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EPIGRAPH

Explore the world.

Nearly everything is really interesting

if you go into it deeply enough.
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ABSTRACT OF THE THESIS

An introduction to quantum computing for high energy physics

by

Davide Provasoli

Master of Science in Physics

University of California San Diego, 2020

Tongyan Lin, Chair

Applications of quantum computing to high energy physics (HEP) is a relatively new

field of research. As such, the relevant literature is not well organized in one place and a clear

road-map for people approaching the field is not currently available. Addressing this issue was

the main motivation for this article, which is intended a pedagogical introduction to the field and

specifically to our research direction, i.e. application of quantum computing to parton shower

event generators, with the hope of more people becoming interested in exploring this path. Our

paper on the subject, “A quantum algorithm for high energy physics simulations” [8], is the

subject of chapter 4. I hope this article can provide a direct path for people familiar with quantum

mechanics and quantum field theory to start reading papers or conducting research in this area

xi



of quantum computing applications in HEP. In this regard, the quantum algorithm we present

in Chapter 4, can serve as an example of development of a novel efficient quantum algorithm to

solve a problem in a particle physics model.
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Chapter 1

Introduction

1.1 Historical introduction

Quantum mechanics was born at the beginning of the twentieth century in order to resolve

problems which didn’t seem reconcilable with physical theories available at the time, i.e. what

we now call classical physics. In his 1900 solution of the black-body problem, Max Planck had to

assume the existence of electromagnetic oscillators with quantized energy states in order to derive

his radiation spectrum formula which matched observations and avoided the so-called ultraviolet

catastrophe. In 1905, inspired by Planck’s work, Albert Einstein explained the photoelectric effect

by postulating that the energy of light is emitted and absorbed in discrete packets, called quanta.

This energy would be proportional to the frequency of the radiation, while higher intensity would

correspond to a higher number of these quanta of light.

It took until the late 20’s and a generation of talented physicists, among which Erwin

Schrödinger, Werner Heisenberg and Max Born, for the formalism of the new theory to be

developed and for quantum mechanics to be established as a novel description of the atomic

world. Meanwhile, the mathematical formalism continued to be advanced through the works of

Paul Dirac, David Hilbert, John von Neumann and others through the first half of the century.
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Quantum mechanics, now a well tested and accepted physical theory, has rules and

principles quite different from the more intuitive ones of classical physics. It offers a probabilistic

view of reality instead of a deterministic one, where systems have a probability distribution which

describes how likely it is to evolve into the accessible states. Any time we make a measurement,

we interact with the system and in doing so we force it to ”collapse” into one of the possible states.

If we prepared many identical systems and repeated the same measurement over and over,we

wouldn’t obtain the same result each time and the distribution of outcomes would approach the

probability distribution mentioned above. What’s interesting is that a quantum system can evolve

into multiple accessible states simultaneously (we say the system is in a superposition of these

states) until a measurement is made and one state is thus probabilistically selected. Once the

measurement is made, further measurements will yield the same result with unit probability.

The fact that a system can be in two different states at the same time, though unintuitive, is an

indispensable feature of the theory and, as we shall see, one of the keys for efficient quantum

computation. Furthermore, in the quantum theory quantities such as energy and momentum

of bound systems can only take on discrete values, and there are fundamental limits on how

accurately we can tell the value of certain physical quantities (this is known as the uncertainty

principle). Quantum mechanics was later combined with special relativity to correctly model

free relativistic particles, and then expanded into quantum field theory, the framework used to

describe systems with a variable number of particles, which are now characterized by excitations

of underlying fields. In particle physics, quantum field theory provides models for relativistic

sub-atomic particles and their interactions.

Once quantum mechanics was established from a theoretical point of view, physicists

quickly began to work on its applications in the laboratory, which resulted in priceless devices

such as lasers and transistors. Until the 1970s however, such applications were limited to bulk

samples consisting of many quantum mechanical systems (e.g many quantum particles) which as

a whole possessed quantum properties (think of super-conductors for example). Since the 70’s
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though, physicists started to have the first successes in controlling single quantum systems and

were able for instance to isolate a single atom from the surrounding environment using an ”atom

trap”, to then probe different aspects of its behavior. Besides the purely scientific interest of such

pursuits, control over single quantum systems proves to be indispensable to harness the power of

quantum computation.

Meanwhile, with the advent of computers and computer science, scientists started using

the new machines to simulate the natural world and the question quickly arose as to what is the

best computer to simulate physical models. The Church-Turing thesis states that any algorithm

or model of computation can be also solved efficiently with a (probabilistic) Turing machine.

Therefore the Turing machine constitutes a universal computer, well suited for all computations.

Of course these computations are still limited by the available number of interconnected bits and

the complexity of the problem to simulate, and the struggles of simulating quantum systems which

can find themselves in (and evolve into) multiple states simultaneously, became quickly apparent.

Take for instance a system of N electrons, which can be in one of two spin states (spin up and

spin down). There are 2N possible initial configurations and according to quantum mechanics

the system can be in a superposition of all of these states, all of which would simultaneously

evolve if we interacted with the system without making measurements (for example by shining

light of given frequency onto the electrons). With a classical computer the evolution of each state

must be carried out separately and we can thus see how the complexity grows exponentially and

quickly becomes unmanageable for realistic quantum systems which often involve a huge number

of atoms or sub-atomic particles.

In the early 1980s Richard Feynman was among the first to ponder the idea of simulating

physics with an entirely different kind of machine, one whose components are inherently quantum,

and the closing words to his 1982 paper [1] ”Simulating Physics with Computers” have now

become a must-have for papers and seminar talks in the field of quantum computation and

quantum information - they read ”nature isn’t classical, dammit, and if you want to make a
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simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful

problem, because it doesn’t look so easy”.

Since the 1980s the field of quantum computing has grown significantly and several

models of quantum computation have been developed, the most widely used and studied being

the digital quantum circuit model, which is based on quantum bits (or qubits) and quantum logic

gates. A qubit is the quantum version of the familiar bit of classical computers, meaning it can be

in a 1 state or a 0 state but also in any superposition of the two, though the result of a measurement

will always yield either a 1 or a 0 state. Ideally, many qubits would be interconnected, similarly to

bits in regular computers, and then manipulated through quantum operations in order to carry out

computations, taking advantage of the principles of superposition and entanglement (the details

of how quits and quantum operations work in practice will be explored later).

From an experimental point of view qubits have been realized in many different fashions,

the two most common ones to-date being trapped ions or a small superconducting circuits, both

of which can be quantum mechanical systems with only two accessible states. Scientists have

encountered many challenges in the physical realization of quantum computers, especially because

the quantum systems used as qubits must be well isolated from the surrounding environment,

in order to preserve their state and encoded information, while at the same time being easy

to manipulate with precision in order to perform quantum computations. Clearly, these two

requirements don’t easily coexist, making for a complex experimental problem, and today, state of

the art quantum computers by Google, IBM and others have around 50 working qubits. Connecting

the available qubits presents another technical challenge and limit to quantum computations, with

qubits in current quantum machines being able to ”talk” directly only to a few the available qubits.

From a more theoretical perspective, designing algorithms for quantum computers is also

particularly challenging. In their book ”Quantum Computing and Quantum Information” [2]

(undoubtedly the most popular book in the field) Nielsen and Chuang list two main reasons for

this. The first reason is that we as humans have intuition for the classical world but very little
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for the quantum one, which results in a tendency to think of algorithms that are well suited for

classical, and not quantum, computers. The second reason is that according to the concept of

universal computation, any algorithm can be simulated with a (probabilistic) Turing machine

and therefore a quantum algorithm is truly interesting and applicable only if it is better than any

existing classical algorithm, meaning that it must be able to carry out the same computation

employing less resources. Some classical algorithms, though doable in principle on a Turing

machine, might in practice end up taking an unreasonable amount of time, of the order of millions

or even billions of years. We usually say these algorithms are unsolvable and have exponential

complexity in the number of resources, meaning that if we linearly increased input resources

(e.g. if we were trying to factor an integer we doubled or tripled the integer) the time required to

conduct the computation would increase exponentially, making the problem quickly intractable.

The question is whether there are efficient quantum algorithms that can carry out these same

intractable computations in much shorter periods of time, making these problems solvable in

practice. Pursuing this idea, in 1994 a mathematician from MIT, Peter Shor, demonstrated that

two famous problems, namely finding prime factors for an integer and the so-called discrete

algorithm problem, which are believed to have no efficient solution on a classical computer, could

be solved efficiently on a quantum computer (where by efficiently we usually mean in a time

that is polynomial and not exponential in the number of resources). A year later Lov Grover

came up with a new quantum algorithm to speed up the process of searching a list for a specific

entry. So we have a few examples of quantum algorithms outperforming all classical equivalents,

but the list today is fairly short and lots of effort is being directed to the discovery of more of

such efficient quantum algorithms. This presents a fascinating and novel research direction, these

algorithms being searched for in every field where complex computation is carried out, from

chemistry to business logistics, and the fact that there is no roadmap on how to do this, calls for a

lot of creativity on the part of the investigators.
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1.2 Motivation for this thesis

Going back to the Richard Feynman’s quote we mentioned earlier, a natural application of

quantum computing is the simulation of inherently quantum mechanical systems using quantum

computers. An area which has seen promising progress in this direction is quantum chemistry,

where researchers have started to successfully model simple molecules, such as H2, to find their

bound state energies with quantum algorithms. Another such area, which is the focus of this

article and of the research I have been personally involved in, is the application of quantum

computation to high energy physics (HEP). Quantum field theory is the basis of the Standard

Model of particle physics, the framework that describes the behavior of subatomic particles and

all fundamental forces, except for gravity. Experimental results from particle accelerators need to

be compared with theoretical predictions, usually consisting of scattering cross sections computed

with perturbation theory. I previously mentioned some of the difficulties of simulating quantum

systems, and quantum field theories are especially challenging since the fundamental objects in

these theories are fields that depend on spacetime, yielding infinitely many degrees of freedom,

even in a finite volume. On top of being local, interactions between fields are nonlinear and

therefore highly non-trivial to model and compute.

In classical computer simulations of quantum field theories it is common to discretize

spacetime in a method known as lattice field theory, so that the system essentially becomes a

many-body quantum system. The discretized system is usually simulated using classical computer,

but Byrnes and Yamamoto, in their 2008 paper [3], show how the time evolution of such systems

can be efficiently simulated on quantum computers. However, simulating the time evolution

alone is not sufficient, since in order to compare with experimental results such as scattering

cross sections, we must be able to simulate initial states, time evolution and measurements of

physical observables. The first to propose an algorithm to efficiently simulate such process

were Jordan, Preskill and Lee (JPL) in their 2011 paper ”Quantum Computation of scattering

6



in Scalar Quantum Field Theories” [4], arguably the most famous paper in the field of quantum

computation for HEP. They present an algorithm for digital quantum computers to calculate

scattering amplitudes for massive φ4 scalar theories, which scales polynomially in the number of

particles or the desired precision. Though their algorithm, which we’ll explore in more detail in

Section 5.1, represents a milestone in the field, its implementation would require tens of thousands

of interconnected qubits with high fidelity (the degree to which quibits are isolated from the

environment and maintain the desired state), plus the authors do not provide a clear blueprint of

how to implement each step of the algorithm in terms of fundamental quantum operations that

can be directly programmed onto a digital quantum computer. How to realize JLP’s algorithm

in practice is in itself an interesting research question which me and my collaborators briefly

explored, and which we believe might lead to important results, which will be particularly relevant

once quantum machines become bigger and more powerful.

Our research was also on applications of quantum computing to HEP but it focused

on a different objective, namely developing quantum algorithms that, although they do not

provide full simulation of a quantum field theory, can model inherently quantum features of

processes in particle physics that classical algorithms are currently missing. Furthermore, we

look for algorithms which would be implementable on NISQ (Noisy Intermediate-Scale Quantum

Computers) era machines, quantum computers with between 50 and a few hundred qubits which

are still subject to some noise and will be available in the near future (as mentioned above we

recently passed the 50 qubit mark).

Computing full amplitudes for high energy scatterings using perturbation theory or lattice

field theory is very complicated and even impossible in certain regimes where perturbation theory

fails, so physicists have developed other tools in order to make predictions to compare with

experiments, one of the most successful ones being parton shower simulations, highly used

in predicting results for the Large Hadron Collider. In QCD for example, after a high energy

collision, emergent particles that are color charged will radiate quarks and gluons, many of which
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will in turn also radiate in order to create the colorless hadrons that are measured in accordance

to confinement, thus creating a jet of hadrons and other particles. Parton showers simulate this

process using Monte Carlo Markov Chains based on the probabilities of each particle to be

radiated. However, these probabilities come from tree level calculations and are combined using

a inherently classical algorithm, so that many quantum interference effects are neglected. We

proposed a quantum algorithm which is able to account for some of these interference effects, in

the context of a toy filed theory model. While very far from a general simulation of a quantum field

theory, we were able to run the algorithm for a small number of emissions on a current quantum

computer by IBM, and we hope to soon be able to run our full algorithm on upcoming NISQ

machines. In order to validate the results from running our algorithm on a quantum computer, we

compared them to the results of a quantum simulation which runs the same algorithm but on a

classical computer. This cannot be done for the full algorithm, since on the classical computer the

complexity too great too quickly, so we perform this comparison only in a regime in which the

algorithm complexity is still relatively small.

