UC San Diego UC San Diego Previously Published Works

Title

Studies of Reynolds Stress and the Turbulent Generation of Edge Poloidal Flows on the HL-2A Tokamak

Permalink

https://escholarship.org/uc/item/15k697kh

Authors

Long, T Diamond, Patrick Xu, M <u>et al.</u>

Publication Date

2018-11-19

Peer reviewed

Studies of Reynolds Stress and the Turbulent Generation of Edge Poloidal Flows on the HL-2A Tokamak

T. Long¹, P.H. Diamond^{1,2}, M. Xu¹, R. Ke¹, L. Nie¹ and HL-2A team

¹ Southwestern Institute of Physics, Chengdu, China

² University of California, San Diego, California, USA

E-mail: longt@swip.ac.cn

Outline

Motivation

Experimental set up

Poloidal rotation and Reynolds Stress

Rotation and its deviation from neoclassical

Decomposition of Reynolds stress

Discussion on residual stress vs adiabatic parameter

2/13

Beyond the quasi-gaussian Ansatz

PDF statistics of Reynolds stress

Discussion on cross phase and coherence

Summary

The theory of turbulence effects on poloidal flow via turbulent flux of momentum—Reynolds stress--has been studied and widely validated in the fusion community, since it was first proposed.

P. H. Diamond et al., 1991 Physics of Fluids B

POP

- Poloidal flow can shift relatively to its neoclassical value, if $\partial_r \langle \tilde{v}_r \tilde{v}_\theta \rangle \neq 0$ $\mu_{ii}^{(neo)}(\langle v_\theta \rangle - \langle v_\theta \rangle_{neo}) = -\partial_r \langle \tilde{v}_r \tilde{v}_\theta \rangle$ C.J. McDevitt et al., 2010 POP
- $\langle v_{\theta} \rangle_{neo}$ by KDG model & viscous damping rate

$$v_{\theta i,neo} = \frac{B_{\varphi} K^{i} T_{i} L_{T_{i}}^{-1}}{Z_{i} e_{i} B^{2}} \quad \mu_{ii}^{(neo)} \equiv \frac{1}{\tau_{ii}} \frac{\langle B^{2} \rangle}{B_{\theta}^{2}} \mu_{00}$$
 Y.B. Kim et al., 1991
Physics of Fluids B

• The Reynolds stress can be expressed in the form:

$$\langle \tilde{v}_r \tilde{v}_\theta \rangle = -\chi_\theta \frac{\partial \langle v_\theta \rangle}{\partial r} + v_r^{eff} \langle v_\theta \rangle + \Pi_{r\theta}^{Res}$$
 Ö. D. Gürcan et al., 2007

Experimental set up

 A specially designed Langmuir probe array on the outer mid-plane of HL-2A tokamak was used to do the main experimental measurement—

Study Reynolds stress & turbulent generation of edge poloidal flows

Potential and electric field

$$\tilde{\phi}_f \sim \tilde{\phi}_p$$
, $\vec{E} = -\nabla \phi_p$

ExB velocity $\tilde{v}_{\theta} = (\tilde{V}_{f,5} - \tilde{V}_{f,11})/2 d_r B_t$ $\tilde{v}_r = (\tilde{V}_{f,09} - \tilde{V}_{f,07})/2 d_{\theta} B_t$

Electron temperature & density $T_e = (V_+ - V_f)/l n2$ $C_s = \sqrt{k T_e/m_i}$ $I_{sat} = (V_- - V_+)/R_s$ $n_e = I_{sat}/(0.61eA_{eff}C_s)$

Rotation and its deviation from neoclassical

• A significant deviation on Ohmic and ECRH heating power L mode.

Decomposition of Reynolds stress

 Contribution of these diffusive or non-diffusive stress to the turbulent generation of poloidal flows

Decomposition of Reynolds stress

- Diffusive stress and residual stress are of the same order as Reynolds stress.
- The poloidal intrinsic torque, $-\partial_r(\Pi_{r\theta}^{Res})$ increases substantially with ECRH heating powers.
- Residual stress is a function of profiles of both density and temperature, which drive the turbulence.

