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Background. Identifying where human immunodeficiency virus (HIV) persists in people living with HIV and receiving anti-
retroviral therapy is critical to develop cure strategies. We assessed the relationship of HIV persistence to expression of chemokine 
receptors and their chemokines in blood (n = 48) and in rectal (n = 20) and lymph node (LN; n = 8) tissue collected from people 
living with HIV who were receiving suppressive antiretroviral therapy.

Methods. Cell-associated integrated HIV DNA, unspliced HIV RNA, and chemokine messenger RNA were quantified by quan-
titative polymerase chain reaction. Chemokine receptor expression on CD4+ T cells was determined using flow cytometry.

Results. Integrated HIV DNA levels in CD4+ T cells, CCR6+CXCR3+ memory CD4+ T-cell frequency, and CCL20 expression 
(ligand for CCR6) were highest in rectal tissue, where HIV-infected CCR6+ T cells accounted for nearly all infected cells (median, 
89.7%). Conversely in LN tissue, CCR6+ T cells were infrequent, and there was a statistically significant association of cell-associated 
HIV DNA and RNA with CCL19, CCL21, and CXCL13 chemokines.

Conclusions. HIV-infected CCR6+ CD4+ T cells accounted for the majority of infected cells in rectal tissue. The different rela-
tionships between HIV persistence and T-cell subsets and chemokines in rectal and LN tissue suggest that different tissue-specific 
strategies may be required to eliminate HIV persistence and that assessment of biomarkers for HIV persistence may not be general-
izable between blood and other tissues.

Keywords. HIV reservoir; latency; persistence; chemokine receptor; CCR6; CXCR3; chemokines; rectal tissue; lymph node.

Human immunodeficiency virus (HIV) persists among people 
living with HIV (PLWH) and receiving suppressive antiretroviral 
therapy (ART) in resting and proliferating memory CD4+ T cells 
in blood and tissue [1–4]. In humans, <3% of T cells reside in pe-
ripheral blood, whereas most T cells inhabit secondary lymphoid 
tissues, including lymph nodes (LN) and gut-associated lymphoid 

tissue (GALT) [5, 6]. In PLWH on suppressive ART, HIV DNA is 
enriched in CD4+ T cells from GALT and LN tissue compared to 
blood [7–10]. Infected T cells can also have a spectrum of tran-
scriptional activity [11] from truly latent (no transcription) to 
higher HIV RNA expression, which is more common in lymphoid 
tissue [9, 10, 12]. Dissecting the factors associated with HIV per-
sistence and transcription in tissue in PLWH receiving ART is im-
portant for developing new cure strategies.

Chemokines and their chemokine receptors (CKRs) mediate 
trafficking of leukocytes to specific tissues [13]. CCL19 and 
CCL21 chemokines, produced by stromal cells in lymphoid or-
gans and lymphatic endothelial cells, bind CCR7 on naive and 
central memory T cells, promoting migration to lymphoid tissue 
[14]. CCL20 chemokine, produced by various epithelial cell 
types, binds CCR6 on T-helper (Th) 17 cells and other popula-
tions, inducing homing to the gastrointestinal tract [15]. CXCL9, 
CXCL10, and CXCL11 chemokines, secreted by monocytes, en-
dothelial cells, and fibroblasts in response to interferon γ, bind 
CXCR3-expressing Th1 cells, promoting migration to inflam-
matory sites [16]. CCL19, CCL20, and CXCL9/CXCL10 levels 
are elevated in plasma during untreated HIV infection [17, 18].
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HIV replicates in activated CD4+ T cells that express CCR6 
and high levels of the HIV coreceptor CCR5 [19–22]. In un-
treated HIV infection, CCR6+ CD4+ T cells are targets of HIV 
and simian immunodeficiency virus (SIV) replication in the 
GALT [23–26] and female reproductive tract [27]. CKRs are 
also important to viral persistence in PLWH receiving ART. In 
blood, HIV persists in CD4+ T cells that express CKRs CXCR3, 
CCR6, and CCR7 [28, 29], and inducible replication-competent 
virus is enriched in CXCR3+ CD4+ T cells receiving ART [30]. 
In LN tissue, HIV persists in PD1+CXCR5+ T follicular helper 
cells in B-cell follicles during ART [9], and in an SIV infection 
model, SIV persists in CD4+ regulatory T (Treg) cells that ex-
press cytotoxic T lymphocyte antigen 4 and high CCR6 [31]. 
In GALT, CCR6+ CD4+ T cells have higher HIV Gag DNA than 
CCR6− T cells during ART [29]. Finally, in vitro, CCL19, CCL20 
or CXCL10 chemokines also enhance latent HIV infection [32, 
33], suggesting that high levels of these chemokines in tissue 
may favor the establishment of latent infection at these sites.

