
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Audio localization in the Automatic Cameraman

Permalink
https://escholarship.org/uc/item/15g3v08f

Author
Ettinger, Evan Ira

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15g3v08f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Audio Localization in the Automatic Cameraman

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

by

Evan Ira Ettinger

Committee in charge:

Professor Yoav Freund, Chair
Professor Serge Belongie
Professor Thomas Bewley
Professor Sanjoy Dasgupta
Professor Bhaskar Rao
Professor Lawrence Saul

2010

Copyright

Evan Ira Ettinger, 2010

All rights reserved.

The dissertation of Evan Ira Ettinger is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To my wife, Sandie, whose love and support I could not live without; to my

parents, Cary and Karen, who taught me to always be curious and never be afraid to

reach for my dreams; and to my Aunt Lois, whose creative spark continues to inspire

me.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 The Automatic Cameraman (TAC): Hardware 3
1.2 The Automatic Cameraman (TAC): User Interface 5
1.3 The Automatic Cameraman (TAC): Software Design 8
1.4 Audio Localization in TAC 11
1.5 Thesis Organization . 15

Chapter 2 Tree-based Manifold Models . 17
2.1 Random Projection Trees 18
2.2 Principal Direction Trees 20
2.3 Case Example: Rotating Teapot 22
2.4 Case Example: TDOA Manifold 26

Chapter 3 Audio Localization . 30
3.1 Time-delay Estimation . 31
3.2 Related Work . 38
3.3 Coordinate-Free Localization 41
3.4 Experiment: Grid Dataset 43
3.5 Experiment: Lifelong Learning 50

Chapter 4 Tracking . 52
4.1 Particle Filters . 54
4.2 Related Work . 57
4.3 Normal Hedge Based Particle Filter 59
4.4 Experiment: Moving Speaker 65
4.5 Delay-and-Sum Beamforming 73

v

Chapter 5 Hardware Solutions . 76
5.1 FPGAs and MEMS . 78
5.2 Hardware and Software Design 79
5.3 Experiment: Comparison with Analog Microphones 81

Chapter 6 The Future of TAC . 84

Bibliography . 88

vi

LIST OF FIGURES

Figure 1.1: Frontal view of TAC display unit. PTZ camera and four of the seven
total microphone are visible. 3

Figure 1.2: Top: sketch of the 4th floor lobby and placement of sensors. Bot-
tom: Birds eye view of room layout with labeled dimensions. . . . 4

Figure 1.3: The protocol for getting TAC’s attention and starting/stopping record-
ings. 6

Figure 1.4: A flow diagram of the software components involved with TAC. . . 9
Figure 1.5: The delay associated with microphones m1 and m2 caused by the

spherical waves of propagation of the sound source s. 12

Figure 2.1: A toy dataset whose distribution is shown in pink with depth 2 parti-
tioning trees (left: kd-tree, middle: RP-Tree, right: PD-Tree). Blue
vectors indicate principal directions on the PD-Tree. 21

Figure 2.2: Visualization of the teapot dataset with various rotations displayed. 23
Figure 2.3: (Top-Left): Embedding of entire dataset on top principal direction.

(Top-Right): Percent variance explained versus depth of PD-Tree.
(Bottom): Embedding learned from a constructed PD-Tree. 25

Figure 2.4: A photograph of the seven element planar array (microphones cir-
cled in blue). Two crosses are shown to illustrate the two cross-
shaped datasets collected. 27

Figure 2.5: Top-Left: Cross datasets both inside (red) the convex hull of micro-
phones and outside (cyan). Top-Right: Embedding of entire dataset
on top 2 principal directions; leaf node membership is color coded.
Bottom: Embedding on top 3 principal directions. 29

Figure 3.1: Left: A 2-dimensional world with 4 microphones. Time-delay ∆12
is shown between microphones m1 and m2. The sound source (red
star) is shown with 2 degrees of freedom for movement (red ar-
rows). Right: Depiction of the 2-dimensional manifold created by
the sound source’s movement. The corresponding local movement
from the figure on the left is shown as a locally linear region of the
manifold. 31

Figure 3.2: The sound manifold. f is a mapping from sound source location x
to a set of TDOA measurements ~∆. g is a mapping from x to a pan
and tilt directive for the PTZ camera. 32

Figure 3.3: A 2-d world where 3 microphones are necessary to uniquely deter-
mine a sound source’s location via multilateration. If given ∆12, ∆23
and knowledge of the microphone positions, then one can solve for
the intersection of the corresponding hyperbolas for s. 33

vii

Figure 3.4: 500ms real audio sample collected from TAC with corresponding
cross-correlation and PHAT correlation results. Pair combinations
with microphone 1 are considered: ∆1 j for j = 2,3,4. 36

Figure 3.5: Continuation of Figure 3.4. Pair combinations with microphone 1
are considered: ∆1 j for j = 5,6,7. 37

Figure 3.6: Left: Percentage of variance explained by top X eigenvector. The
top 3 eigenvectors dominate and the rest are noise. Right: Calibra-
tion device used to collect training and grid dataset. 44

Figure 3.7: (a) Embedding of the TDOAs collected from the grid onto top 2
eigenvectors. The entire embedding is shown small in the upper
right corner and a zoomed in portion of the same embedding is
shown larger. (b) To the right is a diagram of the equispaced grid
over which data was collected. (c) Below are 3 selected lines and
the LS predicted value for each TDOA collected. Also depicted in
red is an exponential moving average of the predictions (α = 0.10),
and in green where the camera was pointing to center the LED. . . 46

Figure 3.8: RMSE for pan and tilt of a PDTree trained each week with new data
acquired by TAC. 50

Figure 4.1: Depiction of a dead particle resampled and projected back onto the
manifold. 64

Figure 4.2: Performance of NH and PF with and without using a global PCA
projection for denoising. 67

Figure 4.3: RMSE over 25 independent runs of each of the trackers. 68
Figure 4.4: Variance over 25 independent runs of each of the trackers. 69
Figure 4.5: Using various depths in the PD-tree as part of the projection step. . 70
Figure 4.6: For NH-rand, the PD-tree depths at time t that the m particles have

been sampled from last. 71
Figure 4.7: Sweeping path for NH-rand on top 2 principal directions of root PCA. 72
Figure 4.8: Overlay of a single channel (blue) with the output of the beam-

former (red) on a signal of a speaker counting. 74

Figure 5.1: FPGA and MEMS microphones. FPGA is attached via PCIe slot of
a Linux workstation with 6 MEMS microphones (left). Back (upper
right) and front (lower right) view of a single MEMS microphone.
The pressure sensitive hole for the microphone is labeled with a
yellow arrow. 77

Figure 5.2: Design layout of the FPGA and MEMS microphone audio capture
setup. 79

Figure 5.3: Visual comparison of same counting sequence on TAC analog mi-
crophone (top) and MEMS microphone (bottom). 81

Figure 5.4: Coherence of two different standard analog microphones and our
MEMS in a noiseless chamber. 82

viii

LIST OF TABLES

Table 3.1: RMSE (in degrees) of different regression models for each grid line. 49

Table 4.1: SNR for DEAS beamformer and a single channel from TAC recordings. 74

ix

ACKNOWLEDGEMENTS

First and foremost, many thanks to my advisor, Yoav Freund, for lending me his

guidance and sage advice throughout graduate school. His keen intuition for solving

difficult problems never ceases to amaze me. Also, thanks to my committee, Serge

Belongie, Thomas Bewley, Sanjoy Dasgupta, Bhaskar Rao and Lawrence Saul. I greatly

appreciate all their time and helpful suggestions during their service on my dissertation

committee.

I am also in debt to my fellow students Sunsern Cheamanunkul, Brian McFee,

Samory Kpotufe, Daniel Hsu, Nakul Verma, Mayank Kabra, Matt Jacobsen and Shankar

Shivappa. Their friendship and help will never be forgotten. I’d also like to thank my

family and friends for their support and love throughout the years.

Chapter 3 is based on two works. The first is joint work with Yoav Freund enti-

tled “Coordinate-Free Calibration of an Acoustically Driven Camera Pointing System”

appearing in the proceedings of the International Conference on Distributed Smart Cam-

eras in 2008. The dissertation author was the primary investigator and author of this

work. The second is joint work with Sunsern Cheamanunkul, Matt Jacobsen, Patrick

Lai and Yoav Freund titled “Detecting, Tracking and Interacting with People in a Public

Space” appearing in the 11th International Conference on Multimodal Interfaces and 6th

Workshop on Machine Learning for Multimodal Interaction in 2009. The dissertation

author along with Sunsern Cheamanunkul were the primary investigators and authors of

this paper.

Chapter 4 is based on unpublished work that is currently in submission. It is

joint work with Yoav Freund. The dissertation author is the primary investigator and

author of this work as well.

x

VITA

2004 B. S. in Mathematics cum laude; second major in Computer Sci-
ence, Duke University

2007 M.S. in Computer Science and Engineering, University of Cali-
fornia, San Diego

2010 Ph. D. in Computer Science and Engineering, University of Cal-
ifornia, San Diego

PUBLICATIONS

Evan Ettinger and Yoav Freund, “Particle Filtering on the Audio Localization Mani-
fold”, In submission, 2010.

Sunsern Cheamanunkul, Evan Ettinger, Matt Jacobsen, Patrick Lai and Yoav Freund,
“Detecting, Tracking and Interacting with People in a Public Space”, ICMI-MLMI,
2009.

Evan Ettinger and Yoav Freund, “Coordinate-Free Calibration of an Acoustically Driven
Camera Pointing System”, ICDSC, 2008. Best Poster Award.

Evan Ettinger, Brian McFee and Yoav Freund, “Automatic Cameraman”, NIPS Demo,
2007.

xi

ABSTRACT OF THE DISSERTATION

Audio Localization in the Automatic Cameraman

by

Evan Ira Ettinger

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2010

Professor Yoav Freund, Chair

This dissertation studies the audio localization component of a touchless interac-

tive display located in the CSE building at UC San Diego. The display has been named

The Automatic Cameraman (TAC) and consists of four large television displays, a PTZ

camera, and a microphone array. In this work, we propose a simple solution to the prob-

lem of accurately pointing the PTZ camera at speaking humans who are interacting with

TAC.

The focus of this dissertation will be on a novel audio localization and tracking

algorithm based on what we call the coordinate-free approach. Previous approaches

to localization assume a precise known geometry for the microphone array. This is

expressed through a coordinate system for the room with an exact position for each

microphone element. As a result, arrays are typically built so that microphone positions

can be known easily e.g. as linear or planar with fixed spacing. The coordinate-free

method we propose requires no such knowledge of such a coordinate system allowing

for an ad-hoc placement of microphones.

Our coordinate-free localization algorithm employs a statistical approach by

learning a mapping from observed time-delays between microphone pairs directly to

xii

a pan and tilt directive for the PTZ-camera. In addition, we explicitly utilize the fact that

the training set of time-delay vectors lie on a low-dimensional structure, namely a three-

dimensional structure governed by the sound source’s true spatial location. We explore

various regressor models with special attention to those that are known to exploit this

intrinsic low dimensionality.

We follow this with a study of a particle filtering based tracker of the time-

delays between microphones. Our tracker employs a novel approach to the particle

filtering problem based on online learning. It introduces a new, practically useful, parti-

cle resampling scheme. It is also more robust to model misspecification than traditional

particle filters.

In the final part of the dissertation, we examine a MEMS digital microphone

based array that we recently implemented on an FPGA. We explore how this digital

array will alleviate many of the technical deficiencies of the current analog array in

TAC.

xiii

Chapter 1

Introduction

Touchless interactive displays (TIDs) have the potential to revolutionize video-

conferencing, media advertising, video-game playing, consumer electronics and many

other industries. Much of the interest surrounding TIDs is drawn from the promise of

interaction with the device without any additional special equipment. No special gloves,

remotes, mice, keyboards, touchscreens or any other input devices are required. The

user is able to interact in an intuitive and natural manner through gestures and speech

alone.

Consider the quintessential example of the television. One of the greatest and

simplest inventions associated with modern televisions is one we often take for granted

today – the remote control. The remote allows us simple access to much of the tele-

vision’s functionality such as channel changing or adjusting the volume and with the

convenience of distance away from the screen. The remote transformed the television

landscape. Viewers no longer had to watch a particular program because they didn’t

want to get up and change the channel. It even gave birth to a new phrase in common

vernacular: “channel surfing.” As a result of the shortened attention span of viewers,

broadcasters changed the way they presented their programs. This reaction included

more product integration into programs since commercials were watched less, the seam-

less transition between two adjacent programs so as to not lose the attention of viewers,

and many other tricks to keep viewers on the channel. The remote control had a huge

impact on the way we watch television and the way content providers broadcasted pro-

gramming.

1

2

Nevertheless, the remote control is not without its critics. The most often heard

complaints are that people have too many remotes, doing intricate operations from the

remote such as adjusting the picture can be complicated, and that the remote itself is of-

ten hard to find when one needs it. A touchless interactive television has the promise of

keeping the same convenience of the remote control, but without the need for the phys-

ical device. Imagine an interactive TV that could be controlled by gestures recognized

by a camera integrated into the television. A flick of the hand up or down may indicate a

channel change. More complicated operations may require a heads up display be shown

on the television which the user can navigate via hand gestures.

Although this may not silence all the critics of the traditional remote control, it

would without a doubt allow for a more personal interaction and a similar TV revolution

like that of the remote. The hope is that novel user interface designs could be made to

be more efficient at achieving the end-user’s control intentions. This is not a far-fetched

hope. Novel user interfaces based on more natural gestures are starting to appear in the

marketplace. For example, the success of touchscreen devices such as the iPhone, iPad

and its derivatives are indicators that a system based on natural gestures can become very

popular. It is thought that a similar breakthrough is waiting to happen through gestures

at a distance. Development of gesture based TVs has already begun and products such as

Microsoft’s Project Natal1, a controller-free gaming system, show that industrial interest

is peaking.

This thesis surrounds the development of a TID at UC San Diego called The

Automatic Cameraman (TAC). TAC is a passive interactive device that senses when a

user is present in front of it and then offers a device-free interactive experience to the

user. In particular, the user has the option to start and stop a video recording of themself

through hand gestures alone. The system has been fully operational since December of

2008 and has collected over 1500 videos. This equates to over 25 hours of video footage

wherein people are actively interacting with TAC.

Specifically, this dissertation surrounds the techniques we use in TAC to localize

audio sources with a microphone array. We will discuss the general methodology behind

audio localization at the end of this chapter, but first to put us in the proper context we

1More information can be found at http://www.xbox.com/en-us/kinect

http://www.xbox.com/en-us/kinect

3

Figure 1.1: Frontal view of TAC display unit. PTZ camera and four of the seven total

microphone are visible.

describe TAC and its history in more detail.

1.1 The Automatic Cameraman (TAC): Hardware

TAC is a touchless interactive display located on the 4th floor lobby of the Com-

puter Science and Engineering building (EBU-3b) at UC San Diego. The display con-

sists of four 52” plasma TVs placed in a 2x2 grid on a wall. The unit is prominently

displayed to public traffic coming through the lobby either by elevator or via the main

stairwell. A frontal view of TAC can be seen in Figure 1.1. There are two main sensing

modalities that TAC uses: a pan-tilt-zoom (PTZ) video camera and an array of seven

microphones. The PTZ camera is mounted near the top-middle of the display and it can

be controlled via a local network connection. The microphone array has microphone

elements at each corner of the display and the remaining three placed in a triangular

pattern on the ceiling. This arrangement of sensors is shown in Figure 1.2.

Figure 1.2 also depicts the dimensions of the lobby. The lobby is rather large

(approx. 13m x 10m x 6m). There are a pair of elevators directly across from the

4

Figure 1.2: Top: sketch of the 4th floor lobby and placement of sensors. Bottom: Birds

eye view of room layout with labeled dimensions.

display and a large floor-to-ceiling window to the left of the display that changes the

lighting in the room significantly depending on the position of the sun and on weather

conditions.

The two sensing modalities utilized by TAC are video via the PTZ camera and

audio from the microphone array. Nearly all signal processing is done on a 2.66 GHz

quad core G4 Mac located on the opposite side of the wall from the displays. In addition,

5

a portion of the signal processing is performed on an FPGA and we discuss this in further

detail in Chapter 5.

The microphone array is used to discover the location and then track any audio

sources present in the lobby. In addition, it is also used to perform audio enhancement to

the source by combining all microphone channels into one that is steered to the source.

We use a beamforming technique that focuses on the sound source of interest and atten-

uates any noises coming from other locations. We discuss this further in Chapter 4.

The video stream from the PTZ camera is also processed by the Mac desktop

computer. TAC runs a Viola and Jones style face detector [VJ01] trained via AdaBoost

on examples that have been collected by TAC since it was deployed in late 2008. After

a face has been detected, we then utilize a light-weight face tracking framework that

consumes much fewer computationally resources than running the original detector on

subsequent available frames. In addition, a simple color-based skin detector is imple-

mented that outputs whether a given pixel is likely to be part of a human skin region.

The audio localization, face detection and skin detection are the only way in

which TAC can sense its surroundings. It utilizes all of this information in concert in

order to make a fully interactive experience for the end-user. In the next section, we

describe step-by-step how a typical user-interaction with TAC plays out.

1.2 The Automatic Cameraman (TAC): User Interface

Often users begin to anthropormorphize TAC after interacting with it for a short

while. Users refer to TAC “looking” at places as if it were alive and the PTZ camera

were its single eye. We will refer to it in a similar manner in the description of the

user interaction protocol below, that is we will use terms such as “looking” to mean the

camera is pointing at the user, or “turning” to mean the camera moves to point at the

user, etc.

TAC gives users the ability to make their own video recordings of themselves.

The protocol for recording a movie with TAC is depicted in Figure 1.3. The protocol is

as follows:

(a) Resting: When a user first approaches TAC, it is in its resting state looking down at

6

(a) TAC resting

(b) Locate speaker (c) Put hand on button (d) Take hand off

(e) Onto button again (f) Recording starts (g) Stop recording

Figure 1.3: The protocol for getting TAC’s attention and starting/stopping recordings.

the floor away from the people that frequently pass through the lobby.

(b) Locating the user: To attract TAC’s attention, the user must make a sound like

“Hey look at me”. The sound must be significantly loud and sustained for a brief

period of time. That is, it can neither be too quiet nor too brief like that of a single

clap. The sound is then located via the microphone array and the PTZ camera is

directed to point at the calculated location. Then, the face detector finds the user’s

frontal facing face and centers it in the field of view.

(c)-(f) Starting a recording: An on-screen button is presented to the user in the form

7

of a small red box. To start a recording the user is first prompted to place their

hand over the box for a few seconds. The system then asks them to take their hand

out and then back inside the box to ensure that they would like to start a recording.