Different from linear device: $\Pi^{R} = \frac{\Gamma}{n_{0}} - \chi_{y}v_{d}$ $v_{d}(x) = -d \ln n_{0}/dx$ A. Ashourvan et al., 2016 POP

7/13

Decomposition of Reynolds stress

 As a consequence of wave-flow momentum exchange, the residual stress drives an off-diagonal turbulent momentum flux and its divergence defines an intrinsic poloidal torque.

P. H. Diamond et al., 2009 Nuclear Fusion

$$\Pi_{r\theta}^{Res} = \Pi_{r\theta}^{Res} (\nabla T, \nabla n) \qquad \text{torque} = -\partial_r (\Pi_{r\theta}^{Res})$$

Gradients drive rotation via $\Pi_{r\theta}^{Res}$ heating power,

VT drives the turbulence, leading to profile relaxation and the generation of flow via turbulent stresses analogy

A car engine

burns fuel, converts thermal energy liberated into kinetic energy of a rotating wheel.

Y. Kosuga et al. 2010 POP

Southwestern Institute of Physics

Discussion on residual stress vs adiabatic parameter

• Adiabatic parameter —— (non-) adiabatic electron response

$$\alpha = \frac{k_{\parallel}^2 v_{th}^2}{v_{ei} |\omega|}$$

 $|\omega|$ is the frequency of the Drift wave unstable mode

TABLE I. Scalings of the turbulent enstrophy ε , transport fluxes, and vorticity gradient with α in both adiabatic and hydrodynamic regimes.

Plasma response	Adiabatic $\alpha \gg 1$	Hydrodynamic $\alpha \ll 1$
Turbulent viscosity	Equation (20b)	Equation (24b)
χ _y	$\chi_y \propto 1/lpha$	$\chi_y \propto 1/\sqrt{lpha}$
Residual stress	Equation (20c)	Equation (24c)
Π^{res} :Residual vorticity flux	$\Pi^{res} \propto -1/lpha$	$\Pi^{res} \propto -\sqrt{lpha}$
$\frac{\Pi^{res}}{\chi_y} = (\omega_{ci} \nabla \bar{n}) \times$	$\left(\frac{\alpha}{ \omega^{\star} }\right)^{0}$	$\left(\frac{\alpha}{ \omega^{\star} }\right)$

The dominant modes may switch from adiabatic drift waves to non-adiabatic resistive driven modes.

R. J. Hajjar et al., 2018 POP

Experimental study and validation in near future.

Beyond the quasi-gaussian Ansatz

Virtually all models of turbulent momentum transport are based on quasigaussian (quasilinear models), we explore statistics of edge Reynolds stress.

Skewness: asymmetry of the tail						measurement	
Kurtosis: tail in general				μ: 1.6e5			
Run			ener				
Σ^n	$(\gamma - \overline{\gamma})$	3/n		ν_{4} $\sum_{i=1}^{n}$	$n_{i-1}(x_i -$	$(-\bar{x})^4 / n$	к: 12.4
$s = \frac{\Delta i}{2}$	$\frac{1}{\pi^3}$	<i>///</i>	$\kappa = -$	$\frac{1}{\sigma^4} = \frac{21}{\sigma^4}$	$\frac{1}{\sigma^4}$	k (10)	PDF s: 0.3
	00			0	0		
Table 1	Table 1 Skewness and kurtosis with/out ECRH					$\times 10^{-4}$	
heating at 1.5 cm inside LCFS							
	S	1	К				
ECRH		; ; ;			õ	$\left \tilde{\tau} \right ^2$	
(kW)	$\tilde{v}_r \tilde{v}_{\theta}$	\tilde{v}_r	$\widetilde{v}_{ heta}$	$\tilde{v}_r \tilde{v}_{\theta}$	$\frac{e\varphi_f}{-}$	$\frac{e\varphi_f}{-}$	-6 -5 -4 3
			Ŭ		T_e	T _e	
0	0.3	3.4	3.3	12.4	3.2	9.9	
700	0.9	3.1	3.3	14.8	3.1	9.4	
							0

Strongly non-Gaussian dynamics regulate poloidal momentum transport. \rightarrow Avalanches of poloidal momentum?