To examine whether expression of CCR6, CXCR3, CCR7, and 
CCR5 CKRs and their chemokines were associated with HIV 
persistence in different anatomic sites, we studied blood, rectal, 
and LN tissue from PLWH taking ART in a cross-sectional 
study. We found that HIV was enriched in CD4+ T cells from 
rectal tissue versus blood. In rectal tissue, a high proportion of 
CD4+ T cells expressed CCR6 and CXCR3, CCL20 chemokine 
expression was increased, and HIV-infected CCR6+ T cells ac-
counted for nearly all of the total infected cells. Conversely in 
LN tissue, CCR6+ T cells were infrequent, and there was a sig-
nificant association between HIV persistence and expression 
of CCL19, CCL21, and CXCL13 chemokines. The different rela-
tionships between HIV persistence and T-cell subsets in blood, 
rectal tissue, and LN tissue suggests that different tissue-specific 
strategies may be required to eliminate HIV persistence during 
ART. These findings also suggest that blood-based biomarkers 
may not accurately characterize the total HIV reservoir in tissue.

METHODS

Study Participants

PLWH taking suppressive ART (HIV RNA, <40 copies/mL) 
for ≥3 years with CD4+ T-cell counts >350/μL were recruited 
at the University of California, San Francisco, and are de-
scribed elsewhere [10, 28, 34]. Participants provided informed 
consent before participation. The study was approved by 
the University of California, San Francisco (institutional re-
view board no. 10-01330), and by Monash University and the 
University of Melbourne (human research ethics committees 
nos. 2012000032 and 1443162, respectively) in Australia.

Sample Processing and Analyses

Participant blood, LN, and rectal tissue samples were assessed 
for HIV DNA and RNA in sorted total CD4+ or CCR6+/CXCR3+ 
T-cell subsets, CKR immunophenotyping, or chemokine or 

transcription factor RNA (Supplementary Material). In sta-
tistical analyses, P values < .05 were considered statistically 
significant, and nominal P values were reported without ad-
justment for multiple comparisons, as outlined elsewhere [34] 
(Supplementary Material).

RESULTS

Enrichment of HIV in CD4+ T Cells From Rectal Tissue Compared With Blood

A primarily male cohort treated with suppressive ART was re-
cruited, with a median (interquartile range [IQR]) age of 57 
(50–62) years (Table 1). Median (IQR) nadir and current CD4+ 
T-cell counts were 216/μL (133–387/μL) and 684/μL (530–862/
μL) cells respectively.

Quantification of HIV persistence revealed that total CD4+ T 
cells from rectal tissue had significantly higher integrated HIV 
DNA levels than cells from blood or LN tissue (fold difference, 
3.91 [P < .001] and 2.42 [P = .01], respectively) (Supplementary 
Table 1] as previously published for this cohort [10]. HIV 
CA-US RNA levels were also higher in CD4+ T cells from rectal 
and LN tissue than in those from blood (fold difference, 4.57 
and 3.66, respectively; both P <  .001) (Supplementary Table 1 
[10]). However, there was no statistically significant difference 
between the 3 anatomic sites in the ratio of CA-US RNA to in-
tegrated DNA (Supplementary Table 1).

Integrated HIV DNA and CA-US RNA levels were posi-
tively correlated in blood and rectal CD4+ T cells (P = .004 and 
P = .003, respectively), but the positive correlation did not reach 
statistical significance in cells from LN tissue (Figure 1). There 
were no statistically significant correlations between markers 
of HIV persistence and different anatomic sites. These find-
ings may be a consequence of the fewer LN samples obtained 
(Supplementary Table 2).

Single-genome amplification and sequencing of the HIV env 
gene using CD4+ T cells from peripheral blood, LN tissue, or 
rectal tissue for 5 participants revealed occasional identical HIV 
env sequences in blood and LN or rectal tissue (Supplementary 
Figure 1) and we also found genetically distinct sequences be-
tween compartments. There was no evidence of compartmen-
talization (Supplementary Table 3).

Enrichment of Memory CD4+ T Cells Coexpressing CCR6, CXCR3, and 

CCR5 in Rectal Tissue

The distribution of total memory CD4+ T cells that express 
single CKRs or combinations of CKRs were examined in the 
3 anatomic sites. CCR7 was excluded from analysis owing 
to lost staining intensity over the duration of processing. 
CD45RA+CD27+ naive T cells were also excluded from analysis 
because rectal tissue has minimal naive T cells but blood and 
LN tissues are enriched in them.

