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ABSTRACT OF THE DISSERTATION 

 

 

System-Level Prognosis and Health Monitoring Modeling Framework and Software 

Implementation for Gas Pipeline System Integrity Management 

 

by 

 

Wadie Chalgham 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2020 

Professor Ali Mosleh, Chair 

 

 

Recurrent pipeline failures continue to be a source of safety and economic risk related to 

processing, transporting, and distributing natural gas. Studies have shown the lack of 

comprehensive, integrated, and accessible risk-informed integrity management models and tools 

for pipeline operators is a major contributor. To address this gap, this research presents a system-

level Prognosis and Health Monitoring (PHM) modeling framework for gas pipeline system 

integrity management to prevent or reduce the likelihood of failures. The proposed PHM approach 

takes into consideration all possible failure modes of the pipeline under study. It leverages the 

advancement of sensor technology to stream field data in real-time to perform a dynamic system-

level failure analysis based on Hybrid Causal Logic (HCL) including a Dynamic Bayesian 



 iii 

Network (DBN) corrosion model, to provide cost-effective and optimal mitigation actions such as 

sensor placement and maintenance schedule optimizations. The developed models are 

implemented in a software platform where the pipeline operators can observe the real-time and 

projected health state of the pipeline and the set of suggested actions to enhance the structural 

integrity of the pipeline system. The platform includes three main modules: Real-Time Health 

Monitoring, System-Level Reliability, and Optimal Mitigation Actions. From a safety perspective, 

the proposed PHM can prevent pipeline failures or reduces their likelihood by supporting pipeline 

operators in optimal decision-making and planning activities. To demonstrate potential benefits 

and performance of the proposed framework and software implementation, it is applied in a case 

study involving a corroding gas transmission pipeline. 
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CHAPTER 1 
 

1. Introduction 

1.1 Motivation 

 

Transporting fuel from production sites to consumers is a vital national need and a complex 

supply-chain process. In the United States, the length of oil and gas pipeline infrastructures is over 

2.6 million miles (Wang et al., 2019), which makes pipeline system integrity management both 

challenging and crucial to reduce the risks and likelihood of incidents and accidents, as pipeline 

failures can have a major impact on human lives and property. For instance, on September 9th of 

2010, a 30-inch natural gas line exploded in San Bruno, California, destroying 38 homes, 

damaging 120 homes, killing 8, and injuring 58 (Ariaratnam, 2014; Peekema, 2013). According 

to the Pipeline and Hazardous Materials Safety Administration (PHMSA), which is part of the 

United States Department of Transportation, an average of 287 pipeline incidents, 14 deaths, and 

59 injuries happen every year as shown in Table 1 and Figure 1 (U.S. Department of 

Transportation, PHMSA, 2020). These incidents have caused 281 fatalities, 1183 injuries, and 

more than $10 billion in the US since 2000. The PHMSA regulation §191.3 defines an incident as 

an event where gas is released from a pipeline and causes death, injury, property damage of more 

than $50,000, or gas loss of more than three million cubic feet.  

These failures could have been prevented or mitigated if appropriate system integrity 

management techniques were applied. This research focuses on the assessment and management 

of the transmission pipeline system integrity. The goals are to enhance the safety of gas 

transportation, maintain pipeline system safety and integrity, and increase the availability of gas 

for customer consumption in a reliable and safe way. 
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Table 1. PHMSA Pipeline Incidents and their Impact over 20 years 

Calendar Year Incidents Fatalities Injuries Total Cost 
2000 290 38 81 $272,169,219 
2001 233 7 61 $83,588,483 
2002 258 12 49 $131,617,050 
2003 297 12 71 $173,502,025 
2004 309 23 56 $333,167,284 
2005 336 16 46 $1,565,984,067 
2006 257 19 34 $166,816,094 
2007 264 15 46 $157,040,290 
2008 278 8 54 $627,528,955 
2009 275 13 62 $191,517,571 
2010 264 19 103 $1,966,084,186 
2011 285 11 50 $473,959,037 
2012 255 10 54 $247,957,147 
2013 303 8 42 $396,859,739 
2014 302 19 94 $333,868,015 
2015 329 9 48 $363,189,969 
2016 309 16 86 $390,634,908 
2017 303 7 30 $325,724,416 
2018 290 6 81 $1,932,637,980 
2019 309 13 35 $304,130,075 

Grand Total 5,746 281 1,183 $10,437,976,510 
20 Year Average: 

2000-2019 287 14 59 $521,898,826 

 

  

  
Figure 1. PHMSA Pipeline Incidents, Fatalities, Injuries, and Damage Cost since 2000 
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1.2 Background 

1.2.1 Gas Pipeline Failure Causes  

Based on the PHMSA data (U.S. Department of Transportation, PHMSA, 2020), the main 

natural gas transmission pipeline failure causes are equipment failure, corrosion failure, excavation 

damage, natural force damage, incorrect operation, outside force damage, or other causes. As 

shown in Figure 2, 36% of pipeline failures are caused by material, weld, or equipment failure, 

19% by corrosion failure, 14% by excavation damage, 11% by natural force damage, 8% by other 

causes, 7% by outside force damage, and 5% by incorrect operation. 

 

Figure 2. Natural Gas Transmission Pipeline Failure Causes 

 
1.2.2 Natural Gas from Production to Customers 

Transporting fuel from production to consumers is a critical and complex process. In the United 

States, the length of fuel pipelines is more than 2.6 million miles which makes the pipeline system 

integrity and assessment very important to avoid any incidents. Energy-related pipelines can carry 

natural gas, consisting mostly of methane, oil, and certain other hazardous liquids. In order to 

transport natural gas from production to the consumers, different pipelines and lines are used 
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namely gathering, transmission, and distribution pipelines as shown in Figure 3. Production lines 

are used to produce the gas from the production wells, either from onshore or offshore sites. Once 

the gas is produced, gathering pipelines carry the gas from the wellhead to a processing and 

treatment plant.  

Following refinement, transmission pipelines are used to carry the gas to the city gate. 

Transmission pipelines have the longest length since they move the gas around the country. In the 

US, there are more than 300,000 miles of gas transmission pipelines. They also operate under the 

highest pressures (200-1500 psi usually). They should be buried at least 30 inches deep in rural 

areas and 36 inches in higher population density areas according to federal regulations. 

Compressors are placed along these pipelines to preserve the pressure level and account for the 

pressure drop along the transmission line.   

Once the gas reaches the city gate, an odorant is added to the gas (sulfur chemicals called 

mercaptans) and distribution pipelines that operate at a lower pressure (up to 200 psi for gas mains 

and up to 10 psi for residential service lines) are used to deliver the natural gas to individual homes, 

commercial customers, or industrial plants. Distribution pipelines could be made out of plastic 

whereas gathering and transmission pipelines are made out of steel. 

 
Figure 3. Natural Gas from Production to Customers 

Gas Processing and 
Treatment Plant

Gathering Pipelines
Transmission Pipelines
Distribution Pipelines

City Gate

Offshore Production

Onshore Production

Commercial Customer

Residential Customer
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1.2.3 Wet, Dry, and Sour Natural Gas 

The produced natural gas contains different hydrocarbons, mostly methane, and could be 

classified as wet or dry gas depending on the methane concentration. The gas is classified as “drier” 

whenever the methane concentration is higher. In addition, the gas can contain other evaporated 

liquids such as ethane, butane, and pentane, which are collectively referred to as natural gas liquids 

(NGLs) or condensates.  

Moreover, natural gas can be referred to as sour gas whenever it contains a high quantity of 

hydrogen sulfide. Hydrogen sulfide can cause structural as well as life-threatening consequences. 

In fact, when hydrogen sulfide is mixed with water, it causes corrosion in pipelines because of the 

acidic solution formed. It is also very poisonous and can cause severe health problems or death at 

high concentrations. 

 

1.2.4 Natural Gas Transmission Pipeline System 

Before transporting natural gas, it needs to be refined by removing the impurities at the gas 

processing and treatment plant. The goal is to ensure the safety of gas transportation, maintain the 

pipeline system safety and integrity, and make the gas ready for customer consumption. The most 

common impurities include hydrocarbons, water, helium, hydrogen sulfide, sulfur, and carbon 

dioxide. Transmission pipelines carry gas thousands of miles around the country. The 

transportation force is the pressure differential (i.e., the gas flows from a high to a low-pressure 

area). However, this force decreases over the length of the pipeline and compressor stations should 

be built along the transmission line as shown in Figure 4 to push the pressure back to a higher 

level.  
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Figure 4. Natural Gas Transmission Pipeline System 

 

Compressors are usually powered by natural gas engines or electric motors and are built every 

50 to 100 miles along the pipeline to ensure the flowing of the gas at the desired pressure according 

to PHMSA (U.S. Department of Transportation, PHMSA, 2020). Moreover, gate setting facilities 

are built along the pipeline every 10 miles to ensure a better control of the gas flow using the 

installed valves. These facilities can also be used when a specific pipe segment needs to be isolated 

for maintenance work. 

 

1.3 Challenges of current PHM Approaches 

In order to ensure reliable pipeline operations, system integrity is essential to prevent 

catastrophic failures and expensive downtime. Pipeline system integrity management is a 

“program that manages methods, tools, and activities for assessing the health conditions of 

pipelines and scheduling inspection and maintenance activities to reduce the risks and costs” (Xie 

and Tian, 2018). It is a procedure consisting of three main steps: defect detection and identification, 

defect growth prediction, and risk-based management. Significant advances are needed in these 

three steps to accurately evaluate defects and prevent pipeline failures based on inspection data, 

defect growth prediction, and integrity activities optimization because the current pipeline integrity 

methods and techniques present multiple limitations and challenges as summarized in Figure 5. 

Gas Processing and 
Treatment Plant

City Gate

Compressor 
Station 1

Gate Setting Facilities

50 mi

10 mi
Compressor 

Station 2

Transmission Pipeline
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Figure 5. Challenges of Current PHM Approaches 

 

First of all, concerning the data gathering methods, Health Monitoring (HM) along with non-

destructive evaluation (NDE) techniques have been used over the last few decades to enable the 

integration and automation of the entire pipeline system for real-time monitoring, inspection, and 

damage detection. For instance, in-line inspection (ILI), a method used to identify anomalies from 

the inside of the pipe, is performed periodically using smart “pigging” tools to detect pipeline 

defects such as corrosion and cracks (Xie and Tian, 2018). Pigging refers to the use of Pipeline 

Inspection Gauges (PIG) which are devices that can perform various inspection and maintenance 

operations such as gathering information about the pipeline (e.g. temperature, pressure, or 

corrosion loss) and debris cleaning without stopping the gas flow. ILI has been considered the 

most efficient way for a long time to assess the integrity of natural gas transmission pipelines 

subjected to corrosion attack. However, these data gathering methods and techniques faced a 

number of challenges and limitations: 

• Their implementation is very costly and labor-intensive, especially for transmission 

pipelines that are typically hundreds of miles in length. In fact, these techniques require 
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direct contact with the system structure and have to be applied frequently to determine the 

health condition of the pipelines. For instance, the installation and ongoing monitoring 

costs of the acoustic fiber-optic monitoring (AFO) inspection method are as high as 

$64,000 per mile and $150,000 for hardware monitoring (Chalgham, 2016). As reported in 

(Faber, 2017), the San Diego County Water Authority has been using acoustic fiber-optic 

(AFO) systems to monitor pipes in real-time and has spent over $13 million since 2006 to 

install and maintain this system. 

• The accuracy of these conventional techniques heavily depends on the measuring 

equipment and method. For instance, a sensor can provide voltage signals while detecting 

or measuring damage size in a pipeline, but can introduce  noise and bias in the damage 

measurements (Alaswad and Xiang, 2017; Kishawy and Gabbar, 2010). 

• These techniques cannot be used in about half of pipelines today as they are not-piggable 

(smart pigs and ILI cannot be used) (Xie and Tian, 2018), because of the size of the large 

assemblies needed (Chalgham, 2016). The complicated and time-consuming installation is 

another challenge facing these NDE techniques (Chalgham, 2016). 

To address the costs and reliability issues related to the field-based data gathering methods and 

techniques, the industry is increasingly relying lately on probabilistic modeling approaches to 

quantify the health state of the system and predict its failure path. Given that corrosion is the second 

main cause of pipeline failure after equipment failure (U.S. Department of Transportation, 

PHMSA, 2020) and given that it has stochastic properties (Zhang and Zhou, 2014), the 

probabilistic approaches have focused mainly on developing corrosion predictive models. Above 

all, the consequence of corrosion failures such as leak, or burst is potentially significant in terms 
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of economic and life loss. However, these model-based approaches present multiple limitations as 

well: 

• These approaches are not comprehensive and integrated with respect to the failure causes. 

For instance, sometimes multiple types of corrosion may coexist due to complex operating 

conditions; therefore, a model that only applies to one kind of corrosion is not sufficient to 

a basis for corrosion prediction for natural gas transmission pipelines.  

• Many corrosion predictive models are data-driven but not dynamic to reflect the stochastic 

nature of corrosion and dynamic operating conditions (Heidary et al., 2018).   

• While some of the research have considered spatial variability of localized damage along 

a pipeline (De Leon and Macías, 2005; Zhang and Zhou, 2014), temporal variability is 

often neglected and the integration of both variabilities into one model is lacking in the 

literature. 

The main objective of quantifying the health state of the pipeline through the data gathering 

methods and probabilistic predictive models is to provide optimal mitigation actions to the 

operators to prevent or reduce the likelihood of failures. However, the current mitigation actions 

optimization models present multiple limitations: 

• The optimization models are developed and computed for the component-level (e.g., small 

pipe segment), and the system-level is often neglected due to the complexity of developing 

such a model; most of the optimization-based pipeline PHM approaches present in the 

literature only consider a single and relatively small pipeline segment (with less than ten 

localized damages). In fact, considering large pipe segments with a large number of 

damages and design variables is computationally expensive and complex (Alaswad and 

Xiang, 2017; Hou et al., 2019). 
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• These maintenance methods are not cost-effective which leads to the damages being 

neglected in pipelines because of the costly health monitoring and corresponding downtime 

(Kishawy and Gabbar, 2010). In the US alone, the annual cost of corrosion maintenance, 

repair, and replacement in transmission pipelines is estimated to be about $125 billion 

(Koch et al., 2002) which leads the operators to neglect the optimization results if they 

suggest huge downtimes and monetary losses. 

• No reported pipeline PHM approach has considered dynamic and time-dependent 

mitigation action suggestions to the operators such as sensor placement and 

inspection/maintenance schedule optimizations based on streaming sensor data from the 

multiple segments of a pipeline (Alaswad and Xiang, 2017; Ostachowicz et al., 2019). 

• The industry is lacking a software tool that can integrate the sensor data (operating 

parameters), risk-based models, and optimal mitigation suggestions into a user-friendly 

software to make it easy for the operators to make timely decisions to prevent failures in a 

cost-effective way. 

 

1.4 Problem Statement 

The recurrent pipeline failures are caused in part by the limited system-level performance 

modeling and in part by the non-optimal risk-based management. A comprehensive and integrated 

system modeling along with optimal mitigation actions such as maintenance scheduling and sensor 

placement could have prevented many of the observed failures. The limitations of the current 

performance modeling approaches and mitigation actions are summarized in Figure 6.  
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Figure 6. Literature Gaps: Limitations of Current System-level Performance and Mitigation 

Actions Models 

 
1.4.1 Limitations of current Performance Models for Multi-component Systems 

The existing performance/deterioration modeling of multi-component systems are limited in 

one or more of the following ways: (i) the degradation of components’ performance is not 

considered, (ii) the degradation of the system’s performance is not considered, and (iii) their 

interactions (i.e failure propagation among components) are not considered.  

In fact, the literature on multi-component systems deterioration modeling is very thin because 

of the mathematical and conceptual complexity involved in understanding the stochastic, physical, 

and functional dependencies among components.  As a result, the literature mainly presents 

research work that treats the degradation of components independently; “The literature has mainly 

considered single-component systems due to the complexity of the probabilistic analysis for multi-

component systems” (Alaswad and Xiang, 2017). 

Dependency among components of any system always exists and should not be ignored. 

Modeling multi-component systems is complex because degradation or complete failure of a single 

or multiple components could affect other components in the system in terms of degradation or 

failure (Nicolai and Dekker, 2008). However, a model to describe these dependencies has not been 

yet developed. The complexity of multi-component deterioration modeling arises from the  
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stochasticity of deterioration models and uncertainty in material properties (Hong et al., 2014). A 

handful of  models (Caballé et al., 2015; Castro et al., 2015; Wang, 2002) assume independent 

degradation processes, without considering physical or functional dependence within the 

components of the system.  

Moreover, “One of the main gaps identified for future research is the addition of directed edges 

in the system graph representation. This can provide further information about the behavior of a 

system, representing, for example, the flow of a process fluid in the system to improve diagnostics 

capabilities or showing its evolution in time for better health-state prognostics” (Ruiz-Tagle 

Palazuelos et al., 2020; Ruiz-Tagle Palazuelos and Droguett, 2020). In addition, “it is evident from 

the review that there is a gap in the literature where degradation interactions involving degradation 

rates of the components are not addressed”(Rasmekomen and Parlikad, 2016). 

The main challenges facing the system-level performance modeling that will be addressed in 

this dissertation are the integrated modeling of complex systems and the degradation 

dependencies/interactions among system components.  

 

1.4.2 Limitations of current Mitigation Actions Models 

The current maintenance schedule optimization models present the following limitations: 

• Maintenance schedule of pipeline and its components such as compressors are performed 

on a periodic basis regardless of the degradation level.  

• The downtime cost is often neglected in the maintenance scheduling models. 

• The degradation and process models of the pipeline system are not simultaneously 

considered in the maintenance scheduling models. 
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• Different objective functions are not considered simultaneously in the optimization in 

terms of safety, environmental, and operating economic aspects. 

• The implication on CO2 emissions are neglected in the maintenance scheduling models. 

