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Abstract

Drug induced kidney disease is a frequent cause of renal dysfunction; however, there are no 

standards to identify and characterize the spectrum of these disorders. We convened a panel of 

international, adult and pediatric, nephrologists and pharmacists to develop standardized 

phenotypes for drug induced kidney disease as part of the phenotype standardization project 

initiated by the International Serious Adverse Events Consortium. We propose four phenotypes of 

drug induced kidney disease based on clinical presentation: acute kidney injury, glomerular, 

tubular and nephrolithiasis, along with primary and secondary clinical criteria to support the 

phenotype definition, and a time course based on the KDIGO/AKIN definitions of acute kidney 

injury, acute kidney disease and chronic kidney disease. Establishing causality in drug induced 

kidney disease is challenging and requires knowledge of the biological plausibility for the specific 

drug, mechanism of injury, time course and assessment of competing risk factors. These 

phenotypes provide a consistent framework for clinicians, investigators, industry and regulatory 

agencies to evaluate drug nephrotoxicity across various settings. We believe that this is first step 

to recognizing drug induced kidney disease and developing strategies to prevent and manage this 

condition.
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Introduction

Drug induced kidney disease (DIKD) accounts for approximately 19-26% of cases of acute 

kidney injury (AKI) in hospitalized patients [1]. There are no standards to identify drug 

induced nephrotoxicity and as a result - DIKD is often unrecognized. In recent years, the 

International Serious Adverse Event Consortium (iSAEC) has initiated a phenotype 

standardization project for drug induced adverse events[2]. In conjunction with the iSAEC, 

we have developed consensus definitions for DIKD, taking into account its wide spectrum 

and the need for balancing practicality with reliability of the classifications across different 

settings.

Consensus process

With the support of the iSAEC, we organized a series of eight teleconferences followed by 

two face-to-face meeting of international, adult and pediatric, nephrologists and pharmacists. 

The panel developed phenotypic criteria using a modified Delphi process to allow 

identification of patients across 4 categories representing the spectrum of DIKD, for subject 

recruitment into a genetic study of DIKD (DIRECT). The panel was divided into subgroups 

and researched specific phenotypes. Criteria were summarized and presented to the larger 

group for consensus. Criteria were considered in the context of using electronic medical 

records to screen for patients with DIKD in both hospitalized and ambulatory settings. 

Panelists were asked to consider the known mechanisms of nephrotoxicity, time course of 

drug exposure and the setting as discussed in more detail below. For the acute kidney injury 

(AKI) phenotype, established definitions were considered as the starting point and adapted 

for DIKD (e.g. AKIN/KDIGO criteria for AKI) [3].

Description of Phenotype

We propose that DIKD presents in one of four phenotypes: AKI, glomerular disorder, 

tubular disorder, or nephrolithiasis/crystalluria. The clinical presentation of each phenotype 

is based on a change in biomarkers and other evidence: Scr (AKI), proteinuria or hematuria 

(glomerular), electrolyte abnormalities (tubular), ultrasound findings (nephrolithiasis). To 

standardize the initial phenotype, we developed primary and secondary criteria. We suggest 

that at least one primary criterion must be met for all drugs suspected of causing DIKD 

(Table 1).

Mechanisms

Adverse drug reactions can be classified into type A and B reactions. Type A reactions are 

dose-dependent toxicities that are predictable based on the known pharmacology of the drug 

and alleviated by reducing drug exposure (i.e. dose reduction) or withdrawal of the drug 

(e.g. aminoglycoside toxicity). Type B reactions are unpredictable based on the known 

pharmacology of the drug. Toxicity is not dose-dependent and usually requires drug 

withdrawal for resolution (e.g. acute interstitial nephritis from proton pump inhibitors).

Often, the same drug may present as different DIKD phenotypes. For instance, NSAIDS can 

result in AKI due to hemodynamic changes or acute interstitial nephritis (AIN), or nephrotic 
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range proteinuria from glomerular injury. The risk factors that predispose individuals to 

develop an adverse reaction from an individual drug are unknown in most cases. Genetic 

risk factors are emerging for the development of serious drug induced adverse reactions [4]. 