In single-CKR analyses (Figure 2), most rectal memory CD4+ 
T cells expressed CCR6, CXCR3, or CCR5, and a smaller pro-
portion expressed CXCR5 (median, 87.6%, 77.4%, and 70.5% vs 
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39.8%, respectively). Because the expressed CKRs are not mu-
tually exclusive, the proportions add up to >100%. A different 
profile was observed for blood and LN tissue, where the fre-
quency of cells expressing a single CKR was lower than in rectal 
tissue (Figure 2A).

When coexpression of CKRs was analyzed, rectal tissue con-
tained a high proportion of CCR6+CXCR3+ memory cells (me-
dian, 69.8%) (Figure 2B) that frequently coexpressed CCR5 
(81.0%) (Figure 2C). Conversely, in blood and LN tissue, the 
frequencies of CCR6+CXCR3+ T cells were lower (median, 
21.6% and 12.4%, respectively) (Figure 2B). CXCR3+ T-cell 
subsets at all 3 sites exhibited greater CCR5 coexpression than 
CXCR3− T-cell subsets (Figure 2C).

Transcriptional Features of T Cells Expressing CCR6 and CXCR3

CD4+ T cells can also be classified based on function. This in-
cludes Th17 (CCR6+), Treg (either CCR6+ or CXCR3+), and 
Th1 (CXCR3+) subsets that are distinguished by expression of 
the transcription factors RORγT, FoxP3, and T-bet, respectively 
[35–38]. To confirm the functional subsets in the T-cell popu-
lations quantified according to CKR expression, we also quan-
tified the messenger RNA (mRNA) transcript levels of RORγT, 
FoxP3, and T-bet. Transcript levels in sorted T cells from parti-
cipants were expressed relative to levels in a calibrator sample, 
here being RNA from peripheral blood mononuclear cells col-
lected from a single healthy donor (Supplementary Material).

In blood, CCR6+CXCR3+ and CCR6+CXCR3− memory T 
cells had a statistically significant higher expression of RORγT 
(Th17) and FoxP3 (Treg) and ratio of RORγT to FoxP3 than 
both CCR6− populations (Figure 3A–3C), suggesting that blood 
CCR6+ T cells are enriched for Th17 cells. CCR6+CXCR3+ cells 
had a higher T-bet (Th1) expression than CCR6+CXCR3− cells, 
consistent with both Th1Th17 and Th17 functions (Figure 3D). 
In rectal tissue, there were insufficient cells to sort CCR6 and/or 
CXCR3 populations, so only total CD4+ T cells were assessed. 
Rectal CD4+ T cells had 1.95-fold higher median expression of 
RORγT relative to FoxP3 (P <  .001; Supplementary Figure 2), 
consistent with Th17 cells, similar to findings in blood CCR6+ 
T cells.

Different Relationships Between HIV Persistence and Frequencies of CKR 

Memory CD4+ T Cells in Rectal Versus LN Tissue

We further examined whether HIV persistence was associated 
with frequencies of memory T-cell subsets expressing CKRs. 
Negative binomial regression models were used with and 
without adjustment for potential confounding effects of current 
and/or nadir CD4+ T-cell count, as published elsewhere [28, 34, 
39] (Supplementary Material).

In rectal tissue, integrated HIV DNA and CA-US RNA levels 
and the RNA-to-DNA ratio had a statistically significant posi-
tive relationship with the frequency of CCR6+CXCR3− T cells 
in unadjusted (fold difference, 1.04 [95% confidence interval 

Table 1. Demographic Characteristics of Study Participants

Parameter
Full Cohort With Blood Sam-

ples (n = 48) Subgroup With LN Samples (n = 8)
Subgroup With Rectal 

Samples (n = 20)

Age, median (IQR), y 56.5 (50–62) 57.5 (50–62) 58.5 (51–63)

Sex, no. (%)    

 Male 46 (96) 8 20

 Female 1 (2) 0  0

 Transgendera 1 (2) 0  0

Race, no. (%)    

 White  32 (67)  6 (75) 13 (65)

 African  6 (13)  1 (13) 1 (5)

 Hispanic 4 (8) 0 (0)  2 (10)

 Asian 1 (2) 0 (0) 0 (0)

 Pacific Islander 1 (2) 0 (0) 1 (5)

 Mixed 4 (8)  1 (13)  3 (15)

Duration of ART, median (IQR), y 8.5 (5.0–12.4) 10.9 (4.7–13.1) 10.5 (5.3–12.5)