 

As for the current sensor placement optimization models, they present the following 

limitations: 

• The sensor locations are placed at fixed intervals because “there is no industry guidance or 

standard to direct operators in proper sensor placement” according to a report submitted to 

PHMSA (Baker Inc. and Fessler, 2008). 

• The defect detection techniques have different coverage ranges and costs, which should 

not be neglected in the optimization model  (Kishawy and Gabbar, 2010). 

• The optimization results are based on static/historic data and are not updated in real-time 

with changing operating parameters (Alaswad and Xiang, 2017; Ostachowicz et al., 2019). 

• Risk and severity of damages are not considered in the optimization algorithms because 

the current techniques   (Alaswad and Xiang, 2017; Younis and Akkaya, 2008) are 

deterministic and can only provide binary damage detection results. In fact, most of the 

health monitoring models presented in the literature taking into consideration probabilistic 

detection metrics such as Probability of Detection (POD) and probabilistic Measurement 

Error (ME) (Chatterjee and Modarres, 2013; Stephens and Nessim, 2008; Zhang and Zhou, 

2014) are deterministic and can only provide binary damage detection results (Alaswad 

and Xiang, 2017; Younis and Akkaya, 2008) which leads to risk and severity of damage of 

different sizes and types being neglected and not considered in the modeling approach. As 

a result, the performance of these deterministic approaches is unsatisfying (Ostachowicz et 
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al., 2019) because of the lack of uncertainty consideration regarding the information about 

location, type, and size of the damage. 

• The optimization models are based on stochastic corrosion formation models which has 

multiple uncertainties including defect location uncertainty, temporal uncertainty of the 

local degradation increments, and damage detectability uncertainty (Heidary et al., 2018).   

• The sensor placement algorithms are designed for short and straight pipeline segments 

(component-level) and are not scalable to system-level complex systems due to 

computational complexity and limitations (Alaswad and Xiang, 2017; Hou et al., 2019). 

The research work presented in this dissertation aims at enhancing PHM modeling by 

presenting a methodology that covers the discussed limitations of performance modeling and 

mitigation actions optimizations. 

 

1.5 Research Objectives 

In view of the limitations and challenges of the current gas pipeline mitigation actions 

discussed in the preceding sections, the objective of this dissertation is to develop a system-level 

Prognosis and Health Monitoring (PHM) methodology for gas pipeline system integrity 

management based on the various failure and degradation types of the system’s components and 

their inter-dependencies. The proposed PHM methodology should be able to: 

• Quantify pipeline-system health level (Reliability) in real-time and over-time. 

• Optimize pipeline-system inspection/maintenance and operation schedule. 

• Optimize sensor placement along the pipeline system. 

The research presented in this dissertation presents a methodology to enhance detection, 

diagnosis, and prediction of the failure causes of gas pipelines. This methodology aims at 
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improving pipeline integrity management by going from a reactive troubleshooting to a proactive 

failure avoidance through optimized mitigation actions. This proposed methodology is based on 

understanding the complex failure behavior of pipeline systems through system-level failure 

modeling. 

 

1.6 Research Contributions 

In view of the above-mentioned limitations and challenges of the current PHM approaches, 

this research focuses on saving human lives and preventing economic loss by improving the 

infrastructure reliability and safety through an advanced and comprehensive PHM methodology. 

To make it a practical tool, the methodology is embedded in a dynamic and user-friendly software 

that displays the real-time health state of the pipeline system, its potential failure paths in time, 

and suggested mitigation actions to prevent those failures. 

In achieving the above objectives, the flowing contributions have been made by this research:  

 

1.6.1 Components/System Performance Degradation and their Interactions Modeling 

In this research work, the components as well as the system performance degradation are 

taken into consideration in the modeling of the maintenance optimization framework. As shown 

in Figure 7, the decrease of performance over time is not considered in other frameworks because 

of the periodic maintenance schedule but will be taken into consideration in the proposed 

framework. In fact, the dynamic degradation rates based on the different environmental and 

operational conditions affect the performance of the components and the system which may lead 

to failures before the periodic maintenance date.  
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Figure 7. Components/System Performance Degradation 

 

In addition, the interactions between the degradation of components of the system such as the 

compressor, valves, and pipeline corrosion are modeled. In fact, the models presented in this 

dissertation show how the performance of a component such compressor has an effect on other 

components’ performance, for example the pipeline corrosion rate (and the system’s performance 

as well). In other words, the modeling of interactions between the components’ degradation and 

process models (defined as thermodynamic, economic, or environmental models) and their effect 

on the system is one of the novelties of the proposed PHM modeling framework as shown in  

Figure 8. 

 

 

Figure 8. Components/System Interactions Modeling 
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1.6.2 Cost-effective Sensor Placement to better Detect Damages 

In this research work, a and cost-effective sensor placement framework is presented to 

better detect damages. The proposed optimization framework aims at providing the operators with 

the optimal locations to place sensors while minimizing the cost. This framework maximizes the 

damage detection probability by the provided sensor network which captures as much information 

as possible on the degrading parts of the pipeline. The proposed real-time optimization framework 

is based on the dynamic Bayesian Network predictive model of corrosion where the changing 

operating parameters update the system simulation model. The real-time sensor placement 

optimization will provide the optimal sensor network layout and detects damages that could have 

been gone undetected and resulted in pipeline failures. While the current sensor placement 

methodologies are reactive techniques based on the measured corrosion levels, the proposed sensor 

placement optimization is both reactive and proactive, by utilizing current and projected corrosion 

levels over the pipeline network. 

 

1.6.3 Cost-effective Maintenance Scheduling to Prevent or Reduce the Likelihood of 

Failures 

Based on the system-level performance modeling, a cost-effective and optimal 

maintenance schedule framework is proposed to prevent or reduce the likelihood of pipeline 

failures by performing risk-based mitigation actions. The maintenance schedule optimization is 

based on a reinforcement learning (RL) technique and provides optimized maintenance types and 

times in order to mitigate corrosion risks.  
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1.6.4 Optimized Operating Parameters to Increase Profit, Reduce Degradations, and 

Reduce CO2 Emissions 

Finally, one of the novelties of the presented research work is the optimization of the 

operating parameters in order to increase the economic profit, reduce degradations, and reduce 

CO2 emissions at the same time as shown in Figure 9. The optimization of the operating parameters 

aims at: (i) extending the lifetime of the pipeline, (ii) minimizing the maintenance cost, (iii) 

maximizing the economic profit, and (iv) minimizing the CO2 emission. 

 

 

Figure 9. Operating Parameters Optimization 

 
1.7 Organization 

The rest of the dissertation is organized as follows: In Chapter 2, an overview of the proposed 

PHM modeling framework and software implementation is presented. In Chapter 3, the pipeline 

network system modeling framework is explained and the system-level failure analysis along with 

the dynamic BN-based corrosion predictive models are presented. Chapter 4 presents the failure 

propagation modeling in complex systems is presented. In Chapter 5, the inspection and 

maintenance schedule as well as the operating parameters optimization models are presented. The 

proposed Degradation-based Operation and Maintenance Schedule Optimization (DOMSO) aims 

at optimizing the inspection/maintenance schedule of the pipeline components as well as the 

operating parameters such as the mass flow rate and flow pressure to avoid or reduce the likelihood 
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of failure of the pipeline system at a lower cost. Chapter 6 describes the sensor placement 

optimization framework to prevent or reduce the likelihood of pipeline failures by optimizing the 

placement of sensor in the pipeline network in a way that maximizes the damage detection 

probability at a minimal cost. In Chapter 7, the pipeline system integrity management software 

implementation based on the models presented in the previous chapters is explained.  A case study 

(Kern River transmission pipeline network) is presented in Chapter 8 to demonstrate use of the 

models and the software presented in the previous chapters. Chapter 9 summarizes the objectives 

and contributions of the research and offers ideas for its extension.  
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CHAPTER 2 
 

2. Methodology Overview 

In this chapter, an overview of the proposed PHM modeling framework and software 

implementation are presented and explained in detail. We will start with definitions essential for 

formulating and describing the methods and tools developed by this work.    

 

2.1 Definitions 

2.1.1 Degradation Model 

In this dissertation, a degradation is defined as a gradual and possibly irreversible 

accumulation of damage that occurs during a system’s life cycle. There are two types of 

degradation: Recoverable Degradation (RD) and Non-Recoverable Degradation (NRD). Examples 

of causes of Recoverable Degradation are clogging, scaling, and buildup of deposits on the 

working surface. Examples of causes of Non-Recoverable Degradation are tear, loss of working 

surface, corrosion/oxidation, erosion. As for remedies, maintenance can recover RD. Also, while 

a replacement is needed for NRD, an optimal inspection or maintenance schedule will delay 

replacement. A degradation model can be a physics-based model, a system functional logic model 

such as Fault Tree, or a Bayesian Network. A compressor performance reduction from 100 m3/min 

to 60 m3/min, for example, is considered a functional degradation.  

2.1.2 Process Model 

In this dissertation, a process model is defined as a thermodynamic, economic, or 

environmental model. The effect of pressure-drop on the compressor work, mass flow rate on the 

economic profit, and pressure levels on the CO2 emissions are examples of process models. 
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2.1.3 Performance Metrics 

In this dissertation, the system-level as well as the component-level performance will be 

discussed. The system-level performance refers to 4 main metrics: system reliability, gas delivery 

flow rate, economic profit, and CO2 emissions as shown in Figure 10. The component-level 

performance is quantified by the degradation models. The different causal paths to degradation 

will be discussed in the next chapters. For instance, the pump or valve performance may have a 

direct impact on the other components’ performance such as pipeline corrosion. 

 

 
Figure 10. Performance Metrics 

 
2.2 Proposed PHM Modeling Framework 

This research work introduces and demonstrates a new PHM approach to support system 

integrity management of aging gas transmission pipelines subjected to continuous damage 

mechanisms such as corrosion. The proposed PHM approach integrates the data gathering 

methods, probabilistic modeling, and mitigation actions optimization into a comprehensive, 

dynamic, and integrated system as shown in Figure 11. The methodology consists of a system-

level performance modeling and mitigation actions optimization models.   
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Figure 11. Proposed PHM Modeling Framework 

 
For the system-level performance modeling, the operating and design parameters (i.e. real-

time sensor data) are fed into the system-level failure analysis module. This module contains the 

Degradation-based Process Model (DPM) and the Hybrid Causal Logic (HCL), both of which are 

explained in more detail in the following chapters. The DPM connects the process models and 

degradation models and quantifies their effect on each other in terms of performance or 

degradation. The HCL model quantifies the failure probability of the system taking into 

consideration a wide range of failure causes.  

Once the analysis is performed, the system performance/deterioration can be quantified in 

terms of reliability/lifetime, economic profit, and CO2 emissions. These performance metrics are 

part of the Health Monitoring module. 

Finally, the proposed PHM framework offers mitigation actions optimizations to enhance 

real-time decision-making support. The optimization models for inspection/ maintenance schedule 

along with the operation parameters increase the pipeline reliability at the lowest cost and CO2 
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emissions. In addition, the sensor placement optimization is designed to increases the damage 

detection probability at the lowest cost.  

 

2.3 Software Implementation 

The proposed PHM approach is integrated into a software platform that contains three main 

features, namely, real-time health monitoring, system-level reliability, and mitigation actions 

optimization,  as shown in Figure 12. The software implementation will help the operators 

visualize the health state of the pipelines and suggested preventive actions.  

In short, the proposed methodology enables the integrity management support to be done 

starting from data collection, to vulnerability assessment, and finally to mitigation and prevention 

of failures. Each of the modules presented in this chapter will be discussed in detail in the following 

chapters. 

 
Figure 12. Software Implementation of the Integration of the PHM Modeling Framework   
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CHAPTER 3 
 

3. System-level Pipeline Network Performance Modeling 

3.1 Pipeline Network System Modeling 

In order to study the transmission pipeline system integrity, the pipeline network has to be 

defined and analyzed.  The pipeline system is simplified and defined as the set of equipment, 

consisting of steel transmission pipeline segments and compressor stations, that will transport the 

natural gas from the gas processing and treatment plants to the city gate (the starting point for 

distribution lines). The transmission pipeline system is divided into multiple sub-systems referred 

to as “transmission phases” as shown in Figure 13. In this work, the transmission phase is defined 

as the set of equipment that will transport the natural gas from one compressor to another. It 

consists of steel transmission pipelines, compressor stations, and valves. The pipeline system is 

assumed to be connected in series because the failure of any single one of them will lead to the 

system failure.    

 

 

Figure 13. Natural Gas Transmission Pipeline System Segmentation for Modeling 
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In reality, the natural gas transmission system is more complicated. Compressors are built 

every 50 to 100 miles along the pipeline to ensure the flowing of the gas at a desired pressure. 

They receive the gas at pressures ranging from 200 psi to 600 psi and compresses it back up to 

1000 psi to 1400 psi (As a reference, the typical vehicle tires work with compressed air at roughly 

30 to 50 pounds of pressure per square inch). Moreover, gate setting facilities are built along the 

pipeline every 10 miles to ensure better control of the gas flow using the installed valves. These 

facilities can also be used when a specific pipe segment needs to be isolated for maintenance work.  

 
3.2 System-Level Failure Analysis 

The integrity of the pipeline system defined in the previous section will be modeled for the 

identification of all possible paths to failure. The system-level failure analysis quantifies the real-

time and projected system-level failure probability taking into consideration all causes of failures 

that can affect the pipeline system under study. This analysis is based on Hybrid Causal Logic 

(HCL) and Dynamic Bayesian Networks (DBNs). 

 

3.2.1 Hybrid Causal Logic (HCL) Modeling 

The integrity of the pipeline system is modeled for identification of possible paths to failure 

by the HCL methodology (Groth et al., 2010; Wang, 2007; Groen and Mosleh, 2006), a multi-

layered modeling approach for probabilistic risk analysis (PRA) that allows most of the appropriate 

modeling techniques to be applied to different domains of the system. HCL combines three 

modeling tools, namely, Event Sequence Diagrams (ESDs), Fault Trees (FTs), and Bayesian 

Networks (BNs) to model risks associated with complex systems. In this dissertation, the HCL 

model is applied to take into consideration all possible failure modes of the system-level failure 

probability. This HCL model is composed of a FT layer capturing inter-correlated failure modes 
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and a BN layer, which is added to model the basic events in the FT to represent the common cause 

failures and soft causal dependencies stemming from human activities, physical environment or 

socio-economic environment. A schematic of the HCL diagram for the system-level failure 

analysis is shown in Figure 14. 

 
Figure 14. Schematic of the HCL Diagram for the System-Level Failure Analysis 

 
A high-level model of the contributors to pipeline failure is developed using a FT reflecting 

the empirical evidence presented in the literature (Chalgham et al., 2019a). Figure 15 illustrates a 

foundation for the system-level FT for natural gas transmission pipelines which covers in detail 

the possible causes of the pipeline failure. 

In the conceptual FT model, the pipeline system is divided into multiple transmission phases. 

A transmission phase failure can be caused by the compressor failure, the valve failure, the pipe 

segment failure, the human error in the control room operations, or other causes.  A compressor 

station fails because of the failure of the lubrication system, power system, shaft seal system, or 

compressor unit (Veritas, 2004). As for the pipe segment, it fails due to external factors, internal 

factors, or human error in the maintenance operations. External factors include natural force such 

as flooding, earthquake, or severe weather/subsidence, corrosion (external or internal), or third-
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party damage, while internal factors include material or welding defect. The probabilities of basic 

failure events of the FT are further modeled using a variety of causal models. For instance, the 

corrosion (i.e., internal and external) failure events are simulated by time-dependent models like 

the DBN corrosion predictive models for internal and external corrosion, which will be described 

in the next section.  

The corrosion degradation will be simulated by two DBN-based corrosion predictive models 

designed for natural gas transmission pipelines subject to internal and external corrosion, 

respectively. Nonparametric models are used for basic events when the reliability data cannot be 

fitted to the common statistical distributions. Overall, the FT provides a high-level understanding 

of the pipeline system failure probability based on the likelihood of failure of the different system 

components. 

 

 

Figure 15. System-Level Transmission Pipeline Fault Tree Modeling Concept 
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3.3 Dynamic BN-based Corrosion Predictive Modeling 

A Bayesian Network (BN) is a probabilistic graphical model that represents a set of variables 

and their conditional dependencies via a directed acyclic graph. A Dynamic Bayesian Network 

(DBN) is a BN which relates variables to each other over adjacent time steps. BNs and DBNs are 

especially suitable to model large-scale and complex failure modes of systems and components, 

due to their ability to incorporate causal inference relationships and their impact on the 

probabilities of failure modes, based on information from various sources including physics-based 

models, field data, expert judgment, and updating failure probability over time steps (Ayello et al., 

2014; Chen and Pollino, 2012; Li et al., 2016; Palencia et al., 2019).  

DBNs can account for the knowledge uncertainties, a critical element in developing robust 

risk-informed decision support systems. The construction of a DBN model is similar to a BN 

model, which requires several steps. First, building a graphical representation of the chain of events 

in a cause-consequence relationship leading to corrosion failure. Second, developing the 

conditional probability tables (CPTs) based on available data such as physics-based models, field 

data, and expert knowledge among which the physics-based models are the most reliable ones with 

solid science background (Ayello et al., 2014).  

The ability to assess the risk of possible threats to pipeline integrity is essential for a PHM 

model. In this dissertation, estimating the risk of corrosion to which natural gas transmission 

pipelines are exposed is discussed. To date, many studies have been done on different types of 

corrosion either qualitatively or quantitatively (Ayello et al., 2014). Empirical/data-driven, semi-

empirical, or mechanistic (physics-based) models are developed for predicting the severity of 

corrosion. However, a comprehensive model that includes multiple types of internal and external 

corrosion simultaneously is missing in the literature and is the main motivation behind developing 



 29 

the corrosion predictive model presented in this section. In addition, in most cases the operating 

conditions of a gas transmission pipeline change frequently within an uncertain range, which leads 

to considerable uncertainties in the corrosion modeling.  

