the human
menstrual cycle, suggesting that consideration of the hormonal milieu is
critical for fully understanding the intrinsic dynamics of the human brain.

2. Materials and methods

2.1. Participant

The participant (author L.P.) is a right-handed Caucasian female,
aged 23 years for the duration of the study. The participant had no his-
tory of neuropsychiatric diagnosis, endocrine disorders, or prior head
trauma. She had a history of regular menstrual cycles (no missed periods,
cycle occurring every 26–28 days) and had not taken hormone-based
medication in the 12 months prior to the first study. The participant
gave written informed consent and the study was approved by the Uni-
versity of California, Santa Barbara Human Subjects Committee.
2

2.2. Study design

The participant underwent testing for 30 consecutive days, with the
first test session determined independently of cycle stage for maximal
blindness to hormone status (Study 1). One year later, as part of a larger
parent project, the participant repeated the 30-day protocol while on a
hormone regimen (0.02 mg ethinyl-estradiol, 0.1 mg levonorgestrel,
Aubra, Afaxys Pharmaceuticals), which she began 10 months prior to the
start of data collection (Study 2). The general procedures for both studies
were identical (Fig. 1). The pharmacological regimen used in Study 2
chronically and selectively suppressed progesterone while leaving
estradiol dynamics largely indistinguishable from Study 1. This provided
a natural replication dataset in which to test the reliability of the estradiol
associations observed in the first study. The participant began each test
session with a daily questionnaire (see Behavioral Assessments), fol-
lowed by an immersive reality spatial navigation task (not reported
here). Time-locked collection of serum and whole blood started each day
at 10:00am in Study 1 and 11:00am in Study 2 (�30 min). Endocrine
samples were collected, at minimum, after 2 h of no food or drink con-
sumption (excluding water). The participant refrained from consuming
caffeinated beverages before each test session. The MRI session lasted 1 h
and consisted of structural and functional MRI sequences.

2.3. Behavioral assessments

To monitor state-dependent mood and lifestyle measures throughout
the two studies, the following scales (adapted to reflect the past 24 h)
were administered each morning: Perceived Stress Scale (PSS; Cohen
et al., 1983), Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989),
State-Trait Anxiety Inventory for Adults (STAI; Spielberger and Vagg,
1984), and Profile of Mood States (POMS; Pollock et al., 1979). The
participant had moderate levels of anxiety as determined by STAI
reference ranges; however, all other measures fell within the ‘normal’
standard range. Self-reported stress was marginally higher in Study 2
(Mdiff ¼ 3.9, t(58) ¼ 2.66, p ¼ .046); no other differences in mood or
lifestyle measures were observed between the two studies. Few signifi-
cant relationships were observed between hormones and
state-dependent measures following FDR-correction for multiple com-
parisons (q< 0.05)—and critically, none of these state-dependent factors
were associated with estradiol (Fig. 2A). Furthermore, performance on a
daily selective attention task (Cohen et al., 2014) was stable across the
experiment (M ¼ 98%, SD ¼ . 01) (Fig. 2B). Taken together, there were
no indications of significant shifts in behavior across the cycle.

2.4. Endocrine procedures

A licensed phlebotomist inserted a saline-lock intravenous line into
the dominant or non-dominant hand or forearm daily to evaluate
hypothalamic-pituitary-gonadal axis hormones, including serum levels of
gonadal hormones (17β-estradiol, progesterone, and testosterone) and
the pituitary gonadotropins luteinizing hormone (LH) and follicle stim-
ulating hormone (FSH). One 10 cc mL blood sample was collected in a
vacutainer SST (BD Diagnostic Systems) each session. The sample clotted
at room temperature for 45 min until centrifugation (2000�g for 10 min)
and were then aliquoted into three 1mLmicrotubes. Serum samples were
stored at �20 �C until assayed. Serum concentrations were determined



Fig. 2. Behavioral variation across the 30-day experiment (Study 1). (A) Correlation plot showing relationships between mood, lifestyle measures, and sex steroid
hormone concentrations. Cooler cells indicate negative correlations, warm cells indicate positive correlations, and white cells indicate no relationship. Asterisks
indicate significant correlations after FDR-correction (q < .05). (B)Mood and lifestyle measures vary across the cycle; cognitive performance (selective attention) does
not. ‘Day 1’ indicates first day of menstruation, not first day of experiment. Abbreviations: LH, Lutenizing hormone; FSH, Follicle-stimulating hormone.
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via liquid chromatography mass-spectrometry (for all steroid hormones)
and immunoassay (for all gonadotropins) at the Brigham and Women’s
Hospital Research Assay Core. Assay sensitivities, dynamic range, and
intra-assay coefficients of variation (respectively) were as follows:
estradiol, 1 pg/mL, 1–500 pg/mL, < 5% relative standard deviation
(RSD); progesterone, 0.05 ng/mL, 0.05–10 ng/mL, 9.33% RSD; testos-
terone, 1.0 ng/dL, 1–2000 ng/dL, <4% RSD. FSH and LH levels were
determined via chemiluminescent assay (Beckman Coulter). The assay
sensitivity, dynamic range, and the intra-assay coefficient of variation
were as follows: FSH, 0.2 mIU/mL, 0.2–200 mIU/mL, 3.1–4.3%; LH, 0.2
mIU/mL, 0.2–250 mIU/mL, 4.3–6.4%. Importantly, we note that LC-MS
assessments of exogenous hormone concentrations (attributable to the
hormone regimen itself) showed that serum concentrations of ethinyl
estradiol were very low (M ¼ 0.01 ng/mL; range 0.001–0.016 ng/mL)
and below 1.5 ng/mL for levonorgestrel (M ¼ 0.91 ng/mL; range ¼
0.03–1.43 ng/mL): this ensures that the brain-hormone associations re-
ported in Study 2 are still due to endogenous estradiol action.
2.5. MRI acquisition

The participant underwent a daily magnetic resonance imaging scan
on a Siemens 3T Prisma scanner equipped with a 64-channel phased-
array head coil. First, high-resolution anatomical scans were acquired
using a T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence (TR ¼ 2500 ms, TE ¼ 2.31 ms, TI ¼ 934 ms, flip
angle ¼ 7�, 0.8 mm thickness) followed by a gradient echo fieldmap (TR
¼ 758 ms, TE1 ¼ 4.92 ms, TE2 ¼ 7.38 ms, flip angle ¼ 60�). Next, the
participant completed a 10-min resting-state fMRI scan using a T2*-
weighted multiband echo-planar imaging (EPI) sequence sensitive to the
blood oxygenation level-dependent (BOLD) contrast (72 oblique slices,
TR ¼ 720 ms, TE ¼ 37 ms, voxel size ¼ 2 mm3, flip angle ¼ 52�,
multiband factor ¼ 8). In an effort to minimize motion, the head was
secured with a custom, 3D-printed foam head case (https://caseforge
3

.co/) (days 8–30 of Study 1 and days 1–30 of Study 2). Overall motion
(mean framewise displacement) was negligible (Fig. S1), with fewer than
130 μm of motion on average each day. Importantly, mean framewise
displacement was not correlated with estradiol concentrations (Study 1:
Spearman r ¼ �0.06, p ¼ .758; Study 2: Spearman r ¼ �0.33, p ¼ .071).
Note that physiological recordings were not collected during scanning.
2.6. fMRI preprocessing

Initial preprocessing was performed using the Statistical Parametric
Mapping 12 software (SPM12, Wellcome Trust Centre for Neuroimaging,
London) in Matlab. Functional data were realigned and unwarped to
correct for head motion and geometric deformations due to motion and
magnetic field inhomogeneities; the mean motion-corrected image was
then coregistered to the high-resolution anatomical image. All scans were
then registered to a subject-specific anatomical template created using
Advanced Normalization Tools’ (ANTs) multivariate template construc-
tion (Fig. S2). A 4 mm full-width at half-maximum (FWHM) isotropic
Gaussian kernel was subsequently applied to smooth the functional data.
Further preparation for resting-state functional connectivity was imple-
mented using in-house Matlab scripts. Global signal scaling (median ¼
1000) was applied to account for fluctuations in signal intensity across
space and time, and voxelwise timeseries were linearly detrended. Re-
sidual BOLD signal from each voxel was extracted after removing the
effects of head motion and five physiological noise components (CSF þ
white matter signal). Motion was modeled based on the Friston-24
approach, using a Volterra expansion of translational/rotational motion
parameters, accounting for autoregressive and nonlinear effects of head
motion on the BOLD signal (Friston et al., 1996). All nuisance regressors
were detrended to match the BOLD timeseries. Our use of coherence
allows for the estimation of frequency-specific covariances in spectral
components below the range contaminated by physiological noise.
Nevertheless, to ensure the robustness of our results, we re-analyzed the

https://caseforge.co/
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data with global signal regression included. This had little bearing on the
overall findings. For completeness, results from the GSR-based process-
ing pipeline are provided in the Supplementary Material.
2.7. Functional connectivity estimation

Functional network nodes were defined based on a 400-region
cortical parcellation (Schaefer et al., 2018) and 15 regions from the
Harvard-Oxford subcortical atlas (http://www.fmrib.ox.ac.uk/fsl/).
For each day, a summary timecourse was extracted per node by taking
the first eigenvariate across functional volumes (Friston et al., 2006).
These regional timeseries were then decomposed into several fre-
quency bands using a maximal overlap discrete wavelet transform.
Low-frequency fluctuations in wavelets 3–6 (~0.01–0.17 Hz) were
selected for subsequent connectivity analyses (Patel and Bullmore,
2016). We estimated the spectral association between regional times-
eries using magnitude-squared coherence: this yielded a 415 � 415
functional association matrix each day, whose elements indicated the
strength of functional connectivity between all pairs of nodes
(FDR-thresholded at q < 0.05). Coherence offers several advantages
over alternative methods for assessing connectivity: 1) estimation of
frequency-specific covariances, 2) simple interpretability (values are
normalized to the [0,1] interval), and 3) robustness to temporal vari-
ability in hemodynamics between brain regions, which can otherwise
introduce time-lag confounds to connectivity estimates via Pearson
correlation.
2.8. Statistical analysis

First, we assessed time-synchronous variation in functional connec-
tivity associated with estradiol and progesterone through a standardized
regression analysis. Data were Z-transformed and edgewise coherence
was regressed against hormonal timeseries to capture day-by-day varia-
tion in connectivity relative to hormonal fluctuations. For each model,
we computed robust empirical null distributions of test statistics via
10,000 iterations of nonparametric permutation testing: under the null
hypothesis of no temporal association between connectivity and hor-
mones, the coherence data at each edge were randomly permuted,
models were fit, and two-tailed p-values were obtained as the proportion
of models in which the absolute value of the permuted test statistics
equaled or exceeded the absolute value of the ‘true’ test statistics. We
report edges surviving a threshold of p < .001. We did not apply addi-
tional corrections in an effort to maximize power in our small sample
size; Study 2 instead offers an independent validation of the observed
whole-brain effects.

Next, we sought to capture linear dependencies between hormones
and network connectivity directed in time using vector autoregressive
(VAR) models. Here we chose to focus exclusively on estradiol for two
reasons: 1) the highly-bimodal time-course of progesterone over a nat-
ural cycle confers a considerably longer autocorrelative structure,
requiring many more free parameters (i.e. higher-order models, ulti-
mately affording fewer degrees of freedom); and 2) progesterone lacks an
appreciable pattern of periodicity in its autocovariance with network
timeseries, suggesting less relevance for time-lagged analysis over a
single cycle. In contrast, estradiol has a much smoother time-course that
is well-suited for temporal evolution models such as VAR.

