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Abstract. Most neurological diseases are characterized by gradual dete-
rioration of brain structure and function. To identify the impact of such
diseases, studies have been acquiring large longitudinal MRI datasets
and applied deep-learning to predict diagnosis label(s). These learning
models apply Convolutional Neural Networks (CNN) to extract infor-
mative features from each time point of the longitudinal MRI and Re-
current Neural Networks (RNN) to classify each time point based on
those features. However, they neglect the progressive nature of the dis-
ease, which may result in clinically implausible predictions across vis-
its. In this paper, we propose a framework that injects the extracted
features from CNNs at each time point to the RNN cells considering
the dependencies across different time points in the longitudinal data.
On the feature level, we propose a novel longitudinal pooling layer to
couple features of a visit with those of proceeding ones. On the pre-
diction level, we add a consistency regularization to the classification
objective in line with the nature of the disease progression across vis-
its. We evaluate the proposed method on the longitudinal structural
MRIs from three neuroimaging datasets: Alzheimers Disease Neuroimag-
ing Initiative (ADNI, N = 404), a dataset composed of 274 healthy
controls and 329 patients with Alcohol Use Disorder (AUD), and 255
youths from the National Consortium on Alcohol and NeuroDevelop-
ment in Adolescence (NCANDA). All three experiments show that our
method is superior to the widely used methods. The code is available at
https://github.com/ouyangjiahong/longitudinal-pooling.

1 Introduction

Longitudinal MRIs enable scientists to track the gradual effect of neurological
diseases and environmental influences on the brain over time [21]. One way of
quantifying those effects is by training deep learning models to distinguish the
longitudinal MRIs of healthy controls from those of the cohort of interest [7].
These learning models often couple Convolutional Neural Networks (CNN) with
Recurrent Neural Networks (RNN) [14,20,11,7,12], where the CNN reduces each
MRI of the longitudinal sequence to informative features and the RNN uses
the features to predict cohort assignment at each visit. One can now track the
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assignments across visits and reduce that sequence to a singled label by, for
example, simply relying on the assignment of the last visit [20,11,7] or by adding
a linear layer on top of the RNN predictions [6].

Shortcomings of these deep learning approaches arise from their implemen-
tations of RNN, which analyze the longitudinal MRI in one temporal direction
by, for example, performing inference at a visit only considering that and prior
visits [1,19]. Alternatively, bidirectional RNNs [3] perform inference using both
future and past visits but they cannot explicitly model disease progression. They
often result in clinically implausible predictions with fluctuating disease diag-
noses across visits. For example, once a person transitions from Mild Cognitive
Impairment (MCI) to Alzheimer’s Disease (AD), they cannot convert back to
MCI. However, the RNN model is not confined to that constraint so that it
might predict AD to MCI conversion. To address this shortcoming, we extend
the CNN+RNN architecture with a novel longitudinal pooling layer to regularize
the model on the feature level and a consistency loss function to regularize on
the prediction level.

For each visit of the longitudinal MRI, the longitudinal pooling layer aims to
fuse information from the current with proceeding visits. Traditional approaches
suggest to use feature concatenation [16] or fully connected networks [13]. How-
ever, these operations require a fixed number of time points, which is not a
good fit for longitudinal studies as the number of visits can greatly vary across
subjects [15]. An alternative to the fixed-length operations is a set operation
such as defined by social pooling [2], which has been used to predict the spatial
trajectories of pedestrian. Inspired by this model, our design of the longitudinal
pooling layer generates (for each visit) a compact representation of MRI features
from future visits and concatenates it with features of the current visit before
feeding them into the RNN. The final predictions produced by the RNN are then
regularized by a consistency loss objective, which strongly discourages changes
in cohort assignment of subjects with irreversible conditions, such as AD. For
those subjects, the function penalizes a decrease in confidence to be labelled AD
as visits proceed.

We evaluate our method on three longitudinal structural MRI datasets: 404
subjects from ADNI to analyze the progression of AD, 603 subjects to distinguish
healthy subjects from those diagnosed with AUD, and 255 no-to-low drinking
youths (ages 14 to 16 at baseline) of NCANDA to identify the ones that transi-
tion to heavy drinkers once they become adults. On these data sets, the accuracy
of our proposed architecture is higher than alternative models without the lon-
gitudinal pooling and consistency layers.

2 Method

Let {x(s)
t |t = 1, ...,ms} be the longitudinal structural MRI of subject s acquired

over ms visits. Our deep learning model learns to predict binary labels {y(s)t |t =
1, ...,ms}, which classify a subject s at each visit t being healthy or belonging
to a cohort of interest (e.g., AD). The total number of time points ms may
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Fig. 1. The overview of the proposed method. The gray components are the
CNN+RNN backbone of our model. Two innovations of the proposed method are:
longitudinal pooling layer (yellow component) and consistency loss (orange).

vary across subjects, while we make the simplifying assumption that the interval
between time points is the same across subjects and that the same acquisition
protocol is used throughout the study. We denote the entire dataset with S.

