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Abstract

This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of 

longitudinal static and dynamic marginal structural models. We consider a longitudinal data 

structure consisting of baseline covariates, time-dependent intervention nodes, intermediate time-

dependent covariates, and a possibly time-dependent outcome. The intervention nodes at each 

time point can include a binary treatment as well as a right-censoring indicator. Given a class of 

dynamic or static interventions, a marginal structural model is used to model the mean of the 

intervention-specific counterfactual outcome as a function of the intervention, time point, and 

possibly a subset of baseline covariates. Because the true shape of this function is rarely known, 

the marginal structural model is used as a working model. The causal quantity of interest is 

defined as the projection of the true function onto this working model. Iterated conditional 

expectation double robust estimators for marginal structural model parameters were previously 

proposed by Robins (2000, 2002) and Bang and Robins (2005). Here we build on this work and 

present a pooled TMLE for the parameters of marginal structural working models. We compare 

this pooled estimator to a stratified TMLE (Schnitzer et al. 2014) that is based on estimating the 

intervention-specific mean separately for each intervention of interest. The performance of the 

pooled TMLE is compared to the performance of the stratified TMLE and the performance of 
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inverse probability weighted (IPW) estimators using simulations. Concepts are illustrated using an 

example in which the aim is to estimate the causal effect of delayed switch following 

immunological failure of first line antiretroviral therapy among HIV-infected patients. Data from 

the International Epidemiological Databases to Evaluate AIDS, Southern Africa are analyzed to 

investigate this question using both TML and IPW estimators. Our results demonstrate practical 

advantages of the pooled TMLE over an IPW estimator for working marginal structural models 

for survival, as well as cases in which the pooled TMLE is superior to its stratified counterpart.

Keywords

dynamic regime; semiparametric statistical model; targeted minimum loss based estimation; 
confounding; right censoring

1 Introduction

Many studies aim to learn about the causal effects of longitudinal exposures or interventions 

using data in which these exposures are not randomly assigned. Specifically, consider a 

study in which baseline covariates, time-varying exposures or treatments, time-varying 

covariates, and an outcome of interest, such as death, are observed on a sample of subjects 

followed over time. The exposures of interest can both depend on past covariates and affect 

future covariates, as well as the outcome. Censoring may also occur, possibly in response to 

past treatment and covariates. Such data structures are ubiquitous in observational cohort 

studies. For example, a sample of HIV-infected patients might be followed longitudinally in 

clinic and data collected on antiretroviral prescriptions, determinants of prescription 

decisions including CD4+ T cell counts and plasma HIV RNA levels (viral loads), and vital 

status. Such data structures also occur in randomized trials when the exposure of interest is 

(non-random) compliance with a randomized exposure or includes non-randomized 

mediators of an exposure’s effect.

The causal effects of longitudinal exposures (as well as the effects of single time point 

exposures when the outcome is subject to censoring) can be formally defined by contrasting 

the distribution of a counter-factual outcome under different “interventions” to set the values 

of the exposure and censoring variables. For example, the counterfactual survival curve of 

HIV-infected subjects following immunological failure of antiretroviral therapy might be 

contrasted under a hypothetical intervention in which all subjects were switched 

immediately to a new antiretroviral regimen versus an intervention in which all subjects 

remained on their failing therapy [1]. In the presence of censoring due to losses to follow up, 

these counterfactuals of interest might be defined under a further intervention to prevent 

censoring. Interventions such as these, under which all subjects in a population are 

deterministically assigned the same vector of exposure and censoring decisions (for 

example, do not switch and remain under follow up) are referred to as “static regimes.”

More generally, counterfactuals can be defined under interventions that assign a treatment or 

exposure level to each subject at each time point based on that subject’s observed past. For 

example, counterfactual survival might be compared under interventions to switch all 

patients to second line antiretroviral therapy the first time their CD4+T cell count crosses a 
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certain threshold, for some specified set of thresholds [2]. Such subject-responsive treatment 

strategies have been referred to as individualized treatment rules, adaptive treatment 

strategies, or “dynamic regimes” (see, for example, Robins [3]; Murphy et al. [4]; Hernan et 

al. [5]). Additional examples include strategies for deciding when to start antiretroviral 

therapy [6, 7] and strategies for modifying dose or drug choice based on prior response and 

adverse effects. Investigation of the effects of such dynamic regimes makes it possible to 

learn effective strategies for assigning an intervention based on a subject’s past and is thus 

relevant to any discipline that seeks to learn how best to use past information to make 

decisions that will optimize future outcomes.

The static and dynamic regimes described above are longitudinal – they involve 

interventions to set the value of multiple treatment and censoring variables over time. For 

example, counterfactual survival under no switch to second line therapy corresponds to a 

subject’s survival under an intervention to prevent a patient from switching at each time 

point from immunologic failure until death or the end of the study. A time-dependent causal 

dose–response curve, which plots the mean of the intervention-specific counter-factual 

outcome at time t as a function of the interventions through time t, can be used to summarize 

the effects of these longitudinal interventions. For example, a plot of the counterfactual 

survival probability as a function of time since immunologic failure, for a range of 

alternative CD4+ T cell count thresholds used to initiate a switch captures the effect of 

alternative switching strategies on survival.

Formal causal frameworks provide a tool to establish the conditions under which such causal 

dose–response curves can be identified from the observed data. Longitudinal static and 

dynamic regimes are often subject to time-dependent confounding – time-varying variables 

may confound the effect of future treatments while being affected by past treatment [8]. 

Traditional approaches to the identification of point treatment effects, which are based on 

selection of a single set of covariates for regression or stratification-based adjustment, break 

down when such time-dependent confounding is present. However, the mean counter-factual 

outcome under a longitudinal static or dynamic regime may still be identified under the 

appropriate sequential randomization and positivity assumptions (reviewed in Robins and 

Hernan [9]).

Under these assumptions, causal dose–response curves can be estimated by generating 

separate estimates of the mean counterfactual outcome for each time point and intervention 

(or regime) of interest. For example, one could generate separate estimates of the 

counterfactual survival curve for each CD4-based threshold for switching to second line 

therapy. In this manner, one obtains fits of the time-dependent causal dose–response curve 

for each of a range of possible thresholds, which together summarize how the mean 

counterfactual outcome at time t depends on the choice of threshold.

A number of estimators can be used to estimate intervention-specific mean counterfactual 

outcomes. These include inverse probability weighted (IPW) estimators (for example, [3, 5, 

10]), “G-computation” estimators (typically based on parametric maximum likelihood 

estimation of the non-intervention components of the data generating process) (for example, 

[7, 11, 12]), augmented-IPW estimators (for example, [13-16, 31]), and targeted maximum 
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likelihood (or minimum loss) estimators (TMLEs) (for example, [17, 18]). In particular, van 

der Laan and Gruber [19] combine the targeted maximum likelihood framework [20, 21] 

with important insights and the iterated conditional expectation estimators established in 

Robins [3, 29] and Bang and Robins [22].

Both the theoretical validity and the practical utility of these estimators rely, however, on 

reasonable support for each of the interventions of interest, both in the true data generating 

distribution and in the sample available for analysis. For example, in order to estimate how 

survival is affected by the threshold CD4 count used to initiate an antiretroviral treatment 

switch, a reasonable number of subjects must in fact switch at the time indicated by each 

threshold of interest. Without such support, estimators of the intervention-specific outcome 

will be ill-defined or extremely variable. Although one might respond to this challenge by 

creating coarsened versions of the desired regimes, so that sufficient subjects follow each 

coarsened version, such a method introduces bias and leaves open the question of how to 

choose an optimal degree of coarsening.

Since adequate support for every intervention of interest is often not available, Robins [23] 

introduced marginal structural models (MSMs) that pose parametric or small semiparametric 

models for the counter-factual conditional mean outcome as a function of the choice of 

intervention and time. For example, static MSMs have been used to summarize how the 

counterfactual hazard of death varies as a function of when antiretroviral therapy is initiated 

[24] and when an antiretroviral regimen is switched [25]. The extrapolation assumptions 

implicitly defined by non-saturated MSMs make it possible to estimate the coefficients of 

the model, and thereby the causal dose–response curve, even when few or no subjects follow 

some interventions of interest.

While MSMs were originally developed for static interventions [8, 10, 23, 24] they naturally 

generalize to classes of dynamic (or even more generally, stochastic) interventions as shown 

in van der Laan and Petersen [2] and Robins et al. [26]. Dynamic MSMs have been used, for 

example, to investigate how counterfactual hazard of death varies as a function of CD4+ T 

cell count threshold used to initiate antiretroviral therapy [6] or to switch antiretroviral 

therapy regimens [2]. Because the true shape of the causal dose–response curve is typically 

unknown, we have suggested that MSMs be used as working models. The target causal 

coefficients can then be defined by projecting the true causal dose–response curve onto this 

working model [20, 27].

The coefficients of both static and dynamic MSMs are frequently estimated using IPW 

estimators [2, 8, 10, 26]. These estimators have a number of attractive qualities: they can be 

intuitively understood, they are easy to implement, and they provide an influence curve-

based approach to standard error estimation. However, IPW estimators also have substantial 

shortcomings. In particular, they are biased if the treatment mechanism used to construct the 

weights is estimated poorly (for example, using a misspecified parametric model). Further, 

IPW estimators are unstable in settings of strong confounding (near or partial positivity 

violations) and the resulting bias in both point and standard error estimates can result in poor 

inference (for a review of this issue see Petersen et al. [28]). Dynamic MSMs can exacerbate 

this problem, as the options for effective weight stabilization are limited [6, 26].

Petersen et al. Page 4

J Causal Inference. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Asymptotically efficient and double robust augmented-IPW estimators of the estimand 

corresponding to longitudinal static MSM parameters were developed by Robins and 

Rotnitzky [14], Robins [13], Robins et al. [16]. These estimators are defined as a solution of 

an estimating equation, and as a result may be unstable due to failure to respect the global 

constraints implied by the model and the parameter. Robins [13, 29] and Bang and Robins 

[22] introduced an alternative double robust estimating equation-based estimator of 

longitudinal MSM parameters based on the key insight that both the statistical target 

parameter and the corresponding augmented-IPW estimating function (efficient influence 

curve) for MSMs on the intervention-specific mean can be represented as a series of iterated 

conditional expectations. In addition, they proposed a targeted sequential regression method 

to estimate the nuisance parameters of the augmented-IPW estimating equation. This 

innovative idea allowed construction of a double robust estimator that relies only on 

estimation of minimal nuisance parameters beyond the treatment mechanism.

In this paper, we describe a double robust substitution estimator of the parameters of a 

longitudinal marginal structural working model. The estimator presented incorporates the 

key insights and prior estimator of Robins [13, 29] and Bang and Robins [22] into the 

TMLE framework. Specifically, we expand on this prior work in several ways. We propose 

a TMLE for marginal structural working models for longitudinal dynamic regimes, possibly 

conditional on pre-treatment covariates. The TMLE described is defined as a substitution 

estimator rather than as solution to an estimating equation and incorporates data-adaptive/

machine learning methods in generating initial fits of the sequential regressions. Finally, we 

further generalize the TMLE to apply to a larger class of parameters defined as arbitrary 

functions of intervention-specific means across a user-supplied class of interventions.