This button protocol reduces the number of videos that start up without any user-

intent. At this point a recording of the user begins via Quicktime.

(g) Stopping the recording: When the recording starts, a stop button is immediately

displayed to the user on the opposite side of the screen from where the start button

was. The recording stops when either the user places their hand over this button

or when a face has not been detected for 15 seconds (i.e. the user has left the field

of view without stopping the recording).

In addition, TAC can also recognize who the user is if they have been registered

as a popular user of TAC. In Figure 1.3 TAC has recognized Sunsern Cheamanunkul,

one of the primary developers associated with TAC.

The virtual button is activated by placing a skin region over it, typically a hand.

If the number of detected skin pixels inside the button is above a threshold consistently

across a duration of a few seconds, then the button is considered pressed. This button

is greatly inspired by the work of William Freeman and collaborators [FR95, FW95,

FBK+99] who show that simple computer vision algorithms can be very effective for

HCI applications if the feedback from the system is fast. If the reaction by the system

is fast to user input, typically under 100ms, the user’s hand-eye coordination is engaged

allowing for the interaction to feel natural [MMRC92, Mil68].

This protocol for recording videos has proven very useful for collecting interest-

ing data to learn about the users of TAC. Each video recording is performed at 640x480

and then compressed using H.264 compression technology. For the video’s audio track

we use the beamformed audio track that is combined from all 7 microphone channels.

As of the writing of this thesis, since December 2008, when TAC first became live, over

1500 videos have been collected. This equates to over 25 hours of footage of people

interacting with TAC2. Later on we also started collecting all 7 channels of microphone

audio throughout the duration of the user’s recording. Several hours of 7 channel audio

has also been collected in WAV format.
2Videos can be browsed at http://seed.ucsd.edu/~cameraman/video_recordings

http://seed.ucsd.edu/~cameraman/video_recordings

8

These recordings are a fruitful source of data on which to improve TAC. In fact,

the philosophy behind TAC’s development has been proposed as a feedback loop. By

having a repository of user’s interacting with TAC we can learn and develop interesting

new ways for TAC to sense it’s users and environment. In doing so, richer and more

intricate applications can be developed allowing for even longer and more interesting

user interactions to occur. In Chapter 3 we show how leveraging this data over time

can improve TAC’s ability to localize accurately, an indication that such an approach to

improving TAC has great potential.

1.3 The Automatic Cameraman (TAC): Software Design

In this section we discuss the software design of TAC summarized in Figure 1.4.

The input signals into TAC are both video and audio streams. The video is captured by a

Sony SNC-RZ30N network PTZ camera at 640x480 resolution at 30 fps, and then digi-

tized by a capture card in the main computer. The audio input consists of 7 CAD CM100

condenser microphones connected by 15’ XLR cables to a MOTU 896HD digitizer. The

digitizer samples each channel at 24-bit precision and a sampling rate of 16 kHz, which

is high enough for the full range of human voice to be well below the Nyquist frequency.

The audio digitizer is connected to the main computer via a firewire connection.

The software design of TAC is derived from the model-view-controller paradigm.

User inputs come in the form of either talking or making gestures and appearances in

the field of view of the camera. These inputs must then be translated via the model

into appropriate intentions. This translation is two-fold. First, signal processing mod-

ules attempt to extract relevant information from these modalities such as audio or face

locations. Second, the result of these signal processors are sent to a central unit that

maintains both a combined model of recent activity and translates this model into user-

intentions in the form of control commands to other external entities. This centralized

unit could easily be called the brains of TAC and is labeled controller in Figure 1.4. It is

responsible for combining the information from multiple signal processors and reacting

with appropriate control commands.

The three events received as input to the controller are audio location beliefs

9

7 Mic
Channels

PTZ
Camera

Max/MSP/Jitter

Controller

Quicktime
Recorder

Speech
Recognizer

Audio
Localizer

Beamformer

Face Detector
& Tracker

Skin Detector Box
Manager

16 kHz
24-bit

RGB
Stream

Channels &
Location

Audio Location

Face Location

Skin Scores

Button Pressed
Display
Button

Beamformed
Audio

Start/Stop

Pan/Tilt

Figure 1.4: A flow diagram of the software components involved with TAC.

from the audio localizer, face location beliefs from the face detector, and button press

events from the box manager. These units along with the beamformer and controller

are implemented as functional units in the Max 5 graphical programming environment3.

Max allows for quick and simple development of signal processing applications by a

simple graphical programming model. Programming at a high level in Max involves

connecting functional units called patches to each other via edges that carry signal data.

For example, the input to the audio localizer would be the audio signals and the output

a signal indicating location beliefs in the form of pan and tilt directives for the cam-

era. Although these functional units can be connected simply through this graphical

programming language, the underlying functional logic of each is implemented using

traditional programming languages, namely C or Java.

The precision and accuracy of the signal processing components are essential

for the controller to even have a chance of finding and centering the user’s face in the

field of view. The audio localizer utilizes the PortAudio C library4 to gain access to the

7 digitized audio channels. It maintains a window of the latest 500ms of audio for each

channel updated every 25ms. On each update of the window it first decides whether

there was a significant noise made in the room that is above a certain energy threshold

3Available at http://www.cycling74.com
4Available at http://www.portaudio.com

http://www.cycling74.com
http://www.portaudio.com

10

in the audio signals. If so, then the localization scheme discussed in Chapters 3 and 4 is

performed producing a pan and tilt directive for the camera. The directive is a belief on

where to point the PTZ camera so as to center the producer of the noise in the field of

view. This directive can be given to the beamformer which creates a single channel of

audio focused on the location of the speaker. The beamformer implements a delay-and-

sum methodology.

The face detector is implemented as a Viola and Jones style face detector [VJ01]

trained on hand-labeled examples of faces collected by TAC over its existence. It uti-

lizes a feature set based on simple edge detectors and scores from the pixel-based skin

detector. The visual processing components are not the focus of this thesis, but further

details of it can be found in [CEJ+09]. The tracking methodology utilizes a particle

filtering scheme that is very similar to what is discussed in Chapter 4. The face detector

outputs face location beliefs in the form of a pixel-position (x,y) of the center of the

face and the size of the detection box.

The box manager handles the display of the on-screen button and takes as input

the relevant skin-pixel scores from the skin detector. If the average score inside the box

is above a threshold for a duration of 3 seconds, then the button is considered pressed

and it relays this information to the controller.

Each of the outputs of the signal processing units are a noisy stream of events

going into the controller. For example, the face detector stream is noisy since it does

sometimes detect non-faces and give an incorrect location belief. The same holds for the

audio localizer. The controller must manage and filter these streams to extract whether

the user is in fact present and in the center of the field of view. If the controller de-

termines that the user is not properly centered, then the controller must take action to

correct this.

The strategy employed by the controller is a simple policy combined with me-

dian filtering over the localization events from the recent past. To formalize what we

mean by recent past, let E be the set of events communicated to the controller in the past

N seconds, where N is a parameter that needs to be tuned. To determine whether the

camera moves to look at a new audio source, there must be at least k audio events in E

clustered near the median of E. If found, the camera is directed to center on this median

11

location. A similar set of simple control logic is used for fine adjustments to center the

user’s face in the field of view.

The camera begins looking for a face after a sound has been heard and the camera

directed to point to the calculated location. A similar median filter of E is performed be-

fore directing the camera to make slight adjustments for centering the face and zooming

so that it is of the appropriate size. To avoid constant small adjustments, PTZ changes to

the camera are only made if the position or size is not within an acceptable range where

the face is near centered.

The controller constantly monitors E determining whether a new sound source

should be looked at, and whether the user’s face location or size calls for PTZ correc-

tions. It communicates these PTZ directives via a local network using the Sony de-

signed VISCA camera control protocol. The controller is also responsible for starting

and stopping video recordings with Quicktime and then sending the recorded videos to a

webserver for external viewing. Communication with Quicktime is performed through

Apple’s ActionScript, and other scripts handle the delivery of the recordings to the web-

server. The beamformed audio is sent to Quicktime via the inter-application audio rout-

ing utility Soundflower5.

In addition, the controller records an annotated log of audio and face detection

events that happened throughout the user’s video recording. The annotations contain

such things as face detection score values and more detailed audio location beliefs. Not

only is this useful for debugging purposes, but also serves as a means to collect other

interesting quantitative data for improving both the face detector and audio localizer. We

discuss these logs in further detail later on in the thesis since they are used for collecting

data on which statistical models are trained on.

1.4 Audio Localization in TAC

This thesis surrounds the design and implementation of TAC, a touchless inter-

active display. In particular, the focus of this thesis is on the methodology behind the

audio localization technology in TAC. In this section we introduce the fundamentals of

5Available at http://cycling74.com/products/soundflower

http://cycling74.com/products/soundflower

12

Figure 1.5: The delay associated with microphones m1 and m2 caused by the spherical

waves of propagation of the sound source s.

audio localization from a high-level and also discuss the novel approach we design for

it.

First we must discuss the physical principles governing audio localization, or

what is otherwise known as passive sonar. This technique is passive since the localiza-

tion technology is only listening for detectable noises to then locate. This is opposed to

active sonar which searches for objects by emitting an ultrasonic sound in a particular

direction and then measuring echoes.

To start, we introduce the underlying principles behind passive sonar. Let’s as-

sume we have access to a pair of spatially separated microphones. Imagine a brief point

sound like the pop of a balloon or a quick clap of the hands originating from a fixed

location in space. A good first order approximation for the movement of sound in air

is a spherical propagation centered at the sound source. The propagating waves expand

out with time at the speed of sound. This is depicted for a 2-d model of the world in Fig-

ure 1.5. The result is a delay in arrival of the instantaneous sound at each microphone.

This delay is known as the time delay of arrival or TDOA for short.

The task of audio localization is to take several microphones, first estimate the

TDOA between all pairs of microphones, then transform these estimates into a location

belief for the sound source. The problem at hand is similar, but more difficult than that of

trilateration. In trilateration one first measures the distances to the object of interest from

several beacons whose locations are known a priori. By finding the point of intersection

between the resulting spheres centered at each beacon one can calculate the location of

the object.

13

The task of audio localization can be posed in a similar fashion except only

relative differences of distances (or times of arrival) are known between pairs of beacons.

This task is called multilateration or hyperbolic positioning. The latter name results from

the fact that a fixed TDOA between a pair of beacons with known positions causes the

positions for the source to lie on a hyperboloid of one sheet, instead of on the surface

of a sphere like in trilateration. Similarly, when multiple TDOAs are known for many

beacons these hyperboloids of one sheet can be intersected to calculate the feasible locus

for the source.

Multilateration has proven useful for locating an object that emits a source to

several beacons, such as an aircraft emitting a distress signal. It can also be used for an

object to determine its own location if the beacons are synchronized to emit a signal at

the same time towards the receiving object. This latter application of multilateration is

useful for navigation.

One difficulty in this approach to multilateration is that often the estimates for

the TDOA are noisy, especially in the case of human speech. When speech is examined

at time scales of milliseconds, the signal is often very periodic with a similar repeating

pattern making TDOAs difficult to estimate accurately. This is especially true for voiced

speech elements more so than unvoiced since the former is formed by the vibrations

of the vocal cords. Given that some of the TDOA measurements may be noisy, it is

often the case that the intersection of resulting hyperboloids is empty. Instead, a non-

linear optimization problem is often solved, for example using a least squares technique,

to find the point in space closest to all hyperboloids. In addition, a tandem tracking

methodology over measurements across time proves useful for stability, for example a

simple averaging or a Kalman filter.

Another difficulty arises from the need to know position estimates for the bea-

cons (microphones). For TAC the lobby in which people are to be localized is quite

large. People may be far from the display and we still want the PTZ camera to be able

to accurately point at them. Small errors in the position of each beacon can become

amplified when calculating the source’s location. This is especially true with increasing

distance of the source from the beacons. For example, consider a pair of microphones

and a far away object. A good first order approximation of what the TDOA tells us is

14

simply the bearing of the object relative to the line between the microphones. With er-

rors in the microphone positions this bearing becomes inaccurate. Subsequently, errors

on the orders of centimeters quickly become meters with increasing distance.

To be able to get good coverage in the lobby, we are required to put the micro-

phones relatively far apart – on the orders of several meters apart. This makes accurately

developing a coordinate system in which microphone elements are placed difficult to do

by hand. Moreover, this coordinate system must be aligned with the PTZ camera as well.

Since we are only concerned with pointing the PTZ-camera to the speaker, knowing an

absolute position for the emitting sound source is not necessary. TAC only requires the

appropriate PTZ commands to center the source in the field of view.

Therefore, we need a novel approach to translate delays into PTZ commands.

The traditional approach would introduce a careful calibration and then position esti-

mation technique. We eliminate this intermediate step and propose a “coordinate-free”

approach. We do not require any knowledge of a coordinate system wherein microphone

locations are known. This allows for a much simpler approach to be taken described in

Chapter 3 based on regression and statistical modeling. An additional important benefit

of this approach is a passive continuous calibration of the audio localization system.

This is performed by collaborating with the face detector and the controller to collect

relevant new data to refine the statistical models over time.

The method we introduce in Chapter 3 does not make any temporal assumptions

in the statistical model for making PTZ predictions. The method presented there solely

focuses on making accurate predictions for the appropriate PTZ given the most recent

frame of audio from each of the microphones. There is no temporal information taken

into account such as predictions from previous frames.

In Chapter 4 we introduce a novel tracking framework that does take temporal

information into account. The tracker makes the implicit assumption that people do not

move too quickly (e.g. jump around the room instantaneously). As a result when we are

confident we have located a person, the estimates for PTZ commands should not change

much in subsequent frames. Our methodology is a variation on a particle filter but

exploits various domain specific knowledge about the localization problem. In addition,

the tracker can still make accurate predictions when individual TDOA estimates fail or

15

are of poor quality. This allows TAC to explicitly leverage the redundancy available to

it from the 7 element microphone array (a minimum of 4 microphones are needed given

perfect TDOA estimates).

No calibration of the array is needed since the localization unit can update itself

through feedback collected from the face detecting unit. Collecting an initial set of data

is recommended for making the unit quickly functional, although not required. Luckily

collecting such an initial calibration set is as simple as talking and interacting with the

system at various points throughout the area of localization interest. The final result

is an audio localization unit that gives accurate estimates of a constant noise source’s

location every 25ms.

1.5 Thesis Organization

Given that TAC has 7 microphone elements in its array, there are
(7

2

)
= 21 unique

pairs of microphones for which a TDOA estimate can be calculated. If we concatenate

these TDOAs together we can represent the ensemble in a vector space in R21. Each

physical location for a sound source corresponds to a 21-D vector in this space. How-

ever, most locations in this vector space do not correspond to a sequence of TDOAs that

are feasibly created by any sound source’s 3-d location. This is because there are only

three degrees of freedom of this system, namely the three spatial dimensions in which a

sound source can vary. Furthermore, small variations in the sound source location leads

to small variations in the resulting 21-D TDOA vector. In fact, in a very real sense that

we formalize in Chapter 2 the surface on which these TDOA vectors may lie on is of

dimension exactly 3.

Generating a statistical model of this surface, called the TDOA manifold, is one

of the central contributions of this thesis. In Chapter 2 we discuss the tree-based models

of the structure of this manifold. This model of the manifold becomes central for both

the audio localization and tracking methodology that is developed in Chapters 3 and 4

respectively.

One of the central problems encountered while building TAC was the poor qual-

ity of audio captured by the analog microphones. This issue stems from the fact that

16

analog signals are highly sensitive to RF/EM interference. For each microphone we

require a 15’ cable to attach the microphone to the audio digitizer. The cables, despite

being shielded, run near multiple sources of electrical interference and are exposed to

many wireless signals present in the UC San Diego Computer Science building. The

result is a poor signal to noise ratio, that is far from ideal. Chapter 5 discusses our

proposed solution to this problem through the use of MEMS digital microphones and

an FPGA. The MEMS microphones are extremely small microphones etched into sili-

con (3mm wide). More importantly for improving interference from other signals the

MEMS have an analog-to-digital converter built in as part of the microphone meaning

the microphone transmits a digital signal, a very robust solution to signal interference.

This makes MEMS microphone optimal for use in laptop computers, cell phones and

other devices where signal interference due to close-by electrical componenets is in-

evitable.

These microphones do not have standard audio connectors as of yet. We resolve

this issue by connecting them to the pins of an FPGA which we program to decode

the digital signals into traditional audio signals. The details surrounding this FPGA

implementation is discussed in Chapter 5. Finally, some directions for what the future

of TAC should be is discussed in Chapter 6. In particular, we discuss the applications

that are currently being worked on by other graduate students and those that are of

interest in the near-future.

Chapter 2

Tree-based Manifold Models

In this chapter we discuss the tree-based models of the feasible TDOA region, a

central component to the statistical models used for audio localization and tracking. The

models presented here are space-partitioning algorithms that build a tree hierarchy with

leaves representing a cell of the partition wherein a simple (e.g. linear) model can be

stored. When these simple models are combined as a whole across all leaves, the result

is a robust method of developing piecewise models of a manifold.

The method is robust in the sense that it can provably adapt to a specific type

of low-dimensional structure present in the data e.g. if the data is sparse or lies near

a low-dimensional structure. The latter is of interest to modeling the TDOA manifold:

despite the fact that in TAC a series of TDOA measurements is of dimension 21, we

still know that there are only three underlying degrees of spatial-freedom in which a

sound source can vary to generate such a series of TDOAs between microphone pairs.

We now describe an efficiently learnable class of tree-based models, random projection

trees, that can exploit any present low dimensional structure in the dataset.

It is worth noting that the random projection tree algorithm is due to Dasgupta

and Freund, and that the next section is describing work that can be found in [DF08].

This is not work performed by the author of this thesis. The fundamental ideas presented

in the next section are central to the work that follows in the remainder of this Chapter

and the next two.

17

18

2.1 Random Projection Trees

Algorithm 1 Recursion for building a kd-tree

Require: A dataset S⊂ RD.

1: Projection: Choose a coordinate axis i ∈ {1, . . . ,D}. Let m = medianx∈S(xi)

2: Assignment: Let SL = {x | x ∈ S and xi ≤ m} and SR = S\SL.

3: Recurse: Recurse on SL and SR.