The field of quantum computing applications to HEP is still a new and developing

field, which attracts predominantly researchers from HEP who have a background in quantum

mechanics and quantum field theory, but who know little about quantum computing. This thesis

is aimed to provide a direct path for these people to start reading papers and conducting research

in the field. It provides the quantum computing basics I believe appropriate for this purpose and it

then looks in detail at our research effort, namely the development of a quantum version of parton

showers and event generators for NISQ era quantum computers. Me and my collaborators believe

this is a promising direction to obtain quantum algorithms which allow for better predictions than

classical computers but that at the same time require quantum machines that are not too far in the

future. On the other hand, the analysis and presentation of our work can also be viewed simply as

a complete example developing a new quantum algorithm, which outperforms all known classical

equivalents, in order to tackle a given problem in this case in HEP. Finally, I will conclude the
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article by briefly describing talking about other important works that fall under simulating physics

with quantum computers. I hope readers may find in this thesis some useful and clear information,

and more importantly, some inspiration to pursue their own research direction in this new and

exciting field.
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Chapter 2

Quantum Computing

Anybody who is not shocked by quantum theory has not understood it.
—Niels Bohr

Note that in this chapter, as well as the rest of the article, we follow the book by Nielsen

and Chuang “Quantum Computation and Quantum Information” [2] for notation and as the main

reference on general principles in quantum computing and quantum information.

2.1 Qubits and a first look at quantum information

Digital quantum computers are based on the notion of the qubit, a quantum mechanical

system which has a specific mathematical structure. In fact, even though qubits are physical

systems (we already mentioned that the two most common types are realized with trapped ions

or small superconducting circuits) we won’t be concerned on how they are realized and treat

them as mathematical objects, so that we work in the framework of a general theory of quantum

computations that does not depend on physical realization. A qubit is then an object with two

basis states, |0〉 and |1〉, which has general state

|ψ〉= α |0〉+β |1〉 (2.1)
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where α and β are complex numbers, i.e. it can be in any superposition of the basis states. If we

make a measurement on the state |ψ〉 we can get |0〉 with probability |α|2 and |1〉 with probability

|β|2, such that α2 +β2 = 1. The qubit state can alternatively be expressed in the Bloch sphere

representation:

|ψ〉= cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2.2)

where θ and φ are real and define a point on the three-dimensional unit sphere. Note we dropped

an overall phase which has no observable effects.

Given two classical bits, there are four possible states 00, 01, 10 and 11. So if we have

two qubits we have four analogous basis states |00〉, |01〉, |10〉 and |11〉, where by |00〉 we mean

the tensor product of the two single-qubit states, i.e. |0〉⊗ |0〉. The two-qubit system can be in a

superposition of the four basis states:

|ψ〉= α00 |00〉+α01 |01〉+α10 |10〉+α11 |11〉 (2.3)

where the α’s are once again complex coefficients (usually called amplitudes), which determine

the probability of measuring the respective states, so that for instance the probability of getting

|00〉 upon measuring the state of the two qubits is |α00|2.

Now consider the following two-qubit state, known as a Bell State or EPR pair:

|ψ〉bell =
|00〉+ |11〉√

2
. (2.4)

What’s interesting about this state is that if you make a measurement on the first qubit, you’ll

know right away the state of the second qubit as well, unlike for instance in the two-qubit state

|ψ〉= 1
2(|00〉+ |01〉+ |10〉+ |11〉), where if you measure the first qubit to be in a 0 or 1 state the

second qubit will still have a 50/50 chance of being in a 0 or 1 state. The Bell state is the most
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simple and famous example of an entangled state. Mathematically, a state is entangled if it cannot

be written as a tensor product of single qubit states. Correlations in entangled states are stronger

than any classical equivalent and are preserved (and evolved) when we act on the system with

quantum operations. As we shall see later through some examples, these quantum correlations are

one of the key features that make quantum computation more powerful than classical computation

in solving certain problems.

Now that we have looked at one and two qubit systems, consider a system of N qubits. The

general state is a superposition of 2N quantum basis states, specified by 2N complex amplitudes.

With 300 qubits, that is already larger than the number of atoms in the universe so that it would

be impossible to encode our general state on a classical computer. What’s more, if we now act on

the system with quantum operations (e.g. we might shine light of specific frequency and intensity

on our trapped ion qubits), we evolve all of the basis states simultaneously. Niels and Chuang

compare this to Nature keeping 2300 hidden pieces of paper on the side on which she performs her

calculations as the system evolves. You can see how this is an enormous amount of information,

stored and evolved, and this characteristic is at the heart of the power of quantum computation.

There is a (partial) catch, however. All of this information is processed but not easily

accessible. In fact, if we make a measurement of the general state above we will obtain only one

of the 2N possible states and we can say nothing about the state’s amplitudes, except that the one

for the state we measured is non-zero. In principle, to obtain all amplitudes with good accuracy we

would have to prepare a huge number of identical systems and repeat the same measurement on

all of them. Then the statistical distribution of the measured states would approach the distribution

of the actual probabilities of the basis states in the superposition that is the final state of the

system, as the number of measurements goes to infinity. From the probabilities we can then

obtain the amplitudes that specify the general state of the system. You can see how unpractical

this is. Even if we don’t want to know the amplitudes exactly, we have to make at least of order

2N measurements to sample all relevant states and have some meaningful statistics. But if that
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is the case, the number of measurements we must make, hence the complexity of the problem,

grows exponentially with N, number of qubits, making the process intractable, hence defeating

the purpose of a quantum algorithm.

Interesting quantum algorithms (and only a few of these known today) are those where this

processed information is combined through clever quantum operations in a way that makes it or

part of it (enough to solve an interesting problem) accessible through a number of measurements

that grows polynomially with the input data and resources. An additional caveat is that the

number of quantum operations to evolve the system and combine the information must also scale

polynomially to remain in the domain of a solvable problem. You can see how these limitations

and complexities add to the difficulty of searching for efficient quantum algorithms.

2.2 Quantum gates

A classical computer is composed of wires and logic gates, to which information is fed and

later extracted from in the form of bits. The gates are responsible for processing the information

through the necessary steps to carry out desired algorithms. An example of a logic gate for single

bits is the NOT gates which flips the bit state, i.e. it takes 0→ 1 and 1→ 0.

A digital quantum computer has a similar structure, though the way the components are

realized and behave is significantly different. In place of bits information is stored in qubits and

processed using quantum logic gates. For example, the quantum version of the NOT gate is called

the X gate and it takes |0〉 → |1〉 and |1〉 → |0〉, but it also acts linearly taking the superposition

α |0〉+β |1〉 (2.5)
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to

α |1〉+β |0〉 . (2.6)

The most common representation of the two basis states of a single qubit is in terms of

the two dimensional vectors

|0〉=

1

0

 |1〉=

0

1

 (2.7)

so that we can express the X gate as a two by two unitary matrix:

X =

0 1

1 0

 (2.8)

Quantum states must be normalized such that the sum of the probabilities of obtaining all possible

outcomes upon measurement be equal to one, and this normalization must be preserved after we

act on the system with quantum operations. This property of quantum mechanics is knows as

unitarity and it forces quantum operations to be themselves unitary, hence represented by unitary

matrices.

Let’s now consider multiple qubits. Common classical multi-bit logic gates are the AND,

OR, XOR, NAND, NOR. The AND gate for example takes in two input bits and returns 0 if

both inputs are 1 while it returns 1 otherwise. The NAND, which corresponds to an AND gate

followed by a NOT gate, has the impressive property that any function of bits can be realized

through NAND gates alone, making it a universal gate.

In quantum circuits the most common multi-qubit quantum gate is the CNOT gate, a

two-qubit gate which takes as inputs a control qubit, which is not modified but it is only used
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to decide whether or not the operation is applied, and a target qubit, the qubit on which the

operation is applied. Specifically, in the CNOT the operation applied on the target qubit is an

X gate, conditional on the control qubit being in a |1〉 state. This kind of quantum operations

in which a gate is applied conditional to the state of one or more qubits are called controlled

operations and we’ll describe them in more detail later. The CNOT gate has the following circuit

representation:

|A〉 • |A〉 |A〉 • |A〉
=

|B〉 |A〉⊕ |B〉 |B〉 X |A〉⊕ |B〉

where⊕ is addition modulo two. The CNOT gate, just like any other two-qubit quantum gate, can

be expressed as a four by four unit matrix. Always using the basis specified by 2.7, and recalling

that for a two-qubit system the basis states are the ones appearing in 2.3, the CNOT matrix is

given by

UCNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.9)

While we can say that the quantum X gate is analogous to the NOT classical gate, since

the two behave essentially in the same way flipping quantum or classical bits, we cannot find

quantum gates that work like the NAND, XOR or the other multi-qubit classical gates, since these

classical gates are irreversible, while quantum operations, being unitary, are always reversible.

For example, if we read the output of an NAND gate to be 1 we cannot determine what the input

bits were exactly, we can only say they were not both in a 1 state. There is therefore an irreversible
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loss of information, while with quantum operations we can always apply the inverse operations to

bring the system back to the original state. Nonetheless, we’ll see in the next section that we can

simulate irreversible operations using reversible quantum gates by using some additional ”helper”

qubits known as ancilla qubits. This can be helpful for example if we want to run classical

algorithms on quantum computers (though note that this would not provide any computational

advantage in general).

Since single-qubit quantum gates are represented by two by two unitary matrices, the

most important quantum operations are given by the Pauli matrices:

X =

0 1

1 0

 ; Y =

0 −i

i 0

 ; Z =

1 0

0 −1

 (2.10)

Exponentiating the Pauli matrices we obtain the three rotation operators, which span all rotations

on the Bloch Sphere and appear in a variety of quantum algorithms:

Rx(θ) = e−iθX/2 =

 cos θ

2 −isin θ

2

−isin θ

2 cos θ

2



Ry(θ) = e−iθY/2 =

cos θ

2 −sin θ

2

sin θ

2 cos θ

2

 (2.11)

Rz(θ) = e−iθZ/2 =

e−iθ/2 0

0 eiθ/2


These rotation operators are especially useful because it can be proved that a general
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unitary single-qubit operation U can always be decomposed as follows:

U = eiαRx(β)Ry(γ)Rz(δ) (2.12)

where α, β, γ and δ are real numbers. The three rotation operators can already be implemented on

currently available quantum computers, through approximations, to the required precision. Other

specific single-qubit quantum gates that are often used are the following:

H =
1√
2

1 1

1 −1

 ; S =

1 0

0 i

 ; T =

1 0

0 eiπ/8

 , (2.13)

where the first one, labeled with H, is the so-called Hadamard gate, one of the most useful

quantum gates, which takes the |0〉 state into 1√
2
(|0〉+ |1〉) and the |1〉 state into 1√

2
(|0〉− |1〉).

2.3 Quantum computation

As anticipated in the previous section, it is possible to simulate even reversible gates on a

quantum computer. In fact, it turns out we can simulate any classical circuit, i.e. any irreversible

operation, with a quantum circuit by using a reversible quantum gate known as the quantum

Toffoli gate. It is a three-qubit gate with the following circuit representation:

|a〉 • |a〉

|b〉 • |b〉

|c〉 |c⊕ab〉

It essentially flips the c qubit if both the a and b qubits are in a 1 state, while it leaves all qubits

unaffected otherwise. We can use the Toffoli gate to simulate the behavior of the NAND gate by
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setting the c input qubit to 1 as follows:

|a〉 • |a〉

|b〉 • |b〉

|1〉 |1⊕ab〉

The a and b qubits represent the input to the NAND while the third qubit, the ancilla qubit,

carries the output of the NAND gate. The a and b qubits can then be measured out and neglected,

leaving us with the output of the NAND gate in qubit c. Then, since all classical circuits can be

constructed using NAND gates only, we can always simulate a classical algorithm with a quantum

circuit in principle, even though it might be quite unpractical. Though this is an important result,

in general the power of quantum computation lies in algorithms which are essentially quantum in

nature and not in classical algorithms running on quantum computers, which often tuns out to be

quite inefficient.

Similarly to the universality of the NAND gate in classical computation, there is a quantum

universality result which states that any unitary operation, hence any operation on a quantum

computer, can be approximated to arbitrary accuracy using only H, S, T and CNOT gates (we will

refer to these gates as elementary, fundamental or universal quantum gates from now on). We

will not go into the details of the proof of this universality result, which can be found in Chapter

4 of [2], but simply outline the three main results upon which the proof is built. The first result

is that an arbitrary NxN unitary matrix can always be written as the product of NxN two-level

unitary matrices, i.e. matrices which only affect two or less vector components. To give you an
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example of how these matrices look like,

U =


1 0 0

0 0 −i

0 i 0

 (2.14)

is a 3x3 two-level unitary matrix. The second result is that any quantum operation represented by

a NxN two-level unitary matrix can be decomposed and carried out using only single qubit gates

and CNOT gates (this result is proved using so called gray codes). The third and last result is that

any single qubit gate can be approximated to arbitrary accuracy using H and T gates only.

This seems an appropriate place to define what it means for a unitary operation U to be

approximated by another unitary operation V. We start by defining the error between the two as

E(U,V )≡‖ (U−V ) |ψ〉 ‖max (2.15)

where the maximum is over all of the possible normalized states in the state space. It can be shown

that if E(U,V ) is small then we obtain statistics of equal relevance if we make measurements on

U |ψ〉 or V |ψ〉. This process of decomposition of an arbitrary unitary operation, can be subjected

to error-correcting code and that ensures no information is lost in this process. We then say the

process is fault tolerant. This error-correcting procedure is described in Chapter 10 of [2], and it

employs phase (S) gates, explaining why the S appears in the list of universal gates.

In terms of efficiency the Solovay-Kitaev theorem proves that an arbitrary single qubit

operation can be approximated to accuracy ε using O(logc(1/ε)) gates from the universal set,

where c is a constant close to 2. So we can approximate a circuit with m CNOT and single

qubit gates using on the order of O(mlogc(m/ε)) elementary gates, an increase in complexity

which is virtually always acceptable. On the other hand however, when it comes to build an

arbitrary unitary operation on n qubits out of the elementary gates, this cannot always be done
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with a quantum circuit with polynomial complexity, but it often requires a circuit with exponential

complexity, meaning the number of elementary gates or the number of additional qubits necessary

grows exponentially with n.