The backbone of our model is a 3D-CNN coupled with a sequence-to-sequence
RNN (gray components in Fig. 1). First, informative features ct := CNN(xt)
are extracted by applying a 3D-CNN independently for each time point t to the
corresponding MRI of the longitudinal sequence. Note, the same 3D-CNN (i.e.,
set of weights) is used across time points in order for the model to accurately
track longitudinal changes. These features are fed into an RNN to model their
temporal relations. The output of each RNN cell is then fed into fully connected
(FC) layers followed by sigmoid activation to turn the confidence measure of the
RNN cell into a binary label. This framework is now extended by a Longitudinal
Pooling layer and a Consistency Loss function, which are described in further
detail next.

Longitudinal Pooling (LP). Inspired by social pooling [2], the LP layer aug-
ments the features ct derived by the 3D CNN for subject s at time point t with
those of future time points via a pooling operation H(·), i.e.,

gt :=

{
H({cu|u > t}) t < ms

ct, t = ms

. (1)
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For simplicity, H(·) computes the average. The last time point does not have
proceeding time points to pool from, so that we use cms

itself.
For each time point, the features ct of the current time point are concatenated

with the pooling embedding gt, which are then applied to a fully connected layer
φ(·) (i.e, a linear function with tanh activation and weights Wf ) to determine the
augmented hidden state ht := φ([ct,gt];Wf ). Lastly, ht becomes the new input
to the RNN layer h′t := RNN(ht;Wr), where weights Wr are shared among
time points. Note, LP can be easily generalized to the scenario of multiple RNN
layers. In this case, the pooling operation defined with respect to Eq. (1) and ht

is performed on
{
h′t, . . . ,h

′
ms

}
instead of {ct, . . . , cms}.

Consistency Loss. To explicitly model irreversible disease progression, such as

in the case of AD, our deep learning approach assigns higher confidence p
(s)
t to

subjects assigned to the cohort of interest S+ (e.g., AD) as time progresses. In
other words, the consistency loss function expects ps1 ≤ ps2... ≤ psm for s ∈ S+
and penalizes predictions violating this rule:

Lcons :=
∑
s∈S+

∑
1≤i<j≤ms

bp(s)i − p
(s)
j c+ , (2)

where b·c+ sets negative values to 0.
Objective Function and Training Strategy. To reduce the overfitting prob-
lem in training recurrent neural networks [7], we first pre-train a 3D-CNN classi-
fier using all available training images while discarding their longitudinal depen-
dencies. Then, we incorporate the recurrent and longitudinal pooling layers on
top of the pre-trained 3D convolutional layers to jointly train our CNN+RNN
model. The final training objective function can be written as:

L := −
∑
s∈S

ms∑
i=1

(
wposy

(s) log(p(s)) + (1− y(s)) log(1− p(s))
)

+ λconsLcons + λreg ‖W ‖22 ,

where the first term is the binary cross entropy with wpos balancing between
the influence of S+ with S\S+. The second term is defined by Eq. 2, and the
third term regularizes W, which represents the weights of all linear and recurrent
layers. λcons and λreg weigh the consistency loss and regularization loss.

3 Experiments

All longitudinal MRIs in the following experiments were first preprocessed by a
pipeline composed of denoising, bias field correction, skull striping, affine regis-
tration to a template, and re-scaling to a 64×64×64 volume. We first randomly
selected 10% of the subjects as the validation set, then we measured the clas-
sification accuracy by 5-fold cross validation on the rest of subjects. For each
testing run, the training data were augmented by applying random 3D rotation,
shift, and flipping hemispheres of longitudinal MRIs. The same transformation
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Method BACC SEN SPE AUC

CNN 86.1 86.8 85.4 91.3
CNN+AP 87.8 88.2 87.4 91.3

CNN+RNN 89.5 88.7 90.3 91.4
CNN+RNN+LP 90.0 89.2 90.8 91.5
CNN+RNN+LP+CL 90.4 88.9 91.9 91.5 C

N
N
+

R
N
N
+

L
P
+

C
L Visits NC/AD BACC

t1 188/169 89.8
t1 − t2 163/103 90.1
t1 − t3 138/78 90.6
t1 − t4 109/52 90.6
t1 − t5 73/0 91.8

Table 1. Comparison across methods on NC/AD classification of ADNI and BACC
of the proposed method dependent on the number of time points

was applied to each MRI of the same subject. We flipped hemispheres based on
the assumption that the studied effect bilaterally impacts the brain, which is the
case for most neurological diseases.