TMLE for the parameters of a MSM for “point treatment” problems, in which adjustment 

for a single set of covariates known not to be affected by the intervention of interest is 

sufficient to control for confounding, including history-adjusted MSMs, have been 

previously described [30, 31]. However, the parameter of a longitudinal MSM on the 

intervention-specific mean under sequential interventions subject to time-dependent 

confounding is identified as a distinct, and substantially more complex, estimand than the 

estimand corresponding to a point treatment MSM, and thus requires distinct estimators. An 

alternative TMLE for longitudinal static MSMs, which we refer to as a stratified TMLE, was 

described by Schnitzer et al. [32]. The stratified TMLE uses the longitudinal TMLE of van 

der Laan and Gruber [19] for the intervention-specific mean to estimate each of a set of 

static treatments and combines these estimates into a fit of the coefficients of a static 

longitudinal MSM on both survival and hazard functions. The stratified TMLE [32] resulted 

in substantially lower standard error estimates than an IPW estimator in an applied data 

analysis and naturally generalizes to dynamic MSMs. However, it remains vulnerable when 

there is insufficient support for some interventions of interest. In contrast, the TMLE we 

describe here pools over the set of dynamic or static interventions of interest as well as 

optionally over time when updating initial fits of the likelihood. It thus substantially relaxes 

the degree of data support required to remain an efficient double robust substitution 

estimator.
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In summary, a large class of causal questions can be formally defined using static and 

dynamic longitudinal MSMs, and the parameters of these models can be identified from 

non-randomized data under well-studied assumptions. This article describes a TMLE that 

builds on the work of Robins [13, 29] and Bang and Robins [22] in order to directly target 

the coefficients of a marginal structural (working) model for a user-supplied class of 

longitudinal static or dynamic interventions. The theoretical properties of the pooled TMLE 

are presented, its implementation is reviewed, and its practical performance is compared to 

alternatives using both simulated and real data. R code [33] implementing the estimator and 

evaluating it in simulations is provided in online supplementary materials and as an open 

source R library ltmle [34].

1.1 Organization of paper

In Section 2, we define the observed data and a statistical model for its distribution. We then 

specify a non-parametric structural equation model for the process assumed to generate the 

observed data. We define counterfactual outcomes over time based on static or dynamic 

interventions on multiple treatment and censoring nodes in this system of structural 

equations. Our target causal quantity is defined using a marginal structural working model 

on the mean of these intervention-specific counterfactual outcomes at time t. The general 

case we present includes marginal structural working models on both the counterfactual 

survival and the hazard. We briefly review the assumptions under which this causal quantity 

is identified as a parameter of the observed data distribution. The statistical estimation 

problem is thus defined in terms of the statistical model and statistical target parameter.

Section 3 presents the TMLE defined by (a) representation of the statistical target parameter 

in terms of an iteratively defined set of conditional mean outcomes, (b) an initial estimator 

for the intervention mechanism and for these conditional means, (c) a submodel through this 

initial estimator and a loss function chosen so that the generalized score of the submodel 

with respect to this loss spans the efficient influence curve, (d) a corresponding updating 

algorithm that updates the initial estimator and iterates the updating till convergence, and (e) 

final evaluation of the TMLE as a plug-in estimator. We also present corresponding 

influence curve-based confidence intervals for our target parameter.

Section 4 illustrates the results presented in Section 3 using a simple three time point 

example and focusing on a marginal structural working model for counterfactual survival 

probability over time. This example is used to clarify understanding of notation and to 

provide a step-by-step overview of implementation of the pooled TMLE.

Section 5 compares the pooled TMLE described in this paper with alternative estimators for 

the parameters of longitudinal dynamic MSMs for survival. We provide a brief overview of 

the stratified TMLE [32], discuss scenarios in which each estimator may be expected to 

offer superior performance, and illustrate the breakdown of the stratified TMLE in a finite 

sample setting in which some interventions of interest have no support. As IPW estimators 

are currently the most common approach used to fit longitudinal dynamic MSMs, we also 

discuss two IPW estimators for these parameters.

Petersen et al. Page 6

J Causal Inference. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Section 6 presents a simulation study in which the pooled TMLE is implemented for a 

marginal structural working model for survival at time t. Its performance is compared to 

IPW estimators and to the stratified TMLE for a simple data generating process and in a 

simulation designed to be similar to the data analysis presented in the following section, 

which includes time-dependent confounding and right censoring.

Section 7 presents the results of a data analysis investigating the effect of switching to 

second line therapy following immunologic failure of first line therapy using data from HIV-

infected patients in the International Epidemiological Databases to Evaluate AIDS (IeDEA), 

Southern Africa. Throughout the paper, we illustrate notation and concepts using a 

simplified data structure based on this example.

Appendices contain a derivation of the efficient influence curve, further simulation details, 

an alternative TMLE, and reference table for notation. In online supplementary files, we 

present R code that implements the pooled TMLE, the stratified TMLE, and two IPW 

estimators for a marginal structural working model of survival. A corresponding publicly 

available R-package, ltmle, was released in May 2013 (http://cran.r-project.org/web/

packages/ltmle/).

2 Definition of statistical estimation problem

Consider a longitudinal study in which the observed data structure O on a randomly sampled 

subject is coded as

where L(0) are baseline covariates, A(t) denotes an intervention node at time t, and L(t) 

denotes covariates measured between intervention nodes A(t − 1) and A(t). Assume that 

there is an outcome process Y(t) ⊆ L(t) for t = 1, …, K + 1, where L(K + 1) = Y(K + 1) is the 

final outcome measured after the final treatment A(K). The intervention node A(t) = (A1(t), 

A2(t)) has a treatment node A1(t) and a censoring indicator A2(t), where A2(t) = 1 indicates 

that the subject is right censored by time t. We observe n independent and identically 

distributed (i.i.d.) copies O1, …, On of O, and we will denote the probability distribution of 

O with PO, 0, or more simply, as P0. Throughout, we use subscript 0 to denote the true 

distribution.

Running example—Here and in subsequent sections, we illustrate notation using an 

example in which n i.i.d. HIV-infected subjects with immunological failure on first line 

therapy are sampled from some target population. Here t = 0 denotes time of immunological 

failure. L(t) denotes time-varying covariates, and includes CD4+ T cell count at time t and 

Y(t), an indicator of death by time t. In addition to baseline values of these time-varying 

covariates, L(0) includes non-time-varying covariates such as sex. The intervention nodes of 

interest are A(t), t = 0, … K, where A(t) is defined as an indicator of switch to second line 

therapy by time t; in our simplified example, we assume no right censoring. For notational 

convenience, after a subject dies all variables for that subject are defined as equal to their 

last observed value.
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2.1 Statistical model

We use the notation L̄(k) = (L(0), …, L(k)) to denote the history of time-dependent variable 

L from t = 0, …, k. Define the “parents” of a variable L(k), denoted Pa(L(k)), as those 

variables that precede L(k) (i.e., Pa(L(k)) = L̄(k − 1), Ā(k − 1)). Similarly, Ā(k) = (A(0), …, 

A(k)) is used to denote the history of the intervention process and Pa(A(k)) to denote a 

specified subset of the variables that precede A(k) such that the distribution of A(k) given the 

whole past is equal to the distribution of A(k) given its parents (Pa(A(k)) ⊆ L̄(k), Ā(k − 1)). 

Under our causal model, which we introduce below, these parent sets Pa(L(k)) and Pa(A(k)) 

correspond to the set of variables that may affect the values taken by L(k) and A(k), 

respectively.

We use QL(k),0 to denote the conditional distribution of L(k), given Pa(L(k)), and, gA(k),0 to 

denote the conditional distribution of A(k), given Pa(A(k)). We also use the notation: 

, g0 ≡ g0:k and define  and Q0 ≡ Q0:k+1. In our 

example, QL(k),0 denotes the joint conditional distribution of CD4 count and death at time k, 

given the observed past (including past CD4 count and switching history), and gA(k),0 

denotes the conditional probability of having switched to second line by time k given the 

observed past (deterministically equal to one for those time points at which a subject has 

already switched).

The probability distribution P0 of O can be factorized according to the time-ordering as

We consider a statistical model M for P0 that possibly assumes knowledge on the 

intervention mechanism g0. For example, the treatment of interest, such as switch time, may 

be known to be randomized, or to be assigned based on only a subset of the observed past. If 

Q is the set of all values for Q0 and G the set of possible values of g0, then this statistical 

model can be represented as M = {P = Qg : Q ∈ Q, g ∈ G}. In this statistical model, Q puts 

no restrictions on the conditional distributions QL(k),0, k = 0, …, K + 1.

2.2 Causal model and counterfactuals of interest

By specifying a structural causal model [35, 36] or equivalently, a system of non-parametric 

structural equations, it is assumed that each component of the observed longitudinal data 

structure (e.g. A(k) or L(k)) is a function of a set of observed parent variables and an 

unmeasured exogenous error term. Specifically, consider the non-parametric structural 

equation model (NPSEM) defined by
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and

in terms of a set of deterministic functions (fL(k) : k = 0, …, K + 1), (fA(k) : k = 0, …, K), and 

a vector of unmeasured random errors or background factors U = (UL(0), …, UL(K +1), UA(0), 

…, UA(K)) [35, 36].

To continue our HIV example, we might specify a causal model in which both time-varying 

CD4 count, death, and the decision to switch potentially depended on a subject’s entire 

observed past, as well as unmeasured factors. Alternatively, if we knew that switching 

decisions were made only in response to a subject’s most recent CD4 count and baseline 

covariates, the parent set of A(k) could be restricted to exclude earlier CD4 count values.

This causal model represents a model MF for the distribution of (O, U) and provides a 

parameterization of the distribution of the observed data structure O in terms of the 

distribution of the random variables (O, U) modeled by the system of structural equations. 

Let PO, U,0 denote the latter distribution. The causal model MF encodes knowledge about the 

process, including both measured and unmeasured variables, that generated the observed 

data. It also implies a model for the distribution of counterfactual random variables under 

specific interventions on (or changes to) the observed data generating process. Specifically, 

a post-intervention (or counterfactual) distribution is defined as the distribution that O would 

have had under a specified intervention to set the value of the intervention nodes Ā = (A(0), 

…, A(K)).

The intervention of interest might be static, with fA(k), k = 0, …, K replaced by some 

constant for all subjects. For example, an intervention to set A(k) = 0 for k = 0, …, K 

corresponds to a static intervention to delay switching indefinitely for all subjects. 

Alternatively, the intervention might be dynamic, with fA(k), k = 0, …, K replaced by some 

specified function dk(L̄(k)) of a subject’s observed covariates. For example, an intervention 

could set A(k) to 1 the first time a subject’s CD4 count drops below some threshold. As 

static regimes are a special case of dynamic regimes, in the following sections we define the 

statistical estimation problem and develop our estimator for the more general dynamic case. 

Throughout, we use “rule” to refer to a specific intervention, static or dynamic, that sets the 

values of Ā.

Given a rule d, the counterfactual random variable Ld = (L(0), Ld(1), …, Ld(K + 1)) is 

defined by deterministically setting all the A(k) nodes equal to dk(L̄(k)) in the system of 

structural equations. The probability distribution of this counterfactual Ld is called the post-

intervention or counterfactual distribution of L and is denoted with Pd, 0. Causal effects are 

defined as parameters of a collection of post-intervention distributions under a specified set 

of rules. For example, we might compare mean counterfactual survival over time under a 

range of possible switch times.
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2.3 Marginal structural working model

Our causal quantity of interest is defined using a marginal structural working model to 

summarize how the mean counterfactual outcome at time t varies as a function of the 

intervention rule d, time point t, and possibly some baseline covariate V that is a function of 

the collection of all baseline covariates L(0). Specifically, given a class of dynamic 

treatment rules D, we can define a true time-dependent causal dose–response curve (EPd,0 
(Yd(t)∣V) : d ∈ D, t ∈ τ) for some subset τ ⊆ {1, …, K + 1}. Note that choice of V (as well as 

choice of τ and D) depends on the scientific question of interest. In many cases V will be 

defined as the empty set. In other cases, it may be of interest to estimate how the causal 

dose–response curve varies depending on the value of some subset of baseline variables.

We specify a working model Θ ≡ {mβ : β} for this true time-dependent causal dose–

response curve. Our causal quantity of interest is then defined as a projection of the true 

causal dose–response curve onto this working model, which yields a definition mβ0 
representing this projection. For example, if Y(t) ∈ [0, 1], we may use a logistic working 

model Logit  for a set of basis functions, and define our 

causal quantity of interest as

where h(d, t, ν) is a user-specified weight function. We discuss choice of h(d, t, ν) further 

below.