Finally, another important component in quantum circuits are measurements, which are

labeled in quantum circuits with the meter symbol:

|ψ〉 .

Measurements can be performed in the computational basis, i.e. the basis in which each qubit has

|0〉 and |1〉 as basis states, but they can also be performed in any other basis.

In real quantum computers qubits are not perfectly isolated, especially since they must be

manipulated in order to perform quantum computation, and as a consequence a certain amount

of information is lost during a quantum computation. This phenomenon is known as quantum

decoherence. If qubits were to be perfectly isolated they would preserve their state and the

system as a whole would maintain coherence. Another similar concept, known as fidelity,

defines how accurately a quantum computer is in actually implementing the quantum operations

specified in the code, where a fidelity of %100 would mean perfect implementation. Of course

perfect coherence and fidelity is not achievable but getting very close to it is of vital importance

in order to perform long and complex quantum computations with reliable results. It is the

objective of extensive current engineering research to improve on these two fronts, while on

the software and algorithmic side a branch developed which studies quantum error correction,

i.e. computational procedures which drastically improve the fidelity on a given hardware. Error

correction in quantum computation is an interesting research field in its own, and one of extreme

importance given that current hardware is far from being fault-proof and is subject to frequent

losses of information. Error-correcting algorithms use clever techniques to avoid information
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loss and drastically reduce the occurrences of quantum gate malfunctions, thus allowing quantum

algorithms that would otherwise be useless, to produce the desired outputs and results with

negligible error.

2.4 Quantum teleportation

Let’s now look at an example of a fairly simple but interesting quantum algorithm, known

as quantum teleportation, to get a better feel for how quantum gates and quantum computation

work. Suppose two friends named Alice and Bob create the EPR qubit pair

|φ〉= |00〉+ |11〉√
2

. (2.16)

and then move far away from one another, each carrying one of the qubits. A long time goes by

and one day Alice has a new qubit in a general state |ψ〉= α |0〉+β |1〉, without knowing what α

and β are, that she has to send to Bob, but she must do so by only sending classical information to

him. Ideally, she could find out what α and β are and communicate the two complex numbers to

Bob, so that he can then recreate the state |ψ〉 on a qubit he controls. The problem with this is that

Alice cannot determine α and β from a single copy of |ψ〉 and what’s more, even if she new the

two complex amplitudes, it would require in general an infinite amount of classical information

to communicate them to Bob since they take value in a continuous space. We will now show that

there is simple quantum algorithm that Alice can employ to send |ψ〉 to Bob, by using her old

qubit from the EPR pair and the ability of sending classical information. The quantum circuit is

shown is Figure 2.1, where |phi〉 is the old EPR pair and the last two controlled operations apply

the X and Z gates conditional on the measurements of the control qubits yielding a |1〉. Note that

in general, unless specified otherwise, the input qubits to a quantum circuit are all assumed to be

in the |0〉 state.

Let’s see how the algorithm works. It involves both the new qubit as well as the old EPR
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pair, so the input state is

|ψ0〉= |ψ〉 |φ〉=
1√
2
(α |1〉(|00〉+ |11〉)+β |0〉(|00〉+ |11〉)) , (2.17)

where the third qubit is the one Bob has.

|ψ〉 • H •

•

X Z |ψ〉

|φ〉

.

Figure 2.1: quantum circuit for quantum teleportation algorithm with measurements at the end
of the circuit.

Alice applies a CNOT gate to her two qubits, conditional to the |ψ〉 qubit, obtaining

|ψ1〉=
1√
2
(α |0〉(|00〉+ |11〉)+β |1〉(|10〉+ |01〉)) (2.18)

and then she applies a Hadamard gate to the first qubit, obtaining

|ψ2〉=
1
2
(α(|0〉+ |1〉)(|00〉+ |11〉)+β(|0〉− |1〉)(|10〉+ |01〉)) (2.19)

This can be rewritten as the sum of the following four terms:

|ψ2〉=
1
2
[|00〉(α |0〉+β |1〉)+ |01〉(α |1〉+β |0〉)+ |10〉(α |0〉−β |1〉))+ |11〉(α |1〉−β |0〉)]

(2.20)

At this point, if Alice measures her two qubits and communicates the results to Bob through

classical information, Bob will know in which state his qubit is in, out of the four possible ones

in |ψ2〉. For example, if Alice measures 00, Bob’s qubit will already be in the desired state
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|ψ〉 = α |0〉+ β |1〉. On the other hand, if Alice measures one of the other three states, after

she communicates the result to Bob, he can fix the state of his qubit to recover |ψ〉 using the

conditional X and Z gates we see at the end of the circuit. For instance, if Alice measures 11 and

tells Bob, he can apply an X gate followed by a Z gate to his qubit to obtain |ψ〉.

As a quick aside, an important feature of measurements in quantum circuits is that they

can always be moved from intermediate stages to the end of the quantum circuit. In order to do

so, all we have to do is replace the quantum operations conditional on measurement results (i.e.

conditional on classical information) with the same operations conditional on the un-measured

qubits. Applying this procedure, the quantum teleportation circuit is modified as shown in Figure

2.2 Unlike other quantum operations, measurements are in general irreversible and not unitary,

|ψ〉 • H •

•

X Z |ψ〉

|β〉

.

Figure 2.2: quantum circuit for quantum teleportation algorithm with measurements at the end
of the circuit.

they destroy quantum information and transform it into classical information. A more precise

statement, is that measurements are irreversible except when they do not reveal any information

on the state being measured.

2.5 Controlled operations

An operation such as the CNOT gate, where a quantum gate is applied conditional on

the state of one or more qubits, called-called control qubits, is called a controlled operation. In

general, controlled operations can have multiple control qubits and the gate which is conditionally

applied can be any unitary operation acting on n qubits. We will now show how such an
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arbitrary controlled quantum operation can be decomposed into elementary gates, or at least basic

operations such as the Toffoli gate, which can be directly implemented in currently available

quantum simulators. These results will be especially important later when we discuss in detail

how to decompose the operations in the circuit for our quantum shower algorithm, in order to

implement it and simulate it on a current quantum computer. In this section I will state and use

certain results without proving them. All proofs can be found in Chapter 4 of [2].

Let’s start by considering an arbitrary single-qubit gate U controlled by a single qubit,

often referred to as a C(U) operation. This can be decomposed as shown in Figure 2.3,

• • • P

=

U C B A

Figure 2.3: Quantum circuit for the decomposition of an arbitrary single-qubit operation
controlled on 1 qubit.

where

P =

 1 0

0 eiψ

 (2.21)

and the following conditions must be satisfied:

U = exp(iψ)AXBXC ; ABC = I (2.22)

Note that it is always possible to find such A, B, C and ψ. Then any C(U) operation can be

realized using solely single qubit and CNOT gates. We can of course also control on a qubit being

in the 0 state instead of the 1 state, which is implemented as shown in 2.4.

A single-qubit quantum gate controlled on two qubits is decomposed as shown in Figure

2.5, where V is any unitary gate such that V 2 =U . If we define V ≡ (1− i)(I + iX)/2, which has
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= X • X

U U

Figure 2.4: controlling a single-qubit operation U on the control qubit being in a 0 state instead
of a 1 state

• • • •

• = • •

U V V † V

Figure 2.5: quantum circuit for the decomposition of an arbitrary single-qubit operation con-
trolled on 2 qubits.

the property that V 2 = X , the above gives a decomposition of the Toffoli gate in terms of CNOTs

and single-qubit gates controlled on a one qubit, which can be further decomposed as shown in

Figure 2.3.

Finally, let’s consider a single qubit gate controlled on n qubits, whose decomposition is

shown in Figure 2.6. To decompose such operation we must use n−1 work qubits, i.e. additional

qubits, initialized in the |0〉 state, which are only used to carry out intermediate operations and

can be then measured out and discarded or reset to the initial state. The first n qubits are the

control qubits and here the U operation is applied conditional on these qubits being in a |1〉 state.

We can control of course on any of these qubits being in a 0 state by adding an X gate at the

beginning and at the end of the quantum circuit, analogously to what we showed in Figure 2.4.

The next n−1 qubits are the work qubits we previously mentioned, which start out in the |0〉 state.

By the symmetry of the operations applied, and the fact that the Toffoli gate is its own inverse,

we see that both the control and the work qubits will be, at the end of the ciruit in Figure 2.6, in

the same state as they started out in. Lastly, the target qubit is the one on which the single-qubit

operation U is applied.

We have thus shown how to decompose into elementary gates any controlled operation in
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|c1〉 • •

|c2〉 • •

|c3〉 • •

. . . . . .

|cn〉 • •

|w0〉 • •

|w1〉

. . . . . .

|wn−2〉 • •

|wn−1〉 •

|t〉 U

Figure 2.6: quantum circuit for the decomposition of an arbitrary single-qubit operation con-
trolled on n qubits.

which the applied operation is a single-qubit quantum gate. We have previously discussed how

to decompose an arbitrary quantum operation Un on n qubits into elementary gates. Then, if we

want to apply such a general Un gate controlled on 1, 2 or n qubits, we can do this by applying the

same controls to all of the elementary gates that make up the decomposition of Un. Therefore, we

now have all the tools to decompose and implement any controlled operation on a real quantum

computer.
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2.6 Computational complexity

As previously mentioned, a quantum algorithm is truly interesting if it outperforms

all known classical algorithms to solve a given problem. It’s then important to determine

the computational complexity of an algorithm, specifically the lower bounds on the amount of

resources necessary run the algorithm and how these resources scale. The most common resources

we look at in order to determine the complexity of a problem are time and space. In practical

terms, for a classical algorithm these resources correspond to how long it takes for an algorithm

to run and how many bits and gates it requires to be implemented. Similarly, for a quantum

algorithms they are given by the time it takes the algorithm to run plus how many qubits and

quantum gates are required.

Suppose the input to a certain algorithm can be expressed with an n bits or qubits. Usually,

the main distinction one makes when studying the complexity of a problem is whether or not the

resources necessary to solve the problem grow faster than any polynomial in n. If the resources

do grow faster than any polynomial we say that the problem has exponential complexity or that

the required resources scale exponentially in n. This is slightly abusing the term exponential,

since there are algorithms that scale as nlogn for example, which is not exponential though larger

than any polynomial in n. Furthermore, certain exponential algorithms might be faster than

some polynomial algorithms, which might for instance scale as n1000, for all practical purposes.

However, most known polynomial algorithms scale as n or n2, and rarely have a large degree. So

provided these specifications, the distinction between polynomial and exponential algorithm is

very useful and widely used when describing computational complexity. A problem that has a

know algorithmic solution which uses resources that scale polynomially is called easy, tractable

or solvable, while a problem for which the best known algorithmic solution requires exponential

resources is known as hard, intractable or unsolvable.

Much of the motivation for using this distinction between polynomial and non-polynomial
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complexity comes from the strong Church-Turing thesis, which states:

Any model of computation can be simulated on a probabilistic Turing machine
with at most a polynomial increase in the number of elementary operations required.

Then if a problem does not have any solution which requires polynomial resources on a proba-

bilistic Turing machine, it doesn’t have an efficient solution on any (classical) computing device.

The main caveat in this discussion on complexity is that while it is possible to prove

that the majority of problems will have exponential complexity, in general, it is very difficult

(and seldom accomplished) to prove that no efficient polynomial algorithm exists to solve a

specific problem. We then tend to say a problem is intractable if it is conjectured that the best

algorithm to solve it requires exponential resources. This conjecturing often means that extensive

research efforts have yielded algorithms for solving the problem, all of which require exponential

resources.

2.7 The Quantum Fourier Transform

The most incredible results in quantum computation, and much of the promises from this

field, come from the few known quantum algorithms which can efficiently perform tasks that are

intractable on a classical computer. Perhaps the most famous example is the factorization of an

integer into prime numbers, a task of vital importance in mathematics, cyber security and other

areas. If we express the integer in terms of n bits (or qubits), the best known classical algorithm

to solve the factorization problem requires approximately exp(O(n1/3 log2/3 n)) operations. On

the other hand, there is a known quantum algorithm which can perform the same task with

O(n2 logn log logn) elementary quantum operations. The key ingredient of this quantum factoring

algorithm, responsible for the speedup over the classical algorithm, is the quantum Fourier

transform (QFT).

The discrete Fourier transform takes a complex vector of length N and components

x0, . . . ,xN−1, and it outputs a complex vector of same length and components y0, . . . ,yN−1 defined
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by

yk ≡
1√
N

N−1

∑
j=0

x je2πi jk/N (2.23)

The quantum Fourier transform performs an equivalent transformation but on quantum states. The

QFT on an orthonormal basis set |0〉 , . . . , |N−1〉 is a linear unitary operator which transforms

each basis state as

| j〉 → 1√
N

N−1

∑
j=0

e2πi jk/N |k〉 (2.24)

and a general state as

N−1

∑
j=0

x j | j〉=
N−1

∑
k=0

yk |k〉 , (2.25)

where the amplitudes yk are given by the discrete Fourier transform in Qe. 2.23.

The QFT quantum algorithm takes as input the binary representation j = j1 j2 . . . jn

encoded into n qubits (|0〉 for 0 bits and |1〉 for 1 bits) and transforms it as follows:

| j1, . . . , jn〉 →
(|0〉+ e2πi 0. jn |1〉)(|0〉+ e2πi 0. jn−1 jn |1〉) . . .(|0〉+ e2πi 0. j1 j2... jn |1〉)

2n/2 , (2.26)

where 0. jl jl+1 . . . jm represents the binary fraction jl/2+ jl+1/4+ · · ·+ jm/2m−l+1. The trans-

formation in eq. (2.26) is equivalent to the one in eq. (2.24), and the proof can be found, along

with the full quantum circuit which implements eq. (2.26), in Chapter 5 of [2].

