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ABSTRACT OF THE DISSERTATION

RNA-Seq Based Transcriptome Assembly:
Sparsity, Bias Correction and Multiple Sample Comparison

by

Wei Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2012

Dr. Tao Jiang , Chairperson

RNA-Seq, or deep-sequencing of RNAs, is a new technology for transcriptome profil-

ing using second generation sequencing. RNA-Seq has been widely used to identify

and quantify transcriptomes at an unprecedented high resolution and low cost. An

important computational problem arising from RNA-Seq is transcriptome assembly, in

which the structures of transcripts (and their expression levels) are inferred simultane-

ously from RNA-Seq data. RNA-Seq transcriptome assembly allows for the detection

of structural and quantitative changes of transcripts between samples, paving the way

for novel biological discoveries. However, the problem of RNA-Seq transcriptome as-

sembly is challenging because: (i) the complicated alternative splicing patterns of some

genes result in a huge number of possible transcripts, (ii) different kinds of biases in

RNA-Seq reads (including sequencing, positional and mappability biases) decrease the

accuracy of assembly and expression level estimation algorithms, and (iii) the existing

assembly tools can only reconstruct transcripts from a single sample, leading to a high

false positive rate for comparing RNA-Seq experiments from multiple samples.

We propose three different algorithms to address these challenges. First, we

design a transcriptome assembly tool, IsoLasso, that balances different objectives (pre-
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diction accuracy, sparsity, interpretation) and takes advantage of the sparsity of ex-

pressed transcripts. Second, we use the quasi-multinomial distribution to model the

RNA-Seq biases, and design a new algorithm, CEM, to handle different biases in both

transcriptome assembly and transcript expression level estimation. Finally, we propose a

multiple-sample transcriptome assembly tool, ISP, to assemble transcripts directly from

RNA-Seq data of multiple samples. ISP reaches an improved performance compared

to the assembly tools that consider one sample at a time, and helps to improve the

accuracy of downstream differential analysis of transcriptomes between samples.
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Chapter 1

Introduction

1.1 RNA-Seq and transcriptome assembly

The second generation sequencing (or high throughput sequencing, next gen-

eration sequencing) technology is a new technology to sequence DNAs at an unprece-

dented high data throughput and low cost. This new sequencing technology has become

a revolutionary tool in many research areas, including medical sciences [33, 37], micro-

biology [7], genetics [32, 96, 25], evolution [5], etc. Transcriptomic research has taken

advantage of the second generation sequencing methods, leading to a new experimental

protocol, RNA-Seq [58, 97, 48, 56, 51, 8, 59]. RNA-Seq sequences the complementary

DNAs (cDNAs) which are reversely transcribed from RNA sequences of the cells being

studied, and the sequencing data reveals the structural and quantitative properties of

the cell’s transcriptomes. RNA-Seq has become a fundamental and popular protocol in

transcriptomic research [27, 57, 88, 94], but it also posts many challenging problems for

computational biology, including read mapping [86], normalization [71], between-sample

comparison [91], transcriptome assembly [87], isoform expression level estimation [38],

etc.
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The problem of transcriptome assembly and transcript expression level estima-

tion is to reconstruct the structures of transcripts (or isoforms), and to estimate their

expression levels from RNA-Seq reads. Based on the transcriptome assembly results, one

can detect new isoforms and analyze their structural and quantitative changes between

samples, for example, to detect novel oncogenes and splicing variants that are associated

with disease or cancer [33, 37]. Due to the importance of this problem, numerous tools

are developed using either the ab initio approach or the de novo approach. The differ-

ence between both approaches is whether the reference genome is used: in the ab initio

approach, a splicing detection software (like TopHat [86] and SpliceMap [2]) is required

to map RNA-Seq reads to the reference genome. Examples of ab inito assembly tools

include Cufflinks [87], Scripture [26], IsoInfer [18], IsoLasso [47], SLIDE [45], etc. In

contrast, the de novo approach assembles transcripts without the help of the reference

genome; these tools include AbySS [76], Trinity [23], Rnnotator [52], etc. Compared to

the de novo approach, the ab initio approach usually provides better assembly results,

since it uses additional information from the reference genome. It also requires less

computational resources [53].

In this dissertation, we study three different problems in transcriptome assem-

bly: how to take advantage of the sparsity in expressed isoforms, how to correct biases

in read distribution along an isoform, and how to analyze RNA-Seq data from multiple

samples. In the following, a short introduction to each of the three problems is presented

in Section 1.2, 1.3 and 1.4, respectively.
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1.2 Sparsity in transcriptome assembly

Different ab initio transcriptome assembly tools use different strategies. IsoIn-

fer [18] enumerates all possible “valid” isoforms and uses a quadratic program (QP) to

estimate the expression levels of a given set of isoforms. IsoInfer then chooses the best

subset of valid isoforms such that the estimated abundance of every “expressed segment”

of the reference genome (e.g., an exon) is proportional to the observed reads falling into

the segment. On the other hand, Cufflinks [87] assembles isoforms using a parsimony

strategy, i.e., it attempts to identify the minimum number of isoforms to cover all the

reads. To do this, Cufflinks decomposes the “overlap graph” of compatible reads into a

smallest path cover, and then calculates the expression levels of the isoforms (i.e., paths

in the cover) using the probabilistic model proposed in [38].

The strategies that IsoInfer and Cufflinks adopted correspond to two differ-

ent model selection principles: prediction accuracy and interpretation (or sparsity) [29].

IsoInfer selects isoforms to maximize the prediction accuracy, i.e., to minimize the error

or discrepancy between the predicted and observed expression levels in all expressed

segments. IsoInfer employs a search algorithm similar to the “best subset variable selec-

tion” algorithm [30] to find the best subset of isoforms. However, the huge search space

prevents the algorithm from doing a thorough search, and many heuristic restrictions

must be applied to make the search tractable. On the other hand, Cufflinks minimizes

interpretation, i.e., the number of variables (or isoforms) that are required to explain

all the mapped reads. Here, the prediction accuracy is not considered explicitly during

the transcriptome assembly process. By defining a “partial order” between reads, Cuf-

flinks filters out “uncertain” paired-end reads which may result in a sub-optimal path

cover in the solution, or miss some alternative splicing events. Finally, Scripture [26]
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reconstructs all possible isoforms by enumerating all possible paths in the “connectivity

graph”. This approach may lead to many incorrect isoforms for complex genes with a

large number of exons, since the number of paths may be huge for such gene models.

Another important objective in transcriptome assembly is completeness, which

requires that all exons (and exon junctions) appear in at least one isoform in the solution

(as done in IsoInfer [18]), or all mapped reads be contained in at least one isoform (as

done in Cufflinks [87]). In IsoInfer, the completeness is achieved by solving a set cover

instance that covers all expressed segments and exon junctions. Since all the reads

represented in the overlap graph are partitioned into disjoint paths in Cufflinks, they

are guaranteed to be supported by at least one isoform (i.e., path). However, some

“uncertain” paired-end reads (i.e., reads that cannot be included in partial order and

thus absent in the overlap graph) may not be covered by the solution. Scripture adopts

a conservative approach to enumerate all possible paths in its connectivity graph, which

is guaranteed to cover all expressed segments and exon junctions. Like Cufflinks, the

prediction accuracy is not considered explicitly during the transcript assembly process of

Scripture. Moreover, retaining all possible isoforms clearly leads to a bad interpretation.

Table 1.1 lists all the principles (or objectives) that IsoInfer, IsoLasso (the algorithm to

be introduced in Chapter 2), Cufflinks and Scripture abide by in the transcript assembly

process.

In Chapter 2, we will present IsoLasso, a new transcriptome assembly algo-

rithm which balances prediction accuracy, sparsity and completeness. IsoLasso uses the

LASSO algorithm to balance both prediction accuracy and sparsity, and we further take

completeness into our consideration by adding constraints to the quadratic program-

ming problem originally used by LASSO. We also prove some theorems concerning the

predicted isoforms of IsoLasso and Cufflinks, and show that IsoLasso is able to handle
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Table 1.1: Transcriptome assembly principles (or objectives) of IsoInfer, Cufflinks, Scrip-
ture and IsoLasso. Theoretically both Cufflinks and IsoLasso take completeness into
consideration, but in practice they may not fully guarantee it and thus are marked
“partially” in the table.

Algorithm Prediction accuracy Interpretation Completeness

IsoInfer Yes Partially Yes
Cufflinks No Yes Partially
Scripture No No Yes
IsoLasso Yes Yes Partially

uncertain paired-end reads which are discarded by Cufflinks.

1.3 Handling RNA-Seq biases in transcriptome assembly

and isoform expression level estimation

RNA-Seq biases refer to the non-random, non-uniform distributions of the se-

quenced reads across the involved isoforms (or genes) in an RNA-Seq experiment. The

bias pattern varies depending on several factors, for example, the GC content of the

sequence [66], experimental protocol [70], sequencing platform [28], repeat sequences of

the genome [65], the secondary structure of RNAs [46], etc. Both positional [15, 58] and

sequencing biases [28, 46] are routinely observed in RNA-Seq experiments. Positional

bias is the non-uniform distribution of reads over different positions of a transcript,

while sequencing bias refers to the distribution of reads related to the sequence content

and the priming method used in library preparation [46]. Since many second generation

sequencing applications (including RNA-Seq) require the mapping of reads to the ref-

erence genome, the mappability bias is also an important source of biases in RNA-Seq

[75] and ChIP-Seq [72, 6]. The mappability bias arises when read counts are biased due

to the read mapping. For example, some reads may not be mapped due to sequencing

errors and some applications discard reads mapped to the repeat regions of the reference
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genome; the numbers of reads are thus under-counted for these regions. Also, incorrect

read mapping leads to incorrect read counts for regions where the involved reads are

mapped to. It is important to notice that different types of biases may be related to

the same factor. For example, the GC content of the genomic sequence may affect both

sequencing and mappability biases [15, 28, 6].

Biases in RNA-Seq data may cause inaccurate expression level estimations of

genes (or isoforms), since many methods use a simplifying assumption that reads are

uniformly sampled (called “the Poisson assumption”) [38, 18, 47]. Currently, most bias

correction methods try to overcome the effect of biases on gene and isoform expres-

sion level estimations. For example, positional biases are handled in [99] by learning

non-uniform read distributions from given RNA-Seq data or by modeling the RNA

degradation [89]. In [79], a generalized Poisson (GP) model is used to calculate the

expression levels of genes affected mainly by sequencing biases. Other approaches in-

clude checking the repeat regions of the reference genome to handle mappability biases

[69, 42], modeling the dependency between neighboring positions to correct sequenc-

ing biases [46], or a combination of several strategies. For example, [70] corrects both

positional and sequencing biases by combining the machine learning techniques in [99]

and a probabilistic generative model similar to [46]. However, drawbacks exist in these

methods. On the one hand, some methods can handle only one specific type of biases

(e.g., [99, 69]) or correct biases only at the gene level [79]. On the other hand, more

general methods such as [46] and [70] use sophisticated probabilistic models that require

the learning of a large number of parameters, and thus have to make some simplifying

assumptions to make the computation tractable [70].

Besides expression level estimation, the RNA-Seq biases also have significant

effects on transcriptome assembly. Transcriptome assembly tools that consider predic-
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tion accuracy are affected by RNA-Seq biases, if these biases lead to inaccurate isoform

expression level estimations. Also, RNA-Seq biases may generate “gap regions” on the

reference genome where no mapped reads are observed. Because of these gaps, two

broken transcripts may be assembled instead of one complete transcript. Furthermore,

incorrectly mapped reads may lead to incorrect transcript assemblies. As far as we

know, most work in the literature concerning RNA-Seq biases deal with correcting gene

(or isoform) expression level estimation, and the effects of biases on the transcriptome

assembly remain largely unexplored.

In Chapter 3, we will introduce a new algorithm, CEM, that considers po-

sitional, sequencing and mappability biases in both transcriptome assembly and iso-

form expression level estimation. Based on a statistical framework using the quasi-

multinomial distribution to capture biases, CEM uses a component elimination Expectation-

Maximization (EM) algorithm to assemble transcripts and estimate their expression

levels.

1.4 Transcriptome assembly from multiple sample RNA-

Seq data

Both ab initio approach and de novo approaches of RNA-Seq transcriptome

assembly have their advantages and disadvantages. Compared with de novo methods, ab

initio transcriptome assembly algorithms use additional information from the reference

genome, and thus are able to recover transcripts with a better accuracy and yet demand

less computational resource [53]. However, current ab initio assembly algorithms crit-

ically depend on the quality of the reference genome and mapping software, and they

are not specifically designed to handle errors in mapped reads, especially junction reads
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which are the main evidences of splicing. These erroneous RNA-Seq reads may come

from various sources, including unwanted RNA fragments during the library preparation

and the mapping errors (due to sequencing errors and/or repeats). Also, it has been

observed in practice that RNA-Seq reads contain a large number of “dark matters”,

many of which come from inter-genetic and intron regions. The origin of these reads

is unclear, but a general conjecture is that they are experimental artifacts, or derived

from intron retention or non-coding RNAs [67]. Clearly, if the reference genome contains

errors (especially insertions and deletions in splice junction regions), the read mapping

software may report incorrectly mapped reads or fail to report junctions reads.

In many RNA-Seq based studies, multiple sample RNA-Seq datasets are avail-

able. It is now common for an RNA-Seq project to sequence the whole transcriptomes of

samples obtained from multiple replicates, tissues, populations, etc., For example, the

Encyclopedia Of DNA Elements (ENCODE) project [81] aims at creating functional

element profiles of more than 100 human cell types. More than 200 RNA-Seq datasets

from various tissues and experimental protocols are available for public use [83]. Other

large research projects that are producing many multiple sample RNA-Seq data include

The Cancer Genome Atlas (TCGA, [80]), the Model Organism ENCyclopedia of DNA

Elements (modENCODE, [84]), etc. On the one hand, RNA-Seq reads from multiple

samples could potentially help assemble transcripts better than using only one sample,

since the samples can be correlated. On the other hand, transcriptome assembly for

multiple samples and subsequent differential analysis are more challenging because (i)

multiple sample RNA-Seq data typically contains more noise and (ii) differential anal-

ysis is sensitive to assembly and abundance estimation errors. Therefore, to analyze

the structural and quantitative differences of isoforms from multiple samples, a highly

accurate transcriptome assembly and abundance estimation tool working on multiple
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sample RNA-Seq data is necessary.

A straightforward way to assemble transcriptomes for multiple samples is to

assemble transcripts for each sample separately and “merge” all transcripts to obtain

a “universal” set of isoforms, which is then used for downstream applications including

abundance estimation and differential analysis. An example of this approach includes the

“Cuffmerge”,“Cuffdiff” and “Cuffcompare” programs in the Cufflinks software package

[87]. However, as more samples are sequenced, errors from individual assemblies are

likely to accumulate, which could seriously affect the isoform abundance estimation and

result in unreliable (or even misleading) differential analysis results.

In Chapter 4, we will present our new multiple sample transcriptome assem-

bly tool, ISP, that is able to handle noisy RNA-Seq reads and multiple sample RNA-

Seq datasets effectively. ISP reconstructs transcripts directly from multiple samples,

and takes advantage of the extra information contained in multiple sample RNA-Seq

datasets. By solving a linear programming problem iteratively, ISP achieves a high per-

formance by discarding problematic reads and recovering missing junctions caused by

various errors.

1.5 Publications

This dissertation encompasses three publications. The IsoLasso paper (includ-

ing Section 1.2 and Chapter 2) is published in the 15th Annual International Conference

on Research in Computational Molecular Biology (RECOMB 2011) and in Journal of

Computational biology [47]. The CEM paper (including Section 1.3 and Chapter 3) is

under review in Bioinformatics. The complete list of publications includes:

• Wei Li, Jianxing Feng and Tao Jiang. IsoLasso: A LASSO Regression Approach
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to RNA-Seq Based Transcriptome Assembly. 15th Annual International Confer-

ence on Research in Computational Molecular Biology (RECOMB 2011), Lecture

Notes in Computer Science, 6577:167-188, Springer Berlin/Heidelberg, 2011. Also

appears in Journal of Computational Biology, 18(11): 1693-1707, Nov. 2011.

• Wei Li and Tao Jiang. Transcriptome Assembly and Isoform Expression Level

Estimation from Biased RNA-Seq Reads. Submitted to Bioinformatics.

• Wei Li and Tao Jiang. Accurate Isoform Inference and Abundance Estimation

from Multiple Sample RNA-Seq Data. In preparation.
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Chapter 2

A LASSO Regression Approach

to RNA-Seq Based

Transcriptome Assembly

2.1 Introduction

In this chapter, we present a new isoform assembly algorithm, IsoLasso, which

balances prediction accuracy, interpretation and completeness. IsoLasso uses the LASSO

algorithm, or Least Absolute Shrinkage and Selection Operator [85], which is a shrinkage

least squares method in statistical machine learning. By adding an L1 norm penalty

term to the least squares objective function, LASSO achieves sparsity by setting the

expression levels of unrelated isoforms to zero, thus balancing both prediction accuracy

and interpretation. The LASSO algorithm is widely applied in many computational

biology areas, such as genome-wide association analysis [98, 39], gene regulatory net-

work [24], microarray data analysis [49], etc. In IsoLasso, we expand the quadratic
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programming problem in LASSO to take completeness into consideration. Our experi-

ments demonstrate that IsoLasso runs efficiently and achieves overall higher sensitivity

and precision than IsoInfer, Cufflinks and Scripture.