Such a  solves the equation

This equation can be replaced by

which corresponds with

In this case we have that .
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To be completely general, we will define our causal quantity of interest as a function f of 

E(Yd(t)∣L(0)) across d ∈ D, t ∈ τ and the distribution QL(0) of L(0). Thus we define

In addition to including the above example, this general formulation allows us to include 

marginal structural working models on continuous outcomes and on the intervention-

specific hazard.

2.3.1 Choice of a weight function h (d, t, V)—Unless one is willing to assume that the 

MSM mβ is correctly specified, choice of the weight function changes the target quantity 

being estimated. Choice of the weight function should thus be guided by the motivating 

scientific question. For example, the simple weight function h(d, t, V) = 1 gives equal weight 

to all time points and switch times. Alternatively, choice of a weight function equal to the 

marginal probability of following rule d through time t within strata of V gives greater 

weight to those rule, time, and baseline strata combinations with more support in the data, 

and zero weight to values (d, t, ν) without support. As discussed further below, choice of a 

weight function can thus also affect both identifiability of the target parameter and the 

asymptotic and finite sample properties of IPW and TML estimators.

2.3.2 Running example—Continuing our HIV example, recall that static regimes are a 

special case of dynamic regimes and define the set of treatment rules of interest D as the set 

of possible switch times (switch at time 0, switch at time 1, …, never switch). We might 

focus on the marginal counterfactual survival curves under a range of switch times (with V 

defined as the empty set). Alternatively, we might investigate how survival under a specific 

switch time differs among subjects that have a CD4+ T cell count < 50 versus ≥ 50 cells/μl 

at time of failure (V = I(CD4(0) < 50) where CD4(0) ⊂ L(0)). For simplicity, for the 

remainder of the paper we use a running example in which we avoid conditioning on 

baseline covariates (i.e. V = {}).

The true time-dependent causal dose–response curve (E0 (Yd (t)) : d ∈ D, t ∈ 1, …, K + 1) 

corresponds to the set of counterfactual survival curves (through time K + 1) that would 

have been observed for the population as a whole under each possible switch time. In this 

example, each rule d implies a single vector ā; we use d(t) to refer to the value a(t) implied 

by rule d and sd to refer to the switch time assigned by rule d. One might then specify the 

following marginal structural working model to summarize how the counter-factual 

probability of death by time t varies as a function of t and assigned switch time:

where d(t − 1)(t − sd) is time since switch for subjects who have switched by time t − 1, and 

otherwise 0. For simplicity, we choose h(d, t) = 1 and define the target causal quantity of 

interest as the projection of (E0 (Yd(t)) : d ∈ D, t ∈ 1, …, K + 1) onto mβ(d, t) according to
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(1)

2.4 Identifiability and definition of statistical target parameter

We assume the sequential randomization assumption [11]

(2)

(noting that weaker identifiability assumptions are also possible; see, for example, Robins 

and Hernan [9]). In our HIV example, the plausibility of this assumption would be 

strengthened by measuring all determinants of the decision to switch to second line therapy 

that also affect mortality via pathways other than switch time.

We further assume positivity, informally an assumption of support for each rule of interest 

across covariate histories compatible with that rule of interest. Specifically, for each d, t, V 

for which h(d, t, V)≠0, we assume

(3)

In our HIV example, in which h(d, t)= 1, a subject who has not already switched should 

have some positive probability of both switching and not switching regardless of his 

covariate history. Under these assumptions, the counterfactual probability distribution of Ld 

is identified from the true observed data distribution P0 and given by the G-computation 

formula  [11]:

(4)

where . Thus this G-

computation formula  is defined by the product over all L(k)-nodes of the conditional 

distribution of the L(k)-node, given its parents, and given Ā(k − 1) = d̄(L̄(k − 1)). If 

identifiability assumptions (2) and (3) hold for each rule d ∈ D, then the time-dependent 

causal dose–response curve (E0 (Yd (t)∣V) : d ∈ D, t ∈ τ) is also identified from P0 through 

the collection of G-computation formulas ( ). For the remainder of the paper, we 

choose τ = 1, …, K + 1 and at times suppress the index set τ.

Let Ld = (L(0), Ld(1), …, Ld(K + 1)) denote a random variable with probability distribution 

, which includes as a component the process Yd = (Yd (0), Yd (1), …, Yd (K + 1)). The 

above-defined causal quantities can now be defined as a parameter of P0. For example, if 

Y(t) ∈ [0,1] and the causal parameter of interest is a vector of coefficients in a logistic MSM, 

then we have
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The estimand ψ0 = β0 solves the equation

The causal identifiability assumptions put no restrictions on the probability distribution P0 

so that our statistical model is unchanged, with the exception that we now also assume 

positivity (3). The statistical target parameter is now defined as a mapping Ψ : M → IRJ that 

maps a probability distribution P ∈ M of O into a vector of parameter values Ψ(P).

The statistical estimation problem is now defined: We observe n i.i.d. copies O1, …, On of O 

~ P0 ∈ M and we want to estimate Ψ(P0) for a defined target parameter mapping Ψ : M → 

IRJ. For this estimation problem, the causal model plays no further role – even when one 

does not believe any of the causal assumptions, one might still argue that the statistical 

parameter Ψ(P0) = ψ0 represents an effect measure of interest controlling for all the 

measured confounders.

3 Pooled TMLE of working MSM for dynamic treatments and time-

dependent outcome process

The TMLE algorithm starts out with defining the target parameter as a Ψ(Q̄, QL(0)) for a 

particular choice Q̄ that is easier to estimate than the whole likelihood Q. It requires the 

derivation of the efficient influence curve D*(P) which can also be represented as D*(Q̄, 

QL(0), g). Subsequently, it defines a loss function L(Q̄, QL(0)) for (Q̄
0, QL(0),0) and a 

submodel ((Q̄(ε, g), QL(0)(ε0) : ε, ε0) through (Q̄, QL(0)) at (ε, ε0) = 0, indexed by the 

intervention mechanism g, chosen so that  spans the 

efficient influence curve D*(Q̄, QL(0), g). Given these choices, it remains to define the 

updating algorithm which simply uses the submodel through the initial estimator to 

determine the update by fitting (ε, ε0) with minimum loss based estimation (MLE), and this 

updating step is iterated till convergence at which point the MLE of (ε, ε0) equals 0. By the 

fact that an MLE solves its score equation, it then follows that the final update , 

also solves the efficient influence curve equation , which 

provides the foundation for its asymptotic linearity and efficiency. The remainder of this 

section presents each of these steps in detail.

An estimator of ψ0 is efficient among the class of regular estimators if and only if it is 

asymptotically linear with influence curve D*(Q0, g0)[37]. The efficient influence curve can 

thus be used as an ingredient for the construction of an efficient estimator. One approach is 
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to represent the efficient influence curve as an estimating function D*(Q, g, ψ) and define an 

estimator ψn as the solution of PnD*(Qn, gn, ψ) = 0, given nitial estimators Qn, gn. This is 

referred to as the estimating equation methodology for construction of locally efficient 

estimators [38]. Here, we instead use the efficient influence curve to define a targeted 

maximum likelihood (substitution) estimator  that, as a by-product of the procedure, 

satisfies  and thus also solves the efficient influence curve estimating 

equation. Under regularity conditions, one can now establish that, if 

consistently estimates D* (Q0, g0), then  is asymptotically linear with influence curve 

equal to the efficent influence curve, so that  is asymptotically efficient. In addition, 

robustness properties of the efficient influence curve are naturally inherited by the TMLE.

Robins [13, 29] and Bang and Robins [22] reformulate the statistical target parameter and 

corresponding efficient influence curve for longitudinal MSMs on the intervention-specific 

mean as a series of iterated conditional expectations. For completeness, and to generalize to 

dynamic marginal structural working models possibly conditional on baseline covariates, as 

well as to general functions of the intervention-specific mean across a user-supplied class of 

interventions, we present this reformulation of the statistical target parameter below. The 

corresponding efficient influence curve is given in Appendix B. We will use the common 

notation Ph = ∫h(O)dP(O) for the expectation of a function h(O) with respect to P.

3.1 Reformulation of the statistical target parameter in terms of iteratively defined 
conditional means

For the case Yd (t) ∈ [0,1] in Section 2.4 we defined Ψ (P) as

(5)

where . Thus, Ψ (P) only depends on P through 

 and QL(0). Therefore, we will also refer to the statistical target 

parameter Ψ(P) as Ψ(Q) where we redefine Q ≡ (Q̄
L(1), QL(0)). For each given t, we can use 

the following recursive definition of EP (Yd (t)∣L(0)): for k = t, t − 1, …, 1 we have

where we define . This defines  as an iteratively defined conditional mean 

[22].

To obtain Ψ(Q) we simply put , combined with the marginal 

distribution of L(0) into the above representation Ψ(Q) = Ψ(Q̄
L(1), QL(0)). As mentioned in 

the previous section, we have that Ψ(Q) solves the score equations given by
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where we defined

The TMLE for the linear working model using the squared error loss function is obtained by 

simply redefining .

In general, the above shows that we can represent Ψ(P) = f ((E(Yd(t)∣L(0)) : t, d), QL(0)) as a 

function f (Q), where Q = (Q̄
L(1) = (E(Yd(t)∣L(0) : d, t), QL(0)) and we have an explicit 

representation of the derivative equation corresponding with f.

3.2 Estimation of intervention mechanism g0

The log-likelihood loss function for g0 is − log g. Specifically, we can factorize the 

likelihood g0 as

where (g1, k : k) represents the treatment mechanism and (g2, k : k) represents the censoring 

mechanism. Both mechanisms can be estimated separately with a log-likelihood based 

logistic regression estimator, either according to parametric models, or preferably using the 

state of the art in machine learning. In particular, we can use the log-likelihood based super 

learner based on a library of candidate machine learning algorithms, which uses cross-

validation to determine the best performing weighted combination of the candidate machine 

learning algorithms [39]. Use of such aggressive data-adaptive algorithms is recommended 

in order to ensure consistency of gn.

If there are certain variables in the Pa(A(k)) that are known to be instrumental variables 

(variables that affect future Y nodes only via their effects on A(k)), then these variables 

should be excluded from our estimates of g0 in the TMLE procedure. In that case our 

estimate of the conditional distribution of A(k) is in fact not estimating the conditional 

distribution of A(k) given its parents; however, for simplicity we do not make this explicit in 

our notation.
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3.3 Loss functions and initial estimator of Q0

We will alternate notation  and . Recall that Ψ(Q) depends on Q through QL(0), and 

. Note  is a function of l̄(k − 1), t = 1, …, K + 1, k = 

1, …, t, d ∈ D. We will use the following loss function for :

This is an application of the log-likelihood loss function for the conditional mean of 

given past covariates and given that past treatment has been assigned according to rule d. 

For example, fitting a parametric logistic regression model of  on past covariates 

among subjects with Ā(k − 1) = d̄
k−1(L̄(k − 1)) would minimize the empirical mean of this 

loss function over the unknown parameters of the logistic regression model. Alternatively, 

one could use loss-based machine learning algorithms, such as loss-based super learning, 

with this loss function.

In this loss function, the outcome  is treated as known. In implementation of our 

estimator, it will be replaced by an estimate; we thus refer to  as a nuisance parameter 

in this loss function. The collection of loss functions from k = 1, …, t implies a sequential 

regression procedure where one starts at k = t and sequentially fits  for k = t, …, 1. We 

describe this procedure in greater detail in the next subsection, for a sum-loss function that 

sums the above loss function over a collection of rules d ∈ D.

By summing over d ∈ D, the time points t, and k = 1, …, t, we obtain the loss function

for the whole .