In type A reactions, genetic variation in drug elimination may determine overall drug 

exposure and pharmacological effect. For example, alterations in the expression of organic 

anion transporters (OAT) in the kidney could lead to increased intracellular concentrations 

of certain antimicrobials with increased toxicity to the renal tubules. The mechanisms 

underlying type B reactions are more complex and variable than type A reactions. In many 

instances of organ-directed toxicity, drug-induced disease may mimic other diseases. For 

example, hydralazine associated glomerulonephritis (GN) is immune mediated, may mimic 

a lupus or ANCA positive GN and may be categorized as a type B reaction. Based on our 

current understanding we classified common drugs associated with DIKD in relation to 

Type A and B reactions (Table 2&3).

Time Course

Several factors affect the presentation of DIKD, including the drug exposure duration, time 

course for biomarker change, identification of renal abnormalities and the duration of the 

DIKD event. Drugs vary widely in the presentation of nephrotoxicity within each 

mechanistic type with some causing acute injury (examples: aminoglycosides (Type A) and 

cephalosporins (Type B)) while others are associated with a slower insidious insult 

(example: lithium (Type A)). Recognition of DIKD depends on the frequency with which 

the diagnostic tests are obtained and reviewed and will differ based on the setting (discussed 

further below). The interplay of factors including the mechanism of toxicity, duration of 

drug exposure and frequency of biomarker testing influence the recognition, management 

and outcomes of DIKD. Based on these observations we propose categorizing DIKD into 

three broad subsets reflecting the time course of events. These categories build on 

conceptual models proposed by KDIGO for AKI (considered if the injury develops within 7 

days) and CKD (persistence of injury for >90 days). Injury to the kidney beyond 7 days but 

less than 90 days reflects sub-acute injury similar conceptually to acute kidney disease 

proposed in KDIGO guidelines. The development of DIKD can similarly be divided into 

acute (1-7 days), sub-acute (8-90 days) and chronic (>90 days) post drug exposure (Figure 

1). We propose utilizing this framework as a practical approach for applying the primary 

criteria for all 4 phenotypes of DIKD as discussed further below. Based on this conceptual 

model, for each phenotype, thresholds could be established to detect DIKD, define its 

severity and ascertain recovery.

Setting

Nephrotoxicity is common in both hospitalized and ambulatory care settings, but its reported 

frequency varies based on several factors. Hospitalized patients are generally sicker, have a 

higher risk of exposure to nephrotoxins, contrast agents and procedures, and are more 

frequently monitored than ambulatory care patients. Recognizing DIKD in ambulatory care 

is more difficult, more likely to be missed and not reported. Additionally, establishing 

causality is more difficult when biomarker values are lacking and history of drug exposure is 

incomplete. This is particularly important for the AKI phenotype, where our current 
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definitions evaluate changes in Scr over a set period of time in relation to a specific 

reference. Often, this reference creatinine is unavailable. Chronic forms of DIKD (e.g. 

tubular disorders, nephrolithiasis and glomerular disorders) are similarly more likely to be 

recognized in clinic settings but it may be more difficult to establish causality to a specific 

drug.

In order to account for these factors, we propose that DIKD cases meet the minimal criteria, 

as follows:

1. The drug exposure must be at least 24 hours preceding the event.

2. Reasonable evidence for biological plausibility for the causal drug, based on known 

mechanism of drug effect; metabolism and immunogenicity.

3. Complete data (including the medication history, biomarker concentrations, co-

morbid diseases, concurrent risk factors) is required to account for concomitant 

risks and exposures to other nephrotoxic agents.

4. The strength of the relationship between the attributable drug and phenotype should 

be based on drug exposure duration, extent of primary and secondary criteria met 

and the time course of the injury.