The random projection tree (RP-Tree), a space partitioning tree first analyzed by

Dasgupta and Freund [DF08], is a randomized algorithm constructed in a very similar

manner to the popular kd-tree. Like its kd-tree relative, the RP-tree can be used for

nearest neighbor retrieval, vector quantization, regression or classification. Recall that a

kd-tree is built by recursive binary splits of the dataset where each split is chosen to be

the median of a single coordinate direction. RP-Trees are also built by recursive binary

splits, but instead of a coordinate direction, the data is first projected onto a random

direction and then split near the median. Pseudocode for both the kd-tree and RP-Tree

are given in Algorithm 1 and Algorithm 2 respectively.

Note that the RP-Tree algorithm presented here is a slightly simplified version

of the one presented in [DF08]. To achieve the theoretical results presented there, first

they add a small amount of randomness to the median value for the splitting point. They

also consider another type of split based on the distance from the mean of the projected

values. Nevertheless, since in this thesis we consider only experimental results with the

RP-Tree and its relatives, this simplified version will suit our needs.

If a low-dimensional structure is present in the dataset, then the RP-tree can dis-

cover and exploit it much quicker than its kd-tree counterpart. We state more precisely

this difference in adaptability in what follows. To start, we describe the notion of in-

trinsic dimensionality of a general set S⊂ RD. Despite the fact that S lies in an ambient

dimension of size D, the set may have a regular structure that allows for it to be of much

lower intrinsic dimensionality d << D. The theoretic work of Dasgupta and Freund has

shown that the RP-tree can adapt to two very specific notions of intrinsic dimension:

Assouad dimension and local covariance dimension.

The Assouad (or doubling) dimension is a popular way of measuring intrinsic

19

Algorithm 2 Recursion for building an RP-Tree

Require: A dataset S⊂ RD.

1: Projection: Choose a random unit direction u ∈ RD. Let m = medianx∈S(x>u)

2: Assignment: Let SL = {x | x ∈ S and x>u≤ m} and SR = S\SL.

3: Recurse: Recurse on SL and SR.

dimensionality that often coincides with our intuition of what any definition ought to

include. More precisely, let Br(x) be a ball of radius r centered at x ∈ RD. A dataset

S has Assouad dimension d if for any x, Br(x)∩S can be covered by 2d balls of radius

r/2. This definition of intrinsic dimension includes d-sparse datasets and a wide class

of d-dimensional Riemannian manifolds [DF08]. For example, consider a straight line

segment in RD: any Br(x) centered on x on the segment can be covered by exactly 2

balls of r/2 giving an Assouad dimension of 1.

However, we are often interested in only samples of a dataset that we believe are

drawn from an underlying distribution that lies near a set S of low intrinsic dimension.

It is difficult to verify that S has low Assouad dimension from just a finite sample. It is

worth stressing that in practice we only believe that data lies “near” S since noise is of-

ten observed. Therefore, a more practical way of measuring the intrinsic dimensionality

of a dataset is via the local covariance dimension, which we now describe. This notion

of dimensionality formalizes the intuition of how well a linear subspace can describe a

dataset at a particular bandwidth. More specifically, a set S has local covariance dimen-

sion (r,ε,d) if all balls of size r have at least (1− ε) fraction of the eigenspectrum of

the covariance matrix contained in the top d eigenvalues. That is,

d

∑
i=1

λi ≥ (1− ε)
D

∑
i=1

λi (2.1)

where λi are the eigenvalues (ordered from largest to smallest) of the covariance matrix

for the ball of size r. This definition coincides with the intuitive notion that at small

scales a Riemannian manifold is well described by a hyperplane. The same intuition has

been used in various manifold learning algorithms [RS00]. At the appropriate scale, the

dataset is locally near-linear. Moreover, this definition is easily empirically verified by

examining the covariance matrix of a sample drawn from the underlying distribution.

20

Regardless of whether Assouad or covariance dimension is used as the specific

notion of dimensionality, the guarantee given in [DF08] is that given a data sample that

has low intrinsic dimensionality the tree will quickly halve the data diameters in cells

as you descend it. More specifically, if the data in a particular cell C has Assouad

dimension d, then with constant probability the RP-Tree will halve the data diameter at

a descendant cell roughly d logd levels below. A similar result can be shown for an RP-

Tree using the local covariance dimension instead. Decreasing the data diameter quickly

is of interest for tasks such as vector quantization, regression and classification. For

example, in vector quantization this means that the depth needed to achieve a particular

quantization error is much less than the depth needed by the kd-tree counterpart – in

other words, many less quantizers are needed if the intrinsic dimension is low. The kd-

tree, in the worst case would need D levels to halve the data diameter. The example that

achieves this worst-case complexity is a dataset in RD that is concentrated exactly on the

coordinate axes. Despite this dataset being sparse, and having small Assouad dimension

(log2D), the kd-tree only splits along coordinate axes causing it to take D splits to halve

the diameter.

An RP-Tree is therefore ideal for modeling the TDOA manifold, the main object

of interest in the statistical models of Chapter 3 and 4. In TAC, each set of TDOAs

between all pairs of microphones lies in R21, however, the underlying process in which

these TDOAs are created has only three degrees of freedom: the spatial degrees in which

a physical sound source can vary its location in. As the TDOA data has low intrinsic

dimension, the RP-Tree will partition that data into regions of small diameter in a small

number of levels. In other words, the leaf cells of the binary partitioning should quickly

converge to contain data which lies close to a 3d affine space.

2.2 Principal Direction Trees

As described in the previous section, RP-Trees are able to efficiently reduce the

diameter of the dataset as the depth of the tree increases. Surprisingly, this result is

achieved despite the RP-Tree being a passive algorithm that can choose the random di-

rections independently from any data sample. That is, the RP-Tree doesn’t learn any

21

Algorithm 3 Recursion for building a PD-Tree

Require: A dataset S⊂ RD.

1: Projection: Let u∈RD be the top principal direction of S and be of unit length. Let

m = medianx∈S(x>u)

2: Assignment: Let SL = {x | x ∈ S and x>u≤ m} and SR = S\SL.

3: Recurse: Recurse on SL and SR.

kd RP PD

Figure 2.1: A toy dataset whose distribution is shown in pink with depth 2 partitioning

trees (left: kd-tree, middle: RP-Tree, right: PD-Tree). Blue vectors indicate principal

directions on the PD-Tree.

properties of the data in order to choose directions on which to project on1. It is never-

theless able to converge to local regions of the dataset quickly.

In practice, we are often able to achieve in even faster reduction of diameter by

examining a simple property of the dataset: its top principal direction of variance. By

calculating the largest direction of variance and splitting the dataset at the median, it

is intuitive that a reduction in diameter will happen at a rate proportional to the intrin-

sic dimension d. Moreover, in situations where the top direction of variance is much

larger than any other orthogonal direction we can achieve very fast reductions. We call

this type of a tree a principal direction tree (PD-Tree), with pseudocode for its con-

struction given in Algorithm 3. Empirical results on various datasets have show that a

PD-Tree converges to local regions at a significantly faster rate than an RP-Tree (and kd-

tree) [VKD09]. The PD-Tree will be used predominantly in the experimental work to

follow, directly inspired from the theoretical results surrounding the RP-Tree discussed

in the previous section. A comparison of a kd-tree, an RP-Tree and a PD-Tree on a toy

dataset are given in Figure 2.1.

1however, note that it does need to learn the medians of the projection values

22

The additional cost in terms of computational efficiency in building a PD-Tree is

not large compared to that of an RP-Tree. For an RP-Tree, to create two children nodes

we must compute the projections of all N D-dimensional datapoints contained in the

parent node at a computational cost of O(ND). The only additional cost of a PD-Tree is

that of computing the top principal component. A naive implementation would simply

do an entire principal components analysis to extract the top direction. However, this

also computes the unneeded lower eigenvectors as well.

In practice, much simpler methods exist to compute the top principal direction

of a dataset. For very large datasets where a PCA is impractical, we use a simple online

update rule first presented in [WZsH03]. Assuming the data has mean zero, initially, the

top direction is set to be equal to the first example, v(0) = x0. The update equation upon

seeing each subsequent example is as follows,

v(n) =
n−1

n
v(n−1)+

1
n

xnx>n
v(n−1)
‖v(n−1)‖

(2.2)

This update is derived from the observation that the top principal direction obeys the

eigenvector equation v = λu = Σu, where Σ is the covariance matrix of the data and

u is its unit-length eigenvector that corresponds to the top eigenvalue λ . This simple

equation can be rewritten in terms of the empirical covariance matrix as,

v =
1
N

N

∑
i=1

xix>i u (2.3)

where N is the total number of points in the data set. Thus, the update equation is an

approximation of the above with u replaced by the current normalized estimate of the

top eigenvector. Each update has complexity O(D) and the top component is typically

converged on quickly making the overall complexity of the resulting PD-Tree algorithm

comparable to that of the RP-Tree.

2.3 Case Example: Rotating Teapot

In this section we consider a toy experiment involving images of a rotating teapot

depicted in Figure 2.2. This dataset consists of 400 images of a teapot as it does a full

rotation of 360 degrees. Each image xi is grayscale and has dimension 101 x 76. We

23

0°

90°

180°

270°

Figure 2.2: Visualization of the teapot dataset with various rotations displayed.

represent each example in pixel space, a rather high dimensional (7676 dimensional)

ambient space where each xi ∈ R7676. However, there is only one degree of freedom

present in this dataset, namely, the amount of rotation of the teapot. Therefore, we

should expect that the intrinsic dimension of the underlying manifold is also one.

However, the underlying manifold is certainly not linear. We use the online

update algorithm discussed in the section above to find the top principal direction of the

entire dataset. We present the projection of the dataset onto this direction in Figure 2.3.

It’s clear that the subspace is not linear, moreover this top principal direction does not

capture much of the variance present in the dataset.

More specifically, consider the fraction of variance unexplained, F , given by the

following

F(v,S) =
∑x∈S ‖x− (x̄+ vv>x)‖

∑x∈S ‖x− x̄‖2 (2.4)

24

where S is the data set, x̄ is the sample mean, and v is a principal direction. It is simple

to show that 0 ≤ F ≤ 1 and its interpretation is when F is small, the projection onto

the subspace spanned by v explains S well. The top principal direction, v, of the entire

teapot dataset has F(v,S) = .84, meaning it is a poor low dimensional representation of

S.

We attempt to uncover a 1-dimensional embedding of this dataset where the

embedding value can easily be related to the rotation of the teapot. We aim for a simple

algorithm that allows for us to “unravel” the manifold via a PD-Tree into a line. First,

given a PD-Tree grown to a fix depth, we would like to find nodes in the tree that have

small F value and thus have good locally linear models of their respective subsets of S.

Now, given subsets of S that have good linear models, how do we merge them together

to form a global embedding of S?

One could easily formulate the problem by a simple calculation of nearness be-

tween nodes, for example, with Euclidean distance between the means. Nevertheless,

there is a fundamental issue that must be solved with this approach: how to orient the 1-

d embedding from each node relative to each other. Since we would like to unravel this

manifold, we must connect disjoint nodes in the appropriate arrangement with respect

to each other. In the case of the teapot dataset, we would like the rotation ordering of the

examples to be preserved in a purely unsupervised manner. Distance measurements in

high dimensions are a very unreliable way of deciding the orientation of these manifold

pieces in relation to each other.

Instead we propose a simple alteration to the PD-Tree that creates leaf nodes

which are not a perfect partition of S, but instead have datapoints in common with many

other nodes. If two nodes have at least 2 points in common, then we can easily orient

each projection so that the ordering of the common points in each node are identical.

Next, we can connect the projections together so that these common points, now in the

correct order, are as near to each other as possible. This is exactly the approach we take.

To create an overlap between internal nodes of the PD-Tree, we alter the splitting

procedure so that there are two thresholds t1 < t2 that define the two children nodes as

follows

SL = {x | x ∈ S and x>v≤ t2} and SR = {x | x ∈ S and x>v≥ t1} (2.5)

25

Figure 2.3: (Top-Left): Embedding of entire dataset on top principal direction. (Top-

Right): Percent variance explained versus depth of PD-Tree. (Bottom): Embedding

learned from a constructed PD-Tree.

Thus, the points x where t1 < x>v < t2 will go to both children nodes. This creates the

needed overlap. We choose t1 and t2 so that the middle 30 percent go to both children.

We break the circularity of the dataset by dropping the last 25 examples, giving

us 375 examples to train a PD-Tree on. This allows the embedding to be represented

as a straight line in one dimension. We build a PD-Tree to depth 10 with the splitting

procedure described in the paragraph above. As you examine nodes with increasing

depth, the top principal direction becomes a better linear model of the associated teapot

data. This phenomenon is depicted in Figure 2.3. It shows the average F value for nodes

at a fixed depth in the PD-Tree with error bars indicating the standard deviation. It is

26

clear that as you descend the PD-Tree the sets become more and more linear.

We collected a set of good linear models by considering all internal nodes that

have an F value below 0.3. This collection was then pruned to remove all nodes that

have a large gap when x>v are sorted. This is to remove those nodes that have points

from disjoint regions that are physically far from each other. We used the ratio of the

largest gap to that of the median gap value to be the pruning quantity, which we threshold

at 4.

There are 781 total remaining sets where each datapoint x ∈ S is covered by an

average of 13.7 different sets. The embedding depicted in Figure 2.3 is formed by merg-

ing these sets in a greedy fashion. To start, we select the biggest set and embed its points

with the projection value x>v. Then, we find the set that has largest overlap with the al-

ready embedded points (and is not strictly a subset of the already embedded points). We

then orient the projections of these points so that the ordering of the projections match

for both sets. This amounts to choosing a sign multiplier for the projections to flip their

ordering. Finally, we solve for an offset to add to the projections we are going to merge

into the embedding so that the overlap regions match closely. We repeat this process

until all points are embedded.

The different sets are depicted in different colors in the Figure. To cover the

entire dataset 208 sets were used, a large number, but not surprising since many of the

original sets had a high level of overlap. The result is near linear. Moreover, this model

can be extended to unseen datapoints points by averaging the models of the nodes in

which they fall in. Thus, a simple scaling of the embedding value reveals the rotation of

the teapot.

2.4 Case Example: TDOA Manifold

In this section we present another example of how a PD-Tree works on real

data focusing on the case of the TDOA manifold. Recall that the time delay of ar-

rivals (TDOA) between all pairs of microphones are the objects of interest in the audio

localization models derived in Chapters 3 and 4. We consider an array arrangement

of microphones that is near-planar, meaning all microphones are arranged on a single

27

Figure 2.4: A photograph of the seven element planar array (microphones circled in

blue). Two crosses are shown to illustrate the two cross-shaped datasets collected.

plane in space, in this case a vertical plane from floor to ceiling (they are only near-

planar since they are positioned on a physical baker’s rack with some at a depth of about

1 foot behind others). A picture of the array can be seen in Figure 2.4. This is one of the

precursor’s to the current version of TAC, when we first began researching the potential

of passively locating sounds with a microphone array.

We collected a dataset by moving a small radio producing white noise throughout

the region of interest in front of the microphone array. We then extracted the relevant

TDOAs from this process by the method described in Chapter 3. This results in a dataset,

S, of approximately 10k examples each of which is a 21-dimensional TDOA vector with

coordinates representing the individual TDOA between a pair of microphones. The

dataset was created by varying the physical 3-d location of the sound source. We first

were interested in the ability of the array to differentiate between different locations in

the room.

A microphone array can localize accurately in 3 dimensions when the sound

source is inside the convex hull of the microphone elements. This is intuitive, since any

variation in position results in a corresponding difference in the series of TDOAs ob-

served across all pairs of microphones. However, for a planar array, judging depth from

28

the array is difficult since a change in depth does not always result in a significant change

in the TDOAs observed. Thus, planar arrays are typically used to judge the azimuth and

elevation of the sound source relative to the plane containing the microphones.

This intuition is confirmed by the experiment shown on the top-left in Figure 2.5.

In this experiment, two small datasets were collected (after collecting S) by moving the

radio producing white noise along each of the coordinate axes (the xy-plane oriented

parallel to the floor). The motion traced by the radio is depicted by the two cross shapes

in Figure 2.4. One of the datasets was collected inside the convex hull of the micro-

phones, and one directly in front of the array. The resulting series of TDOAs collected

are plotted onto the top 3 principal directions of S (capturing 99.8% of the variance in S).

The dataset in front of the planar array is the one plotted in blue and shows no resolution

in depth. The set collected inside the convex hull clearly has the ability to resolve depth.

We also grew a PD-Tree to depth 3 on S and depict the projection of the collected

data set S onto its principal components in the top-right and bottom of Figure 2.5. The

eight leaf nodes of the PD-Tree are depicted by color. Recall that S was collected in front

of the array, so there is no depth resolution. Nevertheless, it’s clear that the manifold

is not linear by examining the plot on the top 3 principal directions. There is a clear

curvature to the manifold, which we discuss further in Chapter 3. Thus, as we will see

when we try to convert TDOAs into locations, a simple linear mapping to position from

this projection space is not entirely desirable due to this nonlinear distortion.

29

Figure 2.5: Top-Left: Cross datasets both inside (red) the convex hull of microphones

and outside (cyan). Top-Right: Embedding of entire dataset on top 2 principal direc-

tions; leaf node membership is color coded. Bottom: Embedding on top 3 principal

directions.

Chapter 3

Audio Localization

In this chapter we explicitly outline the methodology used to first estimate time-

delays and then map them to pan-tilt directives for camera pointing. The methodology

differs from previous research in that the localization is done in a coordinate-free fash-

ion. That is, we do not explicitly need to know the positions of the microphones or the

position/orientation of the PTZ-camera.

The organization of this chapter is as follows. First, we discuss the standard

methodology and theory of time-delay estimation, namely, the phase-transform corre-

lation method. Second, we discuss various existing techniques for doing sound source

localization. As we will see, these methodologies do not explicitly address the problem

of camera pointing and they all rely on the a priori knowledge of the coordinates of

microphone elements to solve the localization problem geometrically.

As an alternative approach, we propose a machine learning solution to the sound

localization problem based on the collection of a training set from which a regressor

can be learned. The regressor will map time-delays to pan-tilt directives for pointing the

camera, skipping the need for a coordinate system in which microphone elements are

known. We outline this coordinate-free approach and show experiments with a dataset

collected from TAC showing less than 4 degree error in both pan and tilt – results com-

petitive with the current state of the art. The majority of work found in this chapter can

be found in the published version here [EF08].

30

31

Δ12c

sm1

m2

m3 m4

Figure 3.1: Left: A 2-dimensional world with 4 microphones. Time-delay ∆12 is shown

between microphones m1 and m2. The sound source (red star) is shown with 2 degrees

of freedom for movement (red arrows). Right: Depiction of the 2-dimensional manifold

created by the sound source’s movement. The corresponding local movement from the

figure on the left is shown as a locally linear region of the manifold.