The quantum circuit for the QFT is implemented using O(n2) elementary quantum gates.

If we have n qubits as input, the general initial state will be a superposition of 2n orthonormal

basis states, so that the QFT can Fourier transform 2n amplitudes using O(n2) operations. On

the other hand, the best know classical algorithms which implement discrete Fourier transform,
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such as the Fast Fourier Transform, require of the order O(n2n) gates to Fourier transform 2n

amplitudes. This sounds great in principle, especially since Fourier transforms have such a

wide range of applications, except that the transformed amplitudes of the QFT are not directly

accessible. If we make a measurement on the system after applying the QFT we would simply

obtain one state out of the possible 2n, and not even the respective amplitude. In order to extract

the amplitudes with statistical relevance, we would need to perform at least of the order 2n runs

and measurements, hence loosing all the advantage over the classical algorithms.

The key to harness the power of the quantum Fourier transform, is to incorporate it in a

clever way into a bigger algorithm, which is able to convert the information processed by the

QFT into an accessible form. We will illustrate how this is done in the most important example,

known as the phase estimation algorithm, which is a key component of the factoring algorithms.

Suppose we have a unitary operator U with eigenvector |u〉 and eigenvalue e2πiϕ, then phase

estimation allows us to estimate the unknown phase ϕ, hence determining the eigenvalue of U

with computable accuracy. In order to implement phase estimation using a quantum circuit, we

must be able to efficiently prepare the |u〉 state and to apply U2 j
operations for some suitable j.

Suppose these requirements are satisfied. Then we introduce a second register, beside the one

to encode |u〉, with t qubits in the |0〉 state, where t determines the accuracy of the estimation

of ϕ and the probability of success of the phase estimation procedure. The algorithm is divided

into two main parts and can be found in detail in Chapter 5 of [2]. It starts by transforming the

t-register into the state

1
2t/2 (|0〉+ e2πi 2t−1ϕ |1〉)(|0〉+ e2πi 2t−2ϕ |1〉) . . .(|0〉+ e2πi 20ϕ) (2.27)

=
1√
2t/2

2t−1

∑
k=0

e2πiϕk |k〉 .

Now suppose that ϕ can be expressed exactly with t bits as 0.ϕ1 . . .ϕt , then the above state (2.27)
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becomes

1
2t/2 (|0〉+ e2πi 0.ϕt |1〉)(|0〉+ e2πi 0.ϕt−1ϕt |1〉) . . .(|0〉+ e2πi 0.ϕ1ϕ2...ϕt |1〉) (2.28)

.

If we compare this with the expression in (2.26), we see that they have exactly the same form,

so that if we now apply the inverse of the quantum Fourier algorithm (which is invertible being

a unitary operation) to the t register we obtain |ϕ1 . . .ϕt〉. Then a measurement of the t qubits

would yield ϕ exactly! Now of course in general we cannot express ϕ with t qubits exactly. So,

let b be the best t-bit approximation of ϕ which is smaller than ϕ and such that the difference

δ≡ ϕ−b/2t satisfies 0≤ δ≤ 2−t . Then the phase estimation procedure yields, in place of the

exact ϕ, a result ϕ′ which is close to b and hence a good approximation of ϕ.

Incorporating phase estimation, clever applications of the QFT or other known quantum

computing routines which are more efficient than classical counterparts, into larger algorithms,

is certainly a way of finding new problems which can be solved more efficiently on a quantum

computer than on a classical one.
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Chapter 3

Parton Showers

In this chapter we briefly describe the physics behind parton showers and how they are

implemented as Monte Carlo event generators. Hadron colliders have been extensively used as

machines for discovering new particles and probing the workings of the fundamental forces at

very high energies, the reason being that it is much easier to accelerate hadrons to very high

energies as compared to other particles such as leptons. On the theoretical side, hadron collisions

are difficult to model due to the large number of particles involved and the complexities of the

strong interaction, so that a first-principle approach to compute final states in such processes is

currently unfeasible. Meanwhile, Monte Carlo Markov Chain event generators known as parton

showers simulate the evolution of partons in hadronic collisions in the collinear limit and have

been very successful in computing predictions for high energy scattering experiments, such as

the ones performed at the Large Hadron Collider (LHC) in Geneva. This discussion will be

useful background for the following chapter, in which we describe a quantum algorithm for

parton showers in a simplified field theory model. A complete description of parton shower event

generators can be found in [5], [6] and [7].
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3.1 QCD and the parton model

Quantum Chromodynamics (QCD) is the quantum field theory of the strong interaction,

which acts between quarks and gluons, the fundamental particles that combine to form Hadrons

such as the proton, the neutron and the pion. QCD is a very rich physical theory with peculiar

properties. One of these properties, known as asymptotic freedom, says that the interaction

between particles under the strong force becomes weaker and weaker as the energy becomes

larger. Mathematically, this is explained through the renormalization group. The leading term

in the beta function expansion in QCD (and in any non-abelian gauge theory in four dimension)

comes with a minus sign, meaning the coupling constant becomes weaker as the energy of

the system becomes larger. Historically, this was first observed in proton-proton collisions at

energies above 10 GeV, where a large number of pions were produces but, instead of filling all

of phase space as many people expected, these pions were produced with momenta which were

almost collinear to the collision axis. It was then hypothesized that Hadrons were loose clouds of

unknown elementary particles that, inn a high energy collisions, could exchange momentum q

only in a way such that q2 would remain small in the end. This theory was put to test in the 1960s

in the SLAC-MIT deep inelastic scattering experiments, where a 20 GeV beam of electrons was

scattered by an hydrogen target and the scattering rates for large deflection angles were measured.

This probed scattering which corresponded to an electron transfering a large total momentum

q2 to one proton in the target. If the proton was a loosely bound ball of component particles

as hypothesized above, low scattering rates were expected. However, a large rate of inelastic

scattering was measured, as though the proton was an elementary particle scattering with the

electron according to the rules of QED. What’s more, the largest part of particles which made up

this surprisingly high scattering rate, were not single protons, but a large number of hadrons, as if

the electron shattered the proton, through a QED interaction, into multiple hadrons.

In order to reconcile the presence of QED hard scattering with the (almost) absence of
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hard scattering through the strong interaction, Feynman and Bjorken proposed the parton model:

the proton is made up of constituents called partons, which include fermions carrying electric

charge, known as quarks and antiquarks, and possibly other neutral particles responsible for

binding the quarks together. These neutral species were then identified to be spin-0 bosons known

as gluons. By assumption, partons cannot exchange large invariant momentum though the strong

interaction, but the quarks can interact electromagnetically so that an electron can knock a quark

out of the proton. Furthermore, following evidence for asymptotic freedom, in the parton model,

at very high energies the strong interaction goes to zero. In reality, mathematically the interaction

between partons at high energies decreases as the logarithm of the energy scale, meaning that the

parton model, though incredibly useful, it remains a simplified model of QCD at high energies.

Going back to the electron that knocked a quark out of the proton, at this stage another

fundamental property of QCD comes in, known as confinement, which is responsible for the fact

that a variety of hadrons, instead of only protons, were found as final products in the scattering

experiments described above. Confinement says that particles with color charge, such as gluons

and quarks, cannot exist in isolation, and cannot be measured independently, at low energy, but

always form colorless objects (hadrons). Then the quark which was ejected from the proton by

the scattering with an electron interacts softly with the rest of the proton, producing eventually a

jet of hadrons, collinear to the original struck quark. Though no analytic proof of confinement

exists, it is understood as follows: the energy to separate gluons (which also carry color charge)

and quarks grows as the distance between the particles becomes larger, to the point that it requires

less energy to produce quark-antiquark pairs than to separate the particles further. Thus, a shower

of spontaneously produced quarks, antiquarks and gluons, which clump together to form colorless

Hadrons, is produced and measured. The momenta of the particles in the shower are very close to

being collinear to the parton which initializes the shower.
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3.2 Hadron collisions and Monte Carlo Markov Chains

Monte Carlo event generators use parton showers to successfully simulate both final state

evolution of partons, which corresponds to the showering which takes place after a hard process

and before final particle states are measured, and initial state evolution, meaning the radiation

of partons on their way to a hard scattering, the two processes being very similar. Let’s look at

initial state radiation and consider a reaction with a high transfer of invariant momentum in which

two hadrons, which we call h1 and h2, collide and produce the final state X . In the collinear limit

the final cross section (i.e. the probability of state X to be produced) factorizes in the following

convolution equation:

σh1h2→X = ∑
a,b∈{q,g}

∫
dxa

∫
dxb f h1

a (xa,µ2
F) f h2

b (xb,µ2
F)

∫
dΦab→X

dσ̂ab(Φab→X ,µ2
F)

dΦab→X
. (3.1)

The function f h
a (xa,µ2

F) is known as the Parton Distribution Function (PDF) and it represents

the probability, at leading perturbative order in QCD, of finding parton a in the parent hadron

h, at scale µF and with momentum fraction xa. µF is the factorization scale which provides the

collinear cutoff and is introduced to regulate IR divergences coming from the emission of soft

gluons. dσab/dΦ is the differential cross section for the production of final state X from the

parton state ab, which can be computed with Feynman diagrams in perturbation theory, and

dφab→X is the respective differential element of phase space.

Now if we do not specify the kinematics of X and any additional particles that can be

produced alongside, we refer to eq. (3.1) as the inclusive cross-section for the production of X .

Exclusive cross-sections can be obtained by specifying the kinematics of X or the additional

particles produced or both. Event generators do the following: starting with eq. (3.1), an inclusive

final state consisting of only X is produced. Then, through a Monte Carlo Markov Chain additional

particles are produced respecting conservation of probability and four-momentum, to generate a

high multiplicity final particle state.
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In the collinear limit the evolution of the PDFs is determined by the so-called DGLAP

equations:

µ2
F

d fa(x,µ2
F)

dµ2
F

= ∑
b∈{q,g}

∫ 1

x

dz
z

αs

2π
Pab(z) fb(x/z,µ2

F) , (3.2)

where the Pba(z) functions are the Alterelli-Parisi splitting functions, which give the probability

of a specific emission in which the emitted particle carries a fraction z of the momentum of the

emitting parton. The splitting functions are given by:

Pqq(z) =CF
1+ z2

(1− z)

Pgq(z) =CF
1+(1− z)2

z
(3.3)

Pqg(z) = TRz2 +(1− z)2

Pgg(z) =CA
z4 +1+(1− z)4

z(1− z)
.

The DGLAP equation (3.2) says the following: a parton a which was resolved in the parent hadron

at scale µ2
F may have been emitted, alongside some other parton, by parton b resolved at the scale

µ2
F +dµ2

F . The transition from parton b to parton a is a Markov process, where we account for

the additional emitted parton as part of the final particle state. Then repeated implementation of

eq. (3.2), keeping track of all emitted partons, builds the shower evolution.

A Monte Carlo event generator is realized by converting the inclusive prediction of finding

parton a in the beam hadron h to an exclusive prediction of parton a to be produced alongside

many other particles. The splitting functions provide the relative probability of a certain emission

to happen, so that at each splitting a certain branching is chosen through a random number

generator where all options are weighted according to the correct splitting probabilities.

At this stage we would run into divergences in integrating the splitting functions over z

in eq. (3.2). However, at low enough energies partons cannot exist in isolation but must form
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color-neutral hadrons due to confinement. This implies that partons which have close transverse

momentum, say of the order of 1 GeV or less, cannot be resolved. This provides a natural infrared

momentum cutoff for the parton shower, which results in an upper bound for the momentum

fraction z in eq. (3.2), thus regulating the IR divergences. At this stage, we have removed all

higher-order real corrections and all virtual corrections. These can be accounted for by adding an

additional term to the DGLAP equation:

d fa(x, t)
d log t

= ∑
b∈{q,g}

∫ zmax

x

dz
z

αs

2π
Pba(z) fb(x/z, t)− fa(x, t) ∑

b∈{q,g}

∫ zmax

zmin

dz
αs

2π
Pab(z) , (3.4)

where we now identify the factorization scale with the more general t, instead of µF , which can

be associated with different variables, such as the emission angle θ. Let’s now introduce the

Sudakov factor

∆a(t, t ′) = exp

(
− ∑

b∈{q,g}

∫ t ′

t

dt̃
t̃

∫ zmax

zmin

dz
αs

2π

1
2

Pab(z)

)
, (3.5)

which corresponds to the probability of a parton a not to undergo any branching between the

scales t and t ′. We can then rewrite eq. (3.4) in terms of the Sudakov factor as follows

d
d log t

log
fa(x, t)

∆a(tc, t)
= ∑

b∈{q,g}

∫ zmax

zmin

dz
z

αs

2π
Pba(z)

fb(x/z, t)
fa(x, t)

, (3.6)

where tc corresponds to the IR cutoff discussed above. Note Eq. (3.6) describes the evolution of

the PDFs. Final state evolution works very similarly, except now we start from a high evolution

scale and evolve down to the cutoff scale tc. Also in final state evolution we sum over the emitted

partons instead of the emitting ones, and PDFs are replaced by Fragmentation Functions (FF).

Since final states will consist of colorless hadrons, FFs are non-perturbative functions which give

the probability of a certain particle to have contributed to forming these final hadronic states.