The rest of Chapter 2 is organized as follows. Sections 2.2.1 and 2.2.2 present

our algorithm for generating (or enumerating) candidate isoforms and its relationship to

minimum path covers used in Cufflinks [87]. These candidate isoforms will be fed to our

LASSO algorithm described in Section 2.2.3 for estimating isoform expression levels (or,

equivalently, for inferring expressed isoforms). Section 2.2.4 expands the basic LASSO

approach to take completeness into consideration. Experimental results are presented

in Section 2.3, which include comparisons between IsoLasso, IsoInfer, Cufflinks, and

Scripture on simulated and real datasets. Section 2.4 concludes this chapter.

2.2 Methods

2.2.1 Enumerating candidate isoforms

IsoInfer [18], Scripture [26] and Cufflinks [87] enumerate candidate isoforms in

different ways. IsoInfer, assuming that expressed segment (or exon) boundaries in a gene

are given, enumerates all possible combinations of segments. Note that it is possible that

some lowly expressed segment are not hit by short reads and thus many of the isoforms

enumerated by IsoInfer might have very low expression levels. Scripture enumerates

all possible maximal paths in a connectivity graph; but some of these isoforms may

be “infeasible” because they cannot be assembled from the mapped reads (Figure 2.2

shows such an example). Cufflinks tries to build an overlap graph from partially ordered

reads, and assembles putative transcripts by decomposing the overlap graph into a

parsimonious path cover. However, a strict partial order between reads is required here.
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Figure 2.1: Removal of “uncertain” reads may cause splicing junctions undetected in
Cufflinks. Three paired-end reads, p1, p2 and p3, concern different splicing junctions.
Both pairs (p1, p2) and (p2, p3) are compatible, but the pair (p1, p3) is not. Removing
any of these reads will cause one or more junctions undetected.

Figure 2.2: “Infeasible” paths in the connectivity graph. In the example above, there are
four possible combinations of segments: ACD, ACE, BCD, and BCE. However, ACE
and BCD are infeasible since they cannot be assembled from the mapped paired-end
reads.

Since the actual sequence between the ends of each paired-end read is unknown, Cufflinks

has to exclude some paired-end reads (called uncertain reads) to maintain the partial

order. Removing uncertain reads may lead to two potential problems: (1) the path cover

solution is actually sub-optimal and (2) some alternative splicing events are missed, if the

reads including these events are removed. For instance, Figure 2.1 provides an example

that removing such “uncertain” reads leaves some splicing junctions undetected. Note

that uncertain reads should be treated separately from repeat sequences or incorrectly

mapped reads.

Here, we describe our method of enumerating isoforms based on the connec-

tivity graph [26] in Algorithm 1, from which the enumerated isoforms will be the set of
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candidate isoforms to be considered in the LASSO algorithm. The algorithm first enu-

merates isoforms from the connectivity graph as in [26], and then uses two additional

steps to remove isoforms that are impossible to assemble. We will prove some important

properties of Algorithm 1: if there are no “uncertain” reads, then every isoform output

by Algorithm 1 can be assembled from a maximal path in the overlap graph given in

[87]. Moreover, the isoforms enumerated by Algorithm 1 form a superset of all possible

maximal paths in the overlap graph. In other words, our LASSO algorithm in general

considers more isoforms than Cufflinks in the transcript assembly process. Before giving

a detailed description of this algorithm and proofs of these properties, we first briefly

review some necessary notations first introduced in [87] and [26].

Algorithm 1 Isoform Enumeration

Require: A CG G = (V,E), and a set of mapped single-end or paired-end reads R
1: Enumeration:
2: T (the set of isoforms) ← ∅
3: for vj ∈ V with indeg(vj) = 0 do
4: Enumerate all possible maximal paths P that begin at vj and end at some vk with

outdeg(vk) = 0
5: T ← T ∪ P
6: end for
7: Filtration:
8: for t ∈ T do
9: Let t′ = OR({b ∈ R|b ∼ t})

10: T ← (T\{t}) ∪ {t′}
11: end for
12: Condensation:
13: for t ∈ T do
14: Let Rt = {b ∈ R|, b ∼ t}
15: for t′ ∈ T\{t} do
16: Let Rt′ = {b ∈ R|, b ∼ t′}
17: if Rt ⊂ Rt′ then
18: T ← (T\{t})
19: end if
20: end for
21: end for
22: Output T
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2.2.1.1 Isoforms, single-end and paired-end mapped reads

A gene sequence S of length n is an ordered character sequence S = S1S2 · · ·Sn,

where Si ∈ {A, T,G,C}. Define B(n) as the set of binary vectors of length n. For a

vector b ∈ B(n), bi ∈ {0, 1} indicates the ith element of vector b. For a subset U ⊂ B(n),

define OR(U) = b ∈ B(n) with bi = 1 iff there is an element c ∈ U such that ci = 1.

For a binary vector b ∈ B(n), define the start (or end) of b as the first (or last) non-zero

index of b, and is denoted as l(b) (or u(b)). Hence, each isoform on gene S could be

represented as a binary vector b ∈ B(n) with bi = 1 iff the nucleotide Si is included in

this isoform. A single-end or paired-end read mapped to S could also be represented as

an element b ∈ B(n) with bi = 1 iff this read contains Si. A paired-end read is denoted

as p = (b1, b2), where b1 and b2 are the two mapped single-end reads, and l(b1) < l(b2).

Given a set of single-end or paired-end reads R, the coverage of Si, or cvg(Si), is the

number of reads b with bi = 1.

2.2.1.2 Compatibility and Connectivity Graph (CG)

The compatibility between a read b and an isoform t indicates whether b is

possible to come from t. A single-end read b is compatible with t, denoted as b ∼ t,

iff bi = ti for l(b) ≤ i ≤ u(b). Similarly, a paired-end read p = (b1, b2) is compatible

with isoform t (denoted as p ∼ t) iff b1 ∼ t and b2 ∼ t. Given a set of single-end (or

paired-end) reads R mapped to gene S, the connectivity graph (CG) [26] is a directed

acyclic graph (DAG) G = (V,E), where V = {v1, v2, . . . , vn} and e = (vi, vj) ∈ E iff one

of the following conditions is true:
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Condition 1. There exists a single-end read or an end of some paired-end

read b ∈ R such that bi = 1, bj = 1, and bk = 0, ∀i < k < j;

Condition 2. cvg(Si) > 0, cvg(Sj) > 0, and cvg(Sk) = 0, ∀i < k < j.

Condition 2 is designed to connect two mapped reads separated by a coverage

gap. Based on the definition of CG, a path h in the CG could be readily treated as an

isoform by defining the isoform t as ti = 1 iff vi ∈ h. Therefore, a read b is compatible

with h (denoted as b ∼ h) iff b ∼ t.

The isoform enumeration algorithm depicted in Algorithm 1 takes the CG as

the input, and outputs a set of maximal candidate isoforms T . The algorithm consists

of three phases, Enumeration, Filtration and Condensation. In the Enumeration phase,

all maximal paths in the CG are enumerated. However, some of these isoforms are “in-

feasible” in the sense that they cannot be assembled from the mapped reads (see Figure

2.2 for an example). In this case, the second phase (i.e., the Filtration phase) is required

to remove such isoforms. For each isoform t generated in the Enumeration phase, the

Filtration phase first finds all reads that are compatible with t, and then checks if t

can be assembled from these compatible reads (it replaces t otherwise). Finally, the

Condensation phase removes all the isoforms that are not maximal candidates.

2.2.2 A connection to Cufflinks

Cufflinks assembles transcripts based on the overlap graph (OG), which is con-

structed from a set of mapped single-end or paired-end reads after removing uncertain

reads and extending reads to include their nested reads [87]. It generates transcripts

by partitioning the overlap graph into a minimum path cover, where a path cover is a

set of disjoint paths in the overlap graph such that every read appears in one and only

one path. A minimum path cover is a path cover with the minimum number of paths.
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We will prove some theorems to establish the relationship between the set of isoforms

generated by Algorithm 1 and the set of transcripts that could be constructed from the

overlap graph. The formal definitions of uncertain reads, nested reads and the overlap

graph are given in [87], and are reviewed below for the reader’s convenience.

A single-end read b is nested in another single-end read b′ iff bi = b′i, l(b) ≤ i ≤

u(b), and at least one of the following two conditions is true: (1) l(b) 6= l(b′) and (2)

u(b) 6= u(b′). A paired-end read p is nested in another paired-end read p′ iff l(p) ≥ l(p′),

u(p) ≤ u(p′) and at least one of the following conditions is true: (1) l(p) 6= l(p′) and

(2) u(p) 6= u(p′). If a single-end read b is nested in b′, b can always be removed safely

without losing any information.

Two single-end reads b and b′ are compatible, denoted as b ∼ b′, iff there exists

one isoform t such that b ∼ t, b′ ∼ t, and b and b′ are not nested to each other. If b and

b′ are not compatible, we denote b ≁ b′. Two paired-end reads p and p′ are compatible,

denoted as p ∼ p′, iff there exists an isoform t such that p ∼ t, p′ ∼ t and p is not nested

in p′ or vice versa. If p and p′ are not compatible, we denote p ≁ p′.

Define a partial order ≤ between two single-end reads b and b′: b ≤ b′ iff b ∼ b′

and l(b) ≤ l(b′). It is impossible to extend the partial order to paired-end reads, since

the sequence within a paired-end read is not completely known. Alternatively, for two

paired-end reads p and p′, define p ≤ p′ with respect to a given read set R iff the following

conditions are true: (1) p ∼ p′, (2) l(p) ≤ l(p′), u(p) ≤ u(p′), and (3) there is no paired-

end read p′′ ∈ R such that p ∼ p′, p ∼ p′′ but p ≁ p′′. Write p ≤ p′′|R if p ≤ p′ with

respect to a given read set R, or write simply p ≤ p′ if there is no ambiguity. If reads

p, p′ and p′′ exist such that p ∼ p′, p′ ∼ p′′ and p ≁ p′′, then p, p′ and p′′ are said to be

uncertain since no partial order can be given to these reads.

Given a set of mapped single-end or paired-end readsR = {b1, b2, . . . }, the over-
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lap graph (OG) [87] is a DAG G = (V,E), where V = {v1, v2, . . . , v|R|} and e = (vi, vj) ∈

E iff bi ≤ bj . A maximal path of length k on the OG is a path h = {vi1 ≤ vi2 ≤ · · · ≤ vik}

on the OG, such that there exists no path h′ =
{

vj1 ≤ vj2 ≤ · · · ≤ vjk′
}

with h ⊂ h′.

Because the vertices in the OG have a one-to-one relationship with the mapped reads,

we also treat vertices in the OG as binary vectors to simplify notations below. For

example, if a path h = {vi1 ≤ vi2 ≤ · · · ≤ vik}, we will use OR(h) to denote OR({bi1 ≤

bi2 ≤ · · · ≤ bik}).

Consider a fixed gene S and the set of reads R mapped to S. We introduce

some necessary lemmas, followed by two theorems and one corollary concerning the

isoforms generated by OG and CG.

Lemma 1 Denote the vertex set of the CG as V = {v1, v2, . . . , vn}. For 1 ≤ i < j ≤ n,

there is a path from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0.

Proof. We use an induction on n = j − i to prove this lemma. If j − i = 1, then there

is an edge between vi and vj by Condition 2 of the CG’s edge construction. Assume

that ∀k < n, there is a path from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0, j − i = k.

For k = n, if cvg(Sl) = 0 for every i < l < j, then there is an edge between vi and vj

by Condition 2 of the CG’s edge construction. Otherwise, if there exists i < l′ < j such

that cvg(Sl′) > 0, then l′− i < n and j− l′ < n. Using the assumption above, there is a

path from vi to vl′ and a path from vl′ to vj . Therefore, there is a path from vi to vj .

Lemma 2 For any read set Q ⊆ R, if every two reads in Q are compatible, then there

is a maximal path h in the CG such that ∀b ∈ Q, b ∼ h.

Proof. Let t = OR(Q). We construct h by defining its vertex set V (h) and edge set

E(h) separately. For every 1 ≤ i < m, ti = 1, if the set {k > i|tk = 1} is not empty,
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denote j = mink{k > i, tk = 1}. If there is a read b ∈ Q such that bi = bj = 1 and

bk = 0, i < k < j, then there must be an edge e in CG from vi to vj by Condition

2 of CG’s edge construction, and we put e in E(h). Otherwise, there must be a path

h′ from vi to vj by Lemma 1, because cvg(Si) > 0 and cvg(Sj) > 0. We put edges in

h′ in E(h). Define V (h) as the set of vertices induced by E(h). A trivial case is that

|{1 ≤ i < m, ti = 1}| = 1. In this case, let V (h) = vi, ti = 1 for completeness.

We claim that all reads in Q are compatible with h. This is because for a

single-end read (or an end of some paired-end read) b in Q, if bi = 1 then vi ∈ V (h). If

bi = bj = 1 and bk = 0, i < k < j, vi and vj are directly connected by edge (vi, vj) in h,

which means that {vk|i < k < j} ∩ V (h) = ∅. Therefore b ∼ h.

Once h is obtained, it is easily extended to a maximal path without violating

its compatibility with every read in Q.

Lemma 3 Suppose that R has no uncertain or nested reads. For every maximal path h

on the OG constructed based on R, OR(h) ∈ T .

Proof. Let t = OR(h) and Rt be the set of reads corresponding to path h. By Lemma

2, there is a maximal path h′ on the CG such that every read b ∈ Rt is compatible with

h′. Denote the isoform corresponding to h′ as t′. Then, t′ ∈ T after the Enumeration

phase of Algorithm 1 and b ∼ t′.

Let Rt′ = {b ∈ R|b ∼ t′}. For any b ∈ Rt, b ∼ t′ so b ∈ Rt′ , then we have Rt ⊆

Rt′ . Furthermore, for any b′ ∈ Rt′ , b
′ ∼ t′, and thus we have b ∼ b′, ∀b ∈ Rt, ∀b

′ ∈ Rt′ .

If there is a read b ∈ Rt′ but b /∈ Rt, the vertex corresponding to b in the OG could be

added to path h, because b is compatible with all the reads in Rt and b is not a nested or

uncertain read. However, this contradicts the assumption that h is maximal. Therefore,

Rt = Rt′ and t ∈ T after the Filtration phase of Algorithm 1. Note that t would not be
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removed in the Condensation phase Algorithm 1 because t is maximal.

Lemma 4 Suppose that R has no uncertain or nested reads. For every isoform t output

by Algorithm 1, there exists a maximal path h on the OG such that OR(h) = t.

Proof. Let t be an isoform enumerated by Algorithm 1 and Rt = {b ∈ R|b ∼ t}. Since

R contains no uncertain or nested reads, the vertices corresponding to Rt in the OG

form a path h. If h is not maximal, it can be “expanded” to a maximal path h′ by

adding some vertices not in h. According to Lemma 3, there is an isoform t′ ∈ T such

that t′ = OR(h′). Denoting Rt′ = {b ∈ R|b ∼ t′}, then we have Rt ⊂ Rt′ . Therefore,

t would be removed in the Condensation phase of Algorithm 1, which contradicts the

fact that t is output by Algorithm 1.

Lemmas 3 and 4 immediately lead to Theorem 1 and its corollary, Corollary

1, below.

Theorem 1 Suppose that R contains no uncertain or nested reads. If we denote the

set of isoforms constructed by Algorithm 1 as T and the set of the isoforms formed by

enumerating maximal paths on the OG (constructed from R) as TOG, then T = TOG.

Corollary 1 If R contains no uncertain or nested reads, then for every minimum path

cover H of the OG, there exists a set of maximal isoforms T ′ =
{

t1, . . . tm
}

⊂ T such

that m = |H| and for every read b on a path h ∈ H, b ∼ ti, 1 ≤ i ≤ m.

Note that each nested read r in R is removed in [87] by extending the reads

that r is nested in. On the other hand, if there are uncertain reads in R, Algorithm

1 may generate some isoforms that do not correspond to any paths on the OG when

these uncertain reads cover some unique splicing junctions as shown in Figure 2.1. The

following theorem states the relationship between maximal paths on the OG and the

isoforms generated by Algorithm 1 when uncertain reads are present in R.
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Theorem 2 Suppose that no reads in R are nested and denote the set of isoforms

constructed by Algorithm 1 as T . For every maximal path h on the OG constructed by

removing uncertain reads in R, T contains an isoform which is compatible with every

read on the path h.

Proof. The proof is similar to the proof of Lemma 3. Let t = OR(h) and 1 ≤ l1 <

l2 < · · · < lm ≤ n be indices in t such that ti = 1 iff and only if i ∈ {l1, l2, . . . , lm}. Let

Rt be the set of reads corresponding to path h. By Lemma 2, there is a maximal path

h′ on the CG such that every read b ∈ Rt is compatible with h′. Denote the isoform

corresponding to h′ as t′. Therefore, t′ ∈ T after the Enumeration phase of Algorithm 1

and b ∼ t′.