Acute Kidney Injury Phenotype

Key Features

The AKI phenotype was based on KDIGO criteria with modifications to account for the 

presence of underlying CKD, time course and setting [3]. Since changes in serum creatinine 

are the hallmark of this phenotype, it includes acute tubular necrosis and acute interstitial 

nephritis. Although hemodynamic alterations are recognized for specific drugs e.g. 

angiotensin converting enzyme inhibitors (ACE), angiotensin receptor blockers (ARB), and 

non-steroidal anti-inflammatory drugs (NSAIDS), there are currently no consensus 

definitions of hemodynamic injury. Since transient changes in creatinine (usually Stage 1 

AKI) can occur from other factors e.g. dehydration and hypotension in the setting of drug 

exposure and resolve when these factors are corrected, it is often difficult to distinguish 

primary drug induced effects from other factors. Recent studies from cardiac surgery 

patients exposed to ACE/ARB suggest that these changes are generally mild (Stage 1 

criteria), resolve with dose reduction or withdrawal, and may not represent a clinically 

significant injury [5]. Consequently, in order to increase specificity, we did not include 

hemodynamic changes as distinct criteria and we proposed that the primary criteria must 

meet a minimum of KDIGO Stage 2, to be considered a potential DIKD event (Table 1). 

The overall severity of AKI is to be based on KIDGO staging criteria.

To further characterize the AKI phenotype based on initial presentation, we propose the 

secondary criteria shown in Table 1. Secondary criteria are used to further distinguish 

phenotypes (i.e. positive gallium scan for AIN), permit stratification and analysis within pre-

specified subgroups (e.g. oliguric vs non-oliguric presentations). The AKI phenotype itself 

comprises several mechanisms. For instance, renal functional change can reflect a direct 

nephrotoxic effect (i.e. ATN from aminoglycoside or cisplatin), or an idiosyncratic effect 
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(i.e. AIN from a proton pump inhibitor). In both instances, changes in Scr and urine output 

would define the phenotype but secondary criteria such as urine and peripheral eosinophilia 

and a positive gallium scan could provide additional classification (Table 1). We suggest 

that whenever feasible, kidney biopsy data would be used to confirm the underlying 

mechanisms (e.g. AIN vs ATN) and characterize the phenotype. A patient case is presented 

in Figure 2, demonstrating the application of the AKI criteria for DIKD. In this AKI case, 

the patient presents with a significant rise in serum creatinine secondary to drug injury. In 

this case, there is a reference serum creatinine prior to drug initiation and repeated during 

the course of treatment establishing a clear timeline of injury. In addition to renal injury, the 

patient has a pruritic rash suggesting this may be a type B reaction. Based on the timeline of 

drug exposure and plausible mechanisms of toxicity, it is likely she has vancomycin induced 

AKI but the sub-classification of acute tubular necrosis versus acute interstitial nephritis is 

difficult to establish without histologic evidence. Subsequently, a kidney biopsy confirms 

acute tubulointerstitial injury and the treatment plan includes changing antibiotics and a 

course of steroids. Emerging biomarkers of kidney damage (e.g. NGAL, KIM-1< IL18) 

combined with functional markers (e.g. serum creatinine and urine output) may permit 

further delineation of these events including transient hemodynamic alterations and could 

aid in defining the AKI phenotype.

Influence of CKD

To permit a clear assessment of underlying CKD status, and to establish a standardized 

approach to determine the onset and duration of AKI, we standardized the definitions of 

“baseline” and “reference” Scr values (Appendix 1). We recognized that in some instances, 

patients may present with an elevated Scr without a preceding reference value. In these 

instances, we propose accepting an absolute or relative decline in Scr equivalent to a Stage 1 

over 48 hours (following drug dose change) or 7 days (drug discontinuation), respectively. 

In these instances, the decline in Scr would need to meet the criteria within 2 weeks of 

stopping the drug to ensure specificity. Some forms of AKI may take longer to resolve after 

discontinuation of the drug (in the case of AIN) and would be categorized as a sub-acute 

injury. The development of AKI in the setting of pre-existing CKD requires a similar level 

of change in Scr or urine output; however, patients must meet criteria for CKD (Appendix 

1).