In short, VAR solves a simultaneous system of equations that fits
current states of the brain and estradiol from the previous states of each
(see Eq. (1)). For consistency, we considered only second-order VAR
models, given a fairly reliable first zero-crossing of brain/hormone
autocovariance functions at lag two (this was based on common
criteria noted in other instances of time-delayed models; Boker et al.,
2014). Fit parameters for each VAR therefore reflect the following
general form:
4

Braint ¼ b1;0 þ b1;1Braint�1 þ b1;2Estradiolt�1 þ b1;3Braint�2
þ b1;4Estradiolt�2 þ ε1;t

Estradiolt ¼ b2;0 þ b2;1Braint�1 þ b2;2Estradiolt�1 þ b2;3Braint�2

þ b2;4Estradiolt�2 þ ε2;t (1)

where error terms, εi,t, are assumed to be uncorrelated and normally-
distributed. Given that the design matrix is identical for each outcome
measure, they can be combined in matrix form and a least-squares so-
lution to the system of equations can be obtained via maximum
likelihood.

With respect to brain states, we modeled both edgewise coherence
and factors related to macroscale network topologies. Specifically, we
computed measures of between-network integration (the participation
coefficient; i.e. the average extent to which network nodes are
communicating with other networks over time) and within-network
integration (global efficiency, quantifying the ostensible ease of in-
formation transfer across nodes inside a given network). These were
derived using the relevant functions for weighted graphs in the Brain
Connectivity toolbox (Rubinov and Sporns, 2010). Estimation of
participation coefficients took the full (415 � 415) FDR-thresholded
coherence matrices along with a vector of network IDs, quantifying
the extent to which each node was connected to other nodes outside of
its own network; summary, mean participation coefficients were then
obtained for each network across its constituent nodes. For global ef-
ficiencies, the 415 � 415 matrices were subdivided into smaller
network-specific matrices as defined by our parcellation, yielding es-
timates of integration only among within-network nodes. Ultimately,
regardless of brain measure, each VAR was estimated similarly to the
time-synchronous analyses described above: data were Z-scored,
models were fit, and model-level stats (test-statistics, R2, and RMSE)
were empirically-thresholded against 10,000 iterations of nonpara-
metric permutation testing. Here, however, both brain and hormonal
data were permuted under the null hypothesis of temporal stochas-
ticity (i.e. no autoregressive trends and no time-lagged dependencies
between variables). As before, we did not apply additional corrections
and offer Study 2 as an independent validation set.

Finally, for each set of edgewise models (time-synchronous and time-
lagged), we attempted to disentangle both the general direction of
hormone-related associations and whether certain networks were more
or less sensitive to hormonal fluctuations. Toward that end, we took the
thresholded statistical parametric maps for each model (where edges are
test statistics quantifying the magnitude of association between coher-
ence and hormonal timeseries) and estimated nodal association strengths
per graph theory’s treatment of signed, weighted networks. That is,
positive and negative association strengths were computed indepen-
dently for each of the 415 nodes by summing the suprathreshold posi-
tive/negative edges linked to them. We then simply assessed mean
association strengths (�95% confidence intervals) in each direction
across the various networks in our parcellation.

Here, networks were defined by grouping the subnetworks of the 17-
network Schaefer parcellation, such that (for example), the A, B, and C
components of the Default Mode Networkwere treated as one network.We
chose this due to the presence of a unique Temporal Parietal Network in
the 17-network partition, which is otherwise subsumed by several other
networks (DefaultMode, Salience/Ventral Attention, and SomatoMotor) in
the 7-network partition. The subcortical nodes of the Harvard-Oxford atlas
were also treated as their own network, yielding a total of nine networks.
These definitions were thus used for computation of participation co-
efficients and global efficiencies in network-level VAR models.

2.9. Brain data visualization

Statistical maps of edgewise coherence v. hormones were visualized
using the Surf Ice software (https://www.nitrc.org/projects/surfice/).

http://www.fmrib.ox.ac.uk/fsl/
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Table 1
Gonadal and pituitary hormones by cycle stage (Study 1).

Follicular Ovulatory Luteal

Mean (SD) standard range Mean (SD) standard range Mean (SD) standard range

Estradiol (pg/mL) 37.9 (15.9) 185.3 (59.0) 85.4 (26.4)
12.5–166.0 85.8–498.0 43.8–210.0

Progesterone
(ng/mL)

0.2 (0.2) 0.2 (.2) 9.5 (4.8)
0.1–0.9 0.1–120 1.8–23.9

LH (mIU/mL) 5.9 (0.7) 21.7 (16.4) 5.5 (2.0)
2.4–12.6 14.0–95.6 1.0–11.4

FSH (mIU/mL) 6.5 (1.2) 8.1 (3.6) 4.8 (1.3)
3.5–12.5 4.7–21.5 1.7–7.7

Note. Standard reference ranges based on aggregate data from Labcorp: https://www.labcorp.com/.
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3. Results

3.1. Endocrine assessments

Analysis of daily sex hormone (by liquid-chromatography mass-
spectrometry; LC-MS) and gonadotropin (by chemiluminescent immu-
noassay) concentrations from Study 1 confirmed the expected rhythmic
changes of a typical menstrual cycle, with a total cycle length of 27 days.
Serum levels of estradiol and progesterone were lowest during menses
(day 1–4) and peaked in late follicular (estradiol) and late luteal (pro-
gesterone) phases (Fig. 3; Table 1). Progesterone concentrations sur-
passed 5 ng/mL in the luteal phase, signaling an ovulatory cycle (Leiva
et al., 2015). In Study 2, the participant was placed on a pharmacological
regimen (0.02 mg ethinyl-estradiol, 0.1 mg levonorgestrel) that chroni-
cally and selectively suppressed circulating progesterone, while leaving
endogenous estradiol concentrations largely untouched. Estradiol dy-
namics in Study 2 (M ¼ 66.2 pg/mL, range: 5–246 pg/mL) were highly
similar to Study 1 (M ¼ 82.8 pg/mL, range: 22–264 pg/mL; t(58) ¼
�1.01, p ¼ .32), offering us a second dataset in which to test the reli-
ability of estradiol’s influence on intrinsic brain networks.

3.2. Time-synchronous associations between sex hormones and whole-
brain functional connectivity

Inspection of day-to-day similarity in whole-brain patterns of
Fig. 3. Participant’s hormone concentrations plotted by day of cycle (Study 1)
hormone (FSH) concentrations fell within standard ranges.

5

coherence (via pairwise Pearson correlation) revealed moderate-to-high
levels of reliability between different stages of the cycle. Notably, how-
ever, one session in Study 1 (day 26) was markedly dissimilar to the other
sessions. Removal of this day from the analysis below did not impact the
results (Fig. S4).

To further explore cycle-dependent variability, we tested the hy-
pothesis that whole-brain functional connectivity at rest is associated
with intrinsic fluctuations in estradiol and progesterone in a time-syn-
chronous (i.e. day-by-day) fashion. Based on the enriched expression of
ER in frontal cortex (Wang et al., 2010), we predicted that the Default
Mode, Frontoparietal Control, and Dorsal Attention Networks would be
most sensitive to hormone fluctuations across the cycle.

In Study 1, we observed robust increases in coherence as a function of
increasing estradiol across the brain (Fig. 4A). When summarizing the
average magnitude of association per network (as defined by our par-
cellation; Fig. 4C), components of the Temporal Parietal Network had the
strongest positive associations with estradiol on average, as well as the
most variance (Fig. 4D). With the exception of Subcortical nodes, all
networks demonstrated some level of significantly positive association
strength on average (95% CIs not intersecting zero). We observed a
paucity of edges showing inverse associations (connectivity decreasing
while estradiol increased), with no networks demonstrating significantly
negative association strengths on average (Fig. 4D). These findings sug-
gest that edgewise functional connectivity is primarily characterized by
increased coupling as estradiol rises over the course of the cycle.
. 17β-estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating

https://www.labcorp.com/


Fig. 4. Whole-brain functional connectivity at rest is associated with intrinsic fluctuations in estradiol and progesterone (Study 1) .(A) Time-synchronous
(i.e. day-by-day) associations between estradiol and coherence. Hotter colors indicate increased coherence with higher concentrations of estradiol; cool colors indicate
the reverse. Results are empirically-thresholded via 10,000 iterations of nonparametric permutation testing (p < .001). Nodes without significant edges are omitted for
clarity. (B) Time-synchronous associations between progesterone and coherence. (C) Cortical parcellations were defined by the 400-node Schaefer atlas (shown here).
An additional 15 subcortical nodes were defined from the Harvard-Oxford atlas. (D) Mean nodal association strengths by network and hormone. Error bars give 95%
confidence intervals. ‘Positive’ refers to the average magnitude of positive associations (e.g. stronger coherence with higher estradiol); ‘Negative’ refers to the average
magnitude of inverse associations (e.g. weaker coherence with higher estradiol). Abbreviations: DMN, Default Mode Network; DorsAttn, Dorsal Attention Network;
SalVentAttn, Salience/Ventral Attention Network; SomMot, SomatoMotor Network; TempPar, Temporal Parietal Network.
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Progesterone, by contrast, yielded a widespread pattern of inverse
association across the brain, such that connectivity decreased as pro-
gesterone rose (Fig. 4B). Most networks (with the exception of the
Salience/Ventral Attention and SomatoMotor Networks) still yielded
some degree of significantly positive association over time; however, the
general strength of negative associations was larger in magnitude and
significantly nonzero across all networks (Fig. 4D). Together, the direc-
tion of these observed relationships offers a macroscale analogue to
cellular-level animal models of estradiol and progesterone function,
consistent with proliferative (increased connectivity) and reductive
(decreased connectivity) effects, respectively. Re-analysis with global
signal regression included during preprocessing yielded a similar pattern
of results (Fig. S5), suggesting that the relationships observed in Study 1
are not due to arbitrary changes in global signal over time (e.g. due to
physiological variability over the cycle).

Given the predominantly positive associations between connectivity
and estradiol, we further assessed the dependence of these effects on the
estradiol surge that occurs during ovulation. Removal of the ovulation
window erased significant associations across the brain almost entirely
(Fig. S6A), indicating that the hallmark rise of estradiol during ovulation
6

may be a key modulator of functional coupling over a reproductive cycle.
We then tested the reliability of these associations when estradiol fluc-
tuations were unopposed by progesterone (Study 2): this revealed simi-
larly ubiquitous increases in connectivity coincident with estradiol
fluctuations (Fig. S7). As before, removal of the three highest estradiol
days during the mid-cycle peak (akin to the ovulatory window from
Study 1) greatly reduced whole-brain associations (Fig. S6B). Thus,
whole-brain functional connectivity appears highly sensitive to estradiol
regardless of reproductive status.

3.3. Time-lagged associations between estradiol and whole-brain
functional connectivity

We then employed time-lagged methods from dynamical systems
analysis to further elucidate the degree to which intrinsic functional
connectivity is sensitive to fluctuations in estradiol: specifically, vector
autoregression (VAR), which supports more directed temporal inference
than standard regression models. As described previously, we report re-
sults from second-order VAR models: thus, in order to assess connectivity
or hormonal states on a given day of the experiment, we consider their



Fig. 5. Whole-brain functional connectivity is
linearly dependent on previous states of estradiol
(Study 1). (A) Time-lagged associations between
coherence and estradiol at lag 1 (left) and lag 2
(right), derived from edgewise vector autoregression
models. Hotter colors indicate a predicted increase in
coherence given previous concentrations of estradiol;
cool colors indicate the reverse. Results are
empirically-thresholded via 10,000 iterations of
nonparametric permutation testing (p < .001). Nodes
without significant edges are omitted for clarity. (B)
Mean nodal association strengths by network and time
lag. Error bars give 95% confidence intervals. ‘Posi-
tive’ refers to the average magnitude of positive as-
sociations (stronger coherence when prior states of
estradiol were high); ‘Negative’ refers to the average
magnitude of inverse associations (weaker coherence
when prior states of estradiol were high).
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values on both the previous day (hereafter referred to as ‘lag 1’) and two
days prior (hereafter referred to as ‘lag 2’). Ultimately, if brain variance
over time is attributable to previous states of estradiol, this suggests that
temporal dynamics in connectivity may be driven (in part) by fluctuations
in this hormone.