Let Rt′ = {b ∈ R|b ∼ t′}. For any b ∈ Rt, b ∼ t and thus we have b ∼ t′

and Rt ⊆ Rt′ . Furthermore, t′′ = OR(Rt′) would be in T after the Filtration phase of

Algorithm 1 and t′′ is compatible with every read in Rt.

During the Condensation phase of Algorithm 1, if t′′ is not removed, the the-

orem holds. Otherwise, there must be another t′′′ ∈ T such that all reads compatible

with t′′ are also compatible with t′′′. In other words, all reads in Rt would be compatible

with t′′′.

2.2.3 The LASSO approach of estimating isoform expression levels

2.2.3.1 The mathematical model of RNA-Seq reads

Typical alternative splicing (AS) events include alternative 5′ (or 3′) splice

sites, exon skipping, intron retention, mutually exclusive exons, etc., but all these events

can be dealt with in a unified mathematical model where a gene is partitioned into a

sequence of expressed segments (or simply segments) based on exon-intron boundaries
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[18]. More precisely, a gene is divided into a set of segments such that every segment is

a continuous region in the reference genome uninterrupted by exon-intron boundaries.

Then, a given set of candidate isoforms T = {t1, t2, . . . , tN} for a gene can be represented

as a binary matrix A = (aij)N×M , where M is the number of segments of the gene. Each

isoform corresponds to a row in this matrix such that aij = 1 if isoform ti includes the

jth segment, and 0 otherwise.

If we assume that a read is uniformly sampled from expressed isoforms, then

the number of reads falling into each segment follows a binomial distribution, which

can be approximated by a Poisson distribution [38] or Gaussian distribution [18] if the

number of sequenced reads is large and the length of segments is small compared with

the length of the reference genome. As a result, the expected number of reads falling

into the jth segment, xj , is proportional to both the segment length lj and the sum of

the expression levels of all isoforms containing the jth segment [38, 18]:

xj = lj

N
∑

i=1

aijqi (2.1)

where qi, the expected number of reads per base in isoform ti, represents the expression

level of ti. Note that the expression level of an isoform can also be measured as RPKM

(i.e., Reads Per Kilobase of exon model per Million mapped reads, [58]). If there are

totally E mapped reads, then an isoform ti with expression level xi has an expression

level (in RPKM) 109xi/E.

Notice that compared with the traditional multivariate regression model, the

intercept is zero since we expect no read falling into the jth segment if none of the

isoforms contain the segment, or if the expression levels of these isoforms are all zero.

We observe that the above model simplifies the real situation since the real
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RNA-Seq data is biased. For example, because of the sequencing errors and repeat

sequences in the reference genome, it is sometimes hard to decide whether a read really

comes from a certain gene or exon (i.e., the so called multi-read problem, which has

been studied recently in [61]). Recent studies on RNA-Seq data also show that the

above binomial model of read distribution may be an over-simplification [46, 69]. Some

more complicated approaches have been proposed instead to handle different biases,

such as using generalized Poisson distribution [79], considering the locality of bases

[46], applying “effective length normalization” [69, 42], etc. In particular, the “effective

length normalization” model can be easily incorporated in our model, by replacing the

segment length lj in Equation (2.1) with the “effective” segment length l′j , where the

length is calibrated by considering repeat sequences in the reference genome [42]. The

issue of RNA-Seq biases will be discussed in detail in Chapter 3.

2.2.3.2 The LASSO approach

Given all mapped short reads and candidate isoforms of a gene, the expression

levels of the candidate isoforms (Q = {q1, . . . qN}) can be estimated by minimizing the

following residual sum of squares:

f(Q) =
M
∑

j=1

(
xj
lj
−

N
∑

i=1

aijqi)
2 (2.2)

s.t. qi ≥ 0, 1 ≤ i ≤ N

However, such an approach may have several potential problems. For example,

for a large value of N and a small value of M , the solution is not unique. It is also

possible that a large number of estimated expression levels are small non-zero values

which damage the interpretability. To address this latter problem, IsoInfer enumerates
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combinations of isoforms and chooses a minimum set of isoforms such that the error

∑M
j=1(

xj

lj
−
∑N

i=1 aijqi)
2 is in a specified range. To deal with an exponential number

of subsets of candidate isoforms, IsoInfer has to adopt several heuristics to make the

algorithm practical. Also, some “shrinkage” methods which restrict the scale of Q can

be used, like ridge regression [31], LASSO (or its variations like LARS [16], elastic-net

[103], etc).

To achieve the minimization of interpretation without going through the ex-

haustive enumeration step in IsoInfer, we propose a new algorithm, called IsoLasso,

based on LASSO. The LASSO approach minimizes the following objective function

which seeks a balance between minimizing the overall error and minimizing the number

of expressed isoforms:

f(Q) =
M
∑

j=1

(
xj
lj
−

N
∑

i=1

aijqi)
2 + λ

N
∑

i=1

|qi| (2.3)

The sparsity of variables, i.e., minimizing the number of isoforms with non-

zero expression levels, is obtained through the addition of an L1 normalization term,

λ
∑N

i=1 |qi|, to the original sum of squares. Since the expression level of each isoform

should be non-negative, the above objective function leads to the following quadratic

programming (QP) problem:

min f(Q) =
M
∑

j=1

(
xj
lj
−

N
∑

i=1

aijqi)
2 + λ

N
∑

i=1

qi (2.4)

s.t. qi ≥ 0, 1 ≤ i ≤ N

which is equivalent to the following “constrained form” [85]:
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min f(Q) =
M
∑

j=1

(
xj
lj
−

N
∑

i=1

aijqi)
2 (2.5)

s.t. qi ≥ 0, 1 ≤ i ≤ N

N
∑

j=1

qi ≤ γ

The parameter λ (or γ) controls the number of isoforms with non-zero expres-

sion levels in the solution. In the constrained form of LASSO (Equation (2.5)), a larger

value of γ will exert less restriction on the values of Q, which prefer a smaller sum of

squares but more non-zero expression levels. In practice, a proper value of γ is selected

via the “regularization path” [63], where several values of γ, γ1, . . . γk, are examined.

If the values of the objective function in Equation (2.5) and the number of non-zero

variables are e1, . . . ek and L1, . . . Lk, respectively, in these trials, then we define

i∗ = argmin
1≤i≤k

{Li : ei ≤ β ∗min {e1, . . . ek}} (2.6)

and select γ = γi∗ , where β is a user-controlled parameter.

2.2.4 Completeness requirement

To ensure completeness, i.e., each segments (or junction) with mapped reads

covered by at least one isoform, the sum of expression levels of all isoforms that contain

this segment (or junction) should be strictly positive. Formally, we add additional

constraints to the above QP:
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min f(Q) =
M
∑

j=1

(
xj
lj
−

N
∑

i=1

aijqi)
2 (2.7)

s.t. qi ≥ 0, 1 ≤ i ≤ N

N
∑

i=1

qi ≤ λ

N
∑

i=1

qiaij ≥ p, if segment j has mapped reads (2.8)

N
∑

i=1

qiaijaik

k−1
∏

h=j+1

(1− aih) ≥ p, if the junction between segments j and k

contains mapped reads (2.9)

where p is a small positive threshold value to be decided empirically. The constraints

(Equation (2.8) and Equation (2.9)) will ensure that all segments and junctions with

mapped reads be covered by isoforms with positive expression levels in the solution of

this QP.

The above QP problem can be solved by any standard QP solver, such as

the “quadprog” function in Matlab [104]. In practice, however, if a gene contains too

many segments and junctions, then there will be a large number of constraints involved,

which make the above QP impractical to solve. As a compromise, we introduce the

above constraints only for segments (or junctions) with expression levels above a certain

threshold.
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2.3 Experimental results

2.3.1 Simulated mouse RNA-Seq data

We use UCSC mm9 gene annotation [36] to generate simulated single-end and

paired-end reads. An in silico RNA-Seq data generator, Flux Simulator [74], is used

to generate simulated reads. Flux Simulator first randomly assigns an expression level

to every isoform in the annotation, and then simulates the library preparation process

in a typical RNA-Seq experiment (including reverse transcription, fragmentation, size

selection, etc). After that, reads are generated in the sequencing step. Various error

models can be incorporated in these steps; but in our simulations, only error-free reads

are simulated to compare the performance of different algorithms in the ideal situation.

The distribution of the expression levels of all 49409 isoforms in the UCSC

mm9 gene annotation is plotted in Figure 2.3 (A).

2.3.1.1 Matching criteria

All assembled isoforms (referred to as “candidate isoforms”) are matched against

all known isoforms in the annotation (referred to as “benchmark isoforms”). Two iso-

forms match iff:

1. They include the same set of exons; and

2. All internal boundary coordinates (i.e., all the exon coordinates except

the beginning of the first exon and the end of the last exon) are identical.

Two single-exon isoforms match iff the overlapping area occupies at least 50%

the length of each isoform.

Following [18], we use sensitivity, precision and effective sensitivity to evaluate

the performance of different programs. Sensitivity and precision are defined as follows:
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Figure 2.3: The distribution of simulated isoform expression levels (A), and the expres-
sion level estimation accuracies of IsoLasso (B), IsoInfer without TSS/PAS (C), Cuf-
flinks (D), and Scripture (E). Note that Scripture computes a “weighted score” instead
of RPKM value for each predicted isoform.
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if K out of M benchmark isoforms match K ′ out of N candidate isoforms, then

sensitivity = K/M (2.10)

precision = K ′/N (2.11)

Note that several candidate isoforms may match the same benchmark isoform.

Effective sensitivity is calculated based on the isoforms satisfying Condition I

defined in [18]. Isoforms satisfying Condition I are those with all segment junctions cov-

ered by at least one short read. If there are S benchmark isoforms satisfying Condition

I and K of them are matched, then

effective sensitivity = K/S (2.12)

Intuitively, isoforms satisfying Condition I are those that are relatively easy to

predict, since all their segment junctions are covered by short reads. It is shown in [18]

that an isoform with a higher expression level is more likely to satisfy this condition.

2.3.1.2 Sensitivity, precision and effective sensitivity

In this section, we use the sensitivity, precision and effective sensitivity defined

above to compare IsoLasso with IsoInfer (version V0.9.1, downloaded from website http:

//www.cs.ucr.edu/~jianxing/IsoInfer.html), Cufflinks (version 0.9.1, downloaded

from website http://cufflinks.cbcb.umd.edu), and Scripture (beta version, down-

loaded from website http://www.broadinstitute.org/software/scripture/home).

We use TopHat [86] to map all simulated short reads with multi-reads discarded. Then,

the read mapping information serves as the input for all four programs. Since IsoInfer is
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based on the assumption that the boundaries of all genes and exons are known, we infer

exon boundaries from mapped junction reads using TopHat and infer gene boundaries

by clustering overlapping mapped reads. Note that IsoInfer is actually designed to take

advantage of any known transcription start site and poly-A site (TSS/PAS) informa-

tion, although it also works without such information. Since the other three programs

do not use the TSS/PAS information, neither does IsoInfer use such information in the

comparison.
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Figure 2.4: The sensitivity of all programs on simulated single-end reads.

Figure 2.4-2.6 and Figure 2.7-2.9 plot the sensitivity, precision and effective

sensitivity using various numbers of single-end and paired-end reads, respectively. On

single-end reads, all transcriptome assembly tools achieve a higher sensitivity and pre-

cision as more reads are used for the assembly. Among them, IsoLasso outperforms
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Figure 2.5: The precision of all programs on simulated single-end reads.
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Figure 2.6: The effective sensitivity of all programs on simulated single-end reads.
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Figure 2.7: The sensitivity of all programs on simulated paired-end reads.
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Figure 2.8: The precision of all programs on simulated paired-end reads.
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Figure 2.9: The effective sensitivity of all programs on simulated paired-end reads.

all other programs with respect to all three criteria. This is perhaps because IsoLasso

is able to maintain a good interpretation by filtering out many lowly expressed false

predictions (which leads to a high precision), while keeping highly expressed isoforms

and a high effective sensitivity. Scripture seems to benefit the most when more reads

are available. Also, IsoInfer exhibits a sharp increase in precision from less than 20% to

more than 50%, at the cost of decreased effective sensitivity (by about 10%).

On paired-end reads, IsoLasso also achieves the best precision and sensitivity

as well as a good balance between precision and effective sensitivity. However, it is

surprising to see that when the number of paired-end reads increases from 20M to 100M,

a less than 10% increase in sensitivity and precision is observed for all the algorithms.

Also, none of the algorithms have a significant increase in effective sensitivity. In fact,

both Cufflinks and IsoInfer see their effective sensitivities decreased a bit when more

single-end and paired-end reads are used. This is because more benchmark isoforms
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would satisfy Condition I of [18] as the sequencing depth increases. In this case, more

isoforms are expected to be expressed for each gene, which result in a more complicated

overlap graph for Cufflinks and a larger search space for IsoInfer.

Cufflinks reaches a high precision by filtering out many lowly expressed iso-

forms, but this sacrifices the effective sensitivity. On the other hand, Scripture achieves

the highest effective sensitivity by enumerating all possible paths in the connectivity

graph, but its precision is low since many of the paths are false positives.

2.3.1.3 Expression level estimation

All programs estimate the expression levels of predicted isoforms using different

measures. Both IsoLasso and IsoInfer estimate expression levels in RPKM [58], while

Cufflinks uses the term FPKM (expected number of Fragments Per Kilobase of transcript

sequence per Millions base pairs sequenced) [87]. Scripture does not predict expression

levels directly; instead, it computes a “weighted score” for each isoform to indicate how

likely the isoform is expressed.

Fig. 2.3 (B) ∼ (E) plot the predicted and true expression levels for all predicted

isoforms which are matched to the benchmark isoforms and have expression levels > 1

RPKM, using the 80M paired-end read dataset. The plots show that IsoLasso, IsoIn-

fer and Cufflinks estimate expression levels quite accurately (the squared correlation

coefficient between the predicted and true expression levels is R2 > 0.89), while the

“weighted score” of Scripture does not directly reflect the true expression level of iso-

forms (R2 = 0.50). Cufflinks shows the highest prediction accuracy in expression level

estimation (R2 = 0.91) partly because it uses an accurate iterative statistical model

to estimate the expression levels [87], which could potentially be incorporated into our

method as a refinement step.
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2.3.1.4 More isoforms, more difficult to predict

Intuitively, genes with more isoforms are more difficult to predict. We group

all the genes by their numbers of isoforms, and calculate the sensitivity and effective

sensitivity of the algorithms on genes with a certain number of isoforms as shown in

Figure 2.11-2.12. Figure 2.10 shows the total number of isoforms and isoforms satisfying

Condition I ([18]) grouped by the number of isoforms per gene.
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Figure 2.10: The total number of isoforms and isoforms satisfying Condition I.

Figure 2.10-2.12 shows that genes with more isoforms are more difficult to

predict correctly, as both sensitivity and effective sensitivity decrease for genes with more

isoforms. IsoLasso and Scripture outperform IsoInfer and Cufflinks in general. IsoLasso

has a higher sensitivity and effective sensitivity on genes with at most 5 isoforms, but

Scripture catches up with IsoLasso on genes containing more than 5 isoforms.
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Figure 2.11: The sensitivity of the algorithms grouped by the number of isoforms per
gene. Here, 100M paired-end reads are simulated.
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Figure 2.12: The effective sensitivity of the algorithms grouped by the number of iso-
forms per gene. Here, 100M paired-end reads are simulated.
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2.3.1.5 Running time
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Figure 2.13: The running time for all the algorithms.

Figure 2.13 plots the running time of all four transcript assembly programs

using various numbers of paired-end reads. The time for data preparation is excluded,

including mapping reads to the reference genome and preparing required input files for

both IsoLasso and IsoInfer. Surprisingly, although employing a search algorithm, IsoIn-

fer runs much faster than that of any other algorithm. This is partly due to the heuristic

restrictions that IsoInfer adopts to reduce the search space (e.g., requiring the candidate

isoforms to satisfy Condition I and some other conditions), and the programming lan-

guages used in each tool (IsoInfer, IsoLasso, Scripture and Cufflinks use C++, Matlab,

Java, and Boost C++, respectively). All programs are run on a single 2.6 GHz CPU,

but Cufflinks allows the user to run on multiple threads, which may substantially speed

up the assembly process.
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2.3.1.6 Comparision between the newest versions of IsoLasso and Cufflinks

Both IsoLasso and Cufflinks have been updating their source codes frequently

since their first release in 2010. The performance difference of different versions of

the same software may be huge due to various reasons, for example, fixed bugs and

improved implementations of the algorithm or the pre-processing/post-processing pro-

cedures. Here, we compare the performance of the latest versions of IsoLasso (version

2.5.0) and Cufflinks (version 1.3.1) on simulated datasets. IsoLasso was originally im-

plemented in Matlab but was rewritten in C++ later, so the performance of different

IsoLasso implementations is also compared.
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Figure 2.14: The sensitivity (left) and precision (right) of the newest versions of IsoLasso
and Cufflinks on simulated single-end reads.