Effect of Time Course and Setting

Since many drugs manifest biomarker changes outside the time frame of the acute time 

period, we propose a sub-acute phenotype that requires a similar severity of Scr change as in 

the AKI phenotype but permits a Scr elevation within 4 weeks from initiation of drug and in 

the setting of continued drug exposure or within a maximum of two weeks of drug 

discontinuation. For patients where a decline in Scr was to be considered as evidence of 

kidney injury, the criteria would need to be met within 90 days of a change in drug dosing or 

discontinuation. This approach permits classification and tracking of injuries for duration 

and outcomes.
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Glomerular Phenotype

Although several drugs have been associated with the development of glomerular injury, this 

is a relatively infrequent form of DIKD. Significant proteinuria, hematuria and associated 

urinary sediment abnormalities are the key hallmarks of this phenotype; however, this must 

be distinguished from a primary (e.g. idiopathic minimal change disease) or secondary (e.g. 

diabetes) glomerular process. Consequently, we proposed that the phenotype requires a 

kidney biopsy during continued drug exposure or within 4 weeks after stopping the drug, 

showing specific features previously associated with drug toxicity (e.g. collapsing focal 

segmental glomerulosclerosis with pamidronate). We recognized that often the biopsy 

features would be confounded by other factors (e.g. concurrent diseases) and would need to 

be consistent with the drug exposure period. We selected a urine protein to creatinine 

(UPCR) and urine albumin to creatinine (UACR) ratios > 0.8 or a 24 hour protein excretion 

> 1 gram per day as evidence for significant proteinuria [6]. We additionally proposed that a 

urinalysis with greater than 50 red blood cells per high powered field or dysmorphic red 

blood cells (such as acanthocytes) or RBC casts as evidence for significant hematuria and 

glomerular involvement. These definitions reflect clinical situations where most clinicians 

would consider a kidney biopsy. We recognized that UPCR and UACR are not equivalent 

however for practical purposes we suggest that either test be used in the absence of a timed 

collection to identify patients with suspected glomerular lesions. We opted for more 

specificity in defining this syndrome given its rarity in contrast to idiopathic glomerular 

disorders and other causes of asymptomatic proteinuria. Figure 2 presents a glomerular 

disorder case highlighting the application of the above criteria with confirmatory evidence 

of DIKD on renal biopsy.

Tubular disorder

Drug induced tubular disorders have been described with several medications that are 

handled through tubular transport mechanisms and it is possible that mutations in renal 

transporters could give rise to tubular toxicity. Several different mechanisms have been 

implicated depending on the site of drug handling, drug exposure and duration of treatment. 

In most instances, these are dose-related and usually seen with chronic, continued exposure. 

Several patterns have been described ranging from isolated abnormalities (e.g. phosphate 

leak) to more generalized lesions contributing to a proximal renal tubular acidosis (RTA) or 

an acquired Fanconi’s syndrome. Recognizing the wide spectrum of tubular dysfunction, we 

proposed classifying this phenotype to include abnormalities in urinary losses of phosphate, 

glucose, magnesium, potassium, and tubular proteins or water handling. These would be 

associated with secondary changes in serum electrolytes, bicarbonate, and pH (Table 1). A 

key issue is to distinguish DIKD from congenital defects, other diseases (e.g. sarcoid) or 

toxin mediated tubular dysfunction. In the case of tubular disorders, the primary criteria 

alone may be used for electronic surveillance and detection of possible injury, but secondary 

criteria are essential to confirm diagnosis and improve specificity.

Mehta et al. Page 6

Kidney Int. Author manuscript; available in PMC 2016 February 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Nephrolithiasis

Medications may precipitate into crystals depending on their urinary solubility. The 

precipitation of medications spans the spectrum of asymptomatic, isolated crystalluria to 

obstructive stones. Crystalluria may also lead to AIN. This has been well described with 

anti-retrovirals such as indinavir which commonly causes isolated crystalluria but less 

commonly obstructive nephropathy. Drug induced renal calculi have also been described 

with sulfa antibiotics and triamterene. Additionally, nephrolithiasis can be associated with 

RTA syndromes related to tubular disorders. Imaging is often the only method to detect 

nephrolithiasis but may not be available in all cases. However, given the high incidence of 

nephrolithiasis in the general population, it is important to demonstrate the temporal 

relationship to the drug and analyze the stone composition, if available.

Combination Phenotypes

Although the phenotypes have distinct features, a patient may develop more than one 

phenotype. For example, drug induced crystalluria and nephrolithiasis could lead to AKI 

from obstruction or AIN. We considered that these combination phenotypes are possible. In 

such cases, each of the phenotypes will need to be evaluated independently, to establish a 

relationship to the drug exposure.