Viral load, copies/mL <40 <40 <40

CD4+ T-cell count, median (IQR)    

 Nadir, cells/μL 216 (133–387) 134 (80–383) 143 (89–387)

 Current, cells/μL 684 (530–862) 549 (429–719) 669 (496–833)

 Current, % 32 (25–41) 25 (21–31) 30 (23–36)

Current CD8+ T-cell count, median (IQR), cells/μL 914 (639–1091) 1069 (893–1399) 986 (745–1138)

Integrated HIV DNA, median (IQR), copies/106 T cells 338.8 (153.4–700.9) (n = 48) 449.7 (217.1–1850) (n = 7) 1263 (413.5–1942) (n = 19)

HIV CA-US RNA, median (IQR), copies/106 T cells 22.5 (11.8–38.6) (n = 44) 75.3 (13.9–155.8) (n = 7) 69.4 (18.3–301.3) (n = 16)

Ratio of HIV CA-US RNA to integrated DNA, median 
(IQR)

0.065 (0.037–0.122) (n = 43) 0.086 (0.041–0.328) (n = 7) 0.041 (0.029–0.201) 
(n = 13)

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; IQR, interquartile range.
aTransgender woman, with use of exogenous estrogens unknown. 
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(CI), 1.01–1.09] [P = .02], 1.08 [1.01–1.16] [P = .03], and 1.06 
[1.01–1.11] [P = .02], respectively) and adjusted models (Table 
2). In contrast, integrated HIV DNA and CA-US RNA had a 
statistically significant inverse relationship with CCR6+CXCR3+ 
T-cell frequency in unadjusted (fold difference, 0.97 [95% CI, 
.94–1.00] and 0.93 [.87–.99], respectively; both P = .03) and ad-
justed models (Table 2).

Different relationships were observed in LN tissue. Integrated 
HIV DNA had no statistically significant relationships with 
frequencies of T cells expressing specific CKRs (Table 2 and 
Supplementary Table 4). HIV CA-US RNA had a statistically 

significant positive relationship with the frequency of CCR5+ 
T cells in unadjusted (fold difference, 1.15 [95% CI, 1.04–1.26]; 
P  =  .004) and adjusted models but an inverse relationship to 
the frequency of CXCR5+ and CCR6+CXCR3− T cells in unad-
justed (fold difference, 0.88 [95% CI, .81–.96] [P = .004] and .84 
[.71–1.00] [P = .046], respectively) and adjusted models (Table 
2 and Supplementary Table 4).

Contribution of HIV-Infected T Cells Expressing CCR6 and CXCR3 to HIV 

Persistence in Rectal Tissue

To assess directly whether there was preferential enrichment 
of HIV in specific CCR6/CXCR3 T-cell subsets in rectum, a 
second sigmoidoscopy was performed and blood samples col-
lected in 10 participants from the original cohort (demographic 
details in Supplementary Table 5). Because HIV is present in 
CD4+ and CD4− T cells in GALT [40], to capture all infected 
cells, CD8− rather than CD4+ memory T cells were sorted into 
CCR6/CXCR3 subsets (Supplementary Figure 3). Similar dis-
tributions of CCR6/CXCR3 subsets were seen in rectal tissue 
from these participants (Supplementary Figure 4) compared to 
the original cohort (Figure 2). There were some minor differ-
ences in subset distribution in blood samples from this cohort 
versus the original cohort, possibly owing to sorting CD8− cells 
here rather than CD4+ memory cells originally (Supplementary 
Figure 4A and Figure 2, respectively).

In blood, integrated HIV DNA in CCR6+CXCR3+, 
CCR6+CXCR3−, and CCR6−CXCR3+ subsets compared to 
CCR6−CXCR3− memory T cells was substantially higher (me-
dian fold increase, 1.93 [P  =  .002], 1.44 [P  =  .049], and 1.38 
[P  =  .03], respectively) (Figure 4A). However, when the fre-
quency of each cell subset was accounted for, there was no 
statistically significant difference between the relative contribu-
tions of the different subsets to the total pool of cells harboring 
integrated HIV DNA in blood (Figure 4B).

In rectal tissue, owing to low total cell numbers, only 
CCR6+CXCR3+ T cells and the remaining T-cell pool (non-
CCR6+CXCR3+) were sorted. There was no statistically signif-
icant enrichment of integrated HIV DNA in CCR6+CXCR3+ 
versus the non-CCR6+CXCR3+ T-cell pool (Figure 4C). The me-
dian contributions of these 2 subsets to the total integrated DNA 
reservoir in rectal tissue were 78.1% for CCR6+CXCR3+ T cells 
and 21.9% for the non-CCR6+CXCR3+ T-cell pool, but these dif-
ferences were not statistically significant (P = .36) (Figure 4D).