Figure 2.14 and Figure 2.15 plot the sensitivity and precision of IsoLasso and

Cufflinks using various numbers of simulated single-end and paired-end reads, respec-

tively. For simulated single-end data, Cufflinks achieves similar sensitivity and precision

as IsoLasso, but on paired-end reads, Cufflinks outperforms IsoLasso by a 2%-4% higher
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Figure 2.15: The sensitivity (left) and precision (right) of the newest versions of IsoLasso
and Cufflinks on simulated paired-end reads.

sensitivity and a 3%-7% higher precision. Since the core algorithm of Cufflinks does

not change much between different versions, the greatly improved precision may be par-

tially credited to removing some lowly expressed isoforms from the prediction. Indeed,

by adopting a similar approach, the sensitivity and precision of IsoLasso are close to

Cufflinks (see Figure 2.16). The C++ version of IsoLasso has a higher sensitivity than

the Matlab version, which may be due to a better implementation of the algorithm in

the C++ version.

Figure 2.17 shows the prediction accuracy in terms of R2 values for Cufflinks

and IsoLasso (the C++ version). The R2 values of both Matlab and C++ versions of

IsoLasso are close, but the prediction accuracy of Cufflinks is lower compared to its ear-

lier versions (see Figure 2.3). The reason is that Cufflinks adopted a new expression level

calculation model that greatly overestimates the expression levels of some transcripts

(the circles above the main diagonal in Figure 2.17 left). The length of these isoforms

are short compared to the read length, and Cufflinks uses a fragment length model that
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assumes short fragments (short DNA sequences after fragmentation and before sequenc-

ing) are rare. A similar observation of this behavior of Cufflinks is also reported recently

in [43].
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Figure 2.17: The expression level estimation accuracy, in terms of R2 values, of Cufflinks
(left) and IsoLasso (C++ version, right). The expression level estimations of IsoLasso
Matlab version are not plotted since the R2 value is close to the IsoLasso C++ version
(0.89).

2.3.2 Real RNA-Seq data

Reads from two real RNA-Seq experiments are used to evaluate the perfor-

mance of IsoLasso, Cufflinks and Scripture. We exclude IsoInfer from the comparison

because its algorithm is similar to (and improved by, as seen from the simulation re-

sults) the algorithm of IsoLasso. One RNA-Seq read dataset is generated from the

C2C12 mouse myoblast cell line ([87], NCBI SRA accession number SRR037947), and

the other from human embryonic stem cells (Caltech RNA-Seq track from the ENCODE

project [82], NCBI SRA accession number SRR065504). Both RNA-Seq datasets include

70 million and 50 million 75 bp paired-end reads which are mapped to the UCSC mus
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musculus (mm9) and homo sapiens (hg19) reference genomes using Tophat [86], respec-

tively.

Isoforms inferred by programs IsoLasso, Cufflinks and Scripture are first matched

against the known isoforms from mm9 and hg19 reference genomes. There are a total of

11484 and 12193 known mouse and human isoforms recovered by at least one program,

respectively (Figure 2.18 (A) and (B)). Among these isoforms, 4485 (39%) and 4274

(35%) isoforms are detected by all programs, while 8204 (71%) and 8084 (66%) isoforms

are detected by at least two programs. These numbers show that, although there is a

large overlap (more than 60%) among the known isoforms recovered by these programs,

each program also identifies a substantially large number of “unique” isoforms. Such

“uniqueness” of each program is shown more clearly if we compute the overlap between

their predicted isoforms directly (see Figure 2.18 (C) and (D)). Each of the three pro-

grams predicts more than 40,000 isoforms on both dataset, but only shares 2% to 20%

isoforms with other programs. About 49.5% of the mouse isoforms (46% in human)

inferred by IsoLasso are also predicted by at least one of other two programs, which is

substantially higher than Cufflinks (27.7% in mouse and 38.4% in human) and Scripture

(4.6% in mouse and 7.4% in human). This may indicate that IsoLasso’s prediction is

more reliable than those of Cufflinks and Scripture since it receives more support from

other (independent) programs.

Note that among all the isoforms inferred by IsoLasso, Cufflinks and Scripture,

9741 mouse isoforms and 11381 human isoforms are predicted by all three programs.

These isoforms could be considered as “high-quality” ones. However, fewer than a half

of these “high-quality” isoforms (4485 in mouse and 4274 in human) could be matched

to the known mouse and human isoforms (see Figure 2.18 (A) and (B)). This suggests

that the current genome annotations of both mouse and human are still incomplete. An
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example of the “high-quality” isoforms is shown in Figure 2.18 (E). Here, an isoform

with an alternative 5′ end of gene Tmem70 in mouse is predicted by all three programs

but cannot be found in the mm9 RefSeq annotation or GenBank mRNAs (track not

shown in the figure).

Figure 2.18: The numbers of matched known isoforms of mouse (A) and human (B), and
the numbers of predicted isoforms of mouse (C) and human (D), assembled by IsoLasso,
Cufflinks and Scripture. (E) shows an alternative 5’ start isoform of gene Tmem70 in
mouse C2C12 myoblast RNA-Seq data [87]. This isoform does not appear among the
known isoforms, but is detected by IsoLasso, Cufflinks and Scripture. Tracks from top
to bottom: Cufflinks predictions, IsoLasso predictions, Scripture predictions, the read
coverage, and the Tmem70 gene in the mm9 RefSeq annotation.
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2.4 Conclusion

RNA-Seq transcriptome assembly is a challenging computational biology prob-

lem that arises from the development of second generation sequencing. In this paper, we

proposed three fundamental objectives/principles in the transcriptome assembly: pre-

diction accuracy, sparsity, and completeness. We also presented IsoLasso, an algorithm

based on the LASSO approach that seeks a balance between these objectives. Experi-

ments on simulated and real RNA-Seq datasets show that, compared with the existing

transcript assembly tools (IsoInfer, Cufflinks and Scripture), IsoLasso is efficient and

achieves the best overall performance in terms of sensitivity, precision and effective sen-

sitivity compared to IsoInfer and Scripture. The latest version of IsoLasso achieves

comparable performance to the latest version of Cufflinks.
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Chapter 3

Transcriptome Assembly and

Isoform Expression Level

Estimation from Biased RNA-Seq

Reads

3.1 Introduction

In this chapter, we propose a statistical framework based on the quasi-multinomial

distribution model [9, 11] to capture RNA-Seq biases, including positional, sequencing

and mappability biases. The framework allows us to develop an expectation-maximization

(EM) algorithm [13] for both transcriptome assembly and isoform abundance level es-

timation from biased RNA-Seq data. Compared with other algorithms in the literature

that use sophisticated probabilistic generative models to handle biases [46, 70], our EM

algorithm uses a single parameter to capture the property of RNA-Seq biases of different
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types. Utilizing the isoform enumeration algorithm of IsoLasso [47], the EM algorithm

assembles isoforms and estimates their abundance levels at the same time. Moreover,

both principles of prediction accuracy and interpretation (or “sparsity”) considered in

[47] are achieved in the assembly.

The rest of this chapter is organized as follows. The statistical framework and

the EM algorithm are introduced in Section 3.2 and 3.3.2, and in Section 3.4, we demon-

strate the superior performance of our EM algorithm compared with other algorithms

in the literature through simulated and real RNA-Seq experiments, and analyze the

effects of RNA-Seq biases on both transcriptome assembly and isoform abundance level

estimation. This chapter is concluded in Section 3.5, and some additional remarks to

the quasi-multinomial model are in Section 3.6.

3.2 The quasi-multinomial model for isoform abundance

level estimation

3.2.1 The Poisson model and the generalized Poisson (GP) model

We use the mathematical model of isoforms in Chapter 2. Basically, for a gene

G with M segments, if G induces N isoforms (denoted as T =
{

t1, . . . , tN
}

), then these

isoforms can be represented as an N ×M binary matrix A = {aij}, where aij = 1 if

isoform ti includes exon (or expressed segment) j, and 0 otherwise.

Let Xj be the random variable of the read counts falling into exon j. Under

the assumption that a read r is sampled uniformly from an isoform (the “Poisson as-

sumption”), Xj follows a Poisson distribution with parameter λj proportional to the

length of exon j and the total abundance level of all isoforms containing exon j [38]:
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P (Xj = xj) =
e−λjλ

xj

j

xj !
. (3.1)

λj = Wlj

N
∑

i=1

aijqi =

N
∑

i=1

cijqi (3.2)

where W denotes the total number of sequenced reads, cij a known constant, and qi the

abundance level of isoform ti. The abundance level is usually measured by RPKM [58]

or FPKM [87], and can be estimated by maximizing the joint probability of observing

x1, . . . , xM reads in M exons, as proposed in [38].

To model RNA-Seq biases, [79] further uses a Generalized Poisson (GP) dis-

tribution GP (λj , ρ) [9] to model Xj :

P (Xj = xj) = λj(λj + xjρ)
xj−1e−xjρ−λj/xj ! (3.3)

where −1 ≤ ρ ≤ 1 is the bias parameter to account for the biases in each read count

xj . The Poisson distribution is a special case of GP distribution where ρ = 0. The GP

model can also be used to estimate isoform expression levels similar to the approach in

[38], since the sum of M GP distributions, GP (λ1, ρ),. . . , GP (λM , ρ), also follows a GP

distribution GP (
∑M

j=1 λj , ρ).

However, this “count-only” approach (and also the approach in [38]) uses only

the information of read counts (i.e., x1, . . . , xM in Equation (3.3)) and it does not

consider the fact that a read may come from different isoforms with different probabilities

due to the sampling biases. In the following, we develop a quasi-multinomial model [11],

which generalizes the GP model, to capture biases in RNA-Seq data.
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3.2.2 The quasi-multinomial model

Consider a single-end (or paired-end) read rj of length L that is mapped to

exon j of length lj from gene G. Denote θi = P (ti) as the prior probability that read rj

comes from ti with the constraint
∑N

i=1 θi = 1. Clearly, θi depends on qi, the abundance

level of ti, and the abundance level qi in Equation (3.2) can be replaced by θi as:

qi =
Rθi
Wli

(3.4)

We may think of the process of sampling rj as follows: one of the isoforms ti

is first randomly selected with probability θi and then a read rj belonging to exon j is

sampled from ti with probability P (rj |t
i). To model positional (and other) biases, the

probability P (rj |t
i) can be defined as a distribution f(ki,j) depending on the location

ki,j of rj in ti. Note that if f is the uniform distribution, then

P (rj |t
i) =

aij(lj − L+ 1)

Li − L+ 1
(3.5)

where Li is the length of ti. f(ki,j) can also be an exponential function to model the RNA

degradation process which plays an important role in the formation of the positional

bias [89]. For paired-end reads, f(ki,j) can be modified to incorporate the probability

distribution of the span of the read pairs (see Section 3.6.3).

Several strategies can be used to construct a non-uniform distribution f . For

example, a non-uniform positional distribution can be determined empirically and incor-

porated into f [99]. Also, the “effective length” of isoforms excluding repeat regions of

the reference genome can be used in Equation (3.5) to handle mappability biases [69]. 1

1This latter technique is not yet realized in our implementation.
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In our implementation, we use the method in [99] to model the non-uniform distribution

of f .

The probability of observing read rj is thus

P (rj) =
N
∑

i=1

P (rj |t
i)P (ti) =

N
∑

i=1

θif(ki,j) (3.6)

and the joint probability of observing the R reads mapped to gene G follows a quasi-

multinomial distribution:

P (R|θ, τ) =

(

R

x1, . . . , xM

)

(1 +Rτ)1−R
M
∏

j=1

P (rj)(P (rj) + τxj)
xj−1 (3.7)

where τ > −1/R is the bias parameter (similar to the parameter ρ in the GP distri-

bution). The quasi-multinomial distribution reduces to multinomial distribution when

τ = 0. The value of τ indicates how read counts differ from a multinomial distribu-

tion: if τ > 0 then too many reads are observed (called “over-dispersion”) and if τ < 0

(called “under-dispersion”), fewer reads are observed. Similar to the relationship be-

tween multinomial and Poisson distributions, Equation (3.7) can be approximated by

a product of M GP distributions [11], and thus finding an optimal τ is equivalent to

finding an optimal ρ in the GP model (See Section 3.6.2).

3.3 Component elimination EM

3.3.1 Transcriptome assembly

We use the candidate isoform enumeration algorithm introduced in IsoLasso

(Algorithm 1), which is proven to generate the same set of candidate isoforms considered
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by Cufflinks [87]. The algorithm first enumerates all possible paths in the connectivity

graph [26] constructed from the mapped reads. Then two additional steps are applied

to remove infeasible paths and non-maximal paths.

IsoLasso uses the LASSO algorithm [85] to select candidate isoforms and esti-

mate their abundance levels. However, the LASSO algorithm is solved by constrained

quadratic programming which could be very slow if many constraints are imposed. More-

over, it is unable to handle biases in RNA-Seq data. We will develop an expectation-

maximization (EM) algorithm (called component elimination EM) in the next section

based on the above quasi-multinomial model to select candidate isoforms and estimate

their abundance levels from biased RNA-Seq data. Note that EM algorithms are rou-

tinely used in RNA-Seq data analysis, and several EM algorithms have been proposed in

the literature to use information beyond read counts to improve the accuracy of isoform

abundance level estimation. For example, multi-reads (i.e., reads mapped to several

locations of the reference genome) are utilized to estimate the abundance levels of iso-

forms [44] or homologous genes [61]. In [87, 70, 73], the distribution of distances between

read pairs in paired-end RNA-Seq data is incorporated into the EM algorithms. Such

information can be readily incorporated to our quasi-multinomial model (and thus our

EM algorithm) (see Section 3.6.3 for more details).

3.3.2 Using negative Dirichlet distribution to achieve sparsity

It is commonly believed that a gene usually has only a few highly expressed

isoforms [47]. For this reason, ensuring a good interpretation (or “sparsity”) is critical in

transcriptome assembly, as is discussed in Chapter 2. Generally speaking, in the context

of EM algorithm, a good interpretation is to keep the number of components [19] (i.e.,

the number of models whose probabilities are to be determined in the algorithm) as
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small as possible. However, if the number of isoforms (or components) is large, the

standard EM algorithm may deliver results that lack sparsity, i.e., solutions with many

components having small non-negative probabilities instead of solutions with only a few

components having large probabilities while the others having zero probability [19]. To

achieve sparsity, a negative Dirichlet prior distribution of θ is added multiplicatively to

the quasi-multinomial likelihood function in Equation (3.7) [19, 4]:

P (θ) ∝
N
∏

i=1

θ−α
i (3.8)

where α is the negative Dirichlet parameter specified by the user. The negative Dirichlet

distribution assigns a higher probability if one or more of the values of θi are closer to

0 (see Figure 3.1). Hence, solutions with fewer non-zero values of θi are preferred (see

Figure 3.1).

Figure 3.1: An example of negative Dirichlet distribution in Equation (3.8) with N = 3
and α = 0.6. The values of θi satisfy the constraint θ1 + θ2 + θ3 = 1, and the density
function increases when one of the variables is close to 1 and the others to 0.
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3.3.3 The EM model

Combining both quasi-multinomial distribution (Equation (3.7)) and the neg-

ative Dirichlet distribution (Equation (3.8)), the joint log-likelihood function can be

written as follows:

logP (R,Z, θ, τ) = logP (R|θ, τ) + logP (θ)

= log

(

R

x1, . . . , xM

)

+ (1−R)log(1 +Rτ)−
N
∑

i=1

αlogθi

+
M
∑

j=1

logP (rj) +
M
∑

j=1

((xj − 1)log(P (rj) + τxj)) (3.9)

An EM algorithm can be used to maximize the above likelihood function. We

first introduce a latent binary variable zi,j to indicate whether a read rj comes from

isoform ti; i.e., zi,j = 1 if rj comes from isoform ti, and 0 otherwise. The joint log-

likelihood function can be rewritten as (See Section 3.6.1 for the derivation):

logP (R,Z, θ, τ)

=
M
∑

j=1

N
∑

i=1

xjzi,j log θi −
N
∑

i=1

α log θi

+
M
∑

j=1

N
∑

i=1

(xj − 1)zi,j log(P (rj |t
i) + xjτ)

+ (1−R) log(1 +Rτ) +
M
∑

j=1

N
∑

i=1

zi,j logP (rj |t
i) + C (3.10)

where C is a constant independent of θ and τ .