We will use the log-likelihood loss L(QL(0)) = − log QL(0) as loss function for the 

distribution Q0, L(0) of L(0), but this loss will play no role since we will estimate Q0, L(0) 

with the empirical distribution function QL(0), n. To conclude, we have presented a loss 

function for all components of (Q̄, QL(0)) our target parameter depends on, and the sum-loss 

function LQ(Q̄, QL (0)) ≡ LQ̄(Q̄) − log QL(0) is a valid loss function for (Q̄, QL(0)) as a whole.

3.4 Non-targeted substitution estimator

These loss functions imply a sequential regression methodology for fitting each of the 

required components of (Q̄, QL(0)). These initial fits can then be used to construct a non-

targeted plug-in estimator of the target parameter ψ0. As noted, we estimate the marginal 

distribution of L(0) with the empirical distribution. We now describe how to obtain an 
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estimator , d ∈ D, k = 1, …, t, for any given t = 1, …, K + 1. We define  for 

all d, and recall that  is the regression of Y(t) on Ā(t − 1) = d̄
t−1(L̄(t − 1)) and L̄(t − 1). 

This latter regression can be carried out conditional on Ā1(t − 1), L̄(t − 1), stratifying only on 

not being censored through time t − 1 (i.e. Ā2(t − 1) = 0)). The resulting fit for all Ā1(t − 1) 

values can then be evaluated at Ā(t − 1) = d̄
t−1(L̄(t − 1)). In this manner, if certain rules have 

little support, one can still obtain an initial estimator that smoothes across all observations.

Given the regression fit , for a d ∈ D, we regress  onto Ā(t − 2), L̄(t − 2) and 

evaluate it at Ā(t − 2) = d̄
t−2(L̄(t − 2)), giving us . This is carried out for each d ∈ D 

given us  for each d ∈ D. Again, given this regression , we regress this on Ā(t − 

3), L̄(t − 3), and evaluate it at Ā(t − 3) = d̄
t−3(L̄(t − 3)), giving us . We carry this out 

for each d ∈ D, giving us , for each d ∈ D. This process is iterated until we obtain an 

estimator of  for each d ∈ D. Since this process is carried out for each t = 1, …, 

K + 1, this results in an estimator  for each d ∈ D and t = 1, …, K + 1. We denote this 

estimator of  with . Note that a plug-in estimator Ψ(Q̄
1, n, 

QL(0), n) of ψ0 = Ψ (Q̄
1,0, QL(0)) is now obtained by regressing  onto d, t, V according to 

the working marginal structural model using weighted logistic regression based on the 

pooled sample , d ∈ D, i = 1, …, n, t = 1, …, K + 1, with weight h(d, t, 

Vi).

The pooled TMLE presented below utilizes this same sequential regression algorithm and 

makes use of these initial fits of Q0. In order to provide a consistent initial estimator of Q0 

and thereby improve the efficiency of the TMLE, use of an aggressive data-adaptive 

algorithm such as super learning [39] when generating the initial regression fits is 

recommended. These initial fits are then updated to remove bias in a series of targeting steps 

that rely on the fit gn of g0. The updating steps involve submodels whose score spans the 

efficient influence curve.

3.5 Loss function and least favorable submodel that span the efficient influence curve

Recall that we use the notation  for the cumulative product of conditional 

intervention distributions. Consider the submodel  with 

parameter ε defined by

This parameter ε is of same dimension as β and h1. This defines a submodel Q̄t(ε, g) with 

parameter ε through . Note that
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This shows that

where D*(P) is the efficient influence curve as presented in Corollary (1), Appendix (B), 

and we define

giving

In other words, the sum-loss function

and submodel  through  generates the component 

 of the efficient influence curve D*(P).

Consider also a submodel QL(0)(ε0) of QL(0) with score , but this submodel and loss 

will play no role in the TMLE algorithm since we will estimate QL(0) with its NPMLE, the 

empirical distribution of Li(0), i = 1, …, n, so that the MLE of ε0 will be equal to zero. This 

defines our submodel (QL(0)(ε0), Q̄(ε, g) : ε0, ε). The sum-loss function LQ̄(QL(0), Q̄) = L(Q̄) 

− log QL(0) and this submodel satisfy the condition that the generalized score spans the 

efficient influence curve:

(6)

3.6 Pooled TMLE

We now describe the TMLE algorithm based on the above choices of (1) the representation 

of Ψ(P) as Ψ(Q̄, QL(0)), (2) the loss function for (Q̄, QL(0)), and (3) the least favorable 

Petersen et al. Page 18

J Causal Inference. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



submodels ((Q̄ (ε, g) : ε), (QL(0)) (ε0) : ε0) through (Q̄, QL(0)) at (ε, ε0) = 0 for fluctuating 

these parameters (Q ̄, QL(0)). We utilize the same sequential regression approach described in 

Section 3.4, but now incorporate sequential targeted updating of the initial regression fits. 

We assume an estimator gn of g0. We first specify where in the algorithm updating occurs 

and then describe the updating process.

Recall that we define  for all d and that  is the regression of Y(t) on Ā(t − 1) = 

d̄t−1(L̄(t−1)), L̄(t−1). For any given t = 1, …, K + 1, the initial estimator  is first updated 

to  using a logistic regression fit of our least favorable submodels, as described below. 

For a d ∈ D, we then regress the updated regression fit  onto Ā(t−2), L̄(t−2), and 

evaluate it at Ā(t−2) = d̄
t−2 (L̄(t−2)), giving us . This is carried out for each d ∈ D, 

giving us  for each d ∈ D. The regressions  are then updated for each d ∈ D, as 

described below, giving us  for each d ∈ D. For a d ∈ D, we then regress the updated 

regression fit  on Ā(t−3), L̄(t−3) and evaluate it at Ā(t−3)=d̄
t−3(L̄(t−3), giving us 

. We again carry this out for each d ∈ D, giving us  for each d ∈ D and again 

update the resulting regressions, giving us , for each d ∈ D. This process is iterated 

until we obtain an updated estimator  for each d ∈ D. Since this process is 

carried out for each t = 1, …, K + 1, this results in an estimator  for each d ∈ D and t = 

1, …, K + 1. We denote this estimator of  with .

The updating steps are implemented as follows: for each t ∈ {1, …, K + 1}, and for k = t to k 

= 1, we compute

and compute the corresponding update , for all d ∈ D. Note that

Thus εk, n can be obtained by fitting a logistic regression of the outcome  with 

offset Logit  on multivariate covariate
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using a data set pooled across i = 1, …, n, d ∈ D (consisting of n × |D| observations).

This defines the TMLE . In particular, 

 is the TMLE of Q̄
1,0 = (E0(Yd(t)∣L(0)): d ∈ D, t). This defines now 

the TMLE ) of (QL(0),0, Q̄
0), where QL(0), n is the empirical distribution of L(0).

The TMLE of ψ0 is the plug-in estimator corresponding with  and QL(0), n:

This plug-in estimator  of ψ0 = Ψ(Q̄
1,0, QL(0),0) is obtained by regressing 

 onto d, t, V according to the marginal structural working model in the pooled sample 

( ), d ∈ D, i = 1, …, n, t = 1, …, K + 1, using weights h(d, t, Vi).

An alternative pooled TMLE that only fits a single ε; to compute the update is described in 

Appendix C.

3.7 Statistical inference for pooled TMLE

By construction, the TMLE solves the efficient influence curve equation 

, thereby making it a double robust locally efficient 

substitution estimator under regularity conditions, and positivity (3) (van der Laan [20], 

theorem 8.5, appendix A.18). Here, we provide standard error estimates and thereby 

confidence intervals for the case that gn is a maximum likelihood estimator for g0 using a 

correctly specified semiparametric model for g0.

Specifically, if gn is a maximum likelihood estimator of g0 according to a correctly specified 

semiparametric model for g0, and  converges to some possibly misspecified Q̄, then under 

regularity conditions the TMLE  is asymptotically linear with an influence curve given by 

D*(Q̄, g0, ψ0) minus its projection onto the tangent space of this semiparametric model for 

g0. As a consequence, the asymptotic variance of  is more spread-out or equal 

to the covariance matrix Σ0 = P0 D*(Q̄, g0, ψ0)2. A consistent estimator of this asymptotic 

variance is given by

As a consequence,  is an asymptotically conservative 95% 

confidence interval ψ0(j), and we can also use this multivariate normal limit result, 
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, to construct a simultaneous confidence interval for ψ0 and to test null 

hypotheses about ψ0. This variance estimator treats weight function h as known. If h is 

estimated, then this variance estimator still provides valid statistical inference for the 

statistical target parameter defined by the estimated h.

In the case that gn is a data-adaptive estimator converging to g0, we suggest (without proof), 

that this variance estimator will still provide an asymptotically conservative confidence 

interval under regularity conditions. However, ideally the data-adaptive estimator gn should 

also be targeted [40]. An approach to valid inference in the case where gn is inconsistent but 

Qn is consistent is also discussed in van der Laan [40]; however, it remains to be generalized 

to the parameters in this paper.

4 Implementation of the pooled TMLE

The previous section reformulated the statistical parameter in terms of iteratively defined 

conditional means and described a pooled TMLE for this representation. In this section, we 

illustrate notation and implementation of this TMLE to estimate the parameters of a 

marginal structural working model on counterfactual survival over time.

4.1 The statistical estimation problem

We continue our motivating example, in which the goal is to learn the effect of switch time 

on survival. For illustration, focus on the two time point case where K = 1. Let the observed 

data consist of n i.i.d. copies O1,…, On of Oi = (Li(0), Ai(0), Li(1), Ai(1), Yi(2)) ~ P0. Let L(t) 

= (Y(t), CD4(t)), where Y(t) is an indicator of death by time t, and CD4(t) is CD4 count at 

time t. Assume all subjects are alive at baseline (Y(0) = 0). As above, A(t) is an indicator of 

switch to second line by time t. We assume no right censoring so that all subjects are 

followed until death or the end of the study (for convenience define variable values after 

death as equal to their last observed value). We specify a NPSEM such that each variable 

may be a function of all variables that precede it and an independent error, and assume the 

corresponding non-parametric statistical model for P0.

Define the set of treatment rules of interest D as the set of all possible switch times {0, 1, 2} 

(where 2 corresponds to no switch). Each rule d implies a single vector ā = (a(0), a(1)), we 

use d(t) to refer to the value a(t) implied by rule d, and sd to refer to the switching time 

implied by rule d. We specify the following marginal structural working model for 

counterfactual probability of death by time t under rule d:

(7)

The target causal parameter is defined as the projection of (E0(Yd(t)) : d ∈ D, t ∈ {1,2}) onto 

mβ(d, t) according to eq. (1).

Under the sequential randomization (2) and positivity (3) assumptions, E(Yd(t)∣L(0)) = 

E(Yd(t)∣L(0)). The target statistical parameter is defined as the projection of (E(Yd(t)∣L(0)) : 
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d ∈ D, t ∈ {1, 2}), onto the marginal structural working model mβ, according to eq. (5) with 

h(d, t) = 1.

4.1.1 Reformulation of the statistical target parameter—Note that E(Yd(t = 2)∣L(0)) 

for rule d (denoted ) can be expressed in terms of iteratively defined conditional means:

while E(Yd(t = 1)∣L(0)) (denoted ) equals E(Y(1)∣L(0), A(0) = d(0)). The statistical target 

parameter Ψ(Q) is defined by plugging ( , ) : d ∈ D, and the marginal distribution of 

L(0) into eq. (5).

4.2 Estimator implementation

We begin by describing implementation of a simple plug-in estimator of Ψ(Q).