In this dissertation, the development of the discretized Conditional Probability Tables (CPTs) 

is based on tested and validated physics-based, empirical or semi-empirical models. The proposed 

PHM methodology offers an important feature by which the DBN models are updatable with real-

time data, for instance, the data concerning the pipeline physical state from installed sensors and 

other monitoring and surveillance methods. In addition, the corrosion simulation is done 

dynamically over time steps by Monte Carlo simulation (MCS) to take into consideration the time-

dependency and stochastic nature of corrosion.  Corrosion modeling exemplifies the benefits of 

using an updatable real-time model. The dynamically updated DBN model is able to calculate the 

corrosion rate considering the changing variables and related uncertainties. 

The framework of the DBN corrosion predictive model is shown in  

Figure 16. The DBN models of internal and external corrosion consist of three parts.  

 

 
Figure 16. DBN Corrosion Predictive Model Framework 
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The first part contains corrosion models for corrosion rate prediction, the second part is a 

mechanical model for burst pressure (remaining strength) estimation, and the third part is a 

reliability model for the probability of failure calculation.  

The proposed DBN-based corrosion hazard assessment considers both internal and external 

corrosion for gas pipelines subjected to aqueous corrosion. The development of the CPTs needed 

to calculate the combined effects of various mechanisms on the total corrosion rate for each type 

of corrosion will be based either on semi-empirical, empirical, or physics-based models.  

 

3.3.1 Internal Corrosion Model 

The DBN model for internal corrosion is shown in Figure 17 in which the denotation (node) 

used in the following paragraphs stands for the name of a node of the DBN corrosion model. The 

corrosion model of internal corrosion considers five types of corrosion, namely, uniform, pitting, 

microbiologically-influenced corrosion (MIC), erosion corrosion, and corrosion fatigue that 

commonly take place inside the pipeline. Except for microbiologically-influenced corrosion, 

which is an empirical model, the other types of internal corrosion are either physics-based or semi-

empirical. The DBN model takes operating conditions and pipeline information as inputs to predict 

corrosion degradation in terms of corrosion rate (Corrosion Depth Rate) for every type of 

corrosion. The presence of water is an essential factor for the corrosion process to take place and 

proceed; therefore, a wetting factor (Wetting Factor) is applied to each corrosion type for corrosion 

predictions. The details of the discretized nodes of the DBN internal corrosion model are listed in 

Appendix A.  
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Figure 17. DBN Model for Internal Corrosion Prediction 

3.3.1.1 Uniform Corrosion 

Uniform corrosion is attributed to the presence of carbon dioxide (CO2) and hydrogen sulfide 

(H2S) in an aqueous environment, leading to the uniform reduction of corrosion products. CO2 and 

H2S become acidic when dissolved in water, and corrosion reactions then take place at steel 

surfaces. In this dissertation, the uniform corrosion is based on a physics-of-failure (POF)-based 

semi-empirical model developed by the authors (Wu and Mosleh, 2019), which can predict time-

dependent corrosion rate given pipeline operating parameters in an aqueous CO2/H2S environment. 

The model inputs are temperature (Temperature), the partial pressure of CO2 (pCO2), the partial 

pressure of H2S (pH2S), pH level (pH), and the flow velocity of gas (Flow Velocity). For detailed 

descriptions of this model, the readers are referred to the original paper (Wu and Mosleh, 2019).  
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3.3.1.2 Pitting Corrosion 

Pitting corrosion is the most common corrosion mechanism in oil and gas pipelines which 

happens locally and leads to localized pits, which is often referred to as pitting corrosion. The 

consequence is disastrous and hard to detect without comprehensive and frequent in-line 

inspection (Papavinasam et al., 2011). In general, it is likely to happen where protective layers are 

destroyed, and fresh steels are exposed to the corrosive environment. In this dissertation, the 

Papavinasam model (Papavinasam, 2013; Papavinasam et al., 2010) is adopted to simulate pitting 

corrosion. Model parameters include wall shear stress (Wall Shear Stress), total operating pressure 

(P), solids (Rsolids), partial pressure of H2S (pH2S), partial pressure of CO2 (pCO2), temperature 

(Temperature), sulfate ions concentration ([SO42-]), bicarbonate ions concentration ([HCO3-]), 

and chloride ions concentration ([Cl-]). For detailed descriptions of this model, the readers are 

referred to the original papers (Papavinasam, 2013; Papavinasam et al., 2010).  

 

3.3.1.3 Erosion Corrosion 

Erosion corrosion is defined as a degradation mechanism of pipe materials by the synergistic 

effect of mechanical action for erosion and electrochemical action for corrosion. Although it is not 

as common as pitting or uniform corrosion, it still poses a threat to the oil and gas industry as it 

accounts for 9% of corrosion-related pipeline failure (Shirazi et al., 2015). This dissertation applies 

the Nesic model (Nešić and Postlethwaite, 1991) to simulate erosion corrosion behaviors in which 

the presence of solids as well as the flow inside the pipes play an important role. The model inputs 

include operating parameters such as flow velocity (Flow Velocity) and particle mass (Particle 

Mass) and pipe design parameters such as pipe yield strength (Yield Strength) and impact angle 
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(Impact Angle). For detailed descriptions of this model, the readers are referred to the original 

papers (Nešić and Postlethwaite, 1991).  

 

3.3.1.4 Microbiologically-influenced Corrosion 

Bacterial activity by microbes tends to form biofilms that become acidic when they trap 

electrolytes and acids inside the pipe. Then, corrosive environments are developed that are prone 

to the occurrence of MIC (Jia et al., 2019). The presence of biofilms on the steel surface forms a 

galvanic cell, promoting galvanic corrosion locally. In this dissertation, MIC behavior is simulated 

by the Pots model (Pots et al., 2002), which takes operating parameters, environmental parameters, 

and mitigation parameters into account that are related to the formation of biofilms by microbes. 

The model inputs include concentration of carbon from fatty acid ([C]), use of biocide (Biocide), 

concentration of oxygen ([O]), frequency of pigging (Pigging), concentration of nitrogen ([N]), 

ratio between concentration of carbon and, nitrogen (C:N ratio), concentration of dissolved solids 

([Solids]), flow velocity (FVMIC), presence of debris (Debris), and temperature (TMIC), each of which 

corresponds to a value that is used to calculate corrosion rate. For detailed descriptions of this 

model, the readers are referred to the original paper (Pots et al., 2002). 

 

3.3.1.5 Corrosion Fatigue 

The presence of corrosive environments and cyclic loads inside the pipe may lead to corrosion 

fatigue, the synergistic effect of corrosion and fatigue. The sources of cyclic loads in gas 

transmission pipelines include mechanical vibrations caused by compressor stations and thermal 

stresses due to significant changes in operating temperatures caused by shutdowns or seasonal 

variances. This process starts with pitting nucleation by pitting corrosion and then propagates with 
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fatigue cracks that finally leads to fracture (Arzaghi et al., 2018). This dissertation adopts the Paris 

law-based model (Harlow and Wei, 1994) to predict the corrosion fatigue behavior assuming 

corrosion damage already exists as the nucleation point for fatigue cracks. The model inputs 

include coefficient (Coefficient) representing material characteristics, exponent (Exponent), 

reflecting mechanistic dependencies, alternating stress intensity (K), which is influenced by 

alternating stress (Stress Range) and initial pit length (Defect Length), and frequency of change in 

cyclic load (Frequency).  

 
3.3.2 External Corrosion Model 

External corrosion is usually neglected when simulating corrosion; however, it is very 

important to consider it in the predictive models as external corrosion is found to be the leading 

cause for rupture incidents, with a corresponding rupture rate of 1.0 × 10!"
 
per km per year (Lam, 

2015). The DBN model for external corrosion is shown in Figure 18. The corrosion model of 

external corrosion considers two common types of external corrosion, namely, pitting corrosion 

and stress corrosion cracking (SCC); the pitting corrosion model is empirical while stress corrosion 

cracking model is physics-based. The details of the discretized nodes of the DBN external 

corrosion model are listed in Appendix B.  
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Figure 18. DBN Model for External Corrosion Prediction 

 
 
3.3.2.1 Pitting Corrosion 

Underground oil and gas pipelines can suffer pitting corrosion due to inadequate cathodic 

protection or coating disbandment (Peabody et al., 2001). In this dissertation, the Velazquez et al. 

model (Velázquez et al., 2009) is used to predict the maximum pit depth caused by pitting 

corrosion. The pit growth rate is described by a power-law function with its pitting proportionality 

(Coefficient) and exponent factors (Exponent) determined by a variety of soil and pipe parameters 

including resistivity (Resistivity), sulfate ions concentration ([SO42-]), bicarbonate ions 

concentration ([HCO3-]), chloride ions concentration ([Cl-]), water content of the soil (Water 

Content), pH level of the soil (pH), pipe/soil potential (Pipe Soil Potential), bulk density of the 

soil (Bulk Density), and redox potential (Redox Potential). The mitigation operation parameter 

included in this model is the lifetime of a coating (Coating Lifetime) above which the corrosion 
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may take place, whereas the effect of cathodic protection is not individually modeled as it is taken 

into account in the (Pipe Soil Potential) and (Redox Potential) nodes.  

 

3.3.2.2 Stress Corrosion Cracking (SCC) 

SCC occurs when oil and gas pipelines are subjected to corrosive soil environments and small 

loading cycles where mechanical-electrochemical interaction happens. The source of external 

loading usually results from the longitudinal strain caused by soil movement. Two types of SCC 

have been identified, namely, high pH SCC (pH > 9.0) and near-neutral pH SCC (pH ≈ 6.5) (Liu 

et al., 2016). However, although SCC has been studied over the past decades, few equation-based 

predictive models are developed. This dissertation adopts a finite element model firstly developed 

via COMSOL Multiphysics [43] and later modified by the authors’ previous work (Chalgham et 

al., 2019b) to simulate SCC behaviors. This model studies the changes of corrosion potential and 

corrosion current density on an already existing corrosion defect on the outer pipe wall subjected 

to a tensile strain under near-neutral condition. Model inputs include anodic current density 

(Anodic i0) and cathodic current density (Cathodic i0) for electrochemical reactions, strain (Strain 

(Displacement)) for elastoplastic stress modeling, and defect depth (Defect Depth) and defect 

length (Defect Length) for a corrosion defect geometry. For detailed descriptions of this model, 

the readers are referred to the original paper (Chalgham et al., 2019b). 

 

3.3.3 Mechanical Model 

The mechanical model calculates the burst pressure (or remaining strength) based on the 

accumulated corrosion damage and pipeline design parameters. In this  dissertation, the corrosion 

length degradation (Corrosion Length Rate) is modeled as an independent variable from depth 
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degradation because there is no direct evidence that the growths of corrosion length and depth are 

correlated. A linear growth model (Zhou, 2010) is used to predict the total corrosion length 

(Corrosion Length) after a certain time of operation. On the other hand, the total corrosion depth 

(Corrosion Depth) depends on corrosion degradation in depth (Corrosion Depth Rate) by different 

types of corrosion and the time of operation. It should be mentioned that external corrosion will 

not propagate within the lifetime of external coatings (Coating Lifetime), whereas internal coating 

is assumed to be not applicable in this model.  

As corrosion defect propagates, not only the thickness of the pipe wall reduces but also the 

remaining strength of the pipe deteriorates, finally leading to failure. Although a number of burst 

pressure models have been developed to calculate the remaining strength of corroded pipelines, 

this dissertation uses ASME B31G (Committee, 2009) and DNV-RP-F101 standards (Veritas, 

2004) because they are convenient to implement with decent accuracy. However, ASME B31G is 

only suitable for low toughness steels while DNV-RP-F101 is suitable for medium to high 

toughness steels. The burst pressure is controlled by the geometry of corrosion defects including 

defect depth (Corrosion Depth) and defect length (Corrosion Length) as well as the characteristics 

of pipe materials including pipe length (Pipe Length), pipe diameter (Pipe Diameter), pipe 

thickness (Pipe Thickness), and yield stress or flow stress (Yield Strength). 

The burst pressure equations for ASME B31G mechanical model are shown in equations (1) 

to (4)  where equations (1) to (2) are used to describe the parabolic defects and equations (3) to (4) 

are used to describe the rectangular defects: 
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where 𝑃# is the burst pressure; 𝜎$ is the hoop stress; 𝜎( is the flow stress; 𝜎- is the yield stress;  𝑤 

is the pipe wall thickness; 𝐷 is the pipe outer diameter; 𝑑 is the depth of a corrosion defect; 𝑀 is 

the Folias factor which is defined as: 
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where 𝑙 is the length of a corrosion defect. 
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On the other hand, the burst pressure equations for DNV-RP-F101 mechanical model are shown 

in equations (5) and (6): 

à 𝑃# = (𝜎() (
)!*#$+

)!* #
%$+

) * %&
'!&

+ (5) 

à 𝑀 = 21 + 0.31 * .
√'&

+
%
 (6) 

 

3.3.4 Reliability Model 

The reliability model calculates the probability of failure in terms of leak and burst as a result 

of corrosion failures. It is assumed that leak and burst are two independent events and formularized 

by two limit state functions of leak (𝑔)) and burst (𝑔%), respectively. The expressions of limit state 

functions are as follows: 
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à 𝑔) = Λ − 𝑑123 (7) 

à 𝑔% = 𝑃# − 𝑃45 (8) 

where Λ  is the corrosion allowance (usually defined as 80% of wall thickness), 𝑑123 is the 

maximum corrosion depth, 𝑃# is the burst pressure, and 𝑃45 is the operating pressure. 

When the maximum corrosion depth is larger than the corrosion allowance, the leak is likely to 

happen (𝑔) < 0). On the other hand, when the remaining strength (or burst pressure) is lowered to 

an extent that cannot withstand the operating pressure, the burst will happen and cause disastrous 

consequences (𝑔% < 0). In this dissertation, the probability of failure given leak (𝑃𝑂𝐹	𝐿𝑒𝑎𝑘) or 

burst (𝑃𝑂𝐹	𝐵𝑢𝑟𝑠𝑡) is calculated by MCS to account for the uncertainties of the defined loads and 

strengths in limit state functions as follows: 

à 𝑃𝑂𝐹 = 6[89:]
<

 (9) 

where 𝑃𝑂𝐹 is the probability of failure (where 𝑃𝑂𝐹𝜖 {𝑃𝑂𝐹	𝐿𝑒𝑎𝑘, 𝑃𝑂𝐹	𝐵𝑢𝑟𝑠𝑡}); N is the number 

of simulations; and 𝑛[𝑔 < 0] is the number of failure events (where 𝑔𝜖{𝑔), 𝑔%}). 

In general, the pipe is regarded as failed when either of these two failure events takes place. 

Therefore, the one that has a higher probability will be regarded as the probability of failure by 

corrosion (POF_corr):   

à 𝑃𝑂𝐹_𝑐𝑜𝑟𝑟	 = max(𝑃𝑂𝐹	𝐿𝑒𝑎𝑘, 𝑃𝑂𝐹	𝐵𝑢𝑟𝑠𝑡)		 (10) 

where	𝑃𝑂𝐹_𝑐𝑜𝑟𝑟		𝜖	{𝑃𝑂𝐹	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛, 𝑃𝑂𝐹	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛};	  

𝑃𝑂𝐹	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 is the failure probability of internal corrosion; and 

𝑃𝑂𝐹	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 is the failure probability of external corrosion. Note that both 

𝑃𝑂𝐹	𝐿𝑒𝑎𝑘 and 𝑃𝑂𝐹	𝐵𝑢𝑟𝑠𝑡 are different in terms of internal and external corrosion, yielding 

different 𝑃𝑂𝐹	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 and 𝑃𝑂𝐹	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛.  
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To sum up, the HCL methodology along with the corrosion DBNs provides an effective way 

of dynamically modeling complex systems where the top-down decomposition of the real-time 

and projected pipeline system failure probability is modeled by FTs while common cause failures 

or corrosion degradations are modeled by DBNs. Based on the prediction results, optimal 

mitigation actions will be provided in the next chapters to reduce the risk of pipeline failures in a 

cost-efficient way. 

 

3.4 Compressor Failure Predictive Modeling 

Compressor failure is one of the main contributors to the pipeline network failure as described 

by the fault tree in Figure 15. The probability of a compressor failure over time is modeled with 

the compressor reliability data provided in the literature (Spüntrup et al., 2018) and shown in 

Figure 19.   

 

 

Figure 19. Gas Compressor Failure Probability over Time (after Spüntrup et al., 2018) 
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The reliability of the compressor over time is not enough to present a dynamic failure 

prediction model for the compressors. In fact, the change in the volumetric flow rate reflects the 

performance degradation of the compressor as shown in Figure 20. This figure shows how the drop 

in flow rate affects the performance degradation of different compressors with different speeds. In 

the proposed PHM framework, the flow rate is monitored in real-time from the compressors to 

quantify their reliability with a better precision; as opposed to only considering the degradation 

over time. Moreover, the compressor degradation affects the corrosion formation. In fact, the 

change in flow rate is a contributor to the change of corrosion rate as described by the corrosion 

DBN models. This performance dependency will be explained in more detail in the next chapter. 

 

 

Figure 20. Compressor Performance Degradation based on Flow Rate Drop (after Safiyullah et 

al., 2018) 
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3.5 Human Error Modeling 

The human error is one of the causes of pipeline failure. BNs can be used to model the human 

error in the control room operations and the maintenance operations. As shown in Figure 21, the 

human error in the control room operations can be caused by the Human System Interface (HSI) 

or by the team. The time constraint, task load, stress level, bias, knowledge or abilities, level of 

training, effectiveness, fatigue, resources, and the procedures are all causes that can affect the team.  