When assessing edgewise connectivity states, a powerful disparity
emerged between the brain’s autoregressive effects and the effects of
estradiol in Study 1. We observed vast, whole-brain associations with
prior hormonal states, both at lag 1 and lag 2 (Fig. 5A). Perhaps most
immediately striking, the sign of these brain-hormone associations in-
verts between lags, such that it is predominantly positive at lag 1 and
predominantly negative at lag 2—this holds for all networks when
considering their nodal association strengths (Fig. 5B). We interpret this
as a potential regulatory dance between brain states and hormones over
the course of the cycle, with estradiol perhaps playing a role in main-
taining both steady states (when estradiol is low) and transiently-high
dynamics (when estradiol rises). No such pattern emerged in the
brain’s autoregressive effects, with sparse, low-magnitude, and pre-
dominantly negative associations at lag 1 and lag 2 (Fig. S8). The
observed associations between estradiol and edgewise connectivity were
partially unidirectional. Previous states of coherence were associated
with estradiol across a number of edges, intersecting all brain networks.
This emerged at both lag 1 and lag 2; however, unlike the lagged effects
of estradiol on coherence, association strengths were predominantly
negative and low-magnitude (on average) at both lags (Fig. S9). Mor-
eover—and importantly—none of the edges that informed the temporal
evolution of estradiol were also significantly preceded by estradiol at
either lag (i.e. there was no evidence of mutual modulation at any
network edge).

We again tested the reliability of these effects in the replication
sample. The autoregressive trends in edgewise coherence remained
sparse and low-magnitude on average; however, unlike the original
sample, nearly all networks demonstrated significantly positive associa-
tions at lag 1, and lag 2 was dominated by negative associations
(Fig. S10). Previous states of coherence also informed changes in estra-
diol over time, but this, too, differed from the original sample at the
network level. While coherence at lag 1 was generally associated with
decreases in estradiol across most networks, several networks (including
the Control, Default Mode, and Dorsal Attention Networks) were asso-
ciated with increases on average at lag 2 (Fig. S11). Finally, and
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importantly, we observed highly robust associations between lagged
states of estradiol and coherence, with widespread positive associations
at lag 1 and predominantly negative associations at lag 2 (Fig. S12).
Curiously, in contrast to the naturally-cycling data, ‘non-cognitive’ net-
works such as the SomatoMotor and Visual Networks demonstrated by
far the strongest-magnitude associations on average—particularly at lag
1. It is possible that estradiol’s effects are magnified when unopposed by
the inhibitory nature of progesterone, a topic to be addressed in future
investigations.

3.4. Time-lagged associations between estradiol and functional network
topologies

Given the findings above, we applied the same time-lagged frame-
work to topological states of brain networks in order to better capture the
directionality and extent of brain-hormone interactions at the meso-
scopic level. These states were quantified using common graph theory
metrics: namely, the participation coefficient (an estimate of between-
network integration) and global efficiency (an estimate of within-network
integration). We focus on significant network-level effects below, but a
full documentation of our findings is available in the Supplementary
Tables.

3.4.1. Estradiol and between-network participation
As expected, estradiol demonstrated significant autoregressive trends

across all models in Study 1. However, between-network integration was
only tenuously associated with previous states of estradiol: in several
intrinsic networks, overall model fit (variance accounted for, R2, and root
mean-squared error, RMSE) was at best marginal compared to empirical
null distributions of these statistics, and we therefore urge caution in
interpreting these results. For example, in the Dorsal Attention Network
(DAN; Fig. 6A and B; Table 2), estradiol was significantly associated with
between-network participation both at lag 1 (b ¼ �0.56, SE ¼ 0.25, t ¼
�2.27, p ¼ .035) and at lag 2 (b ¼ 0.53, SE ¼ 0.24, t ¼ 2.16, p ¼ .042).
Overall fit for DAN participation, however, rested at the classical fre-
quentist threshold for significance relative to empirical nulls (R2 ¼ 0.32,
p ¼ .049; RMSE ¼ 0.79, p ¼ .050). We observed a similar pattern of re-
sults for the Default Mode Network (DMN) and Limbic Network, where
lagged states of estradiol were significantly associated with cross-
network participation, but model fit as a whole was low (see Table S1).



Fig. 6. Dorsal Attention Network topology is
driven by previous states of estradiol (Study 1).
Observed data (solid lines) vs. VAR model fits (dotted
lines) for between network participation (B, middle)
and within-network efficiency (C, right) in the Dorsal
Attention Network (A, left). Timeseries for each
network statistic are depicted above in (B,C) and
estradiol for each VAR is plotted below. Data are in
standardized units and begin at experiment day three,
given the second-order VAR (lag of two days).

Table 2
VAR model fit: Between-network participation (Study 1).

Network Outcome Predictor Estimate SE T (p)

Dorsal
Attention

Participation Constant 0.08 0.16 0.49 (.099)
DANt-1 0.15 0.18 0.84 (.405)
Estradiolt-1 ¡0.56 0.25 ¡2.27 (.035)
DANt-2 �0.29 0.17 �1.71 (.093)
Estradiolt-2 0.53 0.24 2.16 (.042)

R2 ¼ 0.32 (p ¼ .049); RMSE ¼ 0.79 (p ¼ .050)

Estradiol Constant 6.88 � 10�5 0.12 0.001 (.998)
DANt-1 0.06 0.14 0.47 (.627)
Estradiolt-1 1.12 0.18 6.12 ( < .0001)
DANt-2 0.03 0.13 0.24 (.806)
Estradiolt-2 ¡0.48 0.18 ¡2.65 (.007)

R2 ¼ 0.67 (p ¼ .0001); RMSE ¼ 0.59 (p ¼ .0009)

Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation testing.

Fig. 7. Default Mode Network topology is driven by previous states of
estradiol (Study 1). Observed data (solid lines) vs. VAR model fits (dotted
lines) for within-network efficiency (B, right) in the Default Mode Network (A,
left). The efficiency timeseries is depicted above in (B) and estradiol is plotted
below. Data are in standardized units and begin at experiment day three, given
the second-order VAR (lag of two days).
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Importantly, we failed to replicate these effects in Study 2 under
hormonal suppression (Table S2). The autoregressive trends in estradiol
were generally blunted, with lag 2 now offering no predictive value.
Previous states of DAN participation also informed the temporal evolu-
tion of estradiol (whereas there was no reciprocity in lagged effects in
Study 1); however, this only emerged at lag 1 (b ¼ �0.09, SE ¼ 0.04, t ¼
�2.08, p ¼ .044). The Limbic and Subcortical Networks additionally
demonstrated significant autoregressive trends at lag 1, but neither
showed significant associations with estradiol. In sum, the marginal
model fits, along with failures to replicate in Study 2, requires further
investigation before robust conclusions can be drawn for between-
network participation.

3.4.2. Estradiol and global efficiency
In contrast to between-network integration, estradiol was more

strongly associated with within-network integration, both in terms of
lagged parameter estimates and overall fit. Here, the Default Mode
Network provided the best-fitting model in Study 1 (R2 ¼ 0.50, p ¼ .003;
RMSE¼ 0.70, p¼ .022; Fig. 7A and B). As before, estradiol demonstrated
significant autoregressive effects at lag 1 (b¼ 1.15, SE¼ 0.19, t ¼ 6.15, p
< .0001) and lag 2 (b ¼ �0.48, SE ¼ 0.19, t ¼ �2.50, p ¼ .012). When
assessing dynamics in DMN efficiency, previous states of estradiol
remained significant both at lag 1 (b ¼ 0.98, SE ¼ 0.23, t ¼ 3.37, p ¼
.0003) and at lag 2 (b¼�0.93, SE¼ 0.23, t¼�4.00, p¼ .002). Critically,
these effects were purely directional: prior states of Default Mode effi-
ciency were not associated with estradiol, nor did they have significant
autoregressive effects, suggesting that variance in topological network
states (perhaps within-network integration, in particular) is primarily
accounted for by estradiol—not the other way around (Table 3).
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We observed a similar pattern of results in the Dorsal Attention
Network (R2 ¼ 0.37, p ¼ .022; RMSE ¼ 0.77, p ¼ .023; Fig. 6C, Table 3).
Estradiol again demonstrated significant autoregressive trends at lag 1 (b
¼ 1.17, SE¼ 0.19, t¼ 6.30, p< .0001) and lag 2 (b¼�0.48, SE¼ 0.19, t
¼ �2.49, p ¼ .011), as well as significant lagged associations with DAN
efficiency both at lag 1 (b¼ 0.84, SE¼ 0.25, t¼ 3.35, p¼ .002) and at lag



Table 3
VAR model fit: Global efficiency (Study 1).

Network Outcome Predictor Estimate SE T (p)

Default Mode Efficiency Constant 0.04 0.15 0.28 (.279)
DMNt-1 �0.04 0.16 �0.27 (.764)
Estradiolt-1 0.98 0.23 3.37 (.0003)
DMNt-2 �0.02 0.16 �0.11 (.907)
Estradiolt-2 ¡0.93 0.23 ¡4.00 (.002)

R2 ¼ 0.50 (p ¼ .003); RMSE ¼ 0.70 (p ¼ .022)

Estradiol Constant 0.01 0.12 0.09 (.729)
DMNt-1 �0.12 0.13 �0.95 (.339)
Estradiolt-1 1.15 0.19 6.15 ( < .0001)
DMNt-2 �0.01 0.13 �0.08 (.930)
Estradiolt-2 ¡0.48 0.19 ¡2.50 (.012)

R2 ¼ 0.67 (p < .0001); RMSE ¼ 0.58 (p ¼ .0004)

Dorsal
Attention

Efficiency Constant 0.01 0.16 0.08 (.783)
DANt-1 �0.11 0.18 �0.60 (.562)
Estradiolt-1 0.84 0.25 3.35 (.002)
DANt-2 �0.10 0.18 �0.58 (.571)
Estradiolt-2 ¡0.67 0.16 ¡2.57 (.017)

R2 ¼ 0.37 (p ¼ .022); RMSE ¼ 0.77 (p ¼ .023)

Estradiol Constant 0.01 0.12 0.06 (.808)
DANt-1 �0.17 0.13 �1.29 (.207)
Estradiolt-1 1.17 0.19 6.30 ( < .0001)
DANt-2 �0.02 0.13 �0.16 (.875)
Estradiolt-2 ¡0.48 0.19 ¡2.49 (.011)

R2 ¼ 0.68 (p < .0001); RMSE ¼ 0.57 (p ¼ .0004)

Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation testing.
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2 (b¼�0.67, SE¼ 0.26, t¼�2.57, p¼ .017). As before, Dorsal Attention
efficiency had no significant effects on estradiol, nor were there signifi-
cant autoregressive effects of the network on itself.

The Control and Temporal Parietal networks also yielded partial
support for time-dependent modulation of efficiency by estradiol (Con-
trol R2 ¼ 0.34, p ¼ .039; Temporal Parietal R2 ¼ 0.36, p ¼ .026). The
time-lagged effects of estradiol followed the trends observed above;
however, the overall model fit (with respect to prediction error) was not
significantly better than their empirical nulls (Control RMSE ¼ 0.83, p ¼
.133; Temporal Parietal RMSE¼ 0.79, p¼ .057). Estradiol did not explain
a significant proportion of variance in efficiency for any other networks
in Study 1 (Table S3).