4.2.1 Non-targeted substitution estimator

1. For each rule of interest d ∈ D, corresponding to each possible switch time, 

generate a vector  of length n for t = 2:

a. Fit a logistic regression of Y (2) on L(1), L(0), A(1), A(0) and generate a 

predicted value for each subject by evaluating this regression fit at A(1) = 

d(1), A(0) = d(0). Note E0(Y(2)∣Y(1) = 1) = 1, so the regression need only be 

fit and evaluated among subjects who remain alive at time 1. This gives a 

vector  of length n.

b. Fit a logistic regression of the predicted values generated in the previous step 

on L(0), A(0). Generate a new predicted value for each subject by evaluating 

this regression fit at A(0) = d(0).

This gives a vector  of length n.

2.
For each rule of interest d ∈ D generate a vector  of length n for t = 1: Fit a 

logistic regression of Y(1) on L(0), A(0) and generate a predicted value for each 

subject by evaluating this regression fit at A(0) = d(0).

3.
The previous steps generated ( ). Stack these vectors 

to give a single vector with length equal to the number of subjects n times the 

number of rules |D| times the number of time points (n × 3 × 2). Fit a pooled 

logistic regression of Q̄
1, n on (d, t) according to model mβ (eq. 7), with weights 

given by h(d, t) (here equal to 1). This gives an estimator of the target parameter 

Ψ(Q).
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We now describe how the pooled TMLE modifies this algorithm to update the initial 

estimator Q̄
1, n. In the following section, we compare the pooled TMLE to this non-targeted 

substitution estimator and with other available estimators.

4.2.2 Pooled TMLE

1. Estimate P0(A(1)∣A(0), L(1), L(0)) and P0(A(0)∣L(0)). Denote these estimators g1, n 

and g0, n, respectively, and let g0:1, n = g0, ng1, n denote their product. In our 

example, this step involves estimating the conditional probability of switching at 

time 0 given baseline CD4 count, and estimating the conditional probability of 

switching at time 1, given a subject did not switch at time 1, did not die at time 1, 

and CD4 count at times 0 and 1.

2.
Generate a vector  of length n × |D| for t = 2, k = 2:

a. Fit a logistic regression of Y(2) on L(1), L(0), A(1), A(0). Generate a 

predicted value for each subject and each d ∈ D by evaluating this regression 

fit at A(1) = d(1), A(0) = d(0). Note that E0(Y(2)∣Y(1) = 1) = 1, so the 

regression need only be fit and evaluated among subjects who remain alive 

at time 1. This gives a vector of initial values  of length n × |D|.

b. For each subject i = 1, …, n, create a vector consisting of one copy of Yi(2) 

for each d ∈ D. Stack these copies to create a single vector of length n × |D|, 

denoted .

c. For each subject i = 1, …, n and each d ∈ D, create a new multidimensional 

weighted covariate:

In our example, h(d, t) = 1, and  equals 1, t, and d(t − 1)(t − sd) 

for the derivative taken with respect to β0, β1, and β2, respectively. The 

following 3 × 3 matrix would thus be generated for each subject i, with rows 

corresponding to switch at time 0, time 1, or do not switch:

Stack these matrices to create a matrix with n×|D| rows and one column for 

each component of β (here, 3n × 3).
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d. Among those subjects still alive at the previous time point (Y(1) = 0), fit a 

pooled logistic regression of  (the Y(2) vector) on the weighted 

covariates created in the previous step, suppressing the intercept and using as 

offset Logit , the logit of the initial predicted values for t = 2 and k = 2. 

This gives a fit for multivariate ε2. Denote this fit .

e.
Generate  by evaluating the logistic regression fit in the previous step 

at each d ∈ D among those subjects for whom Y(1) = 0. For subject i and 

rule d, evaluate

For subjects with Y (1) = 1, . This gives an updated vector 

 of length n × |D|.

3.
Generate a vector  of length n × |D| for t = 2, k = 1:

a.
Fit a logistic regression of  (generated in the previous step) on L(0), 

A(0). Generate a predicted value for each subject and each d ∈ D by 

evaluating this regression fit at A(0) = d(0). This gives a vector of initial 

values  of length n × |D|.

b. For each subject i = 1, …, n and each d ∈ D, create the multidimensional 

weighted covariate as above, now for k = 1:

The following 3 × 3 matrix would thus be generated for each subject i, with 

rows corresponding to switch at time 0, time 1, or don’t switch:

Stack these matrices to create a matrix with n × |D| rows and one column for 

each dimension of β.
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c.
Fit a pooled logistic regression of  (the updated fit generated in step 2) 

on these weighted covariates, suppressing the intercept and using as offset 

Logit , the logit of the initial predicted values for t = 2 and k = 1. This 

gives a fit for multivariate ε1. Denote this fit .

d.
Generate  by evaluating the logistic regression fit in the previous step 

at each d ∈ D. For subject i and rule d, evaluate

This gives an updated vector  of length n × |D|.

4.
Generate a vector  of length n × |D| for t = 1, k = 1:

a. Fit a logistic regression of Y(1) on L(0), A(0). Generate a predicted value for 

each subject and each d ∈ D by evaluating this regression fit at A(0) = d(0). 

This gives a vector of initial values  of length n × |D|.

b. For each subject, i = 1, …, n, create a vector consisting of one copy of Yi(1) 

for each d ∈ D. Stack these copies to create a single vector of length n × |D|, 

denoted .

c. For each subject i = 1, …, n and each d ∈ D, create a new multidimensional 

weighted covariate, for t = 1, k = 1:

The following 3 × 3 matrix would thus be generated for each subject i, with 

rows corresponding to switch at time 0, time 1, or don’t switch:

Stack these matrices to create a matrix with n × |D| rows and one column for 

each component of β.

d.
Fit a pooled logistic regression of  (the Y(1) vector) on these weighted 

covariates, suppressing the intercept and using as offset Logit , the logit 
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of the initial predicted values for t = 1 and k = 1. This gives a fit for 

multivariate ε1. Denote this fit .

e.
Generate  by evaluating the logistic regression fit in the previous step 

at each d ∈ D. Forsubject i and rule d, evaluate

This gives an updated vector  of length n × |D|.

5.
The previous steps generated . Stack these vectors to 

give a single vector with length equal to the number of subjects n times the number 

of rules |D| times the number of time points (n × 3 × 2). Fit a pooled logistic 

regression of  on (d, t) according model mβ (eq. 7), with weights given by h(d, 

t) (here equal to 1). This gives the pooled TMLE of the target parameter Ψ(Q).

5 Comparison with alternative estimators

In this section we compare the TMLE described with several alternative estimators available 

for dynamic MSMs for survival: non-targeted substitution estimators, IPW estimators, and 

the stratified TMLE of Schnitzer et al. [32].

5.1 Non-targeted substitution estimator

The consistency of non-targeted substitution estimators of Ψ (Q) relies entirely on consistent 

estimation of the Q portions of the observed data likelihood. For estimators based on the 

parametric G-formula this requires correctly specifying parametric estimators for the 

conditional distributions of all non-intervention nodes given their parents [7, 11, 12, 41]. For 

the non-targeted estimator described in Section (3.4), this requires consistently estimating 

the literately defined conditional means) .

Correct a priori specification of parametric models for Q̄ in either case is rarely possible, 

rendering such non-targeted plug-in estimators susceptible to bias. Further, while machine 

learning methods, such as Super Learning, can be used to estimate Q non-parametrically, the 

resulting plug-in estimator has no theory supporting its asymptotic linearity, and will 

generally be overly biased for the target parameter β [21].

5.2 Inverse probability weighted estimators

The IPW estimator described in van der Laan and Petersen [2], Robins et al. [26] is 

commonly used to estimate the parameters of a dynamic MSM. In brief, this estimator is 

implemented by creating one data line for each subject i, for each t, and for each d for which 

Ā (t − 1) = d (L̄ (t − 1)). Each data line consists of Yi (t), any functions of (d, t, Vi) included 
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as covariates in the MSM, and a weight . A weighted 

logistic regression is then fit, pooling over time and rules d.

The parameter mapping presented here for the TMLE suggests an alternative IPW estimator 

for dynamic MSM – namely, implement an IPW estimator for E (Yd) (possibly within strata 

of V if V is discrete) for d ∈ D, t and project these estimates onto mβ. The IPW estimator 

employed could be either the standard Horvitz–Thompson estimator:

or its bounded counterpart:

Robins and Rotnitzky [14].

The consistency of both IPW estimators relies on having a consistent estimator gn of g0; 

further, even if gn is estimated consistently, neither will be asymptotically efficient. Both 

also suffer from the general sensitivity of IPW estimators to strong confounding (data 

sparsity or near positivity violations). Standard IPW estimators for dynamic MSMs are 

typically more susceptible to instability in such settings than their counterparts for static 

MSMs, due to the limited ability to stabilize weights (with stabilizing function restricted to 

h(d, t, V) versus h(Āi(t − 1), t, V).

5.3 Stratified targeted maximum likelihood estimator

Similar to the pooled TMLE, the stratified TMLE [32] also relies on reformulating the 

statistical target parameter in terms of iteratively defined conditional means and updating 

initial fits of these conditional means using covariates that are functions of an estimator gn 

of the intervention mechanism. The stratified and pooled differ, however, in several 

respects. In particular, in the pooled TMLE the update step is accomplished by fitting a 

single multivariate ε for each time point t and non-intervention node k, pooling across all 

rules of interest d ∈ D. In contrast, the stratified TMLE fits a separate ε for each time point t, 

non-intervention node k, and rule of interest d ∈ D. Specifically, the stratified TMLE 

consists of implementing the longitudinal TMLE of van der Laan and Gruber [19] for E (Yd 

(t)) separately for each time point t and each rule of interest d ∈ D, and then combining these 

estimates into a fit of mβ.

Let Q̄
n denote the initial estimator of the iteratively defined conditional means that forms the 

basis of the pooled and the stratified TMLEs. Let  denote the targeted update of Qn̄ for 

the two estimators (noting that the update is accomplished differently for the pooled and 
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stratified estimators). As long as their corresponding update  solves the efficient influence 

curve equation , both the stratified and the pooled estimators will share the 

desirable asymptotic properties of a TMLE. Both estimators will be consistent if either Q̄
n or 

gn is a consistent estimator of Q0 or g0, respectively. Further, both the pooled and the 

stratified estimators will be asymptotically efficient if both the initial estimator Q̄
n and the 

estimator gn are consistent.

The pooled and stratified estimators may nonetheless differ in both their asymptotic and 

finite sample performance. The stratified TMLE uses a more saturated model when updating 

Q̄
n than does the pooled TMLE. Thus if the initial estimator Q̄

n is misspecified, the update 

of this initial estimator will be more extensive (the update will be further from the initial 

misspecified estimator) for the stratified, as compared to the pooled, TMLE, resulting 

asymptotically in a  that is closer to the true Q0 and thus improving efficiency (recall that 

the efficiency bound is achieved at Q0, g0). The extent to which this asymptotic property 

translates into meaningful finite sample gains in settings where Q̄
n is misspecified remains 

to be investigated.

On the other hand, in some cases, it is no longer clear how to implement the stratified 

TMLE. For example, the target parameter may be defined using a MSM mβ (d, t, V), 

conditional on a subset of baseline covariates V. If V is discrete with adequate finite sample 

support at each value, the stratified TMLE can be applied by estimating E (Yd (t)∣V = ν) 

within each stratum ν. When V is continuous, however, or has levels which are not 

represented in a given finite sample, such an approach will break down for many choices of 

weight function h(d, t, V). Similarly, whenever there are some rules d ∈ D with no support in 

a given finite sample, no data will be available to fit ε for some rules of interest, and the key 

update step will no longer be possible using the stratified TMLE. Note that such lack of 

support in finite samples can occur even when the assumption of positivity in the observed 

data distribution (3) is satisfied.