Southwestern Institute of Physics

Beyond the quasi-gaussian Ansatz

- Deviation from Gaussian suggests the consideration of:
- Validity of quasilinear models of edge turbulence transport
- \succ Coherence and phase dynamics between \tilde{v}_r and \tilde{v}_{θ}

General (left) & cumulated(right) structure function method Y. H. Xu et al., 2004 POP

Hurst exponent of potential perturbation is ~0.85

H=1/2, random walk, occurs in Brownian motion; 0 < H < 1/2, the dynamics exhibit rapid switching between high and low values, temporal anticorrelation 1/2 < H < 1, the dynamics manifest a sustained memory, and positive correlation in time, long-term persistence.

11/13

 $\tilde{v}_r \tilde{v}_{\theta}$

Discussion on cross phase and coherence

> Coherence and phase dynamics between \tilde{v}_r and \tilde{v}_{θ}

$$\langle \tilde{v}_{r} \tilde{v}_{\theta} \rangle = \langle |\tilde{v}_{r}|^{2} \rangle^{1/2} \cdot \langle |\tilde{v}_{\theta}|^{2} \rangle^{\frac{1}{2}} \cdot X_{factor}$$

$$\text{In frequency domain,} \\ X_{factor} \equiv \overline{\gamma_{\tilde{v}_{r}\tilde{v}_{\theta}} \cos \varphi_{\tilde{v}_{r}\tilde{v}_{\theta}}}$$

$$\text{coherence}$$

$$= \frac{\langle \sum_{\omega} P_{\tilde{v}_{r}\tilde{v}_{r}}(\omega)^{1/2} P_{\tilde{v}_{\theta}\tilde{v}_{\theta}}(\omega)^{1/2} \cdot \gamma_{\tilde{v}_{r}\tilde{v}_{\theta}}(\omega) \cdot \cos (\varphi_{\tilde{v}_{r}\tilde{v}_{\theta}}(\omega)) \rangle}{\langle \sum_{\omega} P_{\tilde{v}_{r}\tilde{v}_{r}}(\omega) \rangle^{1/2} \cdot \langle \sum_{\omega} P_{\tilde{v}_{\theta}\tilde{v}_{\theta}}(\omega) \rangle^{1/2}}$$

Strong shear layer, cross phase is randomly scattered—— "incoherent phase slips".
Reynolds stress is determined by cross phase dynamics.
Weak shear region, cross phase stays in a coherent state —— " phase locked state", turbulence fluctuation and coherence are more important.

12/13

D. Guo et al., 2018 Nuclear Fusion

Our next step: Study the coherence and cross phase in frequency domain Compare with the results in time domain

Summary

- Significant deviation of mean poloidal flow from the neoclassical value is deduced.
- The deviation increases with heating power.
- Both diffusive and non-diffusive stresses contribute to the deviation.
- The turbulent poloidal viscous flux and residual stress are synthesized using fluctuation data.
- The turbulent poloidal viscosity is comparable to the turbulent particle diffusivity.
- The residual stress increases with heating power and exhibits a sharper gradient for higher powers.
- The PDFs of both Reynolds stress exhibit fat tails and large kurtosis, suggesting non-Gaussian processes control momentum transport.
- It's significant that Reynolds stress has non-Gaussian features, despite the fact that momentum transport is a secondary process.
- Experimental study of scaling of residual stress with adiabatic parameter will be conducted soon.
- Further study of coherence and phase dynamics via Hurst parameter and in frequency domain has been planned.

SWIP Southwestern Institute of Physics

Thanks for your attention!