3.1 Time-delay Estimation

Recall that the fundamental basis that allows a microphone array to localize

a sound source is the time-delay of arrival (TDOA) between two spatially separated

microphones. Leveraging this physical fact is the fundamental insight behind passive

sonar technologies. An illustration of the TDOA produced from a 2-d world is shown in

Figure 3.1.

Even though in this work we do not assume knowledge of microphone or camera

positions, it is useful to assume they are known and fixed for the discussion that follows.

Let mi ∈ R3 be the three dimensional Cartesian coordinates for microphone i. For a

sound source located at position s and assuming a spherical propagation model, the

direct path time delay between microphone i and j can be calculated as

∆i j =
‖mi− s‖2−‖m j− s‖2

c
(3.1)

where c is the speed of sound in the medium. ∆i j is often called the time delay of

arrival (TDOA) between microphone i and j. It is worth noting that if f is the sampling

rate being used, then the largest the TDOA can be in terms of audio samples is M =

‖mi−m j‖2 f/c. In other words, ∆i j is always in the range [−M,M] and in practice can

32

...

0.1 5.5 ... 3.1 1.8 25 ­5

0.4 6.0 ... 2.9 1.8 26 ­6

0.6 6.1 ... 2.5 1.8 27 ­6

∆1,2 ∆1,3 ∆5,7 ∆6,7 θ φ

Training
Examples

Z

X

Y

Audio source
location

3 dimensional
space

x

Audio = 21 dimensions 72 
Camera:

2 dimensions

 f g

Figure 3.2: The sound manifold. f is a mapping from sound source location x to a set

of TDOA measurements~∆. g is a mapping from x to a pan and tilt directive for the PTZ

camera.

only be estimated to the nearest sample. This observation directly reveals the fact that

close together microphones cannot have as wide a range of TDOAs as microphones that

are spaced further apart. Placing microphones further apart allows for more variability

in the feasible TDOAs, and hence, results in a better ability to discriminate between

audio source locations in space.

Given k microphones there are
(k

2

)
unique pairs of microphones for which ∆i j

can be estimated. We let ~∆ = (∆i j)i< j ∈ R(k
2) be the vector that contains each of these

unique TDOAs for a given audio source location. We will often call~∆ the TDOA vector

(see Figure 3.2). For a~∆ that corresponds to a true audio location there are many linear

dependencies between the components because

∆i j = ∆k j−∆ki ∀i, j,k (3.2)

Therefore there are only k− 1 linearly independent coordinates of each ~∆. In other

words, the pairwise delays to just a single reference microphone uniquely determine the

33

Sound Source

M1

M3

M2

cΔ12

Figure 3.3: A 2-d world where 3 microphones are necessary to uniquely determine a

sound source’s location via multilateration. If given ∆12, ∆23 and knowledge of the

microphone positions, then one can solve for the intersection of the corresponding hy-

perbolas for s.

delays for all pairs. Nevertheless, when estimating~∆ it is useful to consider all
(k

2

)
pairs

since the estimation procedure that we will employ is fast to compute, but often noisy.

When given a fixed ∆i j for a pair of microphones, we can deduce from Equa-

tion 3.1 that the set of feasible s positions that could have resulted in the observed ∆i j

form one sheet of a 3-d hyperboloid in space (for a 2-d world representation see Fig-

ure 3.3). It follows that for a fixed ~∆, the possible audio source locations that could

have generated such a TDOA vector can be determined through finding the intersection

among all such hyperboloids. This procedure is historically known as multilateration,

which is similar in spirit to trilateration: instead of TDOAs, trilateration measures abso-

lute time-of-flight to several beacons allowing for an intersection of spheres to occur. In

multilateration, it is only required that we observe three TDOAs (4 microphones needed)

to uniquely determine where in space the sound source is under an idealized estimation

procedure.

However, in practice we can only estimate each ∆i j from the underlying audio

signals. As a result, the estimation procedure faces multiple challenges that easily lead

to inaccuracies. First and foremost, sound easily bounces off of many physical materials

causing multipath reflections and reverberations. Reflective materials such as linoleum

34

floors and windows are present throughout the room in which TAC is built. Secondly,

the audio signal is only captured at a finite precision with respect to time since the signal

must be digitized with a finite sampling rate. This means we can only estimate TDOAs

with a finite precision the depends on the audio sampling rate.

These challenges often results in estimation errors in ∆i j and so it is not surpris-

ing that in practice the intersection of all the corresponding hyperboloids is empty! In

response, most methods employ an optimization framework like that of least-squares to

find a source location that is close to all hyperboloids. This has been the focus of a lot

of research and a discussion can be found in [JD01]. Including more microphones in

the array adds a redundancy to the information content of~∆, which can be leveraged to

make a more robust localization system.

Accurate and robust time-delay estimation (TDE) is the key to many types of

localization systems. Background noise, multipath reflections and room reverberations

complicate the estimation process. There has been much research on TDE in a variety

of fields, and a review of many techniques can be found in [JD01]. Nevertheless, one

very intuitive way to estimate a TDOA would be to calculate the cross-correlation of

a pair of microphone signals and find the maximum. Unfortunately, due to corrupting

factors of the signal this often gives maxima that are not near the true TDOA.

One of the most popular TDE techniques, and the method used in this work, is a

generalized cross-correlation (GCC) technique that utilizes the phase transform (PHAT),

first discussed in the audio localization literature by Knapp and Carter and then further

analyzed by many others [KC76, OS94, OS96]. PHAT is very robust to noise and re-

verberations compared to other correlation based TDE techniques [JD01, SMO97]. Let

Xk(ω) be the Fourier transform of microphone k. The GCC between microphone l and

m is

Rlm(τ) =
1

2π

∫
∞

−∞

Ψ(ω)Xl(ω)X∗m(ω)e jωτdω (3.3)

where Ψ(ω) is a weighting function for the GCC and ∗ denotes complex conjugation.

The PHAT weighting of the GCC is of the form

Ψ(ω) =
1

|Xl(ω)X∗m(ω)|
(3.4)

The PHAT weighting has a whitening effect by removing amplitude information in the

35

signals. Compared to standard cross-correlation, PHAT puts all the emphasis on align-

ing the phase component of the transformed audio signals and none on the amplitudes.

Empirically, it has been observed that the result of using the PHAT weighting is often a

large spike in the GCC at the true TDOA. Hence the PHAT method for TDOA estimation

is to let

∆i j = argmax
s

Ri j(s) (3.5)

In Figures 3.4 and 3.5 we show results from both traditional cross-correlation

(unweighted) and PHAT correlation for an audio segment recorded with TAC. The

PHAT correlations have been verified to have a maximum corresponding to the true

TDOA of the human speaker. As can be seen, the unnormalized cross-correlation is

smooth, but often can have a peak that is incorrect. In fact, only one component (∆16)

would be estimated correctly using standard cross-correlation for this frame of audio.

The PHAT correlations are typically very pronounced at the estimated TDOA with a

small number of significant secondary peaks.

In TAC, we utilize a sampling rate of 16 kHz, a window of 500ms and a step

size of 25ms for calculating the PHAT correlation. C code for calculating the PHAT

correlations through an FFT was generating using Simulink in MATLAB [Sim].

One of the primary competing forces in time-delay estimation is between placing

microphone elements near to each other or far away. Placing elements near each other

gives incoming signals that are very similar and hence result in more accurate TDE.

However, placing elements farther apart allows for both increased spatial discrimination

and coverage of a room. The system designer must weigh these competing forces in

conjunction with the number of microphone elements available when constructing such

an audio localization system.

In this work we are interested in an ad-hoc placement of both the microphones

and the camera. We do not assume knowledge of any mi or the location and orientation

of the PTZ-camera. Instead we would like to learn from a training set how to direct the

camera for a given ~∆. We would like to learn a regression function that describes how

the pan and tilt of the camera changes with variations in ~∆. Before we dive into the

development of such a regressor, it would be worthwhile to understand some features of

this variation so that we can reasonably select a regression model that can capture such

36

Figure 3.4: 500ms real audio sample collected from TAC with corresponding cross-

correlation and PHAT correlation results. Pair combinations with microphone 1 are

considered: ∆1 j for j = 2,3,4.

37

Figure 3.5: Continuation of Figure 3.4. Pair combinations with microphone 1 are con-

sidered: ∆1 j for j = 5,6,7.

38

behavior.

Notice that when a speaker is close to the camera, small deviations in position

correspond to large deviations in pan and tilt when compared to the same sized move-

ments when far from the camera. Therefore, it would be reasonable to believe that the

predictive function from TDOAs to pan and tilt is most nonlinear for TDOAs that cor-

respond to locations close to the camera. Moreover, notice that when nearby a pair of

microphones small movements in position correspond to large changes in the TDOA

relative to the changes in TDOA when far way. From this discussion, it’s likely to be-

lieve that a linear model will not capture all the variation between these two sets of

variates, but in areas where the variations in each match, a linear model may be very

accurate. Moreover, it is not clear how poor a linear model would be overall and it is

unclear at a surface level how much nonlinearity to expect. This motivates the inquiry

into very simple regression models to fit this variation and then the examination of how

and where these models perform below expectations. In this chapter we will examine

the performance of global regressors such as linear regression and also how piecewise

models constructed via PD-Tree models perform as well.

3.2 Related Work

Sound localization techniques via microphone arrays can be summarized into

two major paradigms: TDOA two step localization and steered response power (SRP)

based. The first technique involves first estimating for a frame of audio the TDOAs

between all pairs of microphones and then solving the subsequent geometric multilat-

eration problem. Many of the approaches utilize similar TDOA estimation techniques

as the PHAT approach discussed in the previous section. The difference lies in the

approach to the geometric solution. The most popular is a least squares approach. One

such approach is to simplify the nonlinear least squares problem by linearizing it through

either a Taylor expansion [Foy76] or by introducing an extra variable as a function of the

source location [Fri87, SA87, CH94, HBEM01, SL06, GS08]. This leads to a closed-

form solution to the problem since it becomes a linear least-squares problem, but the

resulting variance in the source location estimator is large [CH94, HBEM01].

39

Other approaches attack the nonlinear least squares problem directly. Silverman

et. al use the simplex algorithm to find the the best match for the observed TDOA

from the theoretical TDOA caused by a sound source at a fixed 3-d location [SYSP05].

Brandstein et. al use the popular line-intersection method that employs the far field

assumption to find a point closest to all the bearing lines originating from all pairs of

microphones [BAS95]. Gustafsson and Gunnarsson compare many different schemes: a

simple weighting of the pairwise intersection points, a stochastic gradient descent based

algorithm, and one based on a particle filter [GG03]. Many other techniques exist in this

two-step category as well.

The second category for source localization techniques are all based on max-

imizing the steered response power (SRP) of a beamformer [JD01]. For example, a

simple instance in this class is to maximize the energy of a delay-and-sum beamformer

over a range of steering directions. That is, for each source location x, one can first

calculate the corresponding TDOA vector, ∆(x), derived from the array geometry. By

delaying the frames of audio by these TDOAs and then summing all the signals together,

the energy of the signal can be estimated. The underlying assumption with an SRP based

localization method is that the energy will be maximized at the best choice for location

x. Probably the most popular of SRP based beamformers is the so called SRP-PHAT

beamformer [JD01, DSY07]. Here, instead of maximizing the energy of the delayed

signals, one calculates the PHAT correlation, Ri j(τ), for all pairs of microphones and

then solves the optimization argmaxx ∑i< j Ri j(∆i j(x)).

One advantage of SRP-PHAT is that it is more robust against the failure points

of PHAT estimation, namely false peaks due to multipath reflections. Often when the

true TDOA is not the largest peak it is still among the few number of large peaks present

in the PHAT correlation. As a result, it’s contribution to the SRP-PHAT objective is still

large. Moreover, it is often the case that the largest peaks from each pair cannot even

produce a feasible TDOA vector that correspond to an actual source location. Thus, a

naive implementation would simply do a search over potential source positions x ∈ R3,

typically by gridding the area of interest. However, for applications that require both

real-time and precise positions a simple grid approach is often too slow. Therefore, op-

timizations like “coarse-to-fine” are popular where a large grid is exhaustively searched

40

and then neighborhoods are refined at locations with a large SRP-PHAT value [JD01].

Both the two step and beamforming based methods require knowledge of a co-

ordinate system wherein microphone positions are known. For small microphone arrays

a coordinate system can easily be found by simply measuring the distances between

microphones by hand as in [WC97]. If we want to be able to localize sounds in a large

room accurately, then a large microphone array that spreads throughout the room is

beneficial. However, measuring accurately by hand the relative distances now becomes

much more difficult and positional errors on the order of 1-5cm can seriously degrade

beamforming techniques [SSP05].

Since doing such measurements is often too difficult, especially for arrays with

many elements, many techniques have been developed to automatically calibrate the po-

sitions of the microphone elements [SSP05, RD04, BS05, MLH08, HLKB05]. These

techniques are based on using a carefully designed device that emits a special sound

with which delay measurements and the known geometry of the device can be lever-

aged to solve for the microphone positions. Typically distances from the device to the

microphones, or inter-microphone distances are estimated. For example, if pairwise dis-

tances between microphones can be estimated, then traditional multidimensional scaling

(MDS) is often used [SSP05, RD04, BS05, MLH08, HLKB05].

These techniques are intended for a one-time calibration of a system with po-

sitionally static elements. Shifts in microphone positions can occur for a variety of

reasons especially if they are placed in an ad-hoc manner. These positioning methods

do not have self-consistency checks for continued positional accuracy during general

usage. More importantly, such calibration techniques are not geared towards camera

steering. They gives us no insight into methods that let us place and orient a camera in

the same coordinate system.

In this work, we avoid the need for solving for microphone (or camera) positions

explicitly and are still able to utilize the benefits of much of the sound localization

research community’s work. Our intent is to develop a robust system for pointing a

pan-tilt-zoom (PTZ) camera at sound sources in front of an interactive kiosk in a large

room. If we were to directly use current sound localization techniques, then we would

be required to discover the coordinates of not only the microphones, but also of the PTZ

41

camera. This would require either direct measurement or new calibration methods to

locate and orient the camera.

Instead, we curtail the need of assigning the camera and microphones spatial

coordinates by directly learning the mapping from the set of delays for pairs of micro-

phones to the correct pan-tilt (PT) of the camera so that the sound source is centered

in the field of view. We do this by collecting observations consisting of a set of delays

between microphones for a fixed source location and the associated PT to center such

a source. With this database of samples, we estimate via standard regression analy-

sis a fixed model for the system. This model describes how PT and delays vary with

each other. The result is a function that can map a series of delays between pairs of

microphones to a PT directive for our camera. It is very natural to then combine this

mapping with known audio localization techniques. Together this gives us a real-time

implementation that can direct the camera at human speaking subjects.

3.3 Coordinate-Free Localization

In this section we describe the regression models we decided to use for describ-

ing the variation between ~∆ and pan-tilt directives. For what follows assume that a

training set of size m is given with observations of the form yi = (θi,ψi), for pan and

tilt respectively. These observations are paired with an estimated TDOA vector derived

from the N microphones, namely xi =~∆i with p =
(N

2

)
coordinates. We organize the

training set into matrices Y ∈RN×2 and X ∈RN×p where each observation is a row vec-

tor. In what follows, we briefly remind the reader of least squares linear regression and

a variation called principal components regression. Further information on both can be

found in [HTF01].

Least Squares Linear Regression

For each column of Y, denoted Yi, we fit a separate linear regression model. The

linear regression model has the form

f (X) = β0 +
p

∑
j=1

X jβ j

42

where X j is the jth column of X and β is the vector containing the coefficients in the

linear model. The least squares (LS) solution to linear regression chooses the model that

minimizes the residual sum of squares (RSS)

RSS(β) =
N

∑
i=1

(yi− f (xi))
2

When X is full rank the LS solution can be written in closed form as β = (XT X)−1XTYi.

It is known that if the true model of data generation is linear, then the LS estimator is

the minimum variance unbiased estimator of β .

Principal Components Regression

Often in regression it’s advantageous to trade a small amount of bias for a large

reduction in variance. Principal components regression (PCR) attempts to describe the

k < p orthogonal directions in the feature space that preserve most of the variance in

X . After centering X , PCR projects the data onto the k-dimensional subspace spanned

by these directions, and learns a LS linear regression model to predict Y in this reduced

space. Although the resulting model is slightly biased if the true underlying model is

linear in the original feature space, typically the reduction in parameters by PCR results

in a dramatically smaller variance in estimating its parameters and hence a correspond-

ing smaller RSS. In addition, an attractive feature of PCR is it’s denoising properties of

X . By projecting it onto the learned subspace, noisy coordinates in the TDOA vector

may be improved through this denoising procedure.

Calculating the top principal components is achieved through principal compo-

nents analysis (PCA). The first principal component v1 is defined as the direction in the

feature space that gives the projections of X onto it the highest sample variance. Subse-

quent principal components have the property that when X is projected onto them they

have the next largest sample variance subject to being orthogonal to all previous prin-

cipal components. Solving for the principal components can be shown to be solved by

an eigendecomposition of the covariance matrix XT X =V DV T . The column of V with

corresponding largest eigenvalue is the first principal component, and the eigenvector

with next largest eigenvalue is the second, and so on. The percentage of variance in X

explained by a principal component is the ratio between its corresponding eigenvalue

43

and the trace of D. Typically one retains the top k principal components that describe

most of the variance and discards the remaining deeming them as observation noise.

Higher Order Polynomial Fits

We can fit general polynomials using the LS approach by simply extending X to

contain higher-order combinations of features. For example, in the quadratic regression

(QR) analysis used in the experiments that follow, appending to X the squares and cross-

terms of features and applying the LS method gives the desired parabolic fit. The same

procedure can be repeated for the data matrix X used in PCR.

PD-Tree

In the experiments that follow we will also explore the use of a constant depth

PD-Tree (see Chapter 2) with regressors learned in each leaf node. This will act as a

piece-wise regression model. We grow a PD-Tree to depth 2 and fit linear least squares

regressors in each leaf node.

3.4 Experiment: Grid Dataset

The device used to collect all the data in the experiments to come is shown in

Figure 3.6b. It consists of a simple radio and a green LED attached to a 9V battery with a

switch and dimmer all in a plastic encasing. We will call this the calibration device from

here on. The radio component of the calibration device can be tuned to a nonexistent

station that emits noise that is very close to white. This random noise typically has

the most consistent TDOA vector estimates using the PHAT technique. A simple color

thresholding detector was written to find the LED in the camera’s field of view using

Max/MSP and Jitter [max]. The result is a real-time control of the PTZ-camera to keep

the LED centered in the field of view, and a constant white noise to calculate TDOAs

for. The calibration device is used to collect samples of TDOA vectors in unison with

where the camera is pointing to center the green LED in its field of view. The camera

can be queried as to what pan and tilt it is currently pointed at whenever a TDOA vector

44

(a) (b)

Figure 3.6: Left: Percentage of variance explained by top X eigenvector. The top 3

eigenvectors dominate and the rest are noise. Right: Calibration device used to collect

training and grid dataset.

is collected to append this information as a complete data observation.