In cases where V is discrete and there is support for some but not all rules d ∈ D within each 

stratum of V, one option is to define a stratified quasi-TMLE using the initial fit  for 

those rules, time points, and strata of V where no data are available to fit ε. The estimator, 

implemented in the simulations below, remains defined even when not all rules of interest 

are supported within each stratum of V in a given sample. However, in such cases, the initial 

estimator Q̄
n is only partially updated, and thus  may no longer solve the efficient 

influence curve equation , even if gn is a consistent estimator of g0. If the 

initial estimator Q̄
n is poor (for example, if it is a misspecified parametric model), the 

resulting estimator of β will be biased. In contrast, the pooled TMLE retains the ability to fit 

ε and thus update Q̄
n by pooling over rules d. In other words, both estimators rely on the 

theoretical positivity assumption on P0 (3) for identifiability; however, they may respond 

differently to practical positivity violations in finite samples.

5.3.1 Numerical illustration—We use a simple simulation to illustrate a setting in which 

the positivity assumption holds, but many rules of interest have no support in a given finite 

sample. In this setting, the stratified estimator will be biased if the initial estimator Q̄
n is 

Petersen et al. Page 28

J Causal Inference. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



misspecified. In contrast, the pooled TMLE remains asymptotically linear if gn is a 

consistent estimator of g0. Simulation studies comparing the performance of the pooled and 

stratified TMLEs as well as IPW estimators under more realistic scenarios are provided in 

the following section.

We implemented a simulation with observed data consisting of n i.i.d. copies of O = (L(0), A 

= (A(0), …, A(6)), Y), where L(0) is a baseline covariate, A (t) is a binary treatment assigned 

randomly at seven time points (t = 0, …, 6), and Y is a binary outcome. The data for a given 

individual i were generated by drawing sequentially from the following distributions:

The target parameter was defined as the projection of E0 (Yd : d ∈ D) onto marginal 

structural working model  according to eq. (5), with weight 

function h (d) = 1, D equal to the 27 = 128 possible values of A, and d(t) denoting the 

treatment level a(t) assigned by a given rule d at time t.

Stratified and pooled TMLEs for β were implemented using estimators gn and Q̄
n based on 

intercept only logistic regressions; thus Q̄
n was an inconsistent estimator of Q̄

0. Table 1 

shows estimated bias, bias to standard error ratio, variance, mean squared error, and 95% 

confidence interval coverage (using the variance estimator described in Section 3.7) based 

on 500 samples of size n = 128. Note that at this sample size many of the 128 rules of 

interest have no support in the data in a given sample, while the remainder have few 

observations available to fit ε in the stratified TMLE. As predicted by its double robust 

property, the pooled TMLE remains without meaningful bias despite use of a poor initial 

estimator Q̄n. In contrast, the stratified TMLE has bias of approximately double the 

magnitude of its standard error, posing a substantial threat to valid inference. The stratified 

TMLE also exhibits markedly lower variance than its pooled counterpart, explained by the 

fact that for those rules d without support in the data, the stratified estimator uses an 

intercept only model to estimate Q̄d. Although unbiased, the pooled TMLE provides anti-

conservative confidence interval coverage; we return to this point below.

This breakdown of the stratified TMLE in settings with no support for some rules of interest 

will not occur if the function h is chosen to give a weight of 0 to any rule (or more generally, 

any (d, V, t) combination) without support in the sample. For example, in the illustration 

above we could have defined h(d) = P0 (A = d) and estimated it using the empirical 

distribution. Unless one is willing to assume that the MSM mβ is correctly specified, 

however, choice of h changes the target parameter being estimated [27]. Further, even with 

this choice of weight function, the estimators may still exhibit different finite sample 

performance in setting with marginal data support. We investigate this possibility further in 

the following section.

Petersen et al. Page 29

J Causal Inference. Author manuscript; available in PMC 2015 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 Simulation study

6.1 Overview

In this section, we investigate the relative performance of the pooled TMLE, stratified 

TMLE, and IPW estimators for the parameters of a marginal structural working model. For 

each candidate estimator, we report bias, variance, MSE, and 95% confidence interval 

coverage estimates based on influence curve variance estimators. We note that our influence 

curve-based estimators assume the weight function h (d, t) is known; if the weight function 

is estimated, the influence curve should be corrected for this additional estimated 

component. We investigate two basic data generating processes. Simulation 1 investigates a 

simple process, in which the effect of the longitudinal treatment (time to switch) is 

confounded by baseline variables only, the outcome is observed at a single time point, and 

there is no censoring. Simulation 2 introduces more realistic complexity, designed to 

resemble the data analysis presented in the following section.

6.2 Simulation 1: baseline confounding only

6.2.1 Data generating process—We implemented a simulation with observed data 

consisting of n i.i.d. copies of O = (L(0), A = (A(0), …, A (K), Y), where L(0) is a baseline 

covariate, A (t) is a binary treatment assigned at time point t = 0, …, K, and Y is a binary 

outcome. The data for a given individual were generated by drawing sequentially from the 

following distributions:

In order to investigate the impact of decreasing support in the data (practical violations or 

near violations of the positivity assumption), we considered two versions of this data 

generating process, with K = 2 (Simulation 1a, lower bound on g0 of 0.05) and K = 6 

(Simulation 1b, lower bound on g0 of 0.001).

6.2.2 Target parameter—The target parameter was defined as the projection of E0 (Yd : d 

∈ D) onto marginal structural working model  according to eq. (5), 

with D equal to the 2(K+1) possible values of A, d (t) equal to the treatment level assigned by 

a given rule d at time, t and weight function h (d) = P0 (A = d). In the case that some rules of 

interest had no support in a given sample, this choice of weight function (when estimated as 

the empirical proportion of subjects that followed rule d) ensured that the IPW estimator 

remained defined and that the updated fit  used by the stratified TMLE solved the 

efficient influence curve equation when gn was a consistent estimator of g0.

6.2.3 Estimators—This is a static point treatment problem, and thus a number of 

additional estimators are available. However, we use this as a special case of longitudinal 

dynamic MSMs and investigate the relative performance of three estimators described in 

Section 5: the pooled TMLE, the stratified TMLE, and the standard IPW estimator. All 
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estimators were implemented using two estimators of g0: an estimator based on a correctly 

specified model for the conditional distribution of A given L(0) and an estimator using an 

intercept only model. The estimators gn were bounded from below at 0.001. TMLEs were 

implemented using two estimators of Q̄
0: an estimator based on main terms logistic 

regression models using the correct set of parents for a given node as independent variables 

(in a slight abuse, we refer to these as “correctly specified”) and an estimator using intercept 

only models. Performance was evaluated across 500 samples of size n = 500; 95% 

confidence interval coverage was based on the variance estimator described in Section 3.7.

6.2.4 Results—Results for Simulation 1a are shown in Table 2. When both Q̄
n and gn 

were based on correctly specified models, all three estimators were unbiased, had similar 

variance, and achieved close to nominal coverage. Table 2 also demonstrates double 

robustness; when Q̄
n and gn were based on a misspecified model, both TMLEs remained 

without meaningful bias. In this simulation, both TMLEs continued to achieve close to 

nominal coverage even when gn was an inconsistent estimator of g0. In contrast and as 

expected, the IPW estimator was substantially biased with poor coverage when gn was based 

on an intercept only model.

Results for Simulation 1b, with both Q̄
n and gn based on correctly specified models, are 

shown in Table 3. In this simulation, in which the lower bound for g0 is 0.001, the IPW 

estimator was minimally biased and retained good 95% confidence interval coverage. 

Interestingly, the performance of the stratified TMLE suffered in this setting, with bias 

approximately equal to the standard error, and 95% confidence interval coverage of 83% 

and 80% for β0 and β1, respectively. The pooled TMLE remained unbiased and retained 

good confidence interval coverage.

6.3 Simulation 2: resembling data analysis

In this simulation, we used a data generating process designed to resemble the data analysis 

presented in the following section, in which the goal was to investigate the effect of delayed 

switch to a new antiretroviral regimen on mortality among HIV-infected patients who have 

failed first line therapy. The data generating process thus contains both baseline and time-

dependent confounders of a longitudinal binary treatment (time to switch), a repeated 

measures binary outcome (survival over time), and informative right censoring due to two 

causes (database closure and loss to follow up).

6.3.1 Data generating process—We implemented a simulation with observed data 

consisting of n i.i.d. copies of

for K = 9. Here, L(0) = (W, CD4(0)) and L (t) = (Y (t), CD4(t)), where W was a non-time-

varying baseline covariate (W = (W1, …, W4), representing baseline age, sex, and disease 

stage), CD4(t) was a time-varying covariate representing most recent measured CD4 count 

at time t (square root transformed), and Y (t) was an indicator of death by time t. The 

intervention nodes for a given time point t were A (t) = (C1 (t), C2 (t), A1 (t)), where C1 (t) 
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was an indicator of database closure by time t, C2 (t) was an indicator of loss to follow up by 

time t, and A1(t) was an indicator of having switched to second line therapy by time t. In 

brief, the data for a given individual were generated by first drawing baseline characteristics 

W, then for each time point t, for as long as the subject remained alive and uncensored,

1. Drawing a time updated CD4 count CD4(t) given W, prior CD4 counts, and 

regimen status at the prior time point (A1 (t − 1))

2. Determining censoring due to database closure C1 (t) using a Bernoulli trial with 

probability dependent on W.

3. If still uncensored, determining censoring due to loss to follow up C2 (t) using a 

Bernoulli trial with probability dependent on W, prior CD4 count and regimen 

status at the prior time point (A1 (t − 1)).

4. If still uncensored and not yet switched, determining switching using a Bernoulli 

trial with probability dependent on W and prior CD4 count.

5. Determining death using a Bernoulli trial with probability dependent on W, prior 

CD4 counts and regimen status A (t)

The full data generating process is provided in Appendix D. Coefficients in the data 

generating process were chosen to approximate the degree of censoring, treatment, and 

death in the analysis data set, as detailed in Appendix D, Tables 7 and 9. The data generating 

process results in a true intervention mechanism g0 not bounded away from 0.

6.3.2 Target parameter—The target parameter was defined as the projection of the 

counterfactual survival curve for each switch time, (E (Yd (t)) : d ∈ D, t = 1, …, 10) onto 

marginal structural working model Logit mβ (d, t) = β0 + β1 t + β2 (d(t − 1)(t − sd)) according 

to eq. (5), where we use d(t) to denote the value a(t) assigned by rule d, sd to denote the 

switch time assigned by rule d, and with D consisting of each possible switch time, {0, …, 

10} combined with an intervention to prevent censoring. We used the following weight 

function:

where nt was the number of unique values ā (t − 1) compatible with d ∈ D, t* is the first 

time point at which all subjects have either died or been censored, and both P0 (Ā (t − 1) = ā 

(t − 1)) and t* were estimated with their empirical counterparts. This weight function gave 0 

weight to rules without support in a given sample. It further avoided up-weighting specific 

values ā(t − 1) proportional to the number of rules (assigned switch times) that they were 

compatible with.

6.3.3 Estimators—We implemented the pooled TMLE, the stratified TMLE, the IPW 

estimator based on estimating E (Yd (t) : d ∈ D) using the bounded Horvitz–Thompson 

estimator and projecting the resulting estimates onto the model mβ (referred to as “Stratified 
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IPW”) and the standard IPW estimator for dynamic MSM (referred to as a “Standard IPW” 

estimator).

The intervention rules d ∈ D could be considered static, in that they assign a fixed vector of 

treatment decisions ā irrespective of a subject’s covariate values. However, when the target 

parameter is defined using a MSM on survival, a static IPW estimator cannot be 

implemented in the standard way (fitting a weighted pooled regression of Y (t) on observed 

treatment history Ā (t − 1)) because the full Ā (t − 1) is not observed for subjects who die 

before time t. As noted by Picciotto et al. [42], one option, adopted by us here, is to instead 

define the interventions of interest as dynamic (switch at time sd if still alive).

All estimators were implemented using an estimator gn based on a correctly specified 

parametric model for g0, but bounding the resulting estimates from below at 0.01 in order to 

ensure that the denominator in the covariate used in the updating step remained bounded 

away from 0. The TMLEs were implemented using estimators of Q̄
0 based on main terms 

logistic regression models using the correct set of parents for a given node as independent 

variables (not equivalent to use of a correctly specified parametric model to estimate Q̄
0). 