Given the mixed population in the non-CCR6+CXCR3+ T-cell 
pool, we next calculated the relative contribution of each subset 
to the total integrated DNA reservoir in rectal tissue, using the 
frequency of each subset and the HIV DNA concentration in 
CCR6+CXCR3+ or non-CCR6+CXCR3+ cells (as an estimate of 
DNA concentration in CCR6+CXCR3−, CCR6−CXCR3+, and 
CCR6−CXCR3− subsets). The CCR6+CXCR3+ subset had a sig-
nificantly greater contribution to the total integrated HIV DNA 
reservoir in rectal tissue compared with the remaining 3 subsets 
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Figure 1. Positive correlation between human immunodeficiency virus (HIV) in-
tegrated DNA and CA-US RNA in total CD4+ T cells from blood and rectal tissue. 
Figure displays integrated HIV DNA and cell-associated unspliced RNA (CA-US 
RNA) levels in total CD4+ T cells from peripheral blood (n = 44; top), lymph node 
(LN) tissue (n = 7; middle) and rectal tissue (n = 13; bottom) from people living 
with HIV and receiving antiretroviral therapy.
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(Figure 4E), owing to the high frequency of CCR6+CXCR3+ 
cells in rectal tissue (Supplementary Figure 4B). CCR6+CXCR3− 
T cells also had a significantly greater contribution than 
CCR6−CXCR3− T cells to the integrated HIV DNA reservoir 
(Figure 4E). Therefore, although rectal CCR6+CXCR3+ cells 
were not preferentially infected, infected CCR6+ cells accounted 

for nearly all integrated HIV DNA detected in rectal tissue (me-
dian, 89.7%; IQR, 68.3%–90.5%).

By comparison, in blood, CCR6+CXCR3+ T cells were 
less frequent (Supplementary Figure 4), and CCR6+CXCR3+ 
together with CCR6+CXCR3− T cells had a combined me-
dian 53.1% (IQR, 43.9%–57.7%) contribution to the total 
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Figure 2. Rectal tissue harbors a high proportion of total memory CD4+ T cells that coexpress CCR6, CXCR3, and CCR5. Single-cell suspensions were isolated from peripheral 
blood (left panel), lymph node (LN) (middle panel) tissue, or rectal tissue (right panel) from people living with human immunodeficiency virus (HIV) and receiving antiretroviral 
therapy. Cells were then stained and analyzed with flow cytometry for expression of CD14, CD19, CD3, CD4, CD45RA, CD27, CCR5, CCR6, CXCR3, and CXCR5. A, B, Proportion of 
total memory CD4+ T cells that express single CKRs (A) or CCR6 and/or CXCR3 (B). C, Percentage of cells expressing the CCR5 HIV entry coreceptor in each CCR6 and/or CXCR3 
subset. Data are displayed as median with interquartile range for each anatomic site, and dots represent individual donors. Differences between cell types were determined 
using the Wilcoxon matched-pairs signed rank test, with significance defined as P < .05. *P < .05; **P < .01, ***P < .005; **** P < .001. Abbreviations: R5, CCR5; R6, CCR6; 
X3, CXCR3; X5, CXCR5. 
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integrated HIV DNA reservoir in blood. The contribution 
of all CCR6+ T cells to the total pool of HIV-infected cells 
in blood compared with rectal tissue was significantly lower 
(P = .02; Wilcoxon signed rank test). Hence both CCR6+ and 
CCR6− T cells had an important contribution to the HIV res-
ervoir in blood, whereas CCR6+ T cells accounted for most 
of the HIV reservoir in rectal tissue, as measured by inte-
grated HIV DNA.

Enrichment of Rectal Tissue in CCL20 mRNA and LN Tissue in CCL19, CCL21, 

and Other Chemokine mRNA CCL20 mRNA in Rectal Tissue and CCL19 and 

CCL21 in LN Tissue

Next, the expression of relevant chemokine RNAs was quan-
tified in tissues. All chemokines were detected in LN and 
rectal tissues (Figure 5A). CXCL12 (CXCR4 ligand) had the 
highest RNA expression of all chemokines measured in both 
tissues (Figure 5A). As expected, there was higher RNA ex-
pression of CCL20 (CCR6 ligand) in rectal tissue and CCL19 
plus CCL21 (CCR7 ligands) in LN tissue, consistent with 
CCR6 or CCR7 expressing cells homing to these 2 tissues, 

respectively [14, 15]. For 6 participants with paired rectal 
and LN tissue samples, most chemokines had significantly 
higher expression in LN tissue, except CCL20, which was 
11.4-fold higher in rectal than in LN tissue (Figure 5B and 
Supplementary Table 6).