Causality assessment and Adjudication

Causality assessment tools such as the Naranjo scale have been used to attribute drug 

adverse reactions and have been modified to improve sensitivity for specific types of 

adverse reactions [7]. Causality assessment tools for DIKD have not been developed or 

reported. Challenges in causality assessment include multi-drug exposures and concurrent 

AKI risks. For instance, the risk of DIKD from antibiotics in the setting of sepsis would be 

enhanced by hypotensive episodes and exposure to contrast agents. In these situations, we 

propose that each drug be evaluated individually with respect to its possible contribution to 

the phenotype and underlying risk factors assessed. With multi-drug exposure, each causal 

agent should be rank classified (i.e. primary, secondary) based on the temporal relationship, 

magnitude and duration of effect, and knowledge of the underlying mechanism.

Anticipated Uses and Limitations

There is no current systematic way of identifying DIKD given the variability in the 

presentation with each individual drug. Phenotype standardization provides framework 

guidance to pharmaceutical industry for drug development, to regulatory agencies for safety 

surveillance, physicians and patients for recognition. The proposed classification requires 

validation but could be utilized by regulatory agencies to standardize the documentation of 

kidney toxicity in clinical trials. If these criteria are validated in clinical trials, physicians 

would have a uniform method to describe and record adverse drug events and to inform 

patients of the potential risk and consequences of specific drug toxicities. Researchers would 

build on these initial phenotypes with new tools e.g. damage biomarkers to further 

characterize the component toxicities. Electronic medical records (EMR’s) could be trained 

to identify the 4 broad phenotypes and build alert systems for pharmacists and physicians to 
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recognize drug nephrotoxicity and develop quality metrics to prevent drug nephrotoxicity. 

This approach has been successfully implemented by recent studies in pediatrics and adults 

demonstrating the incidence of drug toxicity and the efficacy of an alert system to correct it 

[8]. The phenotype standardization is anticipated to improve recognition of DIKD. Once 

these criteria have been validated, they can also be used for quality measurement. This will 

enhance the description of the epidemiology of DIKD, as was demonstrated by Selby and 

colleagues with the implementation of KDIGO criteria for screening and recognition of AKI 

[9]. We recognize that the phenotype categorization is broad. However, a hierarchical 

categorization with primary and secondary criteria brings forward commonalities of the 

injuries to allow for enhanced recognition. The structured secondary criteria further 

distinguish the injury. For example, patients recognized as exhibiting tubular dysfunction 

can be further categorized as disordered water handling or acid base disorders. Broad 

categorization addresses the multi-mechanisms of injury since definition is based on 

biomarker presentation. This facilitates the standard detection and alerting of injury when a 

recognized nephrotoxic drug is being administered. We recognize these proposed 

phenotypes do not include every possible mechanism of DIKD. We have deliberately 

excluded hemodynamic injury because there is no consensus definition on hemodynamic 

changes and transient AKI. The current KDIGO definitions require adequate consideration 

and correction of pre-renal factors affecting recognition. In the absence of these standardized 

definitions, we have opted for greater specificity. We recognize this may lead to 

misclassification, if the effect is mild, transient and limited. We anticipate over time, with 

emerging biomarkers for pre-renal conditions, the identification of hemodynamic alterations 

secondary to DIKD will improve, leading to refinement of the AKI phenotype. In addition, 

if the phenotype is too sensitive in definition, the risk of prematurely stopping a drug for 

patient care or halting drug development for a candidate drug increases.

We recognize several limitations of the proposed framework. The AKI phenotype 

encompasses different pathologic injuries and the absence of specific mechanistic 

biomarkers makes the differentiation of AKI clinically challenging. We have proposed the 