The performance of each estimator was evaluated across 500 samples of size n = 2, 627, 

corresponding to the sample size in the data analysis. 95% confidence interval coverage was 

based on the variance estimator described in Section 3.7; calculation of non-parametric 

bootstrap-based coverage was computationally prohibitive.

6.3.4 Results—Results for Simulation 2 are shown in Table 4. In this simulation, both the 

pooled and the stratified TMLEs were essentially unbiased for all coefficients, and the two 

TMLEs had comparable MSEs. Both TMLEs exhibited less than nominal 95% confidence 

interval coverage when using influence curve-based variance estimators. The anti-

conservative performance of the influence curve-based variance estimator is likely due to 

the presence of practical positivity violations and relatively rare outcomes; the fact that the 

weight function was treated as known may also make a small contribution. Further work is 

needed to develop improved diagnostics and variance estimators in these settings.

In contrast, both IPW estimators were substantially biased for β2, which reflected the 

treatment effect, despite use of an estimator gn based on a correctly specified parametric 

model. Both IPW estimators also showed higher MSE for β2, and achieved 95% confidence 

interval coverage for β2 substantially below that of the TMLEs. This finding is consistent 

with the known susceptibility of IPW estimators to positivity violations and data sparsity, 

exacerbated by the limited ability when using a dynamic regime formulation to choose an 

effectively stabilizing weight function. Across simulations, the median minimum value of gn 

used by IPW prior to bounding at 0.01 was 0.000297; 1.55% of values of gn used by IPW 

were less than 0.01. Tables 8 and 10, provide further details on data support and number of 

events.

7 Data analysis

We analyzed data from the International Epidemiological Databases – Southern Africa in 

order to investigate the effect of switching to second line therapy on mortality among HIV-
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infected patients with immunological failure on first line antiretroviral therapy. The data set 

and clinical question are described in detail in Gsponer et al. [1]. In brief, data were drawn 

from clinical care facilities in Zambia and Malawi, in which HIV-infected patients were 

followed longitudinally in clinic and data were collected on baseline demographic and 

clinical variables (sex, age, and baseline disease stage), time-varying CD4 count, and 

timevarying treatment, summarized here as switch to second line therapy. Death was 

independently reported. The 2,627 subjects meeting WHO immunological failure criteria 

were included in the current analysis beginning at time of immunologic failure. Following 

common practice and prior analysis, time was discretized into 3-month intervals; time 

updated CD4 count was coded such that CD4 count for an interval preceded switching 

decisions in that interval. Data on a subject were censored at time of database closure or 

after four consecutive intervals without clinical contact.

The data structure and target parameter were identical to those described in Simulation 2, 

with W = (W1, W2, W3, W4), W1 equal to sex, W2 and W3 representing two levels of a three-

level categorical age variable (< 30, 30 − 39, and > 39), and W4 equal to disease stage. The 

analysis was implemented under the causal model assumed for Simulation 2; in particular 

assuming that monitoring times did not affect the outcome other than via effects on 

switching. We acknowledge that this assumption may not hold; however, relaxing it 

introduces a number of additional complications, as described in the Appendix. We 

implemented the estimators described in Simulation 2: pooled and stratified TMLEs and 

standard and stratified IPW estimators. Estimators of g0 and Q̄
0 were based on main term 

logistic regression models, analogous to Simulation 2. Given the results in Simulation 2 

suggesting the poor performance of the influence curvebased variance estimator, we also 

estimated the variance using a non-parametric bootstrap.

Results are given in Table 5. The IPW estimates for the effect of switching on mortality (β2) 

are close to zero and non-significant. Both TMLE point estimates suggest a 0.88 relative 

odds of death per 3-month earlier switch, and all except for the stratified TMLE combined 

with bootstrap-based variance estimation were significant at the α = 0.05 level. Such a 

protective effect of switching is consistent with clinical knowledge. Interestingly, these 

results appear consistent with those of Simulation 2, which suggested that the IPW estimator 

was substantially positively biased, underestimating the harm of delayed switch, while both 

TMLEs performed well in terms of bias. In summary, our results in both the simulation and 

data analysis are consistent with the TMLEs controlling for measured confounders more 

completely than the corresponding IPW estimators.

The poor coverage observed in Simulation 2, despite absence of bias for the TMLEs, 

suggests that the influence curve-based variance estimators may be systematically 

underestimating the true variance in this analysis. While the non-parametric bootstrap offers 

an alternative approach, it is not expected to resolve the challenge of anti-conservative 

variance estimation in the setting of practical positivity violations. Intuitively, rare 

treatment/covariate combinations, despite being theoretically possible, may simply not occur 

in a given finite sample and as a result, the corresponding extreme weights implied by these 

combinations will not occur. Because the non-parametric bootstrap resamples from the same 

finite sample, it fails to address the underlying problem. Indeed, the bootstrap-based 
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confidence intervals in the data analysis were slightly smaller than confidence intervals 

based on the influence curve. Thus in this realistic setting of rare outcomes and moderately 

strong confounding, our results caution against reliance on either approach to variance 

estimation, for either IPW or TML estimators, and suggest that additional work developing 

robust variance estimators in this setting is urgently needed.

In addition to the issues raised above, limitations of the analysis include the potential for 

unmeasured confounding by factors such as unmeasured health status and adherence, as well 

as bias due to incomplete health reporting, resulting in censoring due to loss to follow up 

that directly depends on death [43, 44]. These results also do not contradict the previous 

published results of Gsponer et al. [1], which found a protective effect of switching using a 

static IPW estimator for a hazard MSM; such an IPW estimator might perform substantially 

better than the dynamic IPW estimator for a survival MSM implemented here.

8 Discussion

In summary, we have presented a pooled TMLE for the parameters of static and dynamic 

longitudinal MSMs that builds on prior work by Robins [13, 29] and Bang and Robins [22]. 

We evaluated the performance of this estimator using simulated data and applied it, together 

with alternatives, in a data analysis. Both theory and simulations suggest settings in which 

the pooled TMLE offers advantages over alternative estimators. Software implementing this 

estimator, together with competitors, is included in supplementary files and is publicly 

available as part of R library ltmle (http://cran.r-project.org/web/packages/ltmle/).

The pooled TMLE presented in this paper, together with corresponding open source 

software, provides a new tool for estimation of the parameters of static or dynamic MSMs. It 

has clear theoretical advantages over available alternatives. Unlike IPW and augmented-

IPW estimators, it is a substitution estimator. Unlike IPW estimators, it is double robust and 

asymptotically efficient depending on the initial estimators of g and Q. Unlike the 

previously proposed stratified TMLE, it does not require support in the data for every rule of 

interest and remains defined in the case that the target parameter is defined using a marginal 

structural working model conditional on a continuous baseline covariate.

In settings where some subset of discrete intervention rules has adequate support in a given 

sample, an alternative approach is to compare only this subset of rules [2]. However, in 

many settings smoothing over a large number of poorly supported rules is appropriate. For 

example, for a set of rules indexed by a continuous or multiple level ordered variable, 

smoothing over this variable provides a way to define a causal effect of interest despite 

inadequate support to estimate the counterfactual outcome under any of these rules 

individually.

The TMLE presented in this paper was developed for a causal model in which the non-

intervention variables may be a function of the entire observed past (Pa (L(k)) = (Ā (k − 1), 

L̄ (k − 1))) and the intervention variables may be a function of some subset of the observed 

past (Pa (A(k)) ⊆ (Ā (k − 1), L̄ (k))) – in other words, for a model in which exclusion 

restrictions were assumed, if at all, only for the intervention variables. In some cases, a 

causal model that also restricts the parent set of the non-intervention variables to a subset of 
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the observed past may be appropriate. This smaller model is included in the larger model 

assumed in the current paper. As a result, while the TMLE developed for the larger model 

will still be valid, it will no longer be efficient.

Our simulations suggest that both stratified and pooled TMLEs may outperform both the 

IPW estimator typically used for dynamic MSMs, as well as an alternative “stratified” IPW 

estimator, in some settings with sparse data/near positivity violations. However, further 

work is needed to confirm this preliminary observation. Although the theory in this paper 

was developed for the general case of dynamic MSMs, including models of the time-specific 

hazard or survival functions, we focused our software implementation, examples, and 

simulations on MSMs for survival. The practical performance of the pooled TMLE relative 

to alternative estimators also remains to be investigated for the case of static and dynamic 

MSMs on the hazard. It also remains to implement and evaluate the relative performance of 

the alternative pooled TMLE described in Appendix C, in which the updating step pools not 

only over all rules of interest but also over all time points. Finally, the relative performance 

of the TMLE compared to double robust efficient estimating equation-based estimators for 

longitudinal MSM parameters, including those of Robins [13, 29] and Bang and Robins 

[22], remains to be evaluated.

Importantly, our simulations and data analysis illustrate the need for improved variance 

estimators for both TMLE and IPW in settings with moderately strong confounding, 

multiple time points, and relatively rare outcomes. Improved approaches to variance 

estimation and valid inference, as well as appropriate diagnostics to warn applied 

practitioners of settings in which coverage is likely to be poor, are crucial research priorities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Notation

Table 6

Partial list of notation

Variable Description

Observed data

L (t) covariates at time t

Y (t) ⊆ L (t) outcome at time t

A (t) = (A1 (t), A2 (t)) intervention at time t

A1 (t) treatment at time t
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Variable Description

A2 (t) right censoring at time t

Ā (k) = A(0), …, A(k) history of intervention nodes t = 0,…, k

L̄ (k) = L (0), …, L (k) history of non-intervention nodes t = 0, …, k

O = (L (0), A (0), …, L (K), A (K), L (K + 1)) observed data structure

Pa (L (k)) = L̄ (k − 1), Ā (k − 1) parents of non-intervention nodes L (k)

Pa (A (k)) ⊆ L̄ (k), Ā (k − 1) parents of intervention nodes A (k)

Counterfactuals

D set of dynamic intervention rules

d ∈ D intervention rule

Ld counterfactual L under rule d

Yd counterfactual Y under rule d

Statistical counterparts

Ld

random variable with distribution 

equal to Ld in distribution under sequential randomization 
assumption (SRA) (2)

Yd outcome-component of Ld

Marginal structural working model

mβ(d, t, V) working model for (E0 (Yd (t)∣V) : d ∈ D, t ∈ τ)

τ index set of time points (often τ = 1, …, K + 1)

V “effect modifier” of interest, a function of L(0)

Distributions

PO, U, 0 distribution of (O, U) defined by structural causal model (SCM)

P0 distribution of O

Pd,0 distribution of counterfactual Ld

G-computation formula for post-intervention distribution of L under 
rule d equal to Pd,0 under SRA (2)

QL(k),0 distribution of L (k)∣Pa (L(k))

Q0 ≡ Q0:K + 1 non-intervention factor of P0 = Q0 g0

gA(k),0 distribution of A (k)∣Pa (A(k))

g0 ≡ g0:K intervention mechanism factor of P0 = Q0 g0

QL(0), n empirical distribution of Li (0), i = 1, …, n

Models

MF SCM for PO, U, 0 defines causal assumptions: PO, U, 0 ∈ MF

M statistical model for P0 defines statistical assumptions: P0 ∈ M

Functions and parameters

ψF : MF → IRJ causal target parameter mapping

ψF (PO, U,0) causal target parameter value (causal quantity)
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Variable Description

ψ: M → IRJ statistical target parameter mapping

ψ (P0) = ψ (Q0̄, QL(0),0) = ψ0 = β0 target parameter value equals ψF (PO, U, 0) under SRA (2) and 
positivity (3)

fL(k) structural equation (Pa (L (k)), UL(k)) ↦ L (k)

fA(k) structural equation (Pa (A (k)), UA(k)) ↦ A (k)

dk dynamic intervention L̄ (k) ↦ Ak

h weight function (d, t, V) ↦ IR

h1

 for logistic working model mβ

h1

 for linear working model mβ

Efficient influence curve

D* (P) = D* (Q̄, QL(0), g)
efficient influence curve of ψ at P equals influence curve of TMLE 

(  when , gn are both consistent

Least favorable submodels

submodel through  at parameter value ε = 0 used to update 

initial estimate of  in TMLE

Loss functions

loss function for  relies on estimator of previous  used to 

fit ε of least favorable model 

Others

EP (Yd (t)∣L̄d (k − 1))

(EP (Yd (t)∣L (0)) : d ∈ D, t ∈ τ)

Q redefined as (Q̄
1, QL(0)) when used in ψ (Q)

Estimators

gn estimator of g0

Qn initial estimator of Q0

Q̄
n initial estimator of Q̄

0

updated estimator of Q0, targeted at ψ

TMLE of ψ0
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Appendix B

The efficient influence curve of the statistical target parameter

We have the following theorem for a general parameter 

.