In contrast to between-network participation, within-network effi-
ciency yielded stronger evidence for replication in Study 2. The DMN
again demonstrated the strongest model fit (R2 ¼ 0.38, p¼ .019; RMSE¼
0.74, p ¼ .011), with estradiol informing fluctuations in DMN efficiency
both at lag 1 (b ¼ 2.48, SE ¼ 0.75, t ¼ 3.29, p ¼ .003) and lag 2 (b ¼
�2.69, SE ¼ 0.91, t ¼ �2.94, p ¼ .009). We also observed a significant
autoregressive effect of DMN efficiency at lag 2 (b ¼ �0.45, SE ¼ 0.19, t
¼�2.41, p¼ .027), but not at lag 1. In the DAN, significant model fit was
achieved with respect to prediction error (RMSE ¼ 0.79, p ¼ .045), but
variance accounted for was marginal relative to empirical nulls (R2 ¼
0.32, p ¼ .052). Accordingly, estradiol was significantly associated with
DAN efficiency at lag 1 (b¼ 1.88, SE¼ 0.79, t¼ 2.37, p¼ .026) but not at
lag 2. Finally, previous states of estradiol (both lags 1 and 2) significantly
informed efficiency in the Control, Salience/Ventral Attention, Somato-
Motor, and Subcortical Networks; however, aside from the SomatoMotor
Network (R2¼ 0.34, p¼ .039; RMSE¼ 0.76, p¼ .018), overall fit in these
models was nonsignificant (Table S4). Thus, while we observed trends
largely consistent with Study 1 (with respect to DMN and DAN effi-
ciency), there may be additional network-level effects in a neuroendo-
crine system unopposed by progesterone, warranting future
investigation.

4. Discussion

In this dense-sampling, deep-phenotyping project, a naturally-cycling
female underwent resting-state fMRI and venipuncture for 30
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consecutive days, capturing the dynamic endocrine changes that unfold
over the course of a complete menstrual cycle. Time-synchronous ana-
lyses illustrate estradiol’s widespread associations with cortical network
dynamics, spanning all but one of the networks in our parcellation. Time-
lagged vector autoregressive models tested the temporal directionality of
these effects, suggesting that intrinsic network dynamics may be partially
driven by recent states of estradiol, particularly with respect to within-
network connectivity: global efficiency in the Default Mode and Dorsal
Attention Networks exhibited the strongest associations with fluctuations
in estradiol, replicated between Studies 1 and 2. In contrast to estradiol’s
proliferative effects, progesterone was primarily associated with reduced
coherence across the whole brain. Findings from a replication dataset
further establish estradiol’s impact on large-scale cortical dynamics.
Critically, removal of high estradiol days in both studies reduced asso-
ciations across the brain, suggesting that the hallmark rise of estradiol
surrounding the ovulatory windowmay be a key modulator of functional
coupling during the reproductive cycle (Fig. S6). Together, these results
reveal the rhythmic nature in which brain networks reorganize across the
human menstrual cycle.

The network neuroscience community has begun to probe functional
networks over the timescale of weeks, months, and years to understand
the extent to which brain networks vary between individuals or within an
individual over time (Poldrack et al., 2015; Finn et al., 2015; Gordon
et al., 2017; Betzel et al., 2019; Horien et al., 2019; Seitzman et al., 2019).
These studies indicate that functional networks are dominated by com-
mon organizational principles and stable individual features, especially
in frontoparietal control regions (Finn et al., 2015; Gordon et al., 2017;
Gratton et al., 2018a; Horien et al., 2019). An overlooked feature of these
regions is that they are populated with estrogen and progesterone re-
ceptors and are exquisitely sensitive to major changes in sex hormone
concentrations (Berman et al., 1997; Jacobs and D’Esposito, 2011;
Hampson and Morley, 2013; Shanmugan and Epperson, 2014; Jacobs
et al., 2016a,b). Our findings demonstrate significant effects of estradiol
on functional network nodes belonging to the DMN, DAN, and FCN that
overlap with ER-rich regions of the brain, including medial/dorsal PFC
(Wang et al., 2010; Yeo et al., 2011). This study merges the network
neuroscience and endocrinology disciplines by demonstrating that
higher-order processing systems are modulated by day-to-day changes in
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sex hormones over the timescale of one month.

4.1. Sex hormones regulate brain organization across species

Animal studies offer unambiguous evidence that sex steroid hor-
mones shape the synaptic organization of the brain, particularly in re-
gions that support higher order cognitive functions (Woolley and
McEwen, 1993; Frick et al., 2015, 2018; Hara et al., 2015; Galea et al.,
2017). In rodents, estradiol increases fast-spiking interneuron excit-
ability in deep cortical layers (Clemens et al., 2019). In nonhuman pri-
mates, whose reproductive cycle length is similar to humans, estradiol
increases the number of synapses in PFC (Hara et al., 2015). Recently,
this body of work has begun to uncover the functional significance of
sinusoidal changes in estradiol. For example, estradiol’s ability to pro-
mote PFC spinogenesis in ovariectomized animals occurs only if the
hormone add-back regimen mirrors the cyclic pattern of estradiol release
typical of the macaque menstrual cycle (Hao et al., 2006; Ohm et al.,
2012). Pairing estradiol with cyclic administration of progesterone
blunts this increase in spine density (Ohm et al., 2012). In the hippo-
campus, progesterone has a similar inhibitory effect on dendritic spines,
blocking the proliferative effects of estradiol 6 h after administration
(Woolley and McEwen, 1993). Together, the preclinical literature sug-
gests that progesterone antagonizes the largely proliferative effects of
estradiol (for review, see Brinton et al., 2008). We observed a similar
relationship, albeit at a different spatiotemporal resolution, with estra-
diol demonstrating positive associations with coherence across numerous
cortical networks and progesterone having an opposite, negative asso-
ciation on average. In sum, animal studies have identified estradiol’s
influence on regional brain organization at the microscopic scale. Here,
we show that estradiol and progesterone may have analogous effects
evident at the mesoscopic scale of whole-brain connectivity, measured by
spectral coherence and macroscopic features of network topology.

4.2. Resting-state network characteristics differ by cycle stage

Group-based and sparser-sampling neuroimaging studies provide
further support that cycle stage and sex hormones impact resting-state
networks (Petersen et al., 2014; Lisofsky et al., 2015; De Bondt et al.,
2015; Syan et al., 2017; Weis et al., 2019). For instance, Petersen et al.
(2014) demonstrated that women sampled in the follicular stage had
greater connectivity within default mode and execute control networks
compared to those sampled in the luteal stage. Lisofsky et al. (2015)
studied women four times across their menstrual cycles, observing sig-
nificant increases in connectivity between the hippocampus and superior
parietal lobule during the late follicular phase. However, recent work by
Weis et al. (2019) provides compelling yet contrasting evidence for sex
hormones’ relationships with resting-state functional connectivity:
studying women three times across the cycle, their group observed
heightened connectivity between a region of the left frontal cortex and
the DMN during menstruation when estradiol levels are lowest. In-
consistencies between studies could be due to a number of factors such as
differences in cycle staging methods, divergent functional connectivity
estimationmethods, or unaccounted for intra/inter-individual variability
(Beltz and Moser, 2019). Our results suggest that failure to properly
capture the complete ovulatory window, when estradiol levels rapidly
rise, could lead to skewed estimates of stability within functional brain
networks across the menstrual cycle (Hjelmervik et al., 2014). As such,
dense-sampling studies provide a novel solution to capturing pivotal
moments experienced across a complete human menstrual cycle. Ar�elin
and colleagues (2015) sampled an individual every 2–3 days across four
cycles and found that progesterone was associated with increased con-
nectivity between the hippocampus, dorsolateral PFC and sensorimotor
cortex, providing compelling evidence that inter-regional connectivity
varies over the cycle. This particular dense-sampling approach allowed
the authors to examine brain-hormone relationships while accounting for
intra-individual cycle variation.
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Estradiol is capable of inducing rapid, non-genomic effects and
slower, genomic effects on the central nervous system. For example,
spine density on hippocampal neurons varies by ~30% over the rodent
estrous cycle. In-vivo MRI evidence in mice demonstrates that these
hormone-mediated changes can occur rapidly, with differences detect-
able within a 24-h period. To capture time-synchronous (rapid) and time-
lagged (delayed) effects of sex steroid hormones, we expanded upon
Ar�elin and colleagues’ approach by sampling an individual every 24 h for
30 consecutive days. Our results illuminate how time-synchronous cor-
relations and time-lagged computational approaches reveal unique as-
pects of where and how hormones exert their effects on the brain’s
intrinsic networks. Time-synchronous analyses illustrated contempora-
neous, zero-lag associations between estradiol, progesterone, and whole-
brain connectivity. The introduction of lagged states in VAR allowed us
to examine the temporal directionality of those relationships and suggest
that recent fluctuations in estradiol (within two days) inform current
brain states—this raises the interesting possibility that estradiol may play
a partial role in driving changes in connectivity, particularly in the DMN
and DAN.

4.3. Neurobiological interpretations of hormonal effects and future studies

The following considerations could enhance the interpretation of
these data. First, our investigation deeply sampled a single woman,
limiting our ability to generalize these findings to other individuals. To
enrich our understanding of the relationship between sex hormones and
brain function, this dense-sampling approach should be extended to a
diverse sample of women. Doing so will allow us to examine the con-
sistency of our results with respect to inter-individual differences in
network organization over the menstrual cycle. Additionally, examining
network organization during a state of complete hormone suppression
would serve as a valuable comparison given that certain oral hormonal
contraceptives suppress the production of both ovarian hormones. If
dynamic changes in estradiol are facilitating increases in resting-state
connectivity, we expect hormonally-suppressed individuals to show
less dynamic modulation of functional brain networks over time. Given
the widespread use of oral hormonal contraceptives (100 million users
worldwide), it is critical to determine whether sweeping changes to an
individual’s endocrine state impacts brain states and whether this, in
turn, has any bearing on cognition.

Second, in freely-cycling individuals, sex hormones function as
proportionally-coupled nonlinear oscillators (Boker et al., 2014).
Within-person cycle variability is almost as large as between-person cycle
variability, which hints that there are highly complex hormonal in-
teractions within this regulatory system (Fehring et al., 2006; Boker
et al., 2014). The VAR models we have explored reveal linear de-
pendencies between brain states and hormones, but other methods (e.g.
coupled latent differential equations) may offer more biophysical validity
(Boker et al., 2014). However, the current sample size precludes robust
estimation of such a model.

Third, while permutation tests have been used as empirical null
models for VAR (Hyv€arinen et al., 2010) and its statistical relatives (e.g.
Granger causality; Barnett and Seth, 2014), the practice of
temporally-scrambling a timeseries will drastically alter its autocorrela-
tive structure and potentially skew observed dependencies over time.
Phase-shifting, surrogate data tests such as the amplitude adjusted
Fourier transform (AAFT) may offer more robust null distributions.
However, AAFT also makes strong distributional assumptions about the
original timeseries (Gaussian normality) that, unfortunately, are not met
by these data. Additionally, the small sample size over a single cycle
precludes the ability to derive robust surrogate realizations of the
timeseries. While AAFT is arguably an ideal procedure for analyses such
as those reported here, these data simply cannot meet the assumptions
required for valid surrogate testing and thus is a major limitation within
the current study. Future investigations involving larger samples of
women over several cycles that allow implementation of suchmodels will
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be critical.
Fourth, while coherence is theoretically robust to timing differences

in the hemodynamic response function, hormones can affect the vascular
system (Krause et al., 2006). Therefore, changes in coherence may be due
to vascular artifacts that affect the hemodynamic response in fMRI, rather
than being neurally-relevant. Future investigations exploring the as-
sumptions of hemodynamics in relation to sex steroid hormone concen-
trations will add clarity as to how the vascular system’s response to
hormones might influence large-scale brain function.