In the E step of the EM algorithm, the expectation of zi,j , γi,j , is evaluated
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using the values of θi, τ and P (rj |t
i) as follows:

γi,j =
θi(P (rj |t

i) + xjτ)
∑N

k=1 θkP (rk|ti) + xjτ
(3.11)

And in the M step, by maximizing Equation (3.10) with respect to the con-

straint
∑N

i=1 θi = 1, θi is updated as:

θi =
Ni − α

∑N
k=1Nk − α

(3.12)

where

Ni =

M
∑

j=1

xjγi,j (3.13)

The MLE value of τ has no close-form solution. Instead, by taking the deriva-

tion of Equation (3.10) w.r.t. τ , we get the following equation:

f(τ) =
M
∑

j=1

N
∑

i=1

γi,jxj(xj − 1)

P (rj |ti) + xjτ
=

R(R− 1)

1 +Rτ
(3.14)

We use the Newton-Raphson method [102] to calculate the value of τ satisfying f(τ) = 0

as follows. The derivative of Equation (3.14) is:

f ′(τ) = −
M
∑

j=1

N
∑

i=1

γi,jx
2
j (xj − 1)

(P (rj |ti) + xjτ)2
+

R2(R− 1)

(1 +Rτ)2
(3.15)

and we iteratively update the value of τ as

τ t+1 = τ t −
f(τ t)

f ′(τ t)
(3.16)

where τ t is the value of τ at the tth iteration.
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A component elimination EM algorithm [19, 4] can be used to find solutions

that favor a small number of highly expressed isoforms. Compared with the standard EM

algorithm, it applies an additional component elimination step to exclude components

with small probabilities. This method is able to determine the number of components

automatically without having to invoke any model selection criteria such as the Bayesian

Inference Criteria (BIC), Minimum Message Length (MML) principle, etc. During the

EM iterations, a component elimination step eliminates isoform ti if Ni < α (or set

θi = 0). Here, the negative Dirichlet parameter α can be interpreted as the minimum

number of reads required for each isoform to proceed to the next iteration. In this

component elimination EM, θi is fixed to 0 once its value reaches below 0 in Equation

(3.12):

θi =
max(0, Ni − α)

∑N
j=1max(0, Nj − α)

(3.17)

However, in some component elimination steps (especially at the beginning of

the EM iterations), there could be too many (or all) components satisfying the elimina-

tion condition Ni < α. This is because the probability of each component is initialized

randomly, which could be very small even for highly expressed isoforms if the number

of components is large. Deleting all of them in one iteration may lead to a poor choice

of components. As a result, we eliminate only one component with the minimum value

of Ni − α in each iteration.

The parameter α controls the number of isoforms to be output. The higher

the value of α is, the fewer isoforms are reported. Different values of α could be used

for genes with different numbers of mapped reads. Based on our empirical experience

from simulation tests (see the Results section below), we set α = max {10, 0.01R} for a
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gene with R mapped reads in our experiments.

3.4 Experimental results

We have implemented the above component elimination EM algorithm called

CEM in C++. In this section, we test the algorithm on both simulated and real RNA-Seq

data and compare its performance with two state-of-the-art algorithms for transcriptome

assembly and isoform abundance level estimation that do not consider RNA-Seq biases

(i.e., IsoLasso [47] and Cufflinks [87]), and a recent extension of Cufflinks that takes

biases into account [70]. For convenience, we will refer to the last algorithm simply

as “Cufflinks-bias”. To our best knowledge, Cufflinks-bias is the only algorithm in the

literature that considers RNA-Seq biases and is capable of assembling transcriptome.

Note that although SLIDE [45] was published after IsoLasso and Cufflinks, we do not

compare with it here because it was only tested on Drosophila melanogaster transcrip-

tome in [45]. During the comparison study, the parameters of all programs are tuned

empirically to achieve their best performance.

3.4.1 Simulation

We simulate biased RNA-Seq reads similar to the method described in Chap-

ter 2. Known isoforms from the mus musculus (mm9) annotation database are first

downloaded from the UCSC genome browser [22]. Each isoform is then assigned a

random abundance value that follows approximately a log-normal distribution [74, 3].

Afterwards, different numbers of reads are generated from each isoform according to the

assigned abundance. Sequencing errors and different positional biases are then simulated

to generate the actual reads.
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Figure 3.2: The positional bias models used in the simulation. Three different positional
models are used, including the uniform model (“Uniform”), Illumina cDNA fragmenta-
tion model (“cDNAf”) and Illumina RNA fragmentation model (“RNAf”) [93, 35].
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Figure 3.3: The sequencing error model used in the simulation. The sequencing error
profile is summarized from real RNA-Seq data in [15].
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During the simulation, three different positional profiles are provided to de-

termine the position of each read, and 80 million single-end reads are generated for

each profile, including the uniform positional model (“Uniform” for short) and two Il-

lumina positional bias models (Figure 3.2). Both Illumina models reflect the positional

biases caused by different fragmentation methods, including cDNA fragmentation (or

“cDNAf”) and RNA fragmentation (or “RNAf”) [93, 35, 99]. We use the sequencing

error profile in [15] to simulate sequencing errors (Figure 3.3), which is known to yield

a non-uniform distribution in real RNA-Seq data: higher sequencing error is observed

for positions at the end of a read [15].

The positional bias (i.e., f(ki,j) in Equation (3.6)) is learned from RNA-Seq

data using a method similar to [99]. Basically, RNA-Seq reads are first mapped to the

RefSeq transcript sequences [68] using Bowtie [41], where all possible mappings for each

read are reported. A RefSeq sequence is selected to estimate its positional bias if the

reads mapped to the sequence satisfy two conditions: (i) they cannot be mapped to

other RefSeq sequences and (ii) the number of the reads is greater than 1000. The

average of the positional biases in these sequences (about 2, 000) is then fed to the CEM

algorithm. Figure 3.4 demonstrates that the estimated positional biases from different

datasets are close to the real positional biases.

3.4.1.1 Performance on transcriptome assembly

The performance of transcriptome assembly results is evaluated in terms of

both sensitivity and precision (Equation (2.10) and (2.11) in Chapter 2). To compare

the effects of both positional and mappability biases on transcriptome assembly, we plot

the sensitivity-precision curves of four programs: CEM, IsoLasso [47], Cufflinks [87] and
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Figure 3.4: The estimated positional biases from simulated RNA-Seq data.

Cufflinks-bias [70].

Various values of sensitivity and precision in the curve are obtained by setting

different abundance cutoffs used in the output of the programs. That is, for each cutoff,

only predicted isoforms with estimated abundance levels higher than the cutoff value

are output. Four different RNA-Seq reads are provided to the programs: reads with

Uniform/cDNAf positional distributions and reads with/without mapping. For “reads

without mapping” (or “w/o mapping” for short), the exact locations of the reads on

the reference genome are provided; otherwise (“reads with mapping” or “mapping” for

short), simulated reads are mapped to the reference genome using Tophat [86] to obtain

the locations of the reads. Compared to the “reads with mapping” case, “reads without

mapping” serves as an ideal dataset which is not affected by mappability biases.

Figure 3.5 compares the curves of both CEM and Cufflinks-bias. When pro-
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vided with the correct mapping information (i.e., w/o mapping), CEM and Cufflinks-

bias both achieve high sensitivity (> 0.45) and precision (> 0.6). A high abundance

cutoff allows only a small number of highly expressed isoforms to be retained. These

isoforms are more likely to be correct (than those lowly expressed ones), which leads to

low sensitivity and high precision for both CEM and Cufflinks-bias (except in groups

3 and 4 due to reasons explained below) in Figure 3.5. Compared with Cufflinks-bias,

CEM achieves a better precision for the same level of sensitivity. CEM also performs

best among all four algorithms, as seen in Figure 3.6 which shows the curves of all four

algorithms using the cDNAf positional bias profile and “reads with mapping” option.

Both non-uniform positional biases and inaccurate read mapping have negative

impact on transcriptome assembly. Compared with non-uniform positional bias dataset,

higher sensitivity and precision values are observed for data generated using the Uniform

positional profile. Interestingly, positional biases mainly affect the inference of lowly

and moderately expressed isoforms. This could be seen from the diminishing differences

between the sensitivity-precision curves for data with the Uniform and cDNAf positional

biases in Figure 3.5 (see groups 1,2 and the CEM curves in groups 3,4). The reason

is that lowly expressed isoforms are less likely to have sufficient read coverage to be

assembled completely, since their junctions are less likely to be fully covered by reads

[18].

The values of sensitivity and precision decrease drastically when correct map-

ping is not guaranteed. Figure 3.5 shows a 10%-15% decrease in sensitivity and a more

than 20% decrease in precision in groups 3,4 compared with groups 1,2. Both repeat

sequences of the genome and sequencing errors account for the decreased sensitivity and

precision. This shows that mappability biases have a more profound effect on tran-

scriptome assembly than positional biases. Different from positional biases, mappability
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biases affect both highly and lowly expressed isoforms.

Interestingly, Cufflinks-bias shows reduced performance in both sensitivity and

precision in groups 3 and 4 on “reads with mapping” for high abundance cutoffs. By

inspecting the isoforms predicted by Cufflinks-bias carefully, we found that Cufflinks-

bias is highly sensitive to mapping errors. For example, when the abundance cutoff is set

as high as 500 FPKM, about 60% of the isoforms predicted by Cufflinks-bias come from

regions with incorrectly mapped reads. Reads from the junctions of isoforms located

in other regions could be mapped to these regions by TopHat because these junctions

share identical sequences with those regions. As a result, the predicted isoforms are

short compared to the read length, and Cufflinks-bias would greatly over-estimate their

abundance levels, since it uses a fragment length model that assumes short fragments

(short DNA sequences after fragmentation and before sequencing) are rare [87]. A

specific example is given in Figure 3.7 and some statistics are given in Figure 3.8. A

similar observation of this behavior of Cufflinks is also reported recently in [43]. CEM

is less affected by this issue because it makes no assumption about the distribution of

fragment lengths.

3.4.1.2 Longer read length improves both sensitivity and precision

To investigate the effect of read length on transcriptome assembly, we generate

80 million simulated reads of various read lengths (from 32bp to 200bp) using the uniform

positional model (i.e., without positional biases), and compare both values of sensitivity

and precision of two programs (CEM and Cufflinks) in Figure 3.9. Here, no aboundance

cutoff is applied to the predictions of either program.
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are mapped to the reference genome using Tophat.
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Figure 3.6: Sensitivity-precision curves of four different algorithms: CEM, IsoLasso,
Cufflinks and Cufflinks-bias. Here, the curves for CEM and Cufflinks-bias correspond
to those in group 4 of Figure 3.5.
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Figure 3.7: An example of incorrectly assembled transcript due to read mapping error.
In this example, the (simulated) reads from some exon junctions of gene Rbm10 (on
chromosome X:46,889,828-46,891,700) are mapped to chromosome 1 due to sequence
similarity. Both Cufflinks-bias and CEM make incorrect predictions. However, the
predicted FPKM by Cufflinks-bias is much higher (62094.1) than that by CEM (119.5).

Figure 3.9 shows that both sensitivity and precision increase as longer reads

are used for assembly. However, such improvements tend to slow down as reads get

longer. For example, when read length increases from 32bp to 50bp, the sensitivity

of CEM (on reads with mapping) increases from 0.35 to 0.41. This increase is much

more drastic than the improvement obtained when increasing read length from 100bp

to 200bp, which is only around 0.03. Similar trends can be observed for Cufflinks (on

reads with mapping) and for the value of precision.

Longer reads incur less ambiguity in mapping to the reference genome. For

example, among all 32bp reads mapped to the reference genome, 25% can be mapped

to multiple locations. But for the 200bp reads, only 12% are mapped to more than one

location in the reference genome. However, inspite of the reduced ambiguity in mapping

when longer reads are used, the differences in sensitivity and precision of both programs

on reads with/without mapping are consistently observed in Figure 3.9 (which is always

about 0.1). This shows that even for long reads, the mappability bias still affects the

accuracy of transcriptome assembly.
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Figure 3.8: Detailed analysis of highly expressed isoforms predicted by Cufflinks-bias
and CEM on the simulated data. The first plot compares the predicted and true FPKM
values of the isoforms predicted by Cufflinks-bias and CEM, where some isoforms have
their FPKM values greatly over-estimated by Cufflinks-bias (the red circles above the
main diagonal). Although many of these isoforms are short (and false), they cannot be
easily removed by using a simple length threshold, since many of the predicted isoforms
are short and many of them are true. The second plot shows that for highly expressed
isoforms (FPKM>100), the proportion of short transcripts (<500) of Cufflinks is much
higher than CEM.
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Figure 3.9: The effect of read length on both sensitivity (top) and precision (bottom).
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Table 3.1: Comparison of the R2 values of the four algorithms in isoform abundance
estimation on data with various positional biases.

Dataset CEM IsoLasso Cufflinks Cufflinks-bias

Uniform 0.90 0.87 0.86 0.89

RNAf 0.87 0.80 0.83 0.84

cDNAf 0.84 0.72 0.76 0.82

3.4.1.3 Performance on abundance level estimation

We assemble transcripts from simulated RNA-Seq reads using the above al-

gorithms, and then match their results to known mouse isoforms. For the matched

isoforms, we compare the logarithms of the predicted and true abundance levels in Ta-

ble 3.1 using coefficient of determination (i.e., the R2 value).

As shown in the table, all algorithms achieve high precision in abundance

estimation on both Uniform and RNAf datasets (R2 > 0.8), but CEM outperforms the

other three methods on all datasets. The cDNAf positional profile contains more biases

compared with the RNAf profile, since it has a more extreme head and tail positional

distribution as shown in Figure 3.2. Not surprisingly, lower R2 value is obtained for

all methods on data with cDNAf positional biases. On the other hand, Cufflinks-bias

demonstrates a clear advantage over Cufflinks on data with cDNAf positional biases.

3.4.2 Real data analysis

3.4.2.1 Correlation with MAQC data

We compare the abundance estimations for the Microarray Quality Control

(MAQC) [50] Human Brain Reference (HBR) sample between Taqman qRT-PCR mea-

surements and RNA-Seq analysis. The RNA-Seq reads and qRT-PCR measurements are

downloaded from the NCBI SRA archive (accession number SRA012427) and Gene Ex-

pression Omnibus (accession number GSE5350), respectively. RNA-Seq reads are first
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Figure 3.10: Comparison of the transcriptome assembly results between CEM and
Cufflinks-bias. Top: The assembled transcripts by CEM and Cufflinks-bias match 289
and 276 of the 1097 Taqman qRT-PCR transcripts, respectively. Bottom: The distri-
butions of the qRT-PCR measurements of the 38 and 25 transcripts uniquely assembled
by CEM and Cufflinks.
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Figure 3.11: An example of highly expressed isoforms identified by CEM, but not by
Cufflinks-bias. CEM correctly assembles two of the three known isoforms of the AES
gene, but Cufflinks-bias misses the first short intron (the red arrow) in its first two
predictions and thus fails to detect all three isoforms.

assembled into transcripts, whose abundance estimations (in RPKM or FPKM) are then

correlated with the Taqman qRT-PCR measurements. Since Taqman qRT-PCR only

measures the expression levels of genes, we only compare gene abundance estimations.

Given the isoform abundance levels estimated from the RNA-Seq data, the expression

level of a gene is obtained by summing up the abundance levels of all isoforms induced

by the gene.

Among 1097 Taqman qRT-PCR measurements of genes, 289 and 276 are cor-

rectly assembled by CEM and Cufflinks-bias, respectively, as shown in Figure 3.10 top.

The intersection of both programs covers 251 transcripts (> 85%), showing a high

consistency between both methods. CEM recovers slightly more (13) transcripts than

Cufflinks-bias. For the 38 and 25 transcripts uniquely assembled by CEM and Cufflinks-

bias, Figure 3.10 bottom plots the distribution of their qRT-PCR measurements. A few

highly expressed transcripts are correctly assembled by CEM but not by Cufflinks-bias.

An interesting example is the three isoforms from the AES gene on chromosome 19 (see

Figure 3.11). CEM correctly assembles two of them, but Cufflinks-bias assembles none

of them correctly because it failed to recognize the first short intron of the gene.
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To compare the abundance estimations, we run the four algorithms in two

different ways. In the first case (the “de novo” approach), the algorithms are invoked

to assemble transcripts and the results are matched against the known structures of

RefSeq transcripts corresponding to Taqman gene measurements (note that here the

term “de novo” has a different meaning than it does in “de novo assembly”). For the

matched genes, the abundance levels estimated by the four algorithms are compared to

qRT-PCR measurements. In the second case (the “refonly” approach), the structures of

all Taqman transcripts are provided, and their estimated abundance levels are compared

to the Taqman qRT-PCR measurements.

Figure 3.12 shows the R2 values between RNA-Seq and Taqman qRT-PCR

measurements for both “de novo” and “refonly” approaches. We first compare the R2

values of the top 100 predicted highly expressed genes in Figure 3.12 top (note that

different number of genes between 50 and 200 give similar results). For these genes, the

“de novo” approach shows higher values of R2 than the “refonly” approach. And among

the four compared methods, CEM achieves the highest correlation.

However, when correlating RNA-Seq based abundance estimations of all genes

(instead of only highly expressed genes) to the Taqman qRT-PCRmeasurements, Cufflinks-

bias shows a clear improvement over Cufflinks as shown in Figure 3.12 bottom, and

achieves the highest correlation among all 4 algorithms. This increased performance of

Cufflinks-bias suggests that Cufflinks-bias corrects biases the best in the estimation of

the abundance levels of moderately and lowly expressed genes, while CEM algorithm

works the best for highly expressed genes. This is consistent with the observed advantage

of CEM in the simulated data experiments.

The expression levels of genes also have an impact on the performance of the “de

novo” and “refonly” approaches. For the 100 genes with the highest predicted expression
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levels, the R2 values from the “de novo” approach are higher than those obtained by

“refonly” approach where known transcript structures are provided. However, for all

genes, a large improvement in R2 values is observed for the “refonly” approach over

the “de novo” approach as shown in Figure 3.12 bottom. This suggests that knowing

correct transcript structures is crucial for estimating the expression levels of lowly and

moderately expressed genes, since it might be difficult for the algorithms to correctly

assemble the isoforms of these genes from RNA-Seq reads.