Theorem 1

Consider a parameter Ψ : M → IRJ that can be represented as Ψ(P) = f (Q̄
L(1), QL(0)), where 

. Let Q = (QL(1), QL(0)). Assume that f () is such that Ψ is 

pathwise differentiable. Let  be the partial derivative 

of f with respect to  at Q. Let  be the influence curve 

of f (Q̄
L(1), QL(0), n) as an estimator of f (Q̄

L(1), QL(0)), where QL(0), n is the empirical 

distribution of Li(0), i = 1, …, n.

Then, the efficient influence curve of Ψ at P can be represented as follows:

Proof

The efficient influence curve of the parameter E (Yd (t)∣L(0) = w) (assuming discrete random 

variable L(0)) is given by

(appendix A3, van der Laan and Rose [20]). By the delta-method, the efficient influence 

curve of f (Q̄
L(1), QL(0)) is thus given by

(appendix A3, van der Laan and Rose [20]). This completes the proof.

In order to determine the partial derivative of the function f and  the following is useful. 

Suppose that, as in our examples, f (Q) = arg maxβ M(β, Q) for some function M, and 
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suppose that Q = (Q̄, QL(0)). Then β(Q) = f (Q) solves the equation 

. By the implicit function theorem we have that

In particular,

and

We can now apply our general Theorem 1 to the example with Y(t) ∈ [0, 1] and the logistic 

regression working MSM in which β (Q) solves the equation U (β, Q̄
L(1), QL(0)) with

The same equation applies for the linear working MSM but with the other definition of h1 as 

mentioned above. Define

Note that . Thus,

and

This proves the following corollary [13, 22, 29].

Corollary 1

Consider the target parameter Ψ(Q) defined by eq. (5). This target parameter is pathwise 

differentiable at P with efficient influence curve given by
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The efficient influence curve is double robust. In other words we have that − P0 D* (Q, g0) 

= Ψ (Q) − ψ0, so that, in particular, if Ψ (Q) = ψ0, then P0D*(Q, g0) = 0. As a consequence, 

our TMLE  will be a consistent estimator of ψ0 if either  is consistent for Q0 or gn 

is consistent for g0 [38].

Appendix C

An alternative pooled TMLE that only fits a single ε to compute the update

The TMLE described in the main text relies on a separate ε for each k = 1, …, t and for each 

t = 1,…, K + 1 resulting in a collection of  t estimators of ε that define the TMLE. A 

nice feature of this TMLE is that it exists in closed form. The following alternative TMLE 

only relies on fitting a single ε, but in this case the updating needs to be iterated until 

convergence. First construct an initial estimator  of 

 as described above. Now, consider the above-

presented submodel  through  at ε = 0. Compute

where the nuisance parameters of the loss function are estimated with the initial estimator 

. Note that  can be fit with a pooled logistic regression as stated above. This yields an 

update . In general, at the mth step, given the estimator , we compute

and the resulting update . This updating process is iterated until . 

The resulting final update is denoted with  and is the TMLE of Q̄
0. By construction, we 

have that this TMLE also solves the efficient influence curve equation 

with arbitrary precision. The TMLE of ψ0 is now computed with the corresponding plug-in 

estimator Ψ ( , QL(0),n as above. The potential advantage of this alternative TMLE is that 

it is able to smooth across all time points t and k when computing the update, while the 

closed form TMLE presented above only smoothes over the rules d ∈ D.
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Appendix D

Supplementary material, Simulation 2

Overview

Below we describe the true data generating process used in Simulation 2 in greater detail. 

We also provide a summary table comparing the support and number of events over time in 

the simulated data and in the real data set it was designed to resemble.

In our presentation of the simulation below we have altered our notation slightly from that 

presented in the paper to match notation in the accompanying R code. Specifically, L (t) is 

used to refer to time varying CD4 count CD4(t). The observed data generated on a given 

subject consisted of

Further, the data generating process included a non-monotone monitoring process (denoted 

M (t)) designed to mimic when subjects come into clinic, have their CD4 counts measured, 

and have an opportunity to switch regimens. This adds several additional complexities. First, 

observed CD4 count, denoted here as L (t) (and in the main text as CD4(t)), is only updated 

to reflect the true underlying CD4 count process when a patient is seen. Below, L̂ (t) is used 

to denote the true underlying CD4 value. Subsequent CD4 values and death are functions of 

this true underlying value, while the intervention nodes are functions of the observed values 

only. Because both switching and monitoring are generated only in response to the observed 

past, however, this time-dependent non-monotone monitoring process is a multivariate 

instrumental variable, warranting its exclusion from the adjustment set. Further, its inclusion 

would both be expected to harm efficiency and introduce positivity violations (for example, 

subjects not seen in clinic at a given time point have zero probability of switch at that time 

point). The non-monotone monitoring process, while retained to mimic the data analysis, is 

thus omitted from the observed data and presentation in the main text in order to simplify 

discussion. Second, in accordance with common practice in clinical cohort data, censoring 

due to loss to follow up C2 is defined deterministically based on not being seen in clinic for 

a certain number of consecutive time points. Finally, a subject can only switch treatment 

when seen (A1 (t) is only at risk of jumping when M (t) = 1). As above, W = (W1, W2, W3, 

W4) and Y (t) denotes an indicator of death by time t.

Data generating process

Data were generated for a given individual according to the following process, where ε1 and 

ε2 are draws from a standard normal distribution, and all binary variables were drawn from a 

Bernoulli distribution with the conditional probabilities given below. Data for a given 

subject were drawn sequentially until either Y (t) jumped to one, C1 (t) jumped to 1, C2 (t) 

jumped to 1, or Y (10) was generated. Tables 7 and 8 compare the number of deaths in the 

simulated data (median of 501 samples) and actual data among patients following a given 

regime.
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Table 7

Events in data analysis

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 0 13

2 1 0 8

3 0 1 0 11

4 0 0 0 0 5

5 1 0 0 0 0 3

6 0 0 0 0 0 0 4

7 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 2

10 0 0 0 0 0 0 0 0 0 0 3
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Table 8

Events in simulated data

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

2 0 1 10

3 0 0 1 9

4 0 0 0 1 7

5 0 0 0 0 1 5

6 0 0 0 0 0 0 4

7 0 0 0 0 0 0 0 3

8 0 0 0 0 0 0 0 0 2

9 0 0 0 0 0 0 0 0 0 2

10 0 0 0 0 0 0 0 0 0 0 1

Tables 9 and 10 compare the number of patients in the simulated data and actual data who 

are uncensored and following a given regime. In the data analysis, for example, in the first 

3-month interval following immunologic failure (time = 1) there were no patient deaths 

among the 137 uncensored patients who switched immediately (switch time = 0) and 13 

deaths among the 2,285 uncensored patients who did not switch immediately (switch time = 

1). In the second 3-month interval following immunologic failure (time = 2), there was one 

patient death among the 120 uncensored patients who switched immediately (switch time = 

0), no patient deaths among the 88 uncensored patients who switched during the first 3-

month interval (switch time = 1) and 8 deaths among the 1,962 uncensored patients who did 

not switch immediately or during the first 3-month interval (switch time = 2).

Table 9

Support (# uncensored and following rule) in data analysis

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 137 2,285

2 120 88 1,962

3 104 80 71 1,703

4 88 68 67 54 1,453

5 77 59 57 51 61 1,184

6 54 44 50 48 57 57 951

7 40 37 43 48 54 55 51 760

8 29 33 40 46 50 51 51 49 602

9 17 29 34 41 44 48 51 49 50 508

10 10 28 34 39 44 46 51 48 49 53 432
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Table 10

Support (# uncensored and following rule) in simulated data

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 121 2,229

2 107 118 1,890

3 95 107 131 1,582

4 82 94 120 127 1,237

5 70 83 110 117 112 992

6 61 74 97 108 102 101 798

7 53 65 88 98 96 95 89 645

8 47 58 80 91 90 90 85 82 527

9 40 51 72 83 83 84 82 79 76 433

10 35 47 65 77 77 79 76 75 74 72 358
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Table 1

Breakdown of stratified TMLE when some rules d ∈ D have no support

Pooled TMLE Stratified TMLE

Bias

β̂
0 0.1674 −0.9346

β̂
1 −0.0563 0.2039

Bias/SE

β̂
0 0.1821 −2.3037

β̂
1 −0.2326 2.0955

Variance

β̂
0 0.8451 0.1646

β̂
1 0.0586 0.0095

MSE

β̂
0 0.8714 1.0377

β̂
1 0.0616 0.0510

95% confidence interval coverage

β̂
0 88% 88%

β̂
1 22% 33%

Note: True parameter values: β0 = 0.6214 β1 = −0.4452.
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Table 3

Simulation 1b

Pooled TMLE Stratified TMLE IPW

Bias

β̂
0 −0.0025 −0.2622 −0.0486

β̂
1 −0.0007 0.0744 0.0161

Bias/SE

β̂
0 −0.0092 −1.0907 −0.1618

β̂
1 −0.0103 1.1504 0.1991

Variance

β̂
0 0.0716 0.0578 0.0904

β̂
1 0.0051 0.0042 0.0065

MSE

β̂
0 0.0715 0.1264 0.0926

β̂
1 0.0051 0.0097 0.0068

95% Cl coverage

β̂
0 98% 83% 97%

β̂
1 97% 80% 96%

Notes: g0 > 0.001; Both g and Q are correct; True parameter values: β0 = 0.0014 β1 = −0.1187.
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Table 4

Simulation 2: resembling data analysis

Pl TMLE Str TMLE Stan IPW Str IPW

Bias

β̂
0 0.0000 0.0060 −0.0239 −0.0501

β̂
1 −0.0041 −0.0040 0.0179 0.0309

β̂
2 −0.0006 0.0107 0.0984 0.0880

Bias/SE

β̂
0 0.0000 0.0218 −0.0867 −0.1829

β̂
1 −0.0849 −0.0827 0.4118 0.7046

β̂
2 −0.0096 0.1654 2.0741 1.8708

Variance

β̂
0 0.0738 0.0750 0.0758 0.0751

β̂
1 0.0024 0.0024 0.0019 0.0019

β̂
2 0.0037 0.0042 0.0022 0.0022

MSE

β̂
0 0.0736 0.0749 0.0762 0.0775

β̂
1 0.0024 0.0024 0.0022 0.0029

β̂
2 0.0037 0.0043 0.0119 0.0099

95% CI coverage

β̂
0 92% 92% 93% 94%

β̂
1 82% 80% 90% 89%

β̂
2 80% 77% 35% 42%

Notes: True parameter values: β0 = −4.9525 β1 = 0.2962 β2 = −0.2168; Pl TMLE: Pooled TMLE; Str TMLE: Stratified TMLE; Stan IPW: 

Standard IPW; Str IPW: Stratified IPW.
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