 

 
Figure 21. Human Error in the Control Room Operations BN 
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The human error in the maintenance operations can be caused by internal or external factors 

as shown in Figure 22. Internal factors include the stress level, fatigue, experience, and level of 

training. External factors can be environmental (weather conditions or workplace temperature) and 

operational (lack of reporting and recording system, workload level, noise and vibration, or 

improper pipeline installation).  

The human error in the maintenance operations can be seen as an optimization problem. 

The increase of the maintenance activities will increase the cost and reduce the likelihood of 

pipeline failures assuming no human error. However, the increase of the maintenance activities 

will increase the human error in the maintenance operations which increases the likelihood of 

pipeline failures. As a result, taking human error into consideration is very important in developing 

a cost-effective maintenance schedule optimization.   

 

 
Figure 22. Human Error in the Maintenance Operations BN 
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CHAPTER 4 
 
 
4. Failure Propagation Modeling 

In this chapter, the failure propagation modeling in systems is presented. A system is a 

system with multiple inter-dependent components that are connected physically and functionally.  

In most engineered systems the interdependencies pose a formidable challenge in understanding 

and prediction of system vulnerabilities in terms of degradation and failure propagation paths.   In 

this chapter a framework is proposed to model the complex inter-dependent system-level failure. 

The approach views systems as multiple inter-connected layers as shown in Figure 23. 

 In the physical layer, the components’ degradations are modeled by taking into 

consideration the physics of degradation behavior as well as the interaction between components.  

 

Figure 23. System-Level Failure Propagation Methodology 

 

Here, 𝛼=> 	denotes the physical “connection strength between component j and i, in other 

words, how the degradation of component j is affecting component i. The connection strengths 

along with a complex network mathematical modeling (such as complex network theory and 
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centrality measure analysis) will model the importance/criticality level of a component in the 

system.  

Once the degradation of a component is quantified, a network model (such as a Fault-Tree 

analysis), is used to quantify the system failure probability. 

 

4.1 Complex Network Theory 

In order to model the physical dependencies between components, complex network theory 

can be used. Modeling complex systems can be achieved by using a network representation that 

shows system structure and topology.  It is a tool that can be used to enhance system reliability 

analysis of complex systems by providing a “natural framework for the mathematical 

representation of system topology” (Lin et al., 2018). The system is represented by a set of nodes 

connected by edges/links.  

Centrality measures are a way to represent the information about the relative importance of 

nodes and edges in a graph. The goal of this tool is to identify the most important vertices within 

a graph and helps in modeling and representing complex systems from representation and 

mathematical perspectives.  Figure 24 shows multiple centrality measures of the same graph.  

 

Figure 24. Multiple Centrality Measures of the same Graph: 

(a) Degree Centrality, (b) Closeness Centrality, and (c) Betweenness Centrality 
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Degree centrality (Freeman, 1978) measures the number of direct neighbors. Closeness 

centrality (Sabidussi, 1966) quantifies the average length of the shortest path between the node 

and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes. 

Betweenness centrality (Brandes, 2001) quantifies the number of times a node acts as a bridge 

along the shortest path between two other nodes. 

 
4.2 Centrality Measures 

4.2.1 Degree Centrality 

Degree Centrality is a measure of the number of connections a node has with other nodes. The 

Degree Centrality can be interpreted in terms of the immediate risk of a node getting affected by a 

failure mechanism of other connected nodes such as vibration. It is a primary metric of significance 

within its local environment. Degree Centrality is mathematically defined as: 

à 𝐷𝐶> =
<&
6!)

                                       (11)  

where 𝑁> is the number of links connected to node i and 𝑛 is the total number of nodes in a network. 

The Degree Centrality is a normalized measure from 0 to 1, where 1 means that a node is connected 

to all other nodes. 

Degree Centrality captures only what is happening locally around that node, it doesn’t really tell 

us where the node lies in the network, which is needed to get a proper understanding of its 

importance, influence, or criticality within the network. For this reason, other centrality measures 

are proposed to quantify the global importance of a node. 
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4.2.2 Closeness Centrality 

Closeness Centrality captures how close a node is to any other node in the network, that is how 

quickly or easily can the node reach other nodes. It is a measurement of the node’s capacity to 

affect all other elements in the network. It can also be viewed as a measure of how long it will take 

to spread a failure mode such as overheating from the node of interest to all other nodes 

sequentially. Closeness Centrality is mathematically defined as: 

à 𝐶𝐶> =
6!)

∑ /&'&(')*
	 	 	 	 	 	                  (12) 	

where 𝑛 is the total number of nodes in a network and 𝑑>= is the shortest path length between nodes 

i and j. Thus, the more central a node is the lower its total distance to all other nodes. The Closeness 

Centrality is also a normalized measure from 0 to 1, where higher measures describe more central 

nodes. 

 

4.2.3 Betweenness Centrality 

Betweenness Centrality captures the node’s role as a connector or bridge between other groups 

of nodes. It quantifies the number of times a node acts as a bridge along the shortest path between 

two other nodes. It can be seen as a measure to quantify how critical a node is to a network in its 

functioning as a bridging point between other nodes in the network. Betweenness Centrality is 

mathematically defined as: 

à 𝐵𝐶> =
%

(6!))(6!%)
∑ B+$(>)

B+$CD>D&                        (13)  

where 𝑛 is the total number of nodes in a network, 𝜎C& is the total number of shortest paths from 

node u to w, and 𝜎C&(𝑖) is the number of those paths that pass through node i. %
(6!))(6!%)

 is used 
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to normalize the Betweenness Centrality between 0 and 1. For example, in an undirected star 

graph, the center vertex (which is contained in every possible shortest path) would have a 

betweenness of 1 while the leaves (which are contained in no shortest paths) would have a 

betweenness of 0. 

 

4.3 Proposed Failure Propagation Framework 

A methodology to model physical degradations’ inter-dependencies is important to capture 

the failure propagation in a system in an accurate way. As shown in Figure 25, components are 

susceptible to degrade or fail due to degradation or failure of connected components.  

 

 
Figure 25. Proposed Failure Propagation Framework 

 
 

The degradation rate of a component j is defined as: 

à Degradation Rate of component j = DRj = 𝑓	(𝛼= , 	𝛼3==
E )		                                                    (14) 
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where  𝛼= is the inner degradation rate of component j, xF are the set of components connected to 

component j and 𝛼3==
E  is the directed degradation rate effect of components 𝑥= on component j by 

failure mechanism	𝛾 which can be a linear, physics-based, or BN model. 

 
 

4.4 Compressor/Valve Performance Degradation effect on Corrosion Degradation 

For the gas transmission pipeline network, the compressor or valve performance degradation 

has an effect on the pipeline corrosion degradation as presented in Figure 26. The real-time 

variation in operating parameters (operating pressure and mass flow rate) affects the compressor 

or valve performance which affects the gas flow rate which affects the corrosion rate in the 

pipeline. 

 

 
Figure 26. Compressor/Valve Performance Degradation effect on Corrosion Degradation 
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Figure 27. Flow Rate effect on Corrosion Rate 

As explained in Chapter 3 and described by the BN in Figure 27, the gas flow rate affects 

the flow velocity which affects the uniform and pitting corrosion depth rates.  

In fact, based on the physics-of-failure (POF)-based semi-empirical uniform corrosion 

model (Wu and Mosleh, 2019), the flow velocity affects the corrosion current density in stage I of 

corrosion as described by equations 15 and 16, and affects the sulfide layer mechanical damage 

rate in stage II of uniform corrosion as described by equations 17 and 18. 

à CRG = icorrMFe
ρFe2F

                (15) 

where CRG is the corrosion rate at stage I, iHIJJ is the corrosion current density, MKL is the molar 

mass of iron, ρKL is the density of iron, and F is the Faraday constant. 

à icorr = f (V, T, PCO2, PH2S)             (16) 

where V is the flow velocity of gas, T is the temperature, PCO2 is the partial pressure of CO2, and 

PH2S is the partial pressure of H2S. 

à CRGG = SDRM
M

                (17) 

where CRGG is the corrosion rate at stage II, SDRM is the sulfide layer mechanical damage rate, 

and α changes over time and is simulated by a BBN. 
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à α = f	(V, T, PN!O, 	pH)              (18) 

where V is the flow velocity of the gas, T is the temperature, PH2S is the partial pressure of H2S, 

and pH is the pH level.  

As a result, the flow velocity has an effect on the uniform corrosion rate. 

In addition, based on the Papavinasam pitting corrosion model (Papavinasam, 2013; 

Papavinasam et al., 2010), the flow velocity affects the pitting corrosion rate. In fact, the flow rate 

affects the wall shear stress as described by equations 19 and 20, which affects the pitting corrosion 

rate as described by equation 21. 

à PPIQR% = PST% − 25.2 *O		V,
!		WXYZ
[-

+            (19) 

where Pdown and Pup are the pressures at the outlet and inlet respectively, S is the specific gravity 

of gas, Qg is the gas volumetric flow rate (= flow velocity (V) * cross-section area of the pipe (A)), 

Z is the compressibility factor, T is the temperature, f is the Moody friction factor, L is the length 

of the pipe, and D is the inner diameter of the pipe. 

à Wss	 ∝ dP	 ∗ [
Z
               (20) 

where Wss is the wall shear stress and dP is the pressure drop (= Pup - Pdown).  

à PCR\L]R = 	{(−0.33θH	 + 	55) + 	(0.51W%	 + 	12.13) + 	(0.19	W^^	 + 	64) 

                           +	(25R^I_`P + 50) + (−0.081P	 + 	88) + 	�−0.54pN!O + 	67� 

                           +	�−0.63pab! + 74� + 	(−0.013[SOc
%!] + 	57) + (0.57T	 + 	20)	 

+	(−0.014[HCOd] + 	81) + 	(	0.0007[Cl!] + 	9.2) + PCR]PP`e`IR}/12           (21) 

where PCR\L]R is the mean pitting corrosion rate,  θc is the contact angle of oil in a water 

environment, W% is the water percentage (=water production rate/(water + oil production rates) 

× 100), W^^ is the wall shear stress, Rsolid is 1 if solids exist; otherwise, it is 0, P is the total pressure, 
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PH2S is the partial pressure of H2S, PCO2 is the partial pressure of CO2, [SO42- ] is the sulfate 

concentration, T is the temperature, [HCO3-] is the bicarbonate concentration, [Cl-] is the chloride 

concentration, PCRaddition is the mean pitting corrosion rate of these 11 individual pitting corrosion 

rates. 

As a result, the flow velocity has an effect on the pitting corrosion rate too. 
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CHAPTER 5 
 
 
5. Degradation-based Operation and Maintenance Schedule Optimization 

(DOMSO) 

In this chapter, the inspection and maintenance schedule as well as the operating parameters 

optimization models are presented. The proposed Degradation-based Operation and Maintenance 

Schedule Optimization (DOMSO) aims at optimizing the maintenance schedule of the pipeline 

components as well as the operating parameters such as the mass flow rate and flow pressure to 

avoid or reduce the likelihood of failure of the pipeline system at a lower cost. 

 
5.1 Overall Mitigation Actions Optimization Framework 

After assessing the risk of possible threats to pipeline integrity in the previous chapters, it is 

essential to take actions to mitigate the system deterioration such as corrosion degradation and 

prevent pipeline failure. In this dissertation, the integrated predictive models developed in the 

previous chapters will be incorporated into a dynamic and risk-based decision-support which 

provides cost-effective and optimal mitigations actions namely inspection/maintenance 

scheduling, operating parameters, and sensor placement optimizations. The overall mitigation 

actions optimization framework is shown in Figure 28. It shows how the field data along with the 

failure mechanism sciences contribute to the optimization models.  

The overall goal of the mitigation actions is to avoid or reduce the likelihood of failure of the 

pipe at a lower cost by the proposed optimal models. The existing field data (historic and real-

time) are fed into the corrosion and compressor/valve failure prediction models. Once the failure 

prediction results are simulated, they are fed into the optimization models. 
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Figure 28. Overall Mitigation Actions Optimization Framework 

 
Since the proposed optimization framework is dynamic, the maintenance schedule and 

operating parameters optimization results are fed back into the failure prediction models to rerun 

the simulations, and the sensor placement optimization results are sent to the inspection team for 

the optimal additional data needed. Once the additional data is received, the flow of the 

optimization explained above is updated to reflect the most realistic results. One of the novelties 

of the proposed mitigation actions optimization framework is being proactive by understand the 

physics of failure of the pipeline-network over time and applying the appropriate/optimized 

mitigation actions to avoid possible pipeline failures. 

 

5.2 Objectives of the DOMSO Framework 

The proposed Degradation-based Operation and Maintenance Schedule Optimization 

(DOMSO) aims at optimizing the maintenance schedule of the pipeline components as well as the 

operating parameters such as the mass flow rate and flow pressure to avoid or reduce the likelihood 

of failure of the pipeline system at a lower cost. In other words, it aims at: (i) reducing the 
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degradation of the pipeline over time (longer lifetime), and (ii) minimizing the cost of the system 

in long term operation. 

As shown in Figure 29, the pipeline operation cost increases over time due to inspection and 

maintenance activities, and the income decreases over time as a result. In other studies, the 

maintenance cost is considered as a constant value such as a constant maintenance cost every 4 

years, but in reality, it will increase by the increasing failure rate. In fact, for different mass flow 

rates or pressures, there are different rates of degradations; increasing the mass flow rate or 

pressure (by using the valve or the compressor) will increase the rate of pipeline degradation. As 

a result, by acknowledging the effect of different failure rates, the optimum operating conditions 

could exist such as the optimum mass flow rate and optimum pressure. 

In addition, in other systems, after a time interval of 4 years for instance, a constant amount 

of money (dashed green bar in Figure 29) is paid to do maintenance but in the proposed DOMSO 

model, it is split into different amounts; the maintenance cost that depends on operating conditions. 

For different operating conditions, different failure rates exist and those failure rates affect the 

maintenance cost and the sum of all these maintenance costs will be equal to the initial maintenance 

cost at year t4 (as shown in Figure 29) without splitting. The advantage now is that the maintenance 

date is delayed to year t6 for instance, which in the long run has a huge economic benefit. 

 

Figure 29. Objectives of the DOMSO Framework 
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5.3 DOMSO Modeling 

From an optimization modeling perspective, the Degradation-based Operation and 

Maintenance Schedule Optimization (DOMSO) model aims at simultaneously optimizing the 

pipeline safety, environmental, and operating economic aspects as shown in Figure 30. The 

complexity of the model arises from the multiple interconnected factors affecting the optimization 

objectives. The pipeline, compressor, and valve degradations along with the changing operating 

parameters, corrosion level, and human error affect directly the pipeline reliability. As for the 

economic profit, it is affected by the gas delivery profit, purchased gas cost, compressor fuel cost, 

maintenance cost, and downtime cost. Finally, the compressor and pipeline operation affect the 

CO2 emission amount.  

 

 
Figure 30. Optimization Objectives: Simultaneously Optimize the Pipeline 

Safety, Environmental, and Operating Economic aspects 
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The goal of the optimization model is to maximize the objective function which is defined as: 

à Objective Function = 𝑤fg * Pipeline Reliability + 𝑤hi% * (1 – CO2 Emission Amount)  

+ 𝑤jk* Economic Benefit            (22) 

where 𝑤fg, 𝑤hi%, and 𝑤jk are the objective function weights for Pipeline Reliability, CO2 

Emission Amount, and Economic Benefit respectively.  

The optimization outputs are the maintenance intervals and operating parameters (pressure 

and mass flow rate) as shown in Figure 31. The maintenance intervals include the pipeline as well 

as the compressor, and valve inspection and maintenance schedules. For the pipeline system, 

different maintenance activities are considered such as the use of batch corrosion inhibitor, internal 

coating, cleaning pigging, and replacement. Each of these maintenance activities has a related cost, 

lifetime, and downtime as presented in Table 2.  Maintenance Activities and their related Cost and 

Downtime. The presented data are extracted from the literature (Mahmoodzadeh et al., 2020). 

 

 
Figure 31. Optimization Outputs 
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Table 2.  Maintenance Activities and their related Cost and Downtime 

Maintenance 
Activity Description Cost 

($/mile) Lifetime 
Down Time 
(Hours/ 
Month) 

Do nothing No mitigation action is applied 0 - 0 

Batch corrosion 
inhibitor 

Chemical added from the inlet of 
the pipeline that adsorbs onto the 
metal surface and reacts with it to 
form a protective film 

130,000 1 month 1 

Internal coating 

Artificial coating that isolates 
the pipe from the corrosive 
environment and prevents water 
from reaching the pipe surface 

800,000 5 years 72 

Cleaning 
pigging 

Gadget that effectively cleans up 
liquids, corrosive solids and debris 35,000 2 weeks 48 

Replacement Replace the corroded pipeline with 
a new one 1,600,000 - 12 

 
 
 The last step in the optimization model is to define the constraints. For the DOMSO 

framework, the optimization constraints consist of degradation, operation, environmental, 

economic, and process model constraints as described in Figure 32.  