Let’s now try to get a feel for how, in practice, we implement the parton shower as a
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Monte Carlo Markov Chain. Consider forward evolution as in final state evolution and suppose

we start with parton a at the evolution scale t ′. In order to find the scale t of the next branching

we solve the equation

r = ∆a(t, t ′) , (3.7)

where r is a randomly generated number in the range [0,1]. At this point, if multiple splittings are

possible, we must select a specific splitting according to the correct weights. These weights are

given by Pab(xa, t) fa(z) for initial state evolution, and by only Pab(xa, t) for final state evolution.

Once a splitting has been selected, we find the momentum fraction z by solving

r
∫ zmax

zmin

dz′
αs

2π
Pab(z′) =

∫ z

zmin

dz′
αs

2π
Pab(z′) . (3.8)

The process is repeated for each emitted particle, creating a high multiplicity final state, until

the cutoff scale tc is reached. Of course, in practice the evolution variable is discretized into N

evolution steps, where at each step an emission can happen or not, according to the probability

given by Sudakov factors and splitting functions. It is a Markov process because the probability

for a certain splitting to happen at a given scale only depends on the current particle state and

dynamical variables, and not on the past evolution history or other particles.
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Chapter 4

A Quantum parton shower

In our paper ‘A Quantum algorithm for high energy physics simulations’ [8], we consider

a toy model field theory in which fermionic and scalar fileds are radiated collinear to the initiating

particle. Monte Carlo Markov Chains (MCMC) have been used very effectively to model such

systems, although they cannot capture all quantum effects. In particular, our toy model presents

quantum interferences between amplitudes corresponding to identical final particle states, but

reached with different intermediate particle states This is similar to interferences in electroweak

showers (see [9] for a detailed description of electroweak parton showers) involving intermediate

photons or Z bosons. In our simplified model the kinematics consist of the variable describing the

collinear shower evolution, which is discretized yielding a series of steps where at each step an

emission can happen or not. We propose a quantum algorithm that simulates a parton shower

keeping track of intermediate state interferences which are missed by a MCMC approach. Our

algorithm samples from the full, final state probability distribution in polynomial time, while the

best classical algorithm we could find requires exponential time to perform the same sampling.
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4.1 A toy model

Consider a quantum field theory described by the Lagrangian

L = f̄1(i/∂+m1) f1 + f̄2(i/∂+m2) f2 +(∂µφ)2

+g1 f̄1 f1φ+g2 f̄2 f2φ+g12
[

f̄1 f2 + f̄2 f1
]

φ (4.1)

where f1 and f2 are two fermion fields and φ is a scalar boson field. Partial motivation for our

model comes from the fact that similar interactions of fermions with scalar fields occur in the

Higgs sector of the Standard Model, where it has been shown that final state radiation at high

energy can be modeled with a parton shower in the collinear limit ([9], [10]).

We will consider final state radiation in the collinear limit governed by eq. (4.1) and

initiated by one or more fermions of type (or spin as we shall refer to sometimes) 1 or 2. In our

toy model the scalar boson φ can couple to either fermion 1 with coupling constant g1 or fermion

2 with coupling g2, or to both fermions with coupling g12. The shower dynamics consist of

fermions radiating scalars in f → f ′φ, where the fermion can remain of the same type or switch

type, and scalar bosons splitting into fermion-antifermion pairs in φ→ f f̄ ′. At the end of the

shower, the final state observable consists of a set of fermions and bosons with their energies (or

angle of emission) and positions in the jet of particles.

With all coupling being non-zero, there are quantum interferences among final states due

to the fact that intermediate fermion states are not observed and can be in a superposition of f1 and

f2. We must choose a scale to order emissions in our shower and we follow the common choice

of using the angle of emission θ as our dynamical variable. These angles are strongly ordered

such that θ0 > θ1 > ... > θn all the way to a collinear cutoff θ = ε > 0. Then the kinematic part

of the shower amplitude, i.e. without accounting for the coupling constants, factorizes as

Ân(θ1, . . . ,θn) = Â(θ0|θ1)Â(θ2|θ1) . . . Â(θn|θn−1) , (4.2)
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where Â(θn|θn−1) is the amplitude to emit one particle at angle θn given the angle of the previous

emission. In general, the full amplitude AÂ also depends on the momentum fraction of the emitted

particles, but since in this case the momentum dependence is completely factorized from the

angular dependence, we decide to ignore it for the sake of simplicity. Realizing a more complete

quantum simulation of our model which also includes momentum dependence is a possible next

step to be explored in the future.

4.2 MCMC simulation in the limit with g12→ 0 and no φ→

f f̄ ′

For the sake of clarity in illustrating the salient features of our model, we will start from

a simplified version and build up the full model in the next sections. Let’s ignore for now the

φ→ f f̄ ′ splitting and consider a one fermion initial state, possibly in a superposition of f1 and

f2. In the limit where g12→ 0, Ai→i′
n reduces to gn

i Ân and we can then use eq. (4.2) to efficiently

sample from the full cross-section using MCMC methods. In order to do so we introduce the

splitting functions

Pi→iφ(θ) = g2
i P̂(θ) , (4.3)

where P̂(θ) gives the dependence of the emission probability on the angle of emission (or

alternatively the scale of the process) and the splitting amplitudes are computed to leading order

in the coupling constants, meaning only including tree level Feynman Diagrams in perturbation

theory. We also introduce the Sudakov factor

∆i(θ1,θ2) = exp
[
−g2

i

∫
θ2

θ1

dθ
′P̂(θ′)

]
, (4.4)
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which gives the virtual and unresolved real contribution, i.e. it accounts for the probability of

having no emission. The splitting functions and Sudakov factor follow the unitary relation

∆i(θ1,θ2)+
∫

θ2

θ1

dθ Pi(θ) ∆(θ1,θ) = 1 , (4.5)

and are used to find the clssical parton shower expression for the final state cross-section:

σn,i(θ1, ...,θn) = g2n
i

[
n

∏
j=1

∆i(θ j−1,θ j)P̂(θ j)

]
∆(θn,ε) . (4.6)

We can efficiently sample from this expression by generating one emission at the time using a

MCMC.

4.3 MCMC fails when g12 6= 0

Now we let g12 6= 0 while still suppressing the φ→ f f̄ ′ splitting. The initial fermion(s)

can now change type (or spin) yielding interferences between intermediate states which cannot be

accounted for with eq. (4.6), but must be accounted for by working with the amplitudes directly

as we shall now describe. We once again consider an initial state consisting of one fermion. The

kinematics of the jet will be specified by the number of bosons emitted and their emission angles,

and for a final state with one fermion and a maximum of n bosons (i.e. n steps in the evolution)

the amplitude is written as

Ai→i′
n ≡ A(i→ i′+nφ), . (4.7)

Throughout the evolution there is always one fermion but at each boson emission the fermion

can change spin. These n−1 intermediate states cannot be observed and the final particle state is

therefore a superposition of the 2n−1 possible particle configurations.
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For example, if we start with a f1 fermion and end up with a f1 fermion, the amplitudes

for one and two emission steps are

A1→1
1 = g1Â1(θ1)

A1→1
2 =

√
(g2

1 +g2
12)Â2(θ1,θ2), (4.8)

to leading order in the coupling constants. We see that already for two emissions a non-trivial

interference appears between the fermion switching type twice and not switching at all. As the

number of boson emissions grows the combinatorics to obtain the correct coupling in front of Ân

grows exponentially. Factorization (eq. (4.2)) still holds but because the amplitude for a boson

to be emitted at a given step depends on the spin of the fermion, which will be in general in a

superposition of up (type 1) or down (type 2), the classical parton shower of eq. (4.6) cannot be

used to correctly sample the final state cross-section. The MCMC approach multiplies together

the probabilities of emission or not emission at each step, which would end up neglecting the

interference of amplitudes such as the one in A1→1
2 above, and these interference effects can only

be accounted for by working with the amplitudes directly. Emissions in which the fermion type

can change are modeled using the density matrix formalism. The splitting functions are then

represented by splitting matrices as

Pi→ jφ(θ) | fi〉
〈

f j
∣∣= Gi jP̂(θ) =

 g1 g12

g12 g2

 (4.9)

where in the limit g12→ 0 we get Pi→ jφ(θ)→ δi jg2
i P̂(θ), and G is necessarily unitary..

Even though we cannot use MCMC methods to simulate this system, because we are

neglecting the φ→ f f̄ ′ splitting, our system still holds limited complexity and can be solved

efficiently with classical methods. We first found a simple quantum circuit able to simulate

emissions in this model in linear time, which quickly led us to find a quantum-inspired classical
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algorithm which also solves the problem efficiently. This is a fairly common situation where

looking for quantum algorithms shines light on new classical algorithms which can solve the

problem at hand, and it is one of the added benefits of conducting research in quantum computing.

We will now illustrate both the quantum circuit, as a warm up for the full quantum simulation we

will describe later, as well as the classical algorithm.

4.3.1 Quantum algorithm solution

We start with one fermion (possibly in a spin superposition) and we ignore φ→ f f̄ ′, as

well as the running of the coupling. Then the full evolution can be simulated with the quantum

circuit in Figure 4.1. The | f 〉 encodes the fermion state, |0〉 for f1 and |1〉 for f2 (possibly in

a superposition of the two), while the |φi〉 states, which are initialized in the |0〉 state, encode

whether or not an emission occurred at step i. We start the evolution by applying the matrix U

|φN〉 Ua
n Ub

n

. . . . . .

|φ1〉 Ua
1 Ub

1
. . .

| f 〉 U • . . . • U†

Figure 4.1: Quantum circuit for full evolution with no φ→ f f̄ splitting and no running coupling.

which rotates the fermion state into a new basis fa/b (now |0〉 corresponds to fa and |1〉 to fb) in

which there is no mixing between fermion states. In this basis fermions do not change type and

applying the U operation is equivalent to diagonalizing the splitting matrix G from Eq. (4.9):

Gdiag =UGU† =

 ga 0

0 gb

 , (4.10)
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where

U =

 √1−u2 u

−u
√

1−u2

 , (4.11)

with

u =

√
(g1−g2 +g′)

2g′
, (4.12)

and

ga =
g1 +g2−g′

2
, gb =

g1 +g2 +g′

2
, (4.13)

g′ = sign(g2−g1)
√
(g1−g2)2 +4g2

12 . (4.14)

The evolution is then performed through the Ua/b
i gates, which are given by the matrices

Ua/b
k =


√

∆a/b(θk) −
√

1−∆a/b(θk)√
1−∆a/b(θk)

√
∆a/b(θk)

 (4.15)

encoding the probability of a boson to be emitted at a given step, i.e. for a given value of the

evolution variable θ. These matrices are applied conditionally on the fermion type, rotating a qubit

|φi〉 from the initial |0〉 state to a superposition of |0〉 (no emission happened) and |1〉 (a boson

was emitted) with the correct amplitudes in terms of Sudakov factors (note that 1−∆a/b(θk) is the

probability of a fermion of type a/b to emit a boson at θ = θk). If we were to include the running

of the coupling, as we will in the full simulation, we would have to rotate back and forth between

the 1/2 and a/b basis at each step, since U would depend on the scale θ though the couplings gi.
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The evolution in the fa/b basis is straight forward and does not involve any interferences between

fermion states. Since we are ignoring the running of the coupling here, we simply rotate back to

the 1/2 basis at the end, by applying U† to the fermion state. This operation creates interferences

between different intermediate fermion states as we described above. Finally, by measuring all

qubits we sample the final state distribution (which includes interference effects) thus obtaining

one event, analogous to the events generated in parton showers.

Because of the circuit structure it is clear that the complexity of the algorithm grows

linearly with the number of steps to simulate. This is a very simple quantum system and in fact

we notice that, once the |φ〉 qubits are acted on with Ua/b, they are left alone until the end of the

circuit where they are measured. This means we could actually measure such qubtis right away,

store the result in a classical register, set the qubit back to |0〉 and reuse it for the next step. This

way, employing repeated measurements, we can run the same algorithm using only two qubits, as

shown in the circuit in Figure 4.2. The combination of the n measurements on the |φ〉 qubit and

|φ〉 Ua
1 Ub

1 |0〉 Ua
2 Ub

2 |0〉 . . . Ua
n Ub

n

| f 〉 U • • . . . • U†

Figure 4.2: Quantum circuit for full evolution with no φ→ f f̄ splitting employing repeated
measurements and only two qubits.

the final measurement on the | f 〉 qubit yieldsß one event.

4.3.2 Quantum inspired classical algorithm

Because of the simplicity of the quantum circuit in Figure 4.2 (in particular the fact that it

only requires two qubits) we knew there had to be an efficient classical algorithm to simulate the

same shower evolution, and we found in fact a quantum inspired classical algorithm that uses

random variables to generate events like the quantum circuits of the previous section.