KDIGO criteria as a unifying definition to identify patients and using the secondary criteria 

to provide further specificity of the nature, site and extent of injury. We anticipate that 

emerging biomarkers of kidney damage can identify site specificity and coupled with 

functional assessments, we can further refine the phenotype. The proposed approach is one 

of practicality and raises the need for biomarkers to distinguish injury. In addition, the 

proposed biomarker cut-offs were chosen for specificity, however, these cut-offs should not 

replace clinical judgment as there may be patients who develop DIKD but do not meet these 

thresholds for biomarker changes. For example, a patient who develops an increase in serum 

creatinine due to aminoglycosides but does not meet the criteria for Stage 2 AKI could still 

be diagnosed with DIKD based on the physician’s assessment. The current phenotypes do 

not address the multi-mechanism injury as an entity which may have a different prognosis 

from single mechanism injuries. Additionally, as mentioned previously, these definitions do 

not ascertain causality and often the patient may be exposed to multiple drugs. Recognizing 

the phenotype is limited by how often biomarker measurements are taken so there is 

inherently uncertainty on the exact time course of DIKD. The practicality for utilizing the 

primary and secondary criteria for EMR screening is yet to be determined. Although in 
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broad categorization of DIKD loses some granularity, it enhances the feasibility of EMR 

detection strategies.

Conclusions

We have utilized a consensus based approach to establish 4 specific phenotypes to 

characterize DIKD based on existing knowledge of disease mechanisms, time course and 

setting. We acknowledge the inherent limitations of a consensus approach and the absence 

of any prospective validation. We recognize that the phenotypes would be subject to further 

revision based on their performance in prospective studies. However, we are confident that 

these phenotypes provide a consistent framework for clinicians, investigators and industry 

and regulatory agencies to evaluate drug toxicity across various settings. We believe that 

this is first step to recognizing DIKD and developing strategies to prevent and manage 

DIKD.

Appendix 1: Definitions

Acute kidney injury (AKI): is a process that causes an abrupt reduction in kidney function, 

and will be defined by meeting any of the following criteria[3]:

i. an absolute increase in Scr (≥ 0.3 mg/dl or ≥ 26.4 μmol/l) (within 48 hours’ time 

window) from the reference Scr

ii. percentage increase in Scr of ≥50% (1.5-fold from reference) within 7 days

iii. Reduction in urine output (documented oliguria of < 0.5 ml/kg/hr for >6 hours) 

despite adequate fluid resuscitation when applicable.

iv. Absolute decrease in Scr of (≥ 0.3 mg/dl or ≥ 26.4 μmol/l) (within 48 hours’ time 

window) from the reference Scr

v. Relative decrease in Scr of ≥50% (1.5-fold from reference) within 7 days.

Chronic Kidney Disease (CKD): Prior evidence of markers of kidney damage for ≥ 3 

months (microalbuminuria, proteinuria >300mg/24 hrs or abnormalities in imaging tests) or 

the presence of glomerular filtration rate (GFR) <60 mL/min/1.73 m2 for ≥3 months 

calculated with MDRD (Modification of Diet in Renal Disease) equation, with or without 

other signs of kidney damage as described above. Chronic kidney disease should be staged 

from stage 1 to 5 based on the calculated CKD-EPI/Ckid GFR.

Reference creatinine to determine timing of AKI: The following criteria should be used 

in order of preference depending on available values

a) Lowest Scr immediately prior to index event. Must meet following criteria

a. Precede drug exposure

b. Within 90 days of index event

c. Closest value to index event

d. Lowest value prior to drug exposure
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e. If no Scr measurement within 90 days of index use the hospital admission 

Scr

b) For declining Scr criteria with no prior reference label lowest value post drug 

reduction or stoppage as reference

c) For AKI phenotype will have two reference Scr values:

a. Reference 1:

i. Lowest value within 90 days of initiation of primary drug

b. Reference 2:

i. Lowest value closest to initiation of drug

Baseline Scr to determine CKD status: Creatinine values > 90 days from index event

a) Lowest values within 90 days to 12 months to establish eGFR stage based on 

CKD-EPI or Ckid (pediatrics)

b) Historical evidence of CKD based on standard criteria: proteinuria, biopsy, 

ultrasound size

c) Imaging studies consistent with CKD

d) For chronic drug exposure need values prior to drug initiation e.g. lithium

New onset AKI: Evidence of AKI without prior evidence of kidney damage (normal 

urinalysis, normal imaging tests and calculated MDRD (Modification of Diet in Renal 

Disease) GFR is ≥90 ml/min/1.73m2).