Relation Between HIV Persistence During ART and Chemokine Expression 

in LN Tissue

HIV persistence markers were compared with chemokine ex-
pression (Supplementary Table 7). In LN tissue, there were sta-
tistically significant inverse associations between integrated HIV 
DNA and both CCL19 and CCL5 mRNA (P = .002 and P = .02, 
respectively) and between HIV CA-US RNA and both CCL19 
and CCL21 mRNA (P =  .001 and P =  .02, respectively) in un-
adjusted and most adjusted models. HIV CA-US RNA had a 
statistically significant positive relationship to CXCL13 mRNA 
in unadjusted (P =  .03) and nadir CD4+ T-cell count–adjusted 
models (Supplementary Table 7). In rectal tissue, chemokine 
mRNAs had no statistically significant relationships with any 
markers of HIV persistence.
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DISCUSSION

This study is unique in systematically evaluating the frequency 
of T-cell subsets in blood and in LN and rectal tissue based on 
CKR expression in PLWH on suppressive ART. We then used 
these data to calculate the overall contribution of specific CKR-
expressing cell types to HIV persistence during ART. The very 
high frequency of CCR6+ T cells in rectal tissue identified a dis-
tinct subset of T cells that are a major contributor to HIV per-
sistence during ART. Furthermore, the different relationships 
between HIV persistence and T-cell subsets and chemokines in 
rectal and LN tissue suggests that different tissue-specific strat-
egies may be required to eliminate HIV persistence.

We made a number of key observations. The frequency of 
HIV-infected cells was higher in CD4+ T cells from rectal tissue 

versus blood, as our group reported elsewhere [10]. Rectal tissue 
was highly enriched for CCR6+CXCR3+ T cells and the CCR6 
ligand, CCL20. Although integrated HIV DNA was not sub-
stantially enriched in CCR6+CXCR3+ T cells from rectal tissue 
versus all other cells, infected CCR6+ T cells accounted for 
nearly all infected cells in the rectum. Conversely in LN tissue, 
there was a statistically significant relationship between HIV 
persistence markers and chemokines that bind to CCR7, CCR5, 
and CXCR5. Therefore, CKR-expressing cells and chemokines 
had a different relationship with HIV persistence in rectal and 
LN tissue among those receiving effective ART.

The enrichment of HIV DNA and RNA in rectal CD4+ T 
cells compared with blood (Supplementary Table 1) is con-
sistent with findings of prior studies in human [7, 8, 10] and 

10 000 100

80

60

40

20

0

***

**

*
***

**

*
*

In
te

gr
at

ed
 H

IV
 D

N
A

/
10

6  
ce

lls

C
on

tr
ib

ut
io

n 
to

 to
ta

l
in

te
gr

at
ed

 H
IV

 D
N

A
 in

C
D

8-
R

A
- T

 c
el

ls 
(%

)

100

80

60

40

20

0

C
on

tr
ib

ut
io

n 
to

 to
ta

l
in

te
gr

at
ed

 H
IV

 D
N

A
 in

C
D

8-
R

A
- T

 c
el

ls 
(%

)

100

80

60

40

20

0

C
on

tr
ib

ut
io

n 
to

 to
ta

l
in

te
gr

at
ed

 H
IV

 D
N

A
 in

C
D

8-
R

A
- T

 c
el

ls 
(%

)