The 3D CNN contained 4 convolutional blocks connected by 2×2×2 3D Max-
Pooling. Each block contained two stacks of 3×3×3 3D convolution, Batch Nor-
malization, ReLU, and dropout layers. The resulting 512-D features were con-
nected to two fully connected layers (FC) with tanh activation producing a 16-D
feature (ct) as the input of RNN. We used Gated Recurrent Units (GRU) layer
with 16 hidden units as the RNN implementation. The regularization weights
were set to λreg = 0.02 and λcons = 2.0.

While the 5 folds were split based on subjects, we measured the accuracy
of our proposed method (CNN+RNN+LP+CL) with respect to each individ-
ual MRI in the testing fold. Specifically, we measured the balanced accuracy
(BACC), sensitivity (SEN), specificity (SPE), and Area Under the Curve (AUC)
in percent. To put those accuracy scores in perspective, we applied a cross-
sectional CNN to each MRI of a longitudinal scan [10]. CNN+AP added an
average pooling layer to the CNN baseline by concatenating the CNN features
of a visit with the average of the CNN features across all the other visits. The
baseline for our longitudinal MRI analysis was the CNN+RNN approach[14], to
which we also added the LP layer (CNN+RNN+LP).

3.1 Evaluation on ADNI

Based on all successfully processed T1-weighted MRIs of the ADNI data set,
we applied the proposed method to distinguish 214 normal controls (NC; age:
75.57 ± 5.06 years, 108 Male / 106 Female) from 190 patients diagnosed with
Alzheimer’s disease (AD; age: 75.17 ± 7.57 years, 104 M/86 F). There was no
significant age difference between the NC and AD cohorts (p=0.55, two-sample
t-test). The number of time points ms varied from 1 to 5 (denoted as t1...t5)
covering the first two years of the ADNI study with 6-month intervals.

According to the accuracy scores listed in Table 1 (left), each implementation
recorded a sensitivity that was similar to its specificity indicating that the predic-
tion accuracy was fairly balanced across the two cohorts. However, the accuracy
scores were significantly different across implementations with CNN recording
the lowest (balanced) accuracy of 86.1%. The accuracy slightly improved when
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Fig. 2. Predictions by CNN and the proposed method on the three datasets

adding subject-level pooling but was still lower than that of the longitudinal
models. Of those longitudinal models, CNN+RNN recorded the lowest accuracy
and AUC, implementation including LP achieved the highest AUC (91.5%), and
the highest balanced accuracy of 90.4% was recorder for the model with both LP
and consistency loss (CL). This accuracy score was also higher than the 89.4%
reported by [7], which coupled a CNN with a bi-directional RNN with similar
network architectures on a similar subset of ADNI (i.e, 229 NC and 198 AD
with up to 5 visits). Most importantly, our proposed model was significantly
more accurate than the CNN baseline (p<0.005 according to DeLong’s test [8]).
Finally, we were able to further improve the accuracy of our approach to 90.8%
by adding 137 ADNI subjects labelled as pMCI to the training data set; pMCIs
transitioned from mild cognitive impaired (MCI) to AD during the study .

According to Table 1 (right), another way of improving the accuracy of our
implementation was confining the test set to subjects with at least 3 visits.
CNN+RNN+LP+CL achieved the highest accuracy of 91.8% when basing pre-
dictions on the longitudinal MRIs of subjects with 5 visits. This indicates that
our model was effectively capturing the changes within the longitudinal MRI.
Fig. 2(a) qualitatively confirms this finding. Many of the predictions generated
by the cross-sectional CNN fluctuate between NC and AD as the lines (which
connect predictions of the same subject) frequently cross the 0.5 barrier (dotted
blue line). These clinically impossible transitions rarely happened for the predic-
tions of our proposed approach. Not only did the intra-subject prediction score
for most AD patients increase with each visit but, somewhat surprising, those
scores decreased for NC subjects. This phenomenon resulted in the NC and AD
cohorts being clearly separated.
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Method BACC SEN SPE AUC

CNN 67.6 62.9 72.2 70.9
CNN+AP 68.7 66.7 70.7 71.5

CNN+RNN 69.0 67.1 70.9 71.6
CNN+RNN+LP 69.5 67.6 71.4 71.8
CNN+RNN+LP+CL 69.3 67.9 70.8 71.8

C
N
N
+

R
N
N
+

L
P
+

C
L

Visits NC/AUD BACC

t1 244/293 65.0
t1 − t2 124/150 70.6
t1 − t3 63/74 77.1
t1 − t4 30/29 79.5

Table 2. Comparison across methods on NC/AUD classification and the BACC of the
proposed method with respect to the number of visits analyzed

3.2 Evaluation on AUD

Chronic drinking often causes gradual deterioration in the gray and white matter
tissue [18,22]. In this experiment, we applied the proposed method to distinguish
longitudinal T1-weighted MRIs (up to 4 visits) of 274 Normal Controls (NC;age:
47.3 ± 17.6, 136 M / 138 F) from those of 329 patients diagnosed with Alcohol
Use Disorder (AUD; age: 49.3 ± 10.5, 100 M / 229 F).