AKI on CKD: Evidence of AKI with criteria of kidney damage as stated with CKD 

definition will be considered as AKI on CKD.
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Figure 1. Onset and Duration of Drug Induced Kidney Injury
This figure conceptualizes the varying clinical presentations of drug induced nephrotoxicity 

drawing similarities to the KIDIGO definitions of kidney injury. Some antimicrobials can 

cause an acute rise in serum creatinine in relation to the start of the medication (e.g. 

aminoglycosides, amphotericin). Chemotherapeutic agents, such as cisplatin, cause a rise in 

serum creatinine that can occur beyond 7 days. Other medications have a slower onset of 

injury and can take months or years to be recognized clinically (e.g. tenofovir or lithium).
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Figure 2. Case Vignettes of Drug Induced Kidney Injury
This figure contains two patient cases demonstrating the application of the phenotype 

criteria for acute kidney injury and glomerular phenotypes.
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Table 1
Primary and Secondary Criteria for Individual Phenotypes

Phenotype Acute kidney Injury Glomerular Disorder Nephrolithiasis Tubular Dysfunction

Characteristics • ATN
1

• AIN

• Osmotic nephrosis

• hematuria,

• proteinuria

Crystalluria

Nephrolithiasis

Ultrasound findings 
of stone with or 
without obstruction

• Renal tubular 
acidosis

• Fanconi 
syndrome

• SIADH
2

• Diabetes 
Insipidus

• Phosphate 
wasting

Primary Criteria • Rise in Scr that 
presents as or 
progresses to 
Stage 2 (KDIGO) 
2-2.9 × reference 
Scr or higher

• If child has 
baseline Scr < 0.5 
mg/dL, must 
double Scr to get 
to at least 0.5 
mg/dL or above

OR

• Decline by at least 
50% from peak 
Scr over 7 days in 
relationship to 
change in drug 
dosing adjustment 
or discontinuation 
within 2 weeks

• Biopsy proven 
drug induced 
glomerular 
disease (within 4 
weeks of 
stopping drug)

AND
Proteinuria as defined by:

• 24 hr collection > 
1 gram protein

• UPC or UACR > 
0.8

• Urinalysis 2+ 
protein100-300 
mg/dL albumin

• Children: 100 
mg/m2/day or 4 
mg/m2/hr

Hematuria

• > 50 rbc/HPF

• Must be new 
onset 
following 
drug exposure 
with no prior 
history of 
nephrolithiasis

• No evidence 
of congenital 
etiology for 
nephrolithiasis

• If obstructive, 
rise in Scr that 
presents as or 
progresses to 
Stage 2 
(KDIGO) or 
higher

• If non 
obstructive, 
then:

• Urinalysis 
with crystals

• Ultrasound 
with stone

Tubular: 
Hypophosphatemia
OR
Glucosuria

• Urinalysis 
with 3+ 
glucose 
without 
diabetes

OR
Hyperchloremi c 
metabolic acidosis
AND
Hypokalemia or 
hyperkalemia
Diabetes insipidus:

• Hypernatremia 
> 155 mEq/L 
on multiple 
occasions

• Polyuria > 
3L/day

Secondary criteria • Oliguric 
<500ml/day or 
<0.5ml/kg/hr 
for12 hrs (KDIGO 
Stage2)

• Non-oliguric 
>500 ml/day, 
>1mL/kg/hr for 
24 hours 
(pediatrics)

• Urinalysis 
findings: granular 
and muddy casts 
consistent with 
ATN, urinary 
eosinophils, 
proteinuria

• FeNa > 1%

• Culture negative 
leukocyturia

• > 50 wbc/HPF

• Casts

• RBC; Granular,

• Absence of 
secondary 
disorder that can 
cause GN: DM, 
lupus, post 
infectious, 
hepatitis etc.