A B

1000

100

10

1

10 000

In
te

gr
at

ed
 H

IV
 D

N
A

/
10

6  
ce

lls

C D E

1000

100

10

1

R6+
X3+

R6+
X3+

Non
R6+X3+

R6+
X3+

Non
R6+X3+

R6+
X3–

R6–
X3+

R6–
X3–

R6+
X3+

R6+
X3–

R6–
X3+

R6–
X3–

R6+
X3+

R6+
X3–

R6–
X3+

R6–
X3–

Blood 
n=10

Rectum
n=10

Figure 4. Rectal CCR6+ memory CD8− T cells have a large contribution to the total pool of integrated human immunodeficiency virus (HIV) in memory CD8− T cells. Single 
cells isolated from peripheral blood (A, B) or rectal biopsy specimens (C–E) from 10 people living with HIV and receiving antiretroviral therapy were sorted into CD45+, CD3+, 
CD45RA− CD8− memory T cells (CD8− RA− T cells) that expressed CCR6 and/or CXCR3 or neither. Integrated HIV DNA was quantified in subsets isolated from blood (A) or rectal 
tissue (C). The relative contribution of each subset to the total integrated HIV DNA reservoir was calculated based on the frequency of the specific T-cell subset and the level 
of integrated HIV DNA in either blood (B) or rectal tissue (D, E). For rectal tissue, relative contribution was measured for the 2 sorted CCR6+CXCR3+ and non-CCR6+CXCR3+ 
subsets (D) and extrapolated for the 4 CCR6/CXCR3 subsets using the frequencies of the cells together with integrated HIV DNA in the non-CCR6+CXCR3+ T-cell pool to cal-
culate relative contribution for the individual CCR6+CXCR3−, CCR6−CXCR3+, and CCR6−CXCR3− subsets (E). Data are displayed as median and interquartile range, and each 
symbol represents an individual donor. P values <.05 (Wilcoxon matched-pairs signed rank test) are shown. Abbreviations: Non-R6+X3+, pooled cell fraction containing R6+X3−, 
R6−X3+ and R6−X3− subsets together; R6, CCR6; X3, CXCR3. *P < .05, **P < .01, ***P < .005.
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nonhuman primates [41]. Although our study found more 
HIV CA-US RNA in rectal and LN tissue than in blood, the 
ratio of HIV US RNA to integrated DNA was similar across 
all 3 anatomic sites (Table 1 and Supplementary Table 1). 
This suggests there were no site-specific effects on basal 
levels of HIV RNA transcription. However, given that pol-
ymerase chain reaction–based assays can only assess the 
average value across all cells in the tissue, basal HIV tran-
scription may differ within tissue, as reported for B-cell fol-
licles in LN tissue [9, 42].

We observed both identical and distinct HIV env sequences 
in blood, LN or rectal tissue within an individual. There was 
no evidence for HIV compartmentalization between blood and 
tissue, in agreement with findings of some studies [7, 43] but 
not others [44, 45]. Our findings may reflect the limited number 
of sequences or participants analyzed and/or inclusion of par-
ticipants treated during chronic infection, where compartmen-
talization of proviral sequences in gut and blood might be less 
pronounced than described for participants treated during in-
fection [46]. However, because HIV sequences from tissue were 
not always represented in blood, and CD4+ T cells from rectal 
tissue compared to blood have a greater block to HIV transcrip-
tion initiation [47], ongoing work is still required to better de-
fine, quantify, and target infected cells that persist during ART 
in tissue sites.

The high frequency of CXCR3+CCR6+ T cells (Figure 2) and 
CCL20 mRNA expression in rectal tissue (Figure 5) is consistent 
with CCR6+ T cells homing to gastrointestinal tissue [15]. 
CXCR3+ T-cell subsets also coexpressed more CCR5 than their 
CXCR3− counterparts in all anatomic sites (Figure 2C), possibly 
reflecting the role of CXCR3 and CCR5 as inflammatory CKRs 
for migration to inflammatory sites [13, 16]. In rectal tissue, 
the high proportion of CCR6+CXCR3+ T cells coexpressing 
the CCR5 HIV coreceptor (Figure 2B and 2C) may allow pref-
erential productive infection of this subset. However, and un-
expectedly, CCR6+CXCR3+ memory T cells from rectal tissue 
were not substantially enriched in integrated HIV DNA com-
pared other T-cell subsets combined (Figure 4C). In contrast, 
blood CCR6+CXCR3+, CCR6+CXCR3− and CCR6−CXCR3+ 
T cells were enriched in integrated HIV DNA compared with 
CCR6−CXCR3− cells (Figure 4A) [28]. 

Our findings in relation to HIV in rectal tissue could be ex-
plained by the comparison of CCR6+CXCR3+ cells with a pooled 
fraction still containing substantial levels of CCR6+CXCR3− T 
cells (Supplementary Figure 4B), which may have a high fre-
quency of infected cells. Supporting this interpretation, we 
found a positive relationship between HIV DNA or RNA with 
CCR6+CXCR3− T-cell frequency in rectal tissue (Table 2), and 
others report that CCR6+ versus CCR6− T cells from the colon 
are enriched in HIV Gag DNA in PLWH receiving ART [29]. 
Alternatively, these findings may be explained by a trafficking 
defect of infected CCR6+CXCR3+ T cells into or out of rectal 
tissue, causing these infected cells to accumulate in blood [48, 
49].