 
Figure 32. Optimization Constraints 
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The equations used in these constraints are described in equations 23 through 29: 

à Average Monthly Profit ($)  

= f (Operating Pressure, Mass Flow Rate) 

= Gas Delivery Profit – (Gas Cost + Compressor Fuel Cost + Maintenance Cost)                    (23) 

à Gas Delivery Profit ($)  

= Gas Flow Rate (ft3/hr) * (Total time – Unavailability time) (hr) * Selling gas price ($/ft3)    (24) 

à Gas Cost ($)  

= Gas Flow Rate (ft3 /hr) * (Total time – Unavailability time) (hr) * Buying gas cost ($/ft3)    (25) 

à Compressor Fuel Cost ($)  

= Compressor Power (kW)	* Operating Time (hr) * dc)%.)c	kmC
)	no.$p

	* q]^	KSL_	HI^e	($)
):.kmC

                       (26) 

à Unavailability time (hr)  

= f (Operating Pressure, Mass Flow Rate) 

= ∑(Maintenance	type	 ∗ Downtime) + number	of	failures	 ∗ unavailable	time                 (27) 

à Compressor Power (W) = 1̇	∗	f&	∗	n
(n!))	∗	u&	∗	v/

<(f0
f&
))!)/n 	− 	1>                                                (28)                                           

where 𝑃> is the inlet or suction pressure (N/m2), 𝑃x is the exit or discharge pressure (N/m2), k is 

the ratio of specific heats (= cp/cv), 𝜌> is the inlet gas density (kg/m3), 𝜂y is the isentropic 

compressor efficiency, and 𝑚̇ is the mass flowrate (kg/s) defined as: 

à Mass Flowrate 𝑚̇ (kg/s) = 𝜌 * Q = 𝜌 * V * A                                                                 (29)                                        

where 𝜌 is the density of the fluid (kg/m3), Q is the volumetric flowrate (m3/s), V is the average 

velocity (m/s), and A is the cross-sectional area (m2). 
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5.4 Inspection and Maintenance Schedule Optimization 

The proposed DOMSO framework relies on the development of an inspection and 

maintenance schedule optimization model as shown in Figure 33. The model presents firstly, the 

recommended inspection actions based on the corrosion predictions without maintenance taken 

during the operation and, secondly, the optimal operating parameters and schedule and type of 

maintenance practices to be performed from a high-reliability and cost-effective point of views.  

The inspection recommendation module provides recommended practices given the corrosion 

risk in terms of failure probability (𝑃𝑂𝐹	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛) given by Equation (10). 

Recommended practices include doing nothing, inspection, and repair based on the DNV-RP-F101 

standard (Anon, 1999, p. 101). Specifically, it uses the failure probability as a basis to determine 

the recommended practices. The threshold values of the failure probability together with the 

corresponding recommended practices are shown in Table 3. 

 
Figure 33. Framework of the Inspection/Maintenance Schedule Optimization 
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Table 3. Deterministic Recommended Practices Criteria (DNV-RP-F101) 

Pipeline Failure Probability Recommended Practices 

𝑷𝑶𝑭 < 10-5 Do nothing 

𝑷𝑶𝑭 <10-3 and 𝑷𝑶𝑭 >10-5 Inspection 

𝑷𝑶𝑭 > 10-3 Repair 
 

The maintenance schedule optimization module provides optimized maintenance types and 

times in order to mitigate corrosion risks from reliability and cost-effective ways. This module 

takes advantage of a reinforcement learning (RL)–based maintenance scheduler following the 

condition-based maintenance (CBM) policy (Mahmoodzadeh et al., 2020). The goal of a RL-based 

agent is to maximize expected cumulative rewards in the long run. In this dissertation, the goal of 

the maintenance scheduler is to extend the lifetime of the pipeline at a minimal maintenance cost.  

The framework of the maintenance scheduler is shown in Figure 34. The maintenance 

scheduler consists of a system (i.e., natural gas transmission pipeline segment) and a RL-based 

agent, both of which are interacting with each to achieve the goal. A pipe model is used to simulate 

the system in which the pipe model is composed of a corrosion model that can quantify the 

corrosion degradation and a reliability model that can determine if the pipeline fails by either leak 

or burst as a result of corrosion degradation.   

As for the agent, it can be formularized by Markov decision process {State (𝑠), Action (𝑎), 

Reward (𝑟), Time (𝑡)}. Specifically, the agent has access to the state of the pipeline (i.e., State) 

through monthly inspection and receive cost (i.e., Reward) from the system.  

 

 

 



 62 

 
Figure 34. Framework of the RL-based Maintenance Scheduler 

The state should represent the health condition of the pipelines and can be formularized as: 

𝑠	𝜖	{𝐶𝐷𝑃, 𝐶𝐿𝑃, 𝐶𝑅𝑃} (30) 

where 𝐶𝐷𝑃 is the corrosion depth percentage; 𝐶𝐿𝑃 is the corrosion length percentage; and 𝐶𝑅𝑃 is 

the corrosion rate presence, a binary variable denoting if the corrosion degradation is mitigated. 

Reward returns the feedback to the agent about how well it performs to achieve the goal and can 

be represented as: 

𝑟	𝜖	{𝑐𝑜𝑠𝑡	𝑜𝑓	𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒, 𝑙𝑖𝑓𝑒	𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛	𝑟𝑒𝑤𝑎𝑟𝑑} (31) 

where 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is the cost associated with leak and burst failures, 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

is the cost associated with maintenance practices, and 𝑙𝑖𝑓𝑒	𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛	𝑟𝑒𝑤𝑎𝑟𝑑 is the bonus to 

encourage the agent to extend the lifetime of the pipeline. 

Based on the generated information, it can select one action which will immediately influence the 

condition of the pipeline and backpropagate to the agent in terms of reward. Action can be 

represented as: 
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𝑎	𝜖	{𝑑𝑜	𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑏𝑎𝑡𝑐ℎ	𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛	𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑐𝑜𝑎𝑡𝑖𝑛𝑔,	 

        𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔	𝑝𝑖𝑔𝑔𝑖𝑛𝑔, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡} 
(32) 

where 𝑑𝑜	𝑛𝑜𝑡ℎ𝑖𝑛𝑔 means no mitigation is done, 𝑏𝑎𝑡𝑐ℎ	𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛	𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 drops the corrosion 

rate based on inhibitor efficiency, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑐𝑜𝑎𝑡𝑖𝑛𝑔 isolates the pipe from the corrosive 

environment and stops corrosion propagation during its lifetime, 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔	𝑝𝑖𝑔𝑔𝑖𝑛𝑔 cleans up 

liquids, solids, and debris, stopping corrosion propagation during its lifetime, and 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

replaces the whole corroded pipe segment.  

The algorithm used to train the agent is Q-learning, which aims at learning the optimal action-

value functions (i.e., Q-values) to derive the optimal maintenance management policy. Q value is 

a function that estimates the worthiness of each action at each state. In other words, Q value is 

cumulative discounted future rewards that can be expected if the agent starts from state 𝑠 then 

performs action 𝑎 at time 𝑡 following the policy 𝜋, which can be represented as:  

𝑄!(𝑠, 𝑎) = 	𝐸 D E 𝛾"𝑟#$"$%|𝑠# = 𝑠, 	𝑎# = 𝑎
&'()*+&	-&./#0

"12

H (33) 

where 𝛾 is the reward decay constant. 

The training process is run on a daily granularity in a simulation of the corrosion degradation 

for 1000 episodes with the simulation time steps of 40 years. Each epoch ends by either 

replacement, pipeline failure, or end of simulation scope is triggered. After the agent is well 

trained, the Q-table representing updated Q values with respect to all state spaces of the pipeline 

system is used in this dissertation to provide the optimized maintenance schedule. For more details 

about the development of the maintenance scheduler, the readers are referred to (Mahmoodzadeh 

et al., 2020). 
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5.5 Inspection/Maintenance Measures for Compressor Stations 

Based on the failure analysis of the compressor (Section 4.3) and the literature on compressor 

maintenance activities (Safiyullah et al., 2018), inspection and maintenance measures are proposed 

based on the performance degradation of the compressors and the drop in the volumetric flow rate. 

The inspection and maintenance measures are related to the alarm system for the compressor which 

is related to its performance degradation as shown in Figure 35. This figure shows the compressor 

performance degradation over time with the Alarm system.  

The alarm system is used to model the limit thresholds for performance degradations. The 

first alarm (Alarm 1) is triggered when the performance of the compressor is reduced by 20%, and 

the second alarm (Alarm 2) is triggered when the degradation reaches 30%. At Alarm 1, the 

maintenance engineers should inspect the compressors and start ordering spare parts required for 

the maintenance. At Alarm 2, the gas transportation must be terminated, and maintenance or 

replacement is required for the compressor as the degradation is reduced by 30%. Beyond the 30% 

degradation point, the operation of the compressor at any speed is not safe and the failure of the 

equipment is likely to happen. 

 
Figure 35. Compressor Performance Degradation over time with an Alarm System  
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CHAPTER 6 
 
 
6. Degradation-based Sensor Placement Optimization (DSPO) 

Maintenance schedule optimization is important to mitigate pipeline failures in an optimal 

way, but more mitigation actions are still needed to prevent in a more efficient way these pipeline 

failures. In this dissertation, the sensor placement optimization framework is presented to prevent 

or reduce the likelihood of pipeline failures by optimizing the sensor placement in the pipeline 

network in a way that maximizes the damage detection probability at a minimal cost. While the 

current sensor placement methodologies are reactive techniques based on the measured corrosion 

levels, the proposed sensor placement optimization is not only reactive but also proactive at the 

same time because it is based on current and projected corrosion level formation predictions over 

the pipeline network. 

 
6.1 Motivation 

Collecting data about the pipe conditions either by sensors or human inspection can be 

expensive if they are not implemented in an optimal design. The data gathering methods and 

techniques are very costly as explained in chapter 1 and therefore they cannot be used along all 

the pipelines for inspection or monitoring purposes, which leads to only some pipeline sections 

being inspected. This explains why sensor network design and human inspection planning are 

popular in the domain of PHM research. In the proposed PHM modeling framework, the sensor 

placement optimization addresses these limitations by suggesting the optimal places to inspect or 

place sensors, therefore increasing the efficiency of the data gathering methods and techniques in 

terms of defect detection.  
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6.2 Optimization Objectives 

In view of the above-mentioned challenges and the discussed modeling limitations in the 

introduction, this dissertation proposes a system-level dynamic and cost-effective sensor 

placement optimization framework that could be applied to complex systems. As shown in Figure 

36, this framework aims at maximizing the damage detection probability at a minimal cost based 

on physics-based degradation models such as dynamic corrosion Bayesian Network predictive 

models.  

 

Figure 36. Optimization Objectives: Maximize Damage Detection at a Minimal Cost 

 
6.3 Proposed Framework 

The proposed comprehensive and dynamic sensor placement optimization framework is 

composed of multiple modules as presented in Figure 37. It consists of 3 main layers, namely 

user/field inputs, computation engine, and outputs/results. The user/field inputs layer provides the 

pipeline information, real-time operating parameters, historic sensor data, pipeline segments 

information, sensor information, and cost budget to the computation engine. The computation 

engine has 5 connected modules which will be described in the next sub-sections. 
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Figure 37. Proposed Sensor Placement Optimization Framework 

 

6.3.1 Corrosion Predictive Model (Dynamic BN) 

The sensor placement optimization makes use of the developed causal models discussed in this 

dissertation to find the optimal locations to place sensors along the corroded pipelines in order to 

maximize the likelihood of damage detection at a minimal cost.  

The Corrosion Predictive Model module quantifies the damage depth along the pipeline based 

on a Dynamic Bayesian Network (DBN). The corrosion DBN integrates physics-based models to 

compute the corrosion damage size (depth) along the pipeline longitudinal axis as it was described 

in chapter 3 (Figure 17). This model takes into consideration the spatial and temporal variability 

of operating parameters. The dynamically updated DBN model is able to calculate the corrosion 

rate considering the changing variables and related uncertainties.  

In addition, history data of corrosion defects distributions can provide information such as 

longitudinal and circumferential location and intensity of corrosion degradation as well as their 
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size distribution. They are generated based on the corrosion simulation models described in chapter 

3. The corrosion models enable the prediction of corrosion propagation, making the future 

planning of sensor placement feasible based on the current conditions.  

 

6.3.2 High-Likelihood Damage Sampling 

The High-Likelihood Damage Sampling module aims at providing a damage and sensor 

network layout. The damages provided by the Corrosion Predictive Model module are filtered 

based on high-likelihood corrosion locations. These locations are mainly at the bottom half of the 

pipeline due to water accumulation causing the corrosion. The stochasticity of the damage 

locations is also taken into consideration. In addition, this module classifies the damage (corrosion 

depth) into 4 classes according to its severity. The classification levels are related to the proportion 

of the corrosion depth to the pipeline wall thickness as shown in equation 34 and Table 4.  

 

à Corrosion Depth Percentage (CDP) = aIJJI^`IR	[LTez
{`TL	|]__	Xz`H}RL^^

               (34) 
 

Table 4. Size Classes for Corrosion Defects 

Corrosion 
 Depth Percentage (CDP) Classes 

0 – 0.25 Level 1 (L1) 
0.25 – 0.5 Level 2 (L2) 
0.5 – 0.75 Level 3 (L3) 

0.75 – 1 Level 4 (L4) 
 

 

Moreover, this module assigns potential sensor locations that will be used in the next 

optimization modules. A node is placed near each corrosion defect in which the longitudinal 

location is the same as that of the corresponding corrosion defect, whereas the circumferential 
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location is randomly distributed with respect to that of the corresponding corrosion defect. The 

nodes are placed at possible locations of sensors, and the way of placing nodes is to provide the 

optimization model flexibility for distinguishing different detection methods.  

This module outputs a 2-D layout design of the locations of corrosion damage and sensor nodes 

for the pipeline under study. The layout is a representation of an unrolled pipeline where the 

circumferential axis denotes the perimeter, and the longitudinal axis denotes the length of the 

original pipeline. 

 

6.3.3 Damage Clustering (Constrained K-means) 

Once the damage locations are specified by the High-Likelihood Damage Sampling module, 

the Damage Clustering module groups these damages in optimal clusters. The purpose of the 

clustering is to make the optimization algorithm scalable, applicable to complex networks, and 

faster in computation. The clustering algorithm is composed of two steps. The first step is 

computing the optimal clusters based on the k-means methodology and the second step is to apply 

the constraints provided by the complex system analysis. 

The k-means clustering methodology (Wagstaff et al., 2001) aims at partitioning a data set into 

k groups (clusters). The clusters should have a center placed in the centroid of the corresponding 

cluster by performing 2 steps as shown in Figure 38. This method proceeds by selecting k initial 

cluster centers and then iteratively refining them as follows:  

1. Each instance (damage) 𝑥>  is assigned to its closest cluster center (eq.35): 

à 𝐶n = 𝑚𝑖𝑛h 	‖𝑥> 	− 	𝜇h‖%									∀𝑖                                       (35) 

where 𝐶n is the cluster k, 𝑥> is the location of damage i, and 𝜇h  is the center of the cluster. 
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2. Each cluster center 𝜇h  is updated to be the centroid (mean) of its constituent instances 

(eq.36): 

à 𝜇h =	
)
6
∑ 𝑥>6
>∈�1 																			∀𝐶                                  (36) 

where Sa is the set of all data points in cluster C, and n is the total number of damages in Sa. 

The algorithm repeats these steps until it converges.  

The clustering results provided by the k-means algorithm needs to have some constraints in 

order to be scalable and be applied to complex systems. The constraints specify which damages 

should be grouped together in the same cluster and which damages shouldn’t be grouped together 

in the same cluster for optimal results. In order to analyze the system and provide the constraints, 

complex network theory importance measures which were described in chapter 4 can be used as a 

way to define constraints.  

 

Figure 38. K-Means Clustering Methodology 

 

6.3.4 Damage Detection Probability Quantification 

The damage detection probability quantification module computes the detection probability 

matrices for different sensor types. The matrices quantify the damage detection probability of all 

possible scenarios of damage and sensor locations. The relationship between damage non-
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detection probability and the damage to sensor distance is an exponential function (Chatterjee and 

Modarres, 2013). The damage non-detection probability (DNDP) is given by: 

à 𝐷𝑁𝐷𝑃	(𝑑𝑖𝑠𝑡) = 𝑒
#&23
4 	��	                                                            (37) 

where dist is the distance between the damage and the sensor, and a and b values are specific to 

the sensor type and obtained by applying the following constraints:  

• DNDP (0) = 0 

• DNDP (Sensor maximum coverage radius) = 1 

The a and b values will also change based on the damage class computed in the High-Likelihood 

Damage Sampling module and the sensor type (Chatterjee and Modarres, 2013) and is taken into 

consideration when computing the DNDP matrices.  

As a result, the damage detection probability (DDP) is given by: 

à 𝐷𝐷𝑃 = 1	 − 	DNDP	                                               (38) 

This module will provide the DDP matrices for the different sensor types and damage classes to 

the sensor placement optimization module. 

 

6.3.5 Sensor Placement Optimization 

The final step in the computation engine is the Sensor Placement Optimization module which 

is based on the integration of the results of the previous modules. It combines the bi-objective 

optimization model developed by Aria et al. (Aria et al., 2020, 2018) with the previously described 

computation modules. The bi-objective function aims at maximizing the damage detection 

probability (DDP) at a minimal cost.  

The goal of the optimization model is to maximize the bi-objective function which is defined 

as: 
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à Objective Function  

= 𝑤''f * Damage Detection Probability + 𝑤jh  * (1 – Economic Cost)        (39) 

where 𝑤''fand 𝑤jh  are the objective function weights for the Damage Detection Probability 

and Economic Cost respectively.  

The constraints to this bi-objective function are: 

• DDP matrices for the different sensor types and damage classes. 

• Sensor information: type, coverage radius, cost, and accuracy. 

• Cost limit: maximum cost to spend. 

Finally, the proposed model generates an optimized layout design for sensor placement based 

on the optimization results from safety and cost-effective point of views. 
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CHAPTER 7 
 
7. Pipeline System Integrity Management Software Implementation 

The lack of optimal mitigation strategies in gas pipelines is one of the key factors that could 

be improved by a health monitoring software to increase the awareness of the safety and reliability 

levels of the infrastructure over time. The developed predictive models will aid operators with 

strategic investment and preventive actions such as optimizing sensor placement and maintenance 

schedules. The proposed PHM approach and the developed causal models developed in this 

dissertation are implemented into a software platform that is developed as a pipeline system 

integrity management tool to support pipeline operators in decision-making and planning 

activities. The software platform is built to be a web application. The frontend is built using the 

React framework and the backend using the Django and GeoDjango framework, all of which are 

installed on a cloud server for real-time monitoring and dynamic system modeling. React is an 

open-source, front end, JavaScript library for building user interfaces and Django is a Python-

based open-source web framework. GeoDjango is a Django module that makes it possible to create 

geographic Web applications, like location-based services. 