3.4.2.2 Regression slope comparison

We also analyze the regression coefficient between RNA-Seq and Taqman qRT-

PCR measurements in Table 3.2. The regression slope reflects the fold change between

the expression levels of genes, where the ideal slope of 1.0 indicates that two methods

are perfectly consistent in detecting fold changes between genes. Table 3.2 shows that

although the R2 values are relatively low for the top 100 genes using the “refonly”

approach, CEM, IsoLasso and Cufflinks are able to detect fold changes quite accurately

(slope > 0.9). On the other hand, Cufflinks-bias is unable to match the performance

on these highly expressed genes (slope = 0.75) for some reason (e.g., perhaps due to

incorrect correction of their expression levels). Table 3.2 also shows that providing

transcript structures helps the fold change detection (the slopes in the refonly columns

are above 0.75 while the slopes in the “de novo” columns are only between 0.4 and 0.5).

3.4.2.3 Running time comparison

Figure 3.13 compares the running times of all four algorithms for processing

80M paired-end reads on a Linux machine with 16G memory and 2.6GHz 8-core CPU.
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Figure 3.12: The R2 values between RNA-Seq and Taqman qRT-PCR measurements
of the MAQC HBR sample for the top 100 predicted highly expressed genes (top) and
for all genes (bottom). Red and blue bars in both figures show the R2 values when
transcript structures are provided to the algorithms (i.e., the “refonly” approach), or
by assembly.
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Table 3.2: The regression lines between RNA-Seq (y) and Taqman qRT-PCR measure-
ments (x) in log scale.

Algorithm refonly de novo refonly de novo
top 100 top 100

CEM 0.97x+5.8 0.42x+3.8 0.71x+5.8 0.54x+3.4
IsoLasso 0.90x+5.7 0.40x+3.7 0.72x+5.9 0.53x+3.3
Cufflinks 0.92x+3.1 0.43x+3.0 0.72x+3.2 0.53x+3.3

Cufflinks-bias 0.76x+2.0 0.43x+3.5 0.73x+3.0 0.55x+3.8

Figure 3.13: The running times of CEM, IsoLasso, Cufflinks, and Cufflinks-bias using
80M paired-end reads. Both Cufflinks and Cufflinks-bias can use multiple threads.
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Since both Cufflinks and Cufflinks-bias provide the option of multithreading (“-p” op-

tion), we also include the results of both Cufflinks and Cufflinks-bias using 4 threads.

We can see that for both Cufflinks and Cufflinks-bias, using multiple threads greatly

reduces the processing time needed: only about 1/4 of the time is required for 4 threads

compared with 1 thread. This is partly because transcriptome assembly can be trivially

performed in parallel, allowing reads mapped to different genes to be processed simul-

taneously. If only a single thread is used, the speeds of all algorithms are approximately

at the same level, with CEM slightly leading the edge.

3.4.2.4 Exon inclusion ratio analysis

Figure 3.14: The exon inclusion ratio (Ψ) calculation model. Both the “direct” and
isoform abundance based models are used to calculate the exon inclusion ratio (Ψ)
value of test exon B. The “direct” method calculates both the inclusion density (dI , the
read density of exon B and junction 1,2) and exclusion density (dE , the read density
of junction 3). The abundance based method calculates the abundance levels of both
inclusion isoform (containing exons A, B and C) and exclusion isoform (containing exons
A and C) using CEM.

The exon inclusion ratio (or “percent spliced in” value, Ψ) measures the per-

centage of mRNA transcripts that include an exon to the total amount of transcripts that

include or exclude that exon. The Ψ value is frequently used to study the mechanism of
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Table 3.3: The R2 values and regression coefficients between the exon inclusion values
calculated by RNA-Seq and qRT-PCR analyses.

Dataset CTRL KD

Metric direct CEM direct CEM

R2 0.81 0.86 0.84 0.93
Regression 0.64x+0.3 0.80x+0.5 0.84x+0.1 0.94x+0.1

alternative splicing [62, 100, 90]. In [100], both qRT-PCR and mRNA-Seq experiments

are performed to measure the Ψ values for human HEK 293T cells, including hnRNP

H knockdown (or “KD”) cells and corresponding control (or “CTRL”) cells. RNA-Seq

reads are first mapped to the human reference genome, and the Ψ value is calculated as

Ψ = dI/(dI + dE) (3.18)

where dI (inclusion density) is defined as the read density of the test exon and its

two flanking junctions, and dE (exclusion density) is the read density of the exclusion

junction formed by the two flanking exons (see Figure 3.14). However, this method

(called the “direct” method) is sensitive to the value of dE , which may not be accurate

if few reads are mapped to the exclusion junction. Alternatively, the Ψ value can be

calculated based on the abundance levels of two isoforms including and excluding the

test exon:

Ψ = qI/(qI + qE) (3.19)

where qI and qE are the estimated abundance levels of two isoforms including and ex-

cluding the test exon, respectively, as illustrated in Figure 3.14. We calculate the Ψ

values using both the “direct” method and the above method based on isoform abun-

dance levels estimated by our CEM algorithm, and correlate the results with the Ψ

values calculated by qRT-PCR experiments in Table 3.3.
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Table 3.3 shows a significantly improved correlation using the isoform abun-

dance method based on CEM over the “direct” method. The CEM algorithm achieves

higher PCC and R2 values on both CTRL and KD datasets, and the regression slope

(> 0.9) on the KD dataset shows that the Ψ values obtained by CEM are quite consistent

with the qRT-PCR data.

3.5 Conclusion

Biases in RNA-Seq data are difficult to deal with because they affect both tran-

scriptome assembly and isoform abundance estimation. The current literature focuses

on correcting biases for isoform abundance estimation, but little has been done for tran-

scriptome assembly. In this paper, we present a quasi-multinomial distribution based

statistical framework and component elimination EM algorithm for both transcriptome

assembly and isoform abundance estimation from biased RNA-Seq data. Biases are

captured by a single parameter τ in the quasi-multinomial model, and the component

elimination EM algorithm ensures that good interpretation (or sparsity) is achieved in

transcriptome assembly.

Both simulated and real data experiments reveal interesting effects of different

biases. Although the precision and sensitivity of a method in transcriptome assembly

are affected by both positional and mappability biases, the recovery of isoforms/genes

with different abundance levels are affected differently. While mappability biases reduce

the sensitivity and precision for all genes, positional biases have a negative effect mainly

on lowly or moderately expressed genes. A comparison between our CEM algorithm

and the other methods in the literature shows that for highly expressed isoforms, our

algorithm achieves higher sensitivity and precision in assembly and higher accuracy in
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isoform abundance estimation.

3.6 Additional remarks

3.6.1 Derivation of the joint log-likelihood function

The derivation of Equation (3.10) is as follows.

From Equations (3.6) and (3.7), we have

P (rj) =
N
∑

i=1

θiP (rj |t
i) (3.20)

P (rj) + τxj =
N
∑

i=1

θi
(

P (rj |t
i) + τxj

)

(3.21)

since
∑N

i=1 θi = 1. By using the latent binary variable zi,j introduced in Section 3.3.2,

both equations can be re-written as

P (rj) =
N
∏

i=1

(

θiP (rj |t
i)
)zi,j (3.22)

P (rj) + τxj =
N
∏

i=1

(

θi(P (rj |t
i) + τxj)

)zi,j (3.23)

The joint log-likelihood function in Equation (3.10) is the logarithm of the

product of Equations (3.7) and (3.8). Using both Equations (3.22) and (3.23), we
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obtain

logP (R,Z, θ, τ) = logP (R|θ, τ) + logP (θ)

= log

(

R

x1, . . . , xM

)

+ (1−R)log(1 +Rτ)−
N
∑

i=1

αlogθi

+

M
∑

j=1

logP (rj) +

M
∑

j=1

((xj − 1)log(P (rj) + τxj))

=
M
∑

j=1

N
∑

i=1

zi,j(logθi + logP (rj |t
i))

+
M
∑

j=1

N
∑

i=1

(xj − 1)zi,j(logθi + log(P (rj |t
i) + τxj))

+(1−R)log(1 +Rτ)−
N
∑

i=1

αlogθi + C

=
M
∑

j=1

N
∑

i=1

xjzi,j log θi −
N
∑

i=1

α log θi

+

M
∑

j=1

N
∑

i=1

(xj − 1)zi,j log(P (rj |t
i) + xjτ) + (1−R) log(1 +Rτ)

+
M
∑

j=1

N
∑

i=1

zi,j logP (rj |t
i) + C (3.24)

3.6.2 Quasi-multinomial distributions, quasi-binomial distributions and

generalized Poisson distributions

Generalized Poisson (GP) distributions have been used to correct biases at the

gene level [79]. Here, we show that maximizing the log-probability objective function

in Equation (3.7) with respect to τ is equivalent to maximizing the objective function

using GP distributions with respect to ρ.

For simplicity, consider a gene with a single isoform (i.e., N = 1). Take read

counts at individual positions into consideration, then γi,j = 1 and P (rj |t
i) = P (rj) =
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1/M , and Equation (3.14) becomes

f(τ) =
M
∑

j=1

xj(xj − 1)

P (rj) + xjτ
−

R(R− 1)

1 +Rτ
(3.25)

When R → ∞, P (rj) → 0, τ → 0, RP (rj) → υ, and Rτ → β, where υ and

β are some constants, the quasi-multinomial distribution (Equation (3.7)) approaches

the product of M − 1 GP distributions GP (λ, ρ) = GP (υ/(1 + β), β/(1 + β)) condi-

tioned on R being fixed [11]. Now we show that under these conditions, maximizing the

log-probability objective function in Equation (3.7) with respect to τ is equivalent to

maximizing the joint log-probability of M GP distributions with respect to ρ (here we

need M GP distributions instead of M − 1 because R is not fixed).

The GP distribution with parameter (λ, ρ) is [79]:

P (X = x) = λ(λ+ xρ)x−1e−λ−xρ/x! (3.26)

If we observe M read counts x1, . . . , xM at M positions, the joint log-probability is

M
∑

i=1

logP (Xi = xi) =
M
∑

i=1

(xi − 1) log(λ+ xiρ)− xiρ+M(log λ− λ)−
M
∑

i=1

log xi! (3.27)

Setting the derivative of Equation (3.27) to zero, we have

M
∑

i=1

(xi − 1)xi
λ+ xiρ

−
M
∑

i=1

xi = 0 (3.28)

Let R =
∑M

i=1 xi, then x̂ = R/M , where x̂ denotes the mean value of an xi. If

we replace λ with the Maximum Likelihood Estimation (MLE) value λ̂ = x̂(1− ρ) [79],
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then the MLE value of ρ should satisfy

M
∑

i=1

xi(xi − 1)

x̂+ (xi − x̂)ρ
−Mx̂ = 0 (3.29)

which is equivalent to the Newton-Raphson update equation in [79]. 2

For R → ∞, P (rj) → 0, τ → 0, (R − 1)P (rj) → υ, and (R−1)τ
1+Rτ → ρ, we

obtain λ = υ/(1 + β) → (R − 1)/M(1 + Rτ) and ρ = β/(1 + β) → (R − 1)τ/(1 + Rτ).

Substituting them into Equation (3.28), we have

M
∑

i=1

(xi − 1)xi
1
M

R−1
1+Rτ + xi

R−1τ
1+Rτ

−R = 0 (3.30)

Simplifying the equation, we obtain

M
∑

i=1

(xi − 1)xi
P (rj) + xiτ

=
R(R− 1)

1 +Rτ
, (3.31)

which is the same as Equation (3.25).

Here we show that the quasi-multinomial distribution in Equation (3.7) in fact

reduces to a quasi-binomial distribution of type II when M = 2 [10, 34]. If M = 2, write

P (r1) = p1, P (r2) = p2 and R = x1 + x2, where p1 + p2 = 1. Rewrite Equation (3.7) as

follows:

P (R|θ, τ) =

(

R

x1, x2

)

p2
p1

1 +Rτ

[

p1
1 +Rτ

+
τ

1 +Rτ
x1

]x1−1 [

1−
p1

1 +Rτ
−

τ

1 +Rτ
x1

]R−x1−1

(3.32)

2Notice that in [79], there is a typo in the Newton-Raphson equation, and the correct equation should
read:

n
∑

i=1

xi(xi − 1)

x̂+ (xi − x̂)λ
− nx̂ = 0,where x̂ =

n
∑

i=1

xi

n
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Let p′ = p1
1−Rτ and α = τ

1+Rτ . Then

1− p′ −Rα

1−Rα
=

1− p1
1+Rτ −R τ

1+Rτ

1−R τ
1+Rτ

=
1 +Rτ − p1 −Rτ

1 +Rτ −Rτ
= p2 (3.33)

Incorporating the above equation, Equation (3.32) becomes

P (R|θ, τ) =

(

R

x1, x2

)

(1− p′ −Rα)p′

1−Rα
(p+ x1α)

x1−1 (1− p′ − x1α
)R−x1−1

(3.34)

which is a quasi-binomial distribution of type II (Equation (4) in [10]). 3

3.6.3 Incorporating additional information into the quasi-multinomial

model

As mentioned in Section 3.2, additional information can be incorporated into

our quasi-multinomial model to improve the estimation of isoform abundance levels.

Such information may include multi-reads [61, 44] (which is usually discarded), the

distance between read pairs in paired-end reads [87], etc. Here we show how such

information can be incorporated into our model. The quasi-multinomial distribution in

Equation (3.7) can be re-written as:

P (R|θ, τ) =

(

R

x1, . . . , xM

)

(1 +Rτ)
M
∏

j=1

P (rj)

1 +Rτ

(

P (rj) + τxj
1 +Rτ

)xj−1

(3.35)

3Notice that there is a typo in Equation (4) of [10], and the equation should be corrected as:

P (X = x) =

(

n

x

)

(1− p− nα)p

1− nα
(p+ xα)x−1(1− p− xα)n−x−1

Following the notations in [10], define p = a(a+ b+ nθ)−1 and α = θ(a+ b+ nθ)−1. Then

(1− p− nα)p

1− nα
=

a

a+ b+ nθ

1− a
a+b+nθ

− n θ
a+b+nθ

1− n θ
a+b+nθ

=
ab

(a+ b)(a+ b+ nθ)
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Define P1(rj) = P (rj)/(1 + Rτ) and P2(rj) = (P (rj) + τxj)/(1 + Rτ). Both P1(rj)

and P2(rj) can be interpreted as the “adjusted” probability of all reads falling into

exon j: one of the xj mapped reads has the “adjusted” probability P1(rj) and the rest

P2(rj). The probabilities of the reads are thus adjusted according to the number of

reads mapped to exon j. Denote all the xj reads mapped exon j as r1,j , . . . , rxj ,j . We

re-write Equation (3.35) as:

P (R|θ, τ) =

(

R

x1, . . . , xM

)

(1 +Rτ)

M
∏

j=1

xj
∏

m=1

P ′(rm,j) (3.36)

where P ′(rm,j) is the “adjusted” probability of the xj reads mapped to exon j. One of

the read is assigned probability P ′(rm,j) = P1(rj) and the rest are assigned probability

P2(rj).

We can incorporate additional information such as multi-reads and the distance

between read pairs in paired-end reads into the “adjusted” probability P ′(rm,j). For

example, if the distance between read pairs dm,j of the paired-end read rm,j (also called

its span) follows some probability distribution g(dm,j), then

P (rm,j) =

N
∑

i=1

P (rm,j |t
i)P (ti) =

N
∑

i=1

θif(km,i)g(dm,j) (3.37)

where km,i denotes the location rm,j in ti and f the location distribution function (see

Equation (3.6) ).

3.6.4 Comparing CEM with NURD

NURD ([99]) is a software package for improving isoform expression level esti-

mation based on non-uniform read distributions. Here, we compare the performance of
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both CEM and NURD using three simulated RNA-Seq datasets mentioned in Section

3.4.1. Since NURD does not assemble transcripts, mm9 known isoforms are provided

as the input to both programs (the same as the “refonly” approach in Section 3.4.2.1).

Reads are mapped to the reference genome using Tophat in CEM and to the transcript

sequences using Bowtie in NURD, as required by each program.

Table 3.4: The R2 values of CEM and NURD in isoform abundance estimation
with various positional biases.

Dataset CEM NURD

Uniform 0.89 0.85

RNAf 0.88 0.82

cDNAf 0.86 0.83

Table 3.4 compares the R2 values of both programs in isoform abundance esti-

mation using datasets with various positional biases. (Note that other biases also exist

in the datasets.) The R2 values of CEM are higher in all datasets, demonstrating that

our model efficiently captures different biases in simulated datasets. Recall that NURD

can only handle positional biases and is unable to correct sequencing or mappability

biases.

3.6.5 The effect of different isoform abundance distributions

In our simulation experiments, the expression levels of isoforms are assigned

random values that follow a log-normal distribution. This log-normal model assumes

that only a few isoforms are highly expressed in a gene, and is a good approximation

of the real isoform expression distributions ([1], [3]). We also tested the hypothesis

that isoform expression levels follow a geometric distribution, and compared the effect

of this hypothesis on transcriptome assembly and isoform expression level estimation

using simulated RNA-Seq datasets. In these experiments, all procedures are identical to
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Table 3.5: The effect of different isoform expression level distribution models on tran-
scriptome assembly and isoform expression level estimation.