The relationships between CKRs, chemokines, and HIV in 
LN tissue differed from those in rectal tissue. In LN tissue, HIV 
CA-US RNA was positively associated with CXCL13 mRNA 
and inversely associated with CXCR5+ CD4+ T-cell frequency, 
but those relationships were weaker or in the opposite direction 
in rectal tissue (Supplementary Tables 4 and 7). CXCL13 is the 
ligand for CXCR5, and HIV RNA is enriched in CXCR5+PD1hi 
CD4+ T cells in LN tissue [9]. Because CXCR5 is expressed on 
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Figure 5. Rectal tissue (upper panel) is enriched in CCL20 messenger RNA 
(mRNA), and lymph node (LN) tissue (middle panel) is enriched in CCL19, CCL21, 
and other chemokine mRNA. A, Total RNA was extracted from rectal pinch biopsy 
specimens or LN biopsy slices collected from people living with human immunodefi-
ciency virus (HIV) and receiving antiretroviral therapy. Next, 100-ng aliquots of total 
RNA were analyzed for chemokine mRNA or 18S ribosomal RNA (rRNA) expres-
sion using quantitative reverse-transcription polymerase chain reaction. Chemokine 
RNA levels were normalized to cellular 18S rRNA, and relative chemokine mRNA 
was calculated as the fold difference in samples relative to a calibrator (untreated 
peripheral blood mononuclear cells) from a healthy donor for most chemokines or 
liver tissue for CCL21 mRNA). Data are displayed as median and interquartile range, 
and each dot represents an individual donor. B, For participants who donated both 
rectal and LN samples (n = 6), the geometric mean fold difference in chemokine 
mRNA for rectal tissue compared with LN tissue is shown for each chemokine (ver-
tical labeling). Chemokine receptors (CKRs) that bind chemokines encoded by the 
chemokine mRNA are also shown. Relative chemokine mRNA levels in rectal and 
LN tissue were log-transformed and compared using a paired t test (Supplementary 
Table 6). *P  <  .01; †P  <  .001. Abbreviations: R5, CCR5; R6, CCR6; R7, CCR7: X3, 
CXCR3; X4, CXCR4; X5, CXCR5.
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CD4+ and CD8+ T cells, it is possible that elevated CXCL13 re-
cruits more CXCR5+ CD8+ T cells into LN tissue, enhancing 
the depletion of HIV RNA expressing cells like CXCR5+ CD4+ 
T cells, resulting in an inverse association of CA-US HIV RNA 
with the frequency of CXCR5+ CD4+ T cells.

In LN tissue, integrated HIV DNA and CA-US RNA 
were inversely associated with CCL19 and CCL21 mRNA 
(Supplementary Table 7). We were unfortunately not able to 
measure CCR7-expressing cells. However, because CCL19 and 
CCL21 recruit CCR7+ T cells to LNs [14], enhanced recruit-
ment of CCR7+ CD8+ T cells by these chemokines might con-
tribute to the death of cells expressing HIV RNA. Alternatively, 
CCL19/CCL21-enhanced recruitment of uninfected CD4+ T 
cells to LNs might also dilute the pool of HIV-infected cells, 
causing an inverse association of CCL19 and CCL21 with HIV 
DNA and RNA.

Although the key contribution of CCR6+ T cells to HIV per-
sistence in rectal tissue is consistent with a previous study [29], 
neither study examined whether rectal CCR6/CXCR3 subsets 
preferentially harbor intact or inducible, replication-competent 
HIV. This should be investigated in future. Other limitations of 
our study include the measurement of chemokine mRNA in 
tissue rather than protein expression. Any changes in translation 
or posttranslational modifications of chemokine proteins could 
yield different findings to mRNA expression. Staining tissue for 
chemokine protein and HIV DNA/RNA in future studies could 
provide insights into relationships between chemokines and 
infected cells. Moreover, given that this was a cross-sectional 
study, causation could not be determined. Of note, because we 
and others find HIV enriched in T cells that express PD1 and 
other immune checkpoint markers during ART [9, 34, 50], as-
sessing these immune checkpoint markers in relation to CKR 
expression is also of further interest.

In conclusion, we show that HIV-infected CCR6+ CD4+ T 
cells account for nearly all HIV-infected cells in rectal tissue 
PLWH but not in blood. Therefore, interventions targeting 
CCR6+ T cells may be particularly effective at reducing HIV 
persistence during ART in gastrointestinal tissue and should be 
considered. The different relationships between HIV and CKR 
or chemokines in LN and rectal tissue indicate that different 
strategies may be needed to eliminate HIV persistence at dif-
ferent tissue sites. Furthermore, biomarkers for HIV persistence 
in blood may not provide an accurate assessment of the total 
HIV-infected cell pool in tissue.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are 
not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corre-
sponding author.
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