The design of the frontend user interface is enhanced by using Material-UI. Material-UI is an 

open source user interface library based on a set of React components that implement Google's 

material design specification.  On the backend, a MongoDB and PostGIS databases have been 

created to store the pipeline information, the sensor data, the HCL models, the corrosion models, 

the sensor placement optimization models and the maintenance optimization models. The 

corrosion, sensor placement and maintenance optimization models are coded in Python for a better 

compatibility with the Django framework.  
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The software presents multiple interconnected modules which are visible to the pipeline 

operators.  

As shown in Figure 39, these modules are presented in three main parts: 

1. Control Panel/Room Dashboard: shows the real-time health monitoring of the system by 

displaying the pipeline network and the live data being streamed from the sensors. 

2. Simulation Results Display: shows the system-level reliability by displaying the hybrid 

causal logic model, the component-level failure probability, and the system-level failure 

probability results. 

3. Dynamic Risk-based Decision Support: shows the optimal mitigation actions by displaying 

the sensor placement optimization and inspection/maintenance schedule optimization 

results. 

These three parts are accessible through a top navigation bar featuring Pipeline Network 

Building, Live Data Monitoring, System-Level Reliability, Sensor Placement Optimization, and 

Maintenance Schedule Optimization modules. In addition, a left side navigation bar is added to 

enhance the user interaction with the software by displaying the different pipelines and their 

segments when their checkbox is clicked. The overlay vector layers are added to display the 

different pipelines based on geospatial data coordinate system (latitude and longitude). The 

software connects these points with specific width and color (based on user’s preference) and the 

resulting polyline is displayed in the overlay map layer. 
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Figure 39. Software Platform Modules 
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7.1 Real-Time Health Monitoring 

The Control Room Dashboard contains the Pipeline Network Building and Live Data 

Monitoring modules.  

The Pipeline Network Building module enables the user to add the pipeline system to study. 

The pipeline network can be added manually by specifying the name, pipeline length, inner and 

outer diameter, yield strength, and inlet and outlet coordinates, or by inserting a shapefile as shown 

in Figure 40. In addition, the user can click on a specific pipeline once it is created and a popup 

will be displayed showing the pipeline information.  

 

 

Figure 40. Pipeline Network Building Module 

 
The Live Data Monitoring module displays real-time as well as historic senor data such as 

pressure drop, temperature, and flow velocity.  The sensor detection data is uploaded to the 

operating platform by the internet as the software is installed on a cloud server. The real-time data 
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from sensors and other databases feed the predictive causal models which dynamically updates the 

simulation results. 

 
7.2 System-Level Failure Analysis 

The Simulation Results Display contains the HCL, Component-Level Failure Probability, and 

System-Level Failure Probability modules. These modules quantify the real-time and projected 

component-level as well as system-level failure probabilities taking into consideration a wide 

range of causes of failures that can affect the system under study. Once the user selects one on the 

pipeline that were built previously and displayed in the left sidebar, a default Fault Tree is 

generated as shown in Figure 41.  

 

Figure 41. System-Level Failure Analysis Module 

 

The user can then edit the Fault Tree and has the capability to add or remove as many nodes 

as desired. One of the main novelties of this software platform is that the probability of failure of 
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the corrosion nodes is computed in the backend based on the physics-based models described 

earlier in this dissertation. These models take the sensor data being streamed as an input to the 

quantification analysis. The real-time quantification based on the changing sensor filed data 

provides a dynamic layer to the analysis which makes the results more realistic. 

 
7.3 Optimal Mitigation Actions 

The corrosion and HCL quantification results are fed into the Dynamic Risk-based Decision 

Support which contains the Sensor Placement Optimization and Inspection/Maintenance Schedule 

Optimization modules.  

In the Sensor Placement Optimization module, the user specifies the type of sensors they have 

and the maximum cost they are willing to pay. In addition to the corrosion data, the information 

about the sensors and cost are sent as an input to the sensor placement optimization model being 

stored in the backend. Once the user clicks on the “Optimize” button, the software shows the 

optimal locations to place sensors in order to maximize the likelihood of defect detection and 

minimize the corresponding cost. Moreover, the likelihood of damage detection based on the 

proposed layout is displayed.  

The Inspection/Maintenance Schedule Optimization module shows, firstly, the recommended 

inspection actions based on the corrosion predictions without maintenance taken during the 

operation and, secondly, the optimal schedule and type of maintenance practices to be performed 

over time from a high-reliability and cost-effective point of views.  

The mitigation actions are another novelty of the software platform because they have ability 

to suggest proactive measures to the operators to prevent or avoid pipeline failures. In addition, 

the users are able to extend the simulation time to see how the corrosion levels will increase in 

future time steps for instance and what are the inspection or mitigation actions that will be needed. 
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CHAPTER 8 
 

8. Case Study: Kern River Transmission Pipeline Network 

A case study was performed on a natural gas transmission pipeline to demonstrate the proposed 

PHM modeling approach and display the results on a software platform. In this case, a section of 

the Kern River Gas Transmission Pipeline in Salt Lake City, Utah was chosen as shown in Figure 

42.  

 
Figure 42. Kern River Gas Transmission Pipeline 

 

A few assumptions were made for this case study:  

• According to the defined modeling framework of the pipeline system, this 36-inch-

diameter steel pipe has 2 transmission phases (denoted as Phase 1 and Phase 2), each of 

which is composed of one compressor and one pipeline segment.  

• The pipeline is assumed to be straight and buried underground.  

• The pipeline is subjected to both internal and external corrosion. 
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• The inner pipe wall is presumed to be new at the beginning of corrosion simulation, and 

corrosion defects gradually develop over time depending on the time-varying operating 

conditions, whereas there are existing corrosion defects on the outer pipe wall.   

• Due to the lack of data about operating conditions, time-varying operating parameters are 

simulated by the stochastic process approach (Wu and Mosleh, 2019) and their values are 

based on (Hasan et al., 2012). Moreover, partly soil and pipe data is taken from (Caleyo et 

al., 2009).  

• Operating parameters such as temperature, pressure, partial pressure of H2S, and partial 

pressure of CO2 are assumed to be not only time-dependent but also location-dependent, 

whereas other operating parameters are only time-dependent.  

• No valve degradation is assumed to occur. 

• No human error is assumed to occur. 

 

8.1 Pipeline System Network Modeling 

The first step to model the pipeline system network is to build the pipeline under study into the 

software by specifying the coordinates or inserting the shapefiles of pipeline segments in the 

Pipeline Network Building module. Figure 43 displays the Kern River gas transmission pipeline 

network building in the software platform.  

This pipeline system consists of 2 transmission phases in which Phase 1 transmits natural gas 

from the Daggett compressor station to the Goodsprings compressor station through the 102.56 

miles (165.05 kilometers) pipeline segment. Phase 2 transmits the gas from the Goodsprings 

compressor station to the Dry Lake compressor station through the 86.66 miles (139.47 kilometers) 

pipeline segment. 
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Figure 43. Kern River Gas Transmission Pipeline Network Building in the Software Platform 

 
After the pipeline under study is developed, more data is required to continue the further 

analysis. The basic design variables of Phase 1 and Phase 2, and the simulated operating 

parameters of Phase 1 and Phase 2 are shown in Table 5 and Table 6 respectively. Note that Table 

6 only displays operating parameters that are related to internal corrosion modeling, and they are 

continuous random variables in a reflection of the random nature of operating conditions.  

 

Table 5. Basic Design Variables of Phase 1 and Phase 2 of the Kern River Gas Transmission 
Pipeline 

 Phase 1 Phase 2 
Inner Diameter, ID 36 in (0.91 m) 36 in (0.91 m) 
Outer Diameter, OD 38 in (0.97 m) 38 in (0.97 m) 
Wall Thickness, W 1 in (2.54 cm) 1 in (2.54 cm) 
Length, L 102.56 mi (165.05 km) 86.66 mi (139.47 km) 
Yield Strength, YS 448 MPa 448 MPa 
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Table 6. Simulated Operating Parameters of Phase 1 and Phase 2 of the Kern River Gas 
Transmission Pipeline 

Variables Type COV Mean 
Phase 1 Phase 2 

Temperature, T (℃) Normal 0.03 26 25 
Soil temperature, T_amb (℃) Normal 0.02 15 17 
Pressure, P (bar) Lognormal 0.10 62 50 
CO2 percentage in Gas, %CO2 (%) Lognormal 0.10 0.56 0.46 
H2S percentage in Gas, %H2S (%) Lognormal 0.10 0.61 0.30 
pH level Lognormal 0.10 6.5 6.7 
Flow velocity, V (m/s) Lognormal 0.05 3 3.5 
Chloride ion concentration, [Cl-] 
(ppm) Lognormal 0.15 2000 1000 

Sulphate ion concentration, [SO42-] 
(ppm) Lognormal 0.15 1000 1500 

Probability of solids presence, S (%) Uniform Lower limit Upper limit 
50 100 

 
 

 
Figure 44. Real-time Operating Parameters at Monitoring Point 1 in the Live Data Monitoring 

Module in the Software Platform 
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Real-time operating parameters are observable via the Live Data Monitoring module as shown 

in Figure 44, where the data streaming from the monitoring point 1 for Phase 1 is presented as an 

example. In addition, pipeline failures as a result of external corrosion depend on the application 

and the efficiency of cathodic protection and coatings (Ayello et al., 2014) as well as the soil 

conditions. Table 7 shows soil and pipe data which applies to both Phase 1 and Phase 2. Note that 

Table 7 only shows the data that is related to external corrosion modeling.  

 
Table 7. Soil and pipe data of the Kern River gas transmission pipeline 

Variable, symbol (units) Type Mean Variance 
Resistivity, re (Ω-m) Lognormal  50 2931 
Sulphate, sc (ppm) Lognormal  154 25328 
Bicarbonate, bc (ppm) Lognormal  19 436 
Chloride, cc (ppm) Lognormal  41 3135 
Water content, wc(%) Normal  24 38 
pH, ph Gumbel  6.13 0.84 
Pipe/soil potential, pp (V)1 Normal -0.86 0.04 
Bulk density, bd (g/ml) Normal  1.30 0.007 
Redox potential, rp (mV)2 Uniform  2.14 348 
1Cathodic i0, i0_c (A/m2) Normal  0.015 0.1 
1Anodic i0, i0_a (A/m2) Normal  0.0024 0.01 
2Defect depth, dd (mm) Uniform  0.1 5 
2Defect length, dl (mm) Uniform  0.5 10 
3Displacement, disp (mm) Uniform 0.1 1.5 

Coating type, ct 
Deterministic function (Constant) 

0.7651 
Coating lifetime, cl 5 

1 Cathodic i0 and Anodic i0 are exchange cathodic current density and exchange anodic current 
density, respectively, which are related to operating conditions or the applied mitigation methods 
such as cathodic protection, etc. 

2 Defect depth and defect length are the geometry of the already existing defect prior to the 
inspection. 
3 Displacement is the longitudinal strain of the pipe due to soil movements. 
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8.2 System-Level Failure Analysis 

This section shows and discusses the results of the corrosion simulation and system-level 

failure analysis of the case study. 

 

8.2.1 Hybrid Causal Logic (HCL) Modeling 

In this case study, all possible failure causes that could break the pipeline system were 

considered and modeled by the HCL methodology. The system-level fault tree of the Kern River 

gas transmission pipeline is shown in Figure 45. Two transmission phases, namely Phase 1 and 

Phase 2, are connected by an “OR” gate because the failure of either phase will fail the whole 

pipeline system. The probabilities of basic events “Compressor 1 Failure” and “Compressor 2 

Failure” were modeled dynamically with the compressor reliability data provided in the literature 

(Spüntrup et al., 2018). 

 

 
Figure 45. System-Level Fault Tree of Kern River Gas Transmission Pipeline 
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The probabilities of basic events “Natural Force, “Third-Party Damage”, “Material 

Defect”, and “Welding Defect” were taken from the research work presented in the literature (Shan 

et al., 2017) assuming they are time-independent. Due to the lack of empirical input data 

information in the form of probability distributions, these values were regarded as median values 

of Lognormal distributions with error factors of 5 to quantify the uncertainties as shown in Table 

8. Modeling the failure rate variability (or failure probability) according to a Lognormal 

distribution has been proved to be a good approximation (Droguett et al., 2004). Specifically, MCS 

is used to describe the uncertainties of basic events and propagate them through the whole FT 

(Diaconeasa, 2017). The probabilities of the corrosion basic events “Internal” and “External” are 

𝑃𝑂𝐹	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 and 𝑃𝑂𝐹	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 obtained from the corrosion 

simulations through the DBNs. 

Table 8. Probabilities of some basic failure events 

Basic Event Description Median 
Probability 

Natural Force Risk of natural disaster due to earthquake, flooding, or 
subsidence 26.3×10-5 

Third-Party Damage Risk of interference from the third party due to parties 
ignore signage, implicit signage, sabotage, or overload 75.4×10-4 

Material Defect Risk of material defect due to design defect of material 
or construction defect of material 56.9×10-5 

Welding Defect Risk of weld-seam defect due to design defect of 
weld-seam or construction defect of weld-seam 52.3×10-5 

 

8.2.2 Dynamic BN-based Corrosion Simulation Results 

The corrosion simulation module takes operating parameters from the sensors (see Table 6 and 

Table 7) and the pipe information (see Table 5) as inputs to predict corrosion degradation in terms 

of corrosion depth and the corresponding failure probability over time. The simulation is 
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performed for 30 years of operation. Modeling results by the internal corrosion and external 

corrosion DBN predictive models are discussed in the following sub-sections. 

 

8.2.2.1 Internal Corrosion Simulation Results 

Modeling results by the internal corrosion DBN predictive model were plotted. The time-

evolution schematic of predicted internal corrosion degradation and failure probability for the 

Phase 1 transmission pipeline segment is shown in Figure 46. The results show that corrosion 

depths increase with increasing time; however, the increase rate drops as corrosion rates decrease 

over time. It is one of the characteristics of internal corrosion (Heidary et al., 2018; Papavinasam, 

2013), which can be attributed to many factors such as the reformation of protective layers, change 

of corrosion potential, local increase in pH, or local solution saturation.  

 
Figure 46. Time-evolution Schematics of Predicted Internal Corrosion Degradation and Failure 

Probability for Phase 1 Transmission Pipeline Segment 
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In addition, failure probabilities of leak (𝑃𝑂𝐹	𝐿𝑒𝑎𝑘) and burst (𝑃𝑂𝐹	𝐵𝑢𝑟𝑠𝑡) as a result of internal 

corrosion all show an increasing trend over time, but in this case, the leak is more likely to happen 

than burst. 

According to the system definition, each transmission phase consists of a compressor at the 

inlet to maintain the transmission force for gas transportation, and this force (i.e., pressure) may 

decrease over the length of the pipe. Moreover, operating temperature is also found to decrease 

over the length of the pipe (Lawson, 2005) due to heat transfer during transportation. Therefore, 

among all operating parameters, the temperature, pressure, partial pressure of H2S, and partial 

pressure of CO2 were considered from a time-dependent as well as location-dependent 

perspectives. In this case study, deterministic physics-based models were used to model 

temperature and pressure drops. However, it should be noted that once data is available, it is not 

necessary to predict the temperature and pressure drops based on the operating parameters at the 

near inlet.  

First, the temperature drop was modeled by considering the heat transfer between fluid and its 

ambient environment (i.e., soil in this case). The expression of temperature profile can be 

represented as (Lawson, 2005):  

à T(z) = T]\� + (T̀ R_Le − T]\�)exp	(−β
�
Z
) (40) 

where T(z) is the temperature at distance “z” along the pipeline, T]\� is the ambient temperature 

of the soil, T̀ R_Le is the operating temperature of natural gas at the inlet, L is the length of the pipe, 

z is the distance along the pipe, and β is the pipeline thermal decay constant given by:  



 88 

à β = �[�
a5�6789

 (41) 

where D is the inner diameter of the pipe, CT is the specific heat capacity of natural gas, MY_IQ is 

the mass flow rate, and U is the overall heat transfer coefficient (=1/Re) where Re is the overall 

thermal resistance.   

For a buried pipe system, Re involves the consideration of thermal resistances of fluid RY, pipe RT, 

and soil R^, and they can be expressed as (Li et al., 2012): 

à RY =
)
z6

 (42) 

à RT = ¥�:
}5
¦ ln	 *�!

�:
+ (43) 

à R^ = *%��:Z
};O

+ (44) 

where hY is the heat transfer coefficient of natural gas, R) is the inner radius of the pipe, R% is the 

outer radius of the pipe, kT is the thermal conductivity of the pipe, L is the length of the pipe, and 

k^ is the thermal conductivity of the soil. 

Second, the pressure drop was modeled by the following equation (Griffith, 1984; Taitel et al., 

1980):   

à PPIQR% = PST% − 25.2 *OV,
!WXYZ
[-

+ (45) 

where PPIQR is the downstream pressure,  PST is the upstream pressure, S is the specific gravity of 

gas, Q8 is the gas flow rate, Z is the compressibility factor for gas, T is the temperature, f is the 

Moody friction factor, and L is the length of the pipe.  

Location-dependent corrosion simulations for 30 years of operation were conducted with 

location ratios (i.e., longitudinal axis/length of the pipe) equal to 0, 0.25, 0.5, 0.75, and 1. The 
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location-evolution schematic of predicted internal corrosion degradation and failure probability 

for the Phase 1 transmission pipeline segment is shown in Figure 47. The results show that 

corrosion depths decrease with increasing location along the pipeline. This can be explained by 

the fact that under the current operating conditions, a higher temperature or partial pressure of H2S 

and CO2 lead to a higher corrosion rate, and corrosion rates decrease as temperature and pressure 

drop over the length of the pipe. In addition, it is also noted that the decrease of corrosion depths 

is less remarkable with the increasing length of the pipe because of decreasing heat transfer, 

leading to the balance of temperature and pressure.  The failure probability at the inlet is almost 

four times larger than that at the outlet. The same corrosion simulations were also performed for 

the Phase 2 transmission pipeline in the calculation of 𝑃𝑂𝐹	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛. 