Fifth, these findings contribute to an emerging body of work on
estradiol’s ability to enhance the efficiency of PFC-based cortical cir-
cuits. In cycling women performing a working memory task, PFC ac-
tivity is exaggerated under low estradiol conditions and reduced under
high estradiol conditions (Jacobs and D’Esposito, 2011). The same
pattern is observed decades later in life: as estradiol production de-
creases over the menopausal transition, working memory-related PFC
activity becomes more exaggerated, despite no difference in working
memory performance (Jacobs et al., 2016a). Here, we show that
day-to-day changes in estradiol enhance the global efficiency of func-
tional networks, with pronounced effects in networks (DMN and FCN)
that encompass major regions of the PFC (Yeo et al., 2011; Schaefer
et al., 2018). Together, these findings suggest that estradiol generates a
neurally efficient PFC response at rest and while engaging in a cognitive
task. Estradiol’s action may occur by enhancing dopamine synthesis
and release (Creutz and Kritzer, 2002). The PFC is innervated by
midbrain dopaminergic neurons that form the mesocortical dopamine
track (Kritzer and Creutz, 2008). Dopamine signaling enhances the
signal-to-noise ratio of PFC pyramidal neurons (Williams and
Goldman-Rakic, 1995) and drives cortical efficiency (Cai and Arnsten,
1997; Granon et al., 2000; Gibbs and D’Esposito, 2005; Vijayraghavan
et al., 2007). In turn, estradiol enhances dopamine release and modifies
the basal firing rate of dopaminergic neurons (Thompson and Moss,
1994; Pasqualini et al., 1995; Becker, 1990), a possible neurobiological
mechanism by which alterations in estradiol could impact cortical ef-
ficiency. Future multimodal neuroimaging studies in humans can
clarify the link between estradiol’s ability to stimulate dopamine
release and the hormone’s ability to drive cortical efficiency within PFC
circuits.

Sixth, we observed surprisingly few autoregressive effects in brain
measures across our time-laggedmodels. This was despite relatively strong
day-to-day similarity in whole-brain patterns of connectivity (Fig. S4), and
clear evidence for autocorrelation when assessing the brain data in an
independent, univariate fashion. Thus, the incorporation of sex hormones
into a time-lagged modeling framework attributed more temporal vari-
ability in the brain to fluctuations in hormone concentrations. Neverthe-
less, an ongoing debate within the network neuroscience community
surrounds test-retest reliability in resting-state functional connectivity
analyses. Some studies state that large amounts of data (>20 min) are
necessary for test-retest reliability (Noble et al., 2017; Gratton et al.,
2018a), while others argue that reliability can be derived from shorter
(5–15 min) scans (Van Dijk et al., 2010; Birn et al., 2013). We are limited
in our ability to assess whether the ostensibly weak autoregressive trends
suggested by our time-lagged models would be replicated under longer
scanning durations and hope future work addresses this issue.

Finally, we chose to apply a well-established group-based atlas
(Schaefer et al., 2018) to improve generalizability to other individuals, as
a key goal of our investigation was to demonstrate how sex steroid
hormones explain variability in intrinsic network topologies based on
regional definitions shown to be reliable across thousands of individuals
(Yeo et al., 2011; Schaefer et al., 2018). Yet, group-based atlases can lead
to potential loss in individual-level specificity, and recent work has
demonstrated that fixed atlases may not capture underlying reconfigu-
rations in the parcellations themselves within an individual (Bijsterbosch
et al., 2019; Salehi et al., 2020a, 2020b). Therefore, future work using
individual-derived functional networks will be necessary to determine
whether spatial reconfigurations in parcellations emerge as a function of
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the menstrual cycle, over and above the influence of state or trait fea-
tures. Relatedly, variation in analytic pipelines of brain imaging data can
lead to divergent conclusions even within the same dataset (Botvi-
nik-Nezer et al., 2020); for complete transparency, we are committed to
making all neuroimaging data and code publicly available (see Data
availability).

4.4. Estradiol modulates global efficiency in estrogen-receptor rich brain
regions

Using dense-sampling approaches to probe brain-hormone in-
teractions could reveal organizational principles of the functional con-
nectome previously unknown, transforming our understanding of how
hormones influence brain states. Human studies implicate sex steroid
hormones in the regulation of brain structure and function, particularly
within ER-rich regions like the PFC and hippocampus (Berman et al.,
1997; Girard et al., 2017; Hampson and Morley, 2013; Jacobs et al.,
2015, 2016a,b; Jacobs and D’Esposito, 2011; Shanmugan and Epperson,
2014, Zeydan et al., 2019), and yet, the neuroendocrine basis of the
brain’s network organization remains understudied. Here, we used a
network neuroscience approach to investigate how hormones modulate
the topological integration of functional networks across the brain,
showing that estradiol is associated with increased coherence across
broad swaths of cortex that extend beyond regions with established ER
expression. At the network level, estradiol enhances the efficiency of
most functional networks (with robust effects in DAN and DMN) and, to a
lesser extent, modulates between-network participation (although criti-
cally, this finding failed to replicate in Study 2). Moving forward, a
complete mapping of ER/PR expression in the human brain will be
essential for our understanding and interpretation of brain-hormone in-
teractions. Furthermore, this dense-sampling approach could be applied
to brain imaging studies of other major neuroendocrine transitions, such
as pubertal development and reproductive aging (e.g. menopause).

4.5. Implications of hormonally regulated network dynamics for cognition

An overarching goal of network neuroscience is to understand how
coordinated activity within and between functional brain networks
supports cognition. Increased global efficiency is thought to optimize a
cognitive workspace (Bullmore and Bassett, 2011), while
between-network connectivity may be integral for integrating top-down
signals from multiple higher-order control hubs (Gratton et al., 2018b).
The dynamic reconfiguration of functional brain networks is implicated
in performance across cognitive domains, including motor learning
(Bassett et al., 2011; Mattar et al., 2018), cognitive control (Seeley et al.,
2007) and memory (Fornito et al., 2012). Our results suggest that the
within-network connectivity of these large-scale networks is
temporally-dependent on hormone fluctuations across the human men-
strual cycle, particularly in states of high estradiol (e.g. ovulation). Future
studies should consider whether these network changes confer advan-
tages to domain-general or domain-specific cognitive performance.
Accordingly, future planned analyses from this dataset will incorporate
task-based fMRI to determine whether the brain’s network architecture is
similarly-variable across the cycle when engaging in a cognitive task, or
in the dynamic reconfiguration that occurs when transitioning from rest
to task.

4.6. Implications of hormonally regulated network dynamics for clinical
diagnoses

Clinical network neuroscience seeks to understand how large-scale
brain networks differ between healthy and patient populations (Fox
and Greicius, 2010; Hallquist and Hillary, 2019). Disruptions in
functional brain networks are implicated in a number of neurode-
generative and neuropsychiatric disorders: intrinsic connectivity ab-
normalities in the DMN are evident in major depressive disorder
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(Greicius et al., 2007) and Alzheimer’s disease (Buckner et al., 2009).
Notably, these conditions have a sex-skewed disease prevalence:
women are at twice the risk for depression and make up two-thirds of
the Alzheimer’s disease patient population (Nebel et al., 2018). Here,
we show that estradiol modulates efficiency within the DMN and DAN,
with pronounced rises in estradiol significantly preceding increases in
within-network coherence. A long history of clinical evidence impli-
cates sex hormones in the development of mood disorders (Plotsky
et al., 1998; Young and Korszun, 2002; Rubinow and Schmidt, 2006).
For example, the incidence of major depression increases with pubertal
onset in females (Angold and Costello, 2006), chronic use of hormonal
contraceptives (Young et al., 2007), the postpartum period (Bloch
et al., 2000), and perimenopause (Schmidt and Rubinow, 2009).
Moving forward, a network neuroscience approach might have greater
success at identifying the large-scale network disturbances that un-
derlie, or predict, the emergence of disease symptomology by incor-
porating sex-dependent variables (such as endocrine status) into
clinical models. This may be particularly true during periods of pro-
found neuroendocrine change (e.g. puberty, pregnancy, menopause,
and use of hormone-based medications, reviewed in Taylor et al.,
2019) given that these hormonal transitions are associated with a
heightened risk for mood disorders.

5. Conclusions

In sum, endogenous hormone fluctuations over the reproductive cycle
have a robust impact on the intrinsic network properties of the human
brain. Despite over 20 years of evidence from rodent, nonhuman primate,
and human studies demonstrating the tightly coupled relationship be-
tween our endocrine and nervous systems (Hara et al., 2015; McEwen,
2018; Beltz and Moser, 2019), the field of network neuroscience has
largely overlooked how endocrine factors shape the brain. The dynamic
endocrine changes that unfold over the menstrual cycle are a natural
feature of half of the world’s population. Understanding how these
changes in sex hormones might influence the large-scale functional ar-
chitecture of the human brain is imperative for our basic understanding
of the brain and for women’s health.
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Figure S1. Head motion (mean framewise displacement) across each 30-day 
experiment. In Study 1 (A), motion on days 1-8 was limited using ample head and neck 
padding; on days 9-30, motion was limited using a molded headcase custom-fit to the 
participant’s head. For both Study 1 and 2, mean framewise displacement did not 
exceed 130 microns. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure S2. Subject-specific anatomical template. Functional images were registered to 
a subject-specific anatomical template space, created with Advanced Normalization 
Tools’ multivariate template construction. All 30 high-resolution T1 MPRAGE scans 
from Study 1 were used. 
 
 
 
 
 



 

 
 
Figure S3. Experiment timeline and hormone concentrations in Study 2. (A) 
Endocrine and MRI data acquisition were again time-locked each day for 30 consecutive 
days. (B) Levels of estradiol (light blue), LH (red) and FSH (yellow) over the course of 
the experiment. Note that, while progesterone (dark blue) was pharmacologically 
suppressed, estradiol maintained a similar pattern of fluctuation as seen in Study 1. 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Figure S4. Whole-brain network similarity by stage of menstrual cycle. (A) 
Experiment days were divided into follicular (left) and luteal (right) stages of the cycle, 
and unthresholded coherence matrices were pairwise correlated with each other in 
order to assess inter-scan similarity in whole-brain patterns of connectivity. Fisher-Z 
transformed estimates are given. This revealed one session (experiment day 26) in the 
luteal stage that was markedly dissimilar relative to other days. (B) Mean nodal 
association strengths by network and hormone, after removing day 26 from the analysis 
shown in Figure 4. Critically, results were robust to this exclusion, suggesting no strong 
dependence on this session. 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
Figure S5. Global signal regression has minimal impact on time-synchronous brain-
hormone associations (Study 1). (A) Thresholded patterns of association between 
coherence and estradiol showed moderate degrees of edge-to-edge reliability (r = 0.48) 
after GSR. (B) Coherence-progesterone associations after GSR yielded similar degrees of 
edge-to-edge reliability (r = 0.61). (C) While the average magnitude of brain-hormone 
associations differed in some networks, the overall trends remained: namely, that 
estradiol was associated with widespread increases in coherence. 
 
 
 



 
 
 
 

 
 
Figure S6. The ovulatory surge in estradiol is a key modulator of whole-brain 
functional connectivity. (A) Removal of the ovulation window in Study 1 (experiment 
days 22-24) almost entirely erases all significant associations between estradiol and 
edgewise coherence. (B) Removing analogously high estradiol days in Study 2 
(experiment days 28-30) also has a strongly-diminishing effect. 
 