As it was the case in the ADNI experiment, all implementations (except
CNN) recorded a sensitivity that was similar to its specificity and achieved
accuracy scores significantly more accurate than chance (p<1e-5; Fisher Exact
test); The longitudinal approaches were more accurate than the cross-sectional
ones, and the accuracy of CNN+RNN+LP+CL improved with the number of
available visits for prediction (according to Table 2). However, the accuracy
scores were much lower than recorded for ADNI, and the consistency loss did not
improve the accuracy as CNN+RNN+LP and CNN+RNN+LP+CL had similar
scores. Most likely this was due to the relatively small number of subjects with
more than two time points. Another reason could be that even the cross-sectional
CNN approach produced predictions that were relatively stable across visits (see
fig. 2(b)) so that the benefit of the consistency loss function was limited for this
application.

3.3 Evaluating Implementations on the NCANDA Data Set

One aim of the NCANDA study is to study the brains of no-to-low alcohol
drinking adolescents in order to predict who is going to become a heavy drinker
during young adulthood [4]. To aid this goal, we applied our implementations to
the longitudinal MRIs (up to 5 visits) of the 255 no-to-low drinking adolescents
(124 boys/131 girls) of this study that were 14-16 years old at baseline. During
young adulthood (i.e, age 18 or older), 115 subjects remained no-low drinkers, 71
subjects transitioned to moderate drinkers, and 69 were heavy drinkers according
to the Cahalan criteria [5,17]. Our implementation now aimed to differentiate
the heavy from no-to-low drinkers (which were matched with respect to age),
while we included the moderate drinkers (in the heavy drinking cohort) during
training to reduce overfitting.

Again, findings of the previous experiments were largely confirmed. However,
sensitivity and specificity were not as balanced as in previous experiments, and
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Method BACC SEN SPE AUC

CNN 68.8 75.5 62.1 74.5
CNN+AP 71.0 77.3 64.7 74.2

CNN+RNN 70.8 77.2 64.4 73.3
CNN+RNN+LP 72.1 80.4 63.8 73.4
CNN+RNN+LP+CL 72.7 81.3 64.1 73.4 C

N
N
+

R
N
N
+

L
P
+

C
L Visits no-low/heavy BACC

t1 100/60 71.5
t1 − t2 99/60 72.7
t1 − t3 93/56 72.3
t1 − t4 80/45 71.9
t1 − t5 37/20 79.0

Table 3. Comparison across methods on no-low/heavy drinking classification and
BACC of the proposed method dependent on the number of time points

all implementations favored the heavy drinking cohort. CNN+RNN+LP+CL
achieved the highest accuracy with 72.7 % and was significantly more accurate
than the CNN baseline (p<0.001, DeLong’s test). Similar to the ADNI experi-
ments, the consistency loss operation was able to improve the accuracy. More-
over, the prediction scores of the cross-sectional CNN implementation greatly
varied across time, while this was not the case for the proposed implementation
(see Figure 2). This underlines the importance of the pooling and consistency
layer of our longitudinal CNN+RNN implementation. Unlike the previous two
experiments, Table 3 shows that the prediction accuracy was balanced with re-
spect to the number of time points used for prediction. This indicates that risk
factors for heavy alcohol drinking potentially precede the neurodevelopment be-
fore age 14 [9]. This finding is also echoed by the relatively “flatter” predictions
along age in Fig. 2(c) compared to previous plots for AD in Fig. 2(a) and AUD
in Fig. 2(b).

4 Conclusion

In this paper, we have proposed a generalized framework on top of the CNN
and RNN backbone to model from longitudinal MRI the gradual deterioration
of brain structure and function caused by neurological diseases and environmen-
tal influences. On the feature level, we proposed a novel longitudinal pooling
layer that combined the features of a visit with a compact representation of
information from proceeding visits. On the prediction level, we included a con-
sistency loss to characterize the gradual effect on brain structures across visits.
Our method was applied to three datasets classifying Alzheimer’s disease, alcohol
use disorder, and adolescents at risk for heavy alcohol drinking upon becoming
young adults. The proposed method achieved superior accuracy scores compared
with cross-sectional and longitudinal baseline methods. Future work will focus on
making the deep learning framework more relevant to neuroscientific discoveries
by explicitly modelling confounding factors, visualizing patterns of brain struc-
ture driving prediction, and relaxing the assumption of identical time intervals
between visits.
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