Let’s start by considering the evolution in step k of the quantum circuit in Figure 4.2.
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Because we reset the second qubit to |0〉, using the computational basis of Eq. (2.7) the two-qubit

state at the beginning of the step has the following form:

∣∣ψi
k
〉
=



a(k)1

0

a(k)3

0


. (4.16)

Applying the conditional Uk ’s operations yields the state

∣∣∣ψ f
k

〉
=



b(k)1

b(k)2

b(k)3

b(k)4


, (4.17)

where the b(k)i are determined by multiplying the 4x4 matrix which represents the conditional Uk

operations with the state
∣∣ψi

k

〉
. Then the probabilities P0 and P1 to measure the second qubit as

|0〉 or |1〉 are

P0 = b(k)1
2
+b(k)3

2
, P1 = b(k)2

2
+b(k)4

2
, (4.18)

and the corresponding states after resetting the second qubit to |0〉 are given by

|ψk〉0 =
1√
P0



b(k)1

0

b(k)3

0


, |ψk〉1 =

1√
P1



b(k)2

0

b(k)4

0


. (4.19)
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Both of these states have form

|ψk+1〉=



a(k+1)
1

0

a(k+1)
3

0


, (4.20)

which has exactly the same form of the state we started with, so that this process can be re-

peated again. To implement this classically we simply use a random number generator to choose

between |ψk〉0 and |ψk〉1 with the correct probabilities. The complete algorithm is as follows:

Create empty vector for classical register cφ[m]

Set a1 = a and a3 =
√

1−a2

for step = 1 . . .m do
Set bi =Ui ja j
Set P0 = (b2

1 +b2
3) and P1 = b2

2 +b2
4

if rand()< P0 then
c[step] = 0
a1 = b1/

√
P0 and a3 = b3/

√
P0

else
c[step] = 1
a1 = b2/

√
P1 and a3 = b4/

√
P1

end if
end for
if rand()< a2

1/(a
2
1 +a2

3) then
c f = 0

else
c f = 1

end if

ALGORITHM 4.1: Quantum inspired classical algorithm.
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4.4 Full Quantum Simulation

We now consider the full model with g12 6= 0 and including the φ→ f f̄ ′ splitting. The

complexity of the kinematics grows significantly, and we do not believe a classical algorithm

exists that is able to simulate the system and sample from the full final state distribution with

polynomial efficiency, a task that our quantum algorithm will instead be able to accomplish. The

initial state will consist of nI initial particles, which can be scalar bosons φ, f1/2 fermions or any

superposition of these. The quantum circuit block in Figure 4.3 simulates one step from the N

step evolution of the inital particle state, where at each step particles can radiate according to the

interactions specified by the Lagrangian in Eq. (4.1). The full quantum circuit is obtained by

repeating this block N times.

|p〉 / R(m) p p U (m)
p R(m)†

|h〉 / Uh h

|e〉 U (m)
e e

∣∣nφ

〉
/

Ucount

nφ

Uh|na〉 / na

|nb〉 / nb

Figure 4.3: Quantum circuit for one step.

We still begin by rotating the particle states into the fa/b basis, through the R(m) gate, so

that we can perform the evolution in a basis where emissions are uncorrelated and fermions do

not mix. Then, the rest of the circuit is dedicated to count how many particles of each type we

have at the beginning of the step, compute from this the correct amplitudes for each particle to

emit, determine whether an emission occurred or not, generate a superposition of all the possible

emissions that can happen with the correct amplitudes and adjust all the superimposed particle
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states based on the respective emissions. Then we rotate back into the f1/2 basis before measuring

the particle states, thus creating interference between intermediate fermion states similarly to the

ones we described in Section 3.3.1. We will now describe the algorithm and its components in

detail.

4.4.1 Particle Registers

The quantum circuit for the full simulation requires 6 qubit registers, which are listed in

Table 4.1 together with the necessary number of qubits in each register in order to perform an

N-step evolution starting from nI initial particles. The first two registers are physical, meaning

Table 4.1: Registers in quantum circuit with the number of qubits they require for N steps and
nI initial particles. The symbol d. . .e denotes the ceiling function.

Register Purpose # of qubits
|p〉 Particle state 3(N +nI)
|h〉 Emission history Ndlog2(N +nI)e
|e〉 Did emission happen? 1∣∣nφ

〉
Number of bosons dlog2(N +nI)e

|na〉 Number of fa dlog2(N +nI)e
|nb〉 Number of fb dlog2(N +nI)e

they are only measured at the end of the full evolution to provide the sampling of the final

state distribution. The other four registers instead, are work registers, i.e. they are necessary to

implement the desired operations but they do not hold any physical information and are reset to

zero at the end of each step, in order to be used again at the successive step.

The first register, |p〉, contains the information about the particle state. Each particle can

be in one of 6 states |0〉, |φ〉,
∣∣ fa/b

〉
, and

∣∣ f̄a/b
〉
. To encode these 6 states one requires 3 qubits,
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and we choose the following representation

|p〉i =



000

001

010

011

100

101

110

111



=



0

φ

−

−

f1/ fa

f2/ fb

f̄1/ f̄a

f̄2/ f̄b



, (4.21)

where the third and fourth states are not used and one chooses f1/2 and fa/b before and after the

basis change. There can be up to N +nI particles in the system, so we need a total of

dim[|p〉] = 3(N +nI) (4.22)

qubits in this register.

The second register, |h〉, is the history register which encodes the information of which

particle, if any, emitted during each step. Then, we actually have a subregister |h〉m for each step,

which must be able to hold integers from 0 (meaning no particle emitted in the given step) to

N +nI−1 (the number of particles that can radiate during the last step). If |h〉m is in state | j〉 it

means that at step m particle j was responsible for an emission. Then, if we want all subregisters

to be of same size, the history register will require

dim[|h〉] = Ndlog2[(N +nI)]e (4.23)

qubits.

The third register, |e〉, holds the information on whether an emission occurred or not
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during a given step, and being a work register is reset to the initial state at the end of the step.

Then we only need a single qubit for this register and

dim[|e〉] = 1 . (4.24)

The remaining three registers are count registers, which hold the information on how many bosons,

fermions of type a and fermions of type b (including both f and f̄ ) are in the current state. These

registers must be able to hold integers 0, . . . ,N +nI−1, so if we use the binary representation to

represent these integers one needs

dim[
∣∣nφ

〉
] = dim[

∣∣na/b
〉
] = dlog2[(N +nI)]e (4.25)

qubits.

At the beginning of the evolution all qubits in the work registers |e〉,
∣∣nφ

〉
, |na〉, and |nb〉

start out in the |0〉 state. For the physical registers, all qubits in the |h〉 register are initialized to

the |0〉 state, while for the particle register |p〉, the particle states |pi〉 with i > nI are initialized to

zero, while the ones with i≤ nI are set to encode the initial particle states, all according to the

representation in Eq. (4.21). We now move on to describing the operations in the quantum circuit.

4.4.2 Changing basis

The first thing we do, after inputting the initial particle states into the particle register, is

to rotate to the fa/b basis, where there is no mixing between different types of fermions. This is

very similar to what we did for the simplified algorithm of Section 3.3.1, but now particle states

are encoded in three qubits instead of one and this change of basis operation is represented by the
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8x8 unitary matrix

R =



I 0 0 0

0 I 0 0

0 0 U 0

0 0 0 U


, (4.26)

where the 2x2 U matrix is the one given in Eq. (4.11). This must be applied to all three-qubit

particle states in |p〉 and as we have previously mentioned, if we include the running of the

coupling, the U matrix, hence the R matrix, will be different at each step, so that you have to

rotate back and for between the two basis at the beginning and end of each step as shown in the

circuit in Figure 4.3.

4.4.3 First operation: counting particles

After the change of basis the quantum circuit consists of four main operations. The first

operation counts the number of particles of each type and stores these numbers in the three count

registers
∣∣nφ

〉
, |na〉 and |nb〉. We do this by applying the controlled-Ucount operation conditional

on the particle states, whose circuit decomposition is shown in Figure 4.4. We loop over all

|p〉 / φ a b |p〉 / p

∣∣nφ

〉
/ U+ ≡

∣∣nφ

〉
/

Ucount|na〉 / U+ |na〉 /

|nb〉 / U+ |nb〉 /

Figure 4.4: Quantum circuit for counting particles.

particle states |p〉i and if |p〉i is in a fermion or boson state the U+ operation is applied to the

respective count register. U+ acts on an integer in binary representation (where 0 corresponds to
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|0〉 and 1 corresponds to |1〉) as

U+ |n〉= |n+1〉modN+nI
, (4.27)

or in matrix form, (U+)i j = 1 if j = i + 1 mod (N + nI) and 0 otherwise. The U+ can be

decomposed into elementary and Toffoli quantum gates as shown in Figure 4.5, while the controls

w`−1 . . . . . .

w`−2 . . . . . .

. . . . . . . . .

w2 . . . . . .

w1 . . . . . .

q1 X • . . . . . . •

q2 • . . . . . . •

q3 . . . . . .

. . . . . . . . .

q`−1 . . . • • . . .

q` . . . . . .

,

Figure 4.5: U+ decomposition into elementary and Toffoli gates. The largest integer we can
count here is n, where `= dlog2(n)e.

on the particle type which appear in Figure 4.4 are implemented as illustrated in Figure 4.6. These

controls are applied to all of the gates in the decomposition of U+, yielding many instances of

an X gate controlled on 2, 3, 4 or 5 qubits. We saw how to decompose such operations into

elementary gates in Section 1.6.

4.4.4 Second operation: to emit or not to emit

In the second operation we determine whether or not an emission happened during the

current step. Similarly to what we described in Section 3.2, in the a/b basis the interactions
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• •

• •

|φ〉 |a〉 |b〉

Figure 4.6: Decomposition of the controls on the particle states φ, fa and fb.

cannot change the flavor of the fermion and the evolution is described by splitting functions and

Sudakov factors as in MCMCs. The splitting functions are now

Pi→iφ(θ) = g2
i P̂f (θ) , (4.28)

and

Pφ→iī(θ) = g2
i P̂φ(θ) , (4.29)

where i ∈ {a,b} specifies the fermion flavor. Recall that Pf (θ) and Pφ(θ) specify the functional

dependence of the splitting amplitude on the evolution scale, which can be specified by the time

t, angle of emission θ or other dynamical variables. For instance, in the implementation of our

algorithm we will use Pf (θ) = Pφ(θ) = log(θ).

With the splitting functions we can define the Sudakov factors, which encode the proba-

bility of not emitting, as

∆i(θm,θ)≡ exp [−∆θPi(θm)]

∆φ(θm,θ)≡ exp
[
−∆θPφ(θm)

]
, (4.30)
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where

Pi(θm)≡ Pi→iφ(θm)

Pφ(θm)≡ Pφ→aā(θm)+P
φ→bb̄(θm) , (4.31)

and

∆θ = θm−θ . (4.32)

If in the current step we have a particle state consisting of nφ bosons and na/b fermions,

where these numbers have been stored in the count registers in the previous operation, the

probability of having no emission in this step is given by

∆
(m)(θm,θm+1) = ∆

nφ

φ
(θm,θm+1)∆

na
a (θm),θm+1∆

nb
b (θm,θm+1) . (4.33)

Meanwhile, the probability of having an emission (any emission) is

qp(θm)≡
∫

θm+1

θm

dθPp(θm)∆p(θm,θ)

= 1−∆p(θm,θm+1) . (4.34)

We can encode these emission and non-emission probabilities in our quantum circuit

through the operation Ue controlled on the count registers, as shown in Figure 4.7, and represented

by the matrix

U (m)
e =


√

∆(m)(θm) −
√

1−∆(m)(θm)√
1−∆(m)(θm)

√
∆(m)(θm)

 , (4.35)

which acts on the qubit |e〉, initially in the state |0〉, rotating it into a superposition of |0〉 (no
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emission happened) and |1〉 (an emission happened) with the correct respective amplitudes. The

|e〉 / U (m)
e∣∣nφ

〉
/ nφ

|na〉 / na

|nb〉 / nb

Figure 4.7: circuit operation for determining whether an emission occurred at the mth step.

entries of Ue depend on the number of each particle type in the current state through Eq. (4.33),

and this is the first reason we needed to count particles and store these numbers into count

registers. When we implement this operation, we must account for all possible combinations of

particles that can populate the particle state at this stage, this means we must apply Ue controlled

on all possible combinations of three integers, ranging from 0 to m+nI−1, whose sum must

be in the range [nI,m+ nI− 1], where m is the current step’s number. This is an instance of a

single qubit gate controlled on n qubits, which we have previously shown how to decompose into

elementary quantum gates.

4.4.5 Third operation: deciding the emitting particle

If an emission did happen, the third operation decides which particle emitted and assigns

the correct amplitude for that emission. In order to do this we ”loop” over all particles up

to the Mth particle state, applying the U (m,k)
h sub-operations as shown in Figure 4.8, where

M = m+nI−1, m is the current step and the −1 is because we don’t loop over the particle which

might have just been emitted in the current step. The sub-operations are decomposed as shown in

Figure 4.9

This is the most subtle operation so let’s analyze it in detail. We are in the mth step,

M ≡ m+nI−1 is the maximum number of particles that can be present in the current state and
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|p〉M / p

. . .

|p〉2 / p

|p〉1 / p

|h〉m / U (m,1)
h U (m,2)

h U (m,M)
h

/0

|e〉 • • . . . • X∣∣nφ

〉
/

U (m,1)
h U (m,2)

h U (m,M)
h

|na〉 /

|nb〉 /

Figure 4.8: Sub-operations that ”loop” over particle states up to the Mth particle and make up
the third main operation in the mth step.

we work with the history sub-register |h〉m , which contains states labeled by integers from |0〉 to

|M〉. In the kth (out of M) sub-operation we apply the gate U (m,k) whose action is best described

by a 2x2 unitary sub-matrix which always acts between state |0〉 and state |k〉 in |h〉m, and which

is given by

U (m,k) =


√

1− Ppk (θm)

P(nφ,na,nb)
−
√

Ppk (θm)

P(nφ,na,nb)√
Ppk (θm)

P(nφ,na,nb)

√
1− Ppk (θm)

P(nφ,na,nb)

 . (4.36)

where

P(nφ,na,nb)(θm) = ∑
p

npPp(θm) , (4.37)

and the Pp(θm)’s were given in the previous section. The last controlled-X operation sets the
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|p〉k / p p φ a b

|h〉m / U (m,k)
h U (m,k)

|e〉 • ≡ •∣∣nφ

〉
/

U (m,k)
h

nφ U−

|na〉 / na U−

|nb〉 / nb U−

Figure 4.9: Circuit decomposition for the kth sub-operation from the third main operation.

emission register |e〉 back to the initial |0〉 state.