The result of the training set collection is a dataset of close to 28k observations.

We noticed that when a estimate for ∆i j was incorrect, it typically had a very large devia-

tion from what was often consistent. To remove such noisy observations, we performed

some simple outlier removal by thresholding the magnitudes of the ~∆ projections onto

the bottom global PCA eigenvectors (orthogonal space) leave approximately 20k obser-

vations remaining as our training set. We then did a PCA analysis of just the ~∆ parts

of this training set. Figure 3.6 shows the percentage of variance explained by the addi-

tion of each eigenvector. It’s clear that the top two eigenvectors dominate most of the

variance explained, and that the 3rd eigenvector seems to have a significant advantage

over the remaining ones. The total percent variation captured by the top 3 eigenvectors

is nearly 90%. This follows from the fact that there are 3 spatial degrees of freedom

that were examined during the training data collection period. Moreover, two of these

spatial directions had much more spatial variance then the third, ceiling-to-floor, spa-

45

tial direction. The room is simply much larger in width and breadth than the variance

in observation heights, which matched typical heights that human speakers could ap-

pear at. This analysis lead us to choose three eigenvectors for the principal components

regression analysis that follows.

From this training set with outliers removed we have nearly 20k observations.

From here we learn a simple linear least-squares regression (LS) model, a linear prin-

cipal components regression (PCR), a quadratic least-squares regression (QLS) and a

quadratic principal components regression (QPCR). We would like to analyze how the

bias-variance trade-off of these simple models behaves as function of physical position

of the sound source in the lobby. In other words, in what areas do these simple models

perform well, and where does the inherent nonlinearity of the problem cause large bias?

With these questions in mind we collect a test set of data in a similar fashion

to the training set. We place the calibration device at a fixed height (approximately 1m

from the floor) and roll it along straight lines using a rolling chair. We repeat this process

for each of the 13 lines in the grid depicted in Figure 3.7b. This results in a variety of

observations that cover a representative set of the spatial variability in the room relevant

for human speakers. Moreover, using white noise as our sound source will simulate the

behavior of our model under conditions where TDE is highly optimized. This gives us

insight into isolating the effects of the model assumptions.

Each of the 13 grid lines was traversed back and forth two times during the

collection phase. This test set of observations collected along the grid will be used to

analyze the predictive power of each of the regression models. It is worth noting that

although using the light detector will not give an exact “ground truth” comparison, it is

nevertheless very close and thus a fair evaluation. The light detector observations for

pan and tilt are very consistent and stable when the calibration device is stationary. The

camera was directed to recenter the LED whenever the center of color thresholded pixels

exited a small 20 by 20 pixel box in the center of the image. Therefore, the pan and tilt

observations from this test set should be considered as very close to having the sound

source centered, which is the ultimate goal of this camera pointing system.

Figure 3.7a depicts the embedding of the TDOA vector components of the entire

grid test set onto the top 2 eigenvectors from the PCA learned from the training set. The

46

Figure 3.7: (a) Embedding of the TDOAs collected from the grid onto top 2 eigenvec-

tors. The entire embedding is shown small in the upper right corner and a zoomed in

portion of the same embedding is shown larger. (b) To the right is a diagram of the eq-

uispaced grid over which data was collected. (c) Below are 3 selected lines and the LS

predicted value for each TDOA collected. Also depicted in red is an exponential moving

average of the predictions (α = 0.10), and in green where the camera was pointing to

center the LED.

47

zoomed in portion depicts lines 9-13 in red and lines 1-6 in blue in the same orientation

as the diagram in Figure 3.7b. The curved nature of each line can be observed from

such plots. Even though the spatial location of the sound source is varying along a

straight line in space, the corresponding location in the TDOA vector space corresponds

to slightly curved trajectories. It is clear that a linear model for spatial location is not

going to fully capture all the variation, but nevertheless the grid structure is still very

recognizable in even just the top 2 eigenvectors indicating that a linear model is a good

approximation in these regions.

Another thing to observe, especially in the smaller full plot of the entire em-

bedding, is the noisy nature of the observations themselves. Although, the majority of

the TDOA vectors are estimated along trajectories, there is quite a bit of noise. This is

attributed to the noisy nature of time delay estimation; although the majority of TDOAs

consistently follow a fixed trajectory, observations are occasionally noisy due to chan-

nel corruptions or reflections from room surfaces. This noisiness highly depends on

location. For example, the observation noise from lines 1 - 6 increases as a function of

distance from the display, and hence the microphones. It is also interesting to see that

lines 7 and 8 are particularly noisy. This is most likely due to the fact that these lines

are still in front of the microphones on the ceiling, and the data was collected while the

radio faced the display. This causes the direct path to these ceiling microphones to be

not as strong as reflections of the floor or front wall. This resulted in a variety of TDOA

estimates for pairs involving the ceiling microphones at these particular locations.

Figure 3.7c compares the predictions from the simple linear LS model to the

pan and tilt recorded from the light detector. The dots in black are the predicted pan

(or tilt) from the model for each TDOA vector observation. The green line depicts the

pan (or tilt) from the light detector. Finally the red line depicts an exponential moving

average (EMA) of the model predictions over time. In other words, the EMA prediction,

pt , at time t is calculated with update pt = (1−α)pt−1 +α f (∆t), where f (∆t) is the

prediction of the raw observation at time t. We chose α = 0.1. The EMA line should

give us a sense of what the true model predictions are by smoothing out the observation

noise. In doing so, we can compare the light detector observations to the EMA line and

get a sense for the bias in our model.

48

Remember that for each grid line we collect data along two round trips across

the line, which is why we see the periodic nature in the data. It’s also worth noting that

the light detector observations are slightly lagged from the truth. This is because the

camera only recenters after the light detections exit a 20×20 pixel box in the center of

the image. It’s easy to see the bias of the model due to the nonlinear nature of some of

the variation in these plots. For example, in the line 3 plot for tilt, the slop of the EMA

line does not match the rate of change from the light detector. The attempt to capture

the portions of tilts that occur when a sound source is close to the display is modeled to

closely to constant when this is clearly not the case. However, this bias shrinks for lines

that are further from the display.

It is also worth noting that as you move further from the display the TDOA

vectors themselves become more noisy, which can be observed in the plots for line 13.

Nonetheless, the bias in tilt is still the most dramatic for most grid lines, since this

straight line motion in in space does not correspond to linear changes in tilt. On the

other hand, for pan the changes are very near to linear.

Table 3.1 gives the root-mean squared error (RMSE) between the EMA of the

model predictions and the observations from the light detector for each of the regres-

sion models. The overall averages are very similar to results reported by traditional

coordinate based methods, meaning that coordinate-free methods need not sacrifice ac-

curacy [BVMA09].

Surprisingly, the PCR methods do not show any advantage over their LS coun-

terparts, and in fact are significantly worse. There is no advantage for trying to remove

additional noise from the observations. The variance in estimating the LS model is most

likely very low because of the large quantity of observations collected in the training set.

Moreover, the bias in the both the LS and PCR models should be similar because they

are both linear approximations, giving the LS model an advantage in total RMSE. The

poorer performance of PCR can only be attributed to the fact that some signal is being

removed by projecting down to only the top 3 eigenvectors and not the entire space.

We also provide information about quadratic models of both. The quadratic

models do show a slight improvement over the linear model in almost every line, which

indicates that significant improvement with nonlinear models is possible. A similar

49

Ta
bl

e
3.

1:
R

M
SE

(i
n

de
gr

ee
s)

of
di

ff
er

en
tr

eg
re

ss
io

n
m

od
el

s
fo

re
ac

h
gr

id
lin

e.

M
od

el
G

ri
d

L
in

e
N

um
be

r
1

2
3

4
5

6
7

8
9

10
11

12
13

av
g

L
S-

pa
n

4.
31

3.
34

2.
77

2.
26

2.
22

4.
33

5.
99

6.
54

3.
56

3.
95

3.
20

3.
83

3.
96

3.
87

PC
R

-p
an

7.
30

5.
08

4.
67

5.
07

4.
78

5.
60

6.
85

6.
26

4.
54

4.
86

4.
99

8.
24

8.
04

5.
87

Q
L

S-
pa

n
4.

25
3.

12
2.

50
2.

08
2.

10
3.

47
4.

32
5.

46
3.

12
3.

50
2.

09
3.

03
3.

35
3.

26
Q

PC
R

-p
an

7.
55

4.
49

3.
95

4.
41

4.
27

4.
81

5.
47

5.
76

3.
53

4.
47

4.
30

8.
07

7.
42

5.
27

PD
-p

an
4.

22
3.

45
3.

14
1.

87
3.

05
3.

73
4.

14
5.

08
3.

05
3.

45
2.

45
3.

61
3.

88
3.

47
L

S-
til

t
5.

15
5.

74
7.

57
7.

67
7.

50
5.

48
3.

33
8.

40
5.

63
4.

74
3.

90
5.

15
4.

48
5.

75
PC

R
-t

ilt
4.

02
6.

83
9.

13
9.

23
9.

27
6.

17
2.

65
11

.1
2

6.
61

5.
21

3.
03

2.
29

3.
37

6.
07

Q
L

S-
til

t
4.

43
4.

40
4.

32
4.

32
4.

47
4.

23
3.

06
3.

14
3.

32
3.

23
2.

17
4.

59
6.

13
3.

99
Q

PC
R

-t
ilt

5.
21

5.
62

6.
47

6.
25

6.
53

5.
95

3.
83

7.
66

5.
72

4.
61

2.
43

3.
75

5.
72

5.
36

PD
-t

ilt
4.

70
4.

85
4.

72
4.

68
4.

65
4.

76
3.

26
3.

51
4.

82
4.

42
2.

95
5.

25
6.

55
4.

55

50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

7

8

Week Number

R
M

S
E

 (
in

 d
eg

re
es

)

RMSE of TAC

Pan RMSE
Tilt RMSE
90th Perc. Pan RMSE
90th Perc. Tilt RMSE

Figure 3.8: RMSE for pan and tilt of a PDTree trained each week with new data acquired

by TAC.

phenomenon can be seen in the PD-Tree results. This piecewise model also outperforms

a simple global linear model.

Because of inaccuracies from the lag of the light detector the RSME results here

should be treated as an upper bound of the L1 error in pan and tilt. With a QLS model

we can get almost uniformly throughout the room within four degrees error in both pan

and tilt. This kind of uniform bound implies that predictions made for distances that are

farther form the display have higher spatial error than of predictions for sources that are

closer. It is a nice result that such a simple model of the variation can work well enough

for many practical applications.

3.5 Experiment: Lifelong Learning

We can easily acquire a training set to learn a regressor with a little help from the

face detector. Training examples can be collected whenever a user speaks while their

face is centered in the field of view, creating a stable measurement of the form (~∆,θ ,φ).

Many such examples can be collected over time by having the PTZ-camera continually

51

centering the user’s face and the user continuing to speak. This is in fact what we do in

TAC. Whenever a user is interacting with TAC a log is recorded that records these stable

training points. We retrain a PDTree with linear models in the leaves at the end of each

week on the entire training set collected up to that point.

We took all the observations TAC has seen over a period of approximately 6

months (∼3000 observations), and split this randomly into a 70/30 training and test set.

We then examined how TAC can improve its localization accuracy by retraining a re-

gressor for pan and tilt each week on the data from the training set seen to that point.

We averaged root-mean squared error (RMSE) calculations over 20 such random train-

ing/test splits. Figure 3.8 shows the improvement of this regressor in terms of RMSE.

Also shown is the RMSE when the top 10% of squared-residuals are removed from the

RMSE calculation.

The improvement is near-linear from week to week. Moreover, many of the

errors are near or below one degree in both pan and tilt. This is promising since the

locations in the test set are representative of where most users frequent when interacting

with TAC. This means we are very accurate (< 1 degree error) in these locations.

Acknowledgements

Chapter 3 is based on two works. The first is joint work with Yoav Freund enti-

tled “Coordinate-Free Calibration of an Acoustically Driven Camera Pointing System”

appearing in the proceedings of the International Conference on Distributed Smart Cam-

eras in 2008. The dissertation author was the primary investigator and author of this

work. The second is joint work with Sunsern Cheamanunkul, Matt Jacobsen, Patrick

Lai and Yoav Freund titled “Detecting, Tracking and Interacting with People in a Public

Space” appearing in the 11th International Conference on Multimodal Interfaces and 6th

Workshop on Machine Learning for Multimodal Interaction in 2009. The dissertation

author along with Sunsern Cheamanunkul were the primary investigators and authors of

this paper.

Chapter 4

Tracking

In the previous chapter we discussed methods in which TDOAs can be estimated

and used to predict directives for camera pointing towards a sound source. The methods

discussed there are coordinate-free, meaning that no knowledge is assumed of either the

array geometry or the camera position. This allows for an ad-hoc placement of these

elements. We also showed that, with aide from a face detector, a life-long learning

approach can be taken to the problem of calibrating the regressor.

In this chapter we continue developing this line of coordinate-free methods. Now

that a working localization methodology in place, we now propose a solution to the

problem of audio tracking, namely TDOA tracking. A good TDOA tracking algorithm

is necessary to compliment an accurate TDOA to pan tilt regressor. By leveraging simple

assumptions about the human subjects creating the TDOAs, a tracking algorithm is able

to give more accurate TDOA estimates than a single frame based TDOA estimation

procedure.

One such assumption that we can exploit is that humans typically do not move

too quickly or jump from one location to another in an instant. In particular, the TDOA

estimate for a stationary sound source, a typical use-case scenario for TAC, should also

be stable. These temporal assumptions can be integrated into a tracking model that

makes for a more robust TDOA estimator, and as a result more accurate and responsive

localization.

A naive approach to tracking could do something like median filtering of the

TDOA vector estimates over time. In fact, this is what the original implementation of

52

53

the audio localization component to TAC was. However, integrating assumptions about

the possible motion of the sound source being tracking can lead to a much more powerful

TDOA estimation procedure.

In what follows we propose a particle filtering methodology for tracking the 21-

D TDOA vector over sequential frames of audio. The methodology has three important

innovations above the naive median filtering strategy outlined above. The first is that

TDOAs from one frame to the next should not vary too much. This assumption should

be explicitly integrated into any model of tracking. A second observation is that TDOAs

can only occur from a feasible region of the 21-D space in which TDOA vectors lie. We

propose a PD-Tree based model of this feasible region. It is well known that particle

filters tend to break-down when the object being tracked have many dimensions to their

state space. By modeling the feasible region, we alleviate this well known deficiency of

particle filters by making the effective dimensionality of the TDOA space much lower.

The last contribution is a new particle weighting and resampling scheme inspired

by results in online learning. The resampling scheme is such that we can leverage the

PD-Tree model in a novel fashion that allows for averaging over different bandwidths in

the tree. We will show in the experiments that this averaging scheme can improve over

baseline schemes especially when a sound source enters regions that are not modeled

well by a single global linear model. In addition, it is known that the weighting scheme

used is much more robust to model misspecification than traditional particle filters.

The chapter opens by discussing traditional particle filters. It then discusses

already existing coordinate-based methods for tracking audio sources, many of which

utilize this traditional particle filtering approach. We then discuss the new particle fil-

tering method based on the Normal Hedge online learning algorithm [CFH09]. In the

experimental section of the chapter we give some results of our tracker and traditional

particle filters on recordings from TAC with a moving speaker. Finally, we discuss the

delay-and-sum beamforming used in TAC, which relies heavily on accurate TDOA es-

timates in every frame.

54

4.1 Particle Filters

Particle filtering is an approximation technique used to solve the Bayesian fil-

tering problem for state space tracking [AMGC02]. More specifically, assume we have

observations yt and a state space xt . Often the state space will consist of the position of

the object of interest, and sometimes higher moments like velocity or acceleration. The

goal of the particle filter is to keep a discrete set of particles which well-approximates

the posterior density of the current state given the past observations p(xt |y0, . . . ,yt). In

the TDOA tracking problem our observations yt will be the PHAT correlations for a

given frame of audio and the state space xt will be composed of each of the D =
(k

2

)
time delays.

Often it is assumed that the state sequence follows a Markov process. Then, the

dynamical system can be describe by the following two equations

xt = g(xt−1)+ut (4.1)

yt = h(xt−1)+ vt (4.2)

where g(·) and h(·) are possibly nonlinear functions and ut and vt are noise contributions

which need not be Gaussian. These equations describe the dynamics of the system and

how observations are generated.

As in other works, we adopt the notation x0:t = {x0, . . . ,xt}. The Bayesian filter-

ing problem can then be posed as the following. Assuming that p(xt−1|y1:t−1) is known

at time t−1, the posterior p(xt |y1:t) at time t can be estimated with,

p(xt |y1:t) ∝ p(yt |xt)p(xt |y1:t−1) (4.3)

p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (4.4)

where p(xt−1|y1:t−1) is known as the prior, p(xt |xt−1) is the transition density and

p(yt |xt) is known as the likelihood function.

If we assume g and h to be linear and ut and vt to be Gaussian, then the optimal

solution to the Bayesian filtering problem is the Kalman filter [Kal60]. Unfortunately

for the audio localization problem, we have a mismatch with the Kalman assumptions

on both fronts. First, the TDOA transition is known to be nonlinear as a function of

55

location as described in Chapter 3. Second, the noise on observations in the PHAT

function are highly non Gaussian since they are controlled by such phenomenon such

as reverberations and multipath reflections. As a solution to this problem, one popular

way to approximate the Bayesian filtering problem in this nonlinear regime is through

particle filters.

The bootstrap is one of the most popular particle filtering algorithms [GSS93].

Here, a weighting over m particles is chosen to approximate the posterior density. Let

w(i)
t be the weight associated with particle i at time t. Then, a single iteration of the

algorithm proceeds as follows:

1. Sample: draw m particles x(i)t−1 from the existing set of particles according to their

weights w(i)
t−1.

2. Propagate: Let the particles propagate according to the transition function, x(i)t =

g(x(i)t−1)+ut .

3. Weight update: Update weights according to w(i)
t = w(i)

t−1 p(yt |x(i)t) and normalize

so they sum to one.

The result is a set of particles approximately distributed as the posterior density p(xt |y1:t).