Sensitivity Precision R2

geometric
Cufflinks 0.57 0.56 0.53
CEM 0.62 0.63 0.65

log-normal
Cufflinks 0.42 0.50 0.83
CEM 0.44 0.52 0.85

the experiments described in Section 3.4.1, except that the expression levels of isoforms

follow the geometric distribution with parameter p = 0.8.

Table 3.5 shows the effect of different distribution models on transcriptome

assembly (in terms of sensitivity and precision) and isoform expression level estimation

(in terms of R2 value between estimated and real expression levels). In the log-normal

model, only a few isoforms are assigned a high expression level, but in the geometric

model, the expression levels of isoforms are more balanced. As a result, in the geometric

model, it is more likely for a gene to have more than one highly expressed isoform. The

sensitivity and precision of both Cufflinks and CEM are higher in the geometric model

than in the log-normal model, but the R2 values become much smaller. This shows that

although both programs are able to reconstruct more isoforms correctly as more isoforms

are highly expressed in a gene, they are unable to accurately estimate the expression

levels of the isoforms.
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Chapter 4

Accurate Isoform Inference and

Abundance Estimation from

Multiple Sample RNA-Seq Data

4.1 Introduction

In this chapter, we present a new algorithm for ab initio transcriptome assem-

bly that is able to handle noisy RNA-Seq reads and multiple sample RNA-Seq datasets

effectively. Instead of assembling transcripts separately for each sample and merging

them together, our algorithm, called ISP (for Iterative Shortest Path), reconstructs

transcripts directly from multiple samples. In fact, it takes advantage of the extra

information contained in multiple sample RNA-Seq datasets (e.g., correlation among

the samples) to improve the performance of transcriptome assembly. By solving a linear

programming problem iteratively in a weighted graph derived from the given multiple

sample RNA-Seq datasets, ISP achieves a high performance by discarding problematic

83



reads and recovering missing junctions caused by various errors. Our preliminary exper-

imental results on both simulated and real datasets and comparison with the popular

assembly tools (Cufflinks and Cuffmerge) demonstrate that (i) ISP is able to assemble

transcriptomes with a greatly increased precision while keeping the same level of sensi-

tivity, especially when many samples are involved, and (ii) the assembly results of ISP

help improve downstream differential analysis.

The rest of this chapter is organized as follows. The framework of the al-

gorithm ISP is introduced in Section 4.2, including the graph construction, the linear

programming problem, and the approach to incorporate paired-end read information

and to recover missing junctions. The experimental results are presented in Section 4.3,

while Section 4.4 concludes this chapter.

Segments

1

Junction reads

Sample 1

Sample 2

32 4 5

False junction reads
Junctions with missing 

mapped reads

1 2 3 4 5MSCG

Figure 4.1: Transcriptome assembly from multiple sample RNA-Seq data.

4.2 Methods

4.2.1 Multiple Sample Connectivity Graph (MSCG)

A set of RNA-Seq reads from F different samples are first mapped indepen-

dently to the reference genome using splice junction detection tools such as Tophat [86],
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SpliceMap [2], etc. The mapped reads are then clustered into genes, and the exon-intron

boundary information may be derived from either junction reads or existing annotations

such as NCBI RefSeq [68] and UCSC known isoforms [36]. Based on this information,

the sequence of a gene can be split into different expressed segments (or simply segments,

[18]), where a segment is a continuous region in the reference genome uninterrupted by

any splicing events (see Section 2.2.3 for a formal difinition of segment).

Several transcriptome assemblers use the Connectivity Graph (CG) to represent

the splicing connections between segments or bases [26, 47] on single sample RNA-Seq

data. Similarly, for multiple sample RNA-Seq data, we construct a multiple sample

connectivity graph (MSCG) G = (V,E) based on F sets of mapped RNA-Seq reads

as follows. V = {vi|1 ≤ i ≤M} represents the M segments contained in a gene, and

(vi, vj) ∈ E if there is at least one read from the F datasets joining both segments i and

j (see Figure 4.1).

1 2 3 4 5MSCG

1

2

3

4

5

1'

2'

3'

4'

5'

s tPath graph

V

Figure 4.2: The construction of GP from MSCG, using examples in Figure 4.1.
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After constructing the MSCG graph, the average read density di for every

vertex vi ∈ V and di,j for every edge (vi, vj) is calculated as follows:

di =
F
∑

k=1

Ck
i /(lv − L+ 1)

di,j =
F
∑

k=1

Ck
i,j/(L− 1) (4.1)

where Ck
i (or Ck

i,j) is the number of reads mapped to the corresponding segment (or

junction, respectively) for the kth RNA-Seq dataset, lv the length of the segment v and

L the read length.

4.2.2 An Iterative Shortest Path (ISP) algorithm to find expressed

isoforms

4.2.2.1 The path graph

Given an MSCG G = (V,E) and the corresponding read density for each

vertex and edge, we construct a path graph GP = (VP , EP ) from G as follows. VP =

V ∪V ′ ∪{s, t}, where V ′ = {v′|∀v ∈ V }. The edge set EP = Es ∪Et ∪EV ∪EE consists

of four different types of edges.

• (s, v) ∈ Es for every v ∈ V . These are “source” edges;

• (v′, t) ∈ Et for every v′ ∈ V ′. These are “sink” edges;

• (vi, v
′
i) ∈ EV , i = 1, · · ·M ;

• For each edge e = (vi, vj) ∈ E, (v′i, vj) ∈ EE .

Figure 4.2 shows an example of construction Gp from G.
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For simplicity, s is assigned number 0, t is assigned number M + 1, and the

vertices in V and V ′ are all assigned numbers 1 through M . Thus, an edge in EP

can be represented as (i, j), 0 ≤ i, j ≤ M + 1. For example, (0, i) = (s, vi) ∈ Es and

(i,M + 1) = (v′i, t) ∈ Et for 1 ≤ i ≤ M . Similarly, (i, i) ∈ EV and (i, j) ∈ EE if

(vi, vj) ∈ E, where 1 ≤ i, j ≤M .

4.2.2.2 Weighting the path graph

A weight wi,j is assigned for each edge (i, j) ∈ EP to reflect the likelihood that

the corresponding segment (or junction) is problematic. A higher weight is assigned if

the segment (or junction) is more likely due to noisy mapped reads. Notice that wi,j

may be either positive (considered as “cost”) or negative (considered as “reward”).

For every edge (0, i) ∈ Es, we “inactivate” the edge if vi can be reached from

another vertex vj in the MSCG G:

w0,i =















∞ if there exists (j, i) ∈ EE

0 otherwise

(4.2)

Similarly, the edge (i,M +1) ∈ Et is disconnected if there is an edge from vi to another

vertex vj in the MSCG G:

wi,M+1 =















∞ if there exists (i, j) ∈ EE

0 otherwise

(4.3)

For every edge (i, i) ∈ EV ,

wi,i = − log(di + 1) (4.4)

where di is the average read density of the segment corresponding to vertex vi of the
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MSCG G. Since we will look for a shortest path, paths going through segments with

higher densities are preferred.

Since noisy junctions may result in incorrect assembly results, a higher positive

cost is assigned for junction edges that are more likely to be problematic. For every edge

(i, j) ∈ EE , where 1 ≤ i, j ≤M and i 6= j, we set

wi,j = − logP (i, j) = − log(
di,j

∑

k di,k

di,j
∑

k dk,j
) (4.5)

where P (i, j) represents the probability of the junction between segments i and j being

included in an isoform. Recall that di,j is the average read density of edge (vi, vj) ∈ G.

4.2.2.3 The iterative shortest path problem

Given the path graph GP , its corresponding edge weights and a set of single-end

or paired-end reads R, we formulate the following linear programming (LP) problem,

which is essentially a shortest path problem:

max
∑

0≤i,j≤M+1

−wi,jf(i, j) (4.6)

s.t.
M
∑

i=1

f(0, i) = 1, 1 ≤ i ≤M (4.7)

∑

0≤k≤M

f(i, k) =
∑

0≤k≤M

f(k, i), 1 ≤ i ≤M (4.8)

0 ≤ f(i, j) ≤ 1, 0 ≤ i, j ≤M + 1 (4.9)

Equations (4.7)-(4.9) are constraints ensuring that the final solution represents a path

(and thus an isoform) from s to t.

A gene may have multiple isoforms expressed, but only one isoform is ex-
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tracted from solving the linear programming problem in Equation (4.17). To extract

all expressed isoforms of a gene, we apply the “weight-decay” strategy [95] to modify

the weights and iterate the algorithm several times. In each iteration, the weights are

adjusted to encourage the algorithm to look for an isoform different from all previously

found isoforms. The detailed algorithm is described in Algorithm 2.

Algorithm 2 ISP

Require: a path graph GP and parameters W , the read set R = {r}, λ > 1, γ > 1.
1: Initialize the weights wi,j , 0 ≤ i, j ≤M + 1; S = {}.
2: Solve the LP problem and find a path p from s to t with weight Wp.
3: if Wp > W then
4: Terminate the algorithm and return S.
5: end if
6: Convert the path p to an isoform I, and remove all reads that are compatible with

I in R.
7: if I /∈ S then
8: Set S = S ∪ {I}.
9: end if

10: for 0 ≤ i, j ≤M + 1 do
11: if wi,j ≥ 0 then
12: Set wi,j = λwi,j ;
13: else
14: wi,j = wi,j/λ.
15: end if
16: end for
17: for each edge (i, j) ∈ EE ∪ EV do
18: if the corresponding segment (or junction) is already used in S then
19: if wi,j ≥ 0 then
20: Set wi,j = γwi,j ;
21: else
22: Set wi,j = wi,j/γ.
23: end if
24: end if
25: end for
26: Go to Line 2.

The value of W determines how much error can be tolerated in the solution.

A larger value of W tends to result in more isoforms (and thus recover more true ones),

but isoforms with higher weights are more likely to be erroneous. The values of the

parameters W,λ, γ can be determined empirically using simulation. In our experiments,
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we set W = 0, λ = 1.1 and γ = 1.1.

4.2.3 Incorporating paired-end read information

Paired-end RNA-Seq reads provide more information than single-end reads

since both pairs of the paired-end read come from the same fragment. To incorporate

the paired-end read information into our framework, we modify the objective function

(Equation (4.6)) to simultaneously minimize the cost of the path and maximize the num-

ber of paired-end reads that are compatible with the isoform implied by the path. Reads

that are compatible with an isoform (introduced in Section 2.2.1.2) are the reads that are

possibly generated from the isoform. If a read is compatible with an isoform, the splicing

patterns implied by the read and the isoform must be identical. Specifically, a single-end

read b containing k segments can be represented as a vector b = (b1, b2, · · · , bk), where

1 ≤ b1 < · · · < bk ≤M are the segments included in b. An isoform I that b is compatible

with must include all the segments b1, · · · , bk, and must not include any other segment

between b1 and bk. A paired-end read p = (b, b′) is compatible with I if and only if both

b and b′ are compatible with I.

For each paired-end read p = (b, b′), where b = (b1, · · · bk) and b′ = (b′1, · · · b
′
k),

we define the set of “inclusion segments” ISp and “exclusion segments” ESp as follows:

ISp = b ∪ b′ (4.10)

ESp =
{

i : b1 < i < bk or b′1 < i < b′k, i /∈ ISp

}

(4.11)

We modify the linear program in Section 4.2.2.3 to incorporate the information

of paired-end reads as follows. For each paired-end read p, we define a binary variable
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qp ∈ {0, 1} as whether p is compatible with the isoform implied in the solution. The

objective function is modified as follows:

max
∑

0≤i,j≤M

−wi,jf(i, j) + α
∑

p∈R

qp (4.12)

where α > 0 is a user-defined parameter, and f(i, j) and qp satisfy the following con-

straints:

qp, f(i, j) ∈ {0, 1} (4.13)

qp =
∏

i∈ISp

f(i, i)
∏

i∈ESp

(1− f(i, i)) (4.14)

However, the integral and non-linear constraints make the problem difficult to

solve. Instead, we relax the binary constraint for the variable f(i, j) and qp, and modify

the constraint of qp as follows:

0 ≤ qp, f(i, j) ≤ 1, (4.15)

qp ≤ f(i, i), i ∈ ISp (4.16)

qp ≤ 1− f(i, i), i ∈ ESp (4.17)

By using the constraints in Equations (4.15)-(4.17), we can use linear program

to solve the optimization problem defined in Equation (4.12). Equations (4.15)-(4.17)

represent approximate constraints of Equations (4.13)-(4.14). If f(i, i) ∈ {0, 1}, the

upper bound of qp is set to 1 by Equation (4.16) and (4.17) if the isoform implied in

the solution is compatible with p. By maximizing Equation (4.12), the value of qp is
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therefore 1 if α > 0. Otherwise if p is not compatible with the isoform, the upper bound

will be set to 0 by Equation (4.16) or (4.17), and the only possible value of qp is 0.

Ideally, the solution to the above problem is integral (i.e., f(i, j) ∈ {0, 1}),

which represents a path (and an isoform) from s to t. However in some cases (about

0.1% of the genes in our simulated and real experiments), the linear program does

not always guarantee an integral solution. For these genes, we solve the corresponding

integer linear programming (ILP) problem by imposing an integral constraint to the

variable f(i, j) (i.e., f(i, j) ∈ {0, 1}). We use GNU Linear Programming Kit (GLPK,

[105]) to solve the integer programming or integer linear programming problems.

4.2.4 Resolving ambiguities using Jensen-Shannon metric

Figure 4.3: Coexpressed segments and exclusively expressed segments.

In complicated gene models, one MSCG may correspond to different sets of

isoforms due to the segments that introduce ambiguities (named as “uncertain” seg-

ments). For example, the MSCG in Figure 4.3 includes two branches in segment 4,

and different combinations of two uncertain segments, segments 3 and 5, introduce two

possible sets of isoforms. Paired-end reads can be used to resolve the ambiguity (as in

[26]), but it only works if there are paired-end reads mapped to uncertain segments.
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In [87], isoforms are decomposed such that the expression levels of the segments in one

isoform are similar, but this strategy does not consider the positional bias [99] and is

applied only to a single sample.

In ISP, we use Jensen-Shannon metric (or JS metric) to resolve the ambiguity

of uncertain segments. JS metric measures the similarity of the expression patterns be-

tween samples ([87]). If the JS metric of the expression levels of two uncertain segments

is low (which means both segments are positively correlated), then both segments are

likely to be included in one isoform (or they are “coexpressed segments”, see Figure 4.3

as an example). Otherwise if the JS metric is high (meaning that both are negatively

correlated), they are likely to appear in different isoforms (i.e., they are “exclusively

expressed segments”).

JS metric is the square root of the Jensen-Shannon divergence, and is defined

as follows:

JS(i, j) =

(

H(
pi + pj

2
)−

H(pi) +H(pj)

2

)1/2

(4.18)

whereH(x) stands for the entropy of the probability distribution x. pi is the distribution

of segment i among samples, and is calculated based on the normalized number of reads

in segment i among samples:

pi =

(

p1i
∑F

k=1 p
k
i

, · · ·
pFi

∑F
k=1 p

k
i

)

, (4.19)

pli =
C l
i

C l
(4.20)

where C l and C l
i are the number of reads in the gene in sample l, and the number

of reads in segment i in sample l, respectively (note that JS metric is used in [87] to

measure the alternative splicing differences between samples).
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To determine whether two uncertain segments are coexpressed or exclusively

expressed, we first calculate two JS metric distributions from different sets of segments:

Pall, the JS metrics between all pairs of segments in one gene, and Pref , the JS metrics

between pairs of some selected coexpressed segments. These coexpressed segments are

selected by analyzing the MSCG of each gene: segments i and j are coexpressed if every

path that includes i also includes j, and vice versa. After that, the JS metric of two

uncertain segments i and j, JS(i, j), is compared against both distributions. Segments

i and j are considered exclusively expressed if JS(i, j) is higher than the upper bound

of the 95% confidence interval of Pall, and the following constraint is added to the linear

programming (or integer programming) problem:

f(i, i) + f(j, j) ≤ 1 (4.21)

Otherwise if JS(i, j) is smaller than mean(Pref )+ std(Pref ), segments i and j

are considered coexpressed, and the following constraint is added:

f(i, i)− f(j, j) = 0 (4.22)

4.3 Experimental results

4.3.1 Simulation results

We simulate RNA-Seq reads using the method described in Section 2.3.1 to

evaluate the sensitivity and precision of ISP and Cufflinks on noisy RNA-Seq data

and multiple samples. Isoforms from both UCSC human and mouse known genes are

used as transcript models. UCSC human (mouse) known genes contain over 70, 000
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(50, 000) putative transcripts based on RefSeq, Genbank, CCDS, and UniProt, and is

a moderately conservative set of transcripts [36]. We add two different types of noisy

reads in the simulation to capture noises in real RNA-Seq data: noisy junction reads

and noisy intron reads. Noisy junction reads are generated by randomly shifting the

splicing positions of some normal junction reads by 1 to 3 bases. These reads are added

since in reality, splicing regulators may shift the splice site a few bases to the proximal

or distal intron boundaries [92, 54]. Noisy intron reads are reads coming randomly from

the intron regions of a transcript. They are added since it has been observed that a

fair amount of reads coming from intronic regions, possibly due to intron retention,

non-coding RNAs or other unknown mechanisms [67].