After having determined an emission happened in the previous operation, the probability

of having a specific emission is essentially given by the relative probability of that emission to

happen with respect to the sum of all emission probabilities, hence the form of the entries of

U (m,k) (where the square roots are because we must work with amplitudes).

We control on |p〉k the same way we did for the count operation as shown in Figure 4.4

and Figure 4.6, plus controlling on the number of particles of each type in the current particle

state, like we did in the second operation (see Figure ??). However, here the operations we apply

are different for each combination of controls, since the entries of the U (m,k) matrix depend on

the particle flavor and the number of particles through Ppk and P(nφ,na,nb)(θm). Of course we

also control on the qubit |e〉 being in a |1〉 state, which means an emisison did happen.

In each sub-operation, after applying the U (m,k) gate, we apply U− gates conditional on

the particle flavor, which acts as following:

U− |n〉= |n−1〉modN+nI
, (4.38)

and which is decomposed similarly to the U+ gate (see Figure 4.5) except that the controls on the
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work qubits here control on the qubits being in the |1〉 state, instead of the |0〉 state like in the U+

decomposition.

In each step, the sub-operations build up recursively a superposition of all the possible

emissions, i.e. of all possible histories for the step, with the correct amplitudes. In each sub-

operation, after the U gate is applied, the controlled U− gates are applied so that the entries for

U (m,k) in the kth sub-operation come from the relative probability that the pk particle emitted out

of the particles between (and including) pk and pM. The value of P(nφ,na,nb)(θm) then changes

at each step, until in the last step we have

P(nφ,na,nb)(θm) = Ppk(θm) , (4.39)

so that the last 2×2 sub-matrix U is always of form

U (m,m) =

 0 −1

1 0

 . (4.40)

The last sub-operation then rotates or transfers the amplitude of the |0〉 state of |h〉m, which

was built up out of non-emission amplitudes from all the previous U’s, to the |M〉 state. Recall

that we are applying all of these sub-operations conditionally on an emission having occurred.

Therefore, at the last sub-operation, the amplitude for last particle to be the one which emitted is

the same as the amplitude for all of the previous particles not having emitted, which is what we

are transferring to the |M〉 state.

Notice also that at the end of this operation, the U− gates have been applied conditionally

on all of the particle states in |p〉, which is exactly the inverse of the counting operation, so that

the three count registers are back to the initial |0〉 state, ready to be used again in the next step.

As a quick aside, I want to emphasize again that all of these unitary operations which are

applied, often with controls, are essentially rotations between quantum states which always create
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superpositions of states, and these states are then evolved in subsequent operations and evolution

steps. In a sense all possible emission histories are created and evolved with the correct respective

amplitudes, and at the end only one is picked out by a measurement. So when we say that in the

second operation we decide whether or not an emission happened, the algorithm actually creates

and processes both possibilities and the choice is really made when we measure at the end. This

of course, is one of the key features of quantum computation and principal source of its potential,

but that said, it is unintuitive to think in these terms, making it often challenging to come up with

new efficient quantum algorithms or even to follow how existing ones work.

4.4.6 Fourth operation: adjusting the particle state

After we determined the emission history of the step we must adjust the particle states

in |p〉 accordingly; this is done in the fourth and last main operation, whose circuit schematic is

shown in Figure 4.10. The operation labeled with Up is controlled on the kth state of |h〉m and

acts on the particle sub-registers |p〉k and |p〉M+1. We must loop over the states in |h〉m and apply

the controlled-Up operation for all k’s from 1 to M. Note that we control on the kth state in the

history sub-register, which specifies which particle emitted but does not have the information of

the flavor of the particle, which is provided by the particle state |p〉k.

|p〉M+1 / Up

|p〉k / Up

|h〉m / k

Figure 4.10: Circuit for the operation at step m which fixes the particle register after the emission
has happened. As before, M = m+nI−1. Notice that if we control on |h〉 being in the |k〉 state,
we apply Up to the kth sub-register |p〉k and the (M+1)th sub-register |p〉M+1.

For example, if the we determined that the boson encoded in |p〉k split into a fa f̄a pair we
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must remove the φ from the full particle state and add the fermion-antifermion pair. Either fa or

f̄a are encoded in |p〉k in place of the φ while the other one is encoded in the next sub-register

|p〉M+1 (in fact, a superposition of the two cases is actually created). On the other hand, if a

fermion emits a boson, we simply have to add a |φ〉 to the particle register by encoding it in

|p〉M+1. We want the Up operation to act on the |p〉k |p〉M+1 states as follows:

| fi〉 |0〉 → | fi〉 |φ〉∣∣ f̄i
〉
|0〉 →

∣∣ f̄i
〉
|φ〉

|φ〉 |0〉 → ∑
i=a,b

ĝi
(
| fi〉
∣∣ f̄i
〉
+
∣∣ f̄i
〉
| fi〉
)
, (4.41)

where

ĝi ≡
gi√

2(g2
a +g2

b)
. (4.42)

This can be carried out by the following unitary operator:

Up = ∑
i=a,b
| fi〉 |φ〉〈 fi| 〈0|+ ∑

i=1,b

∣∣ f̄i
〉
|φ〉
〈

f̄i
∣∣〈0| (4.43)

+ ∑
i=a,b

ĝi
(
| fi〉
∣∣ f̄i
〉
+
∣∣ f̄i
〉
| fi〉
)
〈φ| 〈0| ,

where the unitarity can be seen by recalling that states of particles with different flavors are

orthogonal. The circuit implementation of this operation is given in Figure 4.11, where H is the

Hadamard gate and Ur is given by:

Ur =
1√

g2
a +g2

b

 ga −gb

gb ga

 . (4.44)
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Ur

H

• • • • •

|pM+1〉

•

•

|pk〉

Figure 4.11: The circuit for the Up operation.

4.4.7 Sampling

To generate one event, we start by selecting the emission angle cutoff where we want the

evolution to stop, which corresponds to the cutoff scale tc that we introduced when discussing

parton showers in the previous chapter. Then, we specify the initial scale, in this case identified

with the initial emission angle, and the total number N of evolution step we want to simulate

going from the initial to the cutoff scale. The larger N, the more accurate the simulation will

be. In each of the N steps the circuit in Figure 4.3 is run, with the gate parameters accurately

computed based on the scale of the current step. Each step starts with rotating from the f1/2 to the

fa/b basis with the R operation, then the four main operations are applied and finally we rotate

back to the f1/2 basis with the R† operation, which is the inverse of the R rotation, thus creating

interferences between identical final particle states which had intermediate fermions of different

flavor in their shower history.

At the very end of the evolution, after the Nth step is completed, we are in the f1/2 basis

and we measure the qubits which make up the physical registers, i.e. the particle and history

registers. Note that all other qubits are work qubits and at this point have already been rotated

back into the |0〉 state. Measuring the particle register tells us the final particle state, meaning
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all the emitted/radiated particles which are present in the shower at the end of the evolution.

Measuring the history register instead, tells us which particles in |p〉 radiated and at which angle

θ, where the latter can be deduced from the step at which the emission happened. The information

obtained through measurement however, is not enough to reconstruct the full evolution, since

in the 1/2 basis fermions can change flavor during emissions and in the end we will have a

superposition of states with the same final particles and same emission history, but different final

amplitudes, because of intermediate particle states with fermions of different type. The example

in eq. (4.8) for the simplified model helps to illustrate the form of these interferences. It is almost

like we decided to be ignorant of the flavor of the fermions during the shower evolution, in order

to preserve these interference effects.

Measuring the particle and history registers corresponds to generating one event, i.e.

one sample of the final state distribution of the shower evolution. We have argued that the

complexity to generate this one event scales polynomially with the number of resources (qubits

and elementary quantum gates), however, we must still make sure that obtaining the final state

distribution of the shower with acceptable accuracy does not require to generate exponentially

many events, otherwise we would loose all advantage and the problem would become once again

intractable. In other words, if we are measuring a total of say T qubits between particle and history

registers, there are 2T possible states to be measured, so that if all states had a similar chance of

being produced it would require more than 2T events to be generated to obtain the distribution

of final states with acceptable statistics. The solution to this problem lies in the fact that, in our

shower evolution, out of the 2T possible states, only a small fraction will have non-vanishing

probability of being produced, and because quantum measurements yield states according to their

relative probability of occurring in the Hilbert space of all possible quantum states, the number of

events we must generate to sample with sufficient accuracy the final state distribution is small and

scales polynomially with the number of qubits T .
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4.4.8 Complexity

In this section we derive a measure of the complexity of the quantum circuit by counting

how many elementary gates are necessary to implement each of the four main operations. We’ll

start by computing the complexity of some common operations, which are used multiple times

in the implementation of our algorithm. In Section 2.5 we saw how to decompose an operation

U controlled on n qubits, it required n−1 work qubits, 2× (n−1) Toffoli gates and one C(U)

operation. A Toffoli gate requires 16 elementary gates to be implemented while a C(U) operation

requires 5. Then, assuming n > 2 and that we control on all qubits being in a |1〉 state, quantum

gates controlled on n qubits require

∣∣∣C(n)[X ]
∣∣∣= 32n−31∣∣∣C(n)[U ]
∣∣∣= 32n−27 (4.45)

elementary gates. To these numbers we must add 2 X-gates each time we control on a qubit being

in the |0〉 state instead of the |1〉 state.

Let’s now look at the first operation. The U+ gate was broken down in Figure 4.5

and each operation in that figure was controlled on the particle states as shown in Figure 4.6.

Using the above results and the fact that in the mth step we must be able to store integers up to

` = dlog2(m+nI−1)e in the count registers, the number of elementary gates required for the

counting operation in the mth evolution step is

ccount(m,nI) = 909dlog2(m+nI−1)e−1010 . (4.46)

In the second operation, where we determine whether an emission happened, we apply

the Ue gates controlled on all possible combinations of three integers between 0 and m+nI−1
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whose sum is in the range [nI,m+nI−1]. The number of such combinations is

c2(m,nI) =
m+1

6
(m2 +3mnI +5m+3n2

I +9nI +6) . (4.47)

For each of these combinations we apply a Ue gate controlled on 3log2(m+nI−1) qubits, and

using the above result for the complexity of a C(n)(U) operation, we computed the total number

of elementary gates necessary to implement the second operation at step m to be

cemission(m,nI) = c2(m,nI)(96dlog2(m+nI)e−27) . (4.48)

In order to determine the complexity of the third main operation, which creates the

emission history, we compute the number of gates required to implement the kth sub-operation.

The gate U (m,k) gate has the same controls on the count registers as the controlled-Ue operation

plus being also controlled on the emission qubit and on the particle state. We take the control on

the particle state as a control on three qubits in the |1〉 state, thus ignoring the fact that for the

fermions we actually only control on two qubits and that some controls are on |0〉 states. This is

justified by the fact that the resulting error difference in gates is negligible when compared to the

number of gates required for implementing the rest of the operation. So the U (m,k) gate is applied

controlled by 4+3dlog2(m+nI− k−1)e qubits, where the −k come from the reduction in the

number of particle states due to the U− gates.

For the kth sub-operation the matrix U (m,k) is an a×a unitary matrix, where a = 2b and

b is the number of qubits on which the matrix acts, given by b = dlog2(k)e since U (m,k) acts

between the states |0〉 and |k〉, represented by integers in binary representation. There is a standard

procedure to break down a specific two-level unitary matrix like U (m,k), outlined in Chapter 4 of

[2], from which it turns out that the number of elementary gates to implement U (m,k) controlled

on n qubits is
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|C(n)(U (m,k))|= 32(n−1)+ |C(1)(U (m,k))|

= 32(n−1)+2(b−1)|C(1)(X)|+ |C(1)(U)|

= 64b2−94b+32n+3 . (4.49)

As we mentioned above in this case n = 4+3dlog2(m+nI− k−1)e.

The controlled-U− gates have very similar complexity to the controlled-U+’s of course,

with the difference that we control on work qubits being in the |1〉 state, so that we need

ccountdown(m,nI) = 873dlog2(m+nI−1)e−968 . (4.50)

elementary gates to implement the controlled-U− operations. All together the total number of

elementary gates to implement the third operation at step m, summing over all sub-operations, is

chist(m,nI) =
m+nI

∑
k=1

[
ccount(m,nI)

+3c2(m,nI)
∣∣∣C(4+3dlog2(m+nI−k)e)(U (m,k))

∣∣∣] . (4.51)

Finally, for the fourth operation the gate Up is decomposed as shown in Figure 4.11, which

is then applied controlled on all possible states in |h〉. There are a total of m+ nI such states,

encoded in dlog2(m+ nI)e qubits. Up is applied m+ nI − 1 times and each time one controls

all gates in the decomposition in Figure 4.11 on dlog2(m+nI)e control qubits from the history

register. Then to implement the fourth main operation at step m one needs

c f ix(m,nI) = (m+nI)(224dlog2(m+nI)e+143) . (4.52)
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elementary gates.

If we add together the number of elementary gates required for the each of the four

operations and sum over 0 < m < N−1, we find that the total number of universal gates for the

circuit scales as N5lnN.

Because there is no interference between states with different emission histories, we

could in principle measure the history register at each step, store the result and set it back to the

initial |0〉 state. If we count again the elementary gates in the third operation (which is the one

with highest complexity) we find that this modification reduces the circuit complexity to N3lnN.

However, such repeated measurements are not implementable on current hardware, so we stick

for now to the implementation using multiple history sub-registers.