This sample set allows for computation of any quantity as a function of the posterior. For

example, often we would like to estimate the mean of the posterior distribution which

will be our prediction of the current state. This estimate is given by

x̂t =
∫

xt p(xt |y1:t)dxt ≈
m

∑
i=1

w(i)
t x(i)t (4.5)

The weights are chosen to approximate the relative posterior density for their respective

particles.

This popular variant of particle filters has been shown to perform well in the

coordinate-based tracking literature [LJ07]. The key decisions for optimizing such a

particle filtering algorithm are:

1. Likelihood: The choice of likelihood function, p(yt |xt), is critical since this will

govern how weights are calculated.

56

2. Propagation function: The propagation function g(·) is also essential and needs

to be chosen accurately. In coordinate based methods g is chosen to be linear and

uk often to be Gaussian.

3. Number of particles: The total number of particles m. The larger m is the more

computational load the system must undertake. Optimizing m is of paramount

importance for real-time implementations.

More so than the other choices, the likelihood function is by far the most dif-

ficult. The true likelihood function for how PHAT observations are generated from a

given sound source location seems very difficult to model. Nevertheless, it has been

shown that some simple choices for the likelihood function can lead to good tracking

performance [LJ07]. In making a choice for the likelihood function, first notice that we

must have support over the entire observation space. If we don’t meet this requirement,

particles that occur with likelihood zero will get weight zero and die immediately. This

is not the behavior we would like since particles that were performing well in the past

may then suddenly die. Instead, we should want a more graceful way for particles to

tend towards zero weight. As a result, often a mixture of a uniform prior over the entire

observation space is mixed with the likelihood function to avoid this behavior.

One deficiency of the particle filter is that accurate tracking becomes very dif-

ficult when the state space becomes larger than a few positional locations (e.g. 2-D or

3-D locations). In TDOA tracking, the state spaces can potentially be much larger. For

example, the seven microphones in TAC give rise to a 21-D TDOA vector space, but

with arrays with more microphones the space can be even larger. The difficulty arises in

the randomness need in uk to generate enough variety of particles so that a few are close

to a good state representation. One obvious remedy would be to increase the number of

particles, but this causes the real-time feasibility of the algorithm to quickly diminish.

To alleviate this problem, when a coordinate system is known, then the state

space can be represented as the 3-d position of the audio source. This makes the algo-

rithm feasible with a small number of particles (typically < 100). In our coordinate-free

approach, we take a similar dimensionality reduction technique by directly modeling

the low dimensional structure on which the TDOAs lie via a PD-Tree. However, be-

fore introducing our algorithm we first discuss related work in coordinate based TDOA

57

Algorithm 4 Generic bootstrap based particle filtering audio tracking algorithm.

Initial Assumptions: At time t-1, we have the set of particles x(i)t−1 and weights w(i)
t−1,

i ∈ {1, . . . ,m}, being a discrete representation of the posterior p(xt−1|y1:t−1).

1: Dynamics: Propagate the particles through the transition equation x(i)t = g(x(i)t−1,ut).

2: Weight Update: Assign each particle a likelihood weight according to w(i)
t =

p(yt |x(i)t). Then, normalize weights so that they sum to 1.

3: Resample: Resample m new particles from {x(i)t }m
i=1 according to the weight distri-

bution {w(i)
t }m

i=1. Let these be the new set of particles {x(i)t }m
i=1 and assign uniform

weight to each.

tracking.

4.2 Related Work

Particle filtering methods dominate the audio source tracking literature [LJ07,

LS10, PKV08, TPC09]. The seminal work of Ward et. al is the first to popularize the

use of particle filtering methods for audio tracking and is still widely regarded as state-

of-the art [WLW03]. Further experiments and slight improvements on this method were

presented in [LJ07]. This method is the focus of what follows realizing that the others

mentioned above are all derived from this seminal work.

We reproduce the bootstrap particle filtering method for audio source tracking

in Algorithm 4. The predicted state at each step of this algorithm is the weighted mean

x̂t = ∑
m
i=1 w(i)

t x(i)t . Here the state space is chosen to be 3-d Cartesian coordinates x(i)t =

[px py pz] and the dynamics g is chosen to be the identity with spherical Gaussian noise

for uk. The size of the Gaussian noise uk is a tunable parameter that must coincide with

the assumptions about how quickly the objects being tracked can move.

The major choice in the algorithm is how to perform the weight update step,

in particular, what choice should be made for the likelihood function p(yt |x(i)t). The

choices for this function can arise either from GCC based methods or steered beam-

forming based methods. For example, a simple steered beamforming based approach is

as follows. For the weight update in Algorithm 4, let p(yt |x(i)t) = F(yt ,∆(x
(i)
t) where F

58

calculates the steered response power of the current frame of audio steered towards x(i)t .

More computationally efficient methods for representing the likelihood function

were presented in [WLW03] based on PHAT transforms. The idea for the likelihood

here is to define a function that combines how close the current particle is to the largest

peaks in the PHAT correlation from each pair of microphones p ∈ {1, . . . ,D}. This will

be the method we use in the work presented in this chapter. In particular we use the

following.

First, to identify the peaks in a given pair’s PHAT function we take a simple

z-scoring method. Let [A]+ = max(0,A). Then, for each PHAT correlation Rp let it

undergo a z-scoring transform as follows (note from here on we drop the subscript t for

ease of notation):

Zp(τ) =

[
Rp(τ)−µp

σp
−C
]
+

(4.6)

where µp, σp are the mean and standard deviation of Rp over a fixed bounded range of

τ , and C is a constant requiring that peaks be at least C standard deviations above the

mean. This performs well to find a small, fixed number, of peaks Kp in each Rp.

We now define p(y|x(i)) in terms of these peaks:

p(y|x(i)) ∝ p0 +
D

∑
p=1

Kp

∑
l=1

Zp(τl)N(τl;∆(x(i))p,σ
2
z) (4.7)

where ∆(x(i))p the TDOA associated with pair p derived from the 3-D location x(i),

N(x; µ,σ2) is the density under a normal distribution evaluated at x with mean µ and

variance σ2, and Zp has Kp non-zero entries each of which are at τl . The parameter

p0 is the background likelihood that determines how much likelihood is given to any

TDOA regardless of the observation. This parameter is essential for this kind of particle

filter so that the likelihood function never evaluates to 0. Otherwise a particle’s weight

can never abruptly vanish. The variance parameter σ2
z controls how much weighting is

given relative to how far each state is from the peaks in the corresponding PHAT series.

So, a particle will be given high likelihood if the particle’s derived TDOA matches well

with the largest peaks in the observed PHAT series. Conversely, if the derived TDOA is

far from any of the observed peaks it will be given a very low likelihood.

A nice property of this choice of likelihood is that it does not rely solely on

the maximum of each PHAT series being accurate (a similar advantage was observed

59

between steered beamformers over the 2-step localization procedure discussed in Chap-

ter 3). Since often the peaks in the PHAT localization are corrupted due to reverberations

or multipath reflections, relying heavily on only these maximum peaks is not robust. The

likelihood defined in Equation 4.7 neither relies too heavily on the accuracy of a single

pair of microphones, nor on the largest peak in each pair’s PHAT series. Secondary

peaks can contribute substantially to the likelihood as well. As we will see, integrating

a particle filtering based tracking method into the localizer will lead to a much stabler

and robust localization method.

4.3 Normal Hedge Based Particle Filter

In this section we introduce the Normal Hedge based particle filter. This particle

filter, although very similar to the traditional particle filter introduced above, will have

several advantages. First, the resampling scheme will not require particles to be resam-

pled every iteration. In fact, particles will remain “alive” for as long as they perform

well. Secondly, the requirements of the algorithm will allow for much more flexibility

in specifying a likelihood function. Recall that in Equation 4.7 we had to define a pa-

rameter for the background likelihood p0, otherwise particles could quickly go to zero

weight and die. No such requirement is needed by the particle filter presented here,

moreover, the guarantee that will be given is relative to the defined likelihood function.

This means that the resulting Normal Hedge particle filtering algorithm will perform

well as long as the likelihood function encourages good tracking performance (i.e. high

likelihood scores indicate that the particle matches the observation well).

Before introducing the full Normal Hedge particle filter we first discuss the Nor-

mal Hedge online algorithm for predicting from a group of experts’ advice, initially

presented in [CFH09].

Normal Hedge

The Normal Hedge algorithm is a parameter-free online algorithm for hedging

over the predictions from a group of N experts [CFH09]. One of the barriers to practi-

cal implementations of previous online learning algorithms was that they all contained

60

Algorithm 5 Normal Hedge parameter-free online learning algorithm.

Initial Assumptions: At time t−1 we’re given the cumulative loss of each expert R(i)
t−1

and the discrete weighting w(i)
t . Initially R(i)

0 = 0 and w(i)
1 = 1/N for all i.

1: Update Losses: Each action incurs a loss `
(i)
t and the learner incurs loss `A

t =

∑
N
i=1 w(i)

t `
(i)
t .

2: Update Regrets: Update the cumulative regrets R(i)
t = R(i)

t−1 +(`A
t − `

(i)
t)

3: Update Weights: First, find ct > 0 that satisfies 1
N ∑

N
i=1 exp

(
([R(i)

t]+)
2

2ct

)
= e. Then,

update weight distribution for round t + 1 by w(i)
t+1 = [R(i)

t]+
ct

exp
(

([R(i)
t]+)

2

2ct

)
. Nor-

malize the weights so they sum to one.

a learning parameter that was very important to tune correctly for good performance.

Normal Hedge has no such parameter, yet still has a very strong performance guarantee

like that of the previous online algorithms.

The setup for the algorithm is as follows. At each iteration t expert i makes a

prediction that has an associated loss `(i)t ∈ [0,1]. The notion of loss in this setting is very

general, but in most cases is typically derived as a function of the expert’s prediction and

the actual observation (e.g. the difference between the prediction and the observation

normalized to the [0,1] range). The algorithm maintains a discrete probability distri-

bution over the experts w(i)
t . After observing the losses, the learner itself incurs a loss

according to the expected loss under this discrete distribution,

`A
t =

N

∑
i=1

w(i)
t `

(i)
t (4.8)

The notion of regret is the essential quantity of interest in online learning. The algo-

rithm’s instantaneous regret is defined as r(i)t = `A
t − `

(i)
t and the cumulative regret up to

time t is defined as

R(i)
t =

t

∑
τ=1

r(i)τ (4.9)

Intuitively the cumulative regret measures how well the algorithm is doing relative to a

single action chosen to predict at all previous iterations up to t. The goal for an online

algorithm is to minimize the cumulative regret of the algorithm relative to any given

expert (in particular, the best expert in hindsight).

61

The Normal Hedge algorithm is given in Algorithm 5. It requires no parameters

and the computational needs are also simple. The algorithm must maintain the weights

and regrets over each of the N experts and also a line search is needed to solve for ct in

the weight update stage.

The guarantee proved in [CFH09] is that the cumulative regret to the best ε

percentile of experts will be small. In particular at time t the cumulative regret of Normal

Hedge to the ε percentile expert will be O(
√

t(1+ ln1/ε)+ ln2 N). This is more general

than the regret bounds that already existed in the online learning literature which only

considered regret to the “best” expert in hindsight. The notion of “ε percentile” is a more

useful bound in the sense that in many practical situations there are many experts among

the N which are almost as good as each other. As a result, guaranteeing performance

relative to the absolute best is often too strong. Moreover, the bound given in [CFH09]

is still competitive with other known results when considering the “best” expert case by

setting ε = 1/N.

NH-pf Derivation

Transforming the Normal Hedge algorithm into a particle filtering algorithm is

quite natural. We must only transform the terminology “experts” into “particles” and

we’re most of the way towards a Normal Hedge based particle filtering algorithm. A re-

cent paper was published that was that first to describe how the Normal Hedge algorithm

can be used as a particle filter [CFH10].

In the tracking problem we consider an expert to be a predictor of a sequence of

hidden states (x1, . . . ,xt) up to time t. This sequence of states is a proposed explanation

for the sequence of observations (y1, . . . ,yt). Instead of a likelihood function p(yt |xt)

like in particle filters, for the Normal Hedge tracking algorithm we must define a loss

function on which to measure each expert’s performance. The loss `(i)t for expert i should

measure how well an experts sequence of states matches the sequence of observations.

After defining this loss, we nearly have all the components needed to utilize

Normal Hedge in the tracking framework. However, there is a computational issue

at hand, namely, the exponential explosion in possibilities for state space sequences.

Imagine we could run Normal Hedge over this enormous number of experts. Luckily,

62

Algorithm 6 Normal Hedge based particle filter.

Initial Assumptions: At time t-1, we have the set of particles x(i)t−1 and Normal Hedge

weights w(i)
t−1, i ∈ {1, . . . ,m}

1: Regret Update: Obtain losses `(i)t for each particle and update discounted cumula-

tive regrets R(i)
t (Equation 4.10).

2: Resample: For each particle x(i)t with R(i)
t < 0, resample a new particle in its place

1. Choose a current particle x(k)t according to {w(i)
t }m

i=1.

2. Let the new particle x(i)t = x(k)t +uk, where uk is Gaussian noise. (Coordinate-

free only): Project back onto the TDOA manifold using the PD-tree projec-

tion.

3. Assign R(i)
t = (1−α)R(k)

t +(`A
t − `(x(i)t)).

3: Weight Updates: Update the weights of each particle according to the Normal

Hedge procedure (see Algorithm 5). Normalize them to one.

4: Dynamics: Propagate the particles through the transition equation x(i)t = g(x(i)t−1).

we’d have one advantage on our side because the Normal Hedge weighting would give

many experts weight zero except for a core group that are outperforming the predictions

of the algorithm itself. Nevertheless, some approximation is necessary, but this sparsity

property will ease the requirements of any approximation. The approach we take will

sample from this large set of experts in a very similar fashion to that of the bootstrap

particle filter described earlier in this chapter.

Just as the particles in a particle filter are a discrete approximation to the pos-

terior density, we will utilize a set of particles to approximate the induced distribution

by Normal Hedge over the set of state sequences. The Normal Hedge algorithm for

TDOA tracking is given in Algorithm 6. Notice that a further simplification is taken to

the problem by only maintaining the discounted cumulative regret

R(i)
t = (1−α)R(i)

t−1 +(`A
t − `

(i)
t) (4.10)

where the parameter α controls how much memory our tracking algorithm should have

in terms of penalizing losses observed in the past. This approximates the need for track-

63

ing sequences of states. Since typically we only want to predict the current state, this is

an acceptable simplification. The weights can then be calculated according to the steps

involved for computing w(i)
t in the Normal Hedge algorithm (see Algorithm 5). What

remains as a critical algorithmic choice is how we compute the loss `(i)t for each particle,

analogous to the decision of the likelihood function in particle filters.

A nice property of this filter (NH-pf) is that the resampling procedure for par-

ticles emerges naturally from the Normal Hedge weighting function. A particle will

be given zero weight whenever its cumulative regret has started to perform worse than

the algorithm itself, and at this moment it is resampled near a particle that has good

historical performance.

Another nice property of NH-pf is that it can still maintain good tracking per-

formance when the loss function has a modeling mismatch with the true observation

process [CFH10]. Chaudhuri et. al show that if a traditional particle filter has a like-

lihood function that mismatches the true underlying process, then its performance will

break down much quicker than the corresponding NH-pf. This final observation could

prove to be advantageous in the TDOA tracking scenario. As stated earlier, choosing a

likelihood function for TDOA tracking is somewhat arbitrary since the process for gen-

erating a PHAT observation from a given source location is extremely difficult to model.

For this tracking problem and many other of practical importance, a model mismatch of

this kind is unavoidable.

TDOA Tracking with Coordinate-Free NH-pf

We now describe how we track TDOAs in a coordinate-free fashion. First, we

expand the state space to be that of the entire TDOA vector (for TAC a 21-dimensional

state space). In addition, we must specify what loss function we will be using to cal-

culate regrets relative to. We will utilize the negative likelihood function described in

Equation 4.7

`
(i)
t (xt ,yt) =−p(yt |x(i)t) (4.11)

As discussed earlier, tracking in this many dimensions becomes difficult, but we

also know that our TDOAs lie on a low dimensional manifold. In Chapters 2 and 3

we discussed PD-Tree based models of the TDOA structure. We again utilize this to

64

Dead Particle

Active Set

Resampled With Added Noise

noise

Denoised Onto The Manifold

1. 2.

3. 4.

Figure 4.1: Depiction of a dead particle resampled and projected back onto the manifold.

alleviate this high dimensional tracking problem. During the resampling step for new

particles, after noise is added to the newly born particle it is projected back onto the

TDOA structure via the PD-Tree model. This process is depicted in Figure 4.1.

First, the corresponding leaf node for the newly born particle is found. Then, the

particle is denoised by projecting it onto the principal components of local piece of the

manifold stored within. The overall effect is a tracking algorithm that is constrained to

have a state-space lie on the low dimensional structure captured by the PD-Tree.

Note that there is a bias variance trade-off as you descend the PD-Tree in terms

of the principle components models stored in each node. The nodes higher up in the tree

have small variance since the bulk of the training data was used to learn the principal

directions. However, the bias is also large at these nodes since a linear model is not

appropriate at this granularity. As you descend the tree the variance increases, whereas

the bias decreases as you approach locally linear regions.

Moreover, the fit from individual nodes may vary across even their own partition

region. Consider a given internal node of the PD-Tree. For a certain region of the

cell’s partition the linear model may be a good fit, whereas in other regions of the cell’s

partition it may be poor. It is clear from this argument that the best node that fits the

65

true TDOA for a given source location will vary with location both across the tree and

possibly in depth as well.

It then makes sense to consider using the entire PD-Tree during the projection

step instead of just the leaves at a fixed depth. A natural way to accomplish this emerges

from the NH-pf resampling scheme by making a slight alteration to the projection step

with the PD-Tree discussed above. After resampling a newly born particle and before

projecting it back onto the manifold via the PD-Tree, first pick a depth uniformly at

random in the PD-Tree. Then, traverse the PD-Tree with this newly born particle to this

depth in the PD-Tree and use the principal components stored in this node.

This random strategy will have the nice property that it will naively find the

correct model depth for the current sound source location over time. Depths that are

chosen that are poor models will have particles die soon thereafter, whereas particles that

are drawn from depths that perform well will survive. We will examine this procedure

in the experiments that follow.

4.4 Experiment: Moving Speaker

The experiments that follow were conducted from recordings of real speakers

talking and moving slowly while facing the array. We describe each individual experi-

ment in detail in what follows.

Setup

To build a PD-tree we first collected a training set of TDOA vectors from our

microphone array. We accomplished this by moving a white noise producing sound

source around the room near typical locations that sitting or standing people would

be interacting with the display. This resulted in approximately 20,000 training TDOA

vectors to which we built a PD-tree of depth 2. In each node of the PD-tree we store the

mean of the training data and the top k = 3 principal directions.