 
 
 
 
 



 
 
Figure S7. Whole-brain associations between coherence and estradiol persist in a 
replication sample (Study 2). (A) Time-synchronous associations between estradiol and 
coherence while progesterone was pharmacologically suppressed. Hotter colors 
indicate increased coherence with higher concentrations of estradiol; cool colors 
indicate the reverse. Results are empirically-thresholded via 10,000 iterations of 
nonparametric permutation testing (p < .001). Nodes without significant edges are 
omitted for clarity. (B) Mean nodal association strengths by network (with 95% CIs): 
increased concentrations of estradiol were again coincident with ubiquitous increases in 
resting connectivity.  
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S8. Autoregressive effects of edgewise coherence (Study 1). (A) Autoregressive 
trends in coherence at lag 1 (left) and lag 2 (right), derived from edgewise vector 
autoregressive models. Hotter colors indicate a predicted increase in coherence given 
previous states of connectivity; cool colors indicate the reverse. Results are empirically-
thresholded via 10,000 iterations of nonparametric permutation testing (p < .001). Nodes 
without significant edges are omitted for clarity. (B) Mean nodal association strengths 
by network and time lag. Error bars give 95% confidence intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S9. Estradiol shows linear dependencies on previous states of coherence 
(Study 1). (A) Time-lagged associations between estradiol and previous states of 
coherence at lag 1 (left) and lag 2 (right), derived from edgewise vector autoregressive 
models. Hotter colors indicate a predicted increase in estradiol given previous states of 
coherence; cool colors indicate the reverse. Results are empirically-thresholded via 
10,000 iterations of nonparametric permutation testing (p < .001). Nodes without 
significant edges are omitted for clarity. (B) Mean nodal association strengths by 
network and time lag. Error bars give 95% confidence intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S10. Autoregressive effects of edgewise coherence (Study 2). (A) 
Autoregressive trends in coherence at lag 1 (left) and lag 2 (right), derived from 
edgewise vector autoregressive models. Hotter colors indicate a predicted increase in 
coherence given previous states of connectivity; cool colors indicate the reverse. Results 
are empirically-thresholded via 10,000 iterations of nonparametric permutation testing 
(p < .001). Nodes without significant edges are omitted for clarity. (B) Mean nodal 
association strengths by network and time lag. Error bars give 95% confidence intervals.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S11. Estradiol shows linear dependencies on previous states of coherence 
(Study 2). (A) Time-lagged associations between estradiol and previous states of 
coherence at lag 1 (left) and lag 2 (right), derived from edgewise vector autoregressive 
models. Hotter colors indicate a predicted increase in estradiol given previous states of 
coherence; cool colors indicate the reverse. Results are empirically-thresholded via 
10,000 iterations of nonparametric permutation testing (p < .001). Nodes without 
significant edges are omitted for clarity. (B) Mean nodal association strengths by 
network and time lag. Error bars give 95% confidence intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S12. Linear dependencies between coherence and previous states of estradiol 
persist in a replication sample (Study 2). (A) Time-lagged associations between 
coherence and previous states of estradiol at lag 1 (left) and lag 2 (right), derived from 
edgewise vector autoregressive models. Hotter colors indicate a predicted increase in 
coherence given previous states of estradiol; cool colors indicate the reverse. Results are 
empirically-thresholded via 10,000 iterations of nonparametric permutation testing (p < 
.001). Nodes without significant edges are omitted for clarity. (B) Mean nodal 
association strengths by network and time lag. Error bars give 95% confidence intervals. 
Relative to Study 1, the average magnitude of association by network was greatly 
increased, perhaps due to the suppression of progesterone. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1. All VAR models for cross-network participation v. estradiol (Study 1). 
Network Outcome Predictor Estimate SE T (p) 

Control 

Participation 

Constant 0.11 0.18 0.62 (.048) 
FCNt-1 -0.15 0.19 -0.80 (.430) 
Estradiolt-1 -0.58 0.26 -2.21 (.036) 
FCNt-2 -0.18 0.18 -0.97 (.334) 
Estradiolt-2 0.40 0.27 1.49 (.152) 

R2 = 0.22 (p = .199); RMSE = 0.85 (p = .183) 
 

Estradiol 

Constant 0.01 0.12 0.11 (.691) 
FCNt-1 -0.04 0.13 -0.27 (.787) 
Estradiolt-1 1.11 018 6.15 (< .0001) 
FCNt-2 -0.03 0.13 -0.27 (.792) 
Estradiolt-2 -0.51 0.18 -2.75 (.005) 

R2 = 0.66 (p = .0001); RMSE = 0.59 (p = .001) 

Default 
Mode 

Participation 

Constant 0.01 0.17 0.06 (.808) 
DMNt-1 -3.13 x 10-4 0.18 -2 x 10-3 (.998) 
Estradiolt-1 -0.63 0.26 -2.43 (.026) 
DMNt-2 0.09 0.18 0.53 (.599) 
Estradiolt-2 0.72 0.23 2.84 (.010) 

R2 = 0.27 (p = .091); RMSE = 0.83 (p = .132) 
     

Estradiol 

Constant 0.01 0.12 0.07 (.803) 
DMNt-1 -0.08 0.12 -0.66 (.505) 
Estradiolt-1 1.10 0.18 6.10 (< .0001) 
DMNt-2 -0.49 0.18 0.12 (.906) 
Estradiolt-2 -0.49 0.18 -2.76 (.004) 

R2 = 0.67 (p < .0001); RMSE = 0.57 (p = .0004) 

Dorsal 
Attention 

Participation 

Constant 0.08 0.16 0.49 (.099) 
DANt-1 0.15 0.18 0.84 (.405) 
Estradiolt-1 -0.56 0.25 -2.27 (.035) 
DANt-2 -0.29 0.17 -1.71 (.093) 
Estradiolt-2 0.53 0.24 2.16 (.042) 

R2 = 0.32 (p = .049); RMSE = 0.79 (p = .050) 
 

Estradiol 

Constant 6.88 x 10-5 0.12 0.001 (.998) 
DANt-1 0.06 0.14 0.47 (.627) 
Estradiolt-1 1.12 0.18 6.12 (< .0001) 
DANt-2 0.03 0.13 0.24 (.806) 
Estradiolt-2 -0.48 0.18 -2.65 (.007) 

R2 = 0.67 (p = .0001); RMSE = 0.59 (p = .0009) 
 
 
 



Limbic 

Participation 

Constant -0.01 0.18 -0.03 (.929) 
LNt-1 0.36 0.20 1.83 (.074) 
Estradiolt-1 -0.55 0.27 -2.06 (.050) 
LNt-2 -0.09 0.20 -0.45 (.666) 
Estradiolt-2 0.56 0.27 2.09 (.047) 

R2 = 0.27 (p = .102); RMSE = 0.86 (p = .235) 
 

Estradiol 

Constant 0.01 0.12 0.07 (.793) 
LNt-1 0.07 0.13 0.49 (.624) 
Estradiolt-1 1.13 0.18 6.34 (< .0001) 
LNt-2 -0.14 0.13 -1.05 (.307) 
Estradiolt-2 -0.52 0.18 -2.89 (.003) 

R2 = 0.68 (p < .0001); RMSE = 0.58 (p = .0005) 

Salience/ 
Ventral 

Attention 

Participation 

Constant -0.02 0.23 -0.12 (.715) 
SVNt-1 0.15 0.20 0.73 (.488) 
Estradiolt-1 0.28 0.99 0.29 (.782) 
SVNt-2 0.11 0.22 0.51 (.625) 
Estradiolt-2 -0.12 1.18 -0.10 (.919) 

R2 = 0.07 (p = .80); RMSE = 0.96 (p = .87) 
     

Estradiol 

Constant 0.07 0.05 1.45 (< .0001) 
SVNt-1 -0.09 0.04 -1.96 (.059) 
Estradiolt-1 1.31 0.21 6.27 (< .0001) 
SVNt-2 -0.01 0.05 -0.14 (.887) 
Estradiolt-2 -0.24 0.25 -0.96 (.378) 

R2 = 0.96 (p < .0001); RMSE = 0.20 (p < .0001) 

Somato- 
Motor 

Participation 

Constant -0.08 0.22 -0.34 (.223) 
SMNt-1 0.09 0.20 0.42 (.664) 
Estradiolt-1 0.99 0.89 1.11 (.270) 
SMNt-2 0.17 0.20 0.84 (.405) 
Estradiolt-2 -0.87 1.07 -0.82 (.420) 

R2 = 0.13 (p = .46); RMSE = 0.92 (p = .50) 
 

Estradiol 

Constant 0.07 0.05 1.25 (.003) 
SMNt-1 -0.03 0.04 -0.57 (.568) 
Estradiolt-1 1.35 0.21 6.40 (< .0001) 
SMNt-2 -0.01 0.05 -0.29 (.767) 
Estradiolt-2 -0.29 0.25 -1.15 (.266) 

R2 = 0.96 (p < .0001); RMSE = 0.22 (p < .0001) 
 
 
 
 
 



Subcortical 

Participation 

Constant 0.04 0.19 0.21 (.344) 
SCNt-1 -4.77 x 10-3 0.19 -0.03 (.976) 
Estradiolt-1 -0.38 0.29 -1.33 (.183) 
SCNt-2 -0.03 0.19 -0.15 (.866) 
Estradiolt-2 0.58 0.28 2.04 (.059) 

R2 = 0.16 (p = .330); RMSE = 0.93 (p = .477) 
 

Estradiol 

Constant 0.01 0.12 0.07 (.792) 
SCNt-1 0.07 0.12 0.54 (.573) 
Estradiolt-1 1.11 0.18 6.17 (< .0001) 
SCNt-2 0.02 0.12 0.18 (.854) 
Estradiolt-2 -0.50 0.18 -2.78 (.005) 

R2 = 0.67 (p < .0001); RMSE = 0.59 (p = .0009) 

Temporal 
Parietal 

Participation 

Constant -0.04 0.24 -0.16 (.594) 
TPNt-1 0.09 0.20 0.42 (.688) 
Estradiolt-1 0.27 0.97 .28 (.79) 
TPNt-2 -0.20 0.21 -0.95 (.35) 
Estradiolt-2 -0.34 1.15 -0.28 (.79) 

R2 = 0.05 (p = .49); RMSE = 0.99 (p = .96) 
     

Estradiol 

Constant 0.07 0.05 1.45 (< .0001) 
TPNt-1 -0.04 0.04 -0.85 (.400) 
Estradiolt-1 1.27 0.20 6.33 (< .0001) 
TPNt-2 -0.07 0.04 -1.61 (.104) 
Estradiolt-2 -0.22 0.24 -0.93 (.395) 

R2 = 0.96 (p < .0001); RMSE = 0.20 (p < .0001) 

Visual 

Participation 

Constant 0.17 0.22 0.62 (.038) 
VNt-1 0.09 0.21 3.27 (.004) 
Estradiolt-1 0.03 0.89 -1.57 (.130) 
VNt-2 0.14 0.20 -1.56 (.140) 
Estradiolt-2 1.44 1.06 1.57 (.127) 

R2 = 0.37 (p = .027); RMSE = 0.79 (p = .05) 
 

Estradiol 

Constant 0.06 0.05 1.23 (.003) 
VNt-1 -0.05 0.05 -0.89 (.388) 
Estradiolt-1 1.38 0.21 6.42 (< .001) 
VNt-2 -0.02 0.05 0.30 (.776) 
Estradiolt-2 -0.34 0.25 -1.25 (.229) 

R2 = 0.96 (p < .0001); RMSE = 0.22 (p < .0001) 
Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation 
testing. 
 