• Microangiopathic 
changes in blood

• Smear, LDH; 
haptoglobin

• Urine 
electrolytes

• Stone work up

Phosphaturia

• FePO4 > 5%

• Urinary PO4 
excretion > 
100 mg/day

Hypomagnesemia

• serum 
magnesium < 
1.2 mg/dL

Hypouricemia

• Serum uric 
acid < 2 
mg/dL

Tubular Proteinuria

• 24 hr 
collection < 1 
gram protein
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Phenotype Acute kidney Injury Glomerular Disorder Nephrolithiasis Tubular Dysfunction

• Negative 
ultrasound 
findings

• Positive gallium 
scan for AIN

• Clinical 
symptoms for 
AIN: fever, rash, 
joint pains

• Nephritic, 
nephrotic, mixed

• UPC < 0.8

• Urinalysis < 
2+ protein

Diabetes insipidus

• Serum 
osmolality > 
300 mosm/kg

• Urine 
osmolality < 
100mOsm/kg

• Urine sodium 
< 10 mEq/L

AIN = acute interstitial nephritis, ATN = acute tubular necrosis, DM = diabetes mellitus, FeNa= fractional excretion of sodium, FePO4 = fractional 
excretion of phosphorus, GN = glomerulonephritis, HPF = high powered field, LDH = lactate dehydrogenase, RBC= red blood cell, SIADH= 
syndrome of inappropriate antidiuretic hormone, UPC = urine protein to creatinine ratio, UACR= urine albumin to creatinine ratio, WBC = white 
blood cell.

1
Hemodynamic changes may contribute to ATN, however, in the absence of any specific features are not considered individual criteria for the AKI 

phenotype.

2
SIADH does not reflect direct tubular damage but rather the impact of a drug on ADH secretion and subsequent impaired water handling.
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Table 2
Drug toxicity mechanism and timing for AKI and Glomerular phenotypes

Drug AKI Glomerular Time Course Genetic Mechanism

Type A Type B Type A Type B

Abacavir X Acute HLA

Aminoglycosides X Acute/SA Megalin/Cathepsins/Caspases

Amoxicillin X SA HLA

Ampicillin X SA HLA

Amphotericin X Acute/SA

Bevacizumab X SA VEGF

Cefazolin X SA HLA

Ceftazidime X SA HLA

Cidofovir X Acute OAT

Ciprofloxacin X SA HLA

Colistin X SA OCT

Cyclosporine X X Acute/SA CYP 3A/PGP

Foscarnet X Acute/SA

Hydralazine X SA/Chronic HLA

Levofloxacin X SA HLA

Lithium X SA/Chronic VA receptors

Nafcillin X SA HLA

NSAIDs X X Acute/SA HLA

Oxacillin X SA HLA

Pamidronate X X SA

Penicillin X SA HLA

Piperacillin/tazobactam X Acute/SA HLA

Propylthiouracil X SA/Chronic HLA

Rifampin X X SA HLA

SMX/TMP X Acute/SA HLA

Tacrolimus X X Acute/SA CYP 3A

Vancomycin X X Acute/SA Oxidative stress, HLA

Type A= dose dependent toxicity, Type B= idiosyncratic, acute = within 7 days of drug initiation, SA = sub-acute, occurs within 4 weeks of drug 
exposure and may take up to 90 days to resolve, chronic = injury persisting beyond 90 days, OAT=organic anion transporter, HLA = human 
leukocyte antigen, CYP = cytochrome P450, PGP = p-glycoprotein, MRP = multi-drug resistance associated protein
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Table 3
Drug toxicity mechanism and timing for Tubular and Nephrolithiasis phenotypes

Drug Tubular Nephrolithiasis Time Course Genetic Mechanism

Type A Type B Type A Type B

Acyclovir X SA OAT

Atazanavir X SA

Cisplatin X SA/Chronic OAT

Didanosine X SA OAT/Mitochondria

Foscarnet X SA NaPO4 transport

Ifosfamide X SA/Chronic OAT

Indinavir X SA OCT

Lamivudine X SA OAT

Lithium X SA/Chronic VA receptors

Ritonavir X SA MRP 2,4 PGP

Tenofovir X SA OAT

Type A= dose dependent toxicity, Type B= idiosyncratic, acute = within 7 days of drug initiation, SA = sub-acute, occurs within 4 weeks of drug 
exposure and may take up to 90 days to resolve, chronic = injury persisting beyond 90 days, OAT=organic anion transporter, HLA = human 
leukocyte antigen, CYP = cytochrome P450, PGP = p-glycoprotein, MRP = multi-drug resistance associated protein
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