Here are the parameter settings we use for the experiments that follow. We use

m = 50 particles for each type of particle filter examined. The discounting factor for NH

is set to α = 0.05.

66

We made several real audio recordings of a person walking throughout the room

facing the array and talking. We describe each experiment in detail in what follows.

Usage of Manifold Modeling

This first experiment has a person walking and counting aloud while facing the

array. The person’s path goes through the center of the room far from each microphone.

Since TDOAs evolve more slowly when the sound source is far from each microphone

we’d expect this to be well modeled by the root PCA of our PD-tree. We compare using

the root PCA versus no projection step at all for both a standard particle filter (PF) and

the Normal-Hedge particle filter (NH).

Figure 4.2 depicts such a comparison. Here we show tracking results from two

microphone pairs that are typical of the remaining pairs (i.e. two coordinates of the 21-

D TDOA state). In green is shown Zp
t where its magnitude is represented by the size of

the circle marker. The sound source moved in a continuous and slowly moving path so

we’d expect each TDOA coordinate to follow a continuous and slowly changing path as

well. The trackers with the PCA projection step outperform their counterparts without

the projection.

From this single trial run, NH-pca seems to have a slight advantage over PF-pca

from time to time, but the two algorithms are competitive in performance. However, a

more closer examination shows an advantage to NH-pf. When averaged over 25 inde-

pendent runs over this audio recording the NH-pf with pca is slightly more accurate and

clearly stabler than the standard PF. Figure 4.3 depicts the RMSE of each tracker av-

eraged over 25 independent trials. The RMSE is calculated coordinate-wise relative to

the maximum of the PHAT series for each frame. Since the maximum derived TDOA is

often accurate, but sometimes widely inaccurate (especially during periods of silence),

we smoothed each RMSE series using an exponential moving average with α = 0.05. It

is clear from these plots that the pca based methods are outperforming the non-pca ones,

and the NH methods have an advantage over the standard PF methods.

Figure 4.4 depicts the variance of each method as a function of time. For each

time t, first the norm of the state vector was calculated, and then we computed the

variance of this norm across the 25 runs. The variance increases with time for all trackers

67

5 10 15 20 25 30

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0.012
Pair 4

Time (sec.)

T
D

O
A

 (
se

c.
)

zTDOA
PF
NH
PF−pca
NH−pca

5 10 15 20 25 30

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0.012
Pair 10

Time (sec.)

T
D

O
A

 (
se

c.
)

zTDOA

PF

NH

PF−pca

NH−pca

Figure 4.2: Performance of NH and PF with and without using a global PCA projection

for denoising.

68

Figure 4.3: RMSE over 25 independent runs of each of the trackers.

except that of NH-pf with the pca projection. When comparing NH to PF, the NH

trackers have much less variance than their PF counterpart. It’s clear from these results

that the NH-pf with the pca is a very stable and accurate tracker.

Remember that there are only 50 particles to track a state that is 21 dimensional.

There are no dynamics involved in our particle filters, so the resampling stage alone

has to include enough randomness for the source to be tracked as it moves. When the

manifold model is not used the amount of randomness needed is too large for 50 particles

to be able to track on all D dimensions. However, when a model of the manifold is used,

effective tracking results can be had. Moreover, it should be noted that the NH version

uses less randomness since it only resamples when the weight of a particle becomes

zero. Despite this, the NH versions are able to have a competitive performance with

standard particle filters.

Testing Different Manifold Models

The setup of this experiment is exactly the same as the last except the path the

speaker took traveled much closer to some pairs of microphones at certain points in

69

Figure 4.4: Variance over 25 independent runs of each of the trackers.

time. When a sound source is moving close to some set of microphones, the TDOAs

involved with those microphones will change much more rapidly and non-linearly. With

this path we hope to examine the usefulness of deeper nodes in the PD-tree. We will test

the PD-Tree using only the nodes at a fixed depth (d = 0,1,2) and also the randomized

scheme for choosing uniformly among the depths (see discussion in previous section for

a full description of the randomized strategy).

Since the performance of NH was superior when using the global PCA projec-

tion we only examine NH in this experiment. This will allows us to explore the ran-

domized manifold modeling scheme. In a standard particle filter, no benefit is gained

by adopting this randomized strategy since all particles are resampled at each iteration.

Thus, the random strategy in a standard filter can never will allow particles to “gravitate”

towards the correct depth.

Figure 4.5 is a similar figure to that discussed in the previous section. The par-

ticle filtering variants examined here use projections at fixed depth zero (NH-0), one

(NH-1), and two (NH-2). The random strategy is also examined (NH-rand). It is clear

that somewhere between 50s-70s the location of the sound source is modeled poorly by

70

10 20 30 40 50 60 70

−0.01

−0.005

0

0.005

0.01

Pair 19

Time (sec.)

T
D

O
A

 (
se

c.
)

zTDOA
NH−0
NH−1
NH−2
NH−rand

10 20 30 40 50 60 70

−0.01

−0.005

0

0.005

0.01

Pair 21

Time (sec.)

T
D

O
A

 (
se

c.
)

zTDOA

NH−0

NH−1

NH−2

NH−rand

Figure 4.5: Using various depths in the PD-tree as part of the projection step.

71

Figure 4.6: For NH-rand, the PD-tree depths at time t that the m particles have been

sampled from last.

the global PCA at the root and is better modeled by the PCA at level 2. However, it is

only for this short duration where this modeling transition takes place. Depth’s 0 and 1

performed particularly poorly in this region, while depth 2 has a significant advantage.

However, the best performing tracker was one that utilized the entire tree struc-

ture in a random fashion. By allowing particles that died to birth at a random depth,

there was a clear pressure for particles to transition from a depth-0 model to a depth-

2 model rather quickly by NH-rand. This can be seen in Figure 4.6. Here we depict

what proportion of the 50 particles at time t were last sampled from which depth by a

stacked bar graph. Nearly all the particles during this time period that were sampled

from depth-2 are staying alive during this period. This is a rather intuitive result since

a particular node’s PCA model may only be good for tracking in a small region of the

entire 21 dimensional space that its PD-tree node represents. When the sound source

exits this region, some other depth in the tree may become a better model. Using the

randomness over time by NH-rand naturally captures such transitions.

Figure 4.7 shows another recording of a sound source moving at constant speed

72

Figure 4.7: Sweeping path for NH-rand on top 2 principal directions of root PCA.

in a back-and-forth sweeping path. Each sweep starts beyond one end of the interactive

display and continues across the opposite end. This is repeated at various distances

away from the display. The TDOA vectors predicted by NH-rand are projected on the

top 2 principal components of the root PCA. Colors indicate time, dark blue being the

earliest part of the path that started approximately 1m from the display and red is the last

segment of the path approximately 12m away. The change in TDOAs is greatest when

near the microphones on the display resulting in a wide spacing of points. The markers

indicate which of the 3 depths the majority of the NH-rand particles were last sampled

from. In the center of the room the root-PCA performs best, whereas near the display

on the right side depth 2 dominates, and far from the display depth 1 is best.

73

4.5 Delay-and-Sum Beamforming

The implementation of an effective tracking methodology gives more accurate

and stable TDOA estimates from frame to frame. As mentioned before, this allows for

an improved localization system. There are also other benefits of improved accuracy in

TDOAs. Namely, it also allows for a simple beamforming scheme to be effective.

Possibly the simplest of beamforming techniques is the delay-and-sum (DEAS)

beamformer. The idea is to first appropriately delay the signals from each microphone

so that the desired speech is aligned, and then sum them together to enhance this speech

and suppress sounds from other locations. Let xi(t) be the time-domain signal for mi-

crophone i. Given the TDOA vector ∆i j we can determine these appropriate delays and

sum according to b(t) = x1(t)+∑
k
i=2 xi(t−∆1i).

After appropriate alignment of the desired sound, other sounds arriving from

different locations are often misaligned and decorrelated, meaning that when summed

they tend towards zero. Moreover, the aligned speech is averaged giving a smaller vari-

ance in its response. A more detailed examination of DEAS beamforming can be found

in [JD01].

A stable TDOA vector with respect to time is essential for DEAS beamformers.

If TDOAs change rapidly with respect to time, the audio can appear very poor and

choppy. With the NH-rand particle filter the TDOA is both stable with respect to time

and follows closely the desired true TDOA. Thus, we are able to beamform to the user’s

speech effectively from frame to frame. A DEAS method is implemented in TAC, and

the beamformed audio is used as the audio for the recorded video whenever a user

initiates a recording.

An example of a recording from a single microphone and that of the DEAS

beamformer is given in Figure 4.8. The example here is a real recording of a speaker

counting after the tracker has converged on their location. A single channel is shown

in blue, while the DEAS output is shown in red. During periods of silence between the

spoken numbers it is clear that the background noise is better suppressed than on the

single channel. In fact, the SNR improvement of the beamformer over the SNR of a

single channel is 7.37 dB. More complete SNR results are presented in Table 4.1.

74

Figure 4.8: Overlay of a single channel (blue) with the output of the beamformer (red)

on a signal of a speaker counting.

Table 4.1: SNR for DEAS beamformer and a single channel from TAC recordings.

Channel 1 DEAS Improvement
6.68 dB 14.05 dB 7.37 dB

75

Acknowledgements

This chapter is based on unpublished work that is currently in submission as of

the writing of this thesis. It is joint work with Yoav Freund. The dissertation author is

the primary investigator and author of this work.

Chapter 5

Hardware Solutions

As we observed in the discussion of beamforming in Chapter 4, the analog mi-

crophones used in TAC are fraught with noise interference. This corruption can be

viewed clearly especially when no signal is present: we would expect a flat signal, but

instead we see interference (see single channel from Figure 4.8). Although there is

noise from background elements such as the air conditioning and other ambient noise,

the primary cause of this interference is from distortions occurring during the transmis-

sion of the analog signal from each microphone to the digitizer. In this section we study

an implementation on an FPGA of the microphone capture component of the localiza-

tion system in TAC. The system we present includes the use of microelectromechanical

systems (MEMS) microphones which digitize the audio signal on-chip.

These MEMS microphones are very small (2-3mm) and are typically used in

small consumer electronic devices such as laptops and cell phones. An FPGA process-

ing the audio signal from these microphones are perfect for use in TAC for a variety

of reasons. First, since these microphones digitize the audio signal on-chip, the trans-

mission of the signal is very robust to interference from other nearby electronics. This

is why MEMS microphones are excellent in electronic devices. Since they digitize the

signal on-chip, the nearby other electrical components do not interfere as the digital sig-

nal is being transported across the device (e.g. along wires from the microphone to the

audio codec on the mother board). Analog microphones, the type TAC currently uses,

are fraught with this kind of interference.

Another reason to consider such an FPGA based device is that it allows for

76

77

Figure 5.1: FPGA and MEMS microphones. FPGA is attached via PCIe slot of a Linux

workstation with 6 MEMS microphones (left). Back (upper right) and front (lower right)

view of a single MEMS microphone. The pressure sensitive hole for the microphone is

labeled with a yellow arrow.

cheaply deploying many such setups. As mentioned earlier, to localize well across a

large area, the microphone array needs to have a large aperture (i.e. microphone ele-

ments should be placed far apart). The FPGA setup will act as a microphone capture

system, including digitization of the signal, allowing for several replicas of the setup to

be deployed across a room. The cost of such a device is also much improved since we

can utilize low-end FPGAs. The MEMS microphones are about $2 each and each board

is about $300. This is a much improved cost compared to the current TAC setup which

has a $2000 digitizer and a $100 cost for each analog microphone.

A special thanks must be extended to Mr. Thomas Raymond at Qualcomm Re-

search for helping us acquire these MEMS microphones and mounting them on a board

that could drive the digitized signal across a 15’ line. This allows each microphone to

be placed up to 15’ away from the board itself (see Figure 5.1 for a picture of the FPGA

and up-close MEMS microphone).

The rest of the chapter proceeds as follows. We first briefly introduce FPGAs

and MEMS microphones. We then discuss the design and engineering challenges that

78

needed to be overcome in order to capture the MEMS microphone audio and process it

on the FPGA board. We proceed by describing an experiment of the frequency sensitiv-

ity of the MEMS microphone compared to that of a typical analog microphone.

5.1 FPGAs and MEMS

A field-programmable gate array (FPGA) is an integrated circuit consisting of

user programmable logic cells. Each cell can be configured by the user to do a variety

of simple functions (e.g. simple boolean logic of two input signals). Multiple cells can

be organized together to do tasks of varying complexity ranging from a simple MUX to

a complete microprocessor. The user programs an FPGA using a hardware description

language (HDL). We will utilize a Xilinx Vertex 5 series FPGA in the discussion that

follows and most of the logic was programmed with verilog, an HDL language.

FPGAs can often implement a task more efficiently and consuming less power

than by programming the same task in software on a general purpose CPU. Typical

uses include ASIC design prototyping and computer hardware emulation, but there has

been an upsurgence in their popularity in signal processing domains as well. The main

attraction is the improved efficiency coupled with decreased power consumption when

compared to a GPGPU or a pure software based approach.

To our FPGA we connect 6 ADMP421 omnidirectional MEMS microphones

manufactured by Analog Devices (see Figure 5.1). MEMS (MicroElectrical-Mechanical

System) technology refers to a class of electronic devices made up of components that

are very small (< 0.1mm each). To make devices at this scale not only did there have

to be a revolution in the manufacturing process, but also a revolution in the design since

the physical constraints on the system are much different at this tiny scale.

A MEMS microphone is a microphone etched into silicon that works very similar

to a condenser microphone. Recall that a condenser microphone has a pressure sensi-

tive plate that acts as one side of a capacitor and vibrations from air pressure changes

cause the distance between plates and thus the voltage maintained across the plates to

change. The MEMS microphone operates in the same way, but it also has an analog-to-

digital converter (ADC) etched right next to the condenser microphone. Thus, the signal

79

Linux
Workstation

6 MEMS
Microphones

Board

FPGA

PCIe
Endpoint

PCIe
Connection

PLB
Bus

External
Pins

BRAM
Memory

Bitstream
Grabber

Figure 5.2: Design layout of the FPGA and MEMS microphone audio capture setup.

coming out of the microphone is digital making it much more robust to analog inter-

ference. This is why MEMS microphones are recommended for use in devices like cell

phones and other small devices where electronic components are packed tightly together

causing significant analog interference.

5.2 Hardware and Software Design

The task at hand is to be able to record the digital bitstreams coming from each of

the six microphones and store it for future use. The ADMP421 MEMs microphones are

attached to the FPGA through the external expansion pins on the board. There are four

important connectors per microphone: the data line which carries the digital signal to

the FPGA, the clock line which takes the clock from the FPGA to the microphone, and

a power and ground lines. In addition, the FPGA is connected to a Linux workstation

via a PCIe slot for communicating data in either direction. The primary use of this

communication will be for moving the microphone digitized data from the FPGA to the

workstation for further processing. A depiction of this setup can be seen in Figure 5.2

The FPGA drives a clock of 2.4 MHz across the pins to each of the 6 MEMS

80

microphones. When the clock is up, the bitstream coming off each data line is read by

the Bitstream Grabber module on the FPGA. This module contains buffers to interleave

the bits from each channel and temporarily store them. When these buffers become full,

the module then writes them off into a larger block of BRAM memory. This memory

is attached to a Processor Local Bus (PLB) bus which connects the BRAM with the

PCIe endpoint. The PCIe endpoint can take requests for reading or writing to this block

of BRAM from the workstation. This allows the workstation to communicate with the

FPGA through the BRAM block and, in particular, fetch the bitstream data across the

PCIe connection.

The binary bitstream coming from each of the MEMS microphones is produced

by the ADC components of each. The bitstream is a quantized encoding of the full

analog signal. The particular encoding used by these microphones is a sigma delta

modulation, which requires that the output frequency of the ADC be much higher (2.4

MHz) than the desired final sampling rate of the analog signal (e.g. 16 kHz for our audio

processing purposes). If we treat a 0 in the output of the sigma delta modulator as -1 and

a 1 as +1, then the average level (taken frame-wise) of this stream represents the analog

input signal’s level. A high sampling rate is desired by the ADC in order to get good time

resolution on the analog signal. In fact, the encoding our MEMS microphones use is a

4th-order sigma-delta modulation, which follows the same principal as described above,

but uses feedback loops to better mediate the inherent noise caused due to sampling at

such a high rate.

Whenever a recording of the 6 channels of audio is desired, a C program on the

workstation is initiated which grabs the bitstream stored in BRAM. The Grabber module

writes to BRAM whenever a new 32-bit word of data is ready to be stored. A naive

implementation of the workstation program to record the bitstream data would be to

simply grab all of BRAM, however, this would only allow for very short recordings since

filling up BRAM corresponds to only a fraction of a second of audio recordings. Instead,

the workstation continually polls the BRAM at a particular location which denotes that

either the 1st half of BRAM is full of fresh data and now it is writing in the 2nd half or

vice versa. The workstation polls this flag location in BRAM and grabs the appropriate

half of BRAM whenever it changes. This allows for the workstation to continuously

81

Figure 5.3: Visual comparison of same counting sequence on TAC analog microphone

(top) and MEMS microphone (bottom).

grab the bitstream data and allows for recordings that are as long as desired.

It is also worth mentioning that the FPGA board has an Intel AC97 DAC com-

ponent on it. This allows for 16 bit audio samples to be pushed to it and it will create an

analog microphone signal out of the headphone jacks on the FPGA board. By using the

FPGAs internal C emulator (microblaze) and implementing the delta-sigma demodula-

tion in the Grabber, this was utilized successfully. The end result is that standard record-

ing programs on the workstation could be used to record a single channel of audio from

the MEMS by connecting the headphone jacks between the FPGA and workstation.

5.3 Experiment: Comparison with Analog Microphones

We start with a simple visual comparison of the audio signals between an analog

microphone currently being used on TAC and that of the MEMS. A recording of a user

82

Figure 5.4: Coherence of two different standard analog microphones and our MEMS in

a noiseless chamber.

counting was done on each and the results are shown in Figure 5.3. Examining the

figure it’s visually clear that the background noise level of the microphone is much

lower compared to the signal being captured. In fact the SNR in this recording is quite

good at 24.7 dB, compared to the results in the beamforming discussion of 6.68 dB.