 
 



Table S2. All re-test VAR models for cross-network participation v. estradiol (Study 2). 
Network Outcome Predictor Estimate SE T (p) 

Control 

Participation 

Constant -0.07 0.23 -0.31 (.296) 
FCNt-1 0.02 0.20 0.12 (.905) 
Estradiolt-1 0.76 0.94 0.81 (.429) 
FCNt-2 -0.18 0.20 -0.87 (.394) 
Estradiolt-2 -0.75 1.12 -0.67 (.510) 

R2 = 0.08 (p = .739); RMSE = 0.96 (p = .834) 
 

Estradiol 

Constant 0.07 0.05 1.41 (.001) 
FCNt-1 -0.05 0.04 -1.07 (.298) 
Estradiolt-1 1.31 0.20 6.61 (< .0001) 
FCNt-2 -0.07 0.04 -1.67 (.105) 
Estradiolt-2 -0.24 0.24 -1.03 (.322) 

R2 = 0.96 (p < .0001); RMSE = 0.20 (p < .0001) 

Default 
Mode 

Participation 

Constant -0.09 0.24 -0.39 (.165) 
DMNt-1 -4.00 x 10-3 0.21 0.02 (.985) 
Estradiolt-1 0.67 0.99 0.67 (.510) 
DMNt-2 -0.12 0.21 -0.54 (.592) 
Estradiolt-2 -0.73 1.18 -0.62 (.552) 

R2 = 0.05 (p = .891); RMSE = 0.99 (p = .937) 
     

Estradiol 

Constant 0.08 0.05 1.55 (.0002) 
DMNt-1 -0.07 0.04 -1.61 (.121) 
Estradiolt-1 1.25 0.20 6.11 (< .0001) 
DMNt-2 -0.06 0.04 -1.25 (.214) 
Estradiolt-2 -0.18 0.24 -0.73 (.503) 

R2 = 0.96 (p < .0001); RMSE = 0.20 (p < .0001) 

Dorsal 
Attention 

Participation 

Constant 0.07 0.24 0.27 (.347) 
DANt-1 2.00 X 10-3 0.21 0.01 (.991) 
Estradiolt-1 -0.31 1.01 -0.30 (.766) 
DANt-2 0.01 0.23 0.05 (.964) 
Estradiolt-2 0.61 1.19 0.51 (.617) 

R2 = 0.04 (p = .909); RMSE = 0.99 (p = .988) 
 

Estradiol 

Constant 0.07 0.05 1.39 (.0007) 
DANt-1 -0.09 0.04 -2.08 (.044) 
Estradiolt-1 1.27 0.20 6.22 (< .0001) 
DANt-2 -0.04 0.05 -0.85 (.408) 
Estradiolt-2 -0.21 0.24 -0.88 (.416) 

R2 = 0.96 (p < .0001); RMSE = 0.20 (p < .0001) 
 
 
 



Limbic 

Participation 

Constant 0.15 0.21 0.70 (.017) 
LNt-1 0.49 0.20 2.39 (.029) 
Estradiolt-1 -1.27 0.84 -1.52 (.138) 
LNt-2 -0.28 0.19 -1.47 (.155) 
Estradiolt-2 1.54 1.01 1.53 (.144) 

R2 = 0.24 (p = .17); RMSE = 0.85 (p = .160) 
 

Estradiol 

Constant 0.07 0.05 1.27 (.002) 
LNt-1 -7.00 X 10-3 0.05 -0.14 (.890) 
Estradiolt-1 1.33 0.21 6.25 (< .0001) 
LNt-2 -0.04 0.05 -0.84 (.406) 
Estradiolt-2 -0.29 0.26 -1.12 (.282) 

R2 = 0.96 (p < .0001); RMSE = 0.21 (p < .0001) 

Salience/ 
Ventral 

Attention 

Participation 

Constant -0.02 0.23 -0.11 (.715) 
SVNt-1 0.15 0.20 0.73 (.488) 
Estradiolt-1 0.28 0.99 0.29 (.782) 
SVNt-2 0.11 0.22 0.51 (.625) 
Estradiolt-2 -0.12 1.18 -0.10 (.919) 

R2 = 0.07 (p = .802); RMSE = 0.96 (p = .874) 
     

Estradiol 

Constant 0.07 0.05 1.45 (.0002) 
SVNt-1 -0.09 0.04 -1.96 (.059) 
Estradiolt-1 1.31 0.21 6.26 (< .0001) 
SVNt-2 -0.01 0.05 -0.14 (.887) 
Estradiolt-2 -0.24 0.25 -0.96 (.378) 

R2 = 0.96 (p < .0001); RMSE = 0.20 (p < .0001) 

Somato- 
Motor 

Participation 

Constant -0.08 0.22 -0.34 (.224) 
SMNt-1 0.09 0.20 0.42 (.664) 
Estradiolt-1 0.99 0.89 1.11 (.270) 
SMNt-2 0.17 0.20 0.84 (.405) 
Estradiolt-2 -0.87 1.07 -0.82 (.420) 

R2 = 0.13 (p = .463); RMSE = 0.94 (p = .644) 
 

Estradiol 

Constant 0.07 0.05 1.25 (.003) 
SMNt-1 -0.03 0.05 -0.57 (.587) 
Estradiolt-1 1.35 0.21 6.40 (< .0001) 
SMNt-2 -0.01 0.05 -0.29 (.767) 
Estradiolt-2 -0.29 0.25 -1.15 (.266) 

R2 = 0.96 (p < .0001); RMSE = 0.22 (p < .0001) 
 
 
 
 
 



Subcortical 

Participation 

Constant 0.12 0.19 0.62 (.038) 
SCNt-1 0.64 0.19 3.27 (.004) 
Estradiolt-1 -1.22 0.77 -1.57 (.130) 
SCNt-2 -0.31 0.20 -1.56 (.140) 
Estradiolt-2 1.44 0.92 1.57 (.127) 

R2 = 0.37 (p = .026); RMSE = 0.80 (p = .050) 
 

Estradiol 

Constant 0.06 0.05 1.23 (.003) 
SCNt-1 -0.05 0.05 -0.89 (.388) 
Estradiolt-1 1.35 0.21 6.43 (< .0001) 
SCNt-2 0.02 0.05 0.30 (.776) 
Estradiolt-2 -0.31 0.25 -1.25 (.229) 

R2 = 0.96 (p < .0001); RMSE = 0.22 (p < .0001) 

Temporal 
Parietal 

Participation 

Constant -0.04 0.24 -0.16 (.593) 
TPNt-1 0.09 0.21 0.42 (.688) 
Estradiolt-1 0.27 0.97 0.28 (.793) 
TPNt-2 -0.20 0.21 -0.95 (.356) 
Estradiolt-2 -0.33 1.15 -0.28 (.787) 

R2 = 0.05 (p = .876); RMSE = 0.99 (p = .966) 
     

Estradiol 

Constant -0.04 0.05 1.45 (.0003) 
TPNt-1 1.27 0.04 -0.85 (.404) 
Estradiolt-1 -0.07 0.20 6.33 ( < .0001) 
TPNt-2 -0.22 0.04 -1.66 (.111) 
Estradiolt-2 0.07 0.24 -0.93 (.390) 

R2 = 0.96 (p < .0001); RMSE = 0.21 (p < .0001) 

Visual 

Participation 

Constant 0.14 0.22 0.62 (.031) 
VNt-1 0.09 0.21 0.44 (.669) 
Estradiolt-1 0.03 0.89 0.03 (.977) 
VNt-2 0.14 0.20 0.71 (.485) 
Estradiolt-2 0.17 1.06 0.16 (.876) 

R2 = 0.05 (p = .866); RMSE = 0.92 (p = .573) 
 

Estradiol 

Constant 0.06 0.05 1.22 (.003) 
VNt-1 -0.05 0.05 -1.11 (.281) 
Estradiolt-1 1.38 0.21 6.70 (<.0001) 
VNt-2 -0.02 0.05 -0.35 (.718) 
Estradiolt-2 -0.34 0.25 -1.37 (.176) 

R2 = 0.96 (p < .0001); RMSE = 0.21 (p < .0001) 
Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation 
testing. 
 
 
 



Table S3. All VAR models for global efficiency v. estradiol (Study 1). 
Network Outcome Predictor Estimate SE T (p) 

Control 

Efficiency 

Constant -0.02 0.17 -0.14 (.576) 
FCNt-1 -0.13 0.18 -0.73 (.452) 
Estradiolt-1 0.80 0.27 2.96 (.007) 
FCNt-2 -0.12 0.19 -0.66 (.510) 
Estradiolt-2 -0.68 0.28 -2.47 (.023) 

R2 = 0.34 (p = .039); RMSE = 0.83 (p = .133) 
 

Estradiol 

Constant 3.79 x 10-3 0.12 0.03 (.896) 
FCNt-1 -0.19 0.12 -1.56 (.127) 
Estradiolt-1 1.17 0.18 6.41 (< .0001) 
FCNt-2 -1.83 x 10-3 0.13 -0.04 (.967) 
Estradiolt-2 -0.49 0.19 -2.62 (.007) 

R2 = 0.69 (p < .0001); RMSE = 0.56 (p < .0001) 

Default 
Mode 

Efficiency 

Constant 0.04 0.15 0.28 (.279) 
DMNt-1 -0.04 0.16 -0.27 (.764) 
Estradiolt-1 0.98 0.23 3.37 (.0003) 
DMNt-2 -0.02 0.16 -0.11 (.907) 
Estradiolt-2 -0.93 0.23 -4.00 (.002) 

R2 = 0.50 (p = .003); RMSE = 0.70 (p = .022) 
     

Estradiol 

Constant 0.01 0.12 0.09 (.729) 
DMNt-1 -0.12 0.13 -0.95 (.339) 
Estradiolt-1 1.15 0.19 6.15 (< .0001) 
DMNt-2 -0.01 0.13 -0.08 (.930) 
Estradiolt-2 -0.48 0.19 -2.50 (.012) 

R2 = 0.67 (p < .0001); RMSE = 0.58 (p = .0004) 

Dorsal 
Attention 

Efficiency 

Constant 0.01 0.16 0.08 (.783) 
DANt-1 -0.11 0.18 -0.60 (.562) 
Estradiolt-1 0.84 0.25 3.35 (.002) 
DANt-2 -0.10 0.18 -0.58 (.571) 
Estradiolt-2 -0.67 0.16 -2.57 (.017) 

R2 = 0.37 (p = .022); RMSE = 0.77 (p = .023) 
 

Estradiol 

Constant 0.01 0.12 0.06 (.808) 
DANt-1 -0.17 0.13 -1.29 (.207) 
Estradiolt-1 1.17 0.19 6.30 (< .0001) 
DANt-2 -0.02 0.13 -0.16 (.875) 
Estradiolt-2 -0.48 0.19 -2.49 (.011) 

R2 = 0.68 (p < .0001); RMSE = 0.57 (p = .0004) 
 
 
 



Limbic 

Efficiency 

Constant 0.06 0.20 0.29 (.318) 
LNt-1 -0.10 0.22 -0.47 (.640) 
Estradiolt-1 0.09 0.32 0.29 (.777) 
LNt-2 -0.24 0.22 -1.09 (.294) 
Estradiolt-2 -0.10 0.32 -0.33 (.751) 

R2 = 0.07 (p = .760); RMSE = 0.97 (p = .857) 
 

Estradiol 

Constant 0.03 0.11 0.31 (.250) 
LNt-1 -0.26 0.11 -2.26 (.035) 
Estradiolt-1 1.14 0.17 6.66 (< .0001) 
LNt-2 -0.13 0.12 -1.23 (.235) 
Estradiolt-2 -0.48 0.17 -2.84 (.004) 

R2 = 0.74 (p < .0001); RMSE = 0.52 (p = .0001) 

Salience/ 
Ventral 

Attention 

Efficiency 

Constant -0.03 0.18 -0.17 (.533) 
SVNt-1 -0.05 0.19 -0.27 (.786) 
Estradiolt-1 0.45 0.28 1.58 (.131) 
SVNt-2 -0.15 0.20 -0.74 (.452) 
Estradiolt-2 -0.47 0.28 -1.67 (.107) 

R2 = 0.18 (p = .309); RMSE = 0.88 (p = .311) 
     

Estradiol 

Constant -0.01 0.11 -0.07 (.787) 
SVNt-1 -0.22 0.11 -1.93 (.069) 
Estradiolt-1 1.06 0.17 6.26 (< .0001) 
SVNt-2 -0.18 0.12 -1.57 (.126) 
Estradiolt-2 -0.41 0.27 -2.41 (.015) 