4.5 Results

The full quantum circuit described in Section 3.4 requires too many interconnected

qubits and quantum operations to be implemented and tested on current state-of-the-art quantum

computers. Therefore, we were only able to test on a real quantum machine, the simplified

algorithm we discussed in section 3.3, where we ignore the splitting φ→ f f̄ , the running of the

coupling and we start with only one fermion as our initial state. For this model we ran classical

simulations (in Python and Mathematica), quantum simulations (using the IBM Q simulator called

Qiskit) and we also ran the algorithm on a current quantum computer, the IBM Q Johannesburg

Chip. With each of these methods we generated a large number of events which we then used to

compute and plot the differential cross sections for various observables. We ran the algorithm

with both g12 = 0, for which a classical simulation using MCMC is possible, and for g12 6= 1, for

which we have results from the quantum simulation and the actual quantum computer, but for

which the MCMC simulation is not available. Since the IBM Q machine has limited number of

qubits, gate depth and hardware fidelity, we chose to simulate N = 4 steps.
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Figure 4.12: Normalized differential cross section for two observables: logθmax (a,c) and
the total number of emissions (b,d), for both (g12 = 1) and (g12 = 0), where the classical
simulations/calculations are expected to agree with the quantum simulations and measurements.

For the full model instead, i.e. including the splitting of the scalar field into fermions, we

were only able to run a 2-step complete quantum simulation using the IBM Quiskit simulator. We

did this for both g12 = 0 and g12 = 1.

All results are displayed in Figure 4.12, which shows the plots of the normalized dif-

ferential cross sections for two observables: the natural logarithm of the maximum emission

angle (a,c) and total number of emissions (b,d). Over 105 events contribute to each cross section,

yielding negligible statistical uncertainties. Figures 4.12(a,b) present the results of the four-step

simulations and runs, where the legend entry IBMQ ”corrected” means that the run on the actual

quantum computer was error corrected. Meanwhile, figures 4.12 (c,d) display the results of the

2-step full model simulations.

Let’s look at Figure 4.12(b) for example. We see that the results for the g12 = 0 simulation

agree very well with the MCMC results (which also has g12 = 0) as expected, and more interest-

ingly it also agrees fairly well with the results of the runs on the actual quantum computer for the
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case g12 = 0 (blue triangular marks). The discrepancy can be attributed to noise, still significant

in current quantum computers, where a certain degree of gate failure and information-loss is

unavoidable. This supposition is supported by the fact that performing error correction brought

the blue marks closer to the results of the quantum simulation. We find something similar when

comparing the results from the actual quantum computer with g12 = 1 (given by the red triangular

marks) with the results from the respective simulation in Quiskit (red histogram bars). The two

seem to follow a similar trend, but with g12 = 1 the quantum circuit becomes longer and deeper,

so that the number of gate failure as well as the amount of information lost due to decoherence is

larger, resulting in a larger discrepancy between the real and simulated results. Figures 4.12(c,d),

while not validating or comparing the results of the two-step full simulation, are interesting in the

regard that they provide a first step toward a full simulation which we hope one day to be able

run on a more advanced quantum machine, plus furnishing some visual cues on the differences

between the full model with g12 = 0 and the full model with g12 = 1.

The relevance of the presented results lies in that they represent an experimental proof

of concept of our algorithm. It’s the first step toward running the full model for a large number

of steps, and with great accuracy, once more advanced quantum machines are available, a feat

which is intractable with classical computers. Furthermore, the algorithm can be improved and

expanded to come closer to simulating processes in the Standard Model. For instance, the full

three-dimensional kinematics of splitting could be included by adding the sampling of momentum

fractions and azimuthal angles with a hybrid quantum-classical approach. Extension to SU(2)

could also be achieved by adding more fermions to account for leptons and quarks, and more

bosons to represent the W± and Z bosons. These advancements would ideally lead to a full

quantum simulation of electroweak showers, which follow collinear radiation and might be of

increasing importance in future high-energy colliders or dark matter experiments.
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Chapter 5

Beyond our algorithm

In this final chapter, before concluding the article, I want to briefly discuss a few other

promising and fascinating applications of quantum computing in the physical sciences.

5.1 The Jordan-Lee-Preskill approach

In their 2011 paper ”Quantum Computation of Scattering in Scalar Quantum Field Theo-

ries” [4] perhaps the most famous paper in the field, Jordan, Lee and Preskill propose a quantum

algorithm that is able to compute relativistic scattering amplitudes in massive φ4 theories, a

class of field theories which are relevant in various areas of quantum field theory, such as in

describing the self-interactions of the Higgs boson. The proposed algorithm’s complexity scales

polynomially with the number of particles, their energy and desired precision.

To make the distinction clear, while our algorithm computed scattering cross sections for

simplified models in a specific perturbative regime, JLP’s computes scattering amplitudes for

a full field theory, not in the perturbative regime, but by discretizing space in a way similar to

what is done in lattice gauge theories, and then simulate Hamiltonian time evolution. On the

other hand, JLP’s algorithm cannot be run on NISQ era quantum machines, requiring tens on

thousands, if not more, of well connected qubits, even for the simplest amplitudes. Furthermore,
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a detailed implementation procedure is not provided and many are the challenges that would have

to be surmounted in that pursuit. In other words, the algorithm is impressive in its intricacy and

potential but its realization in practical terms remains far in the future.

Let’s look into how the algorithm works. I won’t dive too deep into the intricacies of the

algorithm or the lattice gauge theory necessary, both of which can be found in the original paper

[4], I simply want to outline the main steps and techniques involved. The first step is to put the

theory on a finite qubic lattice by discretizing space only (and not spacetime as in usual lattice

gauge theory). For each point in space x, the scalar field, a real and continuous degree of freedom,

takes on some value φ(x), and so does the conjugate momentum π(x). By canonical quantization,

these two degrees of freedom are promoted to operators and the Hamiltonian for φ4 theory can be

written as

H = ∑
x∈Ω

ad
[

1
2

π(x)2 +
1
2
(∇aφ)2(x)+

1
2

m2
0φ(x)2 +

λ0

4!
φ(x)4

]
. (5.1)

By unitarity of quantum mechanics, the time evolution of the Hamiltonian is already a unitary

operation and the next step is to find a way to implement it on a digital quantum computer. The

time evolution itself is implemented by breaking down H into Hπ +Hφ, where Hπ corresponds

to the first term in Eq. (5.1) and Hφ to the latter three terms in Eq. (5.1). Since Hφ acts on the

computational basis, which is the basis we work in, we can implement its time evolution through

repeated application of e−iHφδt , which simply yields a phase. We can simulate e−iHπδt in a similar

manner, with the difference that we must first Fourier Transform to the momentum basis, and

transform back to the computational basis after the evolution (we discussed how the Quantum

Fourier Transform works in chapter 2).

Time evolution is one of the key ingredients of the quantum algorithm, and now that we

have properly introduced it, we can sketch the full algorithmic procedure to simulate high energy

scattering amplitudes. First we must define the state of the lattice by using a register of qubits
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to store the value of the field φ at each point x. Then the main steps of the algorithm are the

following (a detailed description of the algorithm is found in the original paper [4]) :

1. Prepare the ground state of the theory. Preparing an arbitrary ground state is an intractable

operation even on a quantum computer, so instead we prepare the ground state of the free

theory through the method of Kitaev and Webb [11], which needs a polynomial number

of gates. We will later evolve the states through adiabatic evolution to states of the full

interacting theory.

2. Excite wavepackets in the free theory by applying creation operators.

3. Obtain wavepackets in the new theory by performing a Hamiltonian time evolution for

a time τ during which the interaction is turned on adiabatically. This is realized by

implementing a kth order Suzuki-Trotter formula (see [12] and [13]) by letting

H = ∑
x∈Ω

ad
[

1
2

π(x)2 +
1
2
(∇aφ)2(x)+

1
2

m2
0(s)φ(x)

2 +
λ0(s)

4!
φ(x)4

]
, (5.2)

for 0≤ s≤ 1 and λ0(0) = 0.

4. Evolve the Hamiltonian H(1) for time t, during which the actual scattering occurs, with the

method outlined above for Hamiltonian time evolution.

5. Perform the time-reversed version of the adiabatic turn-on in step 3.

6. Measure via phase estimation the number operator L−da†
pap, of momentum modes in the

free theory, where L is the length of the Lattice. This reduces to simulating eiL−da†
papt for

various t, and can also be implemented using a Suzuki-Trotter formula.

The outlined algorithm simulates high energy scattering amplitudes in scalar field theory

with polynomial run-time, and it is applicable to both strongly and weakly interacting theories. It
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presents an advantage over classical algorithms especially in the non-perturbetive regime and for

high precision calculation, where perturbation theory becomes too cumbersome.

This approach of simulating full scatterings with a digital quantum computer, using

adiabatic turn-on and the mentioned Hamiltonian evolution, presents a fascinating research

direction which promises to yield important results once large and well connected quantum

machines become available in the future. It also offers many possibilities for further work, from

extending this approach to more general field theories to working on the actual implementation of

scatterings in a specific theory.

5.2 Other approaches

There are of course other interesting and relevant papers on quantum computing solutions

for HEP, the field being relatively new but vibrant. For instance, in their 2005 paper “Simulating

lattice gauge theories on a quantum computer” [3], Byrnes and Yamamoto explore the simulation

of lattice gauge theories on a universal quantum computer by transcribing the Hamiltonian of

the theory on the lattice in a Hamiltonian involving only Pauli spin operators, so that it can be

then simulated using only one and two qubit operations. They provide examples of algorithms for

U(1), SU(2) and SU(3) lattice gauge theories up to cutoff, which were found to have polynomial

complexity in the number of qubits and operations required.

If we extend the discussion to applications of quantum computing to the physical sciences

as a whole, one of the most active and promising areas is quantum chemistry. Molecules, unlike

scattering particles, are bound quantum systems with a finite number of degrees of freedom,

making them much easier to simulate on quantum computers with a limited number of qubits.

One of the main results in this field has been the development of hybrid classical-quantum

systems such as the variational quantum eigensolver (VQE), which was proved to be able

to compute Hamiltonian ground states, as well as certain excited states, of simple molecules
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efficiently. In the paper ”Computation of Molecular Spectra on a Quantum Processor with an

Error-Resilient Algorithm” [14], Siddiqui et al describe the successful application of a VQE on a

quantum machine with superconducting qubits, to extract both ground and excited states of the

H2 molecule.

5.3 Final thoughts

In our research effort, we took a successful and popular classical tool as the Parton Shower

and constructed an equivalent algorithm on a quantum computer, which included features that

cannot be included in the classical version, specifically keeping track of quantum interferences

between final shower states. So far, we were only able to do this for a simplified field theory

model and we hope one day to be able to simulate a full quantum shower for the standard model.

This approach of modifying a classical algorithm into a quantum one is a popular one, which

tends to yield algorithm suitable for NISQ machines, i.e. quantum computers of the near future.

The other approach, taken by JLP for instance, is to start from scratch and develop

an inherently quantum algorithm. This, though probably harder to carry out, tends to result

in more novel and powerful algorithms. At the same time, these algorithms often require

quantum computers with a large number of interconnected qubits, with high fidelity, for practical

implementation, something that will not be available in the near future.

Both directions offer fascinating research opportunities, and I hope with this work to

help or encourage some readers to explore the new and exciting field of quantum computing

applications, to high energy physics and beyond.
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[22] René Ángeles Martı́nez, Matthew De Angelis, Jeffrey R. Forshaw, Simon Plätzer, and
Michael H. Seymour. Soft gluon evolution and non-global logarithms. JHEP, 05:044, 2018.

[23] Simon Platzer and Malin Sjodahl. Subleading Nc improved Parton Showers. JHEP, 07:042,
2012.

[24] Simon Plätzer, Malin Sjodahl, and Johan Thorén. Color matrix element corrections for
parton showers. JHEP, 11:009, 2018.

[25] Zoltán Nagy and Davison E. Soper. Parton showers with more exact color evolution. Phys.
Rev., D99(5):054009, 2019.

[26] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018.

[27] Peter Richardson. Spin correlations in Monte Carlo simulations. JHEP, 11:029, 2001.

[28] I. G. Knowles. A Linear Algorithm for Calculating Spin Correlations in Hadronic Collisions.
Comput. Phys. Commun., 58:271–284, 1990.

77



[29] John C. Collins. Spin Correlations in Monte Carlo Event Generators. Nucl. Phys., B304:794–
804, 1988.

[30] I. G. Knowles. Spin Correlations in Parton - Parton Scattering. Nucl. Phys., B310:571–588,
1988.

[31] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz,
Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik,
Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion
quantum simulator. Phys. Rev. X, 8:031022, Jul 2018.

[32] John C. Collins, Davison E. Soper, and George F. Sterman. Factorization of Hard Processes
in QCD. Adv. Ser. Direct. High Energy Phys., 5:1–91, 1989.

[33] Zoltan Nagy and Davison E. Soper. A parton shower based on factorization of the quantum
density matrix. JHEP, 06:097, 2014.

[34] Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander
Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller,
and Rainer Blatt. Real-time dynamics of lattice gauge theories with a few-qubit quantum
computer. Nature, 534:516–519, 2016.

[35] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum Simulation. Rev. Mod. Phys.,
86:153, 2014.

[36] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum Algorithms for Quantum
Field Theories. Science, 336:1130–1133, 2012.

[37] Walter T. Giele, David A. Kosower, and Peter Z. Skands. A simple shower and matching
algorithm. Phys. Rev., D78:014026, 2008.

[38] Stefan Gieseke David Grellscheid Stefan Hoche Hendrik Hoeth Frank Krauss Leif Lonnblad
Emily Nurse Peter Richardson Steffen Schumann Michael H. Seymour Torbjorn Sjostrand
Peter Skands Bryan Webber Andy Buckley, Jonathan Butterworth. General-purpose event
generators for LHC physics. Phys. Rept., 504:145–233, 2011.
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