 

 

Figure 47. Location-evolution Schematics of Predicted Internal Corrosion Degradation and 
Failure Probability for Phase 1 Transmission Pipeline Segment after 30 Years of Operation 
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8.2.2.2 External Corrosion Simulation Results 

Corrosion simulations of external corrosion were only performed in consideration of time-

dependency because soil and pipe data (see Table 6) were assumed to be location-independent. 

Modeling results by the external corrosion DBN predictive model were plotted and shown in 

Figure 48. It can be seen that due to the application of a coating, the corrosion does not propagate 

until the lifetime of the coating is reached (i.e., 5 years). The regions of the pipe where the coating 

is broken then suffer external corrosion, leading to an increase of corrosion depths over operation 

time. As expected, the 𝑃𝑂𝐹	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 increases with increasing operation time after 

the coating has broken for several years.  The same corrosion simulations were also performed for 

the Phase 2 transmission pipeline in the calculation of 𝑃𝑂𝐹	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛.  

 

 
Figure 48. Time-evolution Schematics of Predicted External Corrosion Degradation and Failure 

Probability for Phase 1 Transmission Pipeline Segment 
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In short, this corrosion simulation module enables the prediction of corrosion (i.e., internal and 

external corrosion) degradation and the corresponding failure probability. Once real-time sensor 

data is available, it can be applied to any location along the pipeline to prioritize the regions for 

inspection or maintenance practices.   

 
8.2.3 System-Level Failure Probability Quantification 

The system-level failure probability distribution after 5 years of operation is displayed in 

Figure 49. Statistics like mean and median values as well as uncertainty bounds in the form of 5th 

and 95th percentiles are given. Figure 50 shows the time-evolution system-level failure probability 

for 30 years of operation.  

The results show that the failure probability increases over time and reaches almost 1 after 30 

years of operation, implying that if no maintenance practices or repairs are applied during the 

operation, the pipeline system failure is very likely to happen within 30 years.  

 

 
Figure 49. System-Level Failure Probability Distribution after 5 Years of Operation 
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Figure 50. Time-evolution System-Level Failure Probability for 30 Years of Operation 
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In order to study the causing factors with respect to their influences on system reliability, 

importance measures analysis was performed. Here the criticality importance measure was used 

which is the probability that factor 𝑖 causes system failure at time 𝑡: 

à 𝐼yp>m>y2.>m-(𝑖|𝑡) = �<4=>&*4?�𝑖�𝑡�∙5&(m)
52(m)

   (46) 

where 𝐼12p8>62.(𝑖|𝑡) is the marginal importance measure of factor 𝑖 at time 𝑡 (= �g2(m)
�g&(m)

);  𝑅�(𝑡) 

and 𝑝�(𝑡) are system reliability and system failure probability at time 𝑡, respectively; 𝑅>(𝑡) and 

𝑝>(𝑡) are reliability and system failure probability of factor 𝑖 at time 𝑡, respectively. Figure 51 

displays the criticality importance measures of the pipeline system failure after 10 years of 

operation. The results show that “Compressor Failure” is the main contributor to the system failure; 

this is due to the significant decrease in reliability of compressors over time if no repair is ever 

done during the operation (see Figure 19).   

 

 
Figure 51. The Criticality Importance Measures of the Pipeline System Failure at t = 10 years 
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8.3 Sensor Placement Optimization  

In this case study, the pipeline was presumed to be free of internal corrosion at the beginning; 

however, corrosion was assumed to take place along the longitudinal and circumferential axis of 

the pipeline based on the damage density to perform the sensor placement optimization.  

 

8.3.1 High-Likelihood Damage Sampling 

 

After computing the corrosion depths along the pipeline in section 8.2.2 (corrosion degradation 

was simulated by the proposed internal corrosion DBN predictive model), each corrosion damage 

is categorized into different size classes based on the corrosion depth percentage (𝐶𝐷𝑃) as it was 

shown in Table 4. 𝐶𝐷𝑃 was taken as a criterion for categorization because localized corrosion 

which propagates mainly in depth is the most disastrous.  

Assuming a constant longitudinal damage density of 10 corrosion defects per 50 meters and 

using a Poisson distribution, the 2-D layout of the corrosion damage and nodes for the Phase 1 

transmission pipeline segment is shown in Figure 52. The sensor nodes are placed randomly near 

the damage locations to allow flexibility in the optimization module for sensors with different 

coverage capabilities. The layout is a representation of an unrolled pipeline where the 

circumferential axis denotes the perimeter, and the longitudinal axis denotes the length of the 

original pipeline. Fewer corrosion defects were assumed to form on the top half of the pipeline 

compared to the bottom half of the pipeline based on the likelihood of water accumulation. Note 

that all corrosion defects were categorized to be class 2 because the corrosion depth at each location 

here is the mean corrosion depth in consideration of time-varying operating parameters.  
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Figure 52. The layout of the Corrosion Damage and Nodes for Phase 1 Transmission Pipeline 

Segment 

In addition, only temperature and pressure-drop were considered to be location-dependent. 

However, once real-time sensor data is available, variability is expected to be observed.  The 

optimization problem aims at maximizing the probability of defect detection at a minimal cost 

(limited number of sensors). 

 
8.3.2 Damage Clustering (Constrained K-means) 

The damages obtained from the High-Likelihood Damage Sampling module are clustered in 

the Damage Clustering module. The number of desired clusters was assumed to be 3. The resulting 

optimal grouping is shown in Figure 53 and summarized in Table 9. 

 
Figure 53. Damage Clustering Layout 
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Table 9. Clusters for Corrosion Defects 

Damage Location Nodes Clusters 
0,1,2 Cluster 1 

3,4,5,6,7 Cluster 2 
8,9,10 Cluster 3 

 
8.3.3 Damage Detection Probability Quantification 

After getting the corrosion damage and sensor nodes layout from the High-Likelihood 

Damage Sampling module, the Damage Detection Probability (DDP) matrices for the different 

sensors are computed. In this case study, 2 sensor types are considered: acoustic-emission sensor, 

and ultra-sonic sensor.  

 

Table 10. Damage Detection Probability (DDP) Matrix for an Acoustic-Emission Sensor 

  S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
D0 0.84

336 0 0 0 0 0 0 0 0 0 0 

D1 0 0.78
360 0 0 0 0 0 0 0 0 0 

D2 0 0 0.87
597 0 0 0 0 0 0 0 0 

D3 0 0 0 0.88
919 0 0 0 0 0 0 0 

D4 0 0 0 0 0.81
761 0 0 0 0 0 0 

D5 0 0 0 0 0 0.87
151 0 0 0 0 0 

D6 0 0 0 0 0 0 0.81
246 0 0 0 0 

D7 0 0 0 0 0 0 0 0.82
965 0 0 0 

D8 0 0 0 0 0 0 0 0 0.77
854 0 0 

D9 0 0 0 0 0 0 0 0 0 0.63
214 0 

D10 0 0 0 0 0 0 0 0 0 0 0.87
932 
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The acoustic-emission sensor is assumed to have a detection radius of 0.4 meters. The ultra-

sonic sensor is assumed to be used by human inspection and has a coverage of 20 meters. The 

DDP matrices for the acoustic-emission and ultra-sonic sensors are shown in Table 10 and Table 

11 respectively. The DDP matrix shows the damage (D) detection probability by a sensor located 

at a sensor node (S). Note that the results of the damage detection probabilities take into 

consideration the corrosion damage depth quantified in the Corrosion Predictive Model module. 

 
Table 11. Damage Detection Probability (DDP) Matrix for an Ultra-Sonic Sensor 

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

D0 0.89
018 

0.81
009 

0.53
801 0 0 0 0 0 0 0 0 

D1 0.81
038 

0.88
947 

0.73
243 

0.34
427 0 0 0 0 0 0 0 

D2 0.53
777 

0.73
257 

0.89
069 

0.73
247 

0.54
041 

0.30
179 0 0 0 0 0 

D3 0 0.34
424 

0.73
244 

0.89
094 

0.81
248 

0.71
538 

0.48
329 

0.30
347 0 0 0 

D4 0 0 0.53
997 

0.81
222 

0.88
985 

0.83
429 

0.69
858 

0.59
347 0 0 0 

D5 0 0 0.30
156 

0.71
531 

0.83
428 

0.89
062 

0.80
166 

0.73
249 0 0 0 

D6 0 0 0 0.48
307 

0.69
865 

0.80
173 

0.88
979 

0.85
288 

0.34
370 

0.30
367 

0.21
537 

D7 0 0 0 0.30
329 

0.59
359 

0.73
258 

0.85
298 

0.89
000 

0.51
302 

0.48
372 

0.41
819 

D8 0 0 0 0 0 0 0.34
376 

0.51
313 

0.88
942 

0.88
021 

0.86
848 

D9 0 0 0 0 0 0 0.30
348 

0.48
358 

0.87
630 

0.88
829 

0.87
623 

D10 0 0 0 0 0 0 0.21
540 

0.41
819 

0.86
778 

0.87
699 

0.89
075 
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8.3.4 Optimization Results 

The sensor placement optimization is the final step of the computation engine. The results from 

the previous modules are integrated into the optimization algorithm as well as the user/operator 

inputs displayed in Table 12. The inputs include the available type of sensors, their coverage range, 

accuracy, and cost. In addition, the operator specifies the cost limit desired.  

 

Table 12. Operator Inputs to the Optimization 

 Acoustic-Emission 
Sensor 

Ultra- 
Sonic Sensor 

Coverage (m) 0.4 20 
Accuracy 0.96 0.97 
Cost ($) 50 1000 
Total  
Cost Limit ($) 2,200 

 
The optimal layout is displayed in Table 13 and Figure 54. It shows that the provided sensor 

network has a damage detection probability of 89% given that: 

• 4 acoustic-emission sensors are placed at nodes 0, 2, 3, and 10 which corresponds to 

longitudinal locations of 0.22 m, 12.22 m, 19.72 m, and 49.22 m respectively. 

• 2 ultra-sonic sensors are placed at nodes 4 and 8 which corresponds to longitudinal locations 

of  24.22 m, and 47.72 m respectively 

 

Table 13. Output of the Optimization 

 Acoustic-Emission  
Sensor 

Ultra-Sonic  
Sensor 

Nodes 0 2 3 10 4 8 
Distance 
from inlet 
(m) 

0.22 12.22 19.72 49.22 24.22 47.72 
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Figure 54. Sensor Placement Optimization Layout for a Small Part of Phase 1 Transmission 
Pipeline Segment 

 

Compared to a layout of fixed sensor intervals as shown in Figure 55, the optimization 

increased the probability of damage detection by 34%; from 55% with a fixed interval sensor 

placement to 89% with an optimized sensor placement. 

 

 
Figure 55. Sensor Placement Layout Without Optimization 
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8.4 Inspection/Maintenance Schedule Optimization 

This section presents the inspection recommendation and maintenance schedule optimization 

results for this case study. Figure 56 shows the result of the inspection recommendation for the 

Phase 1 transmission pipeline segment that can provide recommended practice based on the current 

condition of the pipeline. 𝑃𝑂𝐹	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 at different operation times along the pipeline 

are displayed and compared with the DNV-RP-F101 standard. The results show that inspection is 

recommended between 5 to 10 years of operation, otherwise, the risk of pipeline failure becomes 

so high that requires repair to be applied after 10 years of operation. The results of the maintenance 

schedule optimization module for the Phase 1 transmission pipeline segment that provides 

optimized maintenance schedule from safety and cost-effectiveness viewpoints are also shown in 

Figure 56. 

 

 
Figure 56. Results of the Inspection Recommendation and Maintenance Schedule Optimization 

for Phase 1 Transmission Pipeline Segment 
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This figure visualizes the decision making by the RL-based maintenance scheduler with 

respect to different levels of corrosion (i.e., corrosion depth percentage (𝐶𝐷𝑃) and corrosion length 

percentage (𝐶𝐿𝑃)). The results show that the maintenance scheduler decides to perform no 

maintenance action at the beginning. Until the corrosion becomes slightly severe (𝐶𝐷𝑃 around 

13%) after 3 years of operation, it starts to apply cleaning pigging every month between 2.75 and 

7.83 years of operation, and between 20.58 and 30 years of operation to mitigate the corrosion 

propagation. According to (Mahmoodzadeh et al., 2020), cleaning pigging can inhibit corrosion 

for 2 weeks, after which the corrosion environment will develop again. In between, it selects to 

perform no maintenance actions in which the corrosion levels increase faster. It decides to apply 

no maintenance at a certain duration because although the corrosion levels may increase faster, it 

still poses a small risk and no immediate threat to the pipeline integrity from a cost-effective point 

of view; therefore, performing no maintenance action outweighs performing any maintenance 

action at this duration. The maintenance schedule optimization module keeps the 90th percentile 

of 𝐶𝐷𝑃 to below 0.4, which is a relatively secure level after 30 years of operation.  Note that 

decision makings by the maintenance scheduler differs depending on the pipe information and 

operating conditions; therefore, the optimized maintenance schedule for Phase 2 may be different 

from Phase 1.  
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8.5 Operating Parameters Optimization 

In this section, the pressure and flow rate are optimized from economic, cost, and 

environmental perspectives. A total of 6 simulations cases are performed with different operating 

pressures (P) in bar and flow velocities (v) in m/s are shown in Figure 57.    

 
Figure 57. Corrosion Predictions and Optimal Maintenance Schedule for Different Operating 

Pressures and Flow Velocities 
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The corrosion predictions and optimal maintenance schedule for the different operating 

pressures and flow velocities are shown in Figure 57. The optimal maintenance schedules are cost-

effective. When comparing the monthly average maintenance cost with 12 normal (periodic) 

maintenance costs retrieved from the literature (Mahmoodzadeh et al., 2020), the difference is 

noticeable as shown in Figure 58 and Table 14. 

 

 

Figure 58. Compared Monthly Average Costs of 12 Cases of Normal (Periodic) Maintenance 
Schedules and the 6 Cases of Optimal Maintenance Schedules 

 
As shown in Table 14, the optimization of the operating parameters aims at: (i) extending the 

lifetime of the pipeline, (ii) minimizing the maintenance cost, (iii) maximizing the economic profit, 

and (iv) minimizing the CO2 emission amount.  From the optimization results, having a pressure 

of 30 bar and flow velocity of 30 m/s is the optimal combination of operating parameters as it 
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decreases the average monthly maintenance cost by 72.5%, increases the average monthly profit 

by 3.67%, and increases the CO2 emission amount by only 3.65%.   

 

Table 14. Economical and Environmental Benefits of the Optimized Maintenance Schedules 
 

Periodic 
Mainten
ance 
(Lowest) 

Maintea
nce 
Schedule 
Optimized 
(Ave of 
all cases)  

Case 1: 
P=30 
bar, 
V=3 
m/s 

Case 2: 
P=30 
bar, 
V=30 
m/s 

Case 3 
P=75 
bar, 
V=3 
m/s 

Case 4: 
P=75 
bar, 
V=30 
m/s 

Case 5: 
P=120 
bar, 
V=3 
m/s 

Case 6: 
P=120 
bar, 
V=30 
m/s 

No. of 
burst 
failures   0 0 0 0 0 0 0 0 

No. of 
leak 
failures 0 0 0 0 0 0 0 0 

Ave. 
Lifetime 
(Months) 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 

Ave. 
Monthly 
Mainten
ance 
Cost  
($10,000) 

5.438958  
1.339033 
(75% ↓) 

1.423090 
(73.4% ↓) 

1.469271 
(72.5% ↓) 

1.221354 
(77.2% ↓) 

1.257812 
(76.5% ↓) 

1.310069 
(75.5% ↓) 

1.352604 
(74.7% ↓) 

Ave. 
Monthly 
Profit  
($10,000) 

31858.9 17595.1 
(45% ↓) 

3305.3 
(89.6% ↓) 

33026.8 
(3.67%↑) 

3190.6 
(90.0% ↓) 

31894.5 
(0.1% ↑) 

3107.1 
(90.2% ↓) 

31046.4 
(2.6%↑) 

Ave. 
Monthly 
CO2 
Emission 
Amount 
(10,000lb 
CO2) 

345.74 272.203 
(21% ↓) 

35.88 
(89.6%↓) 

358.38 
(3.65% ↑) 

51.70 
(85.0% ↓) 

516.68 
(49.3% ↑) 

61.03 
(82.3% ↓) 

609.55 
(76.3%↑) 

Volumetr
ic Flow 
Rate Q 
(Bcf/day) 

- - 0.006 0.06 0.006 0.06 0.006 0.06 
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The transmission pipeline is more complex in reality as shown in Figure 59. The gas 

transmission of Phase 1 is actually performed through 2 parallel lines (denoted as Phase 1a, and 

Phase 1b), each of which is connected to a compressor and a valve. The compressor is responsible 

for keeping a desired pressure and the valve is responsible for varying the mass flow rate if needed. 

The variation of pressure and flow rate, even by a small degree, can have a big impact on the 

economic benefit but also affects the maintenance costs and CO2 emission amounts as shown in 

the previous results.  

The optimization gets more complex with these 2 parallel lines, and the operators need to know 

which pressures to keep at both compressors and which flow rates are optimal. In addition, the gas 

delivery constraint needs to be met at the same time. Table 15 shows the optimal operating 

parameters for the Phase 1 transmission pipelines. This table shows all combinations of the 

operating parameters between the 2 parallel lines considering the 6 simulation cases. The operators 

select the desired constraints: 0.066 Bcf/d for gas delivery demand, $600,000,000/month for 

minimum economic profit, and 9,000,000 lb/month for maximum CO2 emissions. The red boxes 

in Table 15 indicate that the demand constraint is met, the numbers in green indicate that the 

minimum profit is met, and the purple numbers indicate that the maximum CO2 emissions 

constraint is met. 