R2 = 0.73 (p < .0001); RMSE = 0.53 (p < .0001) 

Somato- 
Motor 

Efficiency 

Constant 0.01 0.19 0.03 (.913) 
SMNt-1 -0.03 0.20 -0.17 (.856) 
Estradiolt-1 0.53 0.30 1.75 (.093) 
SMNt-2 -0.07 0.22 -0.30 (.762) 
Estradiolt-2 -0.47 0.31 -1.52 (.140) 

R2 = 0.15 (p = .385); RMSE = 0.92 (p = .553) 
 

Estradiol 

Constant -0.01 0.11 -0.07 (.775) 
SMNt-1 -0.21 0.11 -1.89 (.074) 
Estradiolt-1 1.05 0.17 6.18 (< .0001) 
SMNt-2 -0.23 0.12 -1.88 (.076) 
Estradiolt-2 -0.36 0.17 -2.05 (.036) 

R2 = 0.74 (p < .0001); RMSE = 0.51 (p < .0001) 
 
 
 
 
 



Subcortical 

Efficiency 

Constant 0.05 0.20 0.26 (.351) 
SCNt-1 -0.05 0.20 -0.27 (.788) 
Estradiolt-1 0.35 0.30 1.20 (.248) 
SCNt-2 0.02 0.21 0.10 (.917) 
Estradiolt-2 -0.38 0.30 -1.29 (.208) 

R2 = 0.07 (p = .755); RMSE = 0.95 (p = .700) 
 

Estradiol 

Constant 0.01 0.12 0.06 (.823) 
SCNt-1 -0.07 0.12 -0.57 (.597) 
Estradiolt-1 1.11 0.18 6.14 (< .0001) 
SCNt-2 -0.09 0.13 -0.69 (.493) 
Estradiolt-2 -0.47 0.18 -2.61 (.007) 

R2 = 0.67 (p < .0001); RMSE = 0.58 (p = .0006) 

Temporal 
Parietal 

Efficiency 

Constant 0.01 0.16 0.90 (.737) 
TPNt-1 -0.21 0.18 -1.15 (.262) 
Estradiolt-1 0.89 0.26 3.40 (.002) 
TPNt-2 0.06 0.18 0.30 (.758) 
Estradiolt-2 -0.82 0.27 -3.04 (.007) 

R2 = 0.36 (p = .026); RMSE = 0.79 (p = .057) 
     

Estradiol 

Constant 0.02 0.12 0.19 (.477) 
TPNt-1 -0.23 0.13 -1.79 (.087) 
Estradiolt-1 1.20 0.18 6.52 (< .0001) 
TPNt-2 -0.04 0.13 -0.28 (.783) 
Estradiolt-2 -0.50 0.19 -2.66 (.007) 

R2 = 0.70 (p < .0001); RMSE = 0.55 (p = .0005) 

Visual 

Efficiency 

Constant 0.09 0.18 0.48 (.114) 
VNt-1 -0.10 0.18 -0.54 (.604) 
Estradiolt-1 0.43 0.28 1.53 (.142) 
VNt-2 -0.20 0.19 -1.02 (.321) 
Estradiolt-2 -0.37 0.28 -1.32 (.194) 

R2 = 0.18 (p = .307); RMSE = 0.86 (p = .202) 
 

Estradiol 

Constant 0.02 0.11 0.16 (.534) 
VNt-1 -0.18 0.11 -1.62 (.120) 
Estradiolt-1 1.09 0.17 6.33 (< .0001) 
VNt-2 -0.19 0.12 -1.63 (.118) 
Estradiolt-2 -0.40 0.17 -2.30 (.019) 

R2 = 0.73 (p < .0001); RMSE = 0.53 (p = .0004) 
Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation 
testing. 
 
 
 



Table S4. All re-test VAR models for global efficiency v. estradiol (Study 2). 
Network Outcome Predictor Estimate SE T (p) 

Control 

Efficiency 

Constant -0.12 0.21 -0.60 (.047) 
FCNt-1 -0.02 0.18 -0.10 (.921) 
Estradiolt-1 2.03 0.84 2.41 (.026) 
FCNt-2 -0.21 0.20 -1.06 (.292) 
Estradiolt-2 -2.14 1.02 -2.12 (.049) 

R2 = 0.23 (p = .166); RMSE = 0.84 (p = .156) 
 

Estradiol 

Constant 0.08 0.05 1.49 (.0003) 
FCNt-1 0.03 0.05 0.73 (.466) 
Estradiolt-1 1.30 0.21 6.12 (< .0001) 
FCNt-2 0.06 0.05 1.18 (.253) 
Estradiolt-2 -0.24 0.26 -0.95 (.367) 

R2 = 0.96 (p < .0001); RMSE = 0.21 (p < .0001) 

Default 
Mode 

Efficiency 

Constant -0.19 0.19 -1.04 (.001) 
DMNt-1 0.09 0.16 0.52 (.617) 
Estradiolt-1 2.48 0.75 3.29 (.003) 
DMNt-2 -0.45 0.19 -2.41 (.027) 
Estradiolt-2 -2.69 0.91 -2.94 (.009) 

R2 = 0.38 (p = .019); RMSE = 0.74 (p = .011) 
     

Estradiol 

Constant 0.08 0.05 1.44 (.0001) 
DMNt-1 0.03 0.05 0.52 (.598) 
Estradiolt-1 1.29 0.22 5.88 (<.0001) 
DMNt-2 0.05 0.05 0.90 (.371) 
Estradiolt-2 -0.24 0.27 -0.90 (.400) 

R2 = 0.96 (p < .0001); RMSE = 0.22 (p < .0001) 

Dorsal 
Attention 

Efficiency 

Constant -0.06 0.20 -0.33 (.259) 
DANt-1 -0.18 0.18 -1.01 (.326) 
Estradiolt-1 1.88 0.79 2.37 (.026) 
DANt-2 -0.22 0.20 -1.14 (.271) 
Estradiolt-2 -1.64 0.94 -1.74 (.095) 

R2 = 0.32 (p = .052); RMSE = 0.79 (p = .045) 
 

Estradiol 

Constant 0.07 0.05 1.28 (.002) 
DANt-1 0.04 0.05 0.80 (.442) 
Estradiolt-1 1.34 0.22 6.21 (<.0001) 
DANt-2 0.03 0.05 0.55 (.586) 
Estradiolt-2 -0.31 0.26 -1.20 (.253) 

R2 = 0.96 (p < .0001); RMSE = 0.22 (p < .0001) 
 
 
 



Limbic 

Efficiency 

Constant -0.03 0.22 -0.12 (.667) 
LNt-1 0.38 0.20 1.91 (.061) 
Estradiolt-1 0.88 0.87 1.01 (.327) 
LNt-2 -0.16 0.22 -0.71 (.479) 
Estradiolt-2 -1.05 1.06 -0.99 (.327) 

R2 = 0.15 (p = .389); RMSE = 0.88 (p = .274) 
 

Estradiol 

Constant 0.07 0.05 1.23 (.003) 
LNt-1 1.00 X 10-3 0.05 0.02 (.986) 
Estradiolt-1 1.35 0.22 6.22 (< .0001) 
LNt-2 3.00 X 10-3 0.06 0.05 (.968) 
Estradiolt-2 -0.30 0.27 -1.14 (.272) 

R2 = 0.95 (p < .0001); RMSE = 0.22 (p < .0001) 

Salience/ 
Ventral 

Attention 

Efficiency 

Constant -0.15 0.21 -0.71 (.017) 
SVNt-1 0.14 0.18 0.75 (.471) 
Estradiolt-1 1.98 0.87 2.27 (.031) 
SVNt-2 -0.23 0.21 -1.11 (.275) 
Estradiolt-2 -2.26 1.06 -2.14 (.039) 

R2 = 0.20 (p = .248); RMSE = 0.86 (p = .174) 
     

Estradiol 

Constant 0.06 0.05 1.19 (.004) 
SVNt-1 0.04 0.05 0.81 (.416) 
Estradiolt-1 1.36 0.22 6.15 (< .0001) 
SVNt-2 -1.00 X 10-3 0.05 -0.01 (.989) 
Estradiolt-2 -0.32 0.27 -1.20 (.245) 

R2 = 0.95 (p < .0001); RMSE = 0.22 (p < .0001) 

Somato- 
Motor 

Efficiency 

Constant -0.22 0.19 -1.18 (.0001) 
SMNt-1 0.06 0.16 0.33 (.751) 
Estradiolt-1 2.72 0.80 3.40 (.002) 
SMNt-2 -0.32 0.19 -1.74 (.097) 
Estradiolt-2 -3.16 0.97 -3.28 (.003) 

R2 = 0.34 (p = .039); RMSE = 0.76 (p = .018) 
 

Estradiol 

Constant 0.06 0.05 1.14 (.005) 
SMNt-1 0.05 0.05 1.12 (.268) 
Estradiolt-1 1.36 0.23 6.06 (< .0001) 
SMNt-2 4.00 X 10-3 0.05 0.07 (.945) 
Estradiolt-2 -0.33 0.27 -1.21 (.236) 

R2 = 0.96 (p < .0001); RMSE = 0.21 (p < .0001) 
 
 
 
 
 



Subcortical 

Efficiency 

Constant -0.19 0.21 -0.92 (.003) 
SCNt-1 0.22 0.18  1.24 (.232) 
Estradiolt-1 1.89 0.83 2.29 (.032) 
SCNt-2 -0.24 0.19 -1.29 (.204) 
Estradiolt-2 -2.22 1.00 -2.23 (.037) 

R2 = 0.23 (p = .172); RMSE = 0.85 (p = .159) 
 

Estradiol 

Constant 0.07 0.05 1.23 (.002) 
SCNt-1 0.03 0.05 0.61 (.550) 
Estradiolt-1 1.37 0.22 6.41 (< .0001) 
SCNt-2 -0.01 0.05 -0.13 (.901) 
Estradiolt-2 -0.32 0.26 -1.26 (.216) 

R2 = 0.95 (p < .0001); RMSE = 0.22 (p < .0001) 

Temporal 
Parietal 

Efficiency 

Constant -0.17 0.22 -0.77 (.010) 
TPNt-1 0.16 0.20 0.83 (.412) 
Estradiolt-1 1.82 0.93 1.95 (.059) 
TPNt-2 -0.31 0.21 -1.42 (.168) 
Estradiolt-2 -2.28 1.14 -2.00 (.057) 

R2 = 0.16 (p = .360); RMSE = 0.88 (p = .286) 
     

Estradiol 

Constant 0.06 0.05 1.17 (.004) 
TPNt-1 0.04 0.05 0.74 (.465) 
Estradiolt-1 1.38 0.23 6.00 (< .0001) 
TPNt-2 0.01 0.05 0.25 (.797) 
Estradiolt-2 -0.33 0.28 -1.18 (.257) 

R2 = 0.95 (p < .0001); RMSE = 0.22 (p < .0001) 

Visual 

Efficiency 

Constant -0.11 0.21 -0.50 (.080) 
VNt-1 -0.05 0.19 -0.27 (.792) 
Estradiolt-1 1.34 0.84 1.59 (.126) 
VNt-2 -0.09 0.19 -0.45 (.659) 
Estradiolt-2 -1.27 1.01 -1.26 (.227) 

R2 = 0.15 (p = .431); RMSE = 0.88 (p = .264) 
 

Estradiol 

Constant 0.06 0.05 1.20 (.003) 
VNt-1 0.02 0.05 0.41 (.695) 
Estradiolt-1 1.38 0.21 6.60 (< .0001) 
VNt-2 -0.03 0.05 -0.69 (.499) 
Estradiolt-2 -0.33 0.25 -1.34 (.183) 

R2 = 0.95 (p < .0001); RMSE = 0.22 (p < .0001) 
Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation 
testing. 
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