4.3.1.1 The effect of noisy RNA-Seq reads on single sample data

We add different amounts of noisy reads of both types to a single sample

RNA-Seq dataset. Figure 4.4 shows the sensitivity and precision of ISP and Cufflinks

on various error rates using both human and mouse single-end reads, and Figure 4.5

shows the results of paired-end reads. Here, 80 million reads are used, and “x% error

rate” means that x% of the junction reads are randomly shifted and x% of the intron

reads are added. Both programs keep the same level of sensitivity (about 10%) while

more erroneous reads are added, and Cufflinks achieves a higher precision than ISP when

no erroneous reads are present. However, when more errors are added, the precision of

both programs gradually drops, but ISP is less affected by the errors than Cufflinks.

This comparison with respect to different error rates shows that ISP is able to handle

read errors better than Cufflinks on single sample RNA-Seq data.

It is worth noting that when the simulated RNA-Seq data is error-free, mapping
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Figure 4.4: The sensitivity (top) and precision (bottom) of ISP and Cufflinks on a single
RNA-Seq sample with various error rates. Errors come from either noisy junction reads
or noisy intron reads.
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Figure 4.5: The sensitivity (top) and precision (bottom) of ISP and Cufflinks on a
single RNA-Seq sample with various error rates using paired-end reads. Errors come
from either noisy junction reads or noisy intron reads.
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tools may still result in incorrectly mapped reads and thus the input to Cufflinks/ISP

could still be noisy. Also, the low sensitivity of both programs is due to the fact that

many of the transcripts are assigned very low expression level (or not expressed at all)

based on the log-normal model [3]. These transcripts with few (or no) mapped reads

decrease the value of sensitivity.

4.3.1.2 Assembly for multiple sample RNA-Seq data

To compare the performance of these algorithms on multiple sample RNA-Seq

data, we generate six RNA-Seq datasets with different numbers of samples and evaluate

the sensitivity and precision of the programs. For each dataset, the expression level

of an isoform is independently assigned and 10% noisy reads are added as errors. To

reconstruct all isoforms from multiple samples, a straightforward algorithm is to merge

the RNA-Seq reads from all samples together and apply a transcriptome assembly tool

(such as Cufflinks) designed for single sample RNA-Seq data. As a comparison to our

ISP algorithm and Cuffmerge (which assembles transcripts for each sample separately

and then merges them together), we also test Cufflinks and ISP on pooled data where

RNA-Seq reads from all samples are merged together.

Figure 4.6 shows both sensitivity and precision of the four programs on different

numbers of samples. When only one sample is considered, the sensitivity of all programs

is the same. As more samples are added, all algorithms output more correct transcripts

and improve their sensitivity, and both ISP and Cuffmerge achieve similar levels of

sensitivity on six samples. As for the precision, ISP has a clear advantage, maintaining

40% to 60% higher values than Cuffmerge, and 60% to 80 % higher values than Cufflinks.

The increasing trend of sensitivity and precision for both ISP and Cuffmerge shows
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Figure 4.6: The sensitivity (top) and precision (bottom) of ISP and Cuffmerge on mul-
tiple samples, and on the pooled data (denoted as ISPpool and Cufflinks). The pooled
data were generated by merging reads from all samples.
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that both programs are able to take advantage of the existence of multiple samples

and improve their sensitivity and precision simultaneously as more samples are used.

Instead, the precisions of Cufflinks and ISP on the pooled data (Cufflinks and ISPpool)

drop slightly while their rates of increase in sensitivity fall behind those of ISP and

Cuffmerge. This is because as reads from more samples are merged, the splicing patterns

become more complicated. Although more isoforms can be discovered (thus increasing its

sensitivity), many incorrect isoforms are also predicted because of the increased difficulty

to untangle the splicing patterns (thus slighly decreasing its precision). Therefore, the

straightforward approach for dealing with multiple samples is not a good way to treat

multiple sample RNA-Seq data.

4.3.1.3 Transcriptome assembly and differential analysis

In differential analysis, we are interested in finding and ranking genes (or iso-

forms) that are differentially expressed among two samples (or two groups of samples).

Since isoforms assembled from individual samples may be different, it is necessary to

construct a “universal” set of isoforms from all samples, from which the expression level

estimation and statistical analysis can be performed. For example, Cufflinks includes

a set of programs [87] for differential analysis, and all of them are based on merging

isoforms from individual assemblies (using Cuffmerge).

We are interested in the effect of multiple sample transcriptome assembly on

differential analysis. We simulate two RNA-Seq datasets and generate a set of isoforms

for both samples by running (i) ISP and (ii) Cufflinks followed by Cuffmerge. To avoid

using different expression level estimation methods preferred by both methods, we use

Cuffdiff to estimate isoform expression levels and perform differential analysis (i.e.,
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Figure 4.7: The performance of both ISP and Cuffmerge on differential analysis. Here,
different numbers of top differentially expressed isoforms are considered. “% matched”
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calculating the p value and q value).
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Figure 4.8: The true and predicted fold changes obtained by ISP and Cuffmerge. The
two lines are the least squared regression lines for ISP (y = 0.76x+ 4.5) and Cuffmerge
(y = 0.30x+ 8.5).

We rank the isoforms according to their predicted expression level fold changes

between the two samples, and select different numbers of isoforms that show the great-

est changes of expression levels. Figure 4.7 shows the percentage of isoforms that are

matched to UCSC human known genes, and the percentage of matched ones that have

correct fold-change estimations. Here, a correct fold-change estimation is defined as an

estimated fold change within the [-2,+2] range of the true fold change. We show the

trends as we decrease the number of selected isoforms, since we usually prefer finding

fewer isoforms that are more differentially expressed between samples.
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ISP found a larger number of matched (i.e., true) isoforms than Cuffmerge

when more than 10 isoforms are selected. This is expected since ISP has a higher preci-

sion than Cuffmerge, as shown in the previous experiments. Furthermore, ISP outputs

more isoforms with correct fold-change estimations as fewer isoforms are selected. For

the top 10 and 20 ranked isoforms, 80% of the isoforms predicted by ISP had their fold

changes correctly estimated. On the other hand, the assembly results from Cuffmerge

led to less accurate fold-change estimations, since the percentage of correct fold-change

estimations decreased to a much lower level than ISP.

The better differential analysis results of ISP are further validated in Figure

4.8, where the estimated fold changes are compared to the true fold-change values.

Here, the results of 1000 top isoforms that are differentially expressed and are matched

to UCSC human known isoforms are shown. As can be seen from the figure, Cuffmerge

predicts the fold changes of a few transcripts much higher than their true values. The

regression lines between the predicted and true fold-change values for both programs

also show that ISP is able to estimate the fold-change values closer to the truth.

Because we use the same algorithm (Cuffdiff) to estimate the expression levels

of isoforms, we suspect that the low precision of Cuffmerge assembly led to the low

accuracy in expression level estimation, hence reducing its performance in fold-change

estimation.

4.3.2 Real RNA-Seq data results

To compare the performance of the algorithms on real RNA-Seq data, we use

the public RNA-Seq datasets of 7 cancer cell lines downloaded from the ENCODE

project [82]. These cell lines (GM12878, H1-hESC, K562, HeLa-S3, HepG2, HUVEC,

NHEK; NCBI GEO accession code: GSE23316) include normal and cancer cells of differ-
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ent tissues, and are the major cell models extensively used in biological and biomedical

research [83].

4.3.2.1 Transcriptome assembly results

It is difficult to measure exactly which isoform is expressed in real RNA-Seq

data since the current experimental techniques limit the ability to detect full-length

transcripts efficiently. However, to evaluate the performance of transcript assembly al-

gorithms on real RNA-Seq data, we argue that calculating both sensitivity and precision

with respect to UCSC human known isoforms is a reasonable approach.
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Figure 4.9: The number of predicted isoforms by ISP and Cuffmerge using multiple
samples. The shaded region at the bottom of the bar shows the number of predicted
isoforms that match UCSC human known isoforms.

Figure 4.9 shows the numbers of predicted isoforms together with the numbers

of predictions matching UCSC human known isoforms for both programs by using dif-

ferent numbers of samples. For a single sample, the number of isoforms predicted by
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Figure 4.10: The precisions of both alorithms on multi-exon isoforms using all samples
(A), and the precisions of both algorithms on isoforms grouped by the number of exons
(B-D). B, C and D show the corresponding precisions for isoforms with 2-4, 5-10 and
over 10 exons, respectively.

Cuffmerge’s is over 60, 000, which is approximately twice the number of the isoforms

predicted by ISP. As more RNA-Seq samples are added, more transcripts are merged by

Cuffmerge, and this number reaches 150, 000 (over 100% growth) when all seven samples

are included. In contrast, ISP shows a moderate increase in the number of predicted

isoforms, with only 40% more isoforms predicted for seven samples compared to using

only one sample. However, the number of isoforms that match UCSC human known

isoforms remains roughly the same for both programs, with ISP accounting for over 90%

of the numbers achieved by Cuffmerge. This illustrates that ISP is able to keep a high

precision while sacrificing sensitivity a little when the number of samples increases.

Cuffmerge predictions include a large number of single-exon transcripts that

do not match any UCSC human known isoforms. To study the effect of multiple samples

on the inference of isoforms containing more than 1 exon, we exclude these single-exon
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transcripts and calculate the precisions for isoforms grouped by their numbers of exons

(Figure 4.10). The values of precision decrease as more samples (and thus reads) are

added. This is different from our simulation results where a higher precision is obtained

for all programs when using more samples. The reason might be that our simulation

model is still too simple to capture the noise and errors in real RNA-Seq data.

ISP shows a higher precision than Cuffmerge on all multi-exon isoforms, and

when all seven samples are used, the precision is doubled compared to Cuffmerge (Figure

4.10 A) for isoforms containing 5-10 exons. For isoforms with more than 10 exons, the

difference between the two algorithms becomes smaller, but ISP still maintains a 70%

higher precision than Cuffmerge(Figure 4.10 C and D). Isoforms with more exons are

difficult to assemble since more errors may occur around splice junctions, and junction

reads are more likely to be missing. As a result, the high precision of ISP may be

attributed to its ability to handle noises effectively and to recover missing junctions by

correlating multiple samples.

Some coexpressed (and exclusively expressed) uncertain segments are detected

from 7 RNA-Seq samples, using the method described in Section 4.2.4. Figure 4.11

shows an example of the detected coexpressed segments in gene MEGF6. MEGF6

has two exon-skipping events, one skips exon A and the other skips exons B and C

(marked in Figure 4.11). Both distributions of Pall and Pref for MEGF6 are statistically

different (P < 0.002, Wilcoxon rank-sum test). Exon A and exons B, C are determined

coexpressed based on the JS metrics between exons A and B and between exons A and

C. This is confirmed by the two UCSC known isoforms of MEGF6, one of which includes

all the exons and the other includes none of them.
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4.3.2.2 Differential analysis

The expression profiles of some ENCODE cell lines are measured by both RNA-

Seq and Affymetrix Human Exon 1.0 ST Array (NCBI GEO accession code: GSE19090).

We assemble transcripts from the RNA-Seq reads of two cell lines (GM12878 and K562)

that have corresponding microarray experiments. Based on the assembly results, the

expression levels of transcripts are calculated and compared with the microarray mea-

surements.

An Affymetrix Human Exon Array uses “probesets” (i.e., sets of probes) to

measure the expression levels of exons. To calculate the expression levels of transcripts,

we only keep probesets whose measured exons correspond to only one RefSeq transcript

(called “unique” probesets). For those RefSeq transcripts that include at least one such

unique probeset, their expression levels are calculated by averaging the measurements

of all unique probesets. As in the simulated experiments, isoforms are reconstructed by

ISP and Cuffmerge separately, and Cuffdiff is used for expression level estimation and

differential analysis. Only isoforms that are matched to RefSeq transcripts are included

in the comparison.
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Table 4.1: The correlation to microarray fold-change calculations, and the number
of isoforms that are differentially expressed in microarray measurements among top
ranked isoforms.

Top transcripts 10 50 100 200

PCC1 ISP 0.95 0.86 0.87 0.86
Cuffmerge 0.89 0.82 0.82 0.81

confirmed (p < 0.05)2
ISP 9 45 94 170

Cuffmerge 8 43 82 148

confirmed (p < 0.001)2
ISP 8 35 77 135

Cuffmerge 7 32 64 108

1The Pearson Correlation Coefficient of the fold changes calculated by RNA-Seq and
Affymetrix Human Exon 1.0 ST Array.
2 The number of isoforms that are differentially expressed, confirmed by microarray
data.

ISP and Cuffmerge detected 4468 and 4627 transcripts that have corresponding

expression level estimations from microarray data, respectively, and Figure 4.12 shows

the correlations of fold-change calculations between microarray and RNA-Seq data. The

fold changes detected by RNA-Seq are larger than the fold changes calculated by mi-

croarray, which is consistent with previous findings [21]. The fold-change calculations

based on the assembly results of ISP and Cuffmerge are quite accurate, while ISP reaches

a higher PCC (Pearson Correlation Coefficient) value.

To further compare the differential analysis results, we rank transcripts accord-

ing to their expression level changes, and select the transcripts that show the largest

fold changes between samples (similar to the simulated experiments). For the corre-

sponding microarray measurements of transcripts, we use student’s t-test to check the

hypothesis that these transcripts are differentially expressed between samples. Table

4.1 shows the PCC values of fold-change calculations between RNA-Seq and microar-

ray measurements, and the number of differentially expressed transcripts confirmed by

microarray data. The fold-change calculations based on ISP assembly results are more

accurate since they have higher PCC values than Cufflinks, and a higher number of
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predictions confirmed by microarray using different p value cutoffs. This shows that

by using the transcripts reconstructed from ISP, we are able to get a more accurate

differential analysis result than Cuffmerge.

4.4 Conclusion

With the advance of second generation sequencing technologies, it is now pos-

sible to reconstruct full-length transcripts, estimate their expression levels, and compare

the structural and quantitative differences between samples. Transcriptome assembly

can also benefit from the existence of multiple sample RNA-Seq data. However, inherent

RNA-Seq errors have a negative impact on the performance of transcriptome assembly

methods, which may in turn affect downstream differential analysis. In this chapter, we

designed an algorithm (ISP) to reconstruct transcriptomes for multiple samples that is

able to handle errors effectively.

RNA-Seq errors may come from various sources, for example chimeric RNA

fragments during the RNA-Seq library preparation, and erroneous read mappings due

to errors in both reads and the reference genome. These errors introduce a high false

positive rate in the predicted isoforms. When combining assembly results from multiple

samples, these false isoforms may accumulate and affect differential analysis. By using

an iterative linear programming algorithm, ISP is able to discard erroneous segments

or junctions, thus greatly improving the precision of the predictions. Furthermore, by

using the multiple sample connectivity graph and by recovering missing junctions, our

algorithm is able to make full use of the information among multiple samples to help

assemble transcripts.

Both simulated and real experimental results show that, obtaining a set of ac-
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curately assembled transcripts is crucial for downstream differential analysis. A large

number of false positives decrease the accuracy of estimating the expression fold changes

of isoforms between samples. ISP is able to achieve a better differential analysis perfor-

mance by accurately assembling transcripts among samples.
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Chapter 5

Conclusions and Future Work

RNA-Seq transcriptome assembly is an important and challenging problem in

computational biology. In this dissertation, we discuss three different algorithms of

RNA-Seq transcriptome assembly: IsoLasso, CEM and ISP. IsoLasso considers three

different objectives (prediction accuracy, sparsity and completeness) simultaneously,

and uses a modified LASSO regression algorithm to assemble transcripts and estimate

transcript expression levels. CEM uses the quasi-multinomial distribution to handle

different biases in RNA-Seq, and the negative Dirichlet distribution to reach sparsity.

The probabilistic objective function is optimized by using a component elimination

Expectation-Maximization (EM) algorithm. ISP builds a multiple sample connectiv-

ity graph (MSCG) directly from multiple sample RNA-Seq data, and solves a linear

programming problem to accurately assemble transcripts from erroneous and multiple-

sample RNA-Seq data. The performances of all three algorithms are validated by sim-

ulated and real RNA-Seq experiments.

Second generation sequencing (including RNA-Seq and RNA-Seq transcrip-

tome assembly) is an active research area with many questions unanswered. For exam-
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ple, almost all transcriptome assembly tools follow either the ab initio or the de novo

approaches, and it remains unclear whether a new tool integrating both approaches will

achieve a better performance. Although various mathematical models are proposed to

correct RNA-Seq biases, the exact biological mechanism behind RNA-Seq biases is un-

known. Further research efforts are required to obtain a more thorough understanding of

RNA-Seq biases, and to develop new mathematical and statistical models to better de-

scribe RNA-Seq biases. Finally, new sequencing technologies, especially single molecule

sequencing [17, 77, 20, 78], are posting even more challenges in computational biology,

and new algorithms to address these challenges will be the key issue to bridge the gap

between sequencing data and novel biological discoveries.
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