We also examined the frequency response quality of the MEMS microphone

compared to standard analog microphones. With help from Raymond de Callafon’s lab

in the MAE department at UC San Diego we were able to do this testing in a noiseless

chamber for controlling external interferences. The analog microphones we used were

not near any electronics equipment that could result in analog interference, so this ex-

periment represents the best case scenario of each type of microphone. A speaker in

the chamber repeatedly plays a short segment of white noise, which should have a flat

frequency response. The coherence for each frequency band is then measured between

the known played signal and that on each of the microphone recordings. The coherence

83

at frequency f is a correlation measure defined by averaging over k measurements as

follows,

C(f) =
|∑i Xi(f)Yi(f)∗|2

∑i |Xi(f)Xi(f)∗|∑i |Yi(f)Yi(f)∗|
(5.1)

where X is the reference signal and Y is the measured signal at the microphone. A

coherence near 1 at f means that the frequency response at f captures all of the original

signal information (up to a scale factor).

The results from this white noise coherence experiment are given in Figure 5.4.

The MEMS microphone has a very good response in the frequency range of human

speakers (up to ∼ 3 kHz), but inferior response at much higher frequencies than its

analog counterparts. This may be due to the physical size of the MEMS microphone

and the small pressure sensitive hole (see Figure 5.1). Further investigation is needed

here to examine why the performance is poor at higher frequencies.

It is also worth noting that the speaker used to produce the white noise was

unable to accurately produce the low frequency components of the reference signal.

This is why poor performance can be observed in all microphones at these frequencies.

Nevertheless, since these microphones are intended for use in small consumer devices,

such as cell phones or laptops, there is no need for an accurate response at such low or

high frequencies. Human speech is the target for these application and it is well captured

by these microphones.

Chapter 6

The Future of TAC

The idea for TAC was a confluence among prototypes being developed simul-

taneously. Since its initial public unveiling on the 4th floor of the CSE building, many

different users have recorded numerous hours worth of videos. However, TAC has re-

mained something of a prototype for sometime and to take it to the next level and attract

even more attention is the task moving forward. In this chapter we outline directions for

continued research in TAC with special attention paid to how to attract users who want

to interact for a longer duration and in greater complexity.

We start by discussing several directions for technical improvements in TAC.

First, we discuss how to offload some of the computational load onto the preliminary

FPGA work discussed in Chapter 5. Second, we discuss future technical problems that

deserve attention in the audio domain with respect to TAC. Lastly, we discuss what

we believe the future for user applications with TAC should be including any technical

problems that remain to be solved in order to deploy them.

Continuing the MEMS and FPGA Work

The main resource of contention in the current TAC setup is compute cycles.

Although the video processing components consume a lot of the CPU cycles, approxi-

mately 1 of the 4 CPU cores in the Mac workstation is required for the audio processing.

This includes grabbing the audio from the device driver, processing it for PHAT calcu-

lation (FFTs), and finally updating the NH-rand particle filter and making a pan and tilt

84

85

prediction. During speech periods, all of this computation is performed at a rate of 40

times per second.

By furthering the work with the FPGA much of this computational load can be

alleviated from the central Mac workstation. The next obvious step is to implement the

PHAT computations on the FPGA itself. The major technical hurdle here is in appropri-

ately implementing the FFTs involved, and in making sure the timing of the entire design

is correct. Of course full floating point arithmetic is notoriously difficult to implement

efficiently on FPGAs, so a fixed point implementation would have to be employed.

Once PHAT correlation series have been calculated, implementing the NH-rand

particle filter should be the next priority. With both of these implemented nearly all

of the audio processing could be offloaded from the workstation onto the FPGA. The

required information that would need to be passed between the workstation and FPGA

would be any directives for pointing the camera and the beamformed DEAS audio for

insertion into videos.

By implementing this not only would a core become free on the workstation for

other prototyping and testing, but also we would have a much more extensible design

for the audio capturing hardware. There would be no restriction on the number of such

FPGA units that we could deploy. Ideally, the necessarily communication between the

FPGA and the workstation could be done through a wireless network. Then, we could

place several audio capture units around the room to get better coverage. Recall the

current implementation of TAC is restricted to microphones being connected to the dig-

itizer. By digitizing the signals on the FPGA itself we have not only a mobile digitizer,

but also an audio localization unit.

Improved Beamforming and Speech Recognition

Besides the FPGA work, there is also significant room for improvement of other

aspects of the audio interaction side of TAC - namely in improved beamforming and

speech recognition. Speech recognition in particular is a modality that is severely lack-

ing in TAC. However, both beamforming and speech recognition are tightly intertwined.

There is a significant line of research that attempts to do speech recognition at

86

a distance through beamforming [JD01, WM09, FAG08, ZLR10]. However, the perfor-

mance in word error rates of such systems suffer when compared to those with close

talking microphones. Nevertheless there is a market for success in automatic speech

recognition (ASR) at a distance especially in smart environments and meeting rooms.

When multiple speakers are simultaneously talking a microphone array can beamform-

ing to each speaker before performing the ASR whereas a single microphone cannot.

The current implementation of ASR with TAC simply uses the Mac OS X built

in speech command recognizer and feeds in the DEAS beamformed audio. The ini-

tial attempts were with simple keyword spotting on a small vocabulary consisting of

{on,off,left,right,up,down,yes,no,zero,one,two,three}. The performance of the system

has an error rate too large to be viably useable. It is worth investing improving the beam-

forming and possibly a specialized keyword spotting model. Improved control could be

utilized such as replacing the on-screen TAC buttons with simple voice commands.

Future User Applications

Despite the discussion above of improving some of the backend technologies of

TAC, it is worth emphasizing that the future of TAC should be driven by novel user-

application ideas. The audio localization unit had a clear problem to solve: accurately

pointing the PTZ camera at human sounds so that the user is contained within the field

of view. Simply improving ASR or beamforming, for example, without a particular

application goal in mind is a disheartening endeavor. Moreover, it doesn’t help to serve

TAC’s original purpose which is to draw the interest of personnel and other visitors of

the UC San Diego CSE building.

An interesting such user-application would be to create a touchless interface that

could replace the mouse and keyboard. In fact, this is a current direction of research

by the team of graduate students still working on TAC. Tracking points of interest in

video accurately and with very fast response are the key to solving this problem. The

latter necessity of a fast response time is what makes this problem ideal for an FPGA

implementation. By tracking these hand movements, accurate mouse movements and

possibly accurate keyboard input using a virtual keyboard becomes possible. The in-

87

terface is then very similar to a touchscreen device, such as an iPhone, but without the

“touch” element. The technical problem of interest is in accurately tracking a series of

interest points so that mouse movements feel natural to the user.

An even simpler application that would directly serve the personnel of the build-

ing is a touchless music browsing and playing application. Every Friday during the

school year the personnel of the building have a social hour directly in front of TAC.

Turning TAC into a virtual jukebox during this time is a potential need that is waiting to

be filled. The audio localization unit is rendered near useless during this period because

of the many different conversations that occur simultaneously (only “near” since this is

a very difficult instance of the famous cocktail party problem). However, video process-

ing could be used as an interface for controlling the jukebox, even with the current TAC

technology that exists. In fact, even the current on-screen buttons used by TAC could

act as an interface to the jukebox. However, ideally something like a touchscreen based

phone interface would be nice - swiping gestures to browse through songs, and maybe

buttons for pause/play.

These simple directions are nice goals for TAC’s future in terms of their ambition

and usefulness to the community. By solving these problems successfully, many further

doors open up including a holy grail of sorts: more intricate video games. This is a

clear direction for making TAC fun and interesting (it is worth noting that a simple

game currently exists with TAC by popping bubbles with skin regions). The work with

TAC continues on as of the writing of this thesis. Current graduate and undergraduate

students will hopefully create new and exciting things for frequenters of TAC’s lobby,

some of which will hopefully utilize the audio localization technology presented in this

dissertation.

Bibliography

[AMGC02] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions on signal processing, 50(2):174–188, 2002.

[BAS95] M.S. Brandstein, J.E. Adcock, and H.F. Silverman. A closed-form method
for finding source locations from microphone-array time-decay estimates.
Acoustics, Speech, and Signal Processing, IEEE International Conference
on, 5:3019–3022, 1995.

[BS05] S.T. Birchfield and A. Subramanya. Microphone array position calibra-
tion by basis-point classical multidimensional scaling. Speech and Audio
Processing, IEEE Transactions on, 13(5):1025–1034, Sept. 2005.

[BVMA09] A. Badali, J.-M. Valin, F. Michaud, and P. Aarabi. Evaluating real-time au-
dio localization algorithms for artificial audition in robotics. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Confer-
ence on, pages 2033 –2038, 10-15 2009.

[CEJ+09] Sunsern Cheamanunkul, Evan Ettinger, Matt Jacobsen, Patrick Lai, and
Yoav Freund. Detecting, tracking and interacting with people in a public
space. In ICMI-MLMI ’09: Proceedings of the 2009 International Confer-
ence on Multimodal Interfaces, 2009.

[CFH09] K. Chaudhuri, Y. Freund, and D. Hsu. A parameter-free hedging algorithm.
In Advances in Neural Information Processing Systems 22, pages 297–305.
2009.

[CFH10] Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. An online learning-
based framework for tracking. In UAI 2010, Proceedings of the 26th Con-
ference in Uncertainty in Artificial Intelligence, 2010.

[CH94] Y.T. Chan and K.C. Ho. A simple and efficient estimator for hyperbolic
location. Signal Processing, IEEE Transactions on, 42(8):1905 –1915,
aug 1994.

88

89

[DF08] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low di-
mensional manifolds. In STOC ’08: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, 2008.

[DSY07] Hoang Do, H.F. Silverman, and Ying Yu. A real-time srp-phat source lo-
cation implementation using stochastic region contraction(src) on a large-
aperture microphone array. In Acoustics, Speech and Signal Processing,
2007. ICASSP 2007. IEEE International Conference on, volume 1, pages
I–121 –I–124, 15-20 2007.

[EF08] Evan Ettinger and Yoav Freund. Coordinate-free calibration of an acousti-
cally driven camera pointing system. In ICDSC 2008: Second ACM/IEEE
International Conference on Distributed Smart Cameras, 2008.

[FAG08] Jonathan G. Fiscus, Jerome Ajot, and John S. Garofolo. The rich transcrip-
tion 2007 meeting recognition evaluation. pages 373–389, 2008.

[FBK+99] W.T. Freeman, P.A. Beardsley, H. Kage, K. Tanaka, C. Kyuman, and
C. Weissman. Computer vision for computer interaction. In ACM SIG-
GRAPH, 1999.

[Foy76] W.H. Foy. Position-location solutions by taylor-series estimation.
Aerospace and Electronic Systems, IEEE Transactions on, AES-12(2):187
–194, march 1976.

[FR95] W.T. Freeman and M. Roth. Orientation histograms for hand gesture recog-
nition. In Intl. Workshop on Automatic Face and Gesture Recognition,
1995.

[Fri87] B. Friedlander. A passive localization algorithm and its accurancy analysis.
Oceanic Engineering, IEEE Journal of, 12(1):234 – 245, jan 1987.

[FW95] W.T. Freeman and C. D. Weissman. Television control by hand gestures.
In Intl. Workshop on Automatic Face and Gesture Recognition, 1995.

[GG03] F. Gustafsson and F. Gunnarsson. Positioning using time-difference of ar-
rival measurements. In Acoustics, Speech, and Signal Processing, 2003.
Proceedings. (ICASSP ’03). 2003 IEEE International Conference on, vol-
ume 6, 6-10 2003.

[GS08] M.D. Gillette and H.F. Silverman. A linear closed-form algorithm for
source localization from time-differences of arrival. Signal Processing Let-
ters, IEEE, 15, 2008.

[GSS93] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE proceedings. Part
F. Radar and signal processing, 140(2):107–113, 1993.

90

[HBEM01] Yiteng Huang, J. Benesty, G.W. Elko, and R.M. Mersereati. Real-time
passive source localization: a practical linear-correction least-squares ap-
proach. Speech and Audio Processing, IEEE Transactions on, 9(8):943
–956, nov 2001.

[HLKB05] E. Hörster, R. Lienhart, W. Kellermann, and J.-Y. Bouguet. Calibration
of visual sensors and actuators in distributed computing platforms. In
VSSN ’05: Proceedings of the third ACM international workshop on Video
surveillance & sensor networks, pages 19–28, New York, NY, USA, 2005.
ACM.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001.

[JD01] M. Brandstein J. DiBiase, H. Silverman. Robust localization in reverber-
ant rooms. In M. Brandstein and D. Ward Microphone Arrays. Springer-
Verlag, 2001.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[KC76] C. Knapp and G. Carter. The generalized correlation method for estimation
of time delay. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 24(4), aug 1976.

[LJ07] E.A. Lehmann and A.M. Johansson. Particle filter with integrated voice
activity detection for acoustic source tracking. EURASIP J. Appl. Signal
Process., 2007(1):28–28, 2007.

[LS10] T. Li and W. Ser. Three dimensional acoustic source localization and track-
ing using statistically weighted hybrid particle filtering algorithm. Signal
Process., 90(5):1700–1719, 2010.

[max] Max/msp website. http://www.cycling74.com.

[Mil68] Robert B. Miller. Response time in man-computer conversational trans-
actions. In AFIPS ’68 (Fall, part I): Proceedings of the December 9-11,
1968, fall joint computer conference, part I, pages 267–277, 1968.

[MLH08] I. McCowan, M. Lincoln, and I. Himawan. Microphone array shape cal-
ibration in diffuse noise fields. Audio, Speech, and Language Process-
ing, IEEE Transactions on [see also Speech and Audio Processing, IEEE
Transactions on], 16(3):666–670, March 2008.

91

[MMRC92] J. D. Mackinlay, Jock D. Mackinlay, George G. Robertson, and Stuart K.
Card. The information visualizer: A 3d user interface for information re-
trieval. In Advanced Visual Interfaces, AVI, pages 173–179, 1992.

[OS94] M. Omologo and P. Svaizer. Acoustic event localization using a
crosspower-spectrum phase based technique. In Acoustics, Speech, and
Signal Processing, 1994. ICASSP-94., 1994 IEEE International Confer-
ence on, volume ii, pages II/273 –II/276 vol.2, 19-22 1994.

[OS96] M. Omologo and P. Svaizer. Acoustic source location in noisy and rever-
berant environment using csp analysis. In Acoustics, Speech, and Signal
Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE Inter-
national Conference on, volume 2, pages 921 –924 vol. 2, 7-10 1996.

[PKV08] Pasi Pertilä, Teemu Korhonen, and Ari Visa. Measurement combination
for acoustic source localization in a room environment. EURASIP J. Audio
Speech Music Process., 2008:1–14, 2008.

[RD04] V.C. Raykar and R. Duraiswami. Automatic position calibration of mul-
tiple microphones. Acoustics, Speech, and Signal Processing, 2004. Pro-
ceedings. (ICASSP ’04). IEEE International Conference on, 4:iv–69–iv–72
vol.4, 17-21 May 2004.

[RS00] Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduc-
tion by Locally Linear Embedding. Science, 290(5500):2323–2326, 2000.

[SA87] J. Smith and J. Abel. Closed-form least-squares source location estima-
tion from range-difference measurements. Acoustics, Speech and Signal
Processing, IEEE Transactions on, 35(12):1661 – 1669, dec 1987.

[Sim] Simulink - simulation and model-based design. http://www.mathworks.
com/products/simulink/.

[SL06] P. Stoica and Jian Li. Lecture notes - source localization from range-
difference measurements. Signal Processing Magazine, IEEE, 23(6):63
–66, nov. 2006.

[SMO97] P. Svaizer, M. Matassoni, and M. Omologo. Acoustic source location in
a three-dimensional space using crosspower spectrum phase. In ICASSP
’97: Proceedings of the 1997 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP ’97) -Volume 1, page 231,
Washington, DC, USA, 1997. IEEE Computer Society.

[SSP05] J.M. Sachar, H.F. Silverman, and W.R. Patterson. Microphone position and
gain calibration for a large-aperture microphone array. Speech and Audio
Processing, IEEE Transactions on, 13(1):42–52, Jan. 2005.

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/

92

[SYSP05] H.F. Silverman, Ying Yu, J.M. Sachar, and II Patterson, W.R. Performance
of real-time source-location estimators for a large-aperture microphone ar-
ray. Speech and Audio Processing, IEEE Transactions on, 13(4):593 – 606,
july 2005.

[TPC09] Fotios Talantzis, Aristodemos Pnevmatikakis, and Anthony G. Constan-
tinides. Audio-visual active speaker tracking in cluttered indoors environ-
ments. Trans. Sys. Man Cyber. Part B, 39(1):7–15, 2009.

[VJ01] Paul Viola and Michael Jones. Robust real-time object detection. In Inter-
national Journal of Computer Vision, 2001.

[VKD09] Nakul Verma, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial par-
tition trees are adaptive to intrinsic dimension? In UAI 2009, Proceedings
of the 25th Conference in Uncertainty in Artificial Intelligence, 2009.

[WC97] H. Wang and P. Chu. Voice source localization for automatic camera point-
ing system in videoconferencing. In ICASSP ’97: Proceedings of the 1997
IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP ’97) -Volume 1, page 187, Washington, DC, USA, 1997. IEEE
Computer Society.

[WLW03] D.B. Ward, E.A. Lehmann, and R.C. Williamson. Particle filtering algo-
rithms for tracking an acoustic source in a reverberant environment. Speech
and Audio Processing, IEEE Transactions on, 11(6):826 – 836, 2003.

[WM09] Matthias Wölfel and John McDonough. Distant Speech Recognition. Wi-
ley, 1. edition, 2009.

[WZsH03] Juyang Weng, Yilu Zhang, and Wey shiuan Hwang. Candid covariance-
free incremental principal component analysis. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 25:1034–1040, 2003.

[ZLR10] Erich Zwyssig, Mike Lincoln, and Steve Renals. A digital microphone ar-
ray for distance speech recognition. In International Conference on Acous-
tics Speech and Signal Processing (ICASSP), pages 5106–5109, 2010.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	The Automatic Cameraman (TAC): Hardware
	The Automatic Cameraman (TAC): User Interface
	The Automatic Cameraman (TAC): Software Design
	Audio Localization in TAC
	Thesis Organization

	Tree-based Manifold Models
	Random Projection Trees
	Principal Direction Trees
	Case Example: Rotating Teapot
	Case Example: TDOA Manifold

	Audio Localization
	Time-delay Estimation
	Related Work
	Coordinate-Free Localization
	Experiment: Grid Dataset
	Experiment: Lifelong Learning

	Tracking
	Particle Filters
	Related Work
	Normal Hedge Based Particle Filter
	Experiment: Moving Speaker
	Delay-and-Sum Beamforming

	Hardware Solutions
	FPGAs and MEMS
	Hardware and Software Design
	Experiment: Comparison with Analog Microphones

	The Future of TAC
	Bibliography