 
Figure 59. Transmission Pipeline Components 
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Table 15. Optimal Operating Parameters for Phase 1 Transmission Pipelines 

Phase 1b 
 

Phase 1a 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6  

Case 1 
0.012 0.066 0.012 0.066 0.012 0.066 Q (Bcf/d) 

6610.57135 36332.1202 6495.87818 35199.7992 6412.39036 34351.7078 Profit ($10,000) 
71.759768 394.257895 87.5843773 552.562487 96.9062482 645.429434 CO2 (10,000 lb) 

Case 2 
0.066 0.12 0.066 0.12 0.066 0.12 Q (Bcf/d) 

36332.1202 66053.6691 36217.4271 64921.348 36133.9393 64073.2567 Profit ($10,000) 
394.257895 716.756022 410.082504 875.060613 419.404375 967.92756 CO2 (10,000 lb) 

Case 3 
0.012 0.066 0.012 0.066 0.012 0.066 Q (Bcf/d) 

6495.87818 36217.4271 6381.18501 35085.106 6297.69719 34237.0146 Profit ($10,000) 
87.5843773 410.082504 103.408987 568.387096 112.730858 661.254043 CO2 (10,000 lb) 

Case 4 
0.066 0.12 0.066 0.12 0.066 0.12 Q (Bcf/d) 

35199.7992 64921.348 35085.106 63789.027 35001.6182 62940.9356 Profit ($10,000) 
552.562487 875.060613 568.387096 1033.36521 577.708967 1126.23215 CO2 (10,000 lb) 

Case 5 
0.012 0.066 0.012 0.066 0.012 0.066 Q (Bcf/d) 

6412.39036 36133.9393 6297.69719 35001.6182 6214.20936 34153.5268 Profit ($10,000) 
96.9062482 419.404375 112.730858 577.708967 122.052728 670.575914 CO2 (10,000 lb) 

Case 6 
0.066 0.12 0.066 0.12 0.066 0.12 Q (Bcf/d) 

34351.7078 64073.2567 34237.0146 62940.9356 34153.5268 62092.8443 Profit ($10,000) 
645.429434 967.92756 661.254043 1126.23215 670.575914 1219.0991 CO2 (10,000 lb) 

 

Demand                         
(Bcf/d) 0.066 

Min Profit                     
($10,000/ 
Month) 

60,000 

Max CO2 
Emissions 
(10,000 lb/ 

Month) 

900 

 

The 3 case scenarios that meet all of the constraints are: 

• Scenario 1: Case 2 for Phase 1a (P=30 bar, V=30 m/s) and Case 2 for Phase 1b (P=30 bar, 

V=30 m/s). 

• Scenario 2: Case 2 for Phase 1a (P=30 bar, V=30 m/s) and Case 4 for Phase 1b (P=75 bar, 

V=30 m/s). 

• Scenario 3: Case 4 for Phase 1a (P=75 bar, V=30 m/s) and Case 2 for Phase 1b (P=30 bar, 

V=30 m/s). 
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Scenario 1 is selected as the optimal scenario because of the higher profit and lower CO2 

emissions compared to the 2 other scenarios. For this scenario, the operating parameters for the 2 

parallels transmission lines should be adjusted to a pressure of 30 bar and flow velocity of 30 m/s 

for optimal pipeline safety, economic profit, and CO2 emission amounts. 
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CHAPTER 9 
 

9. Conclusions and Future Work 

A Prognosis and Health Monitoring (PHM) approach for pipeline system integrity 

management embedded in a software platform was proposed. The proposed framework along with 

the software design was supported by a multi-disciplinary science and engineering approach for a 

comprehensive, state-of-the-art solution. It integrated the data, methods, and technologies into a 

dynamic pipeline health monitoring system supported by multiple probabilistic predictive models 

that analyzed all causal factors that could fail the pipeline. Moreover, it provided dynamic 

mitigation suggestions such as optimal sensor placement and optimal timings of an inspection or 

repair of a given pipeline for a better structural health monitoring of the pipeline. The proposed 

PHM approach, which was embedded in the software platform, showed the ability to quantify the 

health state of the pipeline over time and help the operators make risk-informed decisions on sensor 

placement and maintenance schedule via the case study of a corroded gas transmission pipeline. 

In few words, this dissertation presented a dynamic, comprehensive, proactive, and cost-effective 

PHM framework embedded in a user-friendly software platform to enhance pipeline safety and 

system integrity management by preventing or reducing the likelihood of failures through optimal 

mitigation actions. The software could be deployed in a control room as a dynamic health 

monitoring dashboard or in a mobile version for field inspection and maintenance purposes. 

The contributions of the presented research work include: (i) components/system performance 

degradation and their interactions modeling, (ii) cost-effective sensor placement to better detect 

damages, (iii) cost-effective maintenance scheduling to avoid/reduce failures, and (iv) optimized 

operating parameters to increase profit, reduce degradations, and reduce CO2 emissions.  
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By applying the proposed PHM modeling framework to the Kern River natural gas 

transmission pipeline as case study, the optimized mitigation actions successfully prevented any 

failures from happening within the simulation time step. The sensor placement optimization 

increased the probability of damage detection by 34% when compared to a layout of fixed sensor 

intervals, the maintenance schedule optimization reduced the average monthly maintenance costs 

by 75% compared to the best selected periodic maintenance policies from the literature, and the 

operating parameters optimization increased the average monthly profit by 3.67%.  

The use of the methodology described in this dissertation is expected to improve safety by 

having a more accurate health status of the pipeline infrastructure over time and by increasing the 

lifetime of the system with the proposed dynamic, cost-effective, and risk-informed mitigation 

suggestions to the operators. Finally, the application of the models and decision-support will, in 

return, directly benefit the industry, through access to a cost-optimized pipeline integrity 

management, based on scientific and engineering foundations.  

Future work includes the modeling of a prognosis and health monitoring framework for oil 

pipeline system integrity management as the presented work in this dissertation is specific to 

natural gas pipelines. By studying the failure causes of oil pipelines and understanding the 

required/optimized mitigation actions needed, a more comprehensive PHM methodology will help 

the oil and gas industry improve the system safety and structural integrity. Finally, future work 

includes also the validation of the PHM methodology by field data and preforming the analysis on 

pipelines that failed and pipelines that didn’t fail and compare the results.     
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Appendix A 

Discretized Nodes of the DBN Internal Corrosion Model 
 

Variables Description Causes States Unit 

Wetting Factor Wetted — 1   
Not Wetted 0.1  

pH2S Partial pressure of 
hydrogen sulfide 

— 0-10 mbar 
10-100 
100-1000 
1000-10000 

pCO2 Partial pressure of carbon 
dioxide 

— 0-10 mbar 
10-100 
100-1000 
1000-10000 

Flow Velocity Flow velocity of gas — 0-1  m/s 
1-2 
2-3 
3-4.5 

Temp Temperature — 0-25 ℃ 
25-50 
50-75 
75-100  

pH pH level — 4-5  
5-6 
6-7 
7-8 

Uniform Corrosion Uniform corrosion rate Wetting Factor 0-0.01 mm/y 
pH2S 0.01-0.1 
pCO2 0.1-1 
Flow Velocity 1-5 
Temp 5-10 
pH  

P Total pressure — 1-10 bar 
10-50 
50-100 
100-150 

Wall Shear Stress Wall shear stress due to the 
flow of gas 

— 0-10 Pa 
10-20 
20-30 

Rsolids W/ solid — 0  
W/O solid 1 

[Cl-] Concentration of chloride 
ions 

— 0-100 ppm 
100-1000 
1000-10000 
10000-100000 

[SO42-] Concentration of sulphate 
ions 

— 0-10 
10-100 
100-1000 
1000-2500 

ppm 
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[HCO3-] Concentration of 
bicarbonate ions 

— 0-10 
10-100 
100-1000 
1000-4000 

ppm 

PCR Average pit growth rates 
due to every individual 
effect 

— 0-0.01 mm/y 
0.01-0.1 
0.1-1 
1-5 
5-10 

Pitting Corrosion Pitting corrosion rate Wetting Factor 0-0.01 mm/y 
P 0.01-0.1 
Wall Shear Stress 0.1-1 
Rsolids 1-5 
[Cl-] 5-10 
[SO42-]  
[HCO3-]  
PCR  

[C] Concentration of carbon 
from fatty acid ≥ 20 mg/L 

— 1  

Concentration of carbon 
from fatty acid < 20 mg/L 0.2 

Biocide Routinely used — 0.2  
Not routinely used 1 

[O] Oxygen ingress ≥ 50 ppb — 5  
Oxygen ingress < 50 ppb 1 

Pigging Never — 1  
Once 13 weeks 0.3 
Once 4 weeks 0.001 
Once 1 week 0.0001 

C:N ratio < 10 — 1  
≥ 10 0.4 

[N] ≥ 5 mg/L — 1  
< 5 mg/L 0.2 

[Solids] Dissolved_solid < 60 g/L — 1 
0.2 

 
Dissolved_solid ≥ 60 g/L 
and SRB grows 
Dissolved_solid ≥ 60 g/L 
and SRB doesn’t grow 

0.0001 

FVMIC Flow velocity < 1 m/s — 1  
Flow velocity = 2 m/s 0.6 
Flow velocity = 2.5 m/s 0.1 
Flow velocity = 3 m/s 0.01 

Debris Yes — 2  
No 1 

TMIC 10℃ ≤ Temperature ≤ 
45℃  

— 1  

Temperature < 10℃ or 
Temperature > 45℃  0.2 
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Microbiologically-
Influenced Corrosion 
(MIC) 

Microbiologically-
influenced corrosion rate 

Wetting Factor 
[C] 
Biocide 
[O] 
Pigging 
C:N ratio 
[N] 
[Solids] 
FVMIC 
Debris 
TMIC 

0-0.01 
0.01-0.1 
0.1-1 
1-5 
5-10 

mm/y 

Yield strength Yield strength of the pipe — 10-250 
250-500 
500-750 
750-1000 

MPa 

Impact Angle Impact angle between the 
solid and the pipe surface 

— 0-15 degree 
15-30 
30-45 
45-60 

Particle Mass Mass of the particle — 0.1-1 g 
   1-10  
   10-100  
   100-200  
Erosion Corrosion Erosion corrosion rate Particle Density 0-0.01 mm/y 

Impact Angle 
Particle Mass 

0.01-0.1 
0.1-1 
1-5 
5-10 

Exponent Exponent of the Paris 
equation  

— 0-1  
1-2 
2-3 

Stress Range The range between 
maximum and minimum 
stress 

— 0-100 MPa 
100-200 
200-300 

K Stress concentration factor — 0-1  
1-2 
2-3 

Defect Length Initial radius of the pit  — 0-0.01 mm 
0.01-0.1 
0.1-1 
0.1-10 

Coefficient Coefficient of the Paris 
equation 

— 10-12 – 10-11  
10-11 – 10-10 
10-10 – 10-9 

Frequency The frequency of the stress 
change 

— 1-2 /day 
2-3 
3-4 

Corrosion Fatigue Corrosion fatigue 
corrosion rate 

Exponent 0-0.01 mm/y 
Stress Range 0.01-0.1 
K 0.1-1 
Defect Length 1-5 
Coefficient 5-10 
Frequency 
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Corrosion Depth Rate Total corrosion rate in 
term of depth 

Uniform Corrosion 0-0.01 
0.01-0.1 
0.1-1 
1-5 
5-10 

mm/y 
Pitting Corrosion 
Microbiologically-
Influenced Corrosion 
(MIC) 
Corrosion Fatigue 
 

Corrosion Length Rate Total corrosion rate in 
term of length 

— 0-0.01 mm/y 
0.01-0.1 
0.1-1 
1-5 
5-10 

Corrosion Depth Total depth of corrosion Corrosion Depth Rate 0-5 mm 
Pipe Age 5-10 
 10-100 
 100-500 

Corrosion Length Total length of corrosion Corrosion Length Rate 0-5 mm 
Pipe Age 5-10 
 10-100 
 100-500 

Pipe Length Length of the pipe — 10-160 km 
160-320 
320-480 
480-640 

Pipe Diameter Diameter of the pipe — 10-150 mm 
150-300 
300-450 
450-600 

Pipe Thickness Thickness of the pipe — 1-10 mm 
10-20 
20-30 

Operating Pressure Operating pressure  
(like “P” node) 

— 1-10 
10-50 
50-100 
100-150 

bar 

Burst Pressure Remaining strength of the 
pipe 

Corrosion Length 0-250 MPa 
Yield Strength 250-500 
Pipe Length 500-750 
Pipe Diameter 750-1000 
Pipe Thickness  
Corrosion Depth  

POF Leak 
 

Failure probability of leak Pipe Thickness 0-25 % 
Corrosion Depth 25-50 
 50-75 
 75-100 

POF Burst 
 

Failure probability of burst Burst Pressure  
Operating Pressure 

0-25 % 
25-50 

 50-75 
75-100 

POF Internal Corrosion Total failure probability of 
internal corrosion 

 0-25 % 
25-50 
50-75 
75-100 



 114 

Appendix B 

Discretized Nodes of the DBN External Corrosion Model 
 

Nodes Description Causes States Unit 

Resistivity Resistivity of the soil — 1-250 Ω-m 
250-500 
500-750 
750-1000 

[SO42-] 
 

Sulphate ions 
concentration of the soil  

— 0-10 ppm 
10-100 
100-1000 
1000-2500 

[HCO3-] Bicarbonate ions 
concentration of the soil 

— 0-10 ppm 
10-100 
100-1000 
1000-4000 

[Cl-] Chloride ions 
concentration of the soil 

— 0-100 ppm 
100-1000 
1000-10000 
10000-100000 

Redox Potential Oxidation / reduction 
potential (Relative to the 
standard hydrogen 
electrode)  

— 1-100 mV 
100-200 
200-300 
300-400 

Coefficient Coefficient of the 
external corrosion model 

Resistivity 0-0.25 
0.25-0.5 
0.5-0.75 
0.75-1 

 
[SO42-] 
[HCO3-] 
[Cl-] 
Redox Potential 

pH pH level of the soil — 4-5  
5-6 
6-7 
7-8 

Pipe Soil Potential Pipe/soil potential 
(Relative to a Cu/CuSO4 
reference electrode) 

— (-2) – (-1.5) 
(-1.5) – (-1.0) 
(-1.0) – (-0.5) 
(-0.5) – 0 

V 

Bulk Density Bulk density of the soil — 0-0.5 g/cm3 
0.5-1 
1-1.5 
1.5-2 

Water Content Water content of the soil  — 0-25 % 
25-50 
50-75 
75-100 

Exponent Coefficient of the 
external corrosion model 

pH 
Pipe Soil Potential  
Bulk Density  
Water Content 

0-0.25 
0.25-0.5 
0.5-0.75 
0.75-1 
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Coating Lifetime Lifetime of the external 
coating 

— 0-5 year 
5-10 
10-15 
15-20 

Pipe Age Age of the pipe — 0-10 year 
10-20 
20-30 
30-40 
40-50 

Pitting Corrosion Pitting corrosion rate Coefficient 0-0.01 mm/y 
  Exponent 0.01-0.1  
  Coating Lifetime 0.1-1  
  Pipe Age 1-5  
   5-10  
Cathodic i0 Cathodic current density 

by electrochemical model 
— 10-3 – 10-2 

10-2 – 10-1 
10-1 - 1 

A/m2 

Anodic i0 Anodic current density 
by electrochemical model 

— 10-3 – 10-2 
10-2 – 10-1 
10-1 - 1 

A/m2 

Defect Depth Initial corrosion defect 
depth 

— 0-0.01 mm 
0.01-0.1 
0.1-1 
1-10 

Defect Length Initial corrosion defect 
length 

— 0-0.01 mm 
  0.01-0.1  
  0.1-1  
  1-10  
Strain (Displacement) Displacement of the pipe 

by the soil movements 
— 0-1 mm 

1-2  
2-5  

SCC Stress corrosion cracking 
rate 

Cathodic i0 0-0.01 mm/y 
 Anodic i0 0.01-0.1  
 Strain (Displacement) 0.1-1  
 Defect Depth 1-5  
 Defect Length 5-10  
Corrosion Length 
Rate 

Total corrosion rate in 
term of length 

— 0-0.01 mm/y 
0.01-0.1 
0.1-1 
1-5 
5-10 

Corrosion Depth Total depth of corrosion Corrosion Length Rate 0-5 mm 
Pipe Age 5-10 
 10-100 
 100-500 

Corrosion Length Total length of corrosion Corrosion Length Rate 
Pipe Age 

0-5 mm 
5-10 
10-100 
100-500 

Yield Strength Yield strength of the pipe 
material 

— 10-250 MPa 
250-500 
500-750 
750-1000 
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Pipe Length Length of the pipe — 10-160 km 
160-320 
320-480 
480-640 

Pipe Diameter Diameter of the pipe — 10-150 
150-300 
300-450 
450-600 

mm 

Pipe Thickness Thickness of the pipe — 1-10 mm 
10-20 
20-30 

Operating Pressure Operating pressure  — 1-10 
10-50 
50-100 
100-150 

bar 

Burst Pressure Remaining strength of the 
pipe 

Corrosion Length 0-250 MPa  
Yield Strength 250-500 
Pipe Length 500-750 
Pipe Diameter 750-1000 
Pipe Thickness  
Corrosion Depth  

POF Leak Failure probability of 
leak  

Pipe Thickness 0-25 % 
Corrosion Depth 25-50 
 50-75 
 75-100 

POF Burst Failure probability of 
burst 

Burst Pressure 0-25 % 
Operating Pressure 25-50 
 50-75 
 75-100 

POF External 
Corrosion 

Total failure probability 
of internal corrosion 

POF Leak 0-25 % 
POF Burst 25-50 
 50-75 
